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Multiples

• Multiples in seismic data are often undesirable, harming both 
processing and interpretation.

• There exist computationally cheap multiple removal methods, 
such as predictive deconvolution and filtering based multiple 
removal.

• These can fail when confronted with complex geology.

• For complicated internal multiples, inverse scattering multiple 
prediction can be a preferable method for multiple removal.



Types of Multiples

• There are two major types of multiples.

• Free surface multiples experience at least one downward 
reflection at the free surface.

• Internal multiples are multiples that do not have any reflection at 
the free surface.

• Internal multiples are typically of greater importance in land 
data, as the near surface scatters away most of the energy 
associated with free surface multiples.
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Inverse Scattering Multiple Prediction

• Inverse scattering multiple prediction generates an internal 
multiple prediction based on the seismic data alone, and is 
capable of dealing with very complex geologies.

• CREWES is working on several multidimensional 
implementations of inverse scattering in a variety of novel 
domains, such as work on plane wave domain prediction (Sun, 
2015) and on space-time domain prediction (Innanen, 2015).



Inverse Scattering Multiple Prediction 

• Inverse scattering multiple prediction works by identifying the 
subset of the Born series which contributes to the generation of 
internal multiples, and calculating the first term of this set.

• To ensure that only physically valid multiples are predicted, the 
scattering events are limited to a lower – higher – lower relation.

• In 1.5D for example, the prediction is given by



Inverse Scattering Multiple Prediction

• Inverse scattering multiple prediction is in practice generated 
using a truncation of an infinite series, and so is not exact.

• Additionally, theoretically necessary preprocessing steps such 
as deconvolution and deghosting are often neglected, 
introducing additional errors in both amplitude and phase (Pan, 
2015).



Adaptive Subtraction

• In order to remove these predicted multiples, we need to match 
them to the observed multiples and subtract them.

• This is called adaptive subtraction.

• This matching is typically done by applying a filter to the 
predicted multiple.

• As we do not know the correct multiple, we need to determine 
some way of choosing the filter we apply.



Least squares adaptive subtraction

• One of the simplest methods of adaptive subtraction is to 
choose the filter which gives the multiple prediction that 
minimizes the total energy in the data. (Verschuur et. al. 1992)

• This hinges on the assumption that multiples and primaries do 
not overlap in the data, and so eliminating the multiples yields 
the minimum energy.



Least squares adaptive subtraction

• Minimizing the energy is equivalent to minimizing the L2 norm, 
given by 

where r is the data after subtraction, given by

where M is the matrix representing convolution with the 
predicted multiple trace, d is the data trace, and f is the filter.

• To find the filter, we wish to solve                        We do this by 
least squares: 
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Least squares adaptive subtraction

• Unfortunately, multiples and primaries often overlap to some 
extent.

• Given that primaries typically have greater energy than 
multiples, least squares subtraction will prioritize the removal of 
primaries in the case of primary-multiple overlap.

• This can lead to poor multiple removal, and worse, removal of 
signal from the primaries .
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Initial prediction
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Adapted prediction



• An important parameter in adaptive subtraction is the filter 
length.

• With a sufficiently long filter, the predicted multiples can be 
made to match any signal. 

• A longer filter can be advantageous, as it increases the level of 
matching, and allows for more complete removal of multiples

• Longer filters also increase the chance that primary data will be 
removed

Least squares adaptive subtraction
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Adapted prediction, short filter
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Adapted prediction, long filter



L1 Norm

• The major problem in the least squares adaptive subtraction 
method is the tendency for predicted multiples to be matched to 
primaries.

• This largely arises due to the large amplitudes of the primaries.

• If the same amount of signal is subtracted from a large signal 
and a smaller signal, the subtraction will lower the L2 norm more 
in the case where the large signal is reduced.

• This means that the energy minimizing filter often does its best 
to match primaries over a small time period, at cost to the 
matching to multiples over a longer period. 



L1 Norm

• An alternative to the L2 norm for adaptive subtraction is the L1

norm (Guitton and Verschuur, 2004).

• When a constant amount of signal is reduced from a large 
signal or a small signal, the L1 norm reduces by the same 
amount.

• Consequently, high amplitude primaries are of dramatically less 
relevance in L1 norm minimization.

• The L1 norm is given by



L1 Norm

• The L1 norm minimizing filter is found by solving the following 
least-squares equation

where W is a diagonal matrix whose elements Wii are related to          
the residual at time i by                            , where

• Unfortunately, this expression is singular where ri is zero.



L1 / L2 Norm

• Bube and Langan (1997) propose an L1/L2 hybrid norm.

• As the L2 norm is well behaved as the residual approaches 
zero, the hybrid norm is non-singular everywhere.

• The expression for the filter which minimizes the hybrid norm is 
again

but with

where r are the residuals and sigma is a chosen factor.                



L1 / L2 Norm

• In effect this equation minimizes J, where

• Small sigma will closely emulate the L1 norm, while large sigma 
will approximate L2.

• The factor sigma must be decided on by the user. 

• The expression for the L1/L2 norm is nonlinear.

• It can be solved iteratively.



www.crewes.org

Initial prediction
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Adapted prediction, L2 norm minimizing
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Adapted prediction, hybrid norm, short filter
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Adapted prediction, hybrid norm, long filter



Nonstationarity

• Seismic data are often nonstationary.

• Additionally, approximations may be made in multiple prediction 
whose validity varies in space or time.

• These factors can lead to a multiple prediction which is not 
related to the true multiples by a single, stationary filter.

• In this case, a time and/or space variant filter is necessary.



Nonstationarity

• A nonstationary filter can be created by windowing the data 
about each point in succession, and calculating the filter which 
works best in each window.

• This creates a different filter for each point.

• The window size controls how quickly the filter is allowed to 
vary.

• A Gaussian-shaped window was found to give good results.
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0.7° dip



Synthetic shot gather, measured data



Stationary adaptive subtraction



Nonstationary adaptive subtraction
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Stationary
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Nonstationary
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Measured physical modelling data
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Physical modelling data, multiple prediction
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Measured physical modelling data
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After adaptive subtraction



Conclusions

• Inverse scattering multiple predictions are inexact in practice, 
and need to be modified before they can be subtracted from the 
data.

• This modification can be done by convolving the data with a 
filter.

• An L1 minimizing, nonstationary filter provides a means of 
achieving a reliable and robust adaptive subtraction.



Future Work

• Integrate adaptive subtraction with prediction implementations 
in tau-pg-ps, kg-t and xg-t domains.

• Apply multiple prediction and adaptive subtraction to field data.
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