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Preface

The most important thing to know about this draft is that it is unfinished. This means that it
must be expected to have rough passages, incomplete sections, missing references, and references
to nonexistent material. Despite these shortcomings, I hope this document will be welcomed for
its description of the CREWES MATLAB software and its discussion of velocity, raytracing and
migration algorithms. I only ask that the reader be tolerant of the rough state of these notes.
Suggestions for the improvement of the present material or for the inclusion of other subjects are
most welcome.

Exploration seismology is a complex technology that blends advanced physics, mathematics
and computation. Often, the computational aspect is neglected in teaching because, traditionally,
seismic processing software is part of an expensive and complex system. In contrast, this book is
structured around a set of computer algorithms that run effectively on a small personal computer.
These algorithms are written in MATLAB code and so the reader should find access to a MATLAB
installation. This is not the roadblock that it might seem because MATLAB is rapidly gaining
popularity and the student version costs little more than a typical textbook.

The algorithms are grouped into a small number of toolboxes that effectively extend the function-
ality of MATLAB. This allows the student to experiment with the algorithms as part of the process
of study. For those who only wish to gain a conceptual overview of the subject, this may not be an
advantage and they should probably seek a more appropriate book. On the other hand, those who
wish to master the subject and perhaps extend it through the development of new methods, are my
intended audience. The study of these algorithms, including running them on actual data, greatly
enriches learning.

The writing of this book has been on my mind for many years though it has only become physical
relatively recently. The material is the accumulation of many years of experience in both the hydro-
carbon exploration industry and the academic world. The subject matter encompasses the breadth
of exploration seismology but, in detail, reflects my personal biases. In this preliminary edition,
the subject matter includes raytracing, elementary migration, some aspects of wave-equation mod-
elling, and velocity manipulation. Eventually, it will also include theoretical seismograms, wavelets,
amplitude adjustment, deconvolution, filtering (1D and 2D), statics adjustment, normal moveout
removal, stacking and more. Most of the codes for these purposes already exists and have been used
in research and teaching at the University of Calgary since 1995.

During the past year, Larry Lines and Sven Treitel have been a constant source of encouragement
and assistance. Pat Daley’s guidance with the raytracing algorithms has been most helpful. Pat,
Larry, Sven, Dave Henley, and Peter Manning have graciously served as editors and test readers.
Many students and staff with CREWES have stress-tested the MATLAB codes. Henry Bland’s
technical computer support has been essential. Rob Stewart and Don Lawton have been there with
moral support on many occasions.

I thank you for taking the time to examine this document and I hope that you find it rewarding.
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Chapter 1

Introduction

1.1 Scope and Prerequisites

This is a book about a complex and diverse subject: the numerical algorithms used to process
exploration seismic data to produce images of the earth’s crust. The techniques involved range from
simple and graphical to complex and numerical. More often than not, they tend towards the latter.
The methods frequently use advanced concepts from physics, mathematics, numerical analysis, and
computation. This requires the reader to have a background in these subjects at approximately the
level of an advanced undergraduate or beginning graduate student in geophysics or physics. This
need not include experience in exploration seismology but such would be helpful.

Seismic datasets are often very large and have historically strained computer storage capacities.
This, along with the complexity of the underlying physics, has also strongly challenged computation
throughput. These difficulties have been a significant stimulus to the development of computing
technology. In 1980, a 3D migration1 was only possible in the advanced computing centers of
the largest oil companies. At that time, a 50,000 trace 3D dataset would take weeks to migrate
on a dedicated, multi-million dollar, computer system. Today, much larger datasets are routinely
migrated by companies and individuals around the world, often on computers costing less than
$5000. The effective use of this book, including working the computer exercises, requires access to
a significant machine (at least a late-model PC or Macintosh) with MATLAB installed and having
more than 64 mb of RAM and 10 gb of disk.

Though numerical algorithms, coded in MATLAB, will be found throughout this book, this is
not a book primarily about MATLAB. It is quite feasible for the reader to plan to learn MATLAB
concurrently with working through this book, but a separate reference work on MATLAB is highly
recommended. In addition to the reference works published by The MathWorks (the makers of
MATLAB), there are many excellent, independent guides in print such as Etter (1996), Hanselman
and Littlefield (1998), Redfern and Campbell (1998) and the very recent Higham and Higham (2000).
In addition, the student edition of MATLAB is a bargain and comes with a very good reference
manual. If you already own a MATLAB reference, then stick with it until it proves inadequate. The
website of The MathWorks is worth a visit because it contains an extensive database of books about
MATLAB.

Though this book does not teach MATLAB at an introductory level, it illustrates a variety
of advanced techniques designed to maximize the efficiency of working with large datasets. As

1Migration refers to the fundamental step in creating an earth image from scattered data.
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2 CHAPTER 1. INTRODUCTION

with many MATLAB applications, it helps greatly if the reader has had some experience with
linear algebra. Hopefully, the concepts of matrix, row vector, column vector, and systems of linear
equations will be familiar.

1.1.1 Why MATLAB?

A few remarks are appropriate concerning the choice of the MATLAB language as a vehicle for
presenting numerical algorithms. Why not choose a more traditional language like C or Fortran, or
an object oriented language like C++ or Java?

MATLAB was not available until the latter part of the 1980’s, and prior to that, Fortran was the
language of choice for scientific computations. Though C was also a possibility, its lack of a built-in
facility for complex numbers was a considerable drawback. On the other hand, Fortran lacked some
of C’s advantages such as structures, pointers, and dynamic memory allocation.

The appearance of MATLAB changed the face of scientific computing for many practitioners,
this author included. MATLAB evolved from the Linpack package that was familiar to Fortran
programmers as a robust collection of tools for linear algebra. However, MATLAB also introduced a
new vector-oriented programming language, an interactive environment, and built-in graphics. These
features offered sufficient advantages that users found their productivity was significantly increased
over the more traditional environments. Since then, MATLAB has evolved to have a large array
of numerical tools, both commercial and shareware, excellent 2D and 3D graphics, object-oriented
extensions, and a built-in interactive debugger.

Of course, C and Fortran have evolved as well. C has led to C++ and Fortran to Fortran90.
Though both of these languages have their adherents, neither seems to offer as complete a package
as does MATLAB. For example, the inclusion of a graphics facility in the language itself is a major
boon. It means that MATLAB programs that use graphics are standard throughout the world and
run the same on all supported platforms. It also leads to the ability to graphically display data arrays
at a breakpoint in the debugger. These are useful practical advantages especially when working with
large datasets.

The vector syntax of MATLAB once mastered, leads to more concise code than most other
languages. Setting one matrix equal to the transpose of another through a statement like A=B’; is
much more transparent than something like

do i=1,n
do j=1,m

A(i,j)=B(j,i)
enddo

enddo

Also, for the beginner, it is actually easier to learn the vector approach that does not require so
many explicit loops. For someone well-versed in Fortran, it can be difficult to un-learn this habit,
but it is well worth the effort.

It is often argued that C and Fortran are more efficient than MATLAB and therefore more
suitable for computationally intensive tasks. However, this view misses the big picture. What really
matters is the efficiency of the entire scientific process, from the genesis of the idea, through its rough
implementation and testing, to its final polished form. Arguably, MATLAB is much more efficient
for this entire process. The built-in graphics, interactive environment, large tool set, and strict run-
time error checking lead to very rapid prototyping of new algorithms. Even in the more narrow view,
well-written MATLAB code can approach the efficiency of C and Fortran. This is partly because
of the vector language but also because most of MATLAB’s number crunching actually happens in
compiled library routines written in C.
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Traditional languages like C and Fortran originated in an era when computers were room-sized
behemoths and resources were scarce. As a result, these languages are oriented towards simplifying
the task of the computer at the expense of the human programmer. Their cryptic syntax leads to
efficiencies in memory allocation and computation speed that were essential at the time. However,
times have changed and computers are relatively plentiful, powerful, and cheap. It now makes sense
to shift more of the burden to the computer to free the human to work at a higher level. Spending
an extra $100 to buy more RAM may be more sensible than developing a complex data handling
scheme to fit a problem into less space. In this sense, MATLAB is a higher-level language that frees
the programmer from technical details to allow time to concentrate on the real problem.

Of course, there are always people who see these choices differently. Those in disagreement with
the reasons cited here for MATLAB can perhaps take some comfort in the fact that MATLAB syntax
is fairly similar to C or Fortran and translation is not difficult. Also, The MathWorks markets a
MATLAB ”compiler” that emits C code that can be run through a C compiler.

1.1.2 Legal matters

It will not take long to discover that the MATLAB source code files supplied with this book all have
a legal contract within them. Please take time to read it at least once. The essence of the contract is
that you are free to use this code for non-profit education or research but otherwise must purchase a
commercial license from the author. Explicitly, if you are a student at a University (or other school)
or work for a University or other non-profit organization, then don’t worry just have fun. If you
work for a commercial company and wish to use this code in any work that has the potential of
profit, then you must purchase a license. If you are employed by a commercial company, then you
may use this code on your own time for self-education, but any use of it on company time requires
a license. If your company is a corporate sponsor of CREWES (The Consortium for Research in
Elastic Wave Exploration Seismology at the University of Calgary) then you automatically have a
license. Under no circumstances may you resell this code or any part of it. By using the code, you
are agreeing to these terms.

1.2 MATLAB conventions used in this book

There are literally hundreds of MATLAB functions that accompany this book (and hundreds more
that come with MATLAB). Since this is not a book about MATLAB, most of these functions will not
be examined in any detail. However, all have full online documentation, and their code is liberally
sprinkled with comments. It is hoped that this book will provide the foundation necessary to enable
the user to use and understand all of these commands at whatever level necessary.

Typographic style variations are employed here to convey additional information about MATLAB
functions. A function name presented like plot refers to a MATLAB function supplied by The
MathWorks as part of the standard MATLAB package. A function name presented like dbspec
refers to a function provided with this book. Moreover, the name NumMethToolbox refers to the
entire collection of software provided in this book.

MATLAB code will be presented in small numbered packages titled Code Snippets. An example
is the code required to convert an amplitude spectrum from linear to decibel scale:

Code Snippet 1.2.1. This code computes a wavelet and its amplitude spectrum on both linear and
decibel scales. It makes Figure 1.1.

1 [wavem,t]=wavemin(.002,20,.2);
2 [Wavem,f]=fftrl(wavem,t);
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Figure 1.1: A minimum phase wavelet (top), its amplitude spec-
trum plotted on a linear scale (middle), and its amplitude spectrum
plotted with a decibel scale (bottom).

3 Amp=abs(Wavem);
4 dbAmp=20*log10(Amp/max(Amp));
5 subplot(3,1,1);plot(t,wavem);xlabel(’time (sec)’)
6 subplot(3,1,2);plot(f,abs(Amp));xlabel(’Hz’);ylabel(’linear scale’)
7 subplot(3,1,3);plot(f,dbAmp);xlabel(’Hz’);ylabel(’db down’)

End Code

The actual MATLAB code is displayed in an upright typewriter font while introductory remarks
are emphasized like this. The Code Snippet does not employ typographic variations to indicate
which functions are contained in the NumMethToolbox as is done in the text proper.

It has proven impractical to discuss all of the input parameters for all of the programs shown
in Code Snippets. Those germane to the current topic are discussed, but the remainder are left for
the reader to explore using MATLAB ’s interactive help facility. For example, in Code Snippet 1.1
wavemin creates a minimum phase wavelet sampled at .002 seconds, with a dominant frequency of
20 Hz, and a length of .2 seconds. Then fftrl computes the Fourier spectrum of the wavelet and
abs constructs the amplitude spectrum from the complex Fourier spectrum. Finally, the amplitude
spectrum is converted to decibels (db) using the formula

Ampdecibels(f) = 20 log
(

Amp(f)
max(Amp(f))

)
. (1.1)

To find out more about any of these functions and their inputs and outputs, type, for example, “help
fftrl” at the MATLAB prompt.
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This example illustrates several additional conventions. Seismic traces2 are discrete time series
but the textbook convention of assuming a sample interval of unity in arbitrary units is not appro-
priate for practical problems. Instead, two vectors will be used to describe a trace, one to give its
amplitude and the other to give the temporal coordinates for the first. Thus wavemin returns two
vectors (that they are vectors is not obvious from the Code Snippet) with wavem being the wavelet
amplitudes and t being the time coordinate vector for wavem. Thus the upper part of Figure 1.1 is
created by simply cross plotting these two vectors: plot(t,wavem). Similarly, the Fourier spectrum,
Wavem, has a frequency coordinate vector f. Temporal values must always be specified in seconds
and will be returned in seconds and frequency values must always be in Hz. (One Hz is one cycle per
second). Milliseconds or radians/second specifications will never occur in code though both cyclical
frequency f and angular frequency ω may appear in formulae (ω = 2πf).

Seismic traces will always be represented by column vectors whether in the time or Fourier
domains. This allows an easy transition to 2-D trace gathers, such as source records and stacked
sections, where each trace occupies one column of a matrix. This column vector preference for signals
can lead to a class of simple MATLAB errors for the unwary user. For example, suppose a seismic
trace s is to be windowed to emphasize its behavior in one zone and de-emphasize it elsewhere.
The simplest way to do this is to create a window vector win that is the same length as s and use
MATLAB’s .* (dot-star) operator to multiply each sample on the trace by the corresponding sample
of the window. The temptation is to write a code something like this:

Code Snippet 1.2.2. This code creates a synthetic seismogram using the convolutional model but
then generates an error while trying to apply a (triangular) window.

1 [r,t]=reflec(1,.002,.2); %make a synthetic reflectivity
2 [w,tw]=wavemin(.002,20,.2); %make a wavelet
3 s=convm(r,w); % make a synthetic seismic trace
4 n2=round(length(s)/2);
5 win=[linspace(0,1,n2) linspace(1,0,length(s)-n2)]; % a triangular window
6 swin=s.*win; % apply the window to the trace

End Code

MATLAB’s response to this code is the error message:

??? Error using ==> .* Matrix dimensions must agree.
On line 6 ==> swin=s.*win;

The error occurs because the linspace function generates row vectors and so win is of size 1x501
while s is 501x1. The .* operator requires both operands to be have exactly the same geometry.
The simplest fix is to write swin=s.*win(:); which exploits the MATLAB feature that a(:) is
reorganized into a column vector (see page 26 for a discussion) regardless of the actual size of a .

As mentioned previously, two dimensional seismic data gathers will be stored in ordinary matri-
ces. Each column is a single trace, and so each row is a time slice. A complete specification of such
a gather requires both a time coordinate vector, t, and a space coordinate vector, x.

Rarely will the entire code from a function such as wavemin or reflec be presented. This is
because the code listings of these functions can span many pages and contain much material that
is outside the scope of this book. For example, there are often many lines of code that check input
parameters and assign defaults. These tasks have nothing to do with numerical algorithms and so
will not be presented or discussed. Of course, the reader is always free to examine the entire codes
at leisure.

2A seismic trace is the recording of a single component geophone or hydrophone. For a multicomponent geophone,
it is the recording of one component.
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1.3 Dynamic range and seismic data display

Seismic data tends to be a challenge to computer graphics as well as to computer capacity. A single
seismic record can have a tremendous amplitude range. In speaking of this, the term dynamic range
is used which refers to a span of real numbers. The range of numerical voltages that a seismic
recording system can faithfully handle is called its dynamic range. For example, current digital
recording systems use fixed instrument gain and represent amplitudes as a 24 bit integer computer
word3. The first bit is used to record sign while the last bit tends to fluctuate randomly so effectively
22 bits are available. This means that the amplitude range can be as large as 222 ≈ 106.6. Using
the definition of a decibel given in equation (1.1), this corresponds to about 132db, an enormous
spread of possible values. This 132db range is usually never fully realized when recording signals for
a variety of reasons, the most important being the ambient noise levels at the recording site and the
instrument gain settings.

In a fixed-gain system, the instrument gain settings are determined to minimize clipping by
the analog-to-digital converter while still preserving the smallest possible signal amplitudes. This
usually means that some clipping will occur on events nearest the seismic source. A very strong
signal should saturate 22-23 bits while a weak signal may only effect the lowest several bits. Thus the
precision, which refers to the number of significant digits used to represent a floating point number,
steadily declines from the largest to smallest number in the dynamic range.

1.3.1 Single trace plotting and dynamic range

Figure 1.2 was produced with Code Snippet 1.3.1 and shows two real seismic traces recorded in 1997
by CREWES 4. This type of plot is called a wiggle trace display . The upper trace, called tracefar,
was recorded on the vertical component of a three component geophone placed about 1000 m from
the surface location of a dynamite shot. The lower trace, called tracenear, was similar except
that it was recorded only 10 m from the shot. (Both traces come from the shot record shown in
Figures 1.12 and 1.13.) The dynamite explosion was produced with 4 kg of explosives placed at 18
m depth. Such an explosive charge is about 2 m long so the distance from the top of the charge
to the closest geophone was about

√
162 + 102 ≈ 19 m while to the farthest geophone was about√

162 + 10002 ≈ 1000 m. The vertical axes for the two traces indicate the very large amplitude
difference between them. If they were plotted on the same axes, tracefar would appear as a flat
horizontal line next to tracenear.

Figure 1.3 (also produced with Code Snippet 1.3.1) shows a more definitive comparison of the
amplitudes of the two traces. Here the trace envelopes are compared using a decibel scale. A trace
envelope is a mathematical estimate of a bounding curve for the signal (this will be investigated
more fully later in this book) and is computed using hilbert, that computes the complex, analytic
trace ((Taner et al., 1979) and (Cohen, 1995)), and then takes the absolute value. The conversion
to decibels is done with the convenience function todb (for which there is an inverse fromdb ).
Function todb implements equation (1.1) for both real and complex signals. (In the latter case,
todb returns a complex signal whose real part is the amplitude in decibels and whose imaginary part
is the phase.) By default, the maximum amplitude for the decibel scale is the maximum absolute
value of the signal; but, this may also be specified as the second input to todb . Function fromdb
reconstructs the original signal given the output of todb .

3Previous systems used a 16 bit word and variable gain. A four-bit gain word, an 11 bit mantissa, and a sign bit
determined the recorded value.

4CREWES is an acronym for Consortium for Research in Elastic Wave Exploration Seismology at the University
of Calgary.
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Figure 1.2: (Top) A real seismic trace recorded about 1000 m from a dynamite
shot. (Bottom) A similar trace recorded only 10 m from the same shot. See Code
Snippet 1.3.1

The close proximity of tracenear to a large explosion produces a very strong first arrival while
later information (at 3 seconds) has decayed by ∼72 decibels. (To gain familiarity with decibel
scales, it is useful to note that 6 db corresponds to a factor of 2. Thus 72 db represents about 72/6
∼ 12 doublings or a factor of 212 = 4096.) Alternatively, tracefar shows peak amplitudes that are
40db (a factor of 26.7 ∼ 100) weaker than tracenear.

Code Snippet 1.3.1. This code loads near and far offset test traces, computes the Hilbert envelopes
of the traces (with a decibel scale), and produces Figures 1.2 and 1.3.

1 clear; load testtrace.mat
2 subplot(2,1,1);plot(t,tracefar);
3 title(’1000 m offset’);xlabel(’seconds’)
4 subplot(2,1,2);plot(t,tracenear);
5 title(’10 m offset’);xlabel(’seconds’)
6 envfar = abs(hilbert(tracefar)); %compute Hilbert envelope
7 envnear = abs(hilbert(tracenear)); %compute Hilbert envelope
8 envdbfar=todb(envfar,max(envnear)); %decibel conversion
9 envdbnear=todb(envnear); %decibel conversion
10 figure
11 plot(t,[envdbfar envdbnear],’b’);xlabel(’seconds’);ylabel(’decibels’);
12 grid;axis([0 3 -140 0])

End Code

The first break time is the best estimate of the arrival time of the first seismic energy. For
tracefar this is about .380 seconds while for tracenear it is about .02 seconds. On each trace,
energy before this time cannot have originated from the source detonation and is usually taken as
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Figure 1.3: The envelopes of the two traces of Figure 1.2 plotted on a decibel scale.
The far offset trace is about 40 db weaker than the near offset and the total dynamic
range is about 120 db. See Code Snippet 1.3.1

an indication of ambient noise conditions. That is, it is due to seismic noise caused by wind, traffic,
and other effects outside the seismic experiment. Only for tracefar is the first arrival late enough
to allow a reasonable sampling of the ambient noise conditions. In this case, the average background
noise level is about 120 to 130 db below the peak signals on tracenear. This is very near the
expected instrument performance. It is interesting to note that the largest peaks on tracenear
appear to have square tops, indicating clipping, at an amplitude level of 1.0. This occurs because
the recording system gain settings were set to just clip the strongest arrivals and therefore distribute
the available dynamic range over an amplitude band just beneath these strong arrivals.

Dynamic range is an issue in seismic display as well as recording. It is apparent from Figure 1.2
that either signal fades below visual thresholds at about 1.6 seconds. Checking with the envelopes
on Figure 1.3, this suggests that the dynamic range of this display is about 40-50 db. This limitation
is controlled by two factors: the total width allotted for the trace plot and the minimum perceivable
trace deflection. In Figure 1.2 this width is about 1 inch and the minimum discernible wiggle is
about .01 inches. Thus the dynamic range is about 10−2 ∼ 40db, in agreement with the earlier
visual assessment.

It is very important to realize that seismic displays have limited dynamic range. This means
that what-you-see is not always what-you’ve-got. For example if a particular seismic display being
interpreted for exploration has a dynamic range of say 20 db, then any spectral components (i.e.
frequencies in the Fourier spectrum) that are more than 20 db down will not affect the display.
If these weak spectral components are signal rather than noise, then the display does not allow
the optimal use of the data. This is an especially important concern for wiggle trace displays of
multichannel data where each trace gets about 1/10 of an inch of display space.
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Figure 1.4: A portion of the seismic trace in Figure 1.2 is plotted in WTVA format
(top) and WT format (bottom). See Code Snippet 1.3.2

More popular than the wiggle-trace display is the wiggle-trace, variable-area (WTVA) display.
Function wtva (Code Snippet 1.3.2) was be used to create Figure 1.4 where the two display types
are contrasted using tracefar. The WTVA display fills-in the peaks of the seismic trace (or troughs
if polarity is reversed) with solid color. Doing this requires determining the zero crossings of the
trace which can be expensive if precision is necessary. Function wtva just picks the sample closest
to each zero crossing. For more precision, the final argument of wtva is a resampling factor which
causes the trace to be resampled and then plotted. Also, wtva works like MATLAB ’s low-level
line in that it does not clear the figure before plotting. This allows wtva to be called repeatedly in
a loop to plot a seismic section. The return values of wtva are MATLAB graphics handles for the
“wiggle” and the “variable area” that can be used to further manipulate their graphic properties.
(For more information consult your MATLAB reference.) The horizontal line at zero amplitude on
the WTVA plot is not usually present in such displays and seems to be a MATLAB graphic artifact.

Code Snippet 1.3.2. The same trace is plotted with wtva and plot. Figure 1.4 is the result.

1 clear;load testtrace.mat
2 plot(t,tracefar)
3 [h,hva]=wtva(tracefar+.02,t,’k’,.02,1,-1,1);
4 axis([.2 .8 -.02 .04])

End Code

Clipping was mentioned previously in conjunction with recording but also plays a role in display.
Clipping refers to the process of setting all values on a trace that are greater than a clip level equal
to that level. This can have the effect of moving the dynamic range of a plot display into the lower
amplitude levels. Figure 1.5 results from Code Snippet 1.3.3 and shows the effect of plotting the
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Figure 1.5: The seismic trace in Figure 1.2 is plotted repeatedly with different clip
levels. The clip levels are annotated on each trace. See Code Snippet 1.3.3

same trace (tracefar at progressively higher clip levels. Function clip produces the clipped trace
that is subsequently rescaled so that the clip level has the same numerical value as the maximum
absolute value of the original trace. The effect of clipping is to make the weaker amplitudes more
evident at the price of completely distorting the stronger amplitudes. Clipping does not increase the
dynamic range, it just shifts the available range to a different amplitude band.

Code Snippet 1.3.3. This code makes Figure 1.5. The test trace is plotted repeatedly with pro-
gressively higher clip levels.

1 clear;load testtrace.mat
2 amax=max(abs(tracefar));
3 for k=1:10
4 trace_clipped=clip(tracefar,amax*(.5)ˆ(k-1))/((.5)ˆ(k-1));
5 wtva(trace_clipped+(k-1)*2*amax,t,’k’,(k-1)*2*amax,1,1,1);
6 text((k-1)*2*amax,.1,[int2str(k*6) ’db’]);
7 end
8 flipy;ylabel(’seconds’);

End Code

Exercise 1.3.1. Use MATLAB to load the test traces shown in Figure 1.2 and display them. By
appropriately zooming your plot, estimate the first break times as accurately as you can. What is the
approximate velocity of the material between the shot and the geophone? (You may find the function
simplezoom useful. After creating your graph, type simplezoom at the MATLAB prompt and then
use the left mouse mutton to draw a zoom box. A double-click will un-zoom.)

Exercise 1.3.2. Use MATLAB to load the test traces shown in Figure 1.2 and compute the envelopes
as shown in Code Snippet 1.3.1. For either trace, plot both the wiggle trace and its envelope and
show that the trace is contained within the bounds defined by ±envelope.
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Figure 1.6: A synthetic seismic section plotted
in WTVA mode with clipping. See Code Snippet
1.3.4
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Figure 1.7: A zoom (enlargement of a portion)
of Figure 1.6. Note the clipping indicated by
square-bottomed troughs

Exercise 1.3.3. What is the dynamic range of a seismic wiggle trace display plotted at 10 traces/inch?
What about 30 traces/inch?

1.3.2 Multichannel seismic display

Figure 1.5 illustrates the basic idea of a multichannel WTVA display. Assuming ntr traces, the plot
width is divided into ntr equal segments to display each trace. A trace is plotted in a given plot
segment by adding an appropriate constant to its amplitude. In the general case, these segments
may overlap, allowing traces to over-plot one another. After a clip level is chosen, the traces are
plotted such that an amplitude equal to the clip level gets a trace excursion to the edges of the trace
plot segment. For hardcopy displays, the traces are usually plotted at a specified number per inch.

Figure 1.6 is a synthetic seismic section made by creating a single synthetic seismic trace and
then replicating it along a sinusoidal (with x) trajectory. Figure 1.7 is a zoomed portion of the same
synthetic seismic section. Function plotseis made the plot (see Code Snippet 1.3.3), and clipping
was intentionally introduced. The square troughs on several events (e.g. near .4 seconds) are the
signature of clipping. Function plotseis provides facilities to control clipping, produce either WT
or WTVA displays, change polarity, and more.

Code Snippet 1.3.4. Here we create a simple synthetic seismic section and plot it as a WTVA
plot with clipping. Figure 1.6 is the result .

1 global NOSIG;NOSIG=1;
2 [r,t]=reflec(1,.002,.2);%make reflectivity
3 nt=length(t);
4 [w,tw]=wavemin(.002,20,.2);%make wavelet
5 s=convm(r,w);%make convolutional seismogram
6 ntr=100;%number of traces
7 seis=zeros(length(s),ntr);%preallocate seismic matrix
8 shift=round(20*(sin([1:ntr]*2*pi/ntr)+1))+1; %a time shift for each trace
9 %load the seismic matrix
10 for k=1:ntr
11 seis(1:nt-shift(k)+1,k)=s(shift(k):nt);



12 CHAPTER 1. INTRODUCTION

0 100 200 300 400 500 600 700 800 900

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.8: A synthetic seismic section plotted
as an image using plotimage . Compare with
Figure 1.6
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Figure 1.9: A zoom (enlargement of a portion)
of Figure 1.8. Compare with Figure 1.7

12 end
13 x=(0:99)*10; %make an x coordinate vector
14 plotseis(seis,t,x,1,5,1,1,’k’);ylabel(’seconds’)

End Code

Code Snippet 1.3.4 illustrates the use of global variables to control plotting behavior. The global
NOSIG controls the appearance of a signature at the bottom of a figure created by plotseis . If
NOSIG is set to zero, then plotseis will annotate the date, time, and user’s name in the bottom
right corner of the plot. This is useful in classroom settings when many people are sending nearly
identical displays to a shared printer. The user’s name is defined as the value of another global
variable, NAME_ (the capitalization and the underscore are important). Display control through
global variables is also used in other utilities in the NumMethToolbox (see page 14). An easy way
to ensure that these variables are always set as you prefer is to include their definitions in your
startup.m file (see your MATLAB reference for further information).

The popularity of the WTVA display has resulted partly because it allows an assessment of the
seismic waveform (if unclipped) as it varies along an event of interest. However, because its dynamic
range varies inversely with trace spacing it is less suitable for small displays of densely spaced data
such as on a computer screen. It also falls short for display of multichannel Fourier spectra where
the wiggle shape is not usually desired. For these purposes, image displays are more suitable. In
this technique, the display area is divided equally into small rectangles (pixels) and these rectangles
are assigned a color (or gray-level) according to the amplitude of the samples within them. On
the computer screen, if the number of samples is greater than the number of available pixels, then
each pixel represents the average of many samples. Conversely, if the number of pixels exceeds the
number of samples, then a single sample can determine the color of many pixels, leading to a blocky
appearance.

Figures 1.8 and 1.9 display the same data as Figures 1.6 and 1.7 but used the function plotimage
in place of plotseis in Code Snippet 1.3.4. The syntax to invoke plotimage is plotimage(seis,t,x).
It may also be called like plotimage(seis) in which case it creates x and t coordinate vectors as
simply column and row numbers. Unlike plotseis , plotimage adorns its figure window with con-
trols to allow the user to interactively change the polarity, brightness, color map, and data scaling
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Figure 1.10: A 50% gray curve from seisclrs
(center) and its brightened(top) and darkened
(bottom) versions.
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Figure 1.11: Various gray level curves from
seisclrs for different gray pct values.

scheme (though these controls are shown in these figures, in most cases in this book they will be
suppressed). The latter item refers to the system by which amplitudes are mapped to gray levels
(or colors).

Code Snippet 1.3.5. This example illustrates the behavior of the seisclrs color map. Figures
1.10 and 1.11 are created.

1 figure;
2 global NOBRIGHTEN
3
4 NOBRIGHTEN=1;
5 s=seisclrs(64,50); %make a 50% linear gray ramp
6 sb=brighten(s,.5); %brighten it
7 sd=brighten(s,-.5); %darken it
8 plot(1:64,[s(:,1) sb(:,1) sd(:,1)],’k’)
9 axis([0 70 -.1 1.1])
10 text(1,1.02,’white’);text(50,.02,’black’)
11 xlabel(’level number’);ylabel(’gray_level’);
12 figure; NOBRIGHTEN=0;
13 for k=1:5
14 pct=max([100-(k-1)*20,1]);
15 s=seisclrs(64,pct);
16 line(1:64,s(:,1),’color’,’k’);
17 if(rem(k,2))tt=.1;else;tt=.2;end
18 xt=near(s(:,1),tt);
19 text(xt(1),tt,int2str(pct))
20 end
21 axis([0 70 -.1 1.1])
22 text(1,1.02,’white’);text(50,-.02,’black’)
23 xlabel(’level number’);ylabel(’gray_level’);

End Code

By default, plotimage uses a gray level scheme, defined by seisclrs , which is quite nonlinear.
Normally, 64 separate gray levels are defined and a linear scheme would ramp linearly from 1 (white)
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Figure 1.12: A raw shot record displayed using
plotimage and maximum scaling
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Figure 1.13: The same raw shot record as Figure
1.12 but displayed using mean scaling with a clip
level (parameter CLIP) of 4.

at level 1 to 0 (black) at level 64. However, this was found to produce overly dark images with little
event standout. Instead, seisclrs assigns a certain percentage, called gray pct, of the 64 levels
to the transition from white to black and splits the remaining levels between solid black and solid
white. For example, by default this percentage is 50 which means that levels 1 through 16 are solid
white, 17 through 48 transition from white to black, and 49 through 64 are solid black. The central
curve in Figure 1.10 illustrates this. As a final step, seisclrs brightens the curve using brighten
to produce the upper curve in Figure 1.10. Figure 1.11 shows the gray scales that result from varying
the value of gray pct.

Given a gray level or color scheme, function plotimage has two different schemes for determining
how seismic amplitudes are mapped to the color bins. The simplest method, called maximum scaling
determines the maximum absolute value in the seismic matrix, assigns this the color black, and the
negative of this number is white. All other values map linearly into bins in between. This works
well for synthetics, or well-balanced real data, but often disappoints for noisy or raw data because of
the data’s very large dynamic range. The alternative, called mean scaling , measures both the mean,
s̄ and standard deviation σs of the data and assigns the mean to the center of the gray scale. The
ends of the scale are assigned to the values s̄± CLIPσs where CLIP is a user-chosen constant. Data
values outside this range are assigned to the first or last gray-level bin thereby clipping them. Thus,
mean scaling centers the gray scale on the data mean and the extremes of the scale are assigned
to a fixed number of standard deviations from the mean. In both of these schemes, neutral gray
corresponds to zero (if the seisclrs color map is used).

Figure 1.12 displays a raw shot record using the maximum scaling method with plotimage .
(The shot record is contained in the file smallshot.mat, and the traces used in Figure 1.2 are the first
and last trace of this record.) The strong energy near the shot sets the scaling levels and is so much
stronger than anything else that most other samples fall into neutral gray in the middle of the scale.
On the other hand, figure 1.13 uses mean scaling (and very strong clipping) to show much more of
the data character.

In addition to the user interface controls on its window, the behavior of plotimage can be con-
trolled through global variables. Most variables defined in MATLAB are local and have a scope that
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Figure 1.14: A synthetic created to have a
6db decrease with each event displayed by
plotimage . See Code Snippet 1.3.7.
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Figure 1.15: The same synthetic as Figure 1.14
displayed with plotseis .

is limited to the setting in which they are defined. For example, a variable called x defined in the
base workspace (i.e. at the MATLAB prompt �) can only be referenced by a command issued in the
base workspace. Thus, a function like plotimage can have its own variable x that can be changed
arbitrarily without affecting the x in the base workspace. In addition, the variables defined in a
function are transient, meaning that they are erased after the function ends. Global variables are
an exception to these rules. Once declared (either in the base workspace or a function) they remain
in existence until explicitly cleared. If, in the base workspace, x is declared to be global, then the
x in plotimage is still independent unless plotimage also declares x global. Then, both the base
workspace and plotimage address the same memory locations for x and changes in one affect the
other.

Code Snippet 1.3.6 illustrates the assignment of global variables for plotimage as done in the
author’s startup.m file. These variables only determine the state of a plotimage window at the
time it is launched. The user can always manipulate the image as desired using the user interface
controls. Any such manipulations will not affect the global variables so that the next plotimage
window will launch in exactly the same way.

Code Snippet 1.3.6. This is a portion of the author’s startup.m file that illustrates the setting of
global variables to control plotimage.

1 global SCALE_OPT GRAY_PCT NUMBER_OF_COLORS
2 global CLIP COLOR_MAP NOBRIGHTEN NOSIG
3 SCALE_OPT=2;
4 GRAY_PCT=20;
5 NUMBER_OF_COLORS=64;
6 CLIP=4;
7 COLOR_MAP=’seisclrs’;
8 NOBRIGHTEN=1;
9 NOSIG=1;

End Code
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Code Snippet 1.3.7. This code creates a synthetic with a 6db decrease for each event and displays
it without clipping with both plotimage and plotseis. See Figures 1.14 and 1.15.

1 % put an event every 100 ms. Each event decreases in amplitude by 6 db.
2 r=zeros(501,1);dt=.002;ntr=100;
3 t=(0:length(r)-1)*dt;
4 amp=1;
5 for tk=.1:.1:1;
6 k=round(tk/dt)+1;
7 r(k)=(-1)ˆ(round(tk/.1))*amp;
8 amp=amp/2;
9 end
10 w=ricker(.002,60,.1);
11 s=convz(r,w);
12 seis=s*ones(1,ntr);
13 x=10*(0:ntr-1);
14 global SCALE_OPT GRAY_PCT
15 SCALE_OPT=2;GRAY_PCT=100;;
16 plotimage(seis,t,x);ylabel(’seconds’)
17 plotseis(seis,t,x,1,1,1,1,’k’);ylabel(’seconds’)

End Code

The dynamic range of image and WTVA displays is generally different. When both are displayed
without clipping using a moderate trace spacing (Figures 1.14 and 1.15), the dynamic range of
plotimage (≈30db) tends to be slightly greater than that of plotseis (≈20db). However, the
behavior of plotimage is nearly independent of the trace density while plotseis becomes useless
at high densities.

Exercise 1.3.4. Load the file smallshot.mat into your base workspace using the command load
and display the shot record with plotimage. Study the online help for plotimage and define the six
global variables that control its behavior. Practice changing their values and observe the results. In
particular, examine some of the color maps: hsv, hot, cool, gray, bone, copper, pink, white, flag, jet,
winter, spring, summer, and autumn. (Be sure to specify the name of the color map inside single
quotes.)

Exercise 1.3.5. Recreate Figures 1.14 and 1.15 using Code Snippet 1.3.7 as a guide. Experiment
with different number of traces (ntr) and different program settings to see how dynamic range is
affected.

1.3.3 The plotimage picking facility

The function plotimage , in addition to displaying seismic data, provides a rudimentary seismic
picking facility. This is similar in concept to using MATLAB’s ginput (described in the next
section) but is somewhat simpler to use. In concept, this facility simply allows the user to draw any
number of straight-line segments (picks) on top the the data display and affords easy access to the
coordinates of these picks. The picks can then be used in any subsequent calculation or analysis.

The picking mechanism is activated by the popup menu in the lower left corner of the plotimage
window. Initially in the zoom setting, this menu has two picking settings: Pick(N) and Pick(O). The
‘N’ and ‘O’ stand for New and Old indicating whether the picks about to be made are a new list or
should be added to the existing list. The pick list is stored as the global variable PICKS that can be
accessed from the base workspace, or within any function, by declaring it there. There is only one
pick list regardless of how many plotimage windows are open. This means that if one plotimage
window has been used for picking and a second is then activated with the Pick(N) option, the picks
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Figure 1.16: This figure is displayed by Code
Snippet 1.3.8 before allowing the user to select
points.
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Figure 1.17: After the user picks the first breaks
in Figure 1.16, the picks are drawn on top of the
seismic data. See Code Snippet 1.3.8.

for the first window will be lost. If desired, this can be avoided by copying the pick list into another
variable prior to activating the second picking process.

A pick is made by clicking the left mouse button down at the first point of the pick, holding the
button down while dragging to the second point, and releasing the button. The pick will be drawn
on the screen in a temporary color and then drawn in a permanent color when the mouse is released.
The permanent color is controlled by the global variable PICKCOLOR. If this variable has not been
set, picks are drawn in red. A single mouse click, made without dragging the mouse and within the
bounds of the axes, will delete the most recent pick.

This picking facility is rudimentary in the sense that the picks are established without any
numerical calculation involving the data. Furthermore, there is no facility to name a set of picks
or to retain their values. Nevertheless, a number of very useful calculations, most notably raytrace
migration (see sections 5.2.2 and 5.3.3) are enabled by this. It is also quite feasible to implement a
more complete picking facility on this base.

1.3.4 Drawing on top of seismic data

Often it is useful to draw lines or even filled polygons on top of a seismic data display. This is quite
easily done using MATLAB’s line and patchcommands. Only line is discussed here.

Code Snippet 1.3.8 loads the small sample shot record and displays it. The command ginput
halts execution of the script and transfers focus to the current figure. There, the cursor will be
changed to a crosshairs and the user is expected to enter a sequence of mouse clicks to define a series
of points. In the example shown in Figures 1.16 and 1.17, six points were entered along the first
breaks. ginput expects the points to be selected by simple mouse clicks and then the “enter” key
is hit to signal completion. The six points are returned as a vector of x coordinates, xpick, and a
vector of t coordinates, tpick. Though it is a useful tool, ginput does note provide a picking facility
such as that described previously. However, ginput works with any MATLAB graphics display while
the picking facility is only available with plotimage .

The call to line plots the points on top of the seismic image. The return value from line is
the graphics handle of the line. The function line will accept vectors of the x, y, and possibly z



18 CHAPTER 1. INTRODUCTION

coordinates of the nodes of the line to be drawn. If no z coordinates are given, they are assumed
zero which causes them to be drawn in the same z plane as the seismic (MATLAB graphics are
always 3D even when they appear to be only 2D). Plotting the line at z = 0 usually works but if
more mouse clicks are done on the figure, such as for zooming, then it can happen that the line may
get re-drawn first with the seismic on top of it. This causes the line to “disappear”. Instead, it is
more robust to give the line a vector of z coordinates of unity so that it is guaranteed to always be
in front of the seismic.

In addition to (x, y, z) coordinates, line accepts an arbitrary length list of (attribute, property)
pairs that define various features of the line. In this case, its color is set to red, its line thickness is
set to twice normal, and markers are added to each point. There are many other possible attributes
that can be set in this way. To see a list of them, issue the command get(h) where h is the handle
of a line and MATLAB will display a complete property list. Once the line has been drawn, you can
alter any of its properties with the set command. For example, set(h,’color’,’c’) changes the
line color to cyan and set(h,’ydata’,get(h,’ydata’)+.1) shifts the line down .1 seconds.

Code Snippet 1.3.8. This example displays the small sample shot record using plotimage and
then uses ginput to allow the user to enter points. These points are plotted on top of the seismic
data using line. The results are in Figures 1.16 and 1.17.

1 load smallshot
2 global SCALE_OPT CLIP
3 SCALE_OPT=1;CLIP=1;
4 plotimage(seis,t,x)
5 axis([0 1000 0 1])
6 [xpick,tpick]=ginput;
7 h=line(xpick,tpick,ones(size(xpick)),’color’,’r’,...
8 ’linewidth’,2,’marker’,’*’);

End Code

1.4 Programming tools

It is recommended that a study course based on this book involve a considerable amount of pro-
gramming. Programming in MATLAB has similarities to other languages but it also has its unique
quirks. This section discusses some strategies for using MATLAB effectively to explore and manip-
ulate seismic datasets. MATLAB has two basic programming constructs, scripts and functions, and
program will be used to refer to both.

1.4.1 Scripts

MATLAB is designed to provide a highly interactive environment that allows very rapid testing
of ideas. However, unless some care is taken, it is very easy to create results that are nearly
irreproducible. This is especially true if a long sequence of complex commands has been entered
directly at the MATLAB prompt. A much better approach is to type the commands into a text file
and execute them as a script . This has the virtue that a permanent record is maintained so that
the results can be reproduced at any time by simply re-executing the script.

A script is the simplest possible MATLAB programming structure. It is nothing more than a
sequence of syntactically correct commands that have been typed into a file. The file name must
end in .m and it must appear in the MATLAB search path. When you type the file name (without
the .m) at the MATLAB prompt, MATLAB searches its path for the first .m file with that name
and executes the commands contained therein. If you are in doubt about whether your script is the
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first so-named file in the path, use the which command. Typing which foo causes MATLAB to
display the complete path to the file that it will execute when foo is typed.

A good practice is to maintain a folder in MATLAB’s search path that contains the scripts
associated with each logically distinct project. These script directories can be managed by creating
a further set of control scripts that appropriately manipulate MATLAB’s search path. For example,
suppose that most of your MATLAB tools are contained in the directory
C:\Matlab\toolbox\local\mytools
and that you have project scripts stored in
C:\My Documents\project1\scripts
and
C:\My Documents\project2\scripts.
Then, a simple management scheme is to include something like

1 global MYPATH
2 if(isempty(MYPATH))
3 p=path;
4 path([p ’;C:\MatlabR11\toolbox\local\mytools’]);
5 MYPATH=path;
6 else
7 path(MYPATH);
8 end

in your startup.m file and then create a script called project1.m that contains

1 p=path;
2 path([p ’;C:\My Documents\project1\scripts’])

and a similar script for project2. When you launch MATLAB your startup.m establishes your base
search path and assigns it to a global variable called MYPATH. Whenever you want to work on
project1, you simply type project1 and your base path is altered to include the project1 scripts.
Typing startup again restores the base path and typing project2 sets the path for that project.
Of course you could just add all of your projects to your base path but then you cannot have scripts
with the same name in each project.

Exercise 1.4.1. Write a script that plots wiggle traces on top of an image plot. Test your script
with the synthetic section of Code Snippet 1.3.4. (Hint: plotseis allows its plot to be directed to an
existing set of axes instead of creating a new one. The “current” axes can be referred to with gca.)

1.4.2 Functions

The MATLAB function provides a more advanced programming construct than the script. The
latter is simply a list of MATLAB commands that execute in the base workspace. Functions execute
in their own independent workspace that communicates with the base workspace through input and
output variables.

The structure of a function

A simple function that clips a seismic trace is given in Code Snippet 1.4.1. This shows more detail
than will be shown in other examples in this book in order to illustrate function documentation. The
first line of clip gives the basic syntax for a function declaration. Since both scripts and functions
are in .m files, it is this line that alerts MATLAB to the fact that clip is not a script. The function
is declared with the basic syntax
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[output_variable_list]=function_name(input_variable_list).

Rectangular brackets [ . . . ] enclose the list of output variables, while regular parentheses enclose the
input variables. Either list can be of any length, and entries are separated by commas. For clip ,
there is only one output variable and the [ . . . ] are not required. When the function is invoked,
either at the command line or in a program, a choice may be made to supply only the first n input
variables or to accept only the first m output variables. For example, given a function definition like
[x1,x2]=foo(y1,y2), it may be legally invoked with any of

[a,b]=foo(c,d);
[a,b]=foo(c);
a=foo(c,d);
a=foo(c);

The variable names in the function declaration have no relation to those actually used when the
function is invoked. For example, when a=foo(c) is issued the variable c becomes the variable (y1)
within foo’s workspace and similarly, foo’s x1 is returned to become the variable a in the calling
workspace. Though it is possible to call foo without specifying y2 there is no simple way to call it
and specify y2 while omitting y1. Therefore, it is advisable to structure the list of input variables
such that the most important ones appear first. If an input variable is not supplied, then it must be
assigned a default value by the function.

Code Snippet 1.4.1. A simple MATLAB function to clip a signal.

1 function trout=clip(trin,amp);
2 % CLIP performs amplitude clipping on a seismic trace
3 %
4 % trout=clip(trin,amp)
5 %
6 % CLIP adjusts only those samples on trin which are greater
7 % in absolute value than ’amp’. These are set equal to amp but
8 % with the sign of the original sample.
9 %
10 % trin= input trace
11 % amp= clipping amplitude
12 % trout= output trace
13 %
14 % by G.F. Margrave, May 1991
15 %
16 if(nargin˜=2)
17 error(’incorrect number of input variables’);
18 end
19 % find the samples to be clipped
20 indices=find(abs(trin)>amp);
21 % clip them
22 trout=trin;
23 trout(indices)=sign(trin(indices))*amp;

End Code

In the example of the function clip there are two input variables, both mandatory, and one out-
put variable. The next few lines after the function definition are all comments (i.e. non-executable)
as is indicated by the % sign that precedes each line. The first contiguous block of comments follow-
ing the function definition constitutes the online help. Typing help clip at the MATLAB prompt
will cause these comment lines to be echoed to your MATLAB window.

The documentation for clip follows a simple but effective style. The first line gives the function
name and a simple synopsis. Typing help directory name, where directory name is the name of a
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directory containing many .m files, causes the first line of each file to be echoed giving a summary of
the directory. Next appears one or more function prototypes that give examples of correct function
calls. After viewing a function’s help file, a prototype can be copied to the command line and edited
for the task at hand. The next block of comments gives a longer description of the tasks performed
by the function. Then comes a description of each input and output parameter and their defaults,
if any. Finally, it is good form to put your name and date at the bottom. If your code is to be
used by anyone other than you, this is valuable because it establishes who owns the code and who
is responsible for fixes and upgrades.

Following the online help is the body of the code. Lines 16-18 illustrate the use of the auto-
matically defined variable nargin that is equal to the number of input variables supplied at calling.
clip requires both input variables so it aborts if nargin is not two by calling the function error.
The assignment of default values for input variables can also be done using nargin. For example,
suppose the amp parameter were to be allowed to default to 1.0. This can be accomplished quite
simply with

if(nargin<2) amp=1; end

Lines 20, 22, and 23 actually accomplish the clipping. They illustrate the use of vector addressing
and will be discussed more thoroughly in Section 1.5.1.

1.4.3 Coping with errors and the MATLAB debugger

No matter how carefully you work, eventually you will produce code with in it. The simplest errors
are usually due to mangled syntax and are relatively easy to fix. A MATLAB language guide is
essential for the beginner to decipher the syntax errors.

More subtle errors only become apparent at runtime after correcting all of the syntax errors.
Very often, runtime errors are related to incorrect matrix sizes. For example, suppose we wish to
pad a seismic matrix with nzs zero samples on the end of each trace and nzt zero traces on the end
of the matrix. The correct way to do this is show in Code Snippet 1.4.2.

Code Snippet 1.4.2. Assume that a matrix seis already exists and that nzs and nzt are already
defined as the sizes of zero pads in samples and traces respectively. Then a padded seismic matrix
is computed as:

1 %pad with zero samples
2 [nsamp,ntr]=size(seis);
3 seis=[seis;zeros(nzs,ntr)];
4 %pad with zero traces
5 seis=[seis zeros(nsamp+nzs,nzt)];

End Code

The use of [ . . . ] on lines 3 and 5 is key here. Unless they are being used to group the return
variables from a function, [ . . . ] generally indicate that a new matrix is being formed from the
concatenation of existing matrices. On line 3, seis is concatenated with a matrix of zeros that
has the same number of traces as seis but nzs samples. The semi-colon between the two matrices
is crucial here as it is the row separator while a space or comma is the column separator. If the
elements in [ ] on line 3 were separated by a space instead of a semi-colon, MATLAB would emit
the error message:

??? All matrices on a row in the bracketed expression must have the same
number of rows.
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This occurs because the use of the column separator tells MATLAB to put seis and zeros(nxs,ntr)
side-by-side in a new matrix; but, this is only possible if the two items have the same number of
rows. Similarly, if a row separator is used on line 5, MATLAB will complain about “All matrices
on a row in the bracketed expression must have the same number of columns”.

Another common error is an assignment statement in which the matrices on either side of the
equals sign do not evaluate to the same size matrix. This is a fundamental requirement and calls
attention to the basic MATLAB syntax: MatrixA = MatrixB. That is, the entities on both sides of
the equals sign must evaluate to matrices of exactly the same size. The only exception to this is
that the assignment of a constant to a matrix is allowed.

One rather insidious error deserves special mention. MATLAB allows variables to be “declared”
by simply using them in context in a valid expression. Though convenient, this can cause problems.
For example, if a variable called plot is defined, then it will mask the command plot. All further
commands to plot data (e.g. plot(x,y)) will be interpreted as indexing operations into the matrix
plot. More subtle, if the letter i is used as the index of a loop, then it can no longer serve its
predefined task as

√
−1 in complex arithmetic. Therefore some caution is called for in choosing

variable names, and especially, the common Fortran practice of choosing i as a loop index is to be
discouraged.

The most subtle errors are those which never generate an overt error message but still cause
incorrect results. These logical errors can be very difficult to eliminate. Once a program executes
successfully, it must still be verified that it has produced the expected results. Usually this means
running it on several test cases whose expected behavior is well known, or comparing it with other
codes whose functionality overlaps with the new program.

The MATLAB debugger is a very helpful facility for resolving run-time errors, and it is simple
to use. There are just a few essential debugger commands such as: dbstop, dbstep, dbcont,
dbquit, dbup, dbdown. A debugging session is typically initiated by issuing the dbstop command
to tell MATLAB to pause execution at a certain line number, called a breakpoint. For example
dbstop at 200 in plotimage will cause execution to pause at the executable line nearest line 200
in plotimage . At this point, you may choose to issue another debug command, such as dbstep
which steps execution a line at a time, or you may issue any other valid MATLAB command. This
means that the entire power of MATLAB is available to help discover the problem. Especially
when dealing with large datasets, it is often very helpful to issue plotting commands to graph the
intermediate variables.

As an example of the debugging facility, consider the problem of extracting a slice from a matrix.
That is, given a 2D matrix, and a trajectory through it, extract a sub-matrix consisting of those
samples within a certain half-width of the trajectory. The trajectory is defined as a vector of row
numbers, one-per-column, that cannot double back on itself. A first attempt at creating a function
for this task might be like that in Code Snippet 1.4.3.

Code Snippet 1.4.3. Here is some code for slicing through a matrix along a trajectory. Beware,
this code generates an error.

1 function s=slicem(a,traj,hwid)
2
3 [m,n]=size(a);
4 for k=1:n %loop over columns
5 i1=max(1,traj(k)-hwid); %start of slice
6 i2=min(m,traj(k)+hwid); %end of slice
7 ind=(i1:i2)-traj(k)+hwid; %output indices
8 s(ind,k) = a(i1:i2,k); %extract the slice
9 end

End Code
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First, prepare some simple data like this:

� a=((5:-1:1)’)*(ones(1,10))

a =

5 5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1

� traj=[1:5 5:-1:1]
traj =

1 2 3 4 5 5 4 3 2 1

The samples of a that lie on the trajectory are 5 4 3 2 1 1 2 3 4 5. Executing slicem with
the command s=slicem(a,traj,1) generates the following error:

??? Index into matrix is negative or zero.

Error in ==> slicem.m On line 8 ==> s(ind,k) = a(i1:i2,k);

This error message suggests that there is a problem with indexing on line 8; however, this could
be occurring either in indexing into a or s. To investigate, issue the command “dbstop at 8 in
slicem” and re-run the program. Then MATLAB stops at line 8 and prints

8 s(ind,k) = a(i1:i2,k);
K�

Now, suspecting that the index vector ind is at fault we list it to see that it contains the values
1 2 and so does the vector i1:i2. These are legal indices. Noting that line 8 is in a loop, it seems

possible that the error occurs on some further iteration of the loop (we are at k=1). So, execution
is resumed with the command dbcont. At k=2, we discover that ind contains the values 0 1 2
while i1:i2 is 1 2 3. Thus it is apparent that the vector ind is generating an illegal index of 0. A
moments reflection reveals that line 7 should be coded as ind=(i1:i2)-traj(k)+hwid+1; which
includes an extra +1. Therefore, we exit from the debugger with dbquit, make the change, and
re-run slicem to get the correct result:

s =

0 5 4 3 2 2 3 4 5 0
5 4 3 2 1 1 2 3 4 5
4 3 2 1 0 0 1 2 3 4

The samples on the trajectory appear on the central row while the other rows contain neighboring
values unless such values exceed the bounds of the matrix a, in which case a zero is returned. A more
polished version of this code is found as slicemat in the NumMethToolbox . Note that a simpler
debugger procedure (rather than stopping at line 8) would be to issue the command “dbstop if
error” but the process illustrated here shows more debugging features.
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1.5 Programming for efficiency

1.5.1 Vector addressing

The actual trace clipping in Code Snippet 1.4.1 is accomplished by three deceptively simple lines.
These lines employ an important MATLAB technique called vector addressing that allows arrays to
be processed without explicit loop structures. This is a key technique to master in order to write
efficient MATLAB code. Vector addressing means that MATLAB allows an index into an array to
be a vector (or more generally a matrix) while languages like C and Fortran only allow scalar indices.
So, for example, if a is a vector of length 10, then the statement a([3 5 7])=[pi 2*pi sqrt(pi)]
sets the third, fifth, and seventh entries to π, 2 ∗ π, and

√
π respectively. In clip the function find

performs a logical test and returns a vector of indices pointing to samples that satisfy the test. The
next line creates the output trace as a copy of the input. Finally, the last line uses vector addressing
to clip those samples identified by find.

