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Introduction 
Traditional geostatistics uses the kriging method to optimally produce a map 

from a number of well log values such as porosity. 

 

Doyen (1988) used cokriging to predict porosity using well logs as the primary 
variable and inverted seismic data as the secondary variable. 

 

Babak and Deutsch (1992) extended the result of Doyen (1988) by merging a 
number of secondary seismic attributes into one dataset to improve the 
cokriging model, using  a linear combination of attributes. 

 

Russell et al. (2002) extended the method of Babak and Deutsch by creating a 
merged dataset using an improved multi-attribute analysis, which involved cross-
validation to find the optimum set of seismic attributes.  

 

 In this study, I show how to extend the method proposed by Doyen (1988) by 
cokriging with two seismic attributes rather than a single merged attribute. 
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Introduction 
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Method Merit Shortcoming 

 
Kriging 

 
Cokriging with single 

attribute 

 
Cokriging with 

multiple  attributes 

 
Honors well log values 

 
Less accuracy of lateral resolution 

 
Improved lateral resolution, 

especially with merged dataset 
 

 
Limited to single secondary 

attribute 

 
Better spatial resolution 

 
How many attributes are 

optimum?  
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Kriging 
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 In kriging, we estimate a value at every point on a map from a set of n well values ui 
using the weighted sum:  

.covariance  wellunknown-to-known  ,covariance  wellknown

:where
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The kriging weights are computed using the matrix equation:  
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Kriging 
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 For two input values this can be easily understood: 
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Variogram 
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A variogram is a way to describe the degree of spatial dependence between input data. 
 

We calculate covariance from a variogram 
 

( ) ( ) ( )h h   Cov

sill 

range 
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Kriging 

We find the covariance values as follows: 

First, model the variogram, as shown in the left figure. 

Then, transform to covariance. 

Finally, read the covariance values from the modeled covariance (the red line 
on the right figure) at the given offsets hij. 
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C(0) 

C(h02) 

C(h01) 

C(h12) 

h02 h01 h12 

( ) ( ) ( )h h   Cov
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Cokriging with a single secondary dataset 

In traditional cokriging with a single secondary dataset we extend the 
computation using m secondary data values vj: 

 

 

The cokriging weights are computed using the equation:  
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New Method --- Cokriging with two secondary datasets 

We can extend cokriging from one to two secondary datasets as follows. 
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The cokriging weights are computed using the equation:  
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where 𝐶𝑀𝑁 represents covariance of lengths m and n, 𝒂, 𝒃, 𝒄 are weighted vectors; and 𝜇1, 𝜇2, 𝜇3 are Lagrange parameters. 
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Cokriging with multiple secondary datasets 

Cokriging with n secondary datasets: 
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Case Study - Blackfoot 
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Survey Area 

Well data 3D Seismic data 

Seismic Amplitude  Acoustic Impedance 

Cokriging with two 
secondary datasets 

Produced Map 

http://www.cgg.com/home.aspx


Case Study - Blackfoot 
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N 

Well location 

The survey was recorded in south of Alberta 
in 1995 for PanCanadian Petroleum.  

12 Wells are located within the seismic survey area. 
The color indicates the average porosity value of 
each well. 

N 
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Case Study --- Cross-line 18 
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Here is the seismic data showing the picked channel top at around 1070ms.  

http://www.cgg.com/home.aspx


Case Study --- Seismic attributes 

Extracted two attribute slices 
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Seismic amplitude slice              Inverted  acoustic impedance slice  

Data slices Correlation 

Acoustic Impedance -0.65 

Seismic amplitude 0.41 
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Case Study --- Variograms 
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Seis Amp to Impedance 

Seis Amp to Seis Amp Impedance to Impedance Well to Well 

Well to Seis Amp Well to Impedance 
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Resulting map using two attributes 

New cokriging estimate: 
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Comparison of all methods 

Cokriging with Impedance + Amplitude Cokriging with Impedance 

Cokriging with Amplitude Kriging 
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Case Study --- Validation 

Leave-one-out cross-validation:  Calculating the difference between the 
predicted and observed values by removing one well at a time.  
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RMS error: 
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Conclusion 

We presented a new cokriging system using one primary and two 
secondary variables. 

The "Leave-one-out" cross-validation method was applied to validate 
the accuracy of the new cokriging results. 

Two improvements resulted: 
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 Increased lateral resolution 
 Reduced estimated error 

Future work 

Compare with traditional cokriging using one super secondary data 
 

Cokriging test with more than two secondary inputs 
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Thank You! 
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