Code Snippet 1.5.1. A Fortran programmer new to MATLAB would probably code clip in this
way.

1 function trout=fortclip(trin,amp)
2
3 for k=1:length(trin)
4 if(abs(trin(k)>amp))
5 trin(k)=sign(trin(k))*amp;
6 end
7 end
8
9 trout=trin;

End Code

Code Snippet 1.5.2. This script compares the execution time of clip and fortclip

1 [r,t]=reflec(1,.002,.2);
2
3 tic
4 for k=1:100
5 r2=clip(t,.05);
6 end
7 toc
8
9 tic
10 for k=1:100
11 r2=fortclip(t,.05);
12 end
13 toc

End Code

In contrast to the vector coding style just described Code Snippet 1.5.1 shows how clip might be
coded by someone stuck-in-the-rut of scalar addressing (a C or Fortran programmer). This code is
logically equivalent to clip but executes much slower. This is easily demonstrated using MATLAB’s
built in timing facility. Code Snippet 1.5.2 is a simple script that uses the tic and toc commands
for this purpose. tic sets an internal timer and toc writes out the elapsed time since the previous
tic. The loops are executed 100 times to allow minor fluctuations to average out. On the second
execution of this script, MATLAB responds with
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elapsed_time = 0.0500
elapsed_time = 1.6000

which shows that clip is 30 times faster than fortclip . (On the first execution, clip is only
about 15 times faster because MATLAB spends some time doing internal compiling. Run time tests
should always be done a number of times to allow for effects like this.)

A simple blunder that can slow down fortclip even more is to write it like

Code Snippet 1.5.3. An even slower version of fortclip

1 function trout=fortclip(trin,amp)
2
3 for k=1:length(trin)
4 if(abs(trin(k)>amp))
5 trout(k)=sign(trin(k))*amp;
6 end
7 end

End Code

This version of fortclip , still produces correct results, but is almost 50 times slower than clip .
The reason is that the output trace, trout, is being addressed sample-by-sample but it has not been
pre-allocated. This forces MATLAB to resize the vector each time through the loop. Such resizing
is slow and may require MATLAB to make repeated requests to the operating system to grow its
memory.

Exercise 1.5.1. Create a version of fortclip and verify the run time comparisons quoted here.
Your computer may give different results. Show that the version of fortclip in Code Snippet 1.5.3
can be made to run as fast as that in Code Snippet 1.5.1 by using the zeros function to pre-allocate
trout.

1.5.2 Vector programming

It is this author’s experience that MATLAB code written using vector addressing and linear algebra
constructs can be quite efficient. In fact run times can approach that of compiled C or Fortran. On
the other hand, coding in the scalar style can produce very slow programs that give correct results
but lead to the false impression that MATLAB is a slow environment. MATLAB is designed to
eliminate many of the loop structures found in other languages. Vector addressing helps in this
regard but even more important is the use of MATLAB’s linear algebra constructs. Programming
efficiently in this way is called vector programming .

As an example, suppose seis is a seismic data matrix and it is desired to scale each trace (i.e.
column) by a constant scale factor. Let scales be a vector of such factors whose length is equal to
the number of columns in seis. Using scalar programming, a seasoned Fortran programmer might
produce something like Code Snippet 1.5.4.

Code Snippet 1.5.4. A Fortran programmer might write this code to scale each trace in the matrix
seis by a factor from the vector scales

1 [nsamp,ntr]=size(seis);
2
3 for col=1:ntr
4 for row=1:nsamp
5 seis(row,col)=scales(col)*seis(row,col);
6 end
7 end
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End Code

This works correctly but is needlessly slow. An experienced MATLAB programmer would know that
the operation of ‘matrix times diagonal matrix’ results in a new matrix whose columns are scaled by
the corresponding element of the diagonal matrix. You can check this out for yourself by a simple
MATLAB exercise:

a=ones(4,3); b=diag([1 2 3]); a*b

to which MATLAB’s response is

ans =

1 2 3
1 2 3
1 2 3
1 2 3

Thus the MATLAB programmer would write Code Snippet 1.5.4 with the very simple single line
in Code Snippet 1.5.5.

Code Snippet 1.5.5. A MATLAB programmer would write the example of Code Snippet 1.5.4 in
this way:

1 seis=seis*diag(scales);

End Code

Tests indicate that Code Snippet 1.5.5 is about ten times as fast as Code Snippet 1.5.4.
Vector programming is also facilitated by the fact that MATLAB’s mathematical functions are

automatically set up to operate on arrays. This includes functions like sin, cos, tan, atan,
atan2, exp, log, log10, sqrt and others. For example, if t is a time coordinate vector then
sin(2*pi*10*t) is a vector of the same size as t whose entries are a 10 Hz. sine wave evaluated
at the times in t. These functions all perform element-by-element operations on matrices of any
size. Code written in this way is actually more visually similar to the corresponding mathematical
formulae than scalar code with its many explicit loops.

Some of MATLAB’s vectorized functions operate on matrices but return matrices of one di-
mension smaller. The functions sum, cumsum, mean, main, max, std all behave in this manner.
For example, if trace is a vector and seis is a matrix, then mean(trace) results in a scalar that
is the mean value of the vector while mean(seis) results in a row vector containing the mean
value of each column of seis. The mean value of the entire matrix, seis, can be calculated with
mean(mean(seis)).

1.5.3 The COLON symbol in MATLAB

Vector programming is also facilitated by a thorough understanding of the multiple uses of the colon
(:) in MATLAB. In its most elementary form the colon is used to generate vectors. For example, the
time coordinate vector for a trace with ntr samples and a sample interval of dt can be generated
with the command t=(0:ntr-1)*dt. This results in a row vector whose entries are [0 dt 2*dt
3*dt ... (ntr-1)*dt].

More subtle is the use of the colon in indexing into a matrix. Let seis be a two dimensional
seismic matrix, then some sample indexing operations are:
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seis(:,10) refers to the 10th trace. The colon indicates that all rows (samples) are desired.

seis(:,50:60) refers to traces 50 through 60.

seis(100:500,50:60) selects samples 100 through 500 on traces 50 through 60.

seis(520:2:720,:) grabs very other sample between sample number 520 and number 720 on all
traces.

seis(:,90:-1:50) selects traces 50 through 90 but in reverse order.

seis(:) refers to the entire seismic matrix as a giant column vector.

Of course, the indices need not be entered as explicit numbers but could be a variable instead as in
the case of the return from find in Code Snippet 1.4.1.

The last item needs more explanation. Regardless of the dimensions of a matrix, it can always
be referred to as a single column vector using a single index. For example, the two dimensional
matrix, seis, can be indexed like seis(irow,icol) and as seis(ipos). This is possible because
computer memory is actually a one-dimensional space and MATLAB stores a matrix in this space
in column order. This means that the actual storage pattern of seis is [seis(1,1) seis(2,1)
...seis(nrows,1) seis(1,2) seis(2,2) ... ...seis(nrows,ncols)]. Thus the last sample of
column one and the first sample of column two are contiguous in memory. This means that the first
sample of column two can be addressed either by seis(1,2) or by seis(nrows+1). In accordance
with this formulation, MATLAB allows any matrix to be entered into a formula as a equivalent
column vector using the notation seis(:).

1.5.4 Special values: NaN, Inf, and eps

MATLAB supports the IEEE representations of NaN (Not-a-Number) and Inf (Infinity). Certain
mathematical operations can cause these to arise and they then behave in defined ways. For exam-
ple 0/0, Inf*0, Inf±Inf, and Inf/Inf all result in NaN. Furthermore, any arithmetic operator
involving a NaN is required to produce NaN as an output. This can cause unexpected results. For
example, max([1 2 3 NaN 4 5 6]) results in NaN and the functions min, mean, std and many
others will also return NaN on this vector. Even worse, running fft on data with only a single
NaN in it will produce a NaN for the entire output spectrum. Despite these apparent complications,
NaN’s have enough uses that they are well worth having around. The occurrence of a NaN in your
output data signals you that an unexpected arithmetic exception has taken place in your code. This
must be found and corrected. NaN’s can also be used as convenient place-holders to mark some
special point in a matrix because they can easily be found. Also, when a NaN occurs in graphics,
the action is to blank that part of the display. Thus NaN’s can be used to temporarily turn off parts
of a graphic, something that is especially useful in 3D.

When used in logical comparisons, such as NaN==5, the result is almost always False. This means
that an expression such as find(v==NaN) will not correctly identify any NaN’s in the vector v. (Of
course, it works just fine if you want to find a number such as find(v==5).) So, NaN’s must be
located using find(isnan(v)) that returns a vector of indices of any NaN’s in v. (The function
isnan returns a logical vector of 1’s and 0’s indicating vector elements are NaN’s.)

Infinity is handled similarly to NaN’s in that certain operations generate infinity that subse-
quently behaves in a defined way. For example x/0 generates an Inf and x/Inf always returns zero
(unless x is Inf when NaN results). Inf also must be handled specially in logical comparisons. The
functions isinf and isfinite can be used by themselves or as input to find as discussed above
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with isnan. Also, the debug command dbstop if naninf is helpful to stop execution at the point
that NaN or Inf occurs in any function.

MATLAB uses double precision floating point arithmetic for its calculations. This is actually
a higher standard of precision than has traditionally been used in seismic data processing. Most
processing systems have been written in Fortran or C and use single precision arithmetic. MATLAB
supplies the internal constant eps whose value is the smallest positive floating point number available
on your machine. In a loose sense, eps represents the machine “noise level” and is about 2.2204x10−16

on the author’s computer. (How many decibels down from unity is eps?) As a general rule, tests for
the equality of two floating point variables should be avoided. Instead of a test like if(x==y) consider
something like if(abs(x-y)<10*eps). eps can also be useful in computing certain limits that
involve a division by zero. For example, computing a sinc function with x=0:.1:pi;y=sin(x)./x;
generates a zero divide and y(1) is NaN. However, x=0:.1:pi;y=sin(x+eps)./(x+eps); avoids
the zero divide and results in y(1) of 1.

1.6 Chapter summary

The scope of this book was defined as a survey of the fundamental numerical methodologies used in
seismic exploration, and their physical basis. Reasons for the choice of the MATLAB language for
the presentation of algorithms were given. MATLAB was suggested as a superior environment due
to its vector language, extensive numerical toolbox, interactive environment, and built-in graphics.
MATLAB conventions for naming functions were explained and the use of numbered Code Snippets
in a theorem-like environment code presentation was discussed.

Considerable time was spent discussing the display of seismic data. It was argued that the
numerical range (dynamic range) of modern data is very large, and this leads to the likelihood of
clipping in display. Wiggle trace, WTVA, and image plots were discussed as display tools, and their
relative merits were contrasted.

Finally, a brief survey of MATLAB programming was presented, with an emphasis on topics of
importance when dealing with large datasets. Scripts and functions were discussed and their struc-
ture outlined. Common programming blunders that lead to reduced performance were discussed.
Vector addressing, vector programming, and the colon operator were discussed with an emphasis on
how they relate to the creation of efficient code.



Chapter 2

Signal Theory

The theory of digital signal processing is a vast subject and its complete description would require
much more space than the signal chapter available here. However, an acquaintance with the essential
elements of the theory is so essential that this chapter is included as an introduction. The scope of
the present discussion is limited to fundamentals that have direct relevance to later chapters. Those
requiring a more thorough exposition should consult a textbook such as Karl (1989).

As a general theme, concepts will be developed here for both continuous and sampled signals.
The continuous viewpoint arises naturally when developing models for physical effects where the
solutions to the relevant partial differential equations may be regarded as continuous signals. Alter-
natively, when solving such equations in complex situations or in processing real seismic data, digital
computations in a computer are the only practical approach. Therefore, both approaches will be
explored where appropriate and the transformation of a continuous expression into a discrete one,
and the reverse, will be demonstrated.

2.1 Convolution

The process of convolution is so fundamental to all of signal theory that its description is an excellent
starting point. A variety of descriptions of convolution are given in this section. They are all useful
in different contexts and some will appeal more to the intuition than others. Fundamentally however,
these are all merely different perspectives on the same mathematical expression that is stated as
equation (2.3) below.

2.1.1 Convolution as filtering

Convolution is the name given to the process of applying a stationary linear filter to a signal. By
stationary, it is meant that the filter response to an input impulse is independent of the time of
the impulse. Another name for this property of stationarity is translation invariance. The filter is
linear because the response to an input a(t) + b(t) is the sum of the responses to a(t) and b(t) taken
separately. Such a linear, stationary filter is completely specified by its impulse response, f(t). This
is defined as the output of the filter when the input is a unit impulse at t = 0. Often the phrase the
filter will be used as a synonym for the impulse response of the filter. Suppose the input to the filter
is an impulse of magnitude a0 at time t0 and a second impulse of magnitude a1 at time t1. Then
the filter output is

g(t) = a0f(t− t0) + a1f(t− t1). (2.1)

29
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The property of linearity has been used to form the scaled sum of two time-shifted copies of the
impulse response. These appear in the equation as f(t − tk) where k = 0 or k = 1. Thus f(t = 0)
appears at both t = t0 and t = t1. Filters that represent physical systems have the causality property
that f(t) = 0 for t < 0. If f(t) is causal, then equation (2.1) places the first value that is possibly
nonzero at the times of the input impulses. The property of stationarity has been used in that the
response to the input impulse at t = t1 is the same function f(t) as for the impulse at t = t0.

Suppose the input to the filter is an arbitrary sequence of impulses defined by the magnitudes
{ak}, k = 1, 2, . . . N and the corresponding times {tk}. Then equation (2.1) generalizes to the
one-dimensional convolution integral

g(t) =
n∑

k=1

akf(t− tk). (2.2)

Both this equation and equation (2.1) are examples of convolution equations though even equation
(2.2) assumes too much about the nature of the input to be considered general. The defining feature
is the formation of a superposition of scaled-and-delayed copies of a single function, f(t). If a
completely general expression is desired, then it must accommodate an input that is a continuous
function of time rather than a sequence of impulses. In a limiting procedure, as the sequence of
input impulses approaches the continuous function a(t), equation (2.2) approaches

g(t) =
∫ ∞

−∞
a(τ)f(t− τ)dτ. (2.3)

Here, in comparison with equation (2.2), an integration has replaced the summation, the integration
variable τ has taken the place of the summation index k, and the sequence of impulses {ak} has
become the continuous function a(τ). The presence of the dt time differential in equation (2.3)
means that it is superficially dimensionally inconsistent with equation (2.2). This may be remedied
either by assuming that {ak} and a(t) have different units or, more commonly, by multiplying the
right-hand-side of equation (2.2) by a constant with temporal dimensions. The limits of integration
are formally written from −∞ to ∞ to accommodate all possible input signals. If a(τ) is causal,
then the lower limit may be altered to zero. If a(τ) vanishes for τ > τmax then the upper limit may
be set to τmax. In other words, the integration extends over all relevant values of τ .

Convolution arises in many parts of physical theory other than the application of linear, sta-
tionary filters. In all cases, the interpretation given here of forming a superposition of scaled and
time-shifted copies of a physical response (or impulse response) is appropriate. However, the choice
of which function, a or f , to interpret as the impulse response is arbitrary. If the integral operation
of equation (2.3) is symbolized abstractly as g = a•f , then it is elementary to show that a•f = f •a.
This is accomplished by the change of variables τ ′ = t− τ that gives

g(t) =
∫ ∞

−∞
a(τ)f(t− τ)dτ =

∫ −∞

∞
a(t− τ ′)f(τ ′)d(−τ ′) =

∫ ∞

−∞
a(t− τ ′)f(τ ′)dτ ′. (2.4)

Thus convolution is said to be commutative and either function can be interpreted as the impulse
response with the other being the input signal that provides the weighting.

Now consider the digital sampling of all three of the functions involved in equation (2.3). Let
∆t be the temporal sample interval and let each of a(t), f(t), and g(t) be represented by sequences
of discrete samples {ak}, {fk}, and {gk} with k = 0, 1, . . . N − 1 so that t = k∆t ranges from 0 to
(N −1)∆t . The difference between these sequences and that defined previously for equation (2.2) is
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that these new sequences are all sampled at a regular interval. In the previous instance, a sequence
of five impulses required only five samples regardless of the intervals between the samples. Now, if
any of the five impulses are separated by an interval greater than ∆t then more than five samples
will be needed though the additional samples will be zero. At this expense of possibly including
many zero samples, a discrete version of equation (2.3) can be written as

gj = ∆t
N−1∑
k=0

akfj−k (2.5)

where the constant ∆t has been taken outside the summation. In most implementations of digital
signal theory, ∆t is a constant throughout the application and it is customary to write equations
like (2.5) with ∆t set to unity. Thus, more commonly discrete convolution will be written

gj =
N−1∑
k=0

akfj−k. (2.6)

Exercise 2.1.1. Show that convolution is distributive. That is a • (b+ c) = a • b+ a • c. Is it better
to stack (sum) a series of traces and then filter the stacked trace or to filter each one and stack the
filtered traces? Why?

Exercise 2.1.2. Let u(t) = exp(iωt). For an arbitrary function v(t) show that the convolution
u • v = a(ω)u where a(ω) is a function of frequency and of v. Determine the precise form of a to
show how it depends on v.

Exercise 2.1.3. Study the example below and then compute the convolution of r = [1,−.3, 0,−.5, .8,−.8]
with w = [.1, .3, .1]. Make a sketch of the process of reversing w and sliding it past r. Redraw this
sketch for each output sample.

Example 2.1.1. A simple model of a seismic trace, sk is that it represents a reflectivity series,
rk convolved with a wavelet, wk. That is sj =

∑
k rkwj−k. Let r = [1, .2,−.1,−.5, .5, 0,−1] and

w = [1,−.5, .2, ] and compute sj. Assuming that both {r} and {w} begin with sample number 0, s0
is given by s0 =

∑
k rkw0−k. The only nonzero contribution to this sum is for k = 0 with the result

s0 = r0w0 = 1. Below, each element of {s} is worked out. In each case, the limits on the summation
are adjusted to include only the terms that involve nonzero contributions from {w}. This means that
a maximum of three elements occur in each sum. The entire process can be visualized by reversing
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{w} and sliding it past {r}. At each position, the samples that align are multiplied and summed.

s0 =
0∑

k=0

rkw0−k = r0w0 = 1

s1 =
1∑

k=0

rkw1−k = r0w1 + r1w0 = −.5 + .2 = −.3

s2 =
2∑

k=0

rkw2−k = r0w2 + r1w1 + r2w0 = .2 − .1 − .1 = 0

s3 =
3∑

k=1

rkw3−k = r1w2 + r2w1 + r3w0 = .04 + .05 − .5 = −.41

s4 =
4∑

k=2

rkw4−k = r2w2 + r3w1 + r4w0 = −.02 + .25 + .5 = .73

s5 =
5∑

k=3

rkw5−k = r3w2 + r4w1 + r5w0 = −.1 − .25 + 0 = −.35

s6 =
6∑

k=4

rkw6−k = r4w2 + r5w1 + r6w0 = .1 + 0 − 1 = −.9

s7 =
6∑

k=5

rkw7−k = r5w2 + r6w1 = 0 + .5 = .5

s8 =
6∑

k=6

rkw8−k = r6w2 = −.2

2.1.2 Convolution by polynomial multiplication - the Z transform

There is a convenient representation of discretely sampled signals that allows convolution to be done
through a simple process of multiplication. Suppose that an N-length sequence {a} = [a0, a1, a2, . . . aN−1]
is identified with a polynomial in a variable z by the relation

a(z) = a0 + a1z + a2z
2 + . . . aN−1z

N−1 =
N−1∑
k=0

akz
k. (2.7)

The resulting function, a(z) is called the z transform of the sequence {a}. Now, recall the rule for
the multiplication of two polynomials, for example, let N=3 and multiply

a(z)f(z) =
[
a0 + a1z + a2z

2] [f0 + f1z + f2z
2]

= a0f0 + a0f1z + a0f2z
2 + a1zf0 + a1zf1z + a1zf2z

2 + a2z
2f0 + a2z

2f1z + a2z
2f2z

2; (2.8)

then, collecting terms of like powers of z gives

a(z)f(z) = a0f0 + [a0f1 + a1f0] z + [a0f2 + a1f1 + a2f0] z2 + [a1f2 + a2f1] z3 + [a2f2] z4. (2.9)
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Examination of this result shows that the coefficient of each power of z is composed of all combi-
nations of the coefficients of a(z) and f(z) whose subscripts sum to the value of the exponent of
z. In fact, the general pattern for the coefficient of zj is

∑
k akfj−k where the sum extends over

all relevant values. Comparison with equation (2.6) allows the conclusion: the product of the z
transforms of two signals gives the z transform of the convolution of those signals.

These concepts establish a link between the theory of discrete, digital filters and the algebra of
polynomials. This link has far reaching implications in signal theory because it allows the many
properties of polynomials to be used in signal processing. For example, if polynomial multiplication
can perform a convolution, then polynomial division does deconvolution. Later in this chapter, it will
be demonstrated that the z transform is a generalization of the discrete Fourier transform provided
that z is a complex variable. This means that the result demonstrated above is an example of the
convolution theorem that will be proven for Fourier transforms in a later section. It will also be
demonstrated that the location of the roots or zeros of a(z) completely determines the behavior of
{a} as a digital filter.

Exercise 2.1.4. Use z transforms to repeat the convolution of exercise 2.1.1.

Exercise 2.1.5. Given a sequence {a}, show that a(z)zm is the spectrum of the sequence delayed
by m samples. Thus z is the unit delay operator. What is the meaning of z−1?

2.1.3 Convolution as a matrix multiplication

Usually the integral of the product of two continuous functions can be approximated in a computer
as a matrix-vector product. The convolution integral provides an important example. Consider the
discrete convolution formula

gj =
N−1∑
k=0

aj−kfk (2.10)

and compare it to the general formula for the product of a matrix, Mjk with a vector vk that is

uj =
∑

k

Mjkvk. (2.11)

Examination of equations (2.6) and (2.11) shows that convolution can be done by defining a matrix
Ajk = aj−k. Written as a matrix operation, equation (2.10) becomes



g0
g1
g2
...

gN−1


 =




a0 a−1 a−2 . . . a−N+1
a1 a0 a−1 . . . a−N+2
a2 a1 a0 . . . a−N+3
...

...
...

...
...

aN−1 aN−2 aN−3 . . . a0







f0
f1
f2
...

fN−1


 . (2.12)

(If {a} is causal, then the entries above the main diagonal of the matrix will all be zero.) This will
be written as an abstract matrix equation as

g = Af (2.13)

where the convention is that single underlined quantities are column vectors and a double underline
denotes a matrix.
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The matrix A in equation (2.12) has a special symmetry that is required to perform a convolution.
Though the matrix has N2 entries, there are only N independent numbers that all come from {a}.
The elements along any diagonal are constant. Each column contains a copy of {a} that has been
shifted to place a0 on the main diagonal. Equivalently, each row contains a time-reversed and shifted
copy of {a}. Matrices with this symmetry are called Toeplitz or sometimes convolution matrices.
Since convolution is commutative, it follows that forming a Toeplitz matrix with {f} and a column
vector with {a} must give an identical result.

One way to visualize the matrix-vector multiplication of equation (2.12) is called matrix multi-
plication by rows. In this process, each row of A multiplies f as a vector dot product. That is, the
corresponding elements are multiplied and the resulting products summed to a scalar that becomes
the corresponding element of g. This can be written as the set of equations

g0 = a0f0 + a−1f1 + a−2f2 + . . . a−N+1fN−1

g1 = a1f0 + a0f1 + a−1f2 + . . . a−N+2fN−1

g2 = a2f0 + a1f1 + a0f2 + . . . a−N+3fN−1

. . . = . . .

gN−1 = aN−1f0 + aN−2f1 + aN−3f2 + . . . a0fN−1. (2.14)

This view of matrix multiplication shows how each sample of g (each output sample) is created as
a linear superposition of the inputs. An alternate, but equally valid perspective comes from matrix
multiplication by columns. Inspection of the equations (2.14) shows that each sample of f multiplies
a corresponding column of A. Thus, a column oriented view of matrix multiplication suggests




g0
g1
g2
...

gN−1


 =




a0
a1
a2
...

aN−1


 f0 +




a−1
a0
a1
...

aN−2


 f1 +




a−2
a−1
a0
...

aN−3


 f2 + . . .




a−N+1
a−N+2
a−N+3

...
a0


 fN−1 (2.15)

In this view, the formation of a convolution by a scaled superposition of impulse responses (the
columns of A) is manifest. The final result is obtained for all samples simultaneously after the
superposition of the final scaled column of A.

2.1.4 Convolution as a weighted average

Equation (2.15) shows that matrix multiplication by columns is equivalent to viewing convolution as
the scaled superposition of impulse responses. However, equation (2.14) suggests an alternative, and
equally valid, interpretation of convolution. This equation shows each element of g being formed as
a weighted average of the samples of f with A providing the weights. Of course, since convolution
is commutative, g can equally well be regarded as a weighted average of a with a Toeplitz matrix F
providing the weights.

This view of convolution is valuable since it is often desirable to smooth a physical dataset. For
example, a time series that represents the measurement of a slowly changing physical quantity may
fluctuate more rapidly than is easily explicable. Such fluctuations may be ascribed to contamination
of the measurements by random noise. In this case, the data are often subjected to a running average
whereby the kth output point is formed as the average of the input points on either side of sample
k. This is also called smoothing . The averaging width, or number of points involved in the average,
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is an important decision. For a width of m, a running average can be implemented as a convolution
with a series of m ones, or an m-length boxcar. For example, a 3-length running average uses an
averaging operator defined by ak = 1/3,−1 ≤ k ≤ 1; ak = 0, otherwise. Then, f is smoothed by the
matrix equation 



g0
g1
g2
...
...




=
1
3




1 1 0 0 0 . . . 0
1 1 1 0 0 . . . 0
0 1 1 1 0 . . . 0

. . . . . . . . .
. . . . . . . . .







f0
f1
f2
...
...



. (2.16)

Here the convolution matrix is nonzero only in the main diagonal and the two sub-diagonals above
and below the main. These diagonals are filled with ones. Comparing with equation (2.14) shows
that, for example, g2 = (f1 + f2 + f3)/3. Thus the conclusion is that a running average is equivalent
to convolution with a boxcar.

It is easily concluded that a running average using weights other than unity can be expressed as
convolution with an appropriate averaging function. For example, weights that ramp linearly from
zero to one and back zero can be expressed as a triangular averaging function. Multi-dimensional
averaging works the same way, it can always be expressed as a multi-dimensional convolution. Later
in this chapter, the connection between averaging and lowpass filtering will be illustrated.

2.2 The Fourier Transform

The development of the Fourier transform is one of the most significant developments in math-
ematical analysis. Its digital counterpart, the discrete Fourier transform, plays a central role in
signal analysis. Fourier developed his ideas in the context of solving the heat equation to study
heat dissipation while boring out canons. Despite this specific intent, it soon became apparent that
Fourier’s theory could be used to develop solutions to other partial differential equations such as
Laplace’s equation or the wave equation. Despite the success of practical applications, the mathe-
matics community resisted Fourier’s ideas because of the difficult challenges they posed for analysis.
For example, a discontinuous function, such as the boxcar function, could be synthesized from the
superposition of an appropriate set of sine and cosines that are everywhere continuous. Also prob-
lematic was the convergence of Fourier’s series of sines and cosines. The resolution of these and other
similar questions is a fascinating chapter in the history of mathematics but is beyond the scope of
this text.

2.2.1 The temporal Fourier transform and its inverse

In essence, Fourier’s theory provides a means to represent an arbitrary function as a superposition
(sum or integral) of a set of simpler functions called basis functions. Usually, these basis functions
are the trigonometric sines and cosines of different frequencies. To construct a specific function,
the sines and cosines must have amplitudes and phases that depend on frequency. Considered as a
function of frequency, the amplitudes comprise the amplitude spectrum and the phases are the phase
spectrum of the function being represented.

Fourier’s theory can be defined on either a finite interval or an infinite domain. On a finite
interval, only a finite number of basis functions are required. Their superposition is a summation
over a countable set of frequencies and the method is called Fourier series. More relevant to data
processing is the case of an infinite interval. Here an infinite number of basis functions are required
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and their superposition is accomplished by an integration over frequency. This is called the Fourier
transform. Rather than treating sin(ωt) and cos(ωt) as separate basis functions, it is common to use
exp(iωt) = eiωt. Since Euler’s theorem says eiωt = cos(ωt) + i sin(ωt) and since real and imaginary
parts of an equation are independent, the complex exponential provides a decomposition equivalent
to independent sin and cosine decompositions.

An essential tool in Fourier theory is an orthogonality relation. For complex exponentials, this
takes the form

1
2π

∫ ∞

−∞
ei(ω−ω̂)tdt = δ(ω − ω̂) (2.17)

where δ(ω − ω̂) is Dirac’s delta function that is defined by∫ ∞

−∞
δ(x)dx = 1 (2.18)

δ(x) = 0, x �= 0 (2.19)

and has the fundamental property that∫ ε

−ε

s(x)δ(x)dx = s(0) (2.20)

where ε > 0 and s(x) is any function. This result is called the sifting property of the Dirac’s delta
function.

The delta function is actually not a function in the classical sense because it has vanishing
support and takes on a singular value (infinity) where the argument vanishes. It has been given
rigorous meaning through the branch of analysis known as distribution theory. There it is modelled
as the limit of a sequence of ordinary functions. These functions must have unit area but the limit
is taken as their support vanishes. For example, a boxcar of width a and height a−1 has unit area
and converges to a delta function in the limit as a → 0.

A proof of equation (2.17), that does not assume the Fourier inversion theorem, requires distri-
bution theory and that is beyond the scope of this discussion. Intuitively, it can be understood quite
simply. If ω = ω̂, then exp(ωt− ω̂t) = 1 and the integral in equation (2.17) is infinite. On the other
hand if ω �= ω̂, then exp(ωt− ω̂t) = cos((ω − ω̂)t) + i sin((ω − ω̂)t). Both terms are simply periodic
oscillatory functions that, over the domain −∞ < t < ∞ will integrate to zero.

Given the orthogonality relation, the Fourier transform theorem can be derived by postulating
an expansion of an arbitrary function s(t) in terms of the complex exponentials

s(t) =
1

2π

∫ ∞

−∞
S(ω)e−iωtdω. (2.21)

This says that a representation of s(t) is sought as the superposition of an infinite set of complex
exponentials having weights S(ω). At this point, S(ω) is unknown but it can be calculated by
multiplying equation (2.21) by exp(iω̂t) and integrating over t, that is∫ ∞

−∞
s(t)eiω̂tdt =

∫ ∞

−∞
eiω̂t

[
1

2π

∫ ∞

−∞
S(ω)e−iωtdω

]
dt. (2.22)

Now, interchange the order of integration of the right and use the orthogonality relation, equation
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(2.17),∫ ∞

−∞
s(t)eiω̂tdt =

∫ ∞

−∞
S(ω)

[
1

2π

∫ ∞

−∞
eiω̂t−iωtdt

]
dω =

∫ ∞

−∞
S(ω)δ(ω̂ − ω)dω = S(ω̂). (2.23)

Upon renaming ω̂ to ω, this is just S(ω), which will be called the Fourier transform of s(t). In
summary, the (forward) Fourier transform of s(t) is given by

S(ω) =
∫ ∞

−∞
s(t)eiωtdt (2.24)

and the inverse Fourier transform is

s(t) =
1

2π

∫ ∞

−∞
S(ω)e−iωtdω. (2.25)

If a function is denoted by a lower case letter, then its Fourier transform is denoted by a capital
letter. In geophysics, it is often desirable to use the frequency variable, f , in units of Hertz or cycles-
per-second. The variable ω, called angular frequency in equations (2.24) and (2.25) is measured in
radians-per-second. Since there are 2π radians in one cycle of a sine wave, these variables are related
by ω = 2πf . Upon change of variables, the Fourier transform pair in cyclical frequency is

S(f) =
∫ ∞

−∞
s(t)ei2πftdt (2.26)

and
s(t) =

∫ ∞

−∞
S(f)e−i2πftdf. (2.27)

In addition to the selection of frequency variables, there are other arbitrary choices in the definition of
a Fourier transform pair. Things work equally well if the sign in the Fourier kernal (i.e. exponent of
the complex exponential) is negative for the forward transform and positive for the inverse transform.
Also, the (2π)−1 factor in front of the inverse transform (equation (2.25) ) can be replaced by (2π)−1/2

in front of both transforms. These arbitrary choices appear in all possible combinations throughout
the relevant literature. The practitioner must be aware of this and always check the definitions
that are in effect before using a particular theorem or result. In this book, the temporal Fourier
transforms will always be written as in the equations (2.24)-(2.27); however, the choice of angular
or cyclical frequency variables may vary as is convenient.

2.2.2 Real and imaginary spectra, even and odd functions

For a real or complex-valued function, s(t), the Fourier transform is always complex-valued. It
is customary to call S(f) either the Fourier transform or the spectrum. These terms will be used
synonymously in this text. As a complex-valued function, the spectrum has both real and imaginary
parts that can be denoted in either of two equivalent ways

S(f) = SR(f) + iSI(f)
S(f) = Re(S(f)) + iIm(S(f)). (2.28)
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An alternate decomposition of the spectrum is employed more commonly than real and imaginary
parts. The amplitude spectrum, AS(f), and the phase spectrum, φS(f), are defined as

AS(f) =
√
S2

R(f) + S2
I (f) (2.29)

and

φS(f) = arctan(
SI(f)
SR(f)

). (2.30)

Thus the spectrum can be written
S(f) = AS(f)eiφS(f) (2.31)

. Equations (2.28) and (2.31) are equivalent and alternate representations of a spectrum. Either
one can be used as convenient for whatever problem is at hand.

The Fourier transform decomposes a function using the complex exponential, exp(iωt) as a basis.
By Euler’s theorem, the is equivalent to cosωt+ i sinωt. The cosine functions all are even functions
of t while the sines are odd functions. An even function has the property that s(−t) = s(t) while an
odd function has the property that s(−t) = −s(t). Any function can be expressed as a sum of even
and odd parts.

s(t) = se(t) + so(t) (2.32)

where
se(t) =

1
2

[s(t) + s(−t)] (2.33)

and
se(t) =

1
2

[s(t) − s(−t)] . (2.34)

Even functions have the property that
∫ a

−a
se = 2

∫ a

0 se while for odd functions
∫ a

−a
s0 = 0.

Furthermore, the product of two odd functions, or the product of two even functions, is even while
an even function times an odd function is odd. From these properties it follows directly that∫ ∞

−∞
se(t)eiωtdt = Re

(∫ ∞

−∞
s(t)eiωtdt

)
= Re (S(ω)) . (2.35)

That is, the real part of the spectrum of s(t) is the Fourier transform of the even part of s(t).
Similarly, it is also true that∫ ∞

−∞
so(t)eiωtdt = Im

(∫ ∞

−∞
s(t)eiωtdt

)
= Im (S(ω)) . (2.36)

This means that the imaginary part of the spectrum of s(t) is the spectrum of the odd part of s(t).

Exercise 2.2.1. Show that the product of two odd functions or of two even functions is even.

Exercise 2.2.2. Show that
∫ a

−a
so(t)dt = 0 where a is a positive constant and so is any odd function.

Exercise 2.2.3. Prove equations (2.35) and (2.36).

2.2.3 The convolution theorem and the differentiation theorem

A very important property of the Fourier transform is that it converts convolution into multiplication.
That is, if s(t) is the convolution of u(t) and v(t), the spectrum of s(t) of equation (2.3) is the product
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of the spectra of u(t) and v(t). To prove this, substitute into equation (2.3) the definitions of u(t)
and v(t) as inverse Fourier transforms of their spectra. This gives

s(t) =
∫ ∞

−∞

[∫ ∞

−∞
U(f)e−i2πf(t−τ)df

] [∫ ∞

−∞
V (f̂)e−i2πf̂τdf̂

]
dτ. (2.37)

Now, move the τ integral to the inside

s(t) =
∫ ∞

−∞

∫ ∞

−∞
U(f)V (f̂)e−i2πft

[∫ ∞

−∞
e−i2π(f̂−f)τdτ

]
dfdf̂ . (2.38)

The quantity in square brackets is δ(f̂ − f) and this then collapses the f̂ integral to give

s(t) =
∫ ∞

−∞
U(f)V (f)e−i2πftdf. (2.39)

Recognizing this integral as an inverse Fourier transform proves the basic result that S(f) =
U(f)V (f) and this is called the convolution theorem.

The mathematics shown in equations (2.37)-(2.38) requires considerable effort to justify with
full mathematical precision. There are subtle but difficult questions such as: ”For what class of
functions do the various integrals converge?” and ”Under what circumstances may the order of
integration be changed?”. These questions have been answered and the operations are valid for a
very general class of functions and even distributions. The interested reader should consult a treatise
in harmonic analysis such as Korner (1988) or Stein (1993). For this book, it will be assumed that
the convolution theorem is valid for all functions encountered.

The importance of this result is that it means that a filter can be applied to a signal in the Fourier
domain by multiplying the spectrum of the signal by that of the filter. For digital computations,
this is often faster than direct evaluation of the convolution integral because of the fast Fourier
transform algorithm. However, there is more to this story that will be discussed after the discrete
Fourier transform is introduced.

The symmetry of the Fourier transform means that the time and frequency domains are es-
sentially similar. Thus is follows the the convolution theorem also works in reverse. That is, the
product u(t)v(t) is the convolution of the spectra of these functions in the frequency domain. A
careful derivation shows that a factor of (2π)−1 with the result∫ ∞

−∞
u(t)v(t)eiωtdt =

1
2π

∫ ∞

−∞
U(ω̂)V (ω − ω̂)dω̂ (2.40)

Also of great importance is that the Fourier transform reduces differentiation to multiplication.
For example, consider the calculation of ∂ts(t) given s(t) as an inverse Fourier transform of its
spectrum

∂s(t)
∂t

=
∂

∂t

∫ ∞

−∞
S(f)e−i2πftdf. (2.41)

Examination of the right-hand-side of this expression shows that the t dependence occurs only in
the exponent of the complex exponential. Therefore the differentiation can be moved under the
integration sign and performed analytically with the result

∂s(t)
∂t

=
∫ ∞

−∞
−i2πfS(f)e−i2πftdf. (2.42)
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Thus differentiation with respect to t can be performed by multiplying the spectrum of s(t) by
−i2πf = −iω. In this case, angular frequency leads to a simple formula.

More general differentiation operators can also be computed. Let a(t, ∂t) = b1(t)∂t + b2(t)∂2
t be

a differential operator, then

a(t, ∂t)s(t) = b1(t)
∂s(t)
∂t

+ b2(t)
∂2s(t)
∂t2

=
1

2π

∫ ∞

−∞

[
−iωb1(t) − ω2b2(t)

]
S(ω)e−iωtdω

=
1

2π

∫ ∞

−∞
α(t, ω)S(ω)e−iωtdω (2.43)

where α(t, ω) = −iωb1(t) − ω2b2(t) is called the symbol of the differential operator. In this manner
virtually any differential operator can be converted into an equivalent Fourier-domain multiplicative
operator. This observation means that the Fourier transform is of great importance in solving partial
differential equations.

Exercise 2.2.4. Derive equation (2.40).

2.2.4 The phase-shift theorem

Another important result involving Fourier transforms is the relationship between a time shift and
a phase shift. Consider the Fourier transform of the time-shifted signal s(t+ ∆t)

Ŝ(f) =
∫ ∞

−∞
s(t+ ∆t)ei2πftdt (2.44)

and make the change of variables τ = t+ ∆t so that

Ŝ(f) =
∫ ∞

−∞
s(τ)ei2πf(τ−∆t)dτ = e−i2πf∆t

∫ ∞

−∞
s(τ)ei2πfτdτ = e−i2πf∆tS(f). (2.45)

In the final expression, S(f) is the Fourier transform of s(t). This shows that the spectrum of
the time-shifted signal may be computed from the spectrum of the original signal by multiplication
with e−i2πf∆t. This operator has unit amplitude and a phase that is linear in f with a slope
−2πf∆t = −ω∆t. Let S(f) = AS(f)eiφS(f) and equation (2.45) becomes

Ŝ(f) = S(f)e−i2πf∆t = AS(f)eiφS(f)e−i2πf∆t = AS(f)eiφS(f)−i2πf∆t. (2.46)

Thus, the spectrum of the time-shifted signal is obtained from the spectrum of the original signal
by a phase shift . That is, a linear term is added to the phase. The magnitude of the slope of the
linear term is directly proportional to the magnitude of the time shift.

One subtlety is that the overall sign on the phase-shift depends upon the sign convention used in
the Fourier transform definition. That is, equation (2.46) results from the Fourier transform pair of
equations (2.26)-(2.27). If the sign convention is reversed so that the forward transform is done with
exp−i2πft, then the sign of the phase shift required for a positive time shift will be reversed. Thus,
if a theory is derived analytically with one sign convention and then implemented with software
that uses the other sign convention, confusing results can ensue. As a practical rule, if a phase-shift
program does not give the expected results, then it should be tested with the sign reversed on the
phase.

The phase-shift theorem is especially important with sampled data. This is because a time-shift
that is not an integral number of samples required that new samples be interpolated from the signal.
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If the time shift is done as a phase shift, then this interpolation is not required. In a sense, it is
achieved implicitly by the discrete Fourier transform.

2.2.5 The spectrum of a real-valued signal

Fourier transform theory is developed such that both the time-domain signal and its spectrum can be
complex valued. This leads to relationships between the real and imaginary parts in both domains.
On the other hand, data is inherently real valued but its spectrum is still complex. Considering
that the real and imaginary parts of a general complex function are independent, this means that
the spectrum of a real signal has two functions that are calculated from one. This is only possible
if there is a relationship between the real and imaginary parts of the spectrum of a real signal. Put
another way, the spectrum must have a symmetry .

Consider a real signal written as the inverse Fourier transform of its spectrum

s(t) =
∫ ∞

−∞
S(f)e−i2πftdf. (2.47)

Since a real signal is equal to its complex conjugate1, then it must be true that∫ ∞

−∞
S(f)e−i2πftdf =

∫ ∞

−∞
S̄(f)ei2πftdf (2.48)

where S̄ denotes the complex conjugate of S. The complex conjugation has changed the right-hand-
side from an inverse to a forward Fourier transform. Substitution of f̂ = −f will change it back to
an inverse transform. This gives∫ ∞

−∞
S(f)e−i2πftdf =

∫ −∞

∞
S̄(−f̂)e−i2πf̂td(−hatf) =

∫ ∞

−∞
S̄(−f̂)e−i2πf̂tdf̂ . (2.49)

In the final integral, f̂ can be freely renamed to f because in a definite integral the name of the
variable of integration is irrelevant. If this is surprising, consider that

∫ 4
0 xdx,

∫ 4
0 ydy, and

∫ 4
0 ηdη are

all equal to the same number, 8. So, equation (2.49) shows that the spectrum of a real-valued signal
has the symmetry

S(f) = S̄(−f)
or

S̄(f) = S(−f). (2.50)

This means that the negative frequencies are not independent of the positive ones. Rather, one may
always be calculated from the other.

This symmetry has importance in data processing because it means that only half of the Fourier
transform need be computed, stored, and operated upon.

Exercise 2.2.5. Show that the amplitude spectrum of a causal, real function is an even function
and that the phase spectrum is an odd function.

1The complex conjugate of a complex number z is written as z̄ and is defined as z̄ = Rez − iImz. The complex
conjugate may also be formed by replacing i by −i wherever it occurs in a complex-valued expression.
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2.2.6 The spectrum of a causal signal

In the previous section, it was demonstrated that a real-valued signal imposes a certain symmetry
upon its spectrum. It is a similar story with a causal signal, that is, a function, s(t), for which
s(t) = 0, t < 0. This symmetry can be derived from the time-domain requirement for a causal
function that

s(t) = h(t)s(t) (2.51)

where h(t) is the Heaviside step function or unit causal function defined by

h(t) =

{
1, t ≥ 0
0, otherwise

. (2.52)

Since, equation (2.51) is a product of two temporal functions, the analogous frequency-domain
equation must involve a convolution of two spectra. The development of this expression will lead to
the desired symmetry.

This requires the Fourier transform of the step function, and that is known to be

H(ω) = πδ(ω) +
i

ω
. (2.53)

An informal justification of this result begins with fact that the derivative of the step function is the
delta function

∂h(t)
∂t

= δ(t). (2.54)

Thus, if δ(t) were to be integrated, the step function would be recovered to within a possible
additive constant. In section 2.2.3 it was shown that differentiation in the time domain corresponds
to multiplication by −iω in the frequency domain. It follows that integration must correspond to
(−iω)−1 = i/ω. Since the Fourier transform of δ(t) is the constant 1, it might be expected that the
Fourier transform of h(t) is i/ω. However, a moments reflection shows that this cannot be the entire
story since a purely imaginary spectrum corresponds to an odd function in the time domain (see
section 2.2.2) and h(t) is not purely odd. What is lacking from this result is the Fourier transform of
the even part of h(t). Using equation (2.33), the even part of h(t) is just the constant 1/2. (What is
the odd part?) Since the Fourier transform of 1/2 is πδ(ω), the spectrum of h(t) must be πδ(ω)+i/ω
and this is just equation (2.53). A more formal proof can be found in Lancaster and Salkauskas
(1996).

It follows from the convolution theorem and equations (2.53) and (2.40) that the Fourier trans-
form of equation (2.51) is

S(ω) =
1

2π
S(ω) •

[
πδ(ω) +

i

ω

]
(2.55)

where • denotes a convolution over ω. Since S(ω) • δ(ω) = S(ω), this becomes

S(ω) =
i

π
S(ω) • 1

ω
. (2.56)

The factor of i on the right-hand-side essentially switches the real and imaginary parts around.
Decomposing equation (2.56) into its real and imaginary parts gives

SR(ω) =
−1
π
SI(ω) • 1

ω
=

−1
π

∫ ∞

−∞

SI(ω̂)
ω − ω̂

dω̂ (2.57)
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and

SI(ω) =
1
π
SR(ω) • 1

ω
=

1
π

∫ ∞

−∞

SR(ω̂)
ω − ω̂

dω̂. (2.58)

The integrals on the right-hand-sides of these equations are explicit prescriptions for convolution
with ω−1 and are called Hilbert transforms. Formally, the Hilbert transform of a function u(x) is
defined as

H [u] (x) =
1
π

∫ ∞

−∞

u(x̂)
x− x̂

dx̂ (2.59)

so that equations (2.57) and (2.58) can be written compactly as

SR(ω) = −H [SI ] (ω) (2.60)

and
SI(ω) = H [SR] (ω). (2.61)

These are the final results of this section. A causal signal has the symmetry that the real and
imaginary parts of its spectrum are not independent but rather are Hilbert transforms of one another.

2.2.7 Minimum phase

Consider a physical signal, s(t) with the properties that it has finite energy and that an inverse
filter, also with finite energy, can be constructed for it. The finite energy requirement for s(t) can
be written

total energy = 2
∫ ∞

0
A2

S(ω)dω < ∞. (2.62)

The inverse filter, ŝ(t), is defined by ŝ(t) • s(t) = δ(t) from which it is clear that its amplitude
spectrum must be A−1

S (ω). So the energy for the inverse filter must be

total energy of inverse = 2
∫ ∞

0
A−2

S (ω)dω < ∞. (2.63)

It is difficult, if not impossible, to satisfy both of these equations simultaneously. For example,
suppose AS(ω) > 0 for all finite ω, then equation (2.62) is only satisfied if AS(ω) → 0 rapidly
as ω → ∞. However, this condition means that A−1

S (ω) → ∞ and so equation (2.63) will diverge.
Therefore, it seems prudent to relax the conditions demanded of s(t) while still maintaining sufficient
generality to model all physical systems. It will be assumed that, for a causal s(t), an ωmax can be
found such that

AS(ω) →
{
> 0, |ω| < ωmax

= 0, ω ≥ ωmax

. (2.64)

This is a very reasonable requirement for any physical system though it does exclude some interesting
mathematical signals. Obviously, the inverse filter cannot invert this amplitude spectrum for ω ≥
ωmax so a bandlimited inverse must be acceptable. This is defined through

AŜ(ω) =

{
1

AS(ω) , |ω| < ωmax

0, ω ≥ ωmax

. (2.65)

Signals with finite energy such as those defined by equations (2.64) and (2.65) are called stable
signals.
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Now consider the signal defined by the spectrum

Slog(ω) =

{
lnS(ω) = lnAS(ω) + iφS(ω), ω < ωmax

0, ω ≥ ωmax

. (2.66)

If it can be shown that Slog(ω) corresponds to a causal signal in the time domain, then the results of
section 2.2.6 apply and it can be concluded that lnAS = −H [φS ] and φS = H [lnAS ]. The inverse
Fourier transform of equation (2.66) is

slog(t) =
1

2π

∫ ∞

−∞
Slog(ω)e−iωt =

1
2π

∫ ωmax

−ωmax

[lnAS(ω) + iφS(ω)] e−iωtdω. (2.67)

Equation (2.67) can be considered to be part of a contour integral in the complex ω plane. In
addition to the real ω axis from −∞ to ∞ let the contour be closed by a semi-circle of radius
tending to ∞ either above the real axis, Im(ω) > 0, or below, Im(ω) < 0. For complex ω, the
complex exponential becomes exp(iωRt− ωIt), so for positive t the contour is completed above the
real axis in order that the real exponential is decaying. Similarly, for negative t, the contour is
completed below the real axis. Call contour along the real axis C1, that around the lower semi-circle
C2, and that around the upper semi-circle C3.

Cauchy’s integral theorem says that a contour integral of a function of a complex variable around
a closed contour is always zero if the function is everywhere analytic within the contour. An analytic
function is one that is differentiable at every point. Thus, if Slog is analytic in the lower half-plane
then its integral around C1+C2 is zero. Furthermore, if the integral along C2 vanishes, then so must
that along C1. Since C1+C2 is the appropriate contour for t < 0, showing this would prove that
slog is a causal function.

By assumption, S(ω) is the spectrum of a causal function, therefore, the integral
∫∞

−∞ S(ω) exp iωtdω
must be zero for t < 0. The integral along the contour C2 clearly vanishes because of the exponential
attenuation caused by exp(−ωIt) for very large ω. Therefore, a necessary condition for S(ω) to be
causal is that it is analytic in the lower half-plane. Now, does it follow that Slog is also analytic? This
is true provided that AS(ω) does not vanish for ω < ωmax because the logarithm of 0 is −∞. Since
this condition was assumed for invertibility, it follows that Slog is analytic in the lower half-plane.
The integral along C2 vanishes for the same reason as for S(ω).

Under the assumptions given previously, it follows that the spectrum defined by equation (2.66)
is the spectrum of a causal function. Therefore, it follows that

Re (Slog) (ω) = −H [Im (Slog)] (ω) (2.68)

therefore from equation (2.66)
ln [AS(ω)] = −H [φS(ω)] (2.69)

and similar reasoning leads to the conclusion that

φS(ω) = H [ln (AS(ω))] . (2.70)

In summary, for a causal, stable signal that has a causal, stable inverse, the log amplitude spectrum
and the phase spectrum are a Hilbert transform pair. The phase spectrum defined by equation
(2.70) is given the special name of the minimum phase spectrum. In a theorem credited to Robinson
(XXXXXXXX) it is shown that, of all causal signals with the amplitude spectrum As(ω), the phase
spectrum given by the Hilbert transform of the logarithm of the amplitude spectrum is the smallest
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in absolute value at any frequency. In the time domain, the minimum phase signal is the most
front-loaded signal possible that is both causal and has the given amplitude spectrum. If the phase
is made smaller, then the signal becomes non causal.



Chapter 3

Wave propagation

3.1 Introduction

Seismic wave propagation in the upper layers of the earth’s crust is a complex physical process.
For example, a wave emanating from an explosive charge in a shallow (5 to 20 m) hole generally
undergoes an immediate and rapid spectral decay before it leaves the near surface1. Theory predicts
that this spectral decay is associated with minimum phase effects that produce the characteristic
source waveform (Futterman, 1962). In addition to the primary downgoing pulse, there is always
upgoing energy from the source that reflects off of the earth’s free surface to produce a so-called
source ghost . In fact, there will be an entire series of similar ghosts that are produced when either
the primary or a particular ghost reflects off the base of the near surface and travels up again to
reflect off the free surface. Thus, it must always be expected that the downgoing pulse that serves
to illuminate the subsurface consists of a complex reverberatory series.

The subsurface is commonly idealized as a stacked sequence of nearly homogeneous layers, called
formations, whose geometry may be simple or complex. The contacts between the formations are
called horizons and are assumed to be in welded contact. (Of course, slip does occur along faults in
the subsurface but this is negligible over the time-span of a seismic experiment.) In the case of a
sedimentary basin, the formations are assumed to be horizontal and hence their material description
depends only on the vertical coordinate. This book adopts the common convention of a right-
handed Cartesian coordinate system with the z coordinate oriented in the vertical and increasing
downward. Thus it is common to describe the sedimentary basin environment as a v(z) setting by
which it is meant that the propagation speed of seismic waves depends only upon the formation
depth. (However, even in this setting, it is rarely a good model to assume that the base of the near
surface is a horizontal boundary.)

More complex settings are found near mountain belts, along passive continental margins, and
near the boundaries of sedimentary basins. Here, formations can be greatly distorted from the
horizontal due to tectonic compressional or extensional forces. Common jargon for such settings is
to say that they are v(x, z) environments which means that seismic wave speed can depend arbitrarily
upon position.

As a wave propagates into the subsurface, a number of important physical effects occur. When

1The phrase near surface refers to a deliberately vague region just below the earth’s surface. It is generally
considered to be a region of high attenuation where static delays occur. Near surface effects are expected to be
surface consistent.

46
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a wave encounters a horizon (with different material parameters on either side) both reflected and
transmitted waves result. Regardless of the type of incident wave, reflections and transmissions are
generally found of each possible type of waves called compressional or P , shear or S , and perhaps
interface waves. Even if a source can be devised to produce only one type of wave, the propagating
wavefield rapidly evolves to contain all possible types going in all possible directions. For idealized
elastic media and plane waves 2 the equations governing reflection and transmission at a plane
interface are known exactly. These algebraically complex equations are given by Aki and Richards
(1980) and many approximate forms are also known.

Waves also lose energy as they propagate. Even in a perfectly elastic medium, a spherical
wavefront suffers a 1/r amplitude loss that is a geometric consequence of spherical divergence (or
spreading). In real media, there is always some additional loss due to anelasticity and typically
quantified by the dimensionless quality factor Q. These anelastic effects are often modelled by the
constant Q theory (Kjartansson, 1980) which refers to a Q that is independent of frequency but may
vary with position. All anelastic loss theories predict that attenuation is necessarily accompanied
by dispersion or they violate causality.

These introductory remarks only hint at the complexity of the true seismic wave propagation
process in the earth’s crust. They are mentioned here to give the reader some idea of the drastic
simplifications that will be seen in the theoretical discussions in this chapter. Producing realistic
numerical models of seismic wave propagation is a blend of both science and intuition. The science
must be pushed to limits dictated by the available computation power but then approximations must
be made. The science can be dealt with logically; but, knowing which physical effects are small and
can be neglected or developing an approximate expression for a mathematical operator, is often a
very subjective process.

This chapter will examine computational methods of wave propagation based mostly on the
scalar wave equation. Some initial effort will be expended in justifying the mathematical form of the
equation and understanding its range of validity. Then raytracing methods for simple media will be
developed and used to illustrate fundamental effects. Next methods for the formal solution of the
wave equation will be developed. The Fourier method will be shown to emerge from the classical
technique of separation of variables. Then Green’s theorem will be used to develop solutions which
proceed by integrating over the boundary (or initial) values. Finally, finite difference methods will
be explored to develop very general solution methods. (Note to the reader: this paragraph refers to
the chapter as I hope it to be. It is far from that now. Sorry!)

3.2 The wave equation derived from physics

There are many different ‘wave equations’ that arise from physical theory (and many more that
occur only in mathematics). The classical scalar wave equation, ∇2ψ = v−2∂2

t ψ (where ψ is the
wave function, v is the wave propagation speed, and ∇2ψ = ∂2

xψ + ∂2
yψ + ∂2

zψ is the Laplacian in
3D), is only one possibility. For example, pressure, P , in an inhomogeneous fluid will be seen to
obey the wave equation �∇·(ρ(x)�∇P ) = k(x)∂2

t P where ρ(x) and k(x) are the heterogeneous density
and bulk modulus and x is the position vector. Though apparently quite different, what these wave
equation have in common with all other wave equations is that they are hyperbolic partial differential
equations (pde’s). A great body of literature exists concerning the solution of pde’s and they are

2Plane waves are a mathematical idealization because they are necessarily infinite in extent. A point source actually
emits spherical wavefronts which may be approximately planar if the radius of the wavefront is large. A spherical
wavefront may be mathematically decomposed into plane waves for analysis.
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Figure 3.1: Tension, T acts on a vibrating string whose displacement is ψ(x) to produce a restoring
force F

known to fall into three general classes: hyperbolic, parabolic, and elliptic. A discussion of the origin
of this classification and the meaning of these terms is beyond the scope of this book and the reader
is invited to consult a more general reference. There are many excellent works and some that are
particular favorites of this author are Morse and Feshbach (1953), Zauderer (1989), Ames (1992),
and Durran (1999). These books are very practical in their orientation and cannot be said to present
the subject of pde’s with full mathematical rigor. For this purpose, the sophisticated reader may
wish to consult Gustafson (1987) or, for the very brave, Taylor (1996).

In this section, some physical systems that lead to wave equations are examined. Only systems
that are relevant to the seismic exploration problem will be discussed.

3.2.1 A vibrating string

Here we will examine the simplest second-order hyperbolic pde that arises as the governing equation
for transverse waves on a vibrating string. The presentation is adapted from that found in Morse and
Feshbach (1953). The solutions to this system are an instructive beginning for the more complex
problems in two and three spatial dimensions. The one dimensional solutions can be considered
as a basis for the common seismic processing step known as stretching that transforms a single
seismic trace from time to depth or the reverse. Consider the situation shown in figure 3.1 where a
snapshot (i.e. at constant time) of a vibrating string is shown. The displacement of the string from
equilibrium, ψ(x) is shown as a dashed curve and the tension, T , always acts tangentially to this
curve. The tension on both ends of a differential element of the string from x to x+dx creates a net
force, F , that acts to restore the string to its equilibrium position. It is assumed that the magnitude
of ψ(x) is sufficiently small at all points such that there is no significant change in T or in the length
of the string. At position x in Figure 3.1, T (x) is directed tangentially along the string and has a
component, T (x) sin θ, that acts to restore the string to it’s equilibrium position. (Here, theta is the
angle between the string and the horizontal.) The assumption that T (x) is small implies that θ is
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also small. This allows

T sin θ(x) � T tan θ(x) = T
∂ψ(x)
∂x

(3.1)

where the last step follows from the geometric definition of the derivative. Considering the tension
acting at both ends of the string element between x and x + dx allows the total restoring force on
the element to be written as

F (x)dx = T

[
∂ψ(x+ dx)

∂x
− ∂ψ(x)

∂x

]
(3.2)

where F (x) is the force per unit length and the minus sign in the square brackets is needed because
the tension acts at x and x+ dx in opposite directions.

Now, recall that the definition of the second derivative of ψ(x) is

∂2ψ(x)
∂x2 = lim

dx→0

1
dx

[
∂ψ(x+ dx)

∂x
− ∂ψ(x)

∂x

]
. (3.3)

Thus in the limit as dx becomes infinitesimal, equation (3.2) leads to

F (x) = T
∂2ψ(x)
∂x2 . (3.4)

This important result says that the restoring force (per unit length) depends on the local curvature
of the string. When the second derivative is positive, the curvature is concave (�) and when it
is negative the curvature is convex (�). Since a positive force is directed upward in Figure 3.1
and a negative force is downward, it is easy to see that this force does act to restore the string to
equilibrium.

If the string’s weight is negligible, then Newton’s second law (force = mass × acceleration) gives

T
∂2ψ(x, t)
∂x2 = µ

∂2ψ(x, t)
∂t2

(3.5)

where µ is the mass per unit length and the dependence of ψ on both space and time is explicitly
acknowledged. It is customary to rearrange equation (3.5) to give the standard form for the one-
dimensional scalar wave equation as

∂2ψ(x, t)
∂x2 − 1

v2

∂2ψ(x, t)
∂t2

= 0 (3.6)

where v =
√

T
µ is the wave velocity3 This analysis has shown that the scalar wave equation arises

for the vibrating string as a direct consequence of Newton’s second law. Wave equations invariably
arise in this context, that is when a displacement is initiated in a continuum. Also typical is the
assumption of small displacements. Generally, large displacements lead to nonlinear equations.
The waves modelled here are known as transverse waves because the particle displacement is in a
directional orthogonal to the direction of wave propagation. In section ?? longitudinal waves, that
have particle oscillation in the direction of wave propagation, are discussed.

If there are external forces being applied to the string as specified by the force density4 function

3It is quite common to use velocity for this scalar quantity even though velocity is classically a vector quantity in
physics. This book conforms with this common usage.
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S(x, t), then equation (3.6) is usually modified to

∂2ψ(x, t)
∂x2 − 1

v2

∂2ψ(x, t)
∂t2

=
S(x, t)
T

. (3.7)

Both equations (3.6) and (3.7) are examples of one-dimensional hyperbolic pde’s with constant
coefficients. Equation (3.6) is said to be homogeneous while the presence of the source term, S(x, t),
in (3.7) gives it the label inhomogeneous. Hyperbolic pde’s can usually be recognized right away
because they involve the difference of spatial and temporal partial derivatives being equated to a
source function. Wave equations can be second order in their derivatives as these are or any other
order as long as the highest order of the time and space derivatives are the same. For example, a
first order wave equation known as the advection equation is

∂φ(x, t)
∂x

− a
∂φ(x, t)
∂t

= 0 (3.8)

where a is a constant.

Exercise 3.2.1. Show that the left side of equation (3.6) can be factored into two operators of the
form of the left side of equation (3.8). What values does the constant a take in each expression?
Show that ψ(x, t) = ψ1(x + vt) + ψ2(x − vt) is a solution to (3.6) by showing that the two factors
annihilate ψ1 or ψ2. (ψ1(x+vt) means an arbitrary one-dimensional function of x+vt and similarly
for ψ2(x− vt)). Can you explain the physical meaning of this result?

3.2.2 An inhomogeneous fluid

labelssec:ihf An inhomogeneous fluid is one whose physical properties vary with position5. Let ρ(�x)
and K(�x) be the density and bulk modulus of such a fluid. Let P (�x) represent a pressure fluctuation
from the ambient pressure P0 in the fluid. Thus the total fluid pressure is P (�x) + P0. The bulk
modulus is a material property defined by the relation

P (�x, t) = −K(�x)θ(�x, t). (3.9)

The quantity θ is the volume strain or dilatation and is a measure of local fractional volume change.
This relation says that the pressure fluctuations are directly proportional to induced volume changes.
θ is related to particle velocity, �ν, though ∂tθ = �∇ · �ν. The minus sign in equation (3.9) is needed
because an increase in pressure causes a decrease in volume and vice-versa. This is an example of
a constitutive relation that defines how stress relates to strain. In other words, equation (3.9) is
Hooke’s law for a fluid.

We assume that the fluid is at rest except for those motions induced by the pressure disturbance
P (�x, t). As with the vibrating string, the motion of the fluid is defined by Newton’s second law

−�∇P (�x, t) = ρ(�x)
d�ν(�x, t)
dt

. (3.10)

This says that spatially changing pressure causes local forces in the fluid that give rise to local

4In this context this is just a fancy way of saying force per unit length.
5It is unfortunate that inhomogeneous is used in at least two very different contexts in this theory. Here the word

refers to physical parameters that vary with position. In the previous section the word referred to a pde with a source
term and that usage has nothing to do with this.
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particle accelerations. The minus sign is also necessary here because the local forces caused by the
pressure gradient point in the direction opposite to the gradient. That is, the gradient points from
low to high pressure but the fluid will move from high to low pressure.

The interpretation of the d�ν
dt requires some care. Generally in fluid dynamics, such time deriva-

tives consist of two terms as dT
dt = ∂T

∂t + (�ν · �∇)T where T denotes any scalar fluid property such as
temperature. The first term describes local temporal changes (e.g. local heating) while the second
describes changes due to new material being transported to the analysis location by fluid motion.
For this reason, the second term is known as the convective term. The assumption that the fluid is
at rest except for the motions caused by the passing pressure wave allows the convective term to be
neglected. If the term is included, a nonlinear wave equation will result. Thus, equation (3.10) is
rewritten approximately as

−�∇P (�x, t) = ρ(�x)
∂�ν(�x, t)
∂t

. (3.11)

A wave equation for pressure can be derived by taking the divergence of (3.11),

−�∇ · �∇P (�x, t) = �∇ρ(�x) · ∂�ν(�x, t)
∂t

+ ρ(�x)
∂�∇ · �ν(�x, t)

∂t
, (3.12)

and substituting equation (3.11) into the first term on the right side and ∂t of equation (3.9) into
the second. This gives

∇2P (�x, t) − �∇ ln ρ(�x) · �∇P (�x, t) − ρ(�x)
K(�x)

∂2P (�x, t)
∂t2

= 0 (3.13)

where ∇2 = �∇ · �∇ and 1
ρ
�∇ρ = �∇ln ρ have been used. If the second term were absent in equation

(3.13) then we would have a classic scalar wave equation for pressure. This occurs exactly if ρ(�x) is
constant. In many other cases when ρ(�x) varies slowly the term will be negligible. Neglecting the
�∇ln ρ term then gives

∇2P (�x, t) − 1
v2

∂2P (�x, t)
∂t2

= 0 (3.14)

where v =
√

K
ρ . Equation (3.14) is a scalar wave equation that approximately models the propa-

gation of pressure waves through an inhomogeneous fluid. Though a number of assumptions have
been made in deriving this result, it still has quite general application. Also, it is possible to use
a solution of (3.14) to develop an approximate solution to the more complex Equation (3.13). Let
P̂ (�x, t) be a solution to equation (3.14), then it can be used to approximately express the �∇ ln ρ · �∇P
term in (3.13) to give

∇2P (�x, t) − 1
v2(�x)

∂2P (�x, t)
∂t2

= �∇ ln ρ(�x) · �∇P̂ (�x, t). (3.15)

The term on the right does not depend upon the unknown P (�x, t) but rather plays the role of a
source term in scalar wave equation. Thus the effect of strong density inhomogeneity introduces an
approximate source term whose strength is proportional to the logarithmic gradient of density. This
process can be repeated indefinitely with the solution from iteration n-1 being used to compute the
effective source term for iteration n.

Exercise 3.2.2. Show that the volume dilatation, θ also satisfies a scalar wave equation.
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Exercise 3.2.3. Consider the 1-D inhomogeneous fluid. Write down the wave equation that ap-
proximately models pressure waves in a long narrow cylinder.

3.3 Finite difference modelling with the acoustic wave equa-
tion

This section describes a simple facility for finite difference modelling using the acoustic wave equa-
tion. This toolkit was originally developed by Carrie Youzwishen who was employed by this author
for that purpose. Subsequently it has been evolved by this author and Dr. Zhengsheng Yao. The
package provides a basic facility, using second order finite difference approximations, for modelling
with the variable velocity acoustic wave equation in two dimensions. The facility provides tools
for model building, source specification, time-stepping a wavefield, seismogram creation, and mak-
ing wavefield movies. Sources and receivers can be positioned anywhere within the 2D medium
(including on the boundaries) and absorbing boundary conditions are implemented.

Consider the variable-velocity scalar wave equation in two dimensions

∇2ψ(x, z, t) =
∂2ψ(x, z, t)

∂x2 +
∂2ψ(x, z, t)

∂z2 =
1

v2(x, z)
∂2ψ(x, z, t)

∂t2
. (3.16)

A second-order approximation for the time derivative may be implemented as

∇2ψ(x, z, t) =
1

∆t2v2(x, z)
[ψ(x, z, t+ ∆t) − 2ψ(x, z, t) + ψ(x, z, t− ∆t)] (3.17)

where ∆t is the time discretization interval. This expression can be solved for the wavefield at t+∆t
to give

ψ(x, z, t+ ∆t) =
[
2 + ∆t2v2(x, z)∇2]ψ(x, z, t) − ψ(x, z, t− ∆t). (3.18)

This is an expression for time stepping the wavefield. It shows that estimation of the wavefield at
t+ ∆t requires knowledge of the two earlier wavefields at t and t− ∆t. Each of these wavefields is
called a snapshot and, in a computer simulation, they are all two dimensional matrices.

Equation (3.18) shows that ψ(x, z, t + ∆t) is estimated from the superposition of three terms:
2ψ(x, z, t), ∆t2v2(x, z)∇2ψ(x, z, t), and −ψ(x, z, t − ∆t). Of these, the second requires the compu-
tation of the Laplacian (∇2) on the current wavefield which is an expensive operation. MATLAB
supplies the function del2 that computes .25∇2 of a matrix using centered second-order finite oper-
ators that are modified near the boundary. Experimentation showed that del2 was not optimal for
use with absorbing boundary conditions so two alternate Laplacians, del2 5pt and del2 9pt , were
created. These functions both pad the entire boundary of the input matrix with extra rows and
columns of zeros and this works better with absorbing boundaries. del2 5pt implements ∇2 using
second-order finite-difference operators while del2 9pt uses fourth-order. Thus del 5pt computes
the approximation

∇2ψ(x, z, t) =
ψ(x+ ∆x, z, t) − 2ψ(x, z, t) + ψ(x− ∆x, z, t)

∆x2

+
ψ(x, z + ∆z, t) − 2ψ(x, z, t) + ψ(x, z − ∆z, t)

∆z2 (3.19)
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and del2 9pt computes

∇2ψ(x, z, t) =
1

12∆x2 [−ψ(x+ 2∆x, z, t) + 16ψ(x+ ∆x, z, t) − 30ψ(x, z, t) + 16ψ(x− ∆x, z, t) − ψ(x− 2∆x, z, t)] +

1
12∆z2 [−ψ(x+ 2∆z, z, t) + 16ψ(x+ ∆z, z, t) − 30ψ(x, z, t) + 16ψ(x− ∆z, z, t) − ψ(x− 2∆z, z, t)]

(3.20)

The core function in the finite difference toolbox is afd snap (the ‘afd ’ prefix stands for acous-
tic finite difference). Function afd snap requires two input wavefields representing ψ(x, z, t) and
ψ(x, z, t− ∆t) and computes ψ(x, z, t+ ∆t) according to equation (3.18). This function is intended
to be used in a computation loop that time-increments a wavefield any number of steps. Two initial
wavefields must be constructed to start the simulation and sources may be prescribed by placing
appropriate impulses in these two wavefields. Receivers are simulated by extracting samples at each
receiver location from each ψ(x, z, t) as it is computed. These extracted samples may be accumulated
in vectors representing the recorded traces.

The use of equation (3.18) in a time-stepping simulation is known to be unstable in certain
circumstances (Mitchell and Griffiths, 1980). Instability means that the amplitudes of the wavefield
grow without bound as it is stepped through time. The key to this behavior is the amplitude of
the ∇2ψ(x, z, t) term in equation (3.18). Using the five-point Laplacian of equation (3.19) (with
∆z = ∆x) in equation (3.18) leads to

ψ(x, z, t+ ∆t) = 2ψ(x, z, t) − ψ(x, z, t− ∆t) +
∆t2v2

∆x2 [δxxψ(x, z, t) + δzzψ(x, z, t)] (3.21)

where δxxψ(x, z, t) = ψ(x + ∆x, z, t) − 2ψ(x, z, t) + ψ(x − ∆x, z, t) and similarly for δzz. In this
expression, all of the ψ terms can be considered to have similar magnitude. Thus, the factor
∆t2v2∆x−2 is a possible amplification factor if it becomes too large. Lines et al. (1999) show that
the condition for stability is

v∆t
∆x

≤ 2√
a

(3.22)

where the constant a is the sum of the absolute values of the weights for the various wavefield terms
in the finite-difference approximation for ∇2. For the Laplacian of equation (3.19), a = 8 while
for equation (3.20), a = 128/12 = 32/3. Also, since v is a function of (x, z) it suffices to use the
maximum velocity in the model. Thus the stability conditions are

vmax∆t
∆x

≤




1√
2

second-order Laplacian,√
3
8 fourth-order Laplacian.

(3.23)

Thus, the time and space sample rates cannot be chosen independently. Generally, finite-
difference operators need many more samples than the Nyquist criterion of two per wavelength.
Technically, this is because the operators cause an artificial dispersion called grid dispersion. Grid
dispersion preferentially affects the shorter wavelengths so oversampling reduces the dispersion. A
good rule of thumb is about five to ten samples per wavelength. Typically, in the creation of a
model, a desired temporal frequency range is known. Then, the minimum wavelength is given
by λmin = vmin/fmax and the spatial sample rate can be chosen to achieve a desired number of
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samples-per-wavelength. Finally the temporal sample rate is chosen to achieve stability.
Usually, the user will not invoke afd snap directly. Instead, afd shotrec is provided to create a

source record and afd exreflector will create exploding reflector models. The exploding reflector
model and afd exreflector will be described in chapter 5 and only afd shotrec will be discussed
here. afd shotrec requires inputs giving: the temporal and spatial sample sizes, the maximum
record time, the velocity matrix, the receiver positions, the wavelet, the desired Laplacian (five point
or nine point), and the two initial snapshots of the wavefield (snap1 and snap2). The snapshots
should be initialized to matrices of zeros the same size as the velocity model. Then the source
configuration is described by placing appropriate impulses in these two snapshots. A simple strategy
is to leave snap1 as all zeros and simply place impulses in snap2.

Code Snippet 3.3.1. This code illustrates the use of afd shotrec to model a shot record. Lines
1-11 build the velocity model and lines 13-25 create a second-order and a fourth-order seismogram.
The results are shown in Figures 3.2, 3.3, and 3.4.

1 %make a velocity model
2 nx=128;dx=10;nz=128; %basic geometry
3 x=(0:nx-1)*dx;z=(0:nz-1)*dx;
4 v1=2000;v2=2800;v3=3200;%velocities
5 vmodel=v3*ones(nx,nz);
6 z1=(nz/8)*dx;z2=(nz/2)*dx;
7 dx2=dx/2;
8 xpoly=[-dx2 max(x)+dx2 max(x)+dx2 -dx2];zpoly=[-dx2 -dx2 z1+dx2 z1+dx2];
9 vmodel=afd_vmodel(dx,vmodel,v1,xpoly,zpoly);
10 zpoly=[z1+dx2 z1+dx2 z2+dx2 z2+dx2];
11 vmodel=afd_vmodel(dx,vmodel,v2,xpoly,zpoly);
12
13 dtstep=.001;%time step
14 dt=.004;tmax=1;%time sample rate and max time
15 xrec=x;%receiver locations
16 zrec=zeros(size(xrec));%receivers at zero depth
17 snap1=zeros(size(vmodel));
18 snap2=snap1;
19 snap2(1,length(x)/2)=1;%place the source
20 %second order laplacian
21 [seismogram2,seis2,t]=afd_shotrec(dx,dtstep,dt,tmax, ...
22 vmodel,snap1,snap2,xrec,zrec,[5 10 30 40],0,1);
23 %fourth order laplacian
24 [seismogram4,seis4,t]=afd_shotrec(dx,dtstep,dt,tmax, ...
25 vmodel,snap1,snap2,xrec,zrec,[5 10 30 40],0,2);

End Code

Code Snippet 3.3.1 illustrates the use of these finite difference facilities to model a single shot
record. First, a three-layer velocity model is defined on lines 1 through 11 by calling afd vmodel
twice. The velocity model is a matrix representing vins in (x, z) space. The function afd vmodel is a
convenience function that fills in a polygonal area in a matrix with a constant value. The polygonal
area is defined by the (x, z) coordinates of its nodes and the coordinate origin is assumed to be the
upper left corner of the model. In all of these finite difference codes, the vertical and horizontal
sample sizes must be identical. In this example, the velocity model has three layers with horizontal
interfaces and layer velocities of 2000 m/s, 2800 m/s, and 3200 m/s.

The model is built by first defining (x, z) coordinates (lines 2-3) and filling the velocity matrix
with 3200 m/s (line 5). Subsequently, two polygons are defined to represent the two upper layers.
On line 6, z1 and z2 are the depths to the bottom of the first and second layers. Line 8 defines the
(x, z) coordinates of the four vertices of a rectangle representing the first layer. A property of the
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Figure 3.2: The velocity model created in Code Snippet 3.3.1.

algorithm used by afd vmodel is that points that lie exactly on the boundary of the polygon are
considered outside the polygon and so do not acquire the new velocity. The variable dx2, defined on
line 7 as half of the grid spacing, is used on line 8 to define a rectangle that is half a grid spacing above
depths 0 and z2 and half a grid spacing outside the minimum and maximum x coordinates. This
ensures that the rectangle extends to the limits of the velocity matrix. Line 9 fills this rectangle with
the velocity of 2000 m/s and then lines 10 and 11 repeat this process for the next layer. The resulting
velocity model is shown in Figure 3.2. This plot was made using plotimage(vmodel-3000,z,x).
A constant is subtracted from the velocity model so that the resulting matrix has both positive
and negative values as expected by plotimage . The raypaths shown in this figure correspond to
traveltimes shown in Figures 3.3 and 3.4.

Code Snippet 3.3.1 creates two seismograms, the first (line 21) uses a second-order Laplacian
(equation 3.19) and the second (line 23) uses a fourth-order Laplacian (equation 3.20). The prepa-
ration for the seismograms defines the time step (line 13), temporal sample rate (line 14), maximum
time (line 14), the receiver locations (lines 15-16) and the source strength and geometry (line 19).
The time step is generally chosen to be small enough to satisfy the stability requirement (equation
3.23) and the temporal sample rate is usually much more coarse. afd shotrec internally calculates
the seismogram at the sample rate of the time step and then resamples it to the desired temporal
sample rate. This is sensible because it is a well known property of finite-difference methods that
the higher frequencies are physically inaccurate. In this case, the Nyquist frequency for a sample
rate of .001 seconds is 1000 Hz while for .004 seconds it is 125 Hz. Considering that the antialias
filter for resampling to .004 seconds will attenuate frequencies above about half of Nyquist, this ex-
ample anticipates using only frequencies below about 60 Hz and that is less than 10% of the original
Nyquist.

The variables snap1 and snap2 created on lines 17-19 represent the wavefield ψ(x, z, t = −∆t)
and ψ(x, z, t = 0) respectively. They are created to be the same size as the velocity model and snap1
is a matrix of zeros. The source is specified by placing appropriate nonzero samples in snap2. In
this case, a point source in the center of the x axis at z = 0 is simulated.

At this stage, all of the input parameters to afd shotrec have been described except for the
final three. These specify the filter (or wavelet) to be convolved with the seismogram, the phase of
the filter, and the order of the Laplacian. In this case, Ormsby filter specifications are given as [5
10 30 40] and this means that the filter pass band begins at 5 Hz., reaches full amplitude at 10 Hz.,
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Figure 3.3: The second-order seismogram cre-
ated on line 21 of Code Snippet 3.3.1. Superim-
posed on the right-hand side are raytraced trav-
eltimes for (from top to bottom) the first pri-
mary reflection, the first-order multiple in the
top layer, and the second primary reflection.
The corresponding raypaths are shown in Fig-
ure 3.2.

meters

se
co

nd
s

0 200 400 600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

Figure 3.4: The fourth-order seismogram cre-
ated on line 23 of Code Snippet 3.3.1. See Figure
3.3 for a description of the superimposed travel-
times.

begins to ramp down at 30 Hz., and rejects frequencies above 40 Hz. The penultimate parameter
specifies the phase of the filter that is, in this case, zero (a value of 1 gives minimum phase).
The last parameter is either 1, indicating a second-order Laplacian, or 2, meaning a fourth-order
approximation.

The seismograms are shown in Figures 3.3 and 3.4 respectively. Both of these figures are plotted
with a highly clipped display, otherwise, the direct wave near the source would be the only visible
arrival. Though similar at first glance, these two seismograms are significantly different. The three
hyperbolic reflections on each figure are (from the top) the primary reflection off the bottom of the
first layer, the first-order multiple reflecting between the bottom of the first layer and the surface,
and the primary reflection off the bottom of the second layer. The traveltimes for these events
are superimposed on the right-hand sides of the figures and their raypaths are shown in Figure
3.2. The reflections for these events lag significantly behind the raytraced traveltimes but more
so on the second-order solution. This time lag occurs because the finite difference approximations
to the derivative in the wave equation have a frequency-dependent performance. Essentially, for
wavelengths that are large compared to the computation grid, the approximate derivatives are
acceptable but, as the wavelength approaches the grid spacing, the approximation becomes very poor.
The result is a phenomenon known as grid dispersion, meaning that the actual propagation speed of
waves on the grid is not simply vins(x, z) but is a complex function of wavelength (or, equivalently,
frequency). Grid dispersion makes the reflections appear to lag behind the corresponding raytrace
traveltimes. It also makes the apparent wavelet appear more elongated (dispersed). Comparison of
the first reflection at far offsets on both seismograms shows that the second-order result has a more
dispersed waveform. Also, the fourth-order result has a smaller lag behind the raytrace traveltimes
than the second-order for all reflections.
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Careful inspection of both Figures 3.3 and 3.4 shows a set of events that originate where each
reflection meets the sides of the seismogram and then cross in the center of the figures. These are
typical artifacts known as edge effects. They arise because a computer simulation of wave propaga-
tion must always operate in a finite domain with definite boundaries. When a wave encounters such
a boundary, it behaves as though it has met a perfect reflector. These boundary reflections would be
much worse if afd shotrec did not incorporate absorbing boundaries (Clayton and Engquist, 1977).
Obviously, absorbing boundaries are not perfect but they do help. The boundary related artifacts
can be seen to be generally quite steeply dipping in (x, t). This is because the absorbing boundary
conditions are optimized for a small range of wavefront incidence angles around normal incidence.
That is, a wavefront that encounters the boundary at normal incidence is completely absorbed while
one making an angle of, say, 30◦ is partially reflected.

3.4 The one-dimensional synthetic seismogram

For a one-dimensional acoustic medium, there exists an algorithm that can generate a complete
synthetic seismogram that includes all multiples and the effects of transmission losses. The theory
is also very flexible in that it allows the explicit separation of the various physical effects. These
1-D synthetic seismograms are a very important tool in seismic interpretation. After migration, or
for nearly horizontal reflectors in any case, the 1-D model is quite appropriate. Comparison of 1-D
synthetic seismograms with seismic data, a process called tieing, allows reflections from key geologic
markers to be identified. Typically, velocity and density information are provided through well
logging as finely-sampled functions of depth. A common sample rate is 1 foot or .31 meters. The well
logging is usually confined to a certain depth zone beginning at the exploration target and extending
upwards perhaps hundreds of meters. The near surface is rarely logged and is usually represented as
a homogeneous layer whose velocity is selected to optimize the tie between the synthetic seismogram
and the seismic data. The theory presented here constructs the response of the 1-D medium to a
unit impulse, the impulse response, and this must be convolved with an appropriate wavelet before
comparison with seismic data. The estimation of the appropriate wavelet is a potentially complex
task that is called wavelet analysis.

3.4.1 Normal incidence reflection coefficients

Consider a 1-D displacement wave incident from above upon an interface where α1, ρ1 and α2, ρ2
are the velocities and densities of the upper and lower media. Let the incident wave be described
by f(t − z/α1), the reflected wave by g(t + z/α2), and the transmitted wave by h(t − z/α2). Here
f, g, andh represent arbitrary functions describing traveling waves. The reflected and transmitted
waves can be determined in terms of the incident waves by requiring that the total wavefield satisfy
continuity of displacement and continuity of pressure. The first condition is required so that the
interface remains in welded contact during the passage of the wave. The second condition is needed
to ensure that local acceleration remains finite at the interface. This is because the local force is
determined by the pressure gradient and a discontinuous pressure means an infinite force and that
means infinite acceleration.

For definiteness, let the interface be at z = 0 and continuity of displacement is expressed by

f |z=0 + g|z=0 = h|z=0. (3.24)

To develop a form for continuity of pressure, Hooke’s law can be used. As show in equation (3.9), for
an inhomogeneous fluid, Hooke’s law relates the applied pressure to the negative of the differential
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volume change. In 1-D this reduces to p = −K∂zu where p is pressure, u is displacement, and K
is the bulk modulus. In the development of equation (3.14) it was shown that the wave velocity
is given by the square root of the bulk modulus divided by the density, or equivalently, K = ρα2.
Thus continuity of pressure can be expressed by

ρ1α
2
1
∂f

∂z

∣∣∣∣
z=0

+ ρ1α
2
1
∂g

∂z

∣∣∣∣
z=0

= ρ2α
2
2
∂h

∂z

∣∣∣∣
z=0

. (3.25)

Since f = f(t − zalpha1), then ∂zf = −α−1
1 f ′ where f ′ is the derivative of f with respect to its

entire argument. With similar considerations for g and h, equation (3.25) becomes

ρ1α1f
′|z=0 + ρ1α1g

′|z=0 = ρ2α2h
′|z=0 (3.26)

which can be immediately integrated to give

ρ1α1f |z=0 + ρ1α1g|z=0 = ρ2α2h|z=0. (3.27)

Considering the incident wavefield as known, equations (3.24) and (3.27) constitute two linear
equations for the two unknowns g and h. Defining the acoustic impedance I = ρα the solution can
we written as

g|z=0 = −Rf |z=0

h|z=0 = Tf |z=0 (3.28)

where the reflection coefficient, R, and the transmission coefficient, T are given by

R =
I2 − I1
I2 + I1

(3.29)

I =
2I1

I2 + I1
. (3.30)

The reflection coefficient is defined such that a transition from lower to higher impedance is a
positive R. It is easily shown that R + T = 1. A wave incident from below on the same interface
will experience a reflection coefficient of −R and a transmission coefficient of I2T/I1 = 1 + R. As
the first of equations (3.28) shows, the reflected wave is actually −R times the incident wave. This
is because these are displacement waves and the direction of particle displacement reverses at a
positive impedance contrast. This can be understood by considering the limiting case of I2 → ∞
corresponding to incidence upon a perfectly rigid material. In this case, T → 0 and continuity of
displacement requires that the reflected wave have equal and opposite displacement to that of the
incident wave.

Exercise 3.4.1. ?? By directly computing pressures, show that the reflected pressure is +R times
the incident pressure. Also show that the transmitted pressure is +T times the incident pressure.
Thus the displacement and pressure waves have the same transmission equation but there is a sign
difference in their reflection expressions. Explain these results with a physical description. (Hint:
If the particle displacement is in same direction as the wave propagation, then is the pressure a
compression or a rarefaction? What about if the displacement is in the opposite direction to the
direction of wave propagation.? Is a compression a positive or negative pressure? Why? )

An alternative form for the reflection and transmission coefficients involves writing them in terms
of the contrast and average of impedance across the layer. Define I = (I1 + I2)/2 and ∆I = I2 − I1
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and equations (3.28) become

R =
∆I
2I

T =
I − .5∆I

I
. (3.31)

Using I = ρα allows R to be re-expressed as

R =
1
2

[
∆α
α

+
∆ρ
ρ

]
(3.32)

which expresses the contributions of both α and ρ to the reflection coefficient.

3.4.2 A ”primaries-only” impulse response

Consider a layered 1-D medium described by wave velocity α(z) and density ρ(z) for z ≥ 0. In order
to apply the results of the previous section, let α(z) and ρ(z) be approximated by a discrete sequences
{αk} and {ρk}, k = 1, 2, . . . N representing a stack of homogeneous layers having thicknesses of
{∆zk}. Furthermore, let the thicknesses be chosen such that

∆zk

αk
=

∆t
2

= constant (3.33)

where ∆t is a constant giving the two-way traveltime across any layer. This requirement is not
strictly necessary for the theory but is convenient for algorithm development. The condition means
that homogeneous intervals of high velocity will be represented by more samples than corresponding
intervals of low velocity. It is quite acceptable to have many layers with nearly zero impedance
contrasts. By choosing ∆t sufficiently small, α(z) and ρ(z) can be approximated with arbitrary
accuracy.

The constant ∆t becomes the temporal sample rate of the output seismogram. However, greater
realism is obtained by choosing ∆t much smaller than the desired sample rate and resampling the
seismogram after it is computed.

Given this discrete approximation to the desired model, it is possible to explicitly calculate all
primary reflections. For each layer, let the sequence {Rk} denote the reflection coefficient at the
layer bottom for incidence from above. Let a co-incident source-receiver pair be placed at z = 0 and
let the source emit a unit impulse of displacement at t = 0. The reflection from the first interface
will have magnitude −R1 and will arrive at the receiver at time ∆t. The minus sign arises from
equation (3.28) an occurs because the reflection reverses the direction of displacement. A z transform
expression conveniently expresses the first arrival as −R1z

∆t. The transmitted wave, of amplitude
1 − R1 crosses the first interface and reflects with reflection coefficient −R2. It re-crosses the first
interface from below with a transmission coefficient of 1 +R1 and then arrives at the receiver. This
second reflection has a z transform of −(1 − R1)R2(1 + R2)z2∆t = −(1 − R2

1)R2z
2∆t so the net

transmission effect of two-way passage through the first interface is 1 −R2
1. Similar reasoning leads

to the z transform of the third reflection as −(1 −R2
1)(1 −R2

2)R3z
3∆t and for the general jth arrival

−
∏j−1

k=1(1 −R2
k)]Rjz

j∆t. A primaries-only synthetic seismogram of displacement for N reflectors is
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represented by the sum of these z transform terms as

uimp(z) = 1 −R1z
∆t − (1 −R2

1)R2z
2∆t − (1 −R2

1)(1 −R2
2)R3z

3∆t − . . .

−
[

j−1∏
k=1

(1 −R2
k)

]
Rjz

j∆t − · · · −
[

N−1∏
k=1

(1 −R2
k)

]
Rnz

n∆t (3.34)

where the subscript imp indicates “impulse response” and the leading 1 represents a direct arrival.
This expression has the compact representation

uimp(z) = 1 −
N∑

j=1

[
j−1∏
k=1

(1 −R2
k)

]
Rjz

j∆t. (3.35)

The term in square brackets is called the transmission loss. Often seismic data has had a correction
applied for transmission loss, in which case it is useful to construct a synthetic seismogram without
transmission losses by setting these terms to unity. The result is the simplest model of a seismogram
as reflection coefficients arriving at the two-way traveltime to each reflector.

A source waveform other than a unit impulse is easily accounted for. If W (z) represents the
z transform of the source waveform, then, for example, the second reflection is given by (1 −
R2

1)R2W (z)z2∆t. That is, W (z) simply multiplies the z transform of the impulsive arrival. For
example consider a causal waveform with W (z) = w0 + w1Z

∆t + w2z
2∆t + . . . . Then the reflection

and transmission effects scale each sample of W (z) equally and the later samples simply arrive super-
imposed on top of later reflections. Of course, this is just a physical way of visualizing a convolution.
Thus it is concluded that the source waveform is included in the synthetic seismogram by convolving
it with impulse response (e.g. equation (3.35)) of the layered medium. Written with z transforms,
this is simply

S(z) = uimp(z)W (z). (3.36)

It may also be of interest to compute a pressure seismogram as this models what is measured
by a hydrophone. As discussed in exercise ??, the essential difference is that the pressure does not
change sign upon reflection as pressure does. The transmission effect is the same for both pressure
and displacement. Thus, for a the pressure response to a unit impulse of pressure, equation (3.28)
should be modified to read

pimp(z) = 1 +
N∑

j=1

[
j−1∏
k=1

(1 −R2
k)

]
Rjz

j∆t. (3.37)

3.4.3 Inclusion of multiples

Waters (1981) gives a computational scheme that allows the calculation of all primaries and multiples
up to any desired order. This is essentially a bookkeeping method that uses the diagram of Figure
3.5 to keep track of all waves. The vertical axis of this diagram is model traveltime, τ , while the
horizontal axis is event arrival time, t. Layer boundaries are indicated by horizontal lines and
indexed by the integer n = 0, 1, 2, . . . N with 0 denoting the recording surface. As in the previous
section, it is assumed that the model has been sampled such that the layers all have the same interval
traveltime, τn − τn−1, and hence are of variable thickness in z. The diagonal lines slanting down to
the right correspond to downward traveling waves that are indexed by j = 1, 2, 3, . . . . Similarly, the
diagonals that slant up to the right denote upward traveling waves using the index k = 1, 2, 3, . . . .
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Figure 3.5: The computation triangle for a 6 layer synthetic seismogram. Computation
begins with a unit impulse in the upper left corner. Horizontal lines are interfaces between
layers, diagonals slanting down from left-to-right are downgoing waves, and diagonals
slanting up from left-to-right are upgoing waves. Nodes are denoted by their interface
number, n, and their upgoing wave index k. The highlighted node is (n, k) = (3, 4).

Though these waves are symbolized by diagonal lines, this is a 1D model so all wave motion is
actually vertical. The intersection of a downward wave and an upward wave occurs at a node that
corresponds to a scattering event . A node will be designated by the pair (n, k) that denote its
interface number and the upward traveling wave index. The downward wave index at node (n, k) is
j = k − n+ 1.

The algorithm description requires that the upward and downward traveling waves be described
by both their wave indices and the layer number. The layer number is the same as the interface
number for the layer bottom. Thus the upward traveling wave in layer n with wave index k will be
denoted Un

k while the jth downward wave in the same layer will be Dn
j . The fourth upward wave in

the first layer is U1
4 and so on. Considering a particular node (n, k), there are two incident waves,

Un+1
k and Dn

k−n+1, and two scattered waves, Un
k and Dn+1

k−n+1. For example, the second node on
the third layer in Figure 3.5 is node (3, 4). The incident waves enter the node from the left and
are U4

4 and D3
2 while the scattered waves exit the node from the right and are U3

4 and D4
2. For

interface n, denoting the reflection coefficient for incidence from above by Rn, the scattered waves
of displacement at node (n, k) are related to the incident waves by the equations

Un
k = [1 +Rn]Un+1

k −RnD
n
k−n+1

Dn+1
k−n+1 = [1 −Rn]Dn

k−n+1 +RnU
n+1
k . (3.38)

For pressure waves, the corresponding equations are

Upn
k = [1 +Rn]Upn+1

k +RnDp
n
k−n+1

Dpn+1
k−n+1 = [1 −Rn]Dpn

k−n+1 −RnUp
n+1
k (3.39)

where Upn
k is the kth upward traveling pressure wave in the nth layer and Dpn

k is a similar downward
traveling pressure.

The displacement seismogram algorithm begins by assuming D1
1 = 1 as is appropriate for an

impulse response. At node (1, 1) the upward incident wave, U2
1 is zero and so the scattered waves
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are D2
1 = [1 −R1]D1

1 = 1 − R1 and U1
1 = −R1. In general, Un

k = 0 if n < k or n < 1 and
Dn

j = 0 if n < 1 or j < 1. Then U1
1 can be propagated up to the surface where the scattered wave

D1
2 = R0U

1
1 , a surface-related multiple, is calculated. Since all of the layers have the same 2-way

traveltime, ∆t, the waves arrive at interface 0 at regular intervals where they are accumulated into
the seismogram. If surface-related multiples are to be included, the kth sample of the seismogram is
U1

k +D1
k+1 = [1 +R0]U1

k , otherwise it is just U1
k .

Having propagated U1
1 to the surface and calculated D2

1 and D1
2, the upward wave U2

2 can be
calculated and propagated to the surface. U2

2 is easy and is just U2
2 = −R2D

2
1 = −R2 [1 −R1]. Then

at node (1, 2), D1
2 and U2

2 are incident and the scattered waves are U1
2 = [1 +R1]U2

2 − R1D
1
2 and

D2
2 = [1 −R1]D1

2 + R1U
2
2 . The last step in bringing U2 to the surface is to calculate D1

3 = R0U
1
2 .

Thus the second sample on the seismogram is determined and the downgoing waves D3
1, D

2
2, and D1

3
are all computed in preparation for propagation of U3

3 to the surface.
The pattern should now be clear. The wave Uk

k = −RkD
k
1 is propagated to the surface using

equations (3.38) to include the contributions from all of the downgoing multiples and to calculate
the upgoing and downgoing scattered waves. The propagation of Uk

k to the surface results in the
calculation of all of the downgoing waves that are required for Uk+1

k+1 . The process then continues
for as long as is desired. In principle, there are infinitely many arrivals from an N layered system
because there can be infinitely many multiple bounces.

Using z transform notation, the first few samples of the displacement seismogram can be shown
to be

uimp(z) = 1−[1 +R0]R1z
∆t−[1 +R0]

[
R2(1 −R2

1) −R2
1R0
]
z2∆t−[1 +R0]

[
R3(1 −R2

2)(1 −R2
1)−

R2R1(R2 +R0)(1 −R2
1) −R2R1R0(1 −R2

1) +R3
1R

2
0
]
z3∆t + . . . . (3.40)

The equivalent pressure seismogram is given by

pimp(z) = 1+[1 −R0]R1z
∆t+[1 −R0]

[
R2(1 −R2

1) −R2
1R0
]
z2∆t+[1 −R0]

[
R3(1 −R2

2)(1 −R2
1)−

R2R1(R2 +R0)(1 −R2
1) −R2R1R0(1 −R2

1) +R3
1R

2
0
]
z3∆t + . . . . (3.41)

The displacement and pressure seismograms have difference physical units that are not reflected in
equations (3.40) and (3.41).

The increasing complexity of each term is apparent even with only four samples written explicitly.
In each term, the primary arrival can be identified by comparison with equation (3.35). In general,
there are many possible multiples that also contribute to each term. In equation (3.40), each term
after the leading one contains the common factor 1 +R2

0 that includes the surface-related multiple.
In equation (3.41) the surface-related multiple is included via the term 1 − R2

0. If the surface is
modelled as a free surface then it has R0 = 1 (recall that these reflection coefficients are defined for
incidence from above) so each term in the displacement seismogram is doubled while the pressure
seismogram is identically zero. This is correct and consistent with the boundary condition of a liquid
free surface that calls for the pressure to vanish.

Though the pressure seismogram of equation (3.41) vanishes identically on a free surface, the
expression can be used to draw a valuable observation in comparison with the displacement seismo-
gram of equation (3.40). If the two seismograms are added, then the signs are such that the primaries
cancel and only the surface-related multiples remain. Or, more importantly, the seismograms can
be subtracted to cancel all of the surface-related multiples. Of course, this observation overlooks the
fact that the pressure and displacement seismograms have different physical dimensions. In practice,
this could be accounted for by scaling the first arrivals to have the same magnitude. These details
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aside, the important conclusion is that downgoing waves, like the surface related multiple, can be
eliminated by subtracting a scaled pressure seismogram from a displacement seismogram. This ob-
servation is the basis of the modern technique of marine seismic surveying with a cable laid on the
ocean bottom. Called OBC recording , this method includes a paired hydrophone and geophone at
each recording position.

More specifically, it is of interest to explicitly detail a few downgoing and upgoing waves for
both displacement and pressure. For example, the downgoing waves needed to propagate U3

3 to the
surface are

D3
1 = (1 −R2)(1 −R1)

D2
2 = −R1(1 −R1)(R0 +R2) (3.42)

D3
1 = −R2R1(1 −R2

1) +R2
1R

2
0

and the corresponding pressure waves identical in form

Dp3
1 = (1 −R2)(1 −R1)

Dp2
2 = −R1(1 −R1)(R0 +R2) (3.43)

Dp3
1 = −R2R1(1 −R2

1) +R2
1R

2
0.

Then, propagation of the third upgoing wave to the surface gives, for displacement,

U3
3 = −R3(1 −R2)(1 −R1)

U2
3 = −R3(1 −R2

2)(1 −R1) +R2R1(1 −R1)(R0 +R2) (3.44)

U1
3 = −R3(1 −R2

2)(1 −R2
1) +R2R1(1 −R2

1)(R0 +R2) +R2R1R0(1 −R2
1) −R3

1R
2
0

and for pressure

Up3
3 = R3(1 −R2)(1 −R1)

Up2
3 = R3(1 −R2

2)(1 −R1) −R2R1(1 −R1)(R0 +R2) (3.45)

Up1
3 = R3(1 −R2

2)(1 −R2
1) −R2R1(1 −R2

1)(R0 +R2) −R2R1R0(1 −R2
1) +R3

1R
2
0.

A term-by-term comparison of these upgoing wave expressions shows that a particular upgoing
displacement wave is opposite in sign for every term when compared with the corresponding pressure
wave. Though these calculations can be complex, the sign differences are a simple consequence of
the scattering equations (3.38) and (3.39) and of the fact that the source was placed above the
entire model. Thus, if the initial downgoing displacement and pressure pulses are in phase, then the
only upgoing waves are generated by reflections and these have opposite polarity for pressure versus
displacement.

OBC recording can be modelled using the one-dimensional seismogram theory by calculating the
recorded wave at the particular interface representing the ocean bottom. There, the pressure wave
will not trivially vanish and the upgoing waves will have the polarity relationships just described.
This can be done with the present algorithm by representing the water layer as many thin layers
of equal traveltime and no impedance contrast. However, for a deep water layer and a typical
seismogram sample rate of .001 seconds, this can mean a great many layers that serve no purpose
other than to give the correct traveltime. In a later section, a synthetic seismogram algorithm will
be given that allows the layers to have arbitrary thicknesses. Then it will be possible to model a
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water layer with a single algorithmic layer.
As a final comment, this theory makes clear that the effect of multiple reflections is generally

nonstationary . This means that the multiple content of the seismogram generally increases with
time. Ordinary deconvolution theory, which assumes a stationary seismogram, cannot readily deal
with a nonstationary multiple sequence. However, there are certain classes of multiples that have
the desired stationarity. For example, in equation (3.40) the effect of the free surface is to cause
every term after the direct arrival to have the same 1+R0 multiplicative factor. This means that the
free surface multiples can be modelled as a convolution and that deconvolution might be expected
to remove them. A similar effect is true for a bright reflector that occurs deeper in a model. All
reflections from beneath the bright reflector will have the same characteristic multiple while those
from above it will not.

Exercise 3.4.2. On a replica of Figure 3.5, sketch the raypath for each multiple that arrives at
t = 3∆t. How many multiples are there in total?

Exercise 3.4.3. Verify the expression given for U1
3 in equation (3.40). Also compute the downgoing

waves D4
1, D

3
2, D

2
3, and D1

4 in preparation for the next exercise. Verify the downgoing waves to be

D4
1 = (1 −R3)(1 −R2)(1 −R1)

D3
2 = −R1(1 −R2)(1 −R1)(R0 +R2) −R3R2(1 −R2)(1 −R1)

D2
3 = −R2R0(1 −R1)(1 −R2

1) +R2
1R

2
0(1 −R1) −R3R1(1 −R2

2)(1 −R1) +R2R
2
1(1 −R1)(R0 +R2)

D1
4 = −R3R0(1 −R2

2)(1 −R2
1) +R2R1R0(1 −R2

1)(R0 +R2) +R2R1R
2
0(1 −R2

1) −R3
1R

3
0.

Exercise 3.4.4. Calculate U1
4 using the method described above with Figure 3.5 and the results

of the previous exercise. This computation is algebraically tedious. The point of the exercise is to
improve understanding of the complexity of the seismogram. The answer is

U1
4 = −R4(1 −R2

3)(1 −R2
2)(1 −R2

1) + (1 −R2
2)(1 −R2

1)
[
2R3R1R0 + 2R3R2R1 +R2

3R2
]

+

(1 −R2
1)
[
R2

2R0(1 −R2
1) − 3R2R

2
1R

2
0 − 2R2

2R
2
1R0 −R3

2R
2
1
]

+R4
1R

3
0.

3.5 MATLAB tools for 1-D synthetic seismograms

There are a number of different possibilities for creating synthetic seismograms in MATLAB. The
intended purpose of the synthetic usually dictates which facility to use. For example, the testing
of spiking deconvolution algorithms usually is done with a random reflectivity, no multiples, and
a minimum phase wavelet while testing predictive deconvolution will usually involve the inclusion
of some form of multiples. Alternatively, a synthetic seismogram intended for comparison with
processed seismic data will usually be created using a well-log reflectivity, no multiples, and a zero
phase wavelet.

3.5.1 Wavelet utilities

Once an impulse-response seismogram has been created, it is usually convolved with a wavelet to
simulate the bandlimiting imposed by the seismic source. There are a number of different wavelets
available including

ormsby Creates an Ormsby bandpass filter.
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Figure 3.6: An Ormsby wavelet for the pass-
band 10, 15, 40, 50Hz. is shown in the time do-
main (top) and its amplitude spectrum is shown
against a decibel scale in the bottom frame. This
figure was created by Code Snippet 3.5.1
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Figure 3.7: A Ricker wavelet with a 40 Hz dom-
inant frequency is shown in the time domain
(top) and its amplitude spectrum on a decibel
scale is shown in the bottom frame. This was
created by Code Snippet 3.5.2

ricker Creates a Ricker wavelet.

sweep Generate a linear Vibroseis sweep.

wavemin Creates a minimum phase wavelet for impulsive sources.

wavevib Creates a vibroseis (Klauder) wavelet.

wavez Creates a zero phase wavelet with a dominant frequency.

These functions all have a similar interface in that they accept a number of input parameters
describing the construction of the wavelet and return only two outputs: the wavelet and its time-
coordinate vector. Since only wavemin and sweep generate causal responses, the time-coordinate
vector is essential to properly position the wavelet.

Code Snippet 3.5.1. This code creates the Ormsby wavelet shown in Figure 3.6. The inputs to
ormsby are the four frequencies defining the passband, the wavelet length, and the sample rate.

1 %make ormsby wavelet
2 [w,tw]=ormsby(10,15,40,50,.4,.002);
3 %compute spectrum
4 [W,f]=fftrl(w,tw);
5 W=todb(W);

End Code

The ormsby command, used in Code Snippet 3.5.1, produces a popular zero-phase wavelet that
has an easy specification of its passband. The analytic expression for the Ormsby wavelet is

w(t)ormsby =
πf2

4

f4 − f3

[
sinπf4t
πf4t

]2
− πf2

3

f4 − f3

[
sinπf3t
πf3t

]2
− πf2

2

f2 − f1

[
sinπf2t
πf2t

]2
+

πf2
1

f2 − f1

[
sinπf1t
πf1t

]2
(3.46)
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where f1 < f2 < f3 < f4 are specifications of the frequency passband in Hertz. Approximately, the
passband begins at f1 and increases to full amplitude at f2. It remains at full amplitude until f3
and ramps down to the stopband at f4. Figure 3.6 shows an Ormsby wavelet with (f1, f2, f3, f4) =
(10, 15, 40, 50) in the time domain and its Fourier amplitude spectrum. On line 2 in Code Snippet
3.5.1 the wavelet passband is specified as the first four input parameters, the fifth parameter is
the desired wavelet length in seconds, and the sixth parameter is the temporal sample rate also in
seconds. It is obviously important to ensure that the Nyquist frequency, fNyquist = 1/(2∆t), is
greater than f4. Less obviously, the temporal length of the wavelet must be sufficient to ensure that
the character of the wavelet is captured. Since the frequency bandwidth and the temporal width
are inversely proportional, a narrow passband wavelet will be temporally long and vice-versa. With
any of these wavelet tools, it is always a good idea to plot the wavelet before using it and assess
the adequacy of the temporal length. If the length is chosen too short, then truncation effects will
distort the desired spectrum. Line 4 of Code Snippet 3.5.1 computes the wavelet’s spectrum using
fftrl and line 5 computes the decibel amplitude spectrum using the utility todb . Plotting the real
part of the output from todb versus f creates the spectrum shown in Figure 3.6.

An important consideration when creating wavelets is the question of normalization. That is,
how should the overall amplitude of the wavelet be determined. If equation (??) is used directly,
the maximum amplitude of the wavelet can be quite large. This may be an annoyance in that any
time series that is convolved with such a wavelet will have a large change in overall amplitude.
An easy solution might seem to be to scale the wavelet such that its maximum absolute value is
unity. However, another possibility is to scale the wavelet such that a sinusoid of the dominant
frequency is passed at unit amplitude under convolution. These criteria are not identical with the
first tending to preserve the peak values of the signal before and after convolution and the second
preserves the amplitude of the signal near the wavelet’s dominant frequency. The wavelets presented
here all use the second method of normalizing with respect to the dominant frequency. However, if
other behavior is desired, the wavelet can always be renormalized after it is created. The function
wavenorm is useful for this purpose.

Code Snippet 3.5.2. This code creates the Ricker wavelet shown in Figure 3.7. The inputs to
ricker are the temporal sample rate (seconds), the dominant frequency (Hz), and the temporal
length (seconds).

1 %make ricker wavelet
2 [w,tw]=ricker(.002,40,.4);
3 %compute spectrum
4 [W,f]=fftrl(w,tw);
5 W=todb(W);

End Code

Though the amplitude spectrum of the Ormsby wavelet of Figure 3.6 shows the desired passband,
the wavelet is often felt to have an unacceptable level of ripple. The Ricker wavelet has a simpler
from in the time-domain though this comes at the expense of a broader, less controlled, passband.
The Ricker wavelet is given analytically by

w(t)ricker =
[
1 − 2π2f2

domt
2] e−π2f2

domt2 (3.47)

which can be shown to be the second derivative of a Gaussian. In this expression, fdom is the
dominant frequency of the wavelet. The Fourier transform of this wavelet is known to be (Sheriff
and Geldart, 1995)

W (f) =
2f2

√
πf2

dom

e−f2/f2
dom . (3.48)
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Figure 3.8: Three Ricker wavelet spectra are
shown against a linear scale for fdom = 40, 80,
and 120 Hz. This figure was created by Code
Snippet 3.5.3 using equation (3.48)
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Figure 3.9: Six amplitude spectra are shown
illustrating the behavior of equation (3.49).
Three dominant frequencies are shown, fdom =
40, 80, 120 and the bold curves correspond to
m = 2 while the dashed curves are for m = 3.
This was created by Code Snippet 3.5.3

This is a Gaussian multiplied by f2/f2
dom. It is characteristic of Ricker wavelets that the higher the

dominant frequency, the broader the bandwidth. This is evident from equation (3.48) in that the
effective width of the Gaussian is seen to be fdom. The effect is demonstrated by Code Snippet 3.5.3
and shown in Figure 3.8.

Code Snippet 3.5.3. This code calculates the Ricker wavelet spectra shown in Figure 3.8 using
equation (3.48).

1 f=0:250;
2 fdom1=40;fdom2=80;fdom3=120;
3 R1=exp(-f.ˆ2/(fdom1ˆ2)).*(2*f.ˆ2)/(sqrt(pi)*fdom1ˆ2);
4 R2=exp(-f.ˆ2/(fdom2ˆ2)).*(2*f.ˆ2)/(sqrt(pi)*fdom2ˆ2);
5 R3=exp(-f.ˆ2/(fdom3ˆ2)).*(2*f.ˆ2)/(sqrt(pi)*fdom3ˆ2);

End Code

The Ormsby and Ricker wavelets are zero phase (i.e. symmetric) and are most suitable for models
to be compared to fully processed seismic images. An alternative are minimum-phase wavelets that
are suitable for models to be compared with raw seismic data or to be used for deconvolution testing.
One effective way to design minimum-phase wavelets is to specify the locations of the poles and zeros
of the wavelet’s z-transform directly. This is the approach taken by Claerbout in ? and has the
advantage that the minimum phase property is easily assured. On the other hand, it is not necessarily
easy to control the spectral shape. With this in mind, an alternative is presented here that specifies
the wavelet’s amplitude spectrum and calculates the minimum-phase wavelet using the Levinson
recursion. The Levinson recursion is an efficient way to solve a system of linear equations that has
Toeplitz symmetry. It is discussed more completely in the conjunction with Wiener deconvolution
in Chapter ??. For now, it is just presented as an abstract numerical technique.

Since a minimum-phase wavelet is meant to model an impulsive source, an analytic model for the
amplitude spectrum should resemble the observed spectrum for the dynamite blast that is common
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in exploration seismology. Such spectra have a dominant frequency below about 30 Hz with larger
charges giving lower dominant frequencies and show slow decay towards the high frequencies. The
model spectrum adopted here is given by

A(f) =
1 − e−(f/fdom)2

1 + (f/fdom)m (3.49)

where m determines the rate of decay at high frequencies. This spectrum is produced by tntamp .
Figure 3.9 was created using tntamp and shows the behavior of this equation for m = 2 and m = 3.
Clearly, larger m gives a more sharply bandlimited spectrum and this means a longer temporal
wavelet. When using m > 2, care must be taken that a sufficient temporal length is selected because
truncation effects can destroy the minimum-phase property.

Code Snippet 3.5.4. This code is an excerpt from wavemin and illustrates the calculation of a
minimum-phase wavelet. The column vector of frequencies is f, the intended length of the wavelet
is tlength, the dominant frequency is fdom, and the temporal sample rate is dt.

1 % create the power spectrum
2 powspec=tntamp(fdom,f,m).ˆ2;
3 % create the autocorrelation
4 auto=ifftrl(powspec,f);
5 % run this through Levinson
6 nlags=tlength/dt+1;
7 b=[1.0 zeros(1,nlags-1)]’;
8 winv=levrec(auto(1:nlags),b);
9 % invert the wavelet
10 wavelet=real(ifft(1. ./(fft(winv))));
11 twave=(dt*(0:length(wavelet)-1)’;
12 % now normalize the wavelet
13 wavelet=wavenorm(wavelet,twave,2);

End Code

Function wavemin invokes tntamp to create a minimum phase wavelet as is shown in Code
Snippet 3.5.4. Line 2 creates the desired power spectrum by squaring the output from tntamp .
On line 4, the power spectrum is inverse Fourier transformed to create the autocorrelation of the
desired wavelet. Lines 6-8 set up a linear system and solve it using the Levinson recursion. This
linear system is derived in Chapter ?? where it is shown to specify the minimum-phase inverse to
a minimum-phase wavelet. It is of the form Ax = b where A is a Toeplitz matrix formed from the
autocorrelation, x is the unknown minimum-phase inverse, and b is a column vector of zeros except
for a one in the first place. Solving this system with levrec does not require the formation of the
matrix A but needs only the first n lags of the autocorrelation and the vector b. Since the result from
solving this linear system is the minimum-phase inverse, the desired wavelet is found by inverting
the inverse. This is done in the Fourier domain on line 10. Finally line 11 builds the time-coordinate
vector and line 13 normalizes the final wavelet.

Code Snippet 3.5.5. This code calls wavemin twice with m = 2 and m = 3 to create two differ-
ent minimum-phase wavelets with the same dominant frequency. There amplitude spectra are also
calculate and the result is shown in Figure 3.10

1 %make wavemin wavelet
2 [w1,tw]=wavemin(.002,20,.2,2);
3 [w2,tw]=wavemin(.002,20,.2,3);
4 %compute spectrum
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Figure 3.10: Two minimum phase wavelets are
shown (top) and their amplitude spectra (bot-
tom). The wavelets were created with Code
Snippet 3.5.5 and correspond to m = 2 and
m = 3 in equation (3.49). The m = 2 wavelet
has a broader spectrum and is more front-loaded
in the time domain.
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Figure 3.11: In the upper frame, a 20 Hz Ricker
wavelet (top) is compared to wavez wavelets
corresponding to m = 3 (middle) and m = 2
(bottom). Their amplitude spectra are shown
in the lower frame. The Ricker spectrum is the
one that runs off the bottom of the axes at 70Hz.

5 [W1,f]=fftrl(w1,tw);
6 W1=todb(W1);
7 [W2,f]=fftrl(w2,tw);
8 W2=todb(W2);

End Code

The example shown in Code Snippet 3.5.5 uses wavemin to create two different minimum-phase
wavelets. The wavelets have the same dominant frequency of 20 Hz and have m = 2 and m = 3. The
wavelet with m = 2 shows less high-frequency decay and, in the time domain, is more front loaded.
It is not certain that the result from wavemin will be truly minimum phase. If the parameters are
chosen such that the requested temporal length is substantially shorter than what is implied by
the spectrum, then a non-minimum phase wavelet can result due to truncation effects. The utility
function ismin is provided to test a wavelet for the minimum-phase property. This function factors
the z-transform of the wavelet and measures the radius vector for all of the roots. If all roots are
outside the unit circle, then ismin returns unity. If any root is inside the unit circle, ismin returns
0. The two wavelets in Figure 3.10 pass the minimum phase test; however, wavemin(.001,10,.2,3)
produces a wavelet that does not.

The spectral model of equation (3.49) can also be used to create a zero-phase wavelet. This
is accomplished by wavez . Figure 3.11 shows three zero-phase wavelets with the same dominant
frequency of 20 Hz. The upper wavelet is a 20Hz. Ricker while the middle and lower were created
by wavez with m = 3 and m = 2 respectively. Relative to the Ricker, the wavez wavelets are
considerably more spikelike at the origin. This is due to their relative richness in high frequencies
compared with the Ricker wavelet. The code that created this Figure is a simple modification of
Code Snippet 3.5.5 and is not shown.

Given any particular amplitude spectrum there are infinitely many wavelets that can be created
with different phase spectra. So far, only minimum phase and zero phase have been discussed.
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Figure 3.12: A 40 Hz zero-phase Ricker wavelet is shown for four phase rotations of
θ = [45◦, 90◦, 135◦, 180◦]. This was created with Code Snippet 3.5.6.

Often, it is useful to model seismic data with a wavelet that has a constant phase other than zero.
This is easily accomplished by creating a zero-phase wavelet and then using phsrot to rotate the
phase from zero to the desired constant value. An example of this that creates Figure 3.12 is shown
in Code Snippet 3.5.6. It is good practice to note the basic features of each phase rotation. For
example, the 90◦ rotation has antisymmetry about the wavelet’s center with a major leading peak
and a trailing trough. The 45◦ rotation is similar but the major leading peak is about 50% larger
than the trailing trough. Since eiπ = −1, a 180◦ phase rotation is just a flip in polarity. This
can be seen in the 0◦ and 180◦ wavelets and it also means that a -45◦ rotation is the same as a
polarity-reversed 135◦ wavelet. Similarly, the 45◦ wavelet is a polarity-reversed version of a -135◦

wavelet.

Code Snippet 3.5.6. This code creates a zero-phase Ricker wavelet and then calls phsrot four
times to create a set of phase rotated wavelets. The resulting plot is in Figure 3.12.

1 [w,tw]=ricker(.002,40,.2);%make Ricker wavelet
2 nrot=5;deltheta=45;%number of phases and increment
3 figure
4 for k=1:nrot
5 theta=(k-1)*deltheta;
6 wrot=phsrot(w,theta);%phase rotated wavelet
7 xnot=.1*(k-1);ynot=-.1*(k-1);
8 line(tw+xnot,wrot+ynot);%plot each wavelet
9 text(xnot+.005,ynot+.1,[int2str(theta) ’ˆ\circ’])
10 end

End Code

3.5.2 Seismograms

Convolutional seismograms with random reflectivity

A common use for synthetic seismograms is to test deconvolution algorithms. In this context, it is
often desirable to use an artificial reflectivity function so that the deconvolution assumption of a
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Figure 3.13: Seven reflectivity functions are
shown. The bottom one comes from a real well
log and the other six are synthetic reflectivities
that were generated by reflec .
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Figure 3.14: Seven two-sided autocorrelations
are shown corresponding to the seven reflectivi-
ties in Figure 3.13.

white reflectivity is fulfilled as nearly as possible. The command reflec supplies such a reflectivity
function by using MATLAB’s random number generator, randn. Technically, numerical random
number generators like randn generate pseudo-random numbers. This means that given the same
starting point, called the seed, the generator will return the same set of apparently random numbers.
MATLAB has two random number generators, rand that generates uniformly distributed random
numbers, and randn that generates normally, or Gaussian, distributed random numbers. Generally,
a normal distribution is preferable, however, in either case such random numbers do not display the
spikiness typically found in real well logs. This is addressed in reflec by raising the output from
randn to an integral power, m, as in

rreflec = sign(rrandn) |rrandn|m . (3.50)

Suppose that the maximum values in rrandn are near unity. Then raising them to any power will
not change them while the smaller numbers will get smaller. Thus rreflec will appear more spiky
than rrandn.

Figure 3.13 compares a real reflectivity derived from well logs with six outputs from reflec
using values of of m from 1 to 6. It is a subjective decision about which value of m gives the most
realistic reflectivity estimate. The default in reflec is 3. Clearly, the real reflectivity has features
that are present in none of the synthetic ones. The most obvious is the low-amplitude zone from
.4 to .7 seconds on the real reflectivity. More generally, a low frequency amplitude variation can be
perceived throughout the real reflectivity while the synthetic ones show a very uniform amplitude
distribution with time. This is a hint that the real reflectivity is not white, i.e. not truly random,
but rather shows spectral color .

A useful test of randomness is to calculate the autocorrelation of the reflectivity. In theory, a
truly random signal has an autocorrelation that is exactly zero everywhere except at zero lag where
it is unity. However, this requires an infinite length signal and so is never exactly fulfilled in practice.
Figure 3.14 shows the central portion of the autocorrelations of the reflectivities of Figure 3.13. All
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Figure 3.15: The lower trace is a random reflec-
tivity generated by reflec with an extra spike
on the end. The middle trace is a convolutional
seismogram that uses a 20 Hz minimum phase
wavelet convolved with the first trace. The top
trace is a similar seismogram except that a 20
Hz minimum-phase wavelet was used. See Code
Snippet 3.5.7.

0 50 100 150 200 250

−50

0

db
 d

ow
n

Hz

0 50 100 150 200 250

−50

0

db
 d

ow
n

0 50 100 150 200 250

−50

0

db
 d

ow
n

Figure 3.16: Decibel amplitude spectra of the
seismograms of Figure 3.15: (bottom) reflectiv-
ity, (middle) minimum-phase seismogram and
wavelet (smooth curve), and (top) Ricker seis-
mogram and wavelet (smooth curve).

autocorrelations have a large spike at zero lag and only small values elsewhere. However, only the
real well log shows significant negative side lobes of the zero lag sample. This again indicates that
the real reflectivity is not white but has spectral color. It is also interesting that rreflec shows the
same degree of randomness regardless of the value of m.

Code Snippet 3.5.7. Here two wavelets, a 40 Hz Ricker and a 20 Hz minimum phase, are convolved
with the same reflectivity to generate two synthetic seismograms. The result is shown in Figure 3.15.

1 %make wavelet
2 dt=.002;tmax=1;tmaxw=.2;
3 [wm,twm]=wavemin(dt,20,tmaxw); %20 Hz min phs
4 [wr,twr]=ricker(dt,40,tmaxw); %40 Hz Ricker
5 %make reflectivity
6 [r,t]=reflec(tmax,dt,.2);
7 %pad spike at end
8 ntw=tmaxw/dt;
9 r=[r;zeros(ntw/2,1);.2;zeros(ntw,1)];
10 t=dt*(0:length(r)-1);
11 %convolve and balance
12 s1=convz(r,wr);
13 s1=balans(s1,r);
14 s2=convm(r,wm);
15 s2=balans(s2,r);

End Code

The calculation of a synthetic seismogram using reflec to generate the reflectivity is illustrated
in Code Snippet 3.5.7. Lines 3-4 generate a 40 Hz Ricker wavelet and a 20 Hz minimum-phase wavelet
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as described in section 3.5.1. Line 6 invokes reflec to create a random reflectivity. The three input
parameters are the maximum time, the time sample rate, and the maximum reflection coefficient.
A fourth argument, that is defaulted here, gives m in equation (3.50). In addition to returning
a reflectivity series, r, reflec also returns an appropriate time-coordinate vector, t. Lines 8-10
place an extra isolated spike on the end of the reflectivity. This is useful because, after convolution,
the shape of the wavelet will be immediately apparent. Line 9 is simply the concatenation of the
reflectivity with: a column vector of ntw/2 zeros, an impulse of .2, and another column vector of ntw
zeros. Line 10 rebuilds the time-coordinate vector to be compatible with the lengthened reflectivity.
Line 12 convolves the reflectivity with the zero-phase Ricker wavelet using the convenience function
convz while line 14 convolves the reflectivity with the minimum-phase wavelet using convm . These
convenience functions invoke conv and then truncate the result to be the same length as the first
input argument. Function convz truncates evenly from the beginning and the end of the convolved
series as is appropriate if a zero-phase wavelet was used. Function convm truncates entirely off the
end of the convolved series as would be expected for a causal wavelet. After each convolution, the
function balans is invoked to balance the amplitudes of the seismogram with the original reflectivity
to aid in the comparison. One thing that is immediately apparent from these seismograms is that
the zero-phase seismogram is more interpretable than the minimum-phase. This is because the
larger peaks on the former coincide temporally with the major reflection coefficients. With the
minimum-phase seismogram, the major peaks are displaced to later times relative to the reflectivity.

Code Snippet 3.5.8. This example assumes that Code Snippet 3.5.8 has already been run. Here
the spectra are computed and displayed. The result is Figure 3.16.

1 [R,f]=fftrl(r,t);
2 [S1,f]=fftrl(s1,t);
3 [S2,f]=fftrl(s2,t);
4 [Wr,fwr]=fftrl(wr,twr);
5 [Wm,fwm]=fftrl(wm,twm);
6 R=real(todb(R));
7 S1=real(todb(S1));
8 S2=real(todb(S2));
9 Wr=real(todb(Wr));
10 Wm=real(todb(Wm));

End Code

Code Snippet 3.5.8 assumes that Code Snippet 3.5.7 has already been run. Lines 1-5 use fftrl
to compute the spectrum of each component of the seismogram construction exercise. Then, lines
6-10 use the convenience function todb to compute the amplitude spectrum in decibel format, each
spectrum relative to its own maximum. (The imaginary part of the return from todb is the phase
spectrum). The resulting spectra are displayed in Figure 3.16. It is apparent that the spectra of
the seismograms are shaped by that of the wavelets. That is, the slowly-varying, average behavior
of the seismogram spectrum is essentially similar to the wavelet spectrum. The fact that the Ricker
wavelet spectrum departs from that of the seismogram in the upper panel is an artifact caused by
the truncation of the convolution.

It is often desirable to add some level of background random noise to a synthetic to simulate
a noisy recording environment or perhaps the limited precision of recording. The function rnoise
is designed for this purpose. If s1 is a time series, then rn=rnoise(s1,5) creates a vector of
normally-distributed random noise, rn, such that s1+rn will have a signal-to-noise ratio of 5. The
signal-to-noise ratio is defined by assuming that s1 is pure signal and measuring its rms amplitude
as arms =

√∑
j s1

2
j , where the sum is over samples in the time domain. The rms amplitude of rn
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Figure 3.17: The minimum-phase seismogram of
Figure 3.15 is shown with four different levels of
added noise.
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Figure 3.18: The spectra of the seismograms of
Figure 3.17 are shown with the spectrum of the
wavelet superimposed on each. The maxima
of the spectra acutally coincide but have been
shifted vertically for clarity.

is then set as σarms where σ is the desired signal-to-noise ratio. In using rnoise it is important to
remember that rn must be added to the input time series after calling rnoise . Also, the method
of calculating the signal-to-noise ratio may not be exactly what was desired as there is no standard
way of doing this. Other possibilities include defining the ratio between peak amplitudes or in the
frequency domain. Also, rnoise can be given a third argument that defines the range of indices
over which the signal-to-noise ratio is to be computed. This is useful for nonstationary signals
whose signal level may change strongly with time. For example, if t is the time coordinate vector
for s1, then rn=rnoise(s1,5,near(t,.5,1.0)) uses the function near to determine the range of
indices that span the time zone from .5 to 1.0 seconds. Then only those samples between .5 and
1 are used in the rms amplitude calculation. Figure 3.17 shows four different noisy seismograms
computed using rnoise and the minimum-phase seismogram of Figure 3.15 as signal. The Fourier
amplitude spectra of these noisy seismograms are shown in Figure 3.18 with the spectrum of the
wavelet superimposed. Comparison with Figure 3.16 shows that the noise causes a corner in the
spectrum defined by where it departs from the shape of the wavelet’s spectrum. An interpretive
assessment of the corner frequencies would put them near 75 Hz, 100 Hz, 150 Hz, and 220 Hz for
signal-to-noise ratios of 1, 2, 5, and 10 respectively. It is very difficult to recover the signal spectrum
beyond this point in data processing. Close inspection shows that the spectra at frequencies below
the corner frequency are also altered by the addition of noise. From another perspective, this must
be the case because the dynamic range of the wiggle trace plots in Figure 3.17 is about 20-30 decibels
and they are all clearly altered by the noise.

Exercise 3.5.1. Develop a script that remakes and displays the seismograms and spectra of Figures
3.15 and 3.16. Modify the script to demonstrate that truncation effects are the reason that the
seismogram spectrum and the Ricker wavelet spectra depart from one another near 110 Hz (top
Figure 3.16.

Exercise 3.5.2. Create a script that builds two seismograms from the same reflectivity using wavelets
from wavemin and wavez. Make the wavelets the same in all respects except for their phase. Which
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seismogram is more interpretable? Why?

Synthetic seismograms with multiples

The



Chapter 4

Velocity

Exploration seismology is literally overflowing with velocities. Just to name a few, there are interval
velocity, instantaneous velocity, apparent velocity, rms velocity, average velocity, mean velocity,
stacking velocity, horizontal velocity, vertical velocity, phase velocity, group velocity, P-wave velocity,
S-wave velocity, migration velocity, weathering velocity, and almost certainly others. This chapter is
meant to bring some order to this chaos of velocities. For starters, there is a fundamental distinction
between physical velocities and velocity measures. The former refers to velocities that are actually
the speed at which some physical wave propagates. Examples are instantaneous velocity, P- and
S-wave velocities, phase and group velocity. On the other hand, velocity measures are typically
quantities derived from data analysis that have the physical dimensions of velocity but are related to
physical velocities in some indirect (and possibly unknown) fashion. Examples of velocity measures
include average, mean, and rms velocities, interval velocity, stacking velocity, apparent velocity, and
migration velocity. In contrast to physical velocities, it cannot generally be expected that a physical
wave actually propagates at the speed of one of these velocity measures.

Using the measured data for the analysis of velocity and the application to the data of corrections
that depend upon velocity are fundamental to seismic processing. Velocity, together with the geom-
etry of the seismic acquisition and the shapes of the reflectors, causes the characteristic traveltime
shapes (such as hyperbolae) in the data. Spatial variations in velocity cause distortions from the
simple, canonical shapes, and these distortions must be accounted for in processing. Sometimes ve-
locity information can be obtained from supporting data such as well logs, core measurements, and
geologic maps but this information is inherently sparse with respect to the coverage of the seismic
data itself. Ultimately, the only way to obtain the spatially dense velocity information required in
processing is from the data itself. This is known as velocity analysis and is the source of some of
the velocity measures such as stacking and migration velocities. The interpretation of the velocity
measures such that they can be converted into measurements of physical velocities is called velocity
inversion and is an ongoing problem. A careful discussion of the definitions of these measures is
essential to gain understanding of the complexities of velocity inversion.

For simplicity, consider the case of P-wave propagation in a heterogeneous earth. (S-waves can
be treated similarly.) A velocity measure will be defined by either relating it mathematically to the
actual P-wave speed or by describing how it can be derived from seismic data.

76
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Figure 4.1: The universal velocity function is linear with depth

4.1 Instantaneous velocity: vins or just v

Instantaneous velocity generally refers to the speed of propagation of seismic waves in the earth.
The word instantaneous refers to the local wave speed as the wave evolves from one instant of time
to the next. The term can be applied to any wave type (P, S, surface, etc) though here we specialize
to P-waves for clarity.

Like most seismic “velocities” vins is not usually a vector quantity and so is not a velocity as
physicists would use the term. Rather it is a scalar which can be thought of as the magnitude of a
velocity vector.

For practical seismic experiments, vins must be acknowledged to be a highly variable function of
position in the earth. In the most general case of anisotropic media, it also depends upon direction,
but this will be ignored for now. It is not a function of time as that would imply that the earth’s
properties changed during the seismic experiment. Only rarely can it be assumed to be spatially
constant but often there is significant variation in one direction only. This is commonly the case
in sedimentary basins where velocity varies strongly with depth but only weakly in the horizontal
direction.

Consider the instantaneous velocity function that is linear with depth z

vins = v0 + cz. (4.1)

The universal velocity function is the name given to this function when v0 = 1800 m/sec and
c = .6 sec-1. Figure 4.1 shows this function for a depth range of 0 to 3000 m. The name originates
in the days of analog computing (the 1950s and 1960s) when changing a velocity function was a
considerable labor. For example, normal moveout was removed by a “computer” (who was a human
being) who “traced the trace” (hence the name trace for a seismic recording) with a stylus that
was connected to a pen by a lever arm driven by an eccentric cam. The pen would redraw the
trace with normal moveout removed. However, the shape of the cam was determined by the velocity
function and changing functions often meant going to the machine shop to cut a new cam. Thus the
possibility of a universal function was quite attractive. And, it actually works quite well in many
sedimentary basins.
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4.2 Vertical traveltime: τ

Given a complete specification of vins as a function of position, vins(x, y, z), traveltimes over any
path can be computed. Since there are infinitely many possible paths between any two points (of
course, not all are Snell’s law paths but all are possible routes for scattered energy), it is unreasonable
to expect that there could be an unambiguous relation between traveltime and depth. However, if
a special path is chosen, then such a relation can be developed. For this purpose, it is common to
relate depth, z, to the traveltime along the vertical path from 0 to z. This vertical traveltime is a
useful quantity that, to first order, is the time coordinate of final stacked sections and, to higher
accuracy, is the time coordinate for migrated time sections. Even though vins is a general function of
position, for the calculation of vertical traveltime, it can be considered as a function of depth alone
because the calculation at each (x, y) is independent. Therefore, instantaneous velocity will now be
written vins(z) with the understanding that the calculations can be done for any and all (x, y).

Vertical traveltime is calculated by considering a small depth interval, dz over which vinscan be
considered to be approximately constant. The vertical traveltime over this interval is simply

dτ =
dz

vins(z)
. (4.2)

The total one-way traveltime from the surface to depth, z, is simply the sum of many such small
contributions. In the limit as dz → 0 this becomes the integral

τ(z) =
∫ z

0

dz̃

vins(z̃)
. (4.3)

The z dependence appears as the upper limit of the integral while z̃ is just a dummy variable of
integration. Defined in this way, τ(z) is a function that increases monotonically with z. As such it
is guaranteed to have an inverse. That is, given τ(z) it is always possible to find z(τ) and vice-versa.
Function τ(z) is called a time-depth curve and can be used to find depth given vertical traveltime
or the reverse.

Continuing with the universal velocity function of Equation 4.1, the vertical traveltime of equation
(4.3) becomes

τ(z) =
∫ z

0

dz̃

v(z̃)
=

1
c

∫ v0+cz

v0

dξ

ξ
=

1
c

ln
[
1 +

cz

v0

]
. (4.4)

Thus a linear variation of velocity with depth yields a logarithmic time-depth curve. It is a simple
matter to invert Equation 4.4 for z(τ) to get

z(τ) =
v0
c

[ecτ − 1] . (4.5)

For the case of the universal velocity function, the curves τ(z) and z(τ) are shown in Figures 4.2
and 4.3 respectively. The graph of z(τ) is just the transpose of the graph of τ(z).

4.3 vins as a function of vertical traveltime: vins(τ)

In the preceding sections it has been shown that for any fixed (x, y) location, every depth, z, has
a unique vertical traveltime associated with it. Therefore, vins, which is physically a function of z



4.4. AVERAGE VELOCITY: VAV E 79

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

1.2

depth (m)

tim
e 

(s
)

Figure 4.2: The time-depth curve (τ(z)) of equa-
tion (4.4) for the case of v0 = 1800m/sec and
c = .6/sec
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Figure 4.3: The depth-time curve (z(τ)) of equa-
tion (4.4) for the case of v0 = 1800 m/sec and
c = .6 sec-1

may always be expressed as a function of τ(z). That is

vins(τ) = vins(z(τ)) (4.6)

Given vins(τ) in equation (4.2), an expression for z(τ) follows as

z(τ) =
∫ τ

0
vins(τ̃)dτ̃ . (4.7)

Comparing equations (4.3) and (4.7) shows that knowledge of vins(z) allows computation of τ(z)
and knowing vins(τ) enables computation of z(τ). In practice, vins(z) might be directly obtained
from a sonic well log while vins(τ) can be estimated from the analysis of stacking velocities.

For the universal velocity function of equation (4.1) the vertical traveltime results in the loga-
rithmic expression given in equation (4.4) and z(τ) is given by equation (4.5). Thus vins(τ) becomes

vins(τ) = vins(z(τ)) = v0 + c
[v0
c

(ecτ − 1)
]

(4.8)

which reduces to
vins(τ) = v0e

cτ . (4.9)

Thus, when vins is linear with depth it is actually exponential with vertical traveltime. For case of
the universal velocity function, vins(τ) is plotted in Figure 4.4.

4.4 Average velocity: vave

The typical industry definition of vave is that it is a particular depth divided by the vertical traveltime
from the surface to that depth. Given any z(τ) curve, pick a point (τ0, z0) and vave is the slope of
the line connecting the origin with the point (τ0, z0) while vins is the tangent to the curve at that
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Figure 4.4: For the universal velocity function shown in Figure 4.1, vins is an exponential
function of vertical traveltime.

point. Mathematically, vave(z) is expressed as

vave(z) =
z

τ(z)
=

z∫ z

0
dz̃

vins(z̃)

(4.10)

while vave(τ) is

vave(τ) =
z(τ)
τ

=
1
τ

∫ τ

0
vins(τ̃)dτ̃ . (4.11)

Equation (4.11) shows that the average velocity is a mathematical average only with respect to
vertical traveltime. (Recall from calculus, that the average (or mean) value of a function f(x) over
the interval from 0 → x is x−1

∫ x

0 f(x′)dx′.) When considered as a function of depth, the average
velocity is not a mathematical average.

For the running example of linear variation of velocity with depth, vave(z) becomes

vave(z) =
cz

ln
[
1 + cz

v0

] (4.12)

and vave(τ) is the given by
vave(τ) =

v0
cτ

[ecτ − 1] . (4.13)

These equations are graphed in Figures 4.5 and 4.6.

4.5 Mean velocity: vmean

Since vave is a mathematical average of vins over traveltime and not depth, it is useful to define
another velocity measure that is a depth average. The mean velocity, vmean is defined as

vmean(z) =
1
z

∫ z

0
vins(z̃)dz̃. (4.14)
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Figure 4.5: vave and vins are shown versus depth
for the case of the universal velocity functions
(equation (4.1)) with v0 = 1800 m/s and c =
.6 sec-1
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Figure 4.6: vave and vins are shown versus time
for the case of the universal velocity functions
(equation (4.1)) with v0 = 1800 m/s and c =
.6 sec-1

For the linear variation of vins(z), vmean(z) becomes

vmean(z) =
1
z

∫ z

0
[v0 + cz̃] dz̃ = v0 +

1
2
cz (4.15)

which shows that the mean velocity increases at half the rate of vins(z). Of course, vmean(z) can be
re-expressed as a function of τ by substituting z(τ), this results in

vmean(τ) =
v0
2

[1 + ecτ ] . (4.16)

Equation (4.15) is compared with vave(z) and vins(z) in Figure 4.7. vmean(z) and vins(z) are
both linear but vave(z) is not. Also, vmean(z) is always greater than vave(z) which will be proven
true in the next section.

4.6 RMS velocity: vrms

The mean velocity, discussed previously, is not commonly used in seismology. The reason is that
another velocity measure, vrms, is used and only two of vave, vmean, and vrms are independent. The
root-mean-square velocity is defined as

v2
rms(τ) =

1
τ

∫ τ

0
v2

ins(τ̃)dτ̃ . (4.17)

Two important relationships exist between the three velocity measures: vave, vmean, and vrms.
First, they are linked by the relation

v2
rms = vavevmean (4.18)
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Figure 4.7: vmean and vave are compared with vins for the case of the linear increase of
vins with z.

which means that only two of the three velocity measures can be considered independent. The proof
is straight forward v2

rms = τ−1
∫
v2

insdτ = z
τ

1
z

∫
vins[vinsdτ ] = z

τ [ 1z
∫
vinsdz] = vavevmean.

The second relationship follows from a mathematical inequality known as Schwartz’s Inequality .
This result is quite general and confirms the intuition that the square root of the average of the
squares of a set of numbers is always greater than the direct average of the numbers themselves.
That is, let {xk} be an arbitrary set of n real numbers, then

√
n−1

∑
k x

2
k ≥ n−1∑

k xk where the
equality only occurs if all xk are identical.

For the continuing example of vins linear with depth, equation (4.9) showed that vint was expo-
nential. Thus vrms becomes

v2
rms(τ) =

1
τ

∫ τ

0
v2
0e

2cτ̃dτ̃ =
v2
0

2cτ
[
e2cτ − 1

]
. (4.19)

Figure 4.8 compares vrms vave and vins for the universal velocity function. Though vrms is
always greater than vave the difference is not greater than 2%.

Exercise 4.6.1. Use MATLAB to numerically demonstrate Schwartz’s inequality. Use rand to
generate a vector of random numbers with zero mean. Compute both the mean and the rms average
of these numbers. Repeat the process for many different vectors with steadily increasing length. Plot
a graph of these two averages versus length. Repeat your work using random numbers that are all
positive with a mean value somewhere near that expected for seismic velocities. Show that if the
velocity vector has identical entries then the rms average and the mean are equal but if one value
differs from the rest, then the rms average exceeds the mean.

4.7 Interval velocity: vint

Corresponding to any of the velocity averages, an interval velocity can be defined that is simply the
particular average applied across a small interval rather than from the surface (z = 0) to depth z.
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Figure 4.8: vrms and vave are compared with vins for the case of the linear increase of vins

with z.

For example, the average and rms velocities across an interval defined by τ1 and τ2 are simply

vave (τ2, τ1) =
1

τ2 − τ1

∫ τ2

τ1

vins(τ̃)dτ̃ (4.20)

and
v2

rms (τ2, τ1) =
1

τ2 − τ1

∫ τ2

τ1

v2
ins(τ̃)dτ̃ . (4.21)

These quantities are functions of both the upper and lower bounds of the integrals. In the limit, as
the interval shrinks so small that vins(τ)can be considered constant, both interval velocities approach
the instantaneous velocity.

It follows directly from the definition of average velocity (equation (4.10)) that the average
velocity across a depth interval is just the ratio of the depth interval to the vertical traveltime across
the interval. That is

vave (τ2, τ1) =
z2 − z1
τ2 − τ1

=
∆z
∆τ

. (4.22)

Thus, if the range from 0 to z is divided into n finite intervals defined by z0, z1, z2, . . . , zn−1, zn

(where z0 = 0 and zn = z) then

vave(τ) =
z(τ)
τ

=
∑n

k=1 [zk − zk−1]
τ

=
1
τ

n∑
k=1

[τk − τk−1]vave(τk, τk−1) (4.23)

where τk = τ(zk). Defining ∆τk = τk − τk−1 then gives

vave(τ) =
1
τ

n∑
k=1

vk∆τk (4.24)

where vk ≡ vave(τk, τk−1) and τ =
∑n

k=1 ∆τk. Comparing equation (4.24) with equation (4.11)
suggests that the former is just a discrete version of the latter. However, the velocity vk in equation
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(4.24) is the average velocity of the kth finite interval and is thus the time average of vins across the
interval. Of course, if vins(τ) is constant across each interval then vk is an instantaneous velocity
and this distinction vanishes.

Equation (4.24) can be used in a number of ways. Most obviously, it shows how to combine a
set of local average velocities to obtain the macro average velocity across a larger interval. Also, it
can be used to estimate a local average velocity given two macro-average velocities. Suppose the
average velocities vave1 and vave2 from z = 0 to depths z1 and z2 are known. Then an expression for
the average velocity, from z1 → z2 or equivalently from τ1 → τ2, follows from equation (4.24) and is

vave(τ2, τ1) =
1

τ2 − τ1
[τ2vave2 − τ1vave1] . (4.25)

The two macro averages are each weighted by their time intervals and then the shallower average is
subtracted from the deeper. This difference is then divided by the time interval of the local average.

If vave1, τ1, vave2, andτ2 are all measured without error, then this process (i.e. equation 4.25)
works perfectly. However, in a real case, errors in the measurements can lead to wildly incorrect
estimates of vave(τ2, τ1). With noisy data, there is no guarantee that the term [τ2vave2 − τ1vave1]
will always be positive leading to the possibility of negative velocity estimates. Also, the division by
τ2 − τ1 can be unstable if the two times are very close together.

The discussion so far has been only for average velocities across an interval. The entire derivation
above can be repeated for rms velocities with similar results but a few more subtleties arise in
interpretation. Rather than repeating the derivation just given with ‘rms’ in place of ‘ave’, it is
instructive to consider an alternative approach. It is a property of integrals that

∫ c

a
=
∫ b

a
+
∫ c

b
where

a < b < c. Given τ0 < τ1 < τ2 and applying this rule to equation (4.17) results in

v2
rms(τ2, τ0) =

1
τ2 − τ0

[∫ τ1

τ0

v2
ins(τ̃)dτ̃ +

∫ τ2

τ1

v2
ins(τ̃)dτ̃

]
. (4.26)

Recognizing the integrals in [ . . . ] as rms interval velocities squared multiplied by their interval
times (i.e.

∫ τ1

τ0
v2

ins(τ̃)dτ̃ = [τ1 − τ0]v2
rms(τ1, τ0) and similarly for the other integral) leads to

v2
rms(τ2, τ0) =

1
τ2 − τ0

[
(τ1 − τ0)v2

rms(τ1, τ0) + (τ2 − τ1)v2
rms(τ2, τ1)

]
. (4.27)

For the case of n subdivisions between τ2 and τ0 this generalizes to

v2
rms(τ2, τ0) =

1
τ2 − τ0

n∑
k=1

v2
k∆τk (4.28)

where vk = vrms(τk, τk−1) and, as before, ∆τk = τk − τk−1 and τ =
∑n

k=1 ∆τk. This is the rms
equivalent to equation (4.24) and all of the comments made previously about vave apply here for
vrms. In particular, equation (4.28) should be thought of a combining interval rms velocities into
a macro rms velocity. Only in the case when vins does not vary significantly across an interval can
the vk in equation (4.28) be considered to be instantaneous velocities.

Equation (4.27) is the addition rule for rms velocities. To combine rms velocities, the squared ve-
locities are added and each must be weighted by its time interval. Equation (4.27) can be rearranged



4.8. MATLAB VELOCITY TOOLS 85

to give an expression for estimating a local rms velocity from two macro velocities

v2
rms(τ2, τ1) =

1
τ2 − τ1

[
(τ2 − τ0)v2

rms(τ2, τ0) − (τ1 − τ0)v2
rms(τ1, τ0)

]
(4.29)

or, with simplified notation

v2
rms(τ2, τ1) =

1
τ2 − τ1

[
τ2v

2
rms2 − τ1v

2
rms1

]
. (4.30)

In this expression τ0 has been set to 0 and vrms2 = vrms(τ2, τ0) and similarly for vrms1. Equation
(4.30) is often called the Dix equation for interval rms velocities because it was C.H. Dix (Dix, 1955)
who first recognized the connection between stacking velocities and rms velocities and showed how
to calculate an interval velocity from two stacking velocity measurements.

The application of equation (4.30) in practice requires the measurement of stacking velocities and
vertical traveltimes to two closely spaced reflectors. Under the assumption that stacking velocities
are well approximated by rms velocities (Dix (1955) or Taner and Koehler (1969)), the rms velocity
of the interval is then estimated with equation (4.30). However, as with average velocities, errors in
measurement lead to problems with the estimation of vrms(τ2, τ1). If the term

[
τ2v

2
rms2 − τ1v

2
rms1

]
becomes negative then imaginary interval velocity estimates result. Thus one essential condition for
the use of this technique is that

v2
rms2 > v2

rms1
τ1
τ2
. (4.31)

Since τ1/τ2 < 1, this is a constraint upon how fast vrms estimates can decrease with increasing
time. There is no mathematical basis to constrain the rate at which vrms can increase; however, it
is reasonable to formulate a constraint on physical grounds. Since P-wave seismic velocities are not
expected to exceed some vmax (say 7000 m/s) a constraint would be

v2
rms2 < v2

rms1
τ1
τ2

+ v2
max

τ2 − τ1
τ2

. (4.32)

Exercise 4.7.1. Show that the right-hand-side of inequality (4.32) is always greater than vrms1
provided that vmax > vrms1 so that this is a constraint on the rate of increase of vrms.

Exercise 4.7.2. Suppose that the times and depths to two reflectors are known, say τ1, τ2, z1, and z2,
and that the rms velocities to the reflectors are also known, say vrms1and vrms2. Consider the interval
velocities defined by

vint =
z2 − z1
τ2 − τ1

and ṽint =

√
v2

rms2τ2 − v2
rms1τ1

τ2 − τ1
.

Under what condition(s) will these interval velocity estimates be similar? If the interval between the
reflectors is highly heterogeneous, which estimate will be larger. Why?

4.8 MATLAB velocity tools

To this point, the discussion of velocity measures has been illustrated with an instantaneous veloc-
ity whose form is a known analytic function. More realistically, velocity functions are inherently
numerical because they are derived from experiment. The conversion of such numerical velocities
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Figure 4.9: (Left) A five legged vins(z) with lin-
ear variation between the knees. (Right) The
curve on the left has been converted to vins(τ).
The variation between the knees is no longer lin-
ear.
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Figure 4.10: (a) vins(τ) from Figure 4.9. (b)
finely sampled vrms(τ). (c) de-sampled vrms(τ).
(d) ten legged interval rms approximation to
vins(τ).

from one form to another is often necessary in data processing and software tools are required for
this purpose. Two alternate approaches are (1) fit the numerical velocity functions with an nth

order polynomial and perform the necessary integrations using polynomial integration rules, or (2)
implement a numerical integration scheme for the conversion formulae. The second approach is
taken here.

Five functions are available to convert velocity functions from one form to another. There is also
a utility plotting function to draw piecewise constant lines.

vint2t Computes vertical traveltime given interval velocity versus depth.

vint2vave Converts interval velocity to average velocity.

vave2vint Converts average velocity to interval velocity.

vint2vrms Converts interval to rms velocity.

vrms2vint Converts rms velocity to interval velocity.

drawvint Plots interval velocity curves as piecewise constant functions.

No utility is provided to deal with instantaneous velocity since this can be treated simply by
generating a finely sampled interval velocity. Like seismic traces, velocity functions are specified
by prescribing two vectors, one for the velocities and the other for the depth or time that they
apply. Interval velocities are inherently piecewise constant and the convention used here is that the
kth velocity, vk prescribed at depth zk, persists as a constant until depth zk+1. Therefore, the last
velocity in a velocity vector applies for all z greater than the last entry in the depth vector.

As a first example of the use of these functions, suppose that vins(z) is a piecewise linear function
with five “knees” prescribed by (v, z) pairs as (1200 m/s, 0 m), (2700 m/s, 500 m), (3500 m/s, 1400
m), (3000 m/s, 1600 m), (4000 m/s, 2000 m). Code Snippet 4.8.1 shows how to compute vins(τ) for
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this vins(z) and displays its results in Figure 4.9. Line 2 uses piecewise linear interpolation (pwlint )
to resample the five legged function to a fine interval so that the piecewise constant interval velocity
approximates the desired piecewise linear instantaneous velocity. Line 5 computes τ(z) by calling
vint2t and thus defining vins(τ). (Note that the vint2t returns one-way time so these values must
be doubled for two-way time.)

Code Snippet 4.8.1. This code defines a five legged, piecewise linear vins(z) and then computes
vins(τ). It makes Figure 4.9.

1 v=[1200 2700 3500 3000 4000];z=[0 500 1400 1600 2000];
2 z2=0:10:2000;v2=pwlint(z,v,z2);
3 subplot(1,2,1);plot(v2,z2,v,z,’r*’);flipy
4 xlabel(’meters/sec’);ylabel(’meters’);
5 t2=vint2t(v2,z2);
6 t=interp1(z2,t2,z);
7 subplot(1,2,2);plot(v2,t2,v,t,’r*’);flipy;
8 xlabel(’meters/sec’);ylabel(’seconds’);

End Code

The computation of τ(z) requires the numerical computation of the integral in equation (4.3).
Given a densely sampled function, the simplest way to do a numerical integration is with the functions
sum and cumsum. The difference between these is that the first does a definite integral while the
second does an indefinite integral. For example, the command sum([1:5].ˆ2) just adds the squares
of the integers from 1 to 5 to get 55. This is a discrete approximation to the definite integral of the
function y = x2 from .5 to 5.5 for which the analytic answer is (5.53−.53)/3 ≈ 55.4167. Alternatively
cumsum([1:5].ˆ2) has the result [1, 5, 14, 30, 55] which gives the value of the integral of y = x2 for a
lower limit of .5 and five successive upper limits of 1.5, 2.5, 3.5, 4.5, and 5.5 . Thus sum approximates∫ 5.5

.5 x2dx and is just a single number while cumsum approximates
∫ x

.5 x̃
2dx̃ and results in a vector the

same length as the input. Thus, the traveltime integration of equation (4.3) is done within vint2t
with the single command t1(2:nz)=cumsum(dz./vint(1:nz-1)). The vector t1 is τ(z) and has
been initialized to zero, dz is a vector of the depth intervals, and vint is the interval velocity vector.
(For more details, browse the source code file.)

Often velocity functions from well logs do not begin at z = 0. Therefore the computation of τ(z)
from z = 0 requires that some initial velocity be used for the depth range above the log. This can
be input to vint2t , in the form of a constant time shift τ0, as the fourth argument. τ0 defaults
to τ0 = z(1)/v(1), that is the first depth divided by the first velocity. This can be estimated if the
depth and time to some marker formation top are already known. Then vint2t can be run once
with the initial velocity set to zero, and the time to the marker can be observed to be off by some
∆τ in one-way time.

Now consider the computation of vrms(τ) and the construction of a ten layer approximation to
vins(τ) using interval rms velocities. This is done in Code Snippet 4.8.2 and the result is shown in
Figure 4.10. Line 2 creates the dense vrms(τ) function using vint2vrms shown as curve ‘b’ in the
figure. Line 3 defines a blocky ten legged time vector and line 4 creates the coarse vrms(τ) (curve
‘c’) by calling vint2vrms with a third argument. Essentially, this is just a de-sampled version of
the finely sampled vrms(τ). (It was not necessary to create the finely sampled vrms(τ) as this was
done to demonstrate the software.) Finally line 6 creates the interval rms approximation to vins(τ)
by sending the coarse vrms(τ) to vrms2vint .

Code Snippet 4.8.2. This carries on after Code Snippet 4.8.1 to compute: vrms from the sur-
face for every point in vins(τ) a ten point sparse vrms(τ) and a ten-legged rms-interval velocity
approximation to vins(τ). Figure 4.10 is the result.
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1 plot(v2,t2,v,t,’r*’);flipy
2 vrms=vint2vrms(v2,t2);
3 tblock=linspace(min(t2),max(t2),10);
4 vrmsblock=vint2vrms(v2,t2,tblock);
5 drawvint(t2,vrms);drawvint(tblock,vrmsblock);
6 vint=vrms2vint(vrmsblock,tblock);
7 drawvint(tblock,vint);
8 xlabel(’meters/sec’);ylabel(’seconds’);

End Code

Exercise 4.8.1. Load the file vp_from_well.mat that contains a vector of P-wave velocities and a
corresponding vector of depths. Create two ten-leg interval-velocity approximations to vins(z) one
using average velocities and one using rms velocities. Compare the accuracy of time to depth con-
version using these two alternate approximations. (For time to depth conversions, compute average
velocities from both interval velocity functions). Is there any significant difference?

Exercise 4.8.2. Create a function called vrms2vave that converts average velocities to rms ve-
locities. Then create the inverse function vave2vrms. Test your codes with the universal velocity
function by comparing with the analytic forms for vrms and vave.

Exercise 4.8.3. Working with the universal velocity function, create vrms(τ) for the depth range of
0 to 3000 m. Then use MATLAB’s random number generator, rand, to add a 2% random fluctuation
to the vrms(τ) function. Finally calculate vins(τ) from the perturbed vrms(τ) function and determine
the percentage error in the vins(τ) estimates caused by the 2% error in vrms(τ). What does this say
about the sensitivity of interval velocity calculations to noise?

4.9 Apparent velocity: vx, vy, vz

Consider a wavefront arriving at an array of detectors. For simplicity, use only two dimensions, (x, z),
and let the wavefront make an angle θ with respect to the horizontal (θ is called the emergence angle
of the wave). The detectors are spaced at intervals of ∆x at z = 0 (Figure 4.11). If the medium
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immediately beneath the receivers has the acoustic velocity, v0, then the wavefront arrives at x+∆x
later than it does at x by the delay

∆t =
sin θ
v0

∆x. (4.33)

Thus it appears to move along the array at the speed

vx ≡ ∆x
∆t

=
v0

sin θ
. (4.34)

The quantity vx is called an apparent velocity because the wavefront appears to move at that speed
even though its true speed is v0. Apparent velocities are one of the four fundamental observables in
seismic data, the others being position, time and amplitude. The apparent velocity is never less than
the real velocity and can range up to infinity. That is v0 ≤ vx ≤ ∞. Since infinities are cumbersome
to deal with it is common to work with the inverse of vx, called the time-dip, ∆t/∆x or horizontal
slowness, sx. Another common convention for horizontal slowness is to call it p which signifies the
ray parameter .

Now, enlarge the thought experiment to include an array of receivers in a vertical borehole and
spaced at ∆z. Reasoning similar to that used before shows that the arrival at z − ∆z is delayed
from that at z by

∆t =
cos θ
v0

∆z. (4.35)

Therefore, the vertical apparent velocity, vz, is

vz ≡ ∆z
∆t

=
v0

cos θ
. (4.36)

Using simple trigonometry, it results that

1
v2
0

=
1
v2

x

+
1
v2

z

. (4.37)

If this argument is extended to 3D, the result is that there is an apparent velocity in the y direction
as well and that the sum of the inverse squares of the apparent velocities is the inverse square of the
real velocity:

1
v2
0

=
1
v2

x

+
1
v2

y

+
1
v2

z

. (4.38)

We observe apparent velocity, or equivalently time-dip, by simply choosing an event of interest on
a seismic record and measuring the slope, ∆t/∆x. It will be seen shortly that this is a measurement
of the ray parameter of the ray associated with the chosen event. Knowledge of the ray parameter
essentially determines the raypath, provided that the velocities in the subsurface are known. This
allows the ray to be projected down into the earth and to possibly determine it’s reflection point.
This technique, called raytrace migration, will be discussed in section 5.2.2.

Another way to measure apparent velocities is with a multi-dimensional Fourier transform. In
2-D for example, the f-k transform represents a seismic record on a grid of horizontal wavenumber,
kx, and temporal frequency, f . Each point in the (kx,f) plane has a complex number associated
with it that gives the amplitude and phase of a fundamental Fourier component: e2πi(kxx−ft). In
3D these fundamental components are monochromatic (i.e. a single f) plane waves so in 3D or 2D
they are called Fourier plane waves. These waves are infinite in extent so they have no specific
arrival time. However, it does make sense to ask when a particular wave crest arrives at a particular
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location. Mathematically, a wave crest is identified as a point of constant phase where phase refers
to the entire argument of the complex exponential. If the Fourier transform has the value Aeiφ at
some (kx,f), then the Fourier plane wave at that point is Ae2πi(kxx−ft)+iφ. The motion of a point
of constant phase is tracked by equating the phase at (x, t) with that at (x+ ∆x, t+ ∆t) as in

2πi(kxx− ft) + iφ = 2πi(kx(x+ ∆x) − f(t+ ∆t)) + iφ (4.39)

from which it follows that
∆x
∆t

=
f

kx
. (4.40)

Thus the ratio of f to kx determines the horizontal apparent velocity of the Fourier plane wave
at (kx,f). Radial lines (from the origin) in the (kx,f) plane connect points of a common apparent
velocity. The advantage of the Fourier domain lies in this simultaneous measurement of apparent
velocity for the entire seismic section. The disadvantage is that the notion of spatial position of a
particular apparent velocity measurement is lost.

If equation (4.38) is evaluated for the Fourier plane wave e2πi(kxx+kyy+kzz−ft) the result is

1
v2 =

k2
x

f2 +
k2

y

f2 +
k2

z

f2 . (4.41)

Now, for any monochromatic wave, we have λf = v and, using k = λ−1, then equation (4.41) leads
to

k2 = k2
x + k2

y + k2
z . (4.42)

This very important result shows that the coordinate wavenumbers, (kx,ky,kz), are the components
of a wavenumber vector, �k. Using a position vector, �r = (x, y, z), the Fourier plane wave can be
written compactly as e2πi(�k·�r−ft). Equation (4.42) can be expressed in terms of apparent wavelengths
(e.g. kx = λ−1

x , etc.) as
1
λ2 =

1
λ2

x

+
1
λ2

y

+
1
λ2

z

. (4.43)

which shows that, like apparent velocities, the apparent wavelengths are always greater than the
true wavelength. An important property of the wavenumber vector is that it points in the direction
of wave propagation (for an isotropic, homogeneous medium). An easy way to see this is to take the
gradient of the phase of a Fourier plane wave. Since the wavefront is defined as a surface of constant
phase, then wavefronts can be visualized as contours of the phase function φ̃ = πi(�k · �r − ft). The
gradient of this phase function points in the direction normal to the wavefronts, that is the direction
of a raypath. This gradient is

�∇φ̃ =
∂φ̃

∂x
x̂+

∂φ̃

∂y
ŷ +

∂φ̃

∂z
ẑ (4.44)

where x̂, ŷ, and ẑ are unit vectors in the coordinate directions. Calculating the indicated partial
derivatives leads to

�∇φ̃ = kxx̂+ ky ŷ + kz ẑ = �k. (4.45)

This equation can be achieved more simply by writing �∇ = r̂ ∂
∂r , where r =

√
(x2 + y2 + z2) and r̂

is a unit vector pointing to a particular location, so that

�∇φ̃ = r̂
∂�k · �r
∂r

= r̂
∣∣∣�k∣∣∣ = �k. (4.46)
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Figure 4.13: Snell’s law results from the physical requirement that the apparent velocity
along an interface be conserved.

So, the inverse apparent velocities are proportional to the components of the wavenumber vector
that points in the direction of wave propagation.

4.10 Snell’s Law

Snell’s law is the relation that governs the angles of reflection and refraction of wavefronts (or
equivalent raypaths) at velocity interfaces. To understand its origins, consider Figure 4.13 that
shows a periodic plane wave propagating across a planar interface between two media of velocity
v1 and v2. In the first medium, the wavelength is λ1 = v1/f while in the second medium it
is λ2 = v2/f . As the wavefronts cross the interface, they must do so in a continuous fashion,
otherwise, the wavefronts in the second medium would either lead or lag those in the first medium.
Either possibility violates considerations of causality. The only way for the two wavefront systems
to maintain continuity across the interface, and still have different wavelengths, is for them to have
different angles with respect to the interface. The relationship between these angles follows from a
consideration of apparent velocity. Suppose an array of receivers were placed along the interface.
Then the requirement of wavefront continuity means that the wavelength component measured along
the interface must be the same when evaluated in either medium. Since the frequency, f, does not
change (this is a property of linear wave propagation), the apparent velocities measured along the
interface must be the same in both media. Working in the rotated coordinates (x′, z′), the apparent
velocity vx′ must give the same result when evaluated using v1 and θ as when using v2 and φ. Thus

v1x′ ≡ v1
sin θ

= v2x′ ≡ v2
sinφ

. (4.47)

This result is called Snell’s law. The angles involved in Snell’s law can be considered as the angles
between the wavefronts and the interface or between the raypaths and the normal to the interface.

Snell’s law can be derived in other ways, perhaps the most common being to demonstrate that
it is a consequence of requiring the raypaths correspond to stationary traveltimes. This is known as
Fermat’s principle. Physically, waves can propagate energy from point A to point B along infinitely
many different paths. Fermat’s principle says that the most important paths are those for which the
traveltime is stationary with respect to slight variations of the path. Here, stationary most often
means a minimum though there are important physical situations for which traveltime is maximized.

The derivation of Snell’s law given here makes it clear that it applies to reflected as well as
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Figure 4.14: In a v(z) medium, all velocity interfaces are horizontal and ray propagation
is especially simple.

transmitted energy. In an acoustic medium, where there is only one mode of wave propagation, this
results in the angle of incidence and the angle of reflection being equal. However, in elastic media,
the incident and reflected waves can be either P-waves or S-waves. For example, in the case of an
incident P-wave reflecting as an S-wave, Snell’s law states

sin θp

vp
=

sin θs

vs
. (4.48)

As a final summary statement, Snell’s law states that wavefront propagation across a velocity inter-
face always conserves the apparent velocity along the interface. Though it is not proven here, this
holds for arbitrary wave types and for non-planar wavefronts and interfaces.

4.11 Raytracing in a v(z) medium

A v(z) medium is one where ∂xv = ∂yv = 0 and all velocity interfaces are horizontal. In this case,
Snell’s law says that the horizontal apparent velocity of the wavefront associated with the ray is
conserved. Using the notation of Figure 4.14 this may be stated, for the jthinterface, as

sin θj−1

vj−1
=

sinφj

vj
. (4.49)

Since all of the velocity interfaces are horizontal, φj = θj so that

sin θj−1

vj−1
=

sin θj

vj
. (4.50)

This analysis may be repeated at any other interface with a similar conclusion. Thus the quantity
p = sin θj/vj is conserved throughout the entire wave propagation. p is generally referred to as the
ray parameter since it is a unique constant for any ray and so parameterizes (or names) the possible
rays. The conservation of p and its identification as the horizontal apparent slowness is a direct
consequence of Snell’s law. This analysis generalizes to a continuous variation of v with z such that

p ≡ sin (θ(z))
v(z)

= a constant for any particular ray. (4.51)
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Figure 4.15: A differential ray element ds, at depth z, and travelling at an angle θ(z) with
respect to the vertical.

General expressions for the traveltime and horizontal distance travelled by any ray in a v(z)
medium can be easily derived. Figure 4.15 shows a differential element of a ray. From the geometry,
it follows that

dx = tan (θ(z)) dz (4.52)

and
dt =

ds

v(z)
=

dz

v(z) cos (θ(z))
. (4.53)

Snell’s law is incorporated by replacing the trigonometric functions using pv(z) = sin (θ(z)) so that

dx =
pv(z)√

1 − p2v2(z)
dz (4.54)

and
dt =

dz

v(z)
√

1 − p2v2(z)
. (4.55)

Expressions for macroscopic raypaths are obtained by simply integrating these results. For a ray
travelling between depths z1 and z2, the horizontal distance travelled becomes

x(p) =
∫ z2

z1

pv(z)√
1 − p2v2(z)

dz (4.56)

and the total traveltime is
t(p) =

∫ z2

z1

dz

v(z)
√

1 − p2v2(z)
. (4.57)

Given a velocity function and a ray parameter we can compute exactly the horizontal distance (offset)
and traveltime for a ray that traverses between two depths. The difficulty is that it is usually desired
to trace a ray with a specific offset and there is no simple way to determine the ray parameter that
will do this. Generally the process is iterative. The offsets produced by a fan of rays (i.e. p values)
are examined and hopefully two p values will be found that bracket the desired offset. Then a new,
refined fan of rays can be constructed and the process repeated until a ray is found that produces
the desired offset within a specified tolerance (called the capture radius).

If the v(z) medium is discretely layered rather than continuously variable, then summation forms
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Figure 4.16: The ray parameter can be measured directly by measuring the delay between
wavefront arrivals at successive receivers.

of equations (4.56) and (4.57) are more appropriate. These are easily seen to be

x(p) =
n∑

k=1

pvk√
1 − p2v2

k

∆zk (4.58)

and

t(p) =
n∑

k=1

∆zk

vk

√
1 − p2v2

k

. (4.59)

4.11.1 Measurement of the ray parameter

Given a seismic source record, the ray parameters for the upcoming waves arriving at the receiver
spread may be estimated by measuring the horizontal apparent velocity of each wave (see section
4.9). As shown in Figure 4.16, the emergence angle, θ0 of a ray arriving at a particular pair of
receivers is

sin θ0 =
v0∆t
∆r

(4.60)

where v0 is the instantaneous velocity immediately beneath the receivers, ∆r is the receiver spacing,
and ∆t is the time delay between the wavefront arrival at r and r+∆r. In arriving at this expression,
any wavefront curvature has been assumed to be inconsequential at the local site of measurement.
According to equation (4.51), the ray parameter is given by sin θ0/v0 so

∆t
∆r

=
1
vr

=
sin θ0
v0

= p. (4.61)

where vr is the horizontal apparent velocity of the wave at the measurement location.
Generally, it is expected that p changes with position due to changes in emergence angle and due

to lateral variations in the instantaneous velocity. Horizontal events, i.e. waves travelling vertically
when they reach the receiver array, have a ray parameter of 0. Waves travelling horizontally across
the array have a ray parameter of 1/v0 and on a seismic (x, t) plot have the maximum possible
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Figure 4.17: The physical considerations that place limits upon ray parameter manifest as
limits on the maximum time-dip in (x, t) space (A) and segment (kx, f) space into allowed
and forbidden regions (B).

slope. Even though the wavefronts are vertical, the slope on the time section cannot exceed 1/v0.
Taking sign into account, the range of possible values for the ray parameter is −v−1

0 ≤ p ≥ v−1
0 .

This maximum possible steepness in (x, t) space is a fundamental property of a seismic time section.
Assuming a value for v0 in the course of data processing means that any events with slopes steeper
than v−1

0 are interpreted as non-physical and must be rejected. Since apparent velocities can also
be expressed in (kx, f) space as f/kx (equation (4.40)), this phenomenon means that (kx, f) space
is segmented into allowed and forbidden regions.

Figure 4.17 shows this situation for both (x, t) and (kx, f) spaces. In (x, t) space, the fan of
allowed time dips forms a bow-tie when plotted at a specific point, though such events may exist
all (x, t) locations. In (kx, f) space, the zero ray parameter plots vertically down the f axis while
it is horizontal in (x, t). Thus the fan of allowed p values in (kx, f) forms a symmetric shape about
the f axis. (Only one half of the bow tie is shown here because negative frequencies are generally
redundant for real-valued data.) In (kx, f) space, p values are found only along radial lines emanating
from the origin, not along lines of the same slope emanating from some other point. The portion
of (kx, f) space corresponding to |kx/f | < v−1

0 (i.e. outside the shaded region in Figure 4.17B) is
“forbidden” to simple rays and is called the evanescent region. (It will be seen later that certain
exponentially decaying wave types can occur here.) The shaded portion of Figure 4.17B is called
the body wave region and is the portion of (kx, f) space that is available for seismic imaging.

4.11.2 Raypaths when v = v0 + cz

It is not difficult to integrate equations (4.56) and (4.57) for the case of instantaneous velocity that
increases linearly with depth (e.g. the universal velocity function). The details can be found in
Slotnick (1959) pages 205-211. Letting v(z) = v0 + cz, z1 = 0, and z2 = z, the results are

x(z, p) =
1
pc

[√
1 − p2v2

0 +
√

1 − p2 {v0 + cz}2
]

(4.62)

and

t(z, p) =
1
c

ln


[v0 + cz

v0

] 1 +
√

1 − p2v2
0

1 +
√

1 − p2 {v0 + cz}2




 . (4.63)

Slotnick shows that equation (4.62) describes an arc of a circle, having radius 1/(pc) and centered
at x0 =

√
1 − p2v2

0/(pc) and z0 = −v0/c. Manifestly, equation (4.62) describes a ray as it goes from
zero to some depth z. Since velocity is always increasing in this case, the Snell’s law angles are always
getting larger as a ray goes deeper. Eventually the ray flattens out, when θ(z) = sin−1(pv(z)) = 90◦,
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Figure 4.18: A selection of raypaths are shown
for the universal velocity function of Figure 4.1.
Code Snippet 4.11.1 created this plot.
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Figure 4.19: A set of wavefronts associated with
the raypaths of Figure 4.18. This was created
with Code Snippet 4.11.2.

and turns upward. Therefore, the depth at which a ray bottoms out, called its turning point , is
found from

zmax =
1 − pv0
pc

. (4.64)

The complete raypath for a ray that reaches its turning point and then returns to the surface
must have two values of x for each z so the function x(z) is mathematically double valued. However,
z(x) is still single valued so the complete raypath is most easily computed by solving equation (4.62)
for z to get

z =
1
pc

[√
1 − {pcx− cos θ0}2 − pv0

]
. (4.65)

Code Snippet 4.11.1 implements equation (4.65) to create the raypath display shown in Figure 4.18.
This code establishes a horizontal distance range and a set of takeoff angles on lines 1-3. Then, in
looping over the desired rays, it calculates a depth for each element of the vector x. However, many
of these rays will not cover the full range of x. Equation (4.65) returns a complex number for an x
distance that cannot be reached by a particular ray. Lines 11-14 search for these points and replace
their depths with NaN. (Recall that NaN’s do not display when plotted.) Also, the code generates
z values that are negative so lines 15-18 set these to NaN. The ray bending in Figure 4.18 is much
more realistic than a simple constant velocity calculation using straight rays. It shows that most
of the energy of a seismic source cannot penetrate to great depths because it is turned around by
refraction. All of the raypaths are obviously circular arcs whose centers move to the right as the ray
parameter decreases.

Code Snippet 4.11.1. This code implements equation (4.65) and makes Figure 4.18.

1 x=1:50:35000;
2 vo=1800;c=.6;nrays=10;
3 thetamin=5;thetamax=80;
4 deltheta=(thetamax-thetamin)/nrays;
5 zraypath=zeros(nrays,length(x));
6 for k=1:nrays
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7 theta=thetamin+(k-1)*deltheta;
8 p=sin(pi*theta/180)/vo;
9 cs=cos(pi*theta/180);
10 z = (sqrt( 1/(pˆ2*cˆ2) - (x-cs/(p*c)).ˆ2) -vo/c);
11 ind=find(imag(z)˜=0.0);
12 if(˜isempty(ind))
13 z(ind)=nan*ones(size(ind));
14 end
15 ind=find(real(z)<0.);
16 if(˜isempty(ind))
17 z(ind)=nan*ones(size(ind));
18 end
19 zraypath(k,:) = real(z);
20 end
21 figure;plot(x/1000,zraypath/1000);flipy;
22 xlabel(’x kilometers’);ylabel(’z kilometers’)

End Code

Slotnick also derives expressions for the wavefronts (surfaces of constant traveltime) and shows
them to be circles whose centers are along the z axis at

zw0 =
v0
c

[cosh(cT ) − 1] (4.66)

where T is the traveltime defining the wavefront. Each circular wavefront has a radius of

r =
v0
c

sinh(cT ). (4.67)

Code Snippet 4.11.2 calculates and plots 10 wavefronts for a set of traveltimes from 0 to 5 seconds.
For each wavefront, the strategy is to calculate the center of the wavefront circle (line z) and its
radius (line 8). Then, for a predefined set of depths (line 1) the horizontal positions are calculated
from the equation of a circle (line 9). As in the case of the raypaths, this results in both complex
and negative values which are found and set to NaN (lines 10-17). The resulting wavefronts clearly
show the effects of increasing velocity with depth, being more closely spaced at shallow depths than
when deeper. Figure 4.20 superimposes the raypaths and wavefronts and uses the command axis
equal to ensure a 1:1 aspect ratio. Clearly the raypaths are normal to the wavefronts.

Code Snippet 4.11.2. This code assumes that Code Snippet 4.11.1 has already been run and
proceeds from there to calculate and plot the wavefronts. Figure 4.19 is the result.

1 zw=0:50:30000;
2 nwaves=10;tmax=5;
3 xwavefront=zeros(nwaves,length(zw));
4 times=linspace(0,tmax,nwaves);
5 zo=zeros(1,nwaves);
6 for k=1:nwaves
7 zo(k)=vo*(cosh(c*times(k))-1)/c;
8 r=vo*sinh(c*times(k))/c;%radius
9 xw=sqrt(r.ˆ2-(zw-zo(k)).ˆ2);
10 ind=find(real(xw)<0.);
11 if(˜isempty(ind))
12 xw(ind)=nan*ones(size(ind));
13 end
14 ind=find(imag(xw)˜=0.0);
15 if(˜isempty(ind))
16 xw(ind)=nan*ones(size(ind));
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Figure 4.20: This figure superimposes the raypaths of Figure 4.18 onto the wavefronts of
Figure 4.19.

17 end
18 xwavefront(k,:) = real(xw);
19 end
20 figure;plot(xwavefront/1000,zw/1000);flipy;
21 xlabel(’x kilometers’);ylabel(’z kilometers’)

End Code

Exercise 4.11.1. Use equations (4.62) and (4.63) to calculate and plot the (x, t) curve for a P-P
reflection from 2000 meters depth. Assume the universal velocity function and a source and receivers
at depth 0. Repeat your calculations for a P-S reflection assuming a constant vp/vs of 2. In each
case, what is the maximum source-receiver offset for which a reflection is expected?

Exercise 4.11.2. Derive equations (4.62) and (4.63) from equations (4.56) and (4.57).

Exercise 4.11.3. For the linear increase of velocity with depth, a source at (x, z) = (0, 0), and
considering transmitted rays only, is there a unique p for each point in the (x, z) plane? Will your
conclusion remain valid for more general v(z)?

4.11.3 MATLAB tools for general v(z) raytracing

The analytic expressions in the previous section produce first-order realism by including the effects
of ray bending when v(z) is a linear function of depth. However, more accurate results are often
desired for complicated v(z) such as those that result from well log measurements. In this case the
only way to proceed is through a numerical implementation of equations (4.56) and (4.57), or more
properly, equations (4.58) and (4.59). Usually, it is desired to trace rays between two specific points
such as a source and receiver, perhaps via a reflection at a specific depth. There is no known solution
technique that solves this two point raytracing problem in one step. Instead, an iterative procedure,
as alluded to on page 93, must be used.

For definiteness, suppose it is desired to raytrace a P-P reflection from a reflector at zr = 2000m
in an arbitrary v(z) medium and for offsets from 100 to 2000 m. Since a P-P ray follows a completely
symmetric path (if source and receiver are at the same depth), it is sufficient to trace a ray from
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z = 0 to z = zr at offset x/2 and then double the results. However, equation (4.56) does not easily
facilitate this since the value of p that will do the job is not known. If velocity were constant, then
simple geometry would predict the takeoff angle of θ0 = arctan(x/(2zr)) and thus the ray parameter
is trivially found. For increasing velocity with depth, the takeoff angle will be smaller than that
predicted with constant velocity while for decreasing velocity with depth the situation is reversed.
In the general case, the takeoff angle and hence the ray parameter and cannot be found analytically.

There are seven functions and one demonstration script provided for v(z) raytracing. These are

rayfan Shoots a fan of rays given their ray parameters for v(z).

rayfan a Similar to rayfan but the rays are specified by angle.

shootray Similar to rayfan but with less error checking (faster).

traceray pp Traces a P-P (or S-S) reflection for v(z).

traceray ps Traces a P-S (or S-P) reflection for v(z).

traceray Traces an arbitrary ray given its raycode for v(z).

drawray Plots rays given their ray parameters.

raytrace demo Interactive demonstration of v(z) raytracing capabilities.

The approach taken here is to shoot a fan of rays and to iteratively refine the fan until a
convergence criterion is met. For a general case, this iteration will shoot many fans of rays so the
ray fan algorithm needs to be very efficient. The functions rayfan , rayfan a , and shootray all
performs this task in s similar fashion. However, only the latter is actually used in the two-point
raytracers, traceray pp , traceray ps , and traceray , because it is the most efficient. However,
the efficiency of shootray is achieved at the sacrifice of some flexibility so rayfan and rayfan a
are provided as well.

As shown in Code Snippet 4.11.3, shootray has three inputs: v, z, and p that are (respectively)
column vectors of velocity and depth and a row vector of ray parameters. The vector of rays defined
by p is traced from z(1) to z(end) using the velocities in v. As discussed in section 4.8, the velocity
model is assumed to be piecewise constant, with velocity v(k) beginning at z(k) and persisting as
a constant until z(k+1). Accordingly, the last velocity in v is irrelevant for shootray , and line 3
establishes an index vector to the relevant velocities. Lines 4 through 8 are key to the efficiency
of shootray . On line 4, v(iprop) is an m length column vector and p is an n length row vector.
This product of an m× 1 matrix representing v(z) with an 1 × n matrix representing p is an m× n
matrix of sin θ = pv(z) called sn. The kth column of sn represents the product pv(z) for the kth

ray parameter. Line 6 builds the matrix cs that represents cos θ(z) =
√

1 − p2v2(z). Lines 7 and
8 build the m × n matrices vprop and thk that represent v(z) and ∆z for each ray. Since these
quantities are the same for each ray, they are represented by matrices with identical columns. Thus,
we have four m× n matrices, with z as the row coordinate and p as the column coordinate. Not all
of these combinations of z and p can correspond to physical rays since the depth of penetration of
a ray is limited. Line 5 detects these non-physical combinations by finding any values of pv(z) that
are greater than one.

Code Snippet 4.11.3. The function shootray shoots a fan of rays as defined by the row vector p
from z(1) to z(end) through the velocity model defined by the column vectors v and z.
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1 function [x,t]=shootray(v,z,p)
2 ... code not displayed ... see shootray.m
3 iprop=1:length(z)-1;
4 sn = v(iprop)*p;
5 [ichk,pchk]=find(sn>1);
6 cs=sqrt(1-sn.*sn);
7 vprop=v(iprop)*ones(1,length(p));
8 thk=abs(diff(z))*ones(1,length(p));
9 if(size(sn,1)>1)
10 x=sum( (thk.*sn)./cs);
11 t=sum(thk./(vprop.*cs));
12 else
13 x=(thk.*sn)./cs;
14 t=thk./(vprop.*cs);
15 end
16 %assign infs
17 if(˜isempty(ichk))
18 x(pchk)=inf*ones(size(pchk));
19 t(pchk)=inf*ones(size(pchk));
20 end

End Code

The ray tracing is completed in lines 9 through 15 and an if statement is used to handle the
single layer case. Using the m× n matrices thk, sn, cs, line 10 computes equation (4.58) by using
the .* operator to form the expression pvk∆zk/

√
1 − p2v2

k as an m× n matrix. Then, as discussed
in section 4.8, the function sum is used to compute the discrete sum that approximates the integral
in equation (4.56). When applied to a matrix, sum produces a row vector that is the sum of each
column of the matrix. This behavior dictated the construction of the m×n matrices with p constant
in each column. The if statement is required for the single layer case also because of the behavior
of sum. If there is only one layer, then the m × n matrices are all 1 × n row vectors. When given
a row vector, sum adds its entries to get a single value instead of “summing” the columns of length
1. The if statement circumvents this behavior by omitting the sum entirely in the single layer case.
The final step, lines 17 through 20 assigns Inf to those non-physical values that were flagged earlier
on line 5.

The function shootray does not check for consistency of the inputs to ensure that v and z are
column vectors and p is a row vector. Also, it lacks flexibility to specify the start and end depths
and always shoots the rays from z(1) to z(end). rayfan traces rays with the same scheme as
shootray but incorporates error checking and allows the start and end depths to specified. This
makes rayfan easier to use but slower. shootray is intended to be used within a larger raytracing
scheme while rayfan is more easily used from the command line.

The two-point ray tracing functions traceray pp , traceray ps , and traceray all work simi-
larly with an iterative scheme involving multiple calls to shootray . The codes are quite intricate
and will not be displayed. traceray pp and traceray ps are constructed to trace P-P and P-S
primary reflections and nothing else. traceray is more general and can trace an arbitrary ray
that has multiple bounces (reflections) and mode conversions. All three codes use similar schemes
of building an equivalent layered model that allows the problem to be addressed by shooting rays
in one direction only. For example, the P-P reflection problem requires a ray to be traced down
through a set of layers to a specified depth and then back up again though nearly the same set of
layers. (It will be exactly the same set if the source and receiver depths are the same.) Instead of
this two-way problem, a one-way problem is set up by determining the layers for the upgoing leg
and placing them beneath the reflector in the order that they are encountered (Figure 4.21). The
layers containing the source, receiver, and reflector are adjusted in thickness so that shootray can
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Figure 4.21: (A) A P-P reflection between a source and receiver at different depths. (B)
The equivalent one-way raypath to the two-way ray shown in (A). The dashed line is the
reflector in both cases.

be used to trace rays from z(1) to z(end). A similar equivalent layering can always be constructed
for a ray that changes mode (between P and S) and that takes any number of extra bounces. In the
former case, the equivalent layering simply must use the correct velocities. In the latter case, the
equivalent layering can contain many repeats of a section. This is a technically simple scheme for
computing any ray in v(z).

The two-point raytracing functions can all trace rays from a single starting point to multiple
receivers at once. That is, they are vectorized to produce simple source gathers. Though the source
depth need not equal the receiver depth, if multiple receivers are specified, they must all be at the
same depth. This means that geometries like that of a VSP must be handled by calling the ray
tracer separately for each receiver depth. All three programs iterate until all receivers have a ray
traced within a capture radius of their position or until a maximum number of iterations is reached.
A capture radius is the radius of an imaginary circle around each receiver which, if a ray falls within
it, is considered “good enough” for that receiver. If the flag optflag is set to 1, then the actual
traveltime and ray parameter returned are linearly interpolated between the captured ray and the
next closest ray. If optflag is zero, then the captured ray is used directly.

Unlike many raytracers, the codes here can reflect, or mode convert, a ray at any depth not just
at a layer boundary. Though this may not be physically correct, it allows the common (and very
practical) practice of separating the reflectivity from the propagation model. The idea is that the
rays are traced through a simplified background medium which is chosen to give sufficiently accurate
traveltimes for the task at hand. Reflections are assumed to come from a level of detail beyond that
required for the traveltime calculations. For example, a linear variation of v(z) may be used with
locally determined constants as a background velocity function. Of course, the user who disagrees
with this approach is free to prescribe reflections at actual velocity layer boundaries.

Code Snippet 4.11.4 exhibits the use of traceray pp and traceray ps to model P-P and P-S
reflections with the universal velocity function as the background medium. The results are shown
in Figures 4.22 and 4.23. Line 1 defines the vp and vs velocity models with a vp/vs of 2. Lines 2
and 3 establish the basic geometry of source, receivers, and reflector. The capture radius is set to
10% of the receiver spacing and the maximum number of iterations is set to 4 which is adequate for
smooth media. The call to traceray pp is on line 7 and the final parameter dflag instructs the
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Figure 4.22: A P-P reflection is shown for a
background medium of vp(z) = 1800 + .6zm/s.
See Code Snippet 4.11.4.
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Figure 4.23: A P-S reflection is shown for a back-
ground medium of vs(z) = 900 + .3z. See Code
Snippet 4.11.4

program to draw the rays into the current figure window. Lines 9 and 10 draw symbols indicating
the source and receiver and line 12 plots the traveltime in the bottom half of the figure. Lines 15-22
are very similar except that traceray ps is called to create a P-S reflection. An S-P reflection could
be created by reversing the order of the velocity arguments (i.e.traceray ps(vs,zs,vp,zp,...)).
Similarly, an S-S reflection can be modelled using traceray pp and providing it with the S-wave
velocity functions.

Code Snippet 4.11.4. This example raytraces a P-P and a P-S reflection in a linear gradient
medium. It creates Figures 4.22 and 4.23.

1 zp=0:10:4000;vp=1800+.6*zp;vs=.5*vp;zs=zp;% velocity model
2 zsrc=100;zrec=500;zd=3000;%source receiver and reflector depths
3 xoff=1000:100:3000;caprad=10;itermax=4;%offsets, cap radius, and max iter
4 pfan=-1;optflag=1;pflag=1;dflag=2;% default ray fan, and various flags
5 % create P-P reflection
6 figure;subplot(2,1,1);flipy;
7 [t,p]=traceray_pp(vp,zp,zsrc,zrec,zd,xoff,caprad,pfan,itermax,optflag,...
8 pflag,dflag);
9 title([’Vertical gradient simulation, P-P mode zsrc=’ ...
10 num2str(zsrc) ’ zrec=’ num2str(zrec)])
11 line(xoff,zrec*ones(size(xoff)),’color’,’b’,’linestyle’,’none’,’marker’,’v’)
12 line(0,zsrc,’color’,’r’,’linestyle’,’none’,’marker’,’*’)
13 grid;xlabel(’meters’);ylabel(’meters’);
14 subplot(2,1,2);plot(xoff,t);grid;
15 xlabel(’meters’);ylabel(’seconds’);flipy
16 % P-S reflection
17 figure;subplot(2,1,1);flipy;
18 [t,p]=traceray_ps(vp,zp,vs,zs,zsrc,zrec,zd,xoff,caprad,pfan,itermax,...
19 optflag,pflag,dflag);
20 title([’Vertical gradient simulation, P-S mode zsrc=’ ...
21 num2str(zsrc) ’ zrec=’ num2str(zrec)])
22 line(xoff,zrec*ones(size(xoff)),’color’,’b’,’linestyle’,’none’,’marker’,’v’)
23 line(0,zsrc,’color’,’r’,’linestyle’,’none’,’marker’,’*’)
24 grid;xlabel(’meters’);ylabel(’meters’);
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Figure 4.24: A P-P reflection is shown for an
offset VSP. See Code Snippet 4.11.5.
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Figure 4.25: A P-S reflection for an offset VSP
is shown. See Code Snippet 4.11.5.

25 subplot(2,1,2);plot(xoff,t);grid;
26 xlabel(’meters’);ylabel(’seconds’);flipy;

End Code

Often very interesting calculations can be done by calling these functions in a loop. For example,
since the receivers are required to be at a constant depth on each call to traceray pp a VSP cannot
be modelled with a single call. However, as Code Snippet 4.11.5 shows, the desired results can be
obtained by looping over receiver depth. Though not as efficient in this mode, the calculation is still
simple and accurate. The parameter pfan is set to -2 in this case which causes the ray tracer to
start with the final ray fan determined the last time it was called. The modelled events are shown
in Figures 4.24 and 4.25.

Code Snippet 4.11.5. This code traces P-P and P-S reflections for an offset VSP by looping over
receiver depth. It creates Figures 4.24 and 4.25.

1 zp=0:10:4000;vp=1800+.6*zp;vs=.5*vp;zs=zp;%velocity model
2 zrec=500:100:2500;zsrc=0;zd=3000;xoff=1500;%geometry
3 caprad=10;itermax=4;%cap radius, and max iter
4 pfan=-2;optflag=1;pflag=1;dflag=2;% default ray fan, and various flags
5 figure;subplot(2,1,1);flipy
6 t=zeros(size(zrec));
7 for kk=1:length(zrec);
8 if(kk==1)dflag=-gcf;else;dflag=2;end
9 [t(kk),p]=traceray_pp(vp,zp,zsrc,zrec(kk),zd,xoff,caprad,pfan,...
10 itermax,optflag,pflag,dflag);
11 end
12 title([’ VSP Vertical gradient simulation, P-P mode ’])
13 line(xoff,zrec,’color’,’b’,’linestyle’,’none’,’marker’,’v’)
14 line(0,zsrc,’color’,’r’,’linestyle’,’none’,’marker’,’*’)
15 grid;xlabel(’meters’);ylabel(’meters’);
16 subplot(2,1,2);plot(t,zrec);
17 xlabel(’seconds’);ylabel(’depth (meters)’);grid;flipy;
18
19 figure;subplot(2,1,1);flipy;
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Figure 4.26: A complicated multiple is shown
that remains a P-ray throughout. See Code
Snippet 4.11.6
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Figure 4.27: A complicated ray is shown that
converts back and forth from P to S as it
bounces. See Code Snippet 4.11.6

20 t=zeros(size(zrec));
21 for kk=1:length(zrec);
22 if(kk==1)dflag=-gcf;else;dflag=2;end
23 [t(kk),p]=traceray_ps(vp,zp,vs,zs,zsrc,zrec(kk),zd,xoff,caprad,pfan,...
24 itermax,optflag,pflag,dflag);
25 end
26 title([’ VSP Vertical gradient simulation, P-S mode ’])
27 line(xoff,zrec,’color’,’b’,’linestyle’,’none’,’marker’,’v’)
28 line(0,zsrc,’color’,’r’,’linestyle’,’none’,’marker’,’*’)
29 grid;xlabel(’meters’);ylabel(’meters’);
30 subplot(2,1,2);plot(t,zrec);
31 xlabel(’seconds’);ylabel(’depth (meters)’);grid;flipy;

End Code

As a final example of these raytracing facilities, consider the calculation of a complicated mode
that takes multiple bounces and converts back and forth between P and S modes. This calculation
can be done with traceray and is shown in Code Snippet 4.11.6. The key idea here is to use a
ray code that defines the depths and mode types of the different legs of the raypath. A ray code is
an n × 2 matrix with the first column being a list of depths and the second containing either the
integer 1 (P-wave) or 2 (S-wave). For example, the ray code [0 1;1000 2;800 2;1000 1;100 1]
specifies a P-ray from depth 0 to 1000 m. At 1000 m it converts to an S-ray and travels back up to
800 m and then back down to 1000 m while remaining an S-ray. On the second reflection at 1000
m it converts back to a P-ray and travels up to 100 m where it ends. The final entry in column two
is meaningless. Code Snippet 4.11.6 demonstrates this facility by creating a complicated multiple
bounce P-ray (no mode conversions) on line 8 and a multimode ray on line 17. Generally, it might
be expected that significant rays like this will be symmetric (i.e. the same bounce pattern on both
the up and down legs); however, creating an asymmetric ray is perhaps a better demonstration.

There are many more possible ways to use these raytracing facilities. For more examples, execute
the script raytrace demo and follow the on-screen instructions. The code of this script is similar
to the examples presented here and should be comprehensible.
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Code Snippet 4.11.6. Here is a demonstration of the use of traceray to compute multiple-bounce
and multiple-mode raypaths. This code creates Figures 4.26 and 4.27.

1 zp=0:10:4000;vp=1800+.6*zp;vs=.5*vp;zs=zp;
2 xoff=1000:100:3000;
3 caprad=10;itermax=4;%cap radius, and max iter
4 pfan=-1;optflag=1;pflag=1;dflag=2;% default ray fan, and various
5
6 raycode=[0 1;1500 1;1300 1;2000 1;1800 1;3000 1;2000 1;2300 1;1000 1; 1500 1; 0 1];
7 figure;subplot(2,1,1);flipy
8 [t,p]=traceray(vp,zp,vs,zs,raycode,xoff,caprad,pfan,itermax,optflag,pflag,dflag);
9 title(’A P-P-P-P-P-P-P-P-P-P mode in vertical gradient media’);
10 xlabel(’meters’);ylabel(’meters’)
11 line(xoff,zeros(size(xoff)),’color’,’b’,’linestyle’,’none’,’marker’,’v’)
12 line(0,0,’color’,’r’,’linestyle’,’none’,’marker’,’*’);grid
13 subplot(2,1,2);plot(xoff,t);
14 grid;flipy;xlabel(’offset’);ylabel(’time’)
15
16 raycode=[0 1;1500 2;1300 2;2000 2;1800 2;3000 1;2000 1;2300 1;1000 1; 1500 2; 0 1];
17 figure;subplot(2,1,1);flipy
18 [t,p]=traceray(vp,zp,vs,zs,raycode,xoff,caprad,pfan,itermax,optflag,pflag,dflag);
19 title(’A P-S-S-S-S-P-P-P-P-S mode in vertical gradient media’);
20 xlabel(’meters’);ylabel(’meters’)
21 line(xoff,zeros(size(xoff)),’color’,’b’,’linestyle’,’none’,’marker’,’v’)
22 line(0,0,’color’,’r’,’linestyle’,’none’,’marker’,’*’);grid
23 subplot(2,1,2);plot(xoff,t);
24 grid;flipy;xlabel(’offset’);ylabel(’time’)

End Code

Exercise 4.11.4. Consider the velocity model defined by

vp(z) =




1860 + .6z . . . 0 ≤ z < 1000m
3100 + .4(z − 1000) . . . 1000 ≤ z < 1550m
2750 + .7(z − 1550) . . . 1550 ≤ z

and vp/vsof 2. Create a display showing the P-P and P-S raypaths for source-receiver offsets from
10 to 3010 at 100 meter intervals for a reflector at a depth of 2500 m. Let the source and receivers
be a z = 0 Make another plot showing the angle of incidence on the reflector (in degrees) versus
offset for both P-P and P-S reflections.

Exercise 4.11.5. For the velocity model in the previous exercise, what is the largest offset that can
be successfully raytraced for the reflector at z = 2500m for both P-P and P-S reflections. Explain
why the ray tracing fails. How do these conclusions change if the reflector is at 1500 m?

4.12 Raytracing for inhomogeneous media

Raytracing for more general settings that the v(z) method described in the previous setting can
be done by detailing the velocity field on a grid in two or three dimensions and then shooting
rays through it. The ray trajectories are found by solving a certain differential equation that can
be derived from the wave equation. An alternative to the gridded velocity model is to specify
the geometry of geologic interfaces between different velocity units (layers) and then to prescribe
the velocity of each unit by a simple analytic function (e.g. constant velocity layers). Rays are
then traced through the model by using analytic results within with layers and explicit Snell’s law
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calculations at the interfaces. The first approach is generally simpler because the raytracing can
be reduced to the solution of an ordinary differential equation that implicitly incorporates Snell’s
law. In the second approach, the description of the geologic interfaces must be done with great
care to ensure that they connect without overlap or voids and this can require complex geometric
calculations. Furthermore, it is generally a complex matter to determine the next interface that a
ray will encounter. However, for three dimensional simulations, the gridded model approach can
rapidly consume a great deal of computer memory and can rapidly become impractical. This is
especially true if rays are to be traced through a complex structure that lies far beneath a simple
one. In this case, the grid must be made quite small for the complex structure which results in too
much detail for the upper medium. In this book, only the gridded approach in two dimensions will
be explored.

4.12.1 The ray equation

A reasonable expectation for inhomogeneous media is that individual temporal frequencies can be
represented with a mathematical form that is similar to that for a Fourier plane wave. In two or
three dimensions, a Fourier plane wave has the form Ae2πi(ft±�k·�x) where �k and �x are the wavenumber
and position vectors. By analogy, for the variable-velocity scalar wave equation

∇2ψ − 1
v2(�x)

∂2ψ

∂t2
= 0 (4.68)

an approximate plane-wave solution will now be assumed in the form

ψ(�x, t) = A(�x)e2πif(t−T (�x)) (4.69)

where A(�x) and T (�x) are unknown functions describing amplitude and traveltime that are expected
to vary with position. In the constant velocity limit, A becomes constant while T still varies rapidly
which leads to the expectation that variation in A will often be negligible compared with variation
in T . Substitution of equation (4.69) into equation (4.68) will require computation of the Laplacian
of the assumed solution. This is done as

∇2ψ(�x, t) = �∇ · �∇
[
A(�x)e2πif(t−T (�x))

]
= �∇ ·

[
e2piif(t−T )�∇A− 2πiAe2πif(t−T )�∇T

]
(4.70)

which can be expanded as

∇2ψ(�x, t) =
{

∇2A− 4πif �∇A · �∇T − 4π2f2A
[
�∇T
]2

− 2πifA∇2T

}
e2πif(t−T (�x)). (4.71)

Then, using this result and ∂2
t ψ(�x, t) = −4π2f2Ae2πif(t−T (�x)) in equation (4.68) and equating real

and imaginary parts gives the two equations

[
�∇T
]2

− ∇2A

4π2f2A
− 1
v(�x)2

= 0 (4.72)

and
A

2
∇2T − �∇A · �∇T = 0. (4.73)

So far, these results are exact and no simplification has been achieved. However, the second term
in equation (4.72) is expected to be negligible when velocity gradients are weak or when frequencies
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P
Pdx

T
T

Figure 4.28: A differential raypath element d�x extends from a point P1 on a wavefront at
time T1 to a point P2 on a wavefront at time T2. The ray segment is perpendicular to
both wavefronts and has length |d�x| = ∆s.

are high regardless of the velocity gradient. When this term is discarded, the result is the nonlinear,
partial-differential equation called the eikonal equation

[
�∇T
]2

− 1
v(�x)2

= 0. (4.74)

Though not exact, for many realistic situations, a solution to the eikonal equation gives accurate
traveltimes through complex media. Equation (4.73) is called the geometrical spreading equation
because its solution can be shown to describe the flow on energy along a raypath.

The differential equation for raypaths is the vector equation that is implied by the eikonal equa-
tion (4.74). For isotropic media, raypaths are normal to the wavefronts and the latter are described
as surfaces where T (�x) = constant. Therefore, �∇T must be a vector that points in the direction of
the raypath and the eikonal equation shows that

∣∣∣�∇T ∣∣∣ = v−1. Consider a wavefront at time T1(�x1)
and another at a slightly later time T2(�x2) where T2 − T1 is very small. Let P1 be a point on the
surface T1 and P2 be the corresponding point on T2 along the normal from P1 (Figure 4.28). Then
∆s = (T2(P2)−T1(P1))/v(P1) is an estimate of the perpendicular distance between these wavefronts,
and

�∇T (P1) = lim
P2→P1

T2(P2) − T1(P1)
∆s

ŝ =
ŝ

v(P1)
(4.75)

where ŝ is a unit vector that is normal to the surface T1(P1) or, in other words, ŝ points along the
raypath. If d�x is the differential vector pointing from P1 to P2 then ŝ may be written

ŝ =
d�x

ds
(4.76)

where ds = |d�x| and s is the arclength along the raypath. Combining equations (4.75) and (4.76)
gives the raypath equation

�∇T (�x) =
ŝ

v(�x)
=

1
v(�x)

d�x
ds
. (4.77)

The traveltime T can be eliminated from equation (4.77) by calculating its derivative with respect
to arclength, which is

d�∇T
ds

=
d
ds

1
v

d�x
ds
. (4.78)
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The left-hand-side of this equation can be simplified as follows

d�∇T
ds

= �∇
[

dT
ds

]
= �∇

[
1

v(�x)

]
. (4.79)

The last step in this equation is justified using equation (4.77) and the identity d/ds = ŝ · �∇.
Intuitively, this step is valid because �∇T points along the raypath and therefore dT/ds, that is the
scalar derivative with respect to arclength along the raypath, gives the full magnitude of �∇T . Thus
the ray equation is recast as

1
v2(�x)

�∇v(�x) = − d
ds

1
v(�x)

d�x
ds

(4.80)

which is a second order ordinary differential equation for the raypath vector �x. This result can be
further recast into a system of first-order equations by modifying the right-hand-side using

d
ds

=
dt
ds

d
dt

=
1

v(�x)
d
dt

(4.81)

and defining the slowness vector, �p = �∇T , that is (from equation (4.77)

�p =
1

v(�x)
d�x
ds

=
1

v2(�x)
d�x
dt
. (4.82)

These last two equations allow equation (4.80) to be recast as the first-order system

d�x
dt

= v2(�x)�p (4.83)

and
d�p
dt

= −
�∇v(�x)
v(�x)

. (4.84)

Verification that these two equations (4.83) and (4.84) are equivalent to equation (4.80) can be done
by solving equation (4.83) for �p and substituting it into equation (4.84).

Example 4.12.1. As an illustration of the validity of equations (4.83) and (4.84), it is instructive to
show that they reduce to the v(z) case considered previously. If v(�x) = v(z), then in two dimensions,
let �x = [x, z] and �p = [px, pz] so that equation (4.84) becomes

dpx

dt
= 0 and

dpz

dt
= − 1

v(z)
∂v(z)
∂z

(4.85)

and equation (4.83) is
dx
dt

= v2(z)px and
dz
dt

= v2(z)pz. (4.86)

The first of equations (4.85) immediately integrates to px = constant. Using this result in the first
of equations (4.86) together with v−2(z)dx/dt = v−1(z)dx/ds results in

px =
1

v(z)
dx
ds

=
sin θ
v(z)

= constant (4.87)
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Figure 4.29: A ray is shown traced through v(x, z) = 1800 + .6z + .4x using ode45 as
shown in Code Snippet 4.12.1.

where sin θ = dx/ds has been used. Of course, this is Snell’s law for the v(z) medium. Of the
remaining two equations in the system (4.85) and (4.86), the first is redundant because p2

x + p2
z =

v−2(z) and the second gives

dt =
dz

v2(z)pz
=

dz
v(z) cos θ

=
dz

v(z)
√

1 − v2(z)p2
x

. (4.88)

When integrated, this will result in equation (4.57). In that equation, p is the same as px here.

4.12.2 A MATLAB raytracer for v(x, z)

The numerical solution of equations (4.83) and (4.84) can be done using well-tested and very general
methods for solving first-order ordinary differential equations. An example is the fourth-order Runge-
Kutta method (Press et al. (1992) chapter 16) that will be used here. This and other general methods
are available in MATLAB; however, it is often useful to implement a specific Runge-Kutta scheme
to gain improved flexibility.

To proceed, define the abstract ray vector �r = [�x, �p]. That is, in n dimensions �r is a 2n
dimensional vector formed by concatenating the position and slowness vectors. In two dimensions,
the ray vector is �r = [x z px pz] and the time derivative of �r is defined through equations (4.83) and
(4.84) as

dr(1)
dt

= v2r(3);
dr(2)

dt
= v2r(4);

dr(3)
dt

= −∂ ln v
∂x

;
dr(4)

dt
= −∂ ln v

∂z
. (4.89)

Defining the vector �a = [v2�p − �∇(ln v)], equation (4.89) becomes

d�r
dt

= �a. (4.90)

Then, given this prescription for d�r/dt and initial values for �r, the fourth-order Runge-Kutta (RK4)
method is invoked to integrate equation (4.90) for �r(t).

The MATLAB implementation requires a velocity matrix giving v(x, z) on a grid with ∆x =
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∆z ≡ ∆g and uses the convention that (x = 0, z = 0) is in the upper left corner. Prior to
raytracing, the function rayvelmod is invoked with arguments being the velocity matrix and the
grid spacing ∆g. This function creates a number of global variables that will be used repeatedly
in the raytracing. These include matrices of v2, ∂x ln v, and ∂z ln v that are needed in equation
(4.89). This precomputation speeds the raytracing and is especially beneficial if a great many rays
are to be traced; however, the cost is three times the memory overhead of the simple velocity matrix.
rayvelmod need only be called once at the beginning of the raytracing unless the velocity model is
changed.

The function drayvec implements the computation of d�r/dt according to equation (4.89). This
function is designed with the interface required by MATLAB’s built-in ODE solver ode45. This
latter function implements an RK4 scheme by calling a user-designed function like drayvec that
computes the time derivative of the solution vector. The general interface required by ode45 for
such a function is that it must have two input arguments that are the current time and the current
value of the solution vector �r. Thus, even though equation (4.90) does not require the value of t to
compute d�r/dt, drayvec requires t as input but does not use it.

Code Snippet 4.12.1. This code builds a velocity matrix representing v(x, z) = 1800 + .6z + .4x
and then uses ode45 to trace a ray. It creates Figure 4.29.

1 dg=10; %grid spacing
2 tstep=0:.004:3; %time step vector
3 x=0:dg:10000;z=x’; %x and z coordinates
4 v=1800+.6*(z*ones(1,length(x)))+.4*(ones(length(z),1)*x);%velocity
5 rayvelmod(v,dg);clear v;%initialize the velocity model
6 theta=pi*45/180;%takeoff angle
7 r0=[0,0,sin(theta)/1800,cos(theta)/1800]’;%initial value of r
8 [t,r]=ode45(’drayvec’,tstep,r0);%solve for raypath
9 plot(r(:,1),r(:,2));flipy%plot

End Code

Code Snippet 4.12.1 illustrates the tracing of a single ray in a medium with both vertical and
horizontal velocity gradients. The time-step vector is established on line 2 and a .004 second timestep
is used. Smaller timesteps will improve accuracy but will also lengthen the computation. For a
particular velocity model, some testing may be required to determine the optimal time step for the
problem at hand. The velocity matrix is built on line 4 and then passed to rayvelmod on line 5. It
is then cleared to save space because rayvelmod has established the required velocity information
in global matrices. The takeoff angle and initial values for �r are calculated on lines 7 and 8. As
mentioned in exercise 4.12.1, the components of �p are not independent of one another since �p·�p = v−2

and this is illustrated in the calculation of the initial values. Finally, ode45 is invoked to integrate
equation (4.90) and thus compute �r for the vector of times established on line 2. The calculated ray
is shown in Figure 4.29.

In the computation of d�r/dt it is generally true that the ray coordinates at a particular time will
not coincide with grid points in the model. Thus the estimation of the velocity terms in equations
(4.89) requires some form of interpolation. By default, drayvec uses nearest neighbor interpolation
because this is the fastest method. For more accuracy, bilinear interpolation is also available and its
use is controlled through a global variable that is explained in the drayvec help file.

A problem with the use of ode45, that is apparent upon close inspection of Figure 4.29, is that
the ray has been traced beyond the bounds of the velocity model. To avoid indexing into the velocity
array beyond its bounds, drayvec has been constructed to use the first (or last) column to represent
a simple v(z) medium for rays than go beyond the beginning (or end) of the model. A similar strategy
is used to cope with rays that go beyond the minimum or maximum depths. Though this allows
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the solution to proceed, a better approach would be to detect when a ray has reached the boundary
of the model and stop the raytracing. For this purpose, an RK4 solver has been built as described
in Press et al. (1992) and is incorporated in the functions shootrayvxz and shootrayvxz g . In
these functions, the ray is tested at each time step to determine if it is within the model bounds
and raytracing is halted before the maximum time if the ray leaves the model. The syntax to
trace a ray with either program is essentially the same as with Code Snippet 4.12.1 except that the
command [t,r]=shootrayvxz(tstep,r0) replaces [t,r]=ode45(’drayvec’,tstep,r0) on line 8.
The functions shootrayvxz and shootrayvxz g differ in that the latter calls drayvec to compute
d�r/dt while the former does this computation directly without the function call. The result is that
shootrayvxz is much more efficient but does not offer bilinear interpolation as does shootrayvxz g .
If nearest-neighbor interpolation is satisfactory, then shootrayvxz should be preferred because it is
much faster.

Another useful raytracer is shootraytosurf . This function works similarly to shootrayvxz but
the ray is traced until it reaches z = 0 or a maximum time limit is exceeded. This is useful in normal
incidence raytrace modelling that will be discussed in chapter 5 in connection with normal incidence
raytrace migration.



Chapter 5

Elementary Migration Methods

In exploration seismology, migration refers to a multi-channel processing step that attempts to
spatially re-position events and improve focusing. The term is essentially synonymous with imaging
(though the latter term has a specific secondary meaning as a sub-step in a migration process). Before
migration, seismic data is usually displayed with traces plotted at the surface location of the receivers
and with a vertical time axis. This means that dipping reflections are systematically mispositioned in
the lateral coordinate and the vertical time axis needs a transformation to depth. Also problematic
is the unfocussed nature of seismic data before migration. It is very much like looking through
an unfocussed camera lens. Just as the construction of a camera lens requires knowledge of the
physics of light propagation, migration algorithms incorporate the physics of acoustic and elastic
wave propagation. In addition to spatial positioning and focusing, migration algorithms perform
amplitude and phase adjustments that are intended to correct for the effects of the spreading (or
convergence) of raypaths as wave propagate.

Migration can be viewed as an approximate solution to the general elastic wavefield inversion
problem (Gray, 1997). Full elastic inversion uses the entire seismic wavefield as input into a mathe-
matical process that seeks to estimate the elastic parameters of the earth. This is called an inverse
problem because it is opposite to the classical forward modelling problem of predicting the seismic
wavefield response of a known elastic earth model. Generally, a forward problem can be reduced to
finding the solution to a partial differential equation, in this case the elastic wave equation, given
specifications of the coefficients of the equation as functions of position and given appropriate bound-
ary conditions. Though often this is a very difficult process, it is usually more easily accomplished
than the corresponding inverse problem. The inverse problem usually amounts to estimating the co-
efficients of a partial differential equation given its response to a known source. Often, these inverse
problems are ill-posed which is a mathematical term for a problem whose inputs are insufficient to
determine all of its expected outputs. For example, the solution to the constant-velocity migra-
tion problem (section 5.4.1) requires two surface measurements, the wavefield (ψ) and its vertical
derivative (∂zψ), all along the surface. Despite this mathematical requirement, there is no feasible
technology for measuring ∂zψ so methods must be found to deal with only ψ. In addition to being
ill-posed, inversion problems are generally nonlinear and practical schemes are typically linearized
approximations. This means that they are very sensitive to an assumed initial model. This is un-
fortunate because knowledge of the subsurface is very limited and the construction of initial models
is extremely difficult.

Thus, for many reasons, migration amounts to a very approximate solution to a general, nonlin-
ear, inverse problem. The need to find approximate solutions has lead to a large number of different
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migration algorithms that are generally distinguished by the kind of approximations made. As a
result there are many different, overlapping ways to categorize migration algorithms. For example,
it can be shown that an assumption that waves are traveling only upward at the earth’s surface,
though physically incorrect, allows the solution to proceed without knowledge of ∂zψ. (Or equiv-
alently, this assumption allows ∂zψ to be calculated from ψ.) This approach is called the one-way
wave assumption and is very common. Given that one-way waves will be considered, there are: finite
difference algorithms that offer great flexibility with spatial variations of velocity but suffer from grid
dispersion and angle limitations, Kirchhoff methods that can easily accommodate arbitrary varia-
tions in seismic recording geometry but require raytracing to guide them, and Fourier (or spectral)
techniques that offer high fidelity but have difficulty coping with rapid variations in either velocity
or recording geometry. All of these techniques attempt, in some manner, to downward continue
measurements made at z = 0 into the subsurface. There are also useful distinctions about whether
the estimation of R(x, y, z) is made directly from z = 0, direct methods, or whether R(x, y, z) is
estimated from z−∆z, recursive methods. Finally, perhaps the most common categorization comes
under the confusing labels of time migration and depth migration. The former is an earlier tech-
nology that remains viable because it is very insensitive to velocity errors even though it is known
to be accurate only if ∂xv ∼ 0. On the other hand, depth migration is the only currently available
imaging technology that is accurate when ∂xv varies strongly; however, it requires a very accurate
specification of the velocity model.

These last remarks hint at the general chicken-and-egg nature of modern migration methods.
A true inversion technique would derive the velocity model from the data as part of the inversion.
Migration requires the velocity model as input and merely attempts to reposition, focus, and adjust
amplitudes. These really all turn out to be the same thing. In order to be a useful process, it should
be true that migration requires only an approximate, or background, velocity model and that more
detailed velocity information can be extracted from a successful migration than was input to it.
This is generally the case though it can be very difficult to achieve in structurally complex areas.
Especially for depth migration, the construction of the velocity model is the central difficulty in
achieving a successful result.

This chapter will discuss “elementary” migration methods. This refers to techniques designed
to migrate stacked seismic data (post-stack migration) in simple velocity variations. More complex
topics including pre-stack migration will be discussed in the next chapter.

5.1 Stacked data

5.1.1 Bandlimited reflectivity

The ultimate goal of a migration is to transform the seismic data into bandlimited reflectivity .
In the simplest context, reflectivity means the normal-incidence reflection coefficient of P-waves.
Potentially, every point in the subsurface has a reflectivity value associated with it. In a one
dimensional layered medium, P-wave reflectivity is given by rk = 2(Ik − Ik−1)/(Ik + Ik−1) where
Ik = ρkvk is the P-wave impedance of the kth layer. In the continuous case, this can be written as
rδz(z) = .5∂z ln(I(z))δz where δz is a small increment of depth. In a 3D context, reflectivity of a
small earth element, δvol, is conveniently described by

r(x, y, z) = .5
∣∣∣�∇(log(I(x, y, z)))

∣∣∣ δvol (5.1)

At best, equation (5.1) can only be an expression for normal incidence reflectivity. More generally,
reflectivity must be acknowledged to be a function of the angle of incidence as well as spatial position.
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For the case of plane elastic waves in layered media, the Zoeppritz equations (Aki and Richards,
1980) are an exact prescription of this variation. The Zoeppritz equations are highly complex and
nonlinear and the estimation of their approximate parameters from seismic data is called the study
of amplitude variation with offset or AVO. (A nearly synonymous term is amplitude variation with
angle or AVA.) Such complex reflectivity estimates are key to true lithology estimation and are a
subject of much current research. Ideally, AVO analysis should be conducted simultaneously with
migration or after migration. For the current discussion, it is assumed that only the normal-incidence
reflectivity, r(x, y, z), is of interest and that a stacked seismic section provides a bandlimited estimate
of r(x, y, z).

The estimate of reflectivity must always be bandlimited to some signal band of temporal fre-
quencies. This is the frequency range over which signal dominates over noise. Unless some sort of
nonlinear or model-based inversion is done, this signal band is determined by the power spectrum
of the source, the data fold, the types of coherent and random noise, and the degree of anelastic
attenuation (Q loss). The optimal stacked section will have a zero-phase, white, embedded wavelet.
This means that it should obey the simple convolutional model

s(t) = r(t) • w(t) (5.2)

where w(t) is a zero phase wavelet whose amplitude spectrum is white over some limited passband.
If w(t) has residual phase or spectral color then these will adversely affect the resolution of the final
migrated image. They should be dealt with before migration.

5.1.2 The zero offset section

A discussion of post-stack migration greatly benefits from a firm theoretical model of the CMP
(common midpoint) stack. A simple model of stacked seismic data is the zero-offset section or “ZOS”
model. This model asserts that the pre-stack processing and CMP stack estimates a signal-enhanced
version of what we would have recorded had there been a single, coincident soure/receiver pair at
each CMP. Each stacked trace represents a separate physical experiment that can be approximately
described by the scalar wave equation (assuming acoustic energy only). Taken together, the ensemble
of stacked traces has a more complicated basis in physical theory.

The major steps the in the estimation of the signal enhanced ZOS are

Spherical spreading correction: A time dependent amplitude scaling that approximately corrects
for spherical divergence.

Deconvolution: The source signature and the average Q effect is estimated and removed.

Sort to (x, h) coordinates: The data is considered to be gathered in (s, g) (source,geophone) coor-
dinates and then sorted to midpoint, x, and half-offset, h (Figure 5.1).

Statics correction: Near surface static time delays are estimated and removed.

NMO removal: The data is taken through stacking velocity analysis and the resulting velocities are
used to remove normal moveout time delays.

Residual statics correction: Residual time delays (small) are sought and removed. Usually this is
a surface-consistent step.

Trace balancing: This might be considered optional but some step is needed to correct for source
strength and geophone coupling variations.
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Figure 5.1: A 2D seismic line is depicted in the
(s, g) plane. Each shot is represented as hav-
ing eight receivers with a central gap. Common
midpoint, x, and common offset, h coordinates
are depicted.
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Figure 5.2: Most, but not all, zero-offset ray-
paths are also normal-incidence raypaths.

CMP stacking: All traces with a common midpoint coordinate are summed. Events which have
been flattened on CMP gathers are enhanced. Other events and random noise are reduced.

The ZOS is said to be signal enhanced because the stacking process has been designed to select
against multiples. The simplest (and dominant) raypath which returns energy to its source is called
the normal-incidence raypath. Quite obviously, the normal-incidence reflection will send energy
back up along the path that it traveled down on. However, it is possible to have zero-offset paths
that are not normal-incidence paths (Figure 5.2).

5.1.3 The spectral content of the stack

The sort from (s, g) to (x, h) marks the transition from single channel to surface consistent processing.
Where it actually takes place is somewhat arbitrary because a seismic processing system can always
resort the data whenever required. However, it is a logical transition that must occur somewhere
before stack. (x, h) coordinates are defined by

x =
s+ g

2
and h =

g − s

2
(5.3)

of which the inverse transformation is

s = x− h and g = x+ h. (5.4)

The relationship between (s, g) and (x, h) is depicted graphically in Figure 5.1.
Mathematically, a 2D pre-stack seismic dataset is a 3D function, ψ(s, g, t). This dataset can be

written as an inverse Fourier transform of its spectrum through

ψ(s, g, t) =
∫

V∞

φ(ks, kg, f)e2πi(kss+kgg−ft)dksdkgdf (5.5)



116 CHAPTER 5. ELEMENTARY MIGRATION METHODS

50 100 150 200
0

5

10

15

20

25

30

35

500 m/s
1000 m/s
1500 m/s
2000 m/s
2500 m/s

maximum frequency (Hertz)

∆ 
g 

(m
et

er
s)

Figure 5.3: These curves show the maximum spatial sample rate required to avoid aliasing
of kg on shot records (assuming point receivers) as a function of the maximum signal
frequency. A curve is drawn for each of five near surface velocities. This is based on
expression (5.15).

where the notation V∞ indicates the integration covers the entire relevant, possibly infinite, portion
of (ks, kg, f) space. Imposing the coordinate transform of equations 5.4 gives

ψ(x, h, t) =
∫

V∞

φ(ks, kg, f)e2πi(ks(x−h)+kg(x+h)−ft)dksdkgdf (5.6)

or
ψ(x, h, t) =

∫
V∞

φ(ks, kg, f)e2πi((ks+kg)x+(ks−kg)h−ft)dksdkgdf. (5.7)

This motivates the definitions

kx = ks + kg and kh = ks − kg (5.8)

or the inverse relationship

ks =
kx + kh

2
and kg =

kx − kh

2
. (5.9)

This allows equation 5.7 to be written

ψ(x, h, t) =
1
2

∫
V∞

φ(kx, kh, f)e2πi(kxx+khh−ft)dkxdkhdf. (5.10)

where the factor of 1/2 comes from the Jacobian of the coordinate transformation given in equation
5.9. Both of equations 5.5 and 5.10 are proper inverse Fourier transforms which shows that the
wavenumber relationships given in equations 5.8 and 5.9 are the correct ones corresponding to the
(s, g) to (x, h) coordinate transformation.

Quite a bit can be learned from equations 5.9 about how the spectral content of the pre-stack
data gets mapped into the post-stack data. The maximum midpoint wavenumber, kxmax comes
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from the sum of ksmax and kgmax. As will be shown formally later, the maximum wavenumber
is directly proportional to horizontal resolution (i.e. the greater the wavenumber, the better the
resolution). The meaning of the maximum wavenumbers is that they are the largest wavenumbers
that contain signal. They typically are less than the Nyquist wavenumbers but they cannot be
greater. Thus ksmax ≤ ksNyq = 1/(2∆s) and kgmax ≤ kgNyq = 1/(2∆g). It is customary to sample
the x coordinate at ∆x = .5∆g so that kxNyq = 1/(2∆x) = 2kgNyq which means that the stacking
process will generate kx wavenumbers up to this value from combinations of ks and kg according
to equation 5.8. However, because spatial antialias filters (source and receiver arrays) are not very
effective, it must be expected that wavenumbers higher than Nyquist will be present in both the ks

and kg spectra. The only way to generate unaliased wavenumbers up to kxNyq in the stacking process
is if ∆s = ∆g so that kxNyq = ksNyq + kgNyq. This means that there must be a shotpoint for every
receiver station which is very expensive acquisition. Normal 2D land shooting puts a shotpoint for
every n receiver stations where n ≥ 3. This means that kx wavenumbers greater than a certain limit
will be formed from completely aliased ks and kg wavenumbers. This limiting unaliased wavenumber
is

kxlim =
1

2∆g
+

1
2∆s

=
1

2∆g
+

1
2n∆g

=
n+ 1
2n∆g

. (5.11)

For n=3, kxlim = 2
3kxNyq so that shooting every third group will result in a conventional stack with

the upper third of the kx spectrum being completely useless.

Even if n = 1, there will still be aliased contributions to kx if the ks and kg spectra are aliased
as they normally are. For example, kxNyq can be formed with unaliased data from ksNyq + kgNyq

but it can also be formed from the sum of ks = 0 and kg = 2kgNyq and there are many more such
aliased modes. Similarly, wavenumbers less that kxlim can be formed by a wide variety of aliased
combinations. Further analysis is helped by having a more physical interpretation for ks and kg so
that their potential spectral bandwidth can be estimated.

As explained in section 4.9, the apparent velocity of a wave as it moves across a receiver array is
given by the ratio of frequency to wavenumber. For a source record (common source gather), this
has the easy interpretation that

f

kg
=

v0
sin θ0

(5.12)

which means that
kg =

f sin θ0
v0

. (5.13)

So, if fmax is the maximum temporal frequency and (sin θ0)max = 1 then

kgmax =
fmax

v0min
(5.14)

where v0min is the slowest near surface velocity found along the receiver spread. So, to avoid any
aliasing of kg, assuming point receivers, the receiver sampling must be such that kgNyq ≥ kgmax

which leads to the antialiasing condition

∆g ≤ v0min

2fmax
. (5.15)

Assuming the equality in expression (5.15) allows the maximal sampling curves in Figure 5.3 to
be calculated. Alternatively, if coarser sampling than suggested in these curves is planned, then
a portion of the kg spectrum will be aliased. An array can be designed to suppress the aliased
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Figure 5.4: (A) Wavenumber kg is measured on a common source gather and estimates
the emergence angle, θ0, of a monochromatic wave. (B) Wavenumber ks is measured on a
common receiver gather and estimates the takeoff angle α0 of the ray that arrives at the
common receiver.

wavenumbers though this is not as effective as temporal antialias filtering.

The wavenumbers ks are those which would be measured by an f -k analysis on a common
receiver gather. Reciprocity suggests that a common receiver gather is similar to a common source
gather with the source and receiver positions interchanged (Figure 5.4). It cannot be expected
that the amplitudes will be completely reciprocal on such gathers but the traveltimes should be.
Since the relationship between apparent velocity and frequency-wavenumber ratios is a based on
traveltimes, not amplitudes, the arguments just made for the interpretation of kg also apply to ks.
The interpretation is that f/ks gives the apparent velocity of a monochromatic wave as it leaves a
source such that it will arrive at the common receiver. Thus

f

ks
=

v0
sinα0

(5.16)

where α0 is the take-off angle required to reach the common receiver and v0 is as before. Comparing
equations 5.12 and 5.16 leads to the conclusion that the potential bandwidth of ks is just as broad
as that of kg.

For the kh wavenumber, the stacking process rejects all but kh = 0. Stacking can be modelled
by an integral over h as

ψ0(x, t) =
∫

all h

ψ(x, h, t)dh. (5.17)

If equation (5.10) is substituted into equation (5.17) and the order of integration reversed, it results
that

ψ0(x, t) =
1
2

∫
V∞


 ∫
all h

e2πikhhdh


φ(kx, kh, f)e2πi(kxx−ft)dkxdkhdf. (5.18)

The integral in square brackets is δ(kh) which, in turn, collapses the kh integral by evaluating it at
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Figure 5.5: The zero-offset Fresnel zone is defined as the width of a disk on a subsurface
reflector from which scattered energy arrives at R with no more than a λ/2 phase difference.

kh = 0 to give

ψ0(x, t) =
1
2

∫
V∞

φ(kx, 0, f)e2πi(kxx−ft)dkxdf. (5.19)

So the CMP stacking process passes only the kh = 0 wavenumber which is a very severe f -kfilter
applied to a CMP gather. It is for this reason that f -kfiltering applied to CMP gathers does
not typically improve the stack. However, f -k filtering of source and receiver gathers can have a
dramatic effect. The kh = 0 component is the average value over the CMP gather and corresponds
to horizontal events. Of course, this is done after normal moveout removal that is designed to flatten
those events deemed to be primaries.

So far, the discussion has been about wavenumber spectra with nothing being said about the
effect of stacking on temporal frequencies. Bearing in mind the goal to estimate bandlimited reflec-
tivity, the ideal stacked section should have all spectral color removed except that attributable to
the reflectivity. Most pre-stack processing flows rely on one or more applications of statistical decon-
volution to achieve this. Typically these deconvolution techniques are not capable of distinguishing
signal from noise and so whiten (and phase rotate) both. If the pre-stack data input into the stacking
process has been spectrally whitened, it will always suffer some attenuation of high frequencies due
to the stacking out of noise. This is because the stacking process improves the signal-to-noise ratio
by

√
fold. Moreover, this effect will be time-variant in a complicated way because of two competing

effects. First, the fold in any stacked section is actually time-variant because of the front-end mute.
Until the time at which nominal fold is reached, the stacking effect is therefore time variant. Second,
the signal-to-noise ratio in any single pre-stack trace must decrease with both increasing time and
increasing frequency due to attenuation (i.e. Q effects). As a result, it is virtually guaranteed that
the post-stack data will need further spectral whitening. It is also highly likely that some sort of
wavelet processing will be required to remove residual phase rotations.

5.1.4 The Fresnel zone

The zero-offset rays shown in Figure 5.2 are only a high frequency approximation to what really
happens. The zero-offset recording at a point on the earth’s surface actually contains scattered
waves from a very broad zone on each subsurface reflector. This contrasts with the high-frequency
raytracing concepts that suggest the reflection occurs at a point. Figure 5.5 illustrates the concept
of the zero-offset Fresnel zone. The width, w of the Fresnel zone is defined as the diameter of a
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Figure 5.6: The width of the Fresnel zone (based
on equation (5.21)) is shown versus depth for a
variety of frequencies and an assumed velocity
of 3000 m/s.
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Figure 5.7: A 3D migration collapses the Fres-
nel zone to a disk of diameter λ/2 while a 2D
migration only collapses the Fresnel zone in the
inline direction

disk whose center is marked by the ray P and edge by the ray Q. Ray P is a simple zero-offset ray
while ray Q is defined to be λ/4 longer than ray P. Assuming constant velocity, this means that
scattered energy that travels down-and-back along path Q will be λ/2 out of phase at the receiver,
R, compared with that which travels along path P. All paths intermediate to P and Q will show a
lesser phase difference. Therefore, it is expected that path Q will interfere destructively with P and
is taken to define the diameter of the central disk from which scattered energy shows constructive
interference at R. The equation defining the Fresnel zone diameter is therefore

√
z2 + (w/2)2 − z =

λ

4
(5.20)

which is easily solved for w to give

w = 2
√

(λ/4 + z)2 − z2 =
√

2zλ
√

1 + λ/(8z) =
√

2zv/f
√

1 + v/(8fz) (5.21)

where, in the third expression, λf = v, has been used. If z 
 λ, then the approximate form
w ∼

√
2zλ is often used. The size of a Fresnel zone can be very significant in exploration as it is

often larger than the target (Figure 5.6).
Migration can be conceptualized as lowering the source and receiver to the reflector and so shrinks

the Fresnel zone to its theoretical minimum of λ/2. That the Fresnel zone does not shrink to zero is
another way of understanding why reflectivity estimates are always bandlimited. However, seismic
data is a bit more complicated than this in that it possesses signal over a bandwidth while the
Fresnel zone concept is monochromatic. Roughly speaking, the effective Fresnel zone for broadband
data can be taken as the average of the individual Fresnel zones for each frequency.

The 3D Fresnel disk collapses, under 3D migration, from a diameter of w to a diameter of λ/2.
However, much seismic data is collected along lines so that only 2D migration is possible. In this
case, The Fresnel zone only collapses in the inline direction and remains at its unmigrated size in
the crossline direction (Figure 5.7). Thus the reflectivity shown on a 2D migrated seismic line must
be viewed as a spatial average in the crossline direction over the width of the Fresnel zone. This is
one of the most compelling justifications for 3D imaging techniques, even in the case of sedimentary
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basins with flat-lying structures.

5.2 Fundamental migration concepts

5.2.1 One dimensional time-depth conversions

It is quite common to convert a single trace from time to depth, or the reverse, by a simple one
dimensional conversion that is called a stretch. This is accomplished as a simple mapping of samples
from the time trace to the depth trace. The mapping from time to depth is defined by

z(τ) =
∫ τ

0
vins(τ ′)dτ ′ (5.22)

and from depth to time by

τ(z) =
∫ z

0

dz′

vins(z′)
(5.23)

where vins is the instantaneous velocity or, equivalently, the local wave speed.
Though not migrations, these one-dimensional operations are very useful for converting from

migrated depth to migrated time (or the reverse) or from unmigrated time to unmigrated depth (or
the reverse). Thus it is possible to have time or depth displays both before and after migration and
the interpreter must be careful to understand what is being presented.

A form of aliasing is possible in all such operations (including migrations) though it is most
easily analyzed in one dimension. Consider the conversion of a trace s(t) to a depth trace ŝ(z) with
a desired depth sample interval of ∆z. The depth trace will usually be constructed by a loop over the
desired depth samples. Assuming constant velocity for simplicity, a particular depth sample of ŝ(z)
at z = n∆z must be interpolated from s(t) at t = 2n∆z/v. Thus, the time to depth conversion will
effectively extract samples from s(t) at the interval ∆teff = 2∆z/v. This is a form of resampling.
If ∆teff > ∆t then aliasing will occur as the depth trace is constructed unless an antialias filter is
applied. If fmax is the maximum signal frequency (presumed to be less than the Nyquist frequency)
in s(t), then the sampling theorem (Karl, 1989) assures that s(t) can be resampled to ∆t ≤ 1/(2fmax)
(with antialias filtering to prevent noise aliasing) without loss of signal. Therefore, the depth sample
interval should not be chosen arbitrarily but should be chosen to ensure that ∆teff preserves signal.
This leads to the condition

∆z ≤ vmin

4fmax
. (5.24)

In this expression, vmin is used to ensure that all signal frequencies are preserved in the worst case.
These considerations are true for multi-dimensional migrations as well as simple stretching. The

depth sample interval should be chosen with knowledge of the maximum signal frequency. Further-
more the temporal data should be highcut filtered to reject frequencies larger than the maximum
frequency used to compute the depth sample interval.

5.2.2 Raytrace migration of normal-incidence seismograms

Most modern migration techniques are based on wavefield concepts that treat the recorded data as a
boundary value. This was not always the case; however, because raytrace migration was very popular
before 1980. As is often true, raytrace methods provide a great deal of insight into the problem and
can be adapted to almost any setting. Understanding raytrace migration can help considerably
in understanding the corresponding wavefield technique. For example, the very word “migration”
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Figure 5.8: Two normal-incidence rays from a dipping reflector beneath a v(z) medium.
The delay between the rays allows the ray parameter to be estimated.

comes from a popular, though somewhat incorrect, view that the process just “moves events around”
on a seismic section. This encourages a fundamental, and very pervasive, confusion that time and
depth sections are somehow equivalent. A better view is that an unmigrated time section and a
migrated depth section are independent (in fact orthogonal) representations of a wavefield. Raytrace
migration emphasizes this latter view and makes the role of the velocity model very clear.

Figure 5.8 illustrates the link between reflector dip and the measurable traveltime gradient (for
normal-incidence rays) on a ZOS. The figure shows two rays that have normal incidence on a dipping
reflector beneath a v(z) medium. More general media are also easily handled, this just simplifies the
discussion. The two rays are identical except for an extra segment for the lower ray in the bottom
layer. From the geometry, this extra segment has a length ∆x sin δ where ∆x is the horizontal
distance between the rays. If there were receivers on the interface between layers three and four,
then for the upcoming rays, they would measure a traveltime delay, from left to right, of

∆t =
2∆x sin δ

v4
(5.25)

where the factor of two accounts for two-way travel. This implies a horizontal traveltime gradient
(horizontal slowness) of

∆t
∆x

= 2
sin δ
v4

. (5.26)

Inspection of the geometry of Figure 5.8 shows that equation (5.26) can be rewritten as

∆t
∆x

= 2pn (5.27)

where pn is the ray parameter of the normal-incidence ray. In the v(z) medium above the reflector,
Snell’s law ensures that pn will remain equal to twice the horizontal slowness at all interfaces including
the surface at z = 0. Thus, a measurement of ∆t/∆x at the surface of a normal-incidence seismogram
completely specifies the raypaths provided that the velocity model is also known. In fact, using
equation (5.26) allows an immediate calculation of the reflector’s dip.

Of course, in addition to the reflector dip, the spatial position’s of the reflection points of the
normal rays are also required. Also, it must be expected that more general velocity distributions
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Figure 5.9: The migration of a normal-incidence ray is shown. Knowledge of the ray
parameter allows the ray to be traced down through the velocity model.

than v(z) will be encountered. In v(x, y, z) media, the link between reflector dip and horizontal
slowness is not as direct but knowledge of one still determines the other. Normal-incidence raytrace
migration provides a general algorithm that handles these complications. This migration algorithm
will be described here for 2D but is easily generalized to 3D. Before presenting the algorithm, a
formal definition of a pick is helpful:

A pick is defined to be a triplet of values (x0, t0,∆t/∆x)measured from a ZOS having
the following meaning

x . . . inline coordinate at which the measurement is made.

t0. . . normal-incidence traveltime (two way) measured at x.

∆t/∆x . . . horizontal gradient of normal-incidence traveltime measured at (x, t0).

To perform a raytrace migration, the following materials are required:

1. (xi, t0ij ,∆t/∆xij) . . . a set of picks to be migrated. The picks are made at a the locations xi

and at each location a number of t0ij and ∆t/∆xij values are measured.

2. v(x, z) . . . a velocity model is required. It must be defined for the entire range of coordinates
that will be encountered by the rays.

3. Computation aids. . . one or more of: a calculator, compass, protractor, computer.

Finally, the algorithm is presented as a series of steps with reference to Figure 5.9. For all
locations xi, i = 1, 2, . . . n then each ray must be taken through the following steps:

Step 1 . . . Determine the emergence angle at the surface of the ijth ray according to the formula

sin θ0ij =
v0(xi)

2
∆t
∆x ij

(5.28)

Step 2 . . . Denote the current layer by the number h. Project the ray down to the next interface
and determine the incident angle φhij .
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Step 3 . . . Determine the length of the ijth raypath in the current (hth) layer, lhij and compute the
layer traveltime

δthij =
lhij

vh
(5.29)

Step 4 . . . Determine the refraction angle into the (h+ 1)th layer from Snell’s law:

sin(θ(h+1)ij) =
vh+1

vh
sin(φhij) (5.30)

Step 5 . . . Repeat steps 2 → 4 for each velocity layer until the stopping condition is fulfilled

tij =
n∑

h=1

δthij =
t0ij

2
(5.31)

which simply says that the raypath traveltime must be half the measured traveltime.

Step 6 . . . Draw in a reflecting segment perpendicular to the raypath at the point that the stopping
condition is satisfied.

5.2.3 Time and depth migration via raytracing

When the first wavefield migration methods were being developed, the finite-difference approach
was pioneered by Jon Claerbout (Claerbout, 1976) and his students at Stanford University. This
very innovative work produced dramatic improvements in the quality of seismic images but the
algorithms were a strong challenge for the available computers. As a result approximations were
sought which could reduce the numerical effort required. A key approximation was Claerbout’s use
of a moving coordinate system to derive an approximate wave equation that essentially substituted
vertical traveltime, τ , for depth. When the finite difference machinery was implemented with this
approximate equation the resulting migrated images had a vertical coordinate of time not depth.
It also resulted, for reasons to be discussed when finite-difference methods are presented, in much
faster run times. One way to see why this might be is to imagine a stacked section consisting only
of events with ∆t/∆x = 0. This is not far from the appearance of seismic sections from many of
the world’s sedimentary basins. Such basins are good v(z) environments and the normal rays for
flat events are all vertical. Thus, they are already positioned correctly in vertical traveltime on the
stacked section and the migration algorithm has very little to do. This is a drastic over simplification
that will be more correctly stated later, but it comes close to the truth.

These early finite-difference methods were used with great success in the sedimentary basins
around the world. However, when the technology was taken into thrust belts, continental margins,
and other areas where the v(z) approximation is not a good model, it was gradually realized that
systematic imaging errors were occurring. Today, the reason is well understood and it was a conse-
quence of the approximate wave equation discussed in the previous paragraph. Figure 5.10 suggests
the problem. Here an anticline is shown positioned beneath a slower-velocity near-surface that has a
dipping bottom interface. The normal ray from the crest of the structure is generally not the ray of
minimum traveltime even though it has the shortest path to the surface. Instead, a ray from a point
to the right is the least-time ray because it spends more of its path in the fast material. Thus, on a
normal incidence section, the traveltime signature of the anticline will have a crest at the emergence
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Figure 5.10: The least-time ray does not always come from the crest of an anticline.
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Figure 5.11: (Left) When a ray encounters a dipping velocity interface, Snell’s law predicts
the transmitted ray using a relation between angles with-respect-to the interface normal.
(Right) In a time migration algorithm, Snell’s law is systematically violated because the
vertical angles are used. Both techniques give the same result if the velocity interface is
horizontal.

point of the least-time ray. Generally, a traveltime crest will have zero ∆t/∆x which means that
the corresponding ray emerges vertically. It turned out that the migration schemes were producing
a distorted image in cases like this and the distortion placed the crest of the migrated anticline at
the emergence point of the least time ray. Just like in the sedimentary basin case, the algorithm was
leaving flat events alone even though, in this case, it should not.

The understanding and resolution of this problem resulted in the terms time migration and depth
migration. The former refers to any method that has the bias towards flat events and that works
correctly in v(z) settings. The latter refers to newer methods that were developed to overcome these
problems and therefore that can produce correct images even in strong lateral velocity gradients.
Robinson (1983) presented the raytrace migration analogs to both time and depth migration and
these provide a great deal of insight. The raytrace migration algorithm presented previously in
section 5.2.2 is a depth migration algorithm because it obeys Snell’s law even when ∂xv is significant.

Figure 5.11 shows how Snell’s law must be systematically altered if a time migration is desired.
Instead of using the angles that the incident and transmitted rays make with respect to the normal
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in Snell’s law, the time migration algorithm uses the angles that the rays make with respect to the
vertical. It is as though the dipping interface is rotated locally to the horizontal at the incident
point of the ray. Thus, any vertical ray (i.e. ∆t/∆x = 0) will pass through the velocity interface
without deflection regardless of the magnitude of the velocity contrast.

This explains why time migration gets the wrong answer and it also explains why the technology
remains popular despite this now well-understood shortcoming. The fact that flat events are unaf-
fected by time migration regardless of the velocity model means that the process has a “forgiving”
behavior when the velocity model has errors. Velocity models derived automatically from stacking
velocities tend to be full of inaccuracies. When used with time migration, the inaccuracies have
little effect but when used with depth migration they can be disastrous. Even today, the majority
of seismic sections come from v(z) settings and they consist of mostly flat events. Such data can be
migrated with relatively little care using time migration and well-focused sections are obtained. Of
course, these are still time sections and a pleasing time migration does not mean that the migration
velocities can be used for depth conversion. In general, the velocity errors that are “ignored” by
time migration will cause major problems in a subsequent depth conversion. Much more care must
be taken if an accurate depth section is required.

The terms time migration and depth migration arose, in part, because the early versions of
both technologies tended to produce only time and depth sections respectively. However, this is no
longer the case and either technology can produce both time and depth sections. Therefore, the
terms should be treated simply as jargon that indicates whether or not an algorithm is capable of
producing a correct image in the presence of strong lateral velocity gradients. The mere presence of
a time or depth axis on a migrated seismic display says nothing about which technology was used.
In this book, time migration will be used to refer to any migration technique that is strictly valid
only for v(z) while depth migration will refer to a technique that is valid for v(x, z). Thus, when
employed in constant velocity or v(z) settings, both techniques are valid and there is no meaningful
distinction. Under these conditions, a migrated time section can always be converted to a depth
section (or vice-versa) with complete fidelity.

The first time-migration algorithms were almost always finite-difference methods. Today, a better
understanding of the subject allows virtually any migration method to be recast as a time migration.
Therefore, it is very important to have some knowledge of the algorithm, or to have a statement
from the developer, to be sure of the nature of a method. The issue has been clouded even further
by the emergence of intermediate techniques. Sometimes, it is worth the effort to build a synthetic
seismic section to test a migration algorithm whose abilities are uncertain. One thing remains clear,
depth migrations always require much more effort for a successful result. Not only is more computer
time required; but, much more significantly, vastly greater human time may be necessary to build
the velocity model.

5.2.4 Elementary wavefront techniques

Though very versatile, the raytrace method described in section 5.2.2 has its limitations. For exam-
ple, it is not obvious how to make the migrated amplitudes any different from the unmigrated ones
and it is equally obvious that amplitudes should change under migration. Recall that bandlimited
reflectivity is the goal and that the geometrical spreading of wavefronts must be accounted for to
estimate this. (See section 5.1.1.) Wavefront methods provide amplitude adjustments in a very
natural way though they are more difficult to adapt to complex media than the raytrace approach.

Hagedoorn (1954) provided one of the first, and still very relevant, explanations of wavefront
migration. The ideas presented in this section are all essentially attributable to him. Consider the
ZOS image of a dipping reflector overlain by a constant velocity medium as shown in Figure 5.12A.
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Figure 5.12: (A) Normal-incidence raypaths are shown for a dipping reflector in a constant
velocity medium. (B) The traveltime section for (A) plots the arrival times for each raypath
beneath its emergence point. (C) When (B) is plotted at apparent depth, za = vt/2, an
apparent dip can be defined.
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The reflector dip, δ, can be related to the lengths of the raypaths and their emergence points by

sin δ =
l5 − l1
x5 − x1

. (5.32)

The time section corresponding to this raypath diagram is shown in Figure 5.12B. Since velocity is
constant, the arrival times are directly proportional to the path lengths through tk = 2lk/v and the
ZOS image of the reflector is seen to have a time dip of

∆t
∆x

=
t5 − t1
x5 − x1

=
2
v

l5 − l1
x5 − x1

= 2
sin δ
v

(5.33)

which is in agreement with equation (5.27) that the time dip on a ZOS gives twice the normal-
incidence ray parameter. A further conceptual step can be taken by mapping the traveltimes to
apparent depth, za, by za = vt/2 as shown in Figure 5.12C. At this stage, the unmigrated display
has both coordinate axes in distance units so that it makes sense to define an apparent dip through

tanα =
l5 − l1
x5 − x1

. (5.34)

Finally, comparison of equations (5.32) and (5.34) gives the relation

sin δ = tanα. (5.35)

Equation (5.35) is called the migrator’s equation and is of conceptual value because is illustrates
the geometric link between unmigrated and migrated dips. However, it should not be taken too far.
It is not generally valid for non-constant velocity and cannot be applied to a time section. Though
this last point may seem obvious, it is often overlooked. It is not meaningful to talk about a dip
in degrees for an event measured on a time section because the axes have different units. A change
of time-scale changes the apparent dip. On an apparent depth section, an apparent dip can be
meaningfully defined and related to the true dip through equation (5.35). The apparent dip can
never be larger than 45◦ because sin δ ≤ 1 which is a re-statement of the fact that the maximum
time dip is ∆t/∆x = 1/v as discussed in section 4.11.1. Though intuitively useful, the apparent dip
concept is not easily extended to variable velocity. In contrast, the limitation on maximum time dip
is simply restated in v(z) media as ∆t/∆x = 1/vmin where vmin is the minimum of v(z).

Comparison of Figures 5.12A and 5.12C shows that, for a given surface location xk, the normal-
incidence reflection point and the corresponding point on the ZOS image both lie on a circle of radius
lk centered at xk. This relationship is shown in Figure 5.13 from which it is also apparent that

• The ZOS image lies at the nadir (lowest point) of the circle.

• The reflection point is tangent to the circle.

• The ZOS image and the reflector coincide on the datum (recording plane).

These observations form the basis of a simple wavefront migration technique which is kinemati-
cally exact for constant velocity:

i) Stretch (1D time-depth conversion) the ZOS image from t to za.

ii) Replace each point in the (x, za) picture with a wavefront circle of radius za. Amplitudes along
the wavefront circle are constant and equal to the amplitude at (x, za).
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Figure 5.13: The normal-incidence reflection
point and the corresponding point on the ZOS
image both lie on a circle of radius lk centered
at xk.
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Figure 5.14: The wavefront migration of a dip-
ping reflector is shown. Each point on the ZOS
image is replaced by a wavefront circle of radius
lk. The wavefronts interfere constructively at
the location of the actual reflector.

iii) The superposition of all such wavefronts will form the desired depth section.

Figure 5.14 shows the migration of a dipping reflector by wavefront superposition. The actual
mechanics of the construction are very similar to a convolution. Each point in the ZOS image is used
to scale a wavefront circle which then replaces the point. A 2D convolution can be constructed by
a similar process of replacement. The difference is that the replacement curve in a 2D convolution
is the same for all points while in the migration procedure it varies with depth. Thus the migration
process can be viewed as a nonstationary convolution.

Wavefront migration shows that the impulse response of migration is a wavefront circle. That is,
if the input ZOS contains only a single non-zero point, then the migrated section will be a wavefront
circle. The circle is the locus of all points in (x, z) that have the same traveltime to (xk, 0). Two
equivalent interpretations of this are either that the circle is the only earth model that could produce
a single output point or that the circle is the curve of equal probability. The first interpretation is
a deterministic statement that only one earth model could produce a ZOS image with a single
live sample. The second interpretation is a stochastic one that suggests why the generalization
from one live sample to many works. By replacing each point with it’s curve of equal probability,
the migrated section emerges as the most likely geology for the superposition of all points. The
constructive interference of a great many wavefronts forms the migrated image.

Exercise 5.2.1. Describe the appearance of:

• a migrated section that contains a high amplitude noise burst on a single trace.

• a migration that results from a ZOS image whose noise level increases with time.

• the edge of a migrated section.

5.2.5 Huygens’ principle and point diffractors

Christian Huygens was an early physicist and astronomer (a contemporary of Newton) who made
a number of advances in the understanding of waves. Most notable was his principle that, if the
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Figure 5.15: Huygens’ principle reconstructs the
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Figure 5.16: The seismic response of a contin-
uous geological structure is synthesized as the
superposition of the responses of many point
diffractors.

position of a wavefront at time t is known, its position at t + ∆t can be computed by a simple
strategy. Each point on the wavefront at time t is considered to be a secondary source of a small
spherical (3D) or circular (2D) wavefront called a Huygens’ wavelet as shown in Figure 5.15. For the
seismic problem, Huygens’ principle can be adapted to consider the response of a continuous reflector
as the superposition of the responses of a great many point diffractors or scatterpoints(Figure 5.16).

Figure 5.17 shows the concept of a point diffractor that scatters any incident wave in all directions.
Thus the complete imaging of any reflector is only possible if all of this scattered energy is captured
and focused at the scatterpoint. Each scattered raypath is characterized by its scattering angle θ. If
the scatterpoint lies on a dipping reflector then the scattered ray that coincides with the normal ray
will be the strongest after superposition of many scatterpoints. For this ray the scattering angle is the
same as the reflector dip which suggests why the scattering angle is commonly called the “migration
dip” in a migration program. However, migration dip still conveys a misleading impression to many
untutored users who wish to equate it with geologic dip. They draw the mistaken conclusion that,
for data with low geologic dips, it suffices to correctly handle only low migration dips. The correct
interpretation of migration dip as scattering angle shows that even for low geologic dips it is desirable
to handle large scattering angles. In fact, a high-resolution migration requires that scattering angle
be as large as possible. In the context of section 5.1.3 scattering angle is directly related to spectral
components through kx/f = .5 sin θ/v or equivalently kx = .5f sin θ. This says that high kx values
require large values of θ. It is a fundamental component of resolution theory that the kx spectrum
must be as large as possible for high resolution.

The traveltime curve of a point diffractor, for zero-offset recording and constant velocity, has a
raypath geometry that is essentially equivalent to that for a CMP gather and a zero-dip reflector
(Figure 5.18). Recall that the NMO traveltime curve is given by t2H = t20 + H2/v2 where H is the
full source-receiver offset. This means that the traveltime curve for a zero-offset point diffractor is
given by

t2x = t20 +
4(x− x0)2

v2 (5.36)

where the diffractor is at (x0, z), t0 = 2z/v, and the velocity, v, is constant. The factor of 4 in the
numerator arises because x−x0 corresponds to the half-offset. For v(z), the conclusion is immediate
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Figure 5.19: (A) This diffraction chart shows the traveltime curves for five point diffractors
in a constant velocity medium. All five curves are asymptotic to the line x=vt/2. (B) The
second hyperbola has been migrated by wavefront superposition.
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Figure 5.20: The ZOS image of the dipping reflector is formed by replacing each point on
the reflector with the ZOS image of a point diffractor. The superposition of these many
hyperbolae forms the dipping reflector’s ZOS image.

that the Dix equation proof that the NMO hyperbola is approximately characterized by vrms means
that the diffraction traveltimes are approximately

t2x ≈ t20 +
4(x− x0)2

v2
rms

(5.37)

where t0 = 2z/vave.
Figure 5.14 shows how wavefront superposition migrates the ZOS image of a dipping reflector.

The ZOS image of a single point diffractor is the hyperbola given by equation (5.36) so it is instructive
to see how wavefront migration can collapse such hyperbolae. Figure 5.19A shows a diffraction
chart that gives the traveltime curves for five point diffractors in a constant velocity medium. The
wavefront migration of this chart should convert it into five impulses, one at the apex of each
hyperbola. Figure 5.19B shows the wavefront migration of the second hyperbola on the chart. Each
point on the second hyperbola has been replaced by a wavefront circle whose radius is the vertical
time of the point. Since the chart is drawn with a vertical coordinate of time rather than depth,
these wavefront curves may not appear to be exactly circular. The geometry of hyperbola and
circles is such that the wavefront circles all pass through the apex of the second hyperbola. Thus
the amplitude of the wavefront superposition will be large at the apex and small elsewhere. The
same process will also focus all other hyperbolae on the chart simultaneously.

The diffraction curves can be used to perform the inverse of migration or modelling. Figure 5.20
shows the construction of the ZOS image of a dipping reflector using Huygens’ principle. Each point
on the dipping reflector is replaced by the ZOS image of a point diffractor. The superposition of
these many hyperbolae constructs the ZOS image of the dipping reflector. For a given hyperbola,
its apex lies on the geology and it is tangent to the ZOS image. This directly illustrates that the
wavefront migration of dipping reflectors is completely equivalent to the migration of diffraction
responses. In fact, the collapse of diffraction responses is a complete statement of the migration
problem and a given algorithm can be tested by how well it achieves this goal.
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Figure 5.22: A snapshot of the ERM wavefield
at some instant of time as it approaches the re-
ceivers

5.2.6 The exploding reflector model

In the preceding sections, two methods have been described to migrate stacked data. In section
5.2.2 the stacked section was treated as a normal-incidence seismogram and raytrace techniques
were developed to migrate it. In section 5.2.4 the wavefront migration method was presented for
constant-velocity zero-offset sections. Further progress is greatly facilitated by a more abstract
model of the stacked section. Ultimately, the goal is to formulate the post-stack migration problem
as a solution to the wave equation where the measured data plays the role of a boundary value.
However, this is complicated by the fundamental fact that the CMP stack is not a single wavefield
but the composite of many individual wavefields. There is no single physical experiment that could
record a ZOS and so a ZOS cannot be a single physical wavefield.

There is a useful thought experiment, called the exploding reflector model (ERM), that does yield
something very similar to a ZOS and serves as the basis for most post-stack migration methods. (The
following discussion is presented in 2D and the generalization to 3D is elementary.) As motivation,
note that equation (5.36) can be rewritten as

t2x = t20 +
(x− x0)2

v̂2 (5.38)

where v̂ = v/2 is called the exploding reflector velocity and t0 = z/v̂. This trivial recasting allows
the interpretation that the point diffractor is a seismic source of waves that travel at one-half of
the physical velocity. As shown in Figure 5.21 the exploding reflector model adopts this view and
postulates a model identical to the real earth in all respects except that the reflectors are primed with
explosives and the seismic wave speeds are all halved. Receivers are placed at the CMP locations
and at t = 0 the explosives are detonated. This creates a wavefield that is morphologically identical
to the geology at the instant of explosion.

If ψ(x, z, t) denotes the exploding reflector wavefield, then the mathematical goal of the migration
problem is to calculate ψ(x, z, t = 0). Thus ψ(x, z, t = 0) is identified with the geology and represents
the migrated depth section. The ERM wavefield is allowed to propagate only upward (the −z
direction) without reflections, mode conversions, or multiples. It refracts according to Snell’s law and
the half-velocities mean that the traveltimes measured at the receivers are identical to those of the
ZOS. In the constant velocity simulation of Figure 5.22, a snapshot of the ERM wavefield, ψ(x, z, t =
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Figure 5.23: The ERM seismogram is shown superimposed on the migrated depth section.

const), is shown as the wavefield approaches the receivers. The raypaths are normal-incidence
raypaths (because of the isomorphism between the geology and ψ(x, z, t = 0)) and spreading and
buried foci are manifest. The figure emphasizes three Huygen’s wavelets that emanate from the three
corners of the geologic model. The migrated depth section is also a snapshot, but a very particular
one, so the term snapshot will be used to denote all such constant-time views.

In Figure 5.23, the ERM seismogram, ψ(x, z = 0, t), is shown in apparent depth superimposed
on top of the depth section. Wavefront circles are shown connecting points on the geology with
points on the seismogram. The ERM seismogram is kinematically identical (i.e. the traveltimes are
the same) with the normal-incidence seismogram and is thus a model of the CMP stack. It is also
kinematically identical with all normal-incidence, primary, events on a ZOS image. This allows the
migration problem to be formulated as a solution to the wave equation. Given ψ(x, z = 0, t) as a
boundary condition, a migration algorithm solves the wave equation for the entire ERM wavefield,
ψ(x, z, t), and then sets t = 0 to obtain the migrated depth section. This last step of setting t = 0
is sometimes called imaging though this term has also come to refer to the broader context of
migration in general. Precisely how the wavefield is evaluated to extract the geology is called an
imaging condition. In the post-stack case the imaging condition is a simple evaluation at t = 0.
Later, it will be seen that there are other imaging conditions for pre-stack migration.

Thus far, the ERM has given simple mathematical definitions to the migrated depth section, the
recorded seismogram, and the wavefield snapshot. In addition, the extrapolated seismogram can be
defined as ψ(x, z = ∆z, t). Both the ERM seismogram and the extrapolated seismogram are time
sections while the snapshot and the migrated section are in depth. The extrapolated seismogram
is a mathematical simulation of what would have been recorded had the receivers been at z = ∆z
rather than at z = 0. The construction of ψ(x, z = ∆z, t) from ψ(x, z = 0, t) is called downward
continuation and, synonymously, wavefield extrapolation.

As a summary, the ERM has defined the following quantities:

ψ(x, z, t) . . . the ERM wavefield.

ψ(x, z, t = 0) . . . the migrated depth section.

ψ(x, z, t = const) . . . a wavefield snapshot.

ψ(x, z = 0, t) . . . the ERM seismogram.

ψ(z, z = ∆z, t) . . . an extrapolated section.
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Figure 5.24: This prism shows the portion of (x, z, t) space that can be constructed from
a finite-extent measurement of ψ(x, z = 0, t) (upper face). Also shown are the migrated
depth section, ψ(x, z, t = 0), (vertical slice) and an extrapolated section, ψ(x, z = ∆z, t),
(horizontal slice).

These quantities are depicted in Figure 5.24. It is significant that any extrapolated seismogram can
be evaluated at t = 0 to give a single depth sample of the migrated depth section. The process
of deducing a succession of extrapolated seismograms, and evaluating each at t = 0, is called a
recursive migration. It is recursive because the extrapolated seismogram ψ(x, z = zk, t) is computed
from the previous seismogram ψ(x, z = zk−1, t). Examples of recursive migrations are the finite-
difference methods and the phase-shift techniques. An alternative to the recursive approach is a
direct migration that computes ψ(x, z, t = 0) directly from ψ(x, z = 0, t) without the construction
of any intermediate products. Examples of direct migration are (kx, f) migration and Kirchhoff
migration.

A direct migration tends to be computationally more efficient than a recursive approach both
in terms of memory usage and computation speed. However, the direct methods must deal with
the entire complexity of the velocity structure all at once. In contrast, the recursive approach
forms a natural partitioning of the migration process into a series of wavefield extrapolations. The
extrapolation from z = zk−1 to z = zk need only deal with the velocity complexities between these
two depths. If the interval zk−1 → zk is taken sufficiently small, then the vertical variation of velocity
can be ignored and v can be considered to depend only upon the lateral coordinates. In this way
the migration for a complex v(x, z) variation can be built from the solution of many v(x) problems.

5.3 MATLAB facilities for simple modelling and raytrace mi-
gration

This section describes three facilities that can produce simple seismic section models. The first two,
hyperbolic superposition and finite differencing, create full waveform models suitable for migration
with full waveform migration methods. The third, normal incidence raytracing, merely predicts
arrival times of events and not their amplitudes.
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5.3.1 Modelling by hyperbolic superposition

Section 5.2.5 describes how the seismic response of a complex geological structure can be viewed as
the superposition of the responses of many point diffractors. Conceptually, infinitely many point
diffractors are required and the seismic response is found in the limit as the number of diffractors
becomes infinite and their spacing infinitesimal. In a practical computer implementation, only a
finite number of diffractors can be simulated and their spacing can be no finer than the underlying
computation grid.

There are six basic routines that support modelling by superposition of hyperbolae. These are
collected in the synsections toolbox and assume that a constant-velocity, zero-offset synthetic is
desired. The fundamental paradigm is that each routine inserts a single event in a matrix that
represents the seismic section. These six basic commands are

event spike Inserts an isolated noise spike.

event hyp Inserts a hyperbolic event.

event dip Inserts a dipping (linear) event.

event diph Builds a dipping event by superimposing hyperbolae.

event diph2 Similar to event diph plus it allows control over the hyperbolae spacing.

event pwlinh Superimposes hyperbolae along a piecewise linear track.

These all operate similarly and insert a spike, hyperbola, linear event, or piecewise linear event in
a matrix. The matrix must be created externally and assigned vertical (time) and horizontal (dis-
tance) coordinates. Then the inserted event is described by its position in (x, t) or (x, z). Some of
the commands require the specification of velocity and this should be the physical velocity. Within
the functions, the velocity is halved to produce an exploding reflector synthetic. The final three
commands create events by the superposition of hyperbolae along linear or piecewise linear struc-
tures. By calling these functions repeatedly, the seismic responses from quite complex geometric
shapes can be synthesized.

Code Snippet 5.3.1. This example creates the synthetic zero offset section shown in Figure 5.25.

1 v=2000;dx=10;dt=.004;%basic model parameters
2 x=0:dx:2000;%x axis
3 t=0:dt:2;%t axis
4 seis=zeros(length(t),length(x));%allocate seismic matrix
5 seis=event_hyp(seis,t,x,.4,700,v,1,3);%hyperbolic event
6 seis=event_dip(seis,t,x,[.75 1.23],[700 1500],1);%linear event
7 [w,tw]=ricker(dt,40,.2);%make ricker wavelet
8 seis=sectconv(seis,t,w,tw);%apply wavelet

End Code

Code Snippet 5.3.2. This is similar to Code Snippet 5.3.1 but differs by using event diph to
create the dipping event. The result is shown in Figure 5.26.

1 v=2000;dx=10;dt=.004;%basic model parameters
2 x=0:dx:2000;%x axis
3 t=0:dt:2;%t axis
4 seis=zeros(length(t),length(x));%allocate seismic matrix
5 seis=event_hyp(seis,t,x,.4,700,v,1,3);%hyperbolic event
6 seis=event_dip(seis,t,x,[.75 1.23],[700 1500],1);%linear event
7 [w,tw]=ricker(dt,40,.2);%make ricker wavelet
8 seis=sectconv(seis,t,w,tw);%apply wavelet
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Figure 5.25: The hyperbolic response of a point
diffractor and a simple linear event are shown.
The display is slightly clipped to make the
diffraction more visible. This was created by
Code Snippet 5.3.1.
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Figure 5.26: Similar to Figure 5.25 except that
the linear event was created by the superposition
of many hyperbolae. The display is clipped to
match that of Figure 5.25. See Code Snippet
5.3.2.

End Code

Code Snippet 5.3.1 illustrates the use of event hyp and event dip to create the model section
shown in Figure 5.25. The first three lines establish the basic model geometry and define the
coordinate axes; then, line 4 initializes the seismic matrix to zero. On line 5, event hyp is invoked
to make the hyperbolic diffraction response shown in the top left of Figure 5.25. The seismic matrix
is input to event hyp and is replaced by the output. The coordinate vectors (second and third input
parameters) are required to defined the geometry. The fourth and fifth input parameters are the
(x, t) coordinates of the apex of the diffraction and the sixth parameter is the velocity. The seventh
parameter sets the amplitude at the apex of the hyperbola and the eighth is a flag that determines
how amplitude decays down the limbs of the hyperbola. There are four possibilities: (1) no amplitude
decay, (2) decay given by a(x) = a(0)t0/tx (where a(x) is the amplitude at offset x, t0 is the zero-
offset traveltime, and tx is the traveltime at offset x), (3) decay given by a(x) = a(0)(t0/tx)3/2, and
(4) decay given by a(x) = a(0)(t0/tx)2. Line 6 invokes event dip to create the linear dipping event
seen in the center of Figure 5.25. The fourth input parameter specifies the time of the event at
its beginning and end while the fifth parameter gives the corresponding lateral positions. The last
parameter gives the event amplitude. Once the events are created, the final two lines make a Ricker
wavelet (dominant frequency of 40 Hz) and convolve it with the seismic section.

The linear event shown in Figure 5.25 is physically unrealistic because it lacks diffractions from
its endpoints. Real wavefields are never discontinuous. A much more realistic event can by created
using event diph . This function synthesizes a linear event by hyperbolic superposition exactly
as illustrated in Figure 5.20. The result is the seismic section shown in Figure 5.26. In order to
do so, the input parameters must describe the dipping event in (x, z) rather than (x, t). Code
Snippet 5.3.2 shows how this is done and differs from Code Snippet 5.3.1 only on line 6. The fourth
input parameter for event diph is the velocity while the next four parameters are respectively: the
starting and ending x coordinates, the starting z coordinate, and the dip in degrees. The lateral
extent of the resulting event is generally much greater than the prescribed coordinates. If the section
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Figure 5.27: The response of five reflectors with
dips of 0◦, 20◦, 40◦, 60◦, and 80◦.
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Figure 5.28: The same dataset as Figure 5.28 is
shown with a strongly clipped display to reveal
the underlying hyperbolae.

is migrated, then the migrated reflector will be found between the specified coordinates.
A more complex seismic section is shown in Figure 5.27. The geologic model is a fan of five

dipping reflectors that originate at the point (x, z) = (250m, 200m) and extend to the right until
x = 1500m. In Figure 5.28 the same seismic section is shown with a strongly clipped display to
reveal the underlying hyperbolae.

Code Snippet 5.3.3. This code illustrates the use of event pwlinh to create a simple model of a
reef. The result is shown in Figure 5.29.

1 v=2000;dx=10;dt=.004;%basic model parameters
2 x=0:dx:3000;%x axis
3 t=0:dt:1.5;%t axis
4 zreef=600;hwreef=200;hreef=50;%depth, half-width, and height of reef
5 xcntr=max(x)/2;
6 xpoly=[xcntr-hwreef xcntr-.8*hwreef xcntr+.8*hwreef xcntr+hwreef];
7 zpoly=[zreef zreef-hreef zreef-hreef zreef];
8 seis4=zeros(length(t),length(x));%allocate seismic matrix
9 seis4=event_diph(seis4,t,x,v,0,xcntr-hwreef,zreef,0,.1);%left of reef
10 seis4=event_diph(seis4,t,x,v,xcntr+hwreef,max(x),zreef,0,.1);%right of reef
11 seis4=event_diph(seis4,t,x,v,xcntr-hwreef,xcntr+hwreef,zreef,0,.2);%base of reef
12 seis4=event_pwlinh(seis4,t,x,v,xpoly,zpoly,-.1*ones(size(zpoly)));%reef
13 [w,tw]=ricker(dt,40,.2);%make ricker wavelet
14 seis4=sectconv(seis4,t,w,tw);%apply wavelet

End Code

Code Snippet 5.3.3 illustrates the use of these hyperbolic summation tools to create a simple
model of a reef. The resulting seismic response is shown in Figures 5.29 and 5.30. The reef is a
simple trapezoidal structure, 400 m wide and 50 m high, on top of a flat reflector 600 m below the
recording plane. The reflection coefficient of the reef is modelled as -.1 (the acoustic impedance
within the reef is assumed to be lower than the surrounding material), +.1 on the base reflector,
and +.2 beneath the reef.
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Figure 5.29: The seismic response of a simple
reef model. This was created with Code Snippet
5.3.3
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Figure 5.30: The same dataset as Figure 5.29 is
shown with a strongly clipped display to reveal
the underlying hyperbolae.

Code Snippet 5.3.4. This code uses event diph2 to construct the response of a trapezoidal struc-
ture. The parameter ndelx (line 5) controls the spacing of the hyperbolae. Figures 5.31, 5.32, 5.33
and 5.34 correspond to values of ndelx of 15, 10, 5, and 1 respectively.

1 v=2000;dx=5;dt=.004;%basic model parameters
2 x=0:dx:3000;%x axis
3 t=0:dt:1.5;%t axis
4 xcntr=max(x)/2;
5 ndelx=30;
6 seis5=zeros(length(t),length(x));%allocate seismic matrix
7 seis5=event_diph2(seis5,t,x,v,0,500,1000,ndelx,0,.1);
8 seis5=event_diph2(seis5,t,x,v,500,xcntr-500,1000,ndelx,-45,.1);
9 seis5=event_diph2(seis5,t,x,v,xcntr-500,xcntr+500,500,ndelx,0,.1);
10 seis5=event_diph2(seis5,t,x,v,xcntr+500,max(x)-500,500,ndelx,45,.1);
11 seis5=event_diph2(seis5,t,x,v,max(x)-500,max(x),1000,ndelx,0,.1);
12 [w,tw]=ricker(dt,40,.2);%make ricker wavelet
13 seis5=sectconv(seis5,t,w,tw);%apply wavelet

End Code

The function event diph2 is similar to event diph except that it allows control over the spacing
of hyperbolae through the input parameter ndelx. In event diph the hyperbolae spacing is never
greater than the grid spacing while in event diph2 the spacing is ndelx times greater than in
event diph . Code Snippet 5.3.4 illustrates the use of this function to create a series of figures
illustrating the gradual formation of the seismic response of a trapezoidal structure. The sequence
of Figures 5.31, 5.32, 5.33 and 5.34 shows the complete seismic response gradually forming as the
density of hyperbolae increases.

Also present in the synsections toolbox are two functions that make “standard” synthetics
called makestdsyn and makestdsynh . These differ in that one uses hyperbolic superposition for
linear events and the other does not. Their use can be illustrated in the script makesections that
can be run as a demonstration.
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Figure 5.31: A trapezoidal structure is modelled
with only a few sparse hyperbolae. Relative to
Figure 5.34 only every 15th hyperbola is shown.
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Figure 5.32: Similar to Figure 5.31 except that
every 10th hyperbola is shown.

meters

se
co

nd
s

0 500 1000 1500 2000 2500 3000

0

0.5

1

1.5

Figure 5.33: Similar to Figure 5.31 except that
every 5th hyperbola is shown.
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Figure 5.34: A trapezoidal structure is com-
pletely modelled by hyperbolic superposition.
Compare with Figures 5.31, 5.32, and 5.33.
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5.3.2 Finite difference modelling for exploding reflectors

This section builds on section 3.3 and describes those extensions required for exploding reflector
modeling. The key facility here is the function afd explode that uses an input velocity model to
calculate the initial exploding reflector snapshot, ψ(x, z, t = 0), and then time-step it with equation
(3.18).

The calculation of ψ(x, z, t = 0) can be done directly from the velocity model if it is assumed to
be the normal incidence reflectivity at constant density. Using equation (5.1) and assuming a unit
volume, that is

ψ(x, z, t = 0) = rn(x, z) =
1
2

∣∣∣�∇log v(x, z)
∣∣∣ . (5.39)

This can be simply calculated using MATLAB’s built-in gradient function, gradient. Given an
input matrix representing log v(x, z), this function returns two matrices of the same size representing
∂x log v(x, z) and ∂z log v(x, z). These are calculated using a centered finite difference approximation
for interior points and one-sided approximations on the boundaries. Thus, reflectivity is calculated
by

[rx,rz]=gradient(log(velocity));
r=.5*sqrt(rx.ˆ2+rz.ˆ2);

where velocity is a matrix representing v(x, z). This calculation is provided by the function
afd reflec that is invoked by afd explode .

Code Snippet 5.3.5. This code uses of afd explode to model the exploding reflector response of
a small channel. Lines 1-11 build the velocity model and lines 13-25 create a fourth-order exploding
reflector seismogram. The results are shown in Figures 5.35, and 5.36.

1 dx=5; %cdp interval
2 xmax=2500;zmax=1000; %maximum line length and maximum depth
3 x=0:dx:xmax; % x coordinate vector
4 z=0:dx:zmax; % z coordinate vector
5 vhigh=4000;vlow=2000; % high and low velocities
6 vrange=vhigh-vlow;
7 %initialize velocity matrix as a constant matrix full of vlow
8 vel=vlow*ones(length(z),length(x));
9 %first layer
10 z1=100;z2=200;v1=vlow+vrange/5;
11 xpoly=[-dx xmax+dx xmax+dx -dx];zpoly=[z1 z1 z2 z2];
12 vel=afd_vmodel(dx,vel,v1,xpoly,zpoly);
13 %second layer
14 z3=271;v2=vlow+2*vrange/5;
15 zpoly=[z2 z2 z3 z3];
16 vel=afd_vmodel(dx,vel,v2,xpoly,zpoly);
17 %third layer
18 z4=398;v3=vlow+pi*vrange/5;
19 zpoly=[z3 z3 z4 z4];
20 vel=afd_vmodel(dx,vel,v3,xpoly,zpoly);
21 %last layer
22 zpoly=[z4 z4 zmax+dx zmax+dx];
23 vel=afd_vmodel(dx,vel,vhigh,xpoly,zpoly);
24 %channel
25 width=20;thk=50;
26 vch=vlow+vrange/6;
27 xpoly=[xmax/2-width/2 xmax/2+width/2 xmax/2+width/2 xmax/2-width/2];
28 zpoly=[z4 z4 z4+thk z4+thk];
29 vel=afd_vmodel(dx,vel,vch,xpoly,zpoly);



142 CHAPTER 5. ELEMENTARY MIGRATION METHODS

meters

m
et

er
s

0 500 1000 1500 2000 2500

0

200

400

600

800

1000

Figure 5.35: The velocity model created by Code
Snippet 5.3.5.
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Figure 5.36: The fourth-order exploding reflec-
tor seismogram created on line 35 of Code Snip-
pet 5.3.5.

30
31 %create the exploading reflector model
32 dt=.004; %temporal sample rate
33 dtstep=.001; %modelling step size
34 tmax=2*zmax/vlow; %maximum time
35 [seisfilt,seis,t,xrec]=afd_explode(dx,dtstep,-dt,tmax, ...
36 vel,length(x),x,zeros(size(x)),[10 15 40 50],0,2,0);

End Code

Code Snippet 5.3.5 illustrates the creation of a model of a small channel beneath a layered
medium. The creation of the velocity model uses afd vmodel and was discussed in detail in section
3.3. The channel is defined on lines 25-29 as 20 m wide and 50 m deep. With the 5 m grid (line 1)
this means that the channel is 4 samples wide and 10 samples deep. The resulting velocity model is
shown in Figure 5.35. Lines 32-36 take this velocity model into afd explode to create an exploding
reflector seismogram using the fourth-order Laplacian approximation (equation (3.20)). As with
afd shotrec , two temporal sample rates are prescribed. The coarser one (dt on line 32) specifies
the sample rate of the final seismogram while the finer one (dtstep on line 33) is the time step of
the modelling. The resulting seismogram, filtered with Ormsby parameters of [10 15 40 50] is shown
in Figure 5.36. Two small horizontal lines are superimposed to indicate the position of the channel.
The lines are at the time of the top and bottom of the channel (.312 and .355 seconds) and have the
same width as the channel. The channel produces an extensive diffraction pattern showing scattered
energy over the entire model.

Figure 5.37 shows a second exploding reflector seismogram of the channel model that was cal-
culated with the second-order approximate Laplacian (equation (3.19)). In comparison with the
fourth-order seismogram of Figure 5.36, this result is considerably less accurate though it required
only one-half of the computation time. Even less accurate is the second-order solution shown in
Figure 5.38 that was done with a grid sample size of 10 m rather than the 5m of the previous two
figures. This result is almost unrecognizable as the response of the same structure. An obvious
conclusion is that the results from finite difference modelling should not be trusted without a careful
consideration of the algorithms and parameters.
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Figure 5.37: Similar to the seismogram of Fig-
ure 5.36 except that the Laplacian was approx-
imated with second-order finite differences.

se
co

nd
s

meters
0 500 1000 1500 2000 2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.38: Similar to the seismogram of Figure
5.37 except that the spatial sample rate was 10m
rather than 5m.
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Figure 5.39: An anticline beneath a high veloc-
ity wedge. Black is 4000 m/s and white is 2000
m/s.
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Figure 5.40: The reflectivity, corresponding to
Figure 5.39, is shown. This was calculated with
afd reflect .
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Figure 5.41: The fourth-order exploding reflec-
tor seismogram corresponding to the model of
Figure 5.39. This model was created using a
spatial grid size of 10 m.
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Figure 5.42: Similar to Figure 5.41 except that
the spatial grid size was 5 m.

As a slightly more complex example that will be useful in examining depth migration, consider
the response of an anticline beneath a high-velocity wedge as shown in Figure 5.39. Code Snippet
5.3.6 creates this velocity model and the fourth-order exploding reflector seismogram shown in Figure
5.41. This result was created with a spatial grid size of 10 m. It might be tempting to trust this
result as the proper physical response of the model, but that could lead to erroneous conclusions.
For example, it might be concluded that the response of the anticline has a series of reverberations
following the primary response. However, before leaping to conclusions, it is prudent to recreate
the model with a finer spatial grid size. Figure 5.42 shows the result of re-running Code Snippet
5.3.6 with the spatial grid size set to 5 m. The reverberations have vanished and the amplitude
variation of the primary response of the anticline has changed considerably. Once again, it pays to
be cautious when working with finite difference synthetics. The only way to be certain is to fully
understand the algorithm and how to change the parameters to increase the accuracy. When the
accuracy parameters are increased by a factor of two and the response does not change significantly,
then it is safe to conclude that the model is showing an accurate physical response. Of course, this
can be a tedious process because increasing the accuracy will always increase the computation time.

Code Snippet 5.3.6. This creates an exploding reflector model of an anticline beneath a high
velocity wedge. Lines 1-25 build the velocity model and lines 27-34 create a fourth-order exploding
reflector seismogram. The results are shown in Figures 5.39, and 5.41.

1 dx=5; %cdp interval
2 xmax=2500;zmax=1000; %maximum line length and maximum depth
3 xpinch=1500; % wedge pinchout coordinates
4 zwedge=zmax/2; % wedge maximum depth
5 x=0:dx:xmax; % x coordinate vector
6 z=0:dx:zmax; % z coordinate vector
7 vhigh=4000;vlow=2000; % high and low velocities
8 vel=vlow*ones(length(z),length(x));%initialize velocity matrix
9 % define the wedge as a three point polygon
10 dx2=dx/2;
11 xpoly=[-dx2 xpinch -dx2];zpoly=[-1 -1 zwedge];
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12 % install the wedge in the velocity matrix
13 vel=afd_vmodel(dx,vel,vhigh,xpoly,zpoly);
14 % define an anticline beneath the wedge
15 x0=xpinch/2;z0=zwedge+100; % x and z of the crest of the anticline
16 a=.0005; % a parameter that determines the steepness of the flanks
17 za=a*(x-x0).ˆ2+z0; % model the anticline as a parabola
18 % build a polygon that models the anticline
19 ind=near(za,zmax+dx);
20 xpoly=[x(1:ind) 0 ];zpoly=[za(1:ind) za(ind)];
21 %install the anticline in the velocity model
22 vel=afd_vmodel(dx,vel,vhigh,xpoly,zpoly);
23 % bottom layer
24 xpoly=[0 xmax xmax 0];zpoly=[.9*zmax .9*zmax zmax+dx zmax+dx];
25 vel=afd_vmodel(dx,vel,vhigh,xpoly,zpoly);
26
27 %do a finite-difference model
28 dt=.004; %temporal sample rate
29 dtstep=.001;
30 tmax=2*zmax/vlow; %maximum time
31 %[w,tw]=wavemin(dt,30,.2); %minimum phase wavelet
32 %[w,tw]=ricker(dt,70,.2); %ricker wavelet
33 [seisfilt,seis,t,xrec]=afd_explode(dx,dtstep,dt,tmax, ...
34 vel,length(x),x,zeros(size(x)),[5 10 40 50],0,2,0);

End Code

5.3.3 Migration and modelling with normal raytracing

Normal raytracing, that is the determination of the raypaths and traveltimes of normal incidence
rays, does not directly provide a complete seismic section. The determination of amplitudes would
require solution of the geometric spreading equation, (4.73), in addition to the eikonal equation.
However, even with this shortcoming, a great deal of useful information can be obtained by using
normal raytracing for migration or modelling.

The two key functions here are normray and normraymig that do modelling and migration
respectively. Migration by normal incidence raytracing was described in section 5.2.2 and normal ray
modelling is essentially just the inverse process. Function normraymig accepts the three parameters
defining a pick, (x0, t0,∆t/∆x), (page 123) and then uses shootrayvxz (discussed in section 4.12.2)
to trace that ray down into a velocity model. The plotimage picking facility (section 1.3.3) can be
used to provide these picks for normraymig to migrate. Function normraymig returns the abstract
ray vector, �r = [�x, �p] (see equation (4.90)) as an n-by-4 matrix. The first two columns are the
(x, z) coordinates while the second two are the horizontal and vertical slownesses. The number of
rows is the number of time steps required to trace the ray. Thus the ray vector provides complete
specification of the raypath. As a convenience, normraymig will plot the raypath in a user-specified
figure.

The use of normraymig , as described in the previous paragraph, can become quite tedious if there
are a great many picks to migrate. Therefore, eventraymig is provided to automatically migrate all
of the picks stored in the global PICKS. Function eventraymig requires only a single input parameter
and that is the figure number to draw the raypaths in. However, prior to running either normraymig
or eventraymig the velocity model must be properly established using rayvelmod as described in
section 4.12.2.

In Figure 5.43, the exploding reflector seismogram of Figure 5.42 is shown with picks on the event
from the anticline. These picks were made with the plotimage picking facility (section 1.3.3) and
so are automatically stored as a global variable for eventraymig . Prior to migrating these picks,
and after running Code Snippet 5.3.6, the velocity matrices required for raytracing were initialized
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Figure 5.43: The seismogram of Figure 5.42 is
shown with picks on the image of the anticline.
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Figure 5.44: The picks of Figure 5.43 are shown
migrated on top of the reflectivity section.

with the command rayvelmod(vel,dx) where vel is the velocity matrix and dx is the grid size.
Then, the command eventraymig(figno), where figno is the MATLAB figure number of Figure
5.39, causes the picks to be migrated and the resulting raypaths displayed in Figure 5.44. At the
termination of each raypath, a small line segment, perpendicular to the raypath, is drawn that
indicates the implied reflector dip. (These do not appear perpendicular in Figure 5.44 because the
(x, z) axes do not have the same scale. The command axis equal will display any figure with equal
scales on all axes.)

The relative accuracy of the migrations in Figure 5.44 is instructive. The picks have all migrated
to positions near the anticline but some have fallen short while others have gone too far. Among the
obvious reasons for this are the difficulty in determining which phase (peak, trough, zero crossing,
etc.) of the input waveform should be picked and then making a consistent pick at two points. A
slight error in either case can result in a very large error in the final position. Since the material
beneath the anticline has a high velocity, a pick that arrives at the anticline with a little time left
(see section 5.2.2) will continue a significant distance. Thus, small errors in the pick time can make
a large error in the result. Also, an error in picking ∆t/∆x will cause the initial trajectory of the ray
to be incorrect. Since sin θ0 = .5v0∆t/∆x, these emergence angle errors are also more significant in
high-velocity material.

Migration by normal raytracing can reveal a lot about the nature of a seismic dataset. Also
instructive is the complementary process of normal-incidence raytrace modelling. This process is
implemented in the function normray that is logical reverse of normraymig . The latter requires
the pick specification of (x0, t0,∆t/∆x) while the former needs the specification of the normal ray:
(xn, zn, θn). Here, (xn, zn) are the coordinates of the normal incidence point and θn is the structural
dip (in degrees) at the normal incidence point. Though logically similar, it is convenient to use
separate raytracing engines for these two tasks because they have different criteria for stopping
the ray. In migration, the ray is terminated when it has used the available traveltime while in
modelling, it is stopped when it encounters the recording surface (z = 0). These raytracing engines
are shootrayvxz and shootraytosurf respectively.

As with the migration tools, it is tedious to invoke normray at the command line for each pick.
Therefore, a convenience function, eventraymod is provided that automatically models any picks
found in the global variable PICKS. These picks are expected to have been made on a depth section



5.4. FOURIER METHODS 147

meters

m
et

er
s

0 500 1000 1500 2000 2500

0

200

400

600

800

1000

Figure 5.45: The reflectivity section of Figure
5.40 is shown with picks on the anticline and
normal rays to the surface.
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Figure 5.46: The picks of Figure 5.45 are shown
modelled on top of the seismic section of Figure
5.42.

though no check is made to ensure this. Figure 5.45 shows the reflectivity section of Figures 5.40 and
5.44 with a series of picks, (xn, zn, θn), made on the anticline. Also shown are the normal incidence
raypaths (drawn by normray ) to the surface. Figure 5.46 shows the modelled picks, (x0, t0,∆t/∆x),
on top of the seismic section of Figures 5.42 and 5.43.

5.4 Fourier methods

The Fourier methods are developed from an exact solution to the wave equation using Fourier trans-
forms. They provide a high-fidelity migration that illustrates precisely how the migrated spectrum is
formed. There are two fundamental approaches and many variations of each. f -k migration (Stolt,
1978) is an exact solution to the migration problem for constant velocity. It is a direct method
that is the fastest known migration technique. Phase-shift migration (Gazdag, 1978) is a recursive
approach that uses a series of constant velocity extrapolations to build a v(z) migration.

5.4.1 f-k migration

Stolt (1978) showed that the migration problem can be solved by Fourier transform. Here, Stolt’s
solution will be developed from a formal solution of the wave equation using Fourier transforms. It
will be developed in 2D and the direct 3D extension will be stated at the end.

Let ψ(x, z, t) be a scalar wavefield that is a solution to

∇2ψ − 1
v̂2

∂2ψ

∂t2
= 0 (5.40)

where v̂ is the constant ERM velocity. It is desired to calculate ψ(x, z, t = 0) given knowledge of
ψ(x, z = 0, t). The wavefield can be written as an inverse Fourier transform of its (kx, f) spectrum
as

ψ(x, z, t) =
∫

V∞

φ(kx, z, f)e2πi(kxx−ft)dkxdf (5.41)
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where cyclical wavenumbers and frequencies are used and the Fourier transform convention uses a +
sign in the complex exponential for spatial components and a − sign for temporal components. (The
notation for the integration domain is explained in section 5.1.3.) If equation (5.41) is substituted
into equation (5.40), the various partial derivatives can be immediately brought inside the integral
where they can be readily evaluated. The result is∫

V∞

{
∂2φ(z)
∂z2 + 4π2

[
f2

v̂2 − k2
x

]
φ(z)

}
e2πi(kxx−ft)dkxdf = 0 (5.42)

where the (kx, f) dependence in φ(z) has been suppressed for simplicity of notation. The derivation of
equation (5.42) does not require that v̂ be constant; however, the next step does. If v̂ is constant1,
then the left-hand-side of equation (5.42) is the inverse Fourier transform of the term in curly
brackets. The uniqueness property of Fourier transforms (that there is a unique spectrum for a
given function and vice-versa) guarantees that if a function vanishes everywhere in one domain, it
must do so in another. Put another way, the zero function has a zero spectrum. Thus, it results
that

∂2φ(z)
∂z2 + 4π2k2

zφ(z) = 0 (5.43)

where the wavenumber kz is defined by

k2
z =

f2

v̂2 − k2
x. (5.44)

Equation (5.44) is called the dispersion relation for scalar waves though the phrase is somewhat
misleading since there is no dispersion in this case.

Equations (5.43) and (5.44) are a complete reformulation of the problem in the (kx, f) domain.
The boundary condition is now φ(kx, z = 0, f) which is the Fourier transform, over (x, t), of ψ(x, z =
0, t). Equation (5.43) is a second-order ordinary differential equation for fixed (kx, f). Either of the
functions e±2πikzz solve it exactly as is easily verified by substitution. Thus the unique, general
solution can be written as

φ(kx, z, f) = A(kx, f)e2πikzz +B(kx, f)e−2πikzz (5.45)

where A(kx, f) and B(kx, f) are arbitrary functions of (kx, f) to be determined from the boundary
condition(s). The two terms on the right-hand-side of equation (5.45) have the interpretation of a
downgoing wavefield, A(kx, f)e2πikzz, and an upgoing wavefield, B(kx, f)e−2πikzz. This can be seen
by substituting equation (5.45) into equation (5.41) and determining the direction of motion of the
individual Fourier plane waves as described in section 4.9. It should be recalled that z increases
downward.

Given only one boundary condition, φ(kx, z = 0, f), it is now apparent that this problem cannot
be solved unambiguously. It is a fundamental result from the theory of partial differential equations
that Cauchy boundary conditions (e.g. knowledge of both ψ and ∂zψ) are required on an open
surface in order for the wave equation to have a unique solution. Since this is not the case here, the
migration problem is said to be ill-posed. If both conditions were available, A and B could be found
as the solutions to

φ(z = 0) ≡ φ0 = A+B (5.46)

1Actually v̂(z) could be tolerated here. The necessary condition is that v̂ must not depend upon x or t.
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and
∂φ

∂z
(z = 0) ≡ φz0 = 2πikzA− 2πikzB. (5.47)

When faced with the need to proceed to a solution despite the fact that the stated problem does
not have a unique solution, a common approach is to assume some limited model that removes the
ambiguity. The customary assumption of one-way waves achieves this end. That is, ψ(x, z, t) is
considered to contain only upgoing waves. This allows the solution

A(kx, f) = 0 and B(kx, f) = φ0(kx, f) ≡ φ(kx, z = 0, f). (5.48)

Then, the ERM wavefield can be expressed as the inverse Fourier transform

ψ(x, z, t) =
∫

V∞

φ0(kx, f)e2πi(kxx−kzz−ft)dkxdf. (5.49)

The migrated solution is

ψ(x, z, t = 0) =
∫

V∞

φ0(kx, f)e2πi(kxx−kzz)dkxdf. (5.50)

Equation (5.50) gives a migrated depth section as a double integration of φ0(kx, f) over f and
kx. Though formally complete, it has the disadvantage that only one of the integrations, that over
kx, is a Fourier transform that can be done rapidly as a numerical FFT. The f integration is not
a Fourier transform because the Fourier kernel e−2πft was lost when the imaging condition (setting
t = 0) was invoked. Inspection of equation (5.50) shows that another complex exponential e−2πikzz

is available. Stolt (1978) suggested a change of variables from (kx, f) to (kx, kz) to obtain a result
in which both integrations are Fourier transforms. The change of variables is actually defined by
equation (5.44) that can be solved for f to give

f = v̂
√
k2

x + k2
z . (5.51)

Performing the change of variables from f to kz according to the rules of calculus transforms equation
(5.50) into

ψ(x, z, t = 0) =
∫

V∞

φm(kx, kz)e2πi(kxx−kzz)dkxdkz (5.52)

where

φm(kx, kz) ≡ ∂f(kz)
∂kz

φ0(kx, f(kz)) =
v̂kz√
k2

x + k2
z

φ0(kx, f(kz)) (5.53)

Equation (5.52) is Stolt’s expression for the migrated section and forms the basis for the f -
k migration algorithm. The change of variables has recast the algorithm into one that can be
accomplished with FFT’s doing all of the integrations. Equation (5.53) results from the change of
variables and is a prescription for the construction of the (kx, kz) spectrum of the migrated section
from the (kx, f) spectrum of the ERM seismogram.

Many of the important properties of post-stack migration can be discerned from Stolt’s result.
First, notice that kz defined though

kz =

√
f2

v̂2 − k2
x (5.54)
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is real-valued when |f/kx| ≥ v̂ and is otherwise imaginary. Only for real kz will equation (5.45)
correspond to traveling waves in the positive and negative z directions. For complex kz e±2πikzz

becomes a real exponential that either grows or decays; however, on physical grounds, growing
exponentials must be excluded. Given a value for v̂ this dual behavior of kz divides (kx, f) space
into two regions as was discussed from another perspective in section 4.11.1. The region where
|f/kx| ≥ v̂ is called the wavelike or body wave region and where |f/kx| < v̂ it is called the evanescent
region. Equation (5.54) is sometimes called a dispersion relation for one-way waves since the choice
of the plus sign in front of the square root generates upward traveling waves in e±2πikz while the
minus sign generates downward traveling waves.

The geometric relationships between the spaces of (f/v, kx) and (kx, kz) are shown from two
different perspectives in Figures 5.47 and 5.48. In (f/v, kx) space, the lines of constant kz are
hyperbolae that are asymptotic to the dashed boundary between the wavelike and evanescent regions.
In (kx, kz) space, the curves of constant f/v are semi-circles. At kx = 0, kz = f/v so these hyperbolae
and semi-circles intersect when the plots are superimposed.

The spectral mapping required in equation (5.53) is shown in Figure 5.49. The mapping takes a
constant f slice of (kx, f) space to a semi-circle in (kx, kz) space. Each point on the f slice maps at
constant kx which is directly down in the figure. It is completely equivalent to view the mapping as
a flattening of the kz hyperbolae of Figure 5.47. In this sense, it is conceptually similar to the NMO
removal in the time domain though here the samples being mapped are complex valued. That the
spectral mapping happens at constant kx is a mathematical consequence of the fact that kx is held
constant while the f integral in equation (5.50) is evaluated. Conceptually, it can also be viewed as
a consequence of the fact that the ERM seismogram and the migrated section must agree at z = 0
and t = 0.

On a numerical dataset, this spectral mapping is the major complexity of the Stolt algorithm.
Generally, it requires an interpolation in the (kx, f) domain since the spectral values that map to
grid nodes in (kx, kz) space cannot be expected to come from grid nodes in (kx, f) space. In order to
achieve significant computation speed that is considered the strength of the Stolt algorithm, it turns
out that the interpolation must always be approximate. This causes artifacts in the final result.
This issue will be discussed in more detail in section 5.4.2.

The creation of the migrated spectrum also requires that the spectrum be scaled by v̂kz/
√
k2

x + k2
z

as it is mapped (Equation (5.53)). In the constant velocity medium of this theory, sin δ = v̂kx/f (δ
is the scattering angle) from which it follows that cos δ = v̂kz/f = kz/

√
k2

x + k2
z . Thus the scaling

factor is proportional to cos δ and therefore ranges from unity to zero as δ goes from zero to 90◦.
This scaling factor compensates for the “spectral compression” that is a theoretical expectation of
the ERM seismogram. Recall the migrator’s formulae (equation (5.35)) that relates apparent angles
in (f/v, kx) space to real angles in (kx, kz) space. If there is uniform power at all angles in (kx, kz)
space, then the migrator’s formula predicts a spectral compression in (f/v, kx) (with consequent
increasing power) near 45◦ of apparent dip. As shown in Figure 5.49 it is as though (kx, kz) space is
an oriental fan that has been folded to create (f/v, kx) space. Migration must then unfold this fan.
f -k migration is called a steep-dip method because it works correctly for all scattering angles from
0◦ to 90◦.

The f -k migration algorithm just described is limited to constant velocity though it is exact
in this case. Its use of Fourier transforms for all of the numerical integrations means that it is
computationally very efficient. Though it has been used for many years in practical applications
its restriction to constant velocity is often unacceptable so that it has gradually being replaced by
more flexible, though usually slower, methods. Today, one major virtue still remains and that is the
conceptual understanding it provides. The description of the construction of the migrated spectrum
will provide the basis for a realistic theory of seismic resolution in section 5.7.
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Figure 5.50: The result of the f -k migration of
the data of Figure 5.25.
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Figure 5.51: The result of the f -k migration of
the data of Figure 5.26.

5.4.2 A MATLAB implementation of f-k migration

The f -k migration algorithm just described is a three step process

• Forward (kx, f) transform. This is done on the unmigrated data after all pre-conditioning such
as spectral whitening, bandpass filtering, and noise reduction.

• Spectral mapping. The spectral mapping and scaling described by equation (5.53) requires a
careful interpolation process.

• Inverse (kx, f) transform. This must be the exact inverse of the transform done in the first
step.

This process is formalized in the MATLAB function fkmig . This function has the external inter-
face: [seismig,tmig,xmig] = fkmig(seis,t,x,v,params). Here the first four input variables are
simply the seismic matrix, its time coordinate vector, its x coordinate vector, and a scalar giving the
velocity of migration. The final input variable is a vector of parameters that control various aspects
of the migration. This vector, params has length thirteen and affords control over the spatial and
temporal zero pads, the maximum dip to migrate, the maximum frequency to migrate, the type of
spectral interpolation, and the kind of progress messages that are written to the screen. Consult
the online help for fkmig for a complete description. Usually, the default actions for all of these
behaviors are acceptable and params can be omitted. Occasionally, it will be desired to program
one or more elements of params. This can be done while still defaulting the others by first creating
a vector of thirteen NaN’s (e.g. params=nan*1:13;) and then setting a few elements of params to
specific values.

As a first example, consider the migration of the synthetic sections shown in Figures 5.25 and 5.26.
This is very simply accomplished with the code in Code Snippet 5.4.1 with the results in Figures 5.50
and 5.51. These figures are displayed with slight clipping to make visible their more subtle details.
In Code Snippet 5.4.1, the variable seis refers to the data of Figure 5.25 while seis2 refers to Figure
5.26. Figure 5.25 contains the image of a dipping reflecting segment without diffractions while Figure
5.26 contains a similar image except that diffractions are present. The resulting migrations make
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Figure 5.52: The result of the f -k migration of
the data of Figure 5.27.
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Figure 5.53: The result of the f -k migration of
the data of Figure 5.29.

clear the advantage (indeed, the necessity) of modelling with diffractions. Only when diffractions
are included are the edges of the reflecting segment imaged with crisp definition.

Code Snippet 5.4.1. This code uses fkmig to migrate the sections shown in Figures 5.25 and
5.26. The results are shown in Figures 5.50, and 5.51.

1 seismig=fkmig(seis,t,x,v);
2 plotimage(seismig,t*v/2,x);
3 xlabel(’meters’);ylabel(’meters’);
4 seismig2=fkmig(seis2,t,x,v);
5 plotimage(seismig2,t*v/2,x);
6 xlabel(’meters’);ylabel(’meters’);

End Code

As further examples, the f -k migrations of the data of Figures 5.27, 5.29, 5.31, and 5.34 can be
migrated in similar fashion. The results are shown in Figure 5.52, 5.53, 5.54, and 5.55.

It is apparent that fkmig creates high quality migrations of constant-velocity synthetics, but it
is instructive to examine the code to see precisely how this is done. Code Snippet 5.4.2 contains an
excerpt from the source code of fkmig that illustrates the steps of basic geophysical importance.
The forward f -k transform is accomplished on line 2 by calling fktran . Prior to this, the seismic
matrix, seis, has had zero pads attached in both x (column) and t (row). The variables tnew
and xnew are time coordinate and x coordinate vectors that describe the padded seismic matrix.
Similarly, nsampnew and ntrnew are the number of samples-per-trace and the number of traces after
padding. Function fktran is a geophysical wrapper around MATLAB’s built-in two-dimensional
FFT fft2. This means that, in addition to calling fft2 to compute the f -k spectrum, fkspec, of
seis, it does some useful things like calculating the frequency and wavenumber coordinate vectors
f and kx. Also, because the input matrix is real valued, it only returns the non-negative temporal
frequencies. This is possible because the negative frequencies can be deduced from the positive ones
by a symmetry argument. Technically, if φ(kx, f) is the f -k transform of the real-valued wavefield
ψ(x, t) then it can be shown that φ(kx, f) has the symmetry φ(kx, f) = φ̄(−kx,−f), where the
overbar indicates the complex conjugate. Both positive and negative wavenumbers are required
since, after the temporal Fourier transform, the matrix is no longer real valued. Working only with
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Figure 5.54: The result of the f -k migration of
the data of Figure 5.31.
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Figure 5.55: The result of the f -k migration of
the data of Figure 5.34.

the non-negative temporal frequencies is more efficient because less memory and fewer calculations
are required. Also, it requires more care to formulate an algorithm correctly to process both positive
and negative frequencies. If the processed spectrum does not have the correct conjugate symmetry
then its inverse transform will result in a complex-valued seismic matrix. It is easier to process
only the non-negative frequencies and calculate the negative ones as needed from the symmetry
condition. The function fktran has a companion inverse ifktran (invoked on line 34) that creates
the negative temporal frequencies from the non-negative ones and then calls fft2.

Continuing with Code Snippet 5.4.2, line 3 calculates the exploding reflector velocity that is
required in the theory. The major computation loop is over kx (the columns of fkspec) and extends
from line 9 to line 32. Each iteration through the loop converts one column of fkspec, representing
φ0 of equation (5.53), into a column vector representing φm. Prior to the loop, lines 5-6 compute
the vertical coordinate vector, kz, for the matrix representing φm (df is the frequency sample rate).
On line 7, k2

z is pre-computed as this is needed in every loop. The first action in the loop (line 11)
is to apply frequency and dip masks to the relevant column of fkspec and the result is stored in
the temporary vector tmp. The calculation of these masks is not shown in this example. They are
simply vectors of the same size as a column of fkspec whose entries range between zero and one.
The frequency mask, fmask, is pre-computed outside the loop but the dip mask, dipmask must be
recalculated with every iteration. These masks are designed to attenuate the frequencies and dips
that are not of interest. For example, it is customary to migrate only frequencies below a certain
maximum, fmax. Thus a simple fmask could could be unity for f ≤ fmax and zero for f > fmax.
However, from a signal processing perspective, such an abrupt cutoff is not desirable so a better
fmask might be

fmask =




1, f ≤ fmax − fwid

1
2 + 1

2 cos
(
π f−fmax+fwid

fwid

)
, fmax − fwid < f ≤ fmax

0, f > fmax

. (5.55)

This defines a raised-cosine ramp of width fwid from unity at f = fmax − fwid to zero at f = fmax.
The dip mask must be recomputed at every loop iteration because the frequency corresponding to
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a given dip changes as kx changes according to f = kxv̂/ sin θ. Like the frequency mask, the dip
mask should use a raised-cosine ramp from zero at θmax to unity at θmax − θwid. Thus dipmask
attenuates low frequencies while fmask attenuates high frequencies.

Next, on line 13 in Code Snippet 5.4.2, the frequencies that map to each output kz called
fmap, are calculated via equation (5.51). Since the spectral mapping generally lowers frequencies
(see Figure 5.49) many of these frequencies will, in general, be greater than the maximum desired
frequency to migrate. Thus, on line 14, MATLAB’s powerful find command is used to identify
the entries in the vector fmap that are lower than the maximum frequency to migrate, fmapmig.
(fmapmig corresponds to fmax in equation (5.55).) At this stage, the vector ind is a vector of
indices into fmap that points to those frequencies that will be migrated.

On line 16 the current column of fkspec is set to zero in preparation for the actual migration
that happens in the if-block from line 17 to line 28. Lines 18-25 compute the cosine scale factor that
occurs in equation (5.53) with a special case for f = 0 to avoid division by zero. Line 27 does the
actual spectral mapping and applies the cosine scale factor. The spectral mapping is accomplished by
a sinc-function interpolation, that is optimized for complex-valued spectra, by the function csinci .

On lines 29-31, a progress message is printed. Though not strictly necessary, this is considered
good form because there are few things more disconcerting than waiting for a computer to finish a
long calculation without any indication that progress is occurring. A message is printed only after
every kpflag wavenumbers have been processed. This is controllable through the input params
vector.

Finally, after the completion of the loop on line 34, the migrated spectrum is inverse transformed.
Generally, the zero pads are then removed though this is not shown.

Code Snippet 5.4.2. This is an excerpt from the code of fkmig that shows the steps of major
importance. The actual fkmig source code contains 319 lines that handle the many non-technical
details required for a useful code.

1 %forward fk transform
2 [fkspec,f,kx] = fktran(seis,tnew,xnew,nsampnew,ntrnew,0,0);
3 ve = v/2; %exploding reflector velocity
4 %compute kz
5 dkz= df/ve;
6 kz = ((0:length(f)-1)*dkz)’;
7 kz2=kz.ˆ2;
8 %now loop over wavenumbers
9 for j=1:length(kx)
10 % apply masks
11 tmp=fkspec(:,j).*fmask.*dipmask;
12 %compute f’s which map to kz
13 fmap = ve*sqrt(kx(j)ˆ2 + kz2);
14 ind=find(fmap<=fmaxmig);
15 %now map samples by interpolation
16 fkspec(:,j) = zeros(length(f),1); %initialize output spectrum to zero
17 if( ˜isempty(ind) )
18 %compute cosine scale factor
19 if( fmap(ind(1))==0)
20 scl=ones(size(ind));
21 li=length(ind);
22 scl(2:li)=ve*kz(ind(2:li))./fmap(ind(2:li));
23 else
24 scl=ve*kz(ind)./fmap(ind);
25 end
26 %complex sinc interpolation
27 fkspec(ind,j) = scl.*csinci(tmp,f,fmap(ind),[lsinc,ntable]);
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Figure 5.56: The f -k spectrum of the data of
Figure 5.31.
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Figure 5.57: The (kx, kz) spectrum of the data
of Figure 5.54.

28 end
29 if( floor(j/kpflag)*kpflag == j)
30 disp([’finished wavenumber ’ int2str(j)]);
31 end
32 end
33 %inverse transform
34 [seismig,tmig,xmig]=ifktran(fkspec,f,kx);

End Code

As a last example, consider the computation of the discrete f -k spectra of one of the preceding
examples before and after migration. This should produce a graphical confirmation of the mapping
of Figure 5.49. This is very simply done using fktran . Specifically, the case of the synthetic of
Figure 5.31 and its migration in Figure 5.54 is shown. If seis is the unmigrated seismic matrix,
then the command [fkspec,f,kx]=fktran(seis,t,x) computes the complex-valued f -k spectrum
and plotimage(abs(fkspec),f,kx) produces the result shown in Figure 5.56. In a similar manner,
the (kx, kz) spectrum after migration can be computed and is shown in Figure 5.57. Comparison of
these figures shows that the spectral mapping has been performed as described.

5.4.3 f-k wavefield extrapolation

Stolt (1978) provided an approximate technique to adapt f -k migration to v(z). This method used
a pre-migration step called the Stolt stretch that was followed by an f -k migration. The idea was to
perform a one-dimensional time-to-depth conversion with v(z) and then convert back to a pseudo
time with a constant reference velocity . The f -k migration is then performed with this reference
velocity. (Stolt actually recommended the time-to-depth conversion be done with a special velocity
function derived from v(z) called the Stolt velocity.) This method is now known to progressively
lose accuracy with increasing dip and has lost favor.

A technique that can handle all scattering angles in v(z) is the phase-shift method of Gazdag
(1978). Unlike the direct f -k migration, phase shift is a recursive algorithm that treats v(z) as
a system of constant velocity layers. In the limit as the layer thickness shrinks to infinitesimal,
any v(z) variation can be modelled. The method can be derived starting from equation (5.49).
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Considering the first velocity layer only, this result is valid for any depth within that layer provided
that v̂ is replaced by the first layer velocity, v̂1. If the thickness of the first layer is ∆z1, then the
ERM wavefield just above the interface between layers 1 and 2 can be written as

ψ(x, z = ∆z1, t) =
∫

V∞

φ0(kx, f)e2πi(kxx−kz1∆z1−ft)dkxdf. (5.56)

where

kz1 =

√
f2

v̂2
1

− k2
x. (5.57)

Equation (5.56) is an expression for downward continuation or extrapolation of the ERM wavefield
to the depth ∆z1. The extrapolated wavefield is distinguished from the surface recorded wavefield
by the presence of the term e2πikz1∆z1 under the integral sign that is a specific form of the Fourier
extrapolation operator , e2πikz∆z. Any extrapolated wavefield is a temporal seismogram more akin to
a surface recording than to a migrated depth section. In the phase-shift method, as with any recursive
technique, the migrated depth section is built little-by-little from each extrapolated seismogram. The
extrapolated wavefield is a simulation of what would have been recorded had the receivers actually
been at z = ∆z rather than z = 0 . Since any extrapolated section intersects the depth section at
(z = ∆z, t = 0) each extrapolation can contribute one depth sample to the migration (see Figure
5.24). This process of evaluating the extrapolated section at t=0 was discussed in section 5.2.6 as
the post-stack imaging condition.

For the wavelike portion of (kx, f) space, the extrapolation operator has unit amplitude and a
phase of 2πkz∆z. For evanescent spectral components, it is a real exponential e±2π|kz|∆z. Forward
wavefield propagation must obey physical law and propagate evanescent spectral components using
the minus sign in the exponent, e.g. e−2π|kz|∆z. Therefore, inverse wavefield extrapolation, as is done
for migration, should use e+2π|kz|∆z. However, this inversion of evanescent spectral components is a
practical impossibility because they have decayed far below the noise level in forward propagation.
The practical approach is to use e−2π|kz|∆z for the evanescent spectral components for both forward
and inverse extrapolation. Even more practical is to simply zero the evanescent spectral components
on inverse extrapolation. In all that follows, it is assumed that e2πikz∆zhas one of these two practical
extensions implemented for evanescent spectral components.

The wavefield extrapolation expression (equation (5.56)) is more simply written in the Fourier
domain to suppress the integration that performs the inverse Fourier transform:

φ(kx, z = ∆z1, f) = φ0(kx, f)e2πikz1∆z1 . (5.58)

Now consider a further extrapolation to estimate the wavefield at the bottom of layer 2 (z =
∆z1 + ∆z2). This can be written as

φ(kx, z = ∆z1 + ∆z2, f) = φ(kx, z = ∆z1, f)T (kx, f)e2πikz2∆z2 (5.59)

where T (kx, f) is a correction factor for the transmission loss endured by the upgoing wave as it
crossed from layer 2 into layer 1. If transmission loss correction is to be incorporated, then the
data must not have had such amplitude corrections applied already. This is extremely unlikely
because seismic data is generally treated with a statistical amplitude balance that will compensate
for transmission losses. Also, correcting for transmission losses at each extrapolation step can be
numerically unstable because the correction factors are generally greater than unity. Consequently,
it is customary to set t(kx, f) = 1. With this and incorporating equation (5.58), equation (5.59)
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becomes
φ(kx, z = ∆z1 + ∆z2, f) = φ0(kx, f)e2πi

∑2
m=1 kzm∆zm (5.60)

which has the immediate generalization to n layers

φ(kx, z =∑n
m=1∆zm,f)=φ0(kx,f)e2πi

∑n
m=1 kzm∆zm . (5.61)

In the limit as ∆zm → dz, the summation in the extrapolator phase becomes an integral with the
result

φ(kx, z, f) = φ0(kx, f)e2πi
∫ z
0 kz(z′)dz′

. (5.62)

where kz(z) =
√
f2/v̂(z)2 − k2

x. This result is known as a first-order WKBJ2 solution and can be
derived as an approximate solution to the scalar wave equation for v̂(z) (Aki and Richards, 1980).
The second-order WKBJ solution arises when transmission losses are considered.

Equation (5.61) expresses what can be realized in a practical implementation of recursive wave-
field extrapolation while equation (5.62) is the theoretical limit of the process. The theoretically
correct phase shift from z1 to z2 is 2π times the area under the kz(z) curve between these depths.
It turns out that this result is true in one, two or three dimensions but the form of kz(z) changes.
In one dimension, kz(z) = f/v̂(z) and

∫ z

0 kz(z′)dz′ = f
∫ z

0 v̂(z′)−1dz′ = fτ(z) where τ(z) is the

vertical traveltime. In three dimensions, kz(z) =
√
f2/v̂(z)2 − k2

x − k2
y and the integral of kz(z) has

no immediate simplification.
An interpretation of the extrapolation phase shift is suggested by incorporating sin θ = v̂kx/f

with the result

2πkz∆z = 2π∆z

√
f2

v̂2 − k2
x = 2πf

∆z
v̂

√
1 −
[
v̂kx

f

]2
= 2πfτ cos θ (5.63)

where τ = ∆z/v̂ has been used. Thus for constant velocity, the extrapolation phase shift is

2The name WKBJ is the initials of Wentzel, Kramers, Brilloin, and Jeffreys who all derived it independently. The
first three were Quantum theorists while Jeffreys was a geophysicist.



5.4. FOURIER METHODS 159

∆
L


Datum

Dipping reflector

∆z

∆z

∆z

∆z

∆z

θ

∆
L


θ

Figure 5.59: The recursive application of the constant-velocity phase shift can model v(z)
media as in equation (5.61).

scattering-angle dependent and ranges from a maximum of 2πfτ at 0◦ to a minimum of 0 at 90◦ .
Figure 5.58 shows a geometric interpretation of this phase shift. For a monochromatic plane-wave,
the phase shift extrapolator corrects for the phase difference between the wave’s arrival at the upper
datum at (x0, z0) and its arrival at the lower datum at (x0, z0 + ∆z). This phase difference is just
2π times the number of wavelengths that fit in the path difference L, that is

phase difference = 2π
L

λ
= 2π

∆z cos θ
v̂/f

= 2π
f∆z
v̂

cos θ (5.64)

which it the same result as equation (5.63). For a recursive sequence of many constant-velocity
phase shifts, the geometric interpretation is as shown in Figure 5.59.

The extrapolation operator is often separated into two terms, one that accomplishes a bulk time
shift and another that accomplishes dip-dependent focusing. The bulk time delay operator is simply
the extrapolation operator evaluated at kx = 0 (i.e. zero dip) and is called the static shift operator
or thin lens operator. The phase shift it applies is simply µs = 2πf∆z/v̂. Denoting the total phase
shift by µ, this suggests that the focusing phase shift is simply µf = µ− µs. Thus,

µf = µ− µs = 2π∆z

√
f2

v̂2 − k2
x − 2πf∆z

v̂
=

2πf∆z
v̂

[√
1 − k2

xv̂
2

f2 − 1

]
(5.65)

where
µs =

2πf∆z
v̂

(5.66)
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Figure 5.60: A diffraction chart showing the response of five point diffractors as recorded
on the surface z = 0.

and, in summary,
total phase shift = µ = µs + µf . (5.67)

The focusing phase shift is angle-dependent and vanishes for kx = 0. That the static phase shift
accomplishes a bulk time delay can be seen as a consequence of the phase shift theorem of digital
signal theory (e.g. Karl (1989) page 87). This well-known result from time-series analysis says that
a time shift is accomplished in the Fourier domain by a phase shift where the phase is a linear
function of frequency. The slope of the linear phase function determines the magnitude of the time
shift. Rather than merely quote this result, it is instructive to actually demonstrate it. The static
phase shift can be applied to the ERM seismogram by

ψs(x, t) =
∫

V∞

φ0(kx, f)e−µs+2πi(kxx−ft)dkxdf. (5.68)

Since the static phase shift is independent of kx, the kxintegral can be done directly to give

ψs(x, t) =
∫ ∞

−∞
ψ̂0(x, f)e−2πi(ft+f∆z/v̂)df (5.69)

where ψ̂0(x, f) is the temporal Fourier transform of the ERM seismogram. Letting τ = ∆z/v̂, this
becomes

ψs(x, t) =
∫ ∞

−∞
ψ̂0(x, f)e−2πif(t+τ)df = ψ0(x, t+ τ). (5.70)

The last step follows because the integral is an inverse Fourier transform for the time coordinate
t+ τ . This result is simply a proof of the phase shift theorem in the present context.

Wavefield extrapolation in the space-time domain

Since the extrapolation operator is applied with a multiplication in the Fourier domain, it must be
a convolution in the space-time domain. In section 5.2.4 constant-velocity migration was shown to
be a nonstationary convolution. Constant-velocity extrapolation, which is a much simpler process
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Figure 5.61: The first hyperbola of diffraction chart of Figure 5.60 is shown convolved
with the its time reverse. (A) The focusing term only is applied. (B) Both the focusing
and the thin-lens term are applied

than migration, is a stationary convolution.
Figure 5.60 shows the response of five different point diffractors, at depths of 200 m, 400 m,

600 m, 800 m, and 1000 m, as recorded at z = 0. This diffraction chart was constructed with an
exploding reflector velocity v̂ = 2000 m/s. The chart represents an idealized ERM seismogram for a
geology that consists on only five point diffractors. It is desired to determine the space-time shape
of the extrapolation operator that will extrapolate this seismogram to 200 m. Since this is the depth
of the first diffractor, the first diffraction curve should focus to a point and shift to time zero. The
other diffraction curves should all focus somewhat and shift to earlier times by the same amount.
In fact, the second hyperbola should be transformed into the first, the third into the second, and so
on.

In section 5.2.4 it was seen that replacing each point in the ERM seismogram by a wavefront
circle (the operator) will focus all hyperbolae at once. With extrapolation, only the first hyperbola
should focus and the operator (i.e. the replacement curve) should be the same for all points. Clearly,
the operator needs to be concave (�) to focus the convex (�) diffraction curves. One process that
will focus the first diffraction curve is to cross correlate the seismogram with the first diffraction
curve itself. To visualize this, imagine tracing the first diffraction curve on a clear piece of film
(being careful to mark the coordinate origin on the film) and then placing the apex of this curve
at some point on the diffraction chart. The value of the cross correlation is computed by taking
the sample-by-sample product of the ERM seismogram and the section represented by the film, and
then summing all of the resulting products. Assuming that all amplitudes are either zero (white)
or one (black) for simplicity, this reduces to summing the samples in the ERM seismogram that are
coincident in space-time with the diffraction curve on the film. This cross-correlation value is then
assigned to the location on the ERM seismogram of the coordinate origin on the film. Clearly, when
the film is positioned such that its diffraction curve exactly overlies the first diffraction curve, a large
value for the cross correlation will result. In fact, since this is the only exact match between the
ERM seismogram and the curve on the film, this will be the largest value for the cross correlation.
This exact match will occur when the coordinate origin on the film coincides with that on the ERM
seismogram.
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Figure 5.62: The second hyperbola of diffraction chart of Figure 5.60 is shown convolved
with the time reverse of the first hyperbola. (A) The focusing term only is applied. (B)
Both the focusing and the thin-lens term are applied

Conceptually, the process just described is very simple though it might seem tedious to compute
for all samples. Could this cross correlation process be the space-time equivalent of extrapolation?
In fact, it is and to realize this it helps to recall from time series analysis that the cross correlation
of a(t) with b(t) can be done by time reversing b(t) and convolving. That is a(t)⊗b(t) = a(t)•b(−t).
This result carries over into two dimensions so that the two dimensional cross correlation of the ERM
seismogram with the first diffraction curve can be done by reversing the curve in both space and
time and then doing a two dimensional convolution. In this case the diffraction curve is symmetric in
space (it will not always be though) so the reversal in space does nothing. However, the time reversal
flips the first diffraction curve upside down to produce the concave operator that was envisioned.

Figures 5.61 and 5.62 illustrate these concepts with the extrapolation of the ERM seismogram of
Figure 5.60 to the depth of the first point diffractor. The extrapolation operator is the time reverse
of the first diffraction curve. In Figure 5.61A, only the focusing term is applied to the first diffraction
curve with the result that the curve is focused at its apex. In Figure 5.61B, the thin lens term is also
included so that the focused diffraction curve is shifted to time zero. In Figure 5.62A, the focusing
term is applied to the second diffraction curve and only partial focusing is achieved. When the thin
lens term is included in Figure 5.62B, it is apparent that the partially-focused second hyperbola is
now equivalent to the first hyperbola.

This perspective of wavefield extrapolation is very powerful and general. The cross correlation
argument shows that to extrapolate a wavefield to a particular depth, the response of a point
diffractor at that depth as viewed from the current datum must be constructed. Then the wavefield
is cross correlated with the diffraction response. The convolution argument is completely equivalent
and graphically illustrates the effects of the two parts of the operator: focusing and static shift. It
also shows how the extrapolation operator is similar to, but simpler, than the migration operator.

5.4.4 Time and depth migration by phase shift

Thus far, theory has been developed to construct a migrated depth section, ψ(x, z, t = 0) from a zero
offset section or ERM seismogram. It is often desired to express the migrated data with a vertical
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time coordinate for interpretation. Called τ , this migrated time may be created from z by doing a
simple one dimensional stretch using the migration velocity model as discussed in section 5.2.1. It
is always correct to do this following migration with v(x, z) with the stretch being defined by

τ(x, z) =
∫ z

0

dz′

v̂(x, z′)
(5.71)

A time display, ψ(x, τ), created from a migrated depth section, ψ(x, z), using equation (5.71) is
called a migrated time display. Generally this has a meaning distinct from that of time migration.
The two are equivalent only when lateral velocity variations are absent.

Time migration seeks to create ψ(x, τ) directly without first creating ψ(x, z). To see how this
might be done, recall that the extrapolation phase shift can be written in the (kx, f) domain as

φ(∆z) = φ0e
iµs+iµf (5.72)

where the static phase shift, µs is given by equation (5.66) and the focusing phase shift is given
by (5.65). If this extrapolator is applied in a recursive scheme, it is µs that progressively moves
data to earlier times so that each depth sample can be estimated through the imaging condition
ψ(x, z, t = 0). If an extrapolation were done with only µf then diffractions would focus at their
apex time but never move to time zero and flat events (i.e. kx = 0) would never move at all. This
is exactly the behavior desired of a time migration. In fact, a time migration can be computed by
recursive phase shift using the extrapolation equation

φ(τm + ∆τ) = φ(τm)eiµfm (5.73)

where µfm is

µf = 2π∆τ

[√
1 − k2

xv̂
2
m

f2 − 1

]
(5.74)

where ∆τ = ∆z/v̂m has been used. When computing a time migration by recursive extrapolation,
the imaging condition must be changed because data not longer moves to t = 0 as it is focused.
Instead, focused events are found at t = τ so that the time migration is given by φ(x, τ, t = τ).

Recursive extrapolation with equation (5.73), or some approximation to it, is a form of time
migration while recursive extrapolation with equation (5.72) is a depth migration. There is no
essential difference between the two for v(z) because the depth migration can be stretched to time
with equation (5.71) or the time migration can be stretched to depth with

z(τ) =
∫ τ

0
v̂(x, τ ′)dτ ′ (5.75)

To see this last point more clearly, if a recursive time migration is formulated as was done for depth
migration that leads to equation (5.62), it will be seen that the time migration omits the accumulated
phase shift operator

ei
∫ z
0 µs(z′)dz′

= exp
(
i2πf

∫ z

0

dz′

v(z′)

)
. (5.76)

A stretch of the time migration to depth effectively applies this operator. Time migration is thus
equivalent to depth migration for v(z) because the static delay, ∆z/v̂(z) = ∆τ , does not depend on
x. Since data moves all around during migration following various raypaths, any accumulated time
delays in ψ(x, τ, t = τ) will be complicated functions of dip and position if v̂ varies with x. When v̂
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Figure 5.63: (A) A point diffractor sits beneath a low-velocity wedge (top) and its ERM
seismogram shows an apparent image point displaced to the left (bottom). (B) After
application of the focusing phase shift, the diffraction curve is partially focused but the
apparent image point has not moved. (C) The static phase shift moves the apparent image
point towards the true image point.

varies only with z, then all data at fixed τ have the same accumulated delay regardless of migration
raypath. When v̂ varies laterally, time migration actually refracts data in a way that systematically
violates Snell’s law as was discussed in section 5.2.3.

Figure 5.63A shows the ERM response of a point diffractor in a medium with v̂(x, z). The
apparent image point, which is the crest of the traveltime curve, is displaced to the left because
velocity is higher there. In Figure 5.63B, the ERM seismogram has been extrapolated to half the
depth of the diffractor using the focusing phase shift only. Since µf vanishes for kx = 0 it cannot
shift the crest of the traveltime curve even if it can apply the lateral velocity variations. All it
achieves is a partial focusing of the diffraction response. In Figure 5.63C, the static phase shift has
been applied and has had the effect of moving the crest of the traveltime curve to the right towards
the true image point. This happens because the time advance of the static shift is greater for lower
velocities than for higher ones. Thus it is apparent that extrapolation using µs and µf can focus
the diffractor at the proper location while µf alone can never do so.
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5.5 Kirchhoff methods

The Fourier methods discussed in section 5.4 are based upon the solution of the scalar wave equation
using Fourier transforms. This solution can be derived from a more fundamental approach to
partial differential equations called separation of variables. An alternative, and equally fundamental,
approach to solving the same partial differential equations is based on Green’s theorem and leads to
the family of migration methods known as Kirchhoff methods. Though Kirchhoff methods seem
superficially quite different from Fourier methods, the uniqueness theorems from partial differential
equation theory guarantee that they are equivalent. However, this equivalence only applies to the
problem for which both approaches are exact solutions to the wave equation and that is the case
of a constant velocity medium, with regular wavefield sampling, and a horizontal recording surface.
In all other cases, both methods are implemented with differing approximations and can give very
distinct results. Furthermore, even in the exact case, the methods have different computational
artifacts.

The wavefront migration methods discussed in section 5.2.4 are simplified examples of Kirchhoff
migration. There are two alternative Kirchhoff approaches that differ in that one does the computa-
tions on the output space (x, z) and the other does them on the input space (x, t). In the first case,
the method of replacing each point of the input section by a wavefront circle, as shown in Figure
5.14, essentially works in the output space. Kirchhoff migration theory provides a detailed prescrip-
tion for computing the amplitude and phase along the wavefront, and in variable velocity, the shape
of the wavefront. The second case essentially sums through the input space along hyperbolic paths
to compute each point in the output space. As shown in Figure 5.19, summation along hyperbolae
and the superposition of circular wavefronts lead to the same result. Again in this case, Kirchhoff
theory shows that the summation along the hyperbola must be done with specific weights and, for
variable velocity, how the hyperbola is replaced by a more general shape.

5.5.1 Gauss’ theorem and Green’s identities

Recall the fundamental theorem of calculus that says

∫ b

a

φ′(x)dx = φ(x)
∣∣b
a = φ(b) − φ(a). (5.77)

An interpretation of this statement is that the integral of a function φ′ over the interval a ≤ x ≤ b is
found by evaluating a different function φ at the end points of the interval. The theorem assures us
that if φ′ exists then so does φ under a fairly general set of conditions. These functions are of course
mathematically related and φ is said to be the integral of φ′ or, equivalently, φ′ is the derivative of
φ.

Gauss’s theorem generalizes this basic result to dimensions greater than one. That is, it says that
if the integral over a volume of a certain function is desired, then it can be obtained by evaluating
another related function over the surface that bounds the volume. In higher dimensions, the notion
of direction is more complicated than the + or - needed in one dimension and vector functions
express this. Gauss’ theorem is usually written∫

V

�∇ · �A dvol =
∮

∂V

�A · �n dsurf. (5.78)

Here �A is a vector function that might physically represent something like fluid flow or electric field
and �n is the outward pointing normal to the surface bounding the volume of integration (Figure 5.64).
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Figure 5.64: Gauss’ theorem relates the volume integral of a function �∇ · �A to the surface
integral of a related function �A · �n where �n is the outward pointing normal to the surface
∂V bounding the integration volume V .

Equation (5.78) generalizes equation (5.77) in several ways. First, a vector function �A generalizes
the notion of direction where, in one dimension, the sign of φ was sufficient. Second, the derivative
has been generalized from φ′ to �∇ · �A, and is called the divergence of �A. Finally, the dot product of
�A with �n integrated over the bounding surface generalizes the simple difference φ(b) − φ(a). In the
one dimensional case, the outward pointing normal points in the +x direction at b and in the −x
direction at a and the surface integral degenerates to a simple sum of two end members.

In many important cases, the vector function �A can be calculated as the gradient of a scalar
potential �A = �∇φ. In this case Gauss’ theorem becomes∫

V

∇2φ dvol =
∮

∂V

∂φ

∂n
dsurf (5.79)

where ∇2φ = �∇ · �∇φ and ∂φ
∂n = �∇φ · �n have been used. The meaning of ∂φ

∂n = ∂nφ is that it is the
component of the vector �∇φ that is normal to the surface.

Now, return to equation 5.77 and consider the case when φ = φ1φ2. Then φ′ = φ2φ
′
1 +φ1φ

′
2 and

∫ b

a

[φ2φ
′
1 + φ1φ

′
2] dx = φ1φ2

∣∣b
a (5.80)

or ∫ b

a

φ2φ
′
1dx = φ1φ2

∣∣b
a −

∫ b

a

φ1φ
′
2dx (5.81)

which is the formula for integration by parts. An analogous formula in higher dimensions arises by
substituting A = φ2�∇φ1 into equation (5.78). Using the identity �∇ · a�∇b = �∇a · �∇b + a∇2b leads
immediately to ∫

V

[
�∇φ2 · �∇φ1 + φ2∇2φ1

]
dvol =

∮
∂V

φ2
∂φ1

∂n
dsurf. (5.82)
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Then, letting A = φ1�∇φ2 leads to a similar result∫
V

[
�∇φ1 · �∇φ2 + φ1∇2φ2

]
dvol =

∮
∂V

φ1
∂φ2

∂n
dsurf. (5.83)

Finally, subtracting equation (5.83) from (5.82) results in∫
V

[
φ2∇2φ1 − φ1∇2φ2

]
dvol =

∮
∂V

[
φ2
∂φ1

∂n
− φ1

∂φ2

∂n

]
dsurf (5.84)

which is known as Green’s theorem.
Green’s theorem is fundamental to the derivation of Kirchhoff migration theory. It is a multi-

dimensional generalization of the integration by parts formula from elementary calculus and is
valuable for its ability to solve certain partial differential equation. At this point, only geomet-
ric principles and vector calculus have been involved, the potential physical applications are as yet
unspecified. That is, φ1 and φ2 in equation (5.84) are completely arbitrary scalar fields. They may
be chosen as desired to conveniently express solutions to a given problem. Typically, in the solution
to a partial differential equation like the wave equation, one function is chosen to be the solution to
the problem at hand and the other is chosen to be the solution to a simpler reference problem. The
reference problem is usually selected to have a known analytic solution and that solution is called a
Green’s function.

5.5.2 The Kirchhoff diffraction integral

Let ψ be a solution to the scalar wave equation

∇2ψ(�x, t) =
1
v2

∂2ψ(�x, t)
∂t2

(5.85)

where the velocity v may depend upon position or it may be constant. To eliminate the time
dependence in equation (5.85), let ψ be given by a single Fourier component ψ(�x, t) = ψ̂(�x)e−2πift.
Then equation (5.85) becomes the Helmholtz equation

∇2ψ̂(�x) = −k2ψ̂(�x) (5.86)

where k2 = 4π2f2/v2. Now, let g(�x; �x0) be the solution to

∇2g(�x; �x0) − k2
0g(�x; �x0) = δ(�x− �x0) (5.87)

where k2
0 = 4π2f2/v2

0 with v0 constant over all space and δ(�x − �x0) represents a source at �x = �x0.
The analytic solution to equation (5.87) is well known (e.g. Morse and Feshbach (1953) page 810)
and can be build from a linear combination of the two functions

g±(�x; �x0) =
e±ik0r

r
(5.88)

where r = |�x− �x0| and three spatial dimensions are assumed. In two dimensions, the solution must
be expressed with Hankel functions that have the asymptotic form

g±(�x; �x0) ∼
√

2π
kr
e±ikr+iπ/4, r → ∞. (5.89)
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Since g(�x; �x0)e−2πift is the time-dependent Green’s function, it is apparent that g+ = r−1eik0r

corresponds to a wavefield traveling out from r = 0 while g− = r−1e−ik0r is a wavefield traveling
inward towards r = 0. In modelling, g+ is commonly used and is called the causal Green’s function
while, in migration, it turns out that g− is appropriate and it is called the anticausal Green’s function.

Now, apply Greens theorem (equation 5.84) using ψ̂ and g− to get

∫
V

[
g−(�x; �x0)∇2ψ̂(�x) − ψ̂(�x)∇2g−(�x; �x0)

]
dvol =

∮
∂V

[
g−(�x; �x0)

∂ψ̂(�x)
∂n

− ψ̂(�x)
∂g−(�x; �x0)

∂n

]
dsurf.

(5.90)
Substituting equations (5.86) and (5.87) into the left hand side of this expression leads to

∫
V

[
k2 − k2

0
]
g−(�x; �x0)ψ̂(�x) dvol+

∫
V

ψ̂(�x)δ(�x−�x0) dvol =
∮

∂V

[
g−(�x; �x0)

∂ψ̂(�x)
∂n

− ψ̂(�x)
∂g−(�x; �x0)

∂n

]
dsurf

(5.91)
Assuming that the point �x0 is interior to the volume V , the delta function collapses the second
integral on the left and this expression can be rewritten as

ψ̂(�x0) = Λ(�x0) +
∮

∂V

[
g−(�x; �x0)

∂ψ̂(�x)
∂n

− ψ̂(�x)
∂g−(�x; �x0)

∂n

]
dsurf (5.92)

where
Λ(�x0) ≡

∫
V

[
k2 − k2

0
]
g−(�x; �x0)ψ̂(�x) dvol. (5.93)

Equation (5.92) estimates the wavefield ψ̂ at the point �x0 interior to V as a volume integral plus
a surface integral over ∂V . The surface integral is what is desired since we can hope to know ψ̂
over the boundary of V . However, the volume integral involves the unknown ψ̂ and is essentially
not computable. The function Λ(�x0) expresses this volume integral and can be seen to vanish if the
reference medium v0 is equivalent to the actual medium v over the entire volume. Since g has been
chosen as a constant velocity Green’s function, Λ can only vanish precisely for constant velocity.
However, in the variable velocity case, approximate, ray theoretic Green’s functions can be used to
help minimize Λ (Docherty, 1991). To the extent that the reference medium does not equal the true
medium, then Λ expresses the error in a ψ̂ that is computed without Λ. In any case, the next step
is to drop Λ and substitute in g− = e−ik0r/r into equation (5.92) with the result

ψ̂(�x0) =
∮

∂V

[
e−ik0r

r

∂ψ̂(�x)
∂n

− ψ̂(�x)
∂

∂n

e−ik0r

r

]
dsurf. (5.94)

The normal derivative of g can now be resolved into two terms

ψ̂(�x0) =
∮

∂V

[
e−ik0r

r

∂ψ̂(�x)
∂n

+
ik0ψ̂(�x)e−ik0r

r

∂r

∂n
+ ψ̂(�x)

e−ik0r

r2
∂r

∂n

]
dsurf. (5.95)

Multiplying both sides of this result by e−2πift and recalling that ψ(�x0, t) = ψ̂(�x0)e−2πift gives

ψ(�x0, t) = e−2πift

∮
∂V

[
e−ik0r

r

∂ψ̂(�x)
∂n

+
ik0ψ̂(�x)e−ik0r

r

∂r

∂n
+ ψ̂(�x)

e−ik0r

r2
∂r

∂n

]
dsurf (5.96)



5.5. KIRCHHOFF METHODS 169

or, using k0 = 2πf/v0,

ψ(�x0, t) =
∮

∂V

[
e−2πif(t+r/v0)

r

∂ψ̂(�x)
∂n

+
i2πfψ̂e−2πif(t+r/v0)

v0r

∂r

∂n
+ ψ̂(�x)

e−2πif(t+r/v0)

r2
∂r

∂n

]
dsurf.

(5.97)
Now, ψ̂(�x)e−2πif(t+r/v0) = ψ(�x, t+ r/v0) is the wavefield ψ at the point �x but at the advanced time
t+ r/v0. It is customary to denote this quantity as [ψ]t+r/v0 with the result

ψ(�x0, t) =
∮

∂V

[
1
r

[
∂ψ

∂n

]
t+r/v0

− 1
v0r

∂r

∂n

[
∂ψ

∂t

]
t+r/v0

+
1
r2
∂r

∂n
[ψ]t+r/v0

]
dsurf (5.98)

where the time derivative in the second term results from ∂tψ = −2πifψ. This is a famous result and
is known as Kirchhoff’s diffraction integral. (In most textbooks this integral is derived for forward
modelling with the result that all of the terms are evaluated at the retarded time t− r/v0 instead of
the advanced time.) It expresses the wavefield at the observation point �x0 at time t in terms of the
wavefield on the boundary ∂V at the advanced time t + r/v0. As with Fourier theory, it appears
that knowledge of both ψ and ∂nψ are necessary to reconstruct the wavefield at an internal point.

5.5.3 The Kirchhoff migration integral

There are two essential tasks required to convert equation (5.98) into a practical migration formula.
First, as mentioned above, the apparent need to know ∂nψ must be addressed. Second, the re-
quirement that the integration surface must extend all the way around the volume containing the
observation point must be dropped. There are various ways to make both of these arguments that
have appeared in the literature. Schneider (1978) dispensed with the need to know ∂nψ by using a
dipole Green’s function with an image source above the recording place. The result was a Green’s
function that vanished at z = 0 and cancelled the ∂nψ term in equation (5.98). Schneider also
argued that the boundary surface can be a horizontal plane with a hemisphere below, and when the
hemisphere is extended to infinity, contributions from it vanish. Wiggins (1984) adapted Schneider’s
technique to rough topography. Docherty (1991) showed that a monopole Green’s function, as used
here in equation (5.88) can lead to the accepted result and also challenged Schneider’s argument
that the integral over the infinite hemisphere can be neglected. Instead, Docherty formulated the
expression with the backscattered wavefield received at the surface and simply put the lower part
of the integration surface beneath the reflector. On physical grounds, the wavefield beneath the
reflector is not expected to contain significant information about the backscattered field and so it
may be neglected. In reality, it does contain some information because the reflected and transmitted
wavefields are related through boundary conditions on the reflector, but these are subtle second-
order effects. It should also be recalled that virtually all authors on this subject (the present writer
included) have approached it with knowledge of the desired result. After all, migration by summa-
tion along diffraction curves or by wavefront superposition has been done for many years. Though
Schneider’s derivation has been criticized, his final expressions are considered correct.

As a first step in adapting equation (5.98) it is usually considered appropriate to discard the
term 1

r2
∂r
∂n [ψ(�x)]t+r/v0

. This is called the near-field term and decays more strongly with r than the
other two terms. Then, the surface S = ∂V will be taken as the z = 0 plane, S0, plus the surface
infinitesimally below the reflector, Sz, and finally these surfaces will be joined at infinity by vertical
cylindrical walls, S∞, (Figure 5.65). As mentioned previously, the integration over Sz is not expected
to contribute significantly to reconstruction of the backscattered field. Also, the integration over
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Figure 5.65: The geometry for Kirchhoff migration is shown. The integration surface is
S0 + Sz + S∞ and it is argued that only S0 contributes meaningfully to the estimation of
the backscattered field at vx0.

S∞, though it may contribute, can never be realized due to finite aperture limitations and its neglect
may introduce unavoidable artifacts. With these considerations, equation (5.98) becomes

ψ(�x0, t) =
∮

S0

[
−1
r

[
∂ψ

∂z

]
t+r/v0

+
1
v0r

∂r

∂z

[
∂ψ

∂t

]
t+r/v0

]
dsurf (5.99)

where the signs on the terms arise because �n is the outward normal and z is increasing downward
so that ∂n = −∂z.

Now, ∂zψ must be evaluated. Figure 5.65 shows the source wavefield being scattered from the
reflector at �x0 which is called the scatterpoint . A simple model for ψ is that it is approximately
the wavefield from a point source, placed at the image source location, that passes through the
scatterpoint to the receiver. This can be expressed as

ψ(�x, t) ∼ 1
r
A(t− r/v) =

[A]t−r/v

r
(5.100)

where A(t) is the source waveform at the scatterpoint. Using the chain rule gives

∂ψ

∂z
=
∂r

∂z

∂ψ

∂r
=
∂r

∂z

[
−1
vr

[
∂A

∂t

]
t−r/v

−
[A]t−r/v

r2

]
. (5.101)

If the second term is neglected (a near-field term), this becomes

∂ψ

∂z
=
∂r

∂z

−1
vr

[
∂A

∂t

]
t−r/v

= −∂r

∂z

1
v

∂ψ

∂t
. (5.102)

When this is substituted into equation 5.99, the two terms in square brackets become similar both
involving the time derivative of the advanced wavefield. These will combine if v0 is now taken to be
the same as v. Thus

ψ(�x0, t) =
∮

S0

2
vr

∂r

∂z

[
∂ψ

∂t

]
t+r/v

dsurf (5.103)
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Finally, consider ∂zr. Since r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 this can be written

∂r

∂z
=

∂

∂z

√
(x− x0)2 + (y − y0)2 + (z − z0)2 =

z

r
= cos θ (5.104)

where θ is the vertical angle between the receiver location and ray to the scatterpoint. With this,
the final formula for the scattered wavefield just above the reflector is

ψ(�x0, t) =
∮

S0

2 cos θ
vr

[
∂ψ

∂t

]
t+r/v

dsurf (5.105)

Equation (5.105) is not yet a migration equation. As mentioned, it provides an estimate of
the scattered wavefield just above the scatterpoint. Thus it is a form of wavefield extrapolation
though it is direct, not recursive. A migration equation must purport to estimate reflectivity, not
just the scattered wavefield and for this purpose a model relating the wavefield to the reflectivity
is required. The simplest such model is the exploding reflector model (section 5.2.6) which asserts
that the reflectivity is identical to the downward continued scattered wavefield at t = 0 provided
that the downward continuation is done with v̂ = v/2. Thus, an ERM migration equation follows
immediately from equation (5.105) as

ψ(�x0, 0) =
∮

S0

2 cos θ
v̂r

[
∂ψ

∂t

]
r/v̂

dsurf =
∮

S0

4 cos θ
vr

[
∂ψ

∂t

]
2r/v

dsurf. (5.106)

This result, derived by many authors including Schneider (1978) and Scales (1995), expresses mi-
gration by summation along hyperbolic travelpaths through the input data space. The hyperbolic
summation is somewhat hidden by the notation but is indicated by [∂tψ]2r/v. Recall that this no-
tation means that the expression in square brackets is to be evaluated at the time indicated by the
subscript. That is, as ∂tψ(�x, t) is integrated over the z = 0 plane, only those specific traveltimes
values are selected that obey

t =
2r
v

=
2
√

(x− x0)2 + (y − y0)2 + z2
0

v
(5.107)

which is the equation of a zero-offset diffraction hyperbola. When squared, this result is a three
dimensional version of equation (5.36).

In addition to diffraction summation, equation (5.106) requires that the data be scaled by
4 cos θ/(vr) and that the time derivative be taken before summation. These additional details
were not indicated by the simple geometric theory of section 5.2.4 and are major benefits of Kirch-
hoff theory. It is these sort of corrections that are necessary to move towards the goal of creating
bandlimited reflectivity. The same correction procedures are contained implicitly in f -k migration.

The considerations taken in deriving equation (5.106) suggest why ERM migration does not
achieve correct amplitudes. As mentioned following equation (5.105), a model linking the backscat-
tered wavefield to reflectivity was required. A more physical model will illustrate the shortcomings
of the exploding reflector model. Such a model has been advanced by Berkhout (1985) and others.
They consider that the source wavefield propagates directly to the reflector, undergoing transmission
losses and geometrical spreading but without multiples and converted modes. At the reflector it is
scattered upward with an angle-dependent reflection coefficient and then propagates upward to the
receivers, with further geometrical spreading and transmission losses but again without multiples
and mode conversions. This allows an interpretation of equation (5.105) as equivalent to the wave-



172 CHAPTER 5. ELEMENTARY MIGRATION METHODS

field propagated from the source to the scatterpoint and scaled by the reflection coefficient. Thus, a
better way to estimate the reflectivity is to produce a model of the source wavefield as propagated
down to the scatterpoint and divide the result of equation (5.105) by this modeled wavefield. This is
a very general imaging condition called the deconvolution imaging condition that works for pre-stack
and zero offset data. The ERM imaging condition is kinematically correct but does not achieve the
same amplitudes as the deconvolution imaging condition.

Kirchhoff migration is one of the most adaptable migration schemes available. It can be eas-
ily modified to account for such difficulties as topography, irregular recording geometry, pre-stack
migration, and converted wave imaging. When formulated as a depth migration, it tends to be a
slow method because great care must be taken in the raytracing (Gray, 1986). When formulated as
a time migration, straight-ray calculations using RMS velocities can be done to greatly speed the
process. Another advantage of Kirchhoff methods is the ability to perform ”target-oriented” migra-
tions. That is, equation (5.106) need only be evaluated for those points in (x,z) which comprise the
target. Since the cost of computation is directly proportional to the number of output points, this
can greatly reduce the run times and makes migration parameter testing very feasible.

5.6 Finite difference methods

5.6.1 Finite difference extrapolation by Taylor series

Finite difference techniques are perhaps the most direct, but often the least intuitive, of migration
methods. As the name implies, they involve the approximation of analytic derivatives of the wave
equation with finite difference expressions. To see how this might be done, consider the definition
of the derivative of an arbitrary function ψ(z)

dψ(z)
dz

= lim
∆z→0

ψ(z + ∆z) − ψ(z)
∆z

. (5.108)

A simple finite difference approximation for this derivative simply involves omitting the limit

dψ(z)
dz

≈ δ1+z ψ(z) ≡ ψ(z + ∆z) − ψ(z)
∆z

. (5.109)

δ1+z is the first-order forward-difference operator. Here ∆z is assumed small with respect to length
scales of interest (i.e. wavelengths) but is still finite.

Finite difference operators can be used to predict or extrapolate a function. Suppose that values
for ψ(z) and its first derivative are known at z, then equation 5.109 can be rearranged to predict
ψ(z + ∆z)

ψ(z + ∆z) ≈ ψ(z) +
dψ(z)

dz
∆z. (5.110)

This can be regarded as a truncated Taylor series. Taylor’s theorem provides a method for ex-
trapolation of a function provided that the function and all of its derivatives are known at a single
point

ψ(z + ∆z) = ψ(z) +
d1ψ(z)

dz1 ∆z +
1
2

d2ψ(z)
dz2 ∆z2 +

1
6

d3ψ(z)
dz3 ∆z3 + . . . . (5.111)

If all derivatives exist, up to infinite order at z, then there is no limit to the extrapolation distance.
Essentially, if the function and all its derivatives are known at one location, then it is determined
everywhere.
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If finite difference extrapolation is equivalent to using a truncated Taylor series, then what
relation does wavefield extrapolation by phase shift have with Taylor series? Recall that if φ(z) is a
solution to the scalar wave equation in the Fourier domain, then it can be extrapolated by

φ(z + ∆z) = φ(z)e2πikz∆z. (5.112)

Here, kzis the vertical wavenumber whose value may be determined from the scalar wave dispersion
relation, kz =

√
f2/v2 − k2

x. Furthermore, if φ0(kx, f) is the (kx, f) spectrum of data measured at
z = 0, then, for constant velocity, φ(z) is given by

φ(z) = φ0e
2πikzz. (5.113)

As an illustration of the connection between Taylor series and the phase-shift extrapolator, consider
using Taylor series applied to equation (5.113) to derive something equivalent to equation (5.112).
From equation (5.113) the various derivatives can be estimated with the result that the nth derivative
is

dnφ(z)
dzn

= [2πikz]nφ(z). (5.114)

Then, using this result, a Taylor series expression for the extrapolation of φ(z) to φ(z + ∆z) is

φ(z + ∆z) = φ(z) + [2πikz]φ(z)∆z +
1
2

[2πikz]2φ(z)∆z2 +
1
6

[2πikz]3φ(z)∆z3 + . . . (5.115)

or

φ(z + ∆z) = φ(z)
[
1 + 2πikz∆z +

1
2

[2πikz∆z]2 +
1
6

[2πikz∆z]3 + . . .

]
. (5.116)

At this point, recall the expression for the series expansion of an exponential is ex = 1 + x+ x2/2 +
x3/6 + . . . which affords the conclusion that the infinite series in square brackets of equation (5.116)
may be summed to obtain

[
1 + 2πikz∆z + 1

2 [2πikz∆z]2 + 1
6 [2πikz∆z]3 + . . .

]
= e2πikz∆z. Thus, if

infinitely many terms are retained in the series, equation (5.116) is equivalent to equation (5.112).
It may be concluded that wavefield extrapolation by phase shift is equivalent to extrapolation with
an infinite-order Taylor series and there is no upper limit on the allowed size of ∆z (in constant
velocity). Alternatively, wavefield extrapolation by finite difference approximations is equivalent to
extrapolation with a truncated Taylor series and the ∆z step size will have a definite upper limit of
validity.

5.6.2 Other finite difference operators

The finite difference approximation used in equation (5.109) is the simplest possible and there are
many others. The subject of solving partial differential equations by finite difference methods has
produced a vast literature while only a brief examination is possible here. Aki and Richards (1980),
Ames (1992), and Durran (1999) contain much more thorough discussions.

The forward difference operator in (5.109) uses the points at z and z+∆z. A backward difference
operator is equally acceptable as an approximate derivative

dψ(z)
dz

≈ δ1−
z ψ(z) ≡ ψ(z) − ψ(z − ∆z)

∆z
. (5.117)

Both of these expressions give similar problems in practice that are related to the fact that the
difference is not centered at the estimation point. That is ψ(z+ ∆z) −ψ(z) is centered at z+ ∆z/2
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while the backward difference is centered at z − ∆z/2. This suggests forming a centered difference
by averaging the forward and backward operators

dψ(z)
dz

≈ 1
2
[
δ1+z + δ1−

z

]
ψ(z) ≡ ψ(z + dz) − ψ(z − ∆z)

2∆z
≡ δ1z . (5.118)

The centered difference is usually superior to the forward and backward differences and should be
used whenever possible.

An approximation for the second derivative can be developed by applying the forward and back-
ward operators in succession

d2ψ(z)
dz2 ≈ δ1+z δ1−

z ψ(z) = δ1+z

[
ψ(z) − ψ(z − ∆z)

∆z

]
=
ψ(z + ∆z) − ψ(z)

∆z2 − ψ(z) − ψ(z − ∆z)
∆z2

(5.119)
or

d2ψ(z)
dz2 ≈ δ2zψ(z) ≡ ψ(z + ∆z) − 2ψ(z) − ψ(z − ∆z)

∆z2 (5.120)

This is a centered approximation to the second derivative.

5.6.3 Finite difference migration

Most finite difference migrations methods are formulated in the space-time domain though space-
frequency methods are also common. Also, they are all recursive extrapolation techniques. Though
there are many equivalent ways to develop any particular method, a consistent approach can be
formulated by beginning in the frequency domain with phase shift theory as follows:

1) Develop a suitable rational approximation to the one way dispersion relation for scalar waves.
A rational approximation is one which eliminates the square root though it may involve mul-
tiplication, division, and powers of frequencies and wavenumbers.

2) Construct a space-time domain differential equation from the approximate dispersion relation
by the replacement rules

f → i

2π
∂

∂t
; kx → −i

2π
∂

∂x
; ky → −i

2π
∂

∂y
; kz → −i

2π
∂

∂z
; (5.121)

3) Choose an appropriate form for the finite difference operators (i.e. forward, backward,or central
differences).

4) Develop the difference equation which corresponds to the differential equation found in step 2.

5) Solve the difference equation for the extrapolated wavefield.

6) Implement a migration by recursive extrapolation computer algorithm using step 5.

As an illustration, the 15 degree finite difference time migration algorithm will be developed.
This was one of the first migration algorithms to be developed and is described in Claerbout (1976).
Recall that in the Fourier domain, time migration by recursive extrapolation proceeds by using the
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Figure 5.66: For a particular f and v̂, (A) the dispersion relation (equation (5.125)) of
the parabolic wave equation; (B) the exact dispersion relation (equation (5.123)) of the
focusing phase shift; (C) the full dispersion relation of the scalar wave equation.

focusing phase shift at each extrapolation step

µf =
2πf∆z
v̂

[√
1 − k2

xv̂
2

f2 − 1

]
. (5.122)

Since the general form of an extrapolation phase shift is phase = 2πkz∆z, a finite difference time-
migration requires a “wave equation” whose dispersion relation approximates

k̃z =
f

v̂

[√
1 − k2

xv̂
2

f2 − 1

]
. (5.123)

where k̃z is used rather than kz to reserve the latter term for the real vertical wavenumber. It is not
acceptable to perform the substitutions of relation (5.121) into this result because the square root of
a differential operator results and that is difficult to work with. Therefore, a rational approximation
to the square root in equation (5.123) is desired. The second term in the square root is sin2 θ where
θ is the scattering angle. For small angles (i.e. energy traveling nearly vertically) it is expected that
an approximate form can be obtained by expanding the square root and keeping only the first few
terms √

1 − k2
xv̂

2

f2 = 1 − k2
xv̂

2

2f2 +
3k2

xv̂
2

8f2 + . . . . (5.124)

Truncating equation (5.124) at two terms and substituting the result into equation (5.123) gives

k̃z ≈ f

v̂

[
1 − k2

xv̂
2

2f2 − 1
]

= −k2
xv̂

2

2f
. (5.125)

To construct a partial differential equation from this approximate dispersion, first multiply both
sides by 2f/v̂ and replace the spectral multiplications with partial derivatives according to relation
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(5.121). This results in
2
v̂

∂2ψ(x, z̃, t)
∂z̃∂t

+
∂2ψ(x, z̃, t)

∂x2 = 0. (5.126)

This is known as the 15◦ or parabolic wave equation. The reason for this name is suggested by
Figure 5.66 which shows that equation (5.125) is a good approximation to equation (5.123) for angles
less than about 15◦ .

Before proceeding with the finite difference approximations, it is helpful to change variables in
equation (5.126) from z̃ to τ where τ = z̃/v̂. The z̃ derivative changes according to ∂z̃ = (∂z̃τ)∂τ =
v̂−1∂τ . This allows equation (5.126) to be recast as

2
v̂2

∂2ψ(x, τ, t)
∂τ∂t

+
∂2ψ(x, τ, t)

∂x2 = 0. (5.127)

Equation (5.127) is an approximate wave equation which can be used to migrate stacked data from
zero offset time to migrated time. Though this equation is rarely used anymore, its finite difference
implementation illustrates most of the features of the method and is simpler than higher order
methods.

The finite difference approximation to equation (5.127) is well described by Claerbout (1976)
and that approach is followed here. Let

1
∆x2T = δ2x ≈ ∂2

∂x2 and ψk
j = ψ(x, k∆τ, j∆t). (5.128)

Then the x derivatives of equation (5.127) are approximated as

δτδtψ
k
j = − v̂2

2∆x2Tψ
k
j (5.129)

where δτ and δt are, as yet, unspecified finite difference operators. The δt operator is implemented
as a forward difference but the right-hand-side of equation (5.129) is also modified to ensure that
both sides of the equation are centered at the same grid location. The result is

δτ
[
ψk

j+1 − ψk
j

]
= − ∆tv̂2

4∆x2T
[
ψk

j+1 + ψk
j

]
(5.130)

where the right-hand-side represents the average of T applied to two grid points. This process
of maintaining grid balance is essential in producing a stable algorithm and is a Crank-Nicholson
method. Next the τ operator is implemented in a similar way as a balanced forward difference with
the result

[
ψk+1

j+1 − ψk
j+1
]
−
[
ψk+1

j − ψk
j

]
= −∆τ∆tv̂2

8∆x2 T
[
ψk+1

j+1 + ψk
j+1 + ψk+1

j + ψk
j

]
. (5.131)

Finally, to downward continue, equation (5.131) must be solved for ψk+1
j . This can be written

as
[I − aT ]ψk+1

j = [I + aT ]
[
ψk+1

j+1 + ψk
j

]
− [I − aT ]ψk

j+1 (5.132)

where a = ∆τ∆tv̂2/8∆x2. Equation (5.132) is solved numerically for the unknown ψk+1
j where it

is assumed that all of the quantities on the right-hand-side are known. This is an example of an
implicit finite difference method because it requires the numerical inversion of the matrix operator
I + aT .
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Figure 5.67: The parabolic wave equation is solved on a 2D grid using finite differences.
The first row contains the known data and the last column is set to zero. The solution
proceeds row-by-row and begins in the upper right corner.

The differencing procedure can be viewed on a (j, k) grid as shown in Figure 5.67. The x axis
is orthogonal to this figure and is not shown. The first row contains the measured CMP stack and
the last column (corresponding to maximum time) is set to zero. Consider the four grid points in
the upper right corner. Three of these are prescribed by initial conditions and the fourth, ψ1

n−1 can
then be calculated by equation (5.132). Subsequently, ψ1

n−2 can be solved for and so on until the
entire second row in calculated. Computation then moves to the third row and continues until the
entire grid is completed. Each row corresponds to an extrapolated τ section and the final migrated
section corresponds to t = τ which is the diagonal.

From this example, many of the well known characteristics of finite difference migration algo-
rithms are easily deduced such as

• They are recursive extrapolation schemes.

• They use an approximate form of the exact dispersion relation for scalar waves. This means
that they are all dip or scattering angle limited.

• They are very flexible in handling velocity variations since the velocity may simply be varied
with each grid cell.

• The use of finite difference derivatives means that even the approximate dispersion relation is
not exactly realized.

• Finite difference derivatives are not unique and the accuracy of a method depends strongly on
the sophistication of the approximations used. Generally, finite difference methods need many
more samples per wavelength that Fourier methods (6-10 versus 2-3).

• They can be either time or depth migrations.

• They can be posed in the space-time or space-frequency domain.
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Figure 5.68: (A) An ERM seismogram that models a regular grid of point diffractors. (B)
The (kx, f) spectrum of (A).

5.7 Practical considerations of finite datasets

From the perspective of f -k migration theory, optimizing the ability of seismic data to resolve
earth features requires maximization of the spectral bandwidth after migration. The kx (horizontal
wavenumber) bandwidth determines the lateral resolution and is directly proportional to the maxi-
mum frequency and the sine of the maximum scattering angle and inversely proportional to velocity.
Constraints on the maximum scattering angle can be derived by examining the three effects of finite
spatial aperture, finite recording time, and discrete spatial sampling. These effects are analyzed,
assuming zero-offset recording, for the case of a linear (constant gradient) v(z) medium. Explicit
analytic expressions are derived for the limits imposed on scattering angle for each of the three
effects. Plotting these scattering angle limits versus depth limits for assumed recording parameters
is an effective way to appreciate their impact on recording. When considered in context with f -k
migration theory, these scattering angle limits can be seen to limit spatial resolution and the pos-
sibility of recording specific reflector dips. Seismic surveys designed with the linear v(z) theory are
often much less expensive than constant velocity theory designs.

Seismic line length and maximum record time place definite limits on the maximum scattering
angle that can be recorded, and hence imaged, on a migrated zero-offset section. Since horizontal
resolution depends directly on the sine of the maximum scattering angle (Vermeer (1990) and many
others), it is important to understand these effects for survey design and interpretation. Furthermore,
the observation of a normal incidence reflection from a dipping reflector requires having a scattering
angle spectrum whose limits exceed the reflector dip.

The imposition of finite recording apertures in space and time actually imprints a strong spatial-
temporal variation (i.e. nonstationarity) on the spectral content of a migrated section. As an
example, consider the synthetic seismic section shown in Figure 5.68A. This shows a zero offset
(constant velocity) simulation of the response of a grid of point scatterers (diffractors) distributed
uniformly throughout the section. Note how the diffraction responses change geometry and how the
recording apertures truncate each one differently. Figure 5.68B is a display of the (kx, f) amplitude
spectrum for this section. As expected from elementary theory, all energy is confined to a triangular
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Figure 5.69: (A) The f -k migration of the ERM seismogram of Figure 5.68A. (B) The
(kx, f) spectrum of (A).

region defined by |kx| < f/v̂.
Figure 5.69A shows this section after a constant velocity f-k migration and Figure 5.69B is the

(kx, f) spectrum after migration. The spectrum shows the expected behavior in that the triangular
region of Figure 5.68B has unfolded into a circle. Essentially, each frequency (horizontal line in
Figure 5.68B) maps to a circle in Figure 5.69B (see Chun and Jacewitz (1981) for a discussion).
Note that f-k migration theory as usually stated Stolt (1978) assumes infinite apertures while close
inspection of the focal points in Figure 5.69A shows that their geometry varies strongly with position.

The four focal points shown boxed in Figure 5.69A are enlarged in Figure 5.70A. Considering
the focal points near the center of the spatial aperture, a small, tight focal point at the top of the
section grades to a broad, dispersed smear near the bottom. Alternatively, assessing at constant time
shows the focal points grading from strongly asymmetric-left through symmetric to asymmetric-right.
Figure 5.70B shows local (kx, f) spectra of the four focal points in 5.70A. Comparing with Figure
5.69B shows that these local spectra are dramatically different from the global spectrum. Only
the top-center point has the full circular spectrum expected from the infinite aperture theory while
the others show strong asymmetry or severe bandwidth restrictions. These local spectra determine
the local resolution characteristics of the aperture limited seismic section. Schuster (1997) gives a
formal theory (assuming constant velocity) for these focal points and shows that the local spectra
are bounded by scattered rays that extend from the scatter point to either side of the section. This
current paper shows how to estimate these scattering angles in a realistic setting and therefore how
to assess resolution implications.

For constant velocity, the computation of limiting scattering angles is well understood but this
approach often results in overly expensive survey designs. An analysis with a constant velocity
gradient is much more realistic as it allows for first order effects of ray bending by refraction. Such
an analysis is presented here together with a simple graphical method of assessing the results.

5.7.1 Finite dataset theory

Stolt (1978) established f -k migration theory for the post-stack, zero-offset case. A fundamental
result is that constant velocity migration is accomplished by a mapping from the (kx, f) plane to
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the (kx, kz) plane as was discussed in section 5.4.1 and illustrated in Figure 5.49. As can be deduced
from the figure, the kx bandwidth after migration is limited by

kxlim = kxmax =
2fmax sin (θmax)

v
. (5.133)

k2
z =

f2

(v/2)2
− k2

x (5.134)

λmin = λdom = 2.85λmin =
λdom

2
= 1.425λmin (5.135)

δx =
α

kxmax
(5.136)

δx =
αv

2fmax sin (θmax)
=

α

2 sin (θmax)
λmin (5.137)

δx ∼ 1.4
sin (θmax)

λmin =
1.4v

fmax sin (θmax)
=
vT

2
(5.138)

In this expression, kxmax is the limiting wavenumber to be expected from a migration with no
limitation on scattering angle. In any practical setting, there is always a limit on scattering angle
and it is generally spatially variant. The limit may be a result of the effects of finite aperture,
finite record length, and discrete spatial sample size or any of many other possibilities including:
the migration algorithm may be ”dip limited”, lateral or complex vertical velocity variations can
create shadow zones, attenuation effects are dependent on raypath length and hence affect the larger
scattering angles more. Whatever the cause, a limitation of the range of scattering angles which can
be collected and focused to a particular point translates directly into a resolution limit as expressed
by equation (1). The size of the smallest resolvable feature, say δx, is inversely proportional to
kxlim. For definiteness, let kxlim = α/(2δx), where α is a proportionality constant near unity, and
solve for δx to get

δx =
αv

4fmax sin (θmax)
. (5.139)

Since the aperture limit is x and z variant (record length and spatial aliasing limits are z variant)
δx must also vary with position. An interpretation of equation (5.139) is that it gives the smallest
discernible feature on a reflector whose dip is normal to the bisector of the scattering angle cone at
any position (Figure 5.71).

For constant velocity, the limits imposed on zero-offset scattering angle are easily derived using
straight ray theory and have been shown (Lynn and Deregowski, 1981) to be

tan θA =
A

z
(5.140)

and
cos θT =

vT

2z
. (5.141)

In these expressions, A is the available aperture, T is the record length, z is depth, and v is the
presumed constant velocity. θA and θT are limitations on scattering angle imposed by aperture and
record length respectively (Figure 5.71). Aperture is defined as the horizontal distance from an
analysis point to the end of the seismic line or the edge of a 3-D patch and is thus dependent on



182 CHAPTER 5. ELEMENTARY MIGRATION METHODS

90

60

30

0
1.0 3.0 5.0

Depth�(km)

an
gl

e�
(d

eg
re

es
)

Aperture

Spatial�aliasing

Record�length

Figure 5.73: Constant velocity scattering an-
gle chart showing the aperture, record length,
and spatial aliasing limits for A = 2500m, T =
3.0sec, v = 3500m/s, ∆x = 20m and f = 60Hz.

120

80

40

0 1.0 2.0 3.0
depth�(km)

an
gl

e�
(d

eg
re

es
)

Record�length

Aperture

Spatial�aliasing

Figure 5.74: Constant gradient scattering an-
gle chart showing the aperture, record length,
and spatial aliasing limits for A = 2500m, T =
3.0sec, v = 1500 + .6zm/s, ∆x = 20m and
f = 60Hz.

azimuth and position (Figure 5.72). Alternatively, the record length limit has no lateral variation.
Taken together, these expressions limit the scattering angle spectrum to a recordable subset.

A third limiting factor is spatial aliasing which further constrains the possible scattering angle
spectrum to that which can be properly imaged (migrated). (Liner and Gobeli (1996) and Liner
and Gobeli (1997) give an analysis of spatial aliasing in this context.) The Nyquist requirement is
that there must be at least two samples per horizontal wavelength to avoid aliasing

λx =
λ

sinθx
≥ 2∆x. (5.142)

Here, ∆x is the spatial sample size (CMP interval), λ and λx are wavelength and its apparent
horizontal component, and θx is most properly interpreted as the emergence angle of a dipping event
on a zero offset section. Consistent with zero-offset migration theory, the exploding reflector model
Lowenthal and Sherwood (1976) can be used to relate wavelength to velocity through λ = v/(2f)
where f is some frequency of interest. This leads to an angle limited by spatial aliasing given by

sin θx =
v

4f∆x
(5.143)

In the constant velocity case, the emergence angle of a ray and the scattering angle at depth are
equal and thus equation (5.143) expresses the constant velocity limit on scattering angle imposed
by spatial aliasing. For vertical velocity variation, v(z), the result still applies provided that θx is
simply interpreted as emergence angle and v as near surface velocity. The emergence angle can be
related to the scattering angle at depth using Snell’s law. This is done by recalling that the ray
parameter, p = sin(θ(z))/v(z), is conserved (Slotnick, 1959), which leads to

sin θx =
v(z)

4f∆x
. (5.144)

This expression generalizes spatial aliasing considerations to monotonically increasing but otherwise
arbitrary v(z) and θx is interpreted as the scattering angle from depth, z.
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Returning to constant velocity, equations (5.140), (5.141), and (5.143) can be used to create a
scattering angle resolution chart for an assumed recording geometry, position on the line, frequency
of interest and constant velocity. A typical case is shown in Figure 5.73 where it is seen that the
aperture limit is concave upward and tends asymptotically to zero at infinite depth. The record
length limit has the opposite curvature and reaches zero degrees at the depth z = vT/2. Both limits
admit the possibility of 90◦ only for z = 0. The spatial aliasing limit is depth independent but
requires a frequency of interest which can conservatively be taken as the maximum (not dominant)
signal frequency.

Charts such as Figure 5.73 can be used as an aid in survey design but tend to give unrealistic
parameter estimates due to the assumption of straight raypaths. In most exploration settings,
velocity increases systematically with depth and thus raypaths bend upward as they propagate from
the scatterpoint to the surface. Intuitively, this should lead to shorter aperture requirements and
allow the possibility of recording scattering angles beyond 90◦ in the near surface. The spatial
aliasing limit has already been discussed in this context and the aperture and record length limits
will now be derived exactly for the case of a constant velocity gradient, that is when v(z) = vo+ cz.
The derivation requires solution of the Snell’s law raypath integrals for the linear gradient case
(Slotnick, 1959). If pA is the ray parameter required to trace a ray from a scatterpoint to the end
of the spatial aperture, then

A(z) =
∫ z

0

pAv(z′)√
1 − p2

Av(z′)2
dz′. (5.145)

Similarly, let pT be the ray parameter for that ray from scatterpoint to the surface which has
traveltime (two-way) equal to the seismic record length, then

T (z) =
∫ z

0

1
v(z′)

√
1 − p2

T v(z′)2
dz′. (5.146)

These integrals can be computed exactly, letting v(z) = vo+ cz, to give

A =
1
pAc

[√
1 − p2

Av
2
0 −
√

1 − p2
Av(z)2

]
, (5.147)

and

T =
2
c

ln

[
v(z)
v0

{
1 +
√

1 − p2
T v

2
0

1 +
√

1 − p2
T v(z)2

}]
. (5.148)

Equations (5.147) and (5.148) give spatial aperture, A, and seismic record length, T , as a function
of ray parameter and velocity structure.

Letting pA = sin(θA(z))/v(z) and pT = sin(θT (z))/v(z), equations (5.147) and (5.148) can both
be solved for scattering angle to give

sin2 (θA) =
[2Acv0γ]2

[A2c2 + v2
0 ]2 γ4 + 2v2

0γ
2 [A2c2 − v2

0 ] + v4
0

, (5.149)

and

cos (θT ) =
γ−1 − cosh(cT/2)

sinh(cT/2)
, (5.150)

where
γ =

v0
v(z)

. (5.151)



184 CHAPTER 5. ELEMENTARY MIGRATION METHODS

When equations (5.144), (5.149), and (5.150) are used to create a scattering angle resolution
chart, the result is typified by Figure 5.74. The parameters chosen are the same as for Figure 5.73
and the linear velocity function was designed such that it reaches 3500 m/s (the value used in Figure
5.73) in the middle of the depth range of Figure 5.74. It can be seen that the possibility of recording
angles beyond 90◦ is predicted for the first 1000 m and the aperture limit is everywhere more broad
than in Figure 5.73. The record length limit forces the scattering angle spectrum to zero at about
3700 m compared to over 5000 m in the constant velocity case. This more severe limit is not always
the case, in fact a record length of 6 seconds will penetrate to over 12000 m in the linear velocity
case and only 10500 m in the constant case. Also apparent is the fact that the spatial aliasing limit
predicts quite severe aliasing in the shallow section though it gives exactly the same result at the
depth where v(z) = 3500 m/s.

5.7.2 Examples

Figures 5.75A, 5.75B, and 5.75C provide further comparisons between the linear v(z) theory and
constant velocity results. In Figure 5.75A, the aperture limits are contrasted for the same linear
velocity function (v = 1500 +.6 z m/s) and constant velocity (v 3500 m/s) used before. The dark
curves show the linear velocity results and the light curves emanating from 90◦ at zero depth are
the constant velocity results. Each set of curves covers the range of aperture values (from top to
bottom): 1000, 4000, 12000, and 20000 meters. The dramatic effect of the v(z) theory is especially
obvious for larger apertures which admit angles beyond 90◦ for a considerable range of depths.
Figure 5.75B is similar to Figure 5.75A except that the record length limit is explored. For each set
of curves, the record lengths shown are (from top to bottom): 2.0, 4.0, 6.0, and 8.0 seconds. Figure
5.75C shows spatial aliasing limits for a frequency of 60 Hz. and a range of ∆x values (from top to
bottom): 10 20 40 60 80 100 and 150 meters.

Next consider Figure 5.76 that shows a synthetic demonstration of the aperture effect. Here,
a number of unaliased point diffractor responses have been arranged at constant time. Thus the
record length limit is constant and the aliasing limit does not apply. When migrated, the resulting
display clearly shows the effect of finite spatial aperture on resolution. Comparison with Figure 5.72
shows the direct link between recorded scattering angle spectrum and resolution. Approximately,
the focal points appear as dipping reflector segments oriented such that the normal (to the segment)
bisects the captured scattering angle spectrum.

Figure 5.77 is a study designed to isolate the effects of temporal record length on resolution. The
unmigrated section is constructed such that all five point diffractors are limited by record length and
not by any other effect. Upon migration, the focal points are all symmetric about a vertical axis but
show systematic loss of lateral resolution with increasing time. As shown in Figures 5.73, 5.74, and
5.75B, the record length limit always forces the scattering angle spectrum to zero at the bottom of
the seismic section. Equation (5.139) then results in a lateral resolution size that approaches infinity.
This effect accounts for the often seen data ’smearing’ at the very bottom of seismic sections.

Figure 5.78 shows the migration of a single diffraction hyperbola with three different spatial
sample intervals to illustrate the resolution degradation that accompanies spatial aliasing. In Figure
5.78B, the migration was performed with a spatial sample rate of 4.5 m which represents a comfort-
ably unaliased situation. In Figures 5.78C and 5.78D the sample intervals are 9 m (slightly aliased)
and 18 m (badly aliased). The slightly aliased situation has not overly compromised resolution but
the badly aliased image is highly degraded. Note that the vertical size of the image is unaffected.

In Figure 5.79, the effect of maximum temporal frequency is examined. A single diffraction
hyperbola was migrated with three different maximum frequency limits . In Figure 5.79B, the focal
point and its local (kx, f) spectrum are shown for an 80 Hz. maximum frequency while Figures 5.79C
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and 5.79D are similar except that the maximum frequencies were 60 Hz. and 40 Hz. respectively. It is
clear from these figures that limiting temporal frequency affects both vertical and lateral resolution.
As expected from equation (5.139), a reduction of fmax from 80 Hz to 40 Hz causes a doubling of
the focal point size.

In summary, the theory of (kx, f) migration predicts a simple model for the resolving power
of seismic data. The result is a spatial bandwidth that depends directly on frequency and sine of
scattering angle and inversely on velocity. Finite recording parameters (aperture and record length)
place space and time variant limits on the observable scattering angle spectrum. Thus the resolution
of a seismic line is a function of position within the aperture of the line. The scattering angle limits
imposed by aperture, record length, and spatial sampling can be derived exactly for the case of
constant velocity and for velocity linear with depth. The linear velocity results are more realistic
and lead to considerably different, and usually cheaper, survey parameters than the constant velocity
formulae.
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Chapter 6

Appendix A

There seems to be a little room here for brilliant expostulation.

Figure 6.1: Seisgun field record showing reflections, refractions, surface waves and air blast (courtesy
of Don Lawton).

189
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Figure 6.2: 2D Dynamite field record from Blackfoot, southern Alberta (courtesy of Don Lawton).

Figure 6.3: Part of a 3D dynamite field record from Blackfoot, southern Alberta (Simin et al., 1996).
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Figure 6.4: Uncorrelated VibroSeis Field record (with AGC) from Pikes Peak, Saskatchewan.

Figure 6.5: Same record as Figure 6.4, after correlation with the sweep, bandpass filter, and AGC.
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Figure 6.6: Correlated VibroSeis field record from Jumpingpound 3C-2D, after vertical stacking and
AGC. Note surface noise, air blast, break in slope of direct arrivals, and road noise (Lawton et al.,
2002).

Figure 6.7: Left: Raw record. Right: After trace edit, top mute, statics, filtering, and deconvolution
(courtesy of Don Lawton).
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Figure 6.8: Unmigrated synthetic source gather from Marmousi model.

Figure 6.9: Same data as Figure 6.8, after pre-stack depth migration.
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Figure 6.10: Blackfoot stack after surface consistent Wiener deconvolution and time-variant spectral
whitening.

Figure 6.11: Blackfoot stack after Gabor deconvolution. Note improved resolution in time as com-
pared to Figure 6.10.
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Figure 6.12: Top: CDP stack from 3D volume, Middle: after 2D migration, Bottom: after full
3D migration. The 2D migrated version contains out-of-plane reflections, resulting in a poorer
image. (Brown, 1991).
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Figure 6.13: Typical data from Southern Alberta showing undeformed sedimentary basin strata.
(courtesy of Don Lawton.)

Figure 6.14: Comparison of depth migrated conventional and converted wave stacks from Blackfoot
3C-2D, Southern Alberta (Hoffe and Lines, 1998).
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Figure 6.15: Triangle zone example from Southern Alberta. Sediments near the surface in the middle
of the section have been pushed upwards above a back thrust, as a wedge of material was forced in
from the southwest. (courtesy of Don Lawton).

Figure 6.16: Another example of a triangle zone, Shaw Basing area (Yan and Lines, 2001).



198 CHAPTER 6. APPENDIX A

Figure 6.17: Unmigrated stack section showing a Permian carbonate reef in West Texas known as
the Horseshoe Atoll (courtesy of Larry Lines).

Figure 6.18: Hotchkiss structure, northern Alberta. This has been interpreted to be a (small)
complex impact crater (Mazur and Stewart, 1997).
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Figure 6.19: Left: Western half (no vertical exaggeration; width ≈ 116 km) of migrated
and coherency filtered land seismic, west of Great Slave Lake, N.W.T. Right: Migrated
and coherency filtered marine seismic from Lake Huron, Ontario, plotted at the same scale.
(http:\\www.litho.ucalgary.ca\atlas\atlas.html).
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Figure 6.20: Unmigrated section from the Gulf of Mexico, with the top of a salt dome interpreted
in black (Lines, 1991).

Figure 6.21: Same data as Figure 6.20. The salt dome is much more interpretable on a depth-
migrated section (Lines, 1991).
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Figure 6.22: Deformation of marine sediments as a result of subduction of oceanic crust, west of
Vancouver Island, B.C. (courtesy Pacific Geoscience Centre).

Figure 6.23: Offshore data from the North Sea
with water-bottom and peg-leg multiples (Lok-
shtanov, 2002).

Figure 6.24: Same data as Figure 6.23 af-
ter wave-equation multiple suppression (Loksh-
tanov, 2002).
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Figure 6.25: Portion of vertically exaggerated (1:30) strike line along the coast of Africa (courtesy
of Amoco).

Figure 6.26: Growth faults, offshore New Zealand. Younger sediments continue to be deposited in
basins created as the fault blocks drop down to the left (courtesy of Don Lawton).
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Figure 6.27: Ground penetrating radar (GPR) section in the William River Delta, Northern
Saskatchewan (Jol and Smith, 1991).

Figure 6.28: GPR section at a creosote contamination site on the Bow River, Calgary (Lawton and
Jol, 1994).
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Figure 6.29: Left: Borehole sonic and density logs. Middle left: synthetic P-P gather (reflectivity
convolved with wavelet) showing effect of Normal Moveout (NMO). Middle right: Same gather after
NMO removal. Right: Synthetic trace after stacking (courtesy of Don Lawton).
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Figure 6.30: Left: CDP stack (same data as Figure 6.13). Middle: Synthetic seismogram and
reflectivity. Right: Sonic logs used to calculate reflectivity (courtesy of Don Lawton).
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Figure 6.31: Comparison of normal incidence and diffraction modeling for a deep syncline (focal
point below the surface, courtesy of Don Lawton).
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Figure 6.32: Finite difference snapshot showing compressional and shear waves moving away from
a surface seismic source.

Figure 6.33: Finite difference snapshot showing compressional and shear waves moving away from
a source within a fluid-filled borehole (Chabot et al., 2000).
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Figure 6.34: Marmousi model reflectivity. Synthetic shot gathers (eg. Figures 6.8 and 6.9) were
produced from this model.

Figure 6.35: Marmousi stack after pre-stack depth migration. The goal is to produce an image that
accurately represents the reflectivity shown in Figure 6.34.



209

Figure 6.36: Silicone putty and plasticine fold-thrust model manufactured by C-CORE, Memorial
University (Gallant et al., 2002).

Figure 6.37: Zero-offset ultrasonic reflection data acquired over model shown in Figure 6.36 (Gallant
et al., 2002).

Figure 6.38: Time slice from 3D ultrasonic reflection survey over a heavy oil recovery model, super-
imposed on the physical model (Hall et al., 2001).
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Figure 6.39: Ultrasonic data acquired over a model of a step below anisotropic overburden with a
45 degree dip.

Figure 6.40: Figure 6.39 after isotropic depth migration. Note that the step is not positioned
correctly.

Figure 6.41: Figure 6.39 after anisotropic depth migration. The step is now positioned correctly.
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afd explode , 144
afd shortrec , 145
afd vmodel , 145
balans , 73
clip , 10
convm , 73
convz , 73
csinci , 158
drawray , 99
drawvint , 86
drayvec , 110
event diph2 , 139
event diph , 139
event dip , 139
event hyp , 139
event pwlinh , 139
event spike , 139
eventraymig , 148
eventraymod , 149
fftrl , 73
fkmig , 155
fktran , 156
fortclip , 25
fromdb , 6
ginput , 17
ifktran , 157
ismin , 69
levrec , 68
line , 17
makesections , 142
makestdsynh , 142
makestdsyn , 142
nargin , 21
normraymig , 148
normray , 148
ormsby , 65
ornsby , 64
phsrot , 70
plotimage , 12, 16

plotseis , 11
pwlint , 87
randn , 71
rayfan a , 99
rayfan , 99
raytrace demo , 99, 104
rayvelmod , 110
reflec , 9, 71
ricker , 65
seisclrs , 13
shootraytosurf , 111, 149
shootrayvxz g , 111
shootrayvxz , 111, 148
shootray , 99
simplezoom , 10
slicemat , 23
sweep , 65
synsections , 139
tntamp , 68
todb , 6, 73
traceray pp , 99
traceray ps , 99
traceray , 99
vave2vint , 86
vint2t , 86
vint2vave , 86
vint2vrms , 86
vrms2vint , 86
wavemin , 5, 65
wavenorm , 66
wavevib , 65
wavez , 65, 69
which , 19
wtva , 9
afd reflec , 146

absorbing boundaries, 57
addition rule, 84
amplitude
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decay, 140
mapping

maximum scaling, 14
mean scaling, 14

spectrum, 38, 67–68
amplitude variation with offset (AVO), 117
anelastic attenuation, 117
apparent depth, 131
apparent dip, 131
AVO, see amplitude variation with offset

bandlimited inverse filter, 43
body wave region, 95
bulk modulus, 50

Cauchy boundary conditions, 151
Cauchy’s integral theorem, 44
causal signal, 43
centered difference, 176
clipping, 9–10
CMP, see common midpoint stack
compressional waves, see P-waves
computation triangle, 61
constant Q theory, 47
convolution

1-D, 30
2-D, 132
averaging width, 34
continuous function, 30
definition of, 29
discrete, 31
non-stationary, 132
smoothing, 34
theorem, 39

CREWES, 3, 6

debugger (Matlab)
commands
dbcont , 22
dbdown , 22
dbquit , 22
dbstep , 22
dbstop , 22
dbup , 22

deconvolution imaging condition, 175
diffraction chart, 135
Dirac’s delta function, 36
dispersion relation, 154, 178
Dix equation, 85

downward continuation, 137, 160
dynamic range, 6, 8

edge effects, 57
eikonal equation, 107
emergence angle, 88, 94
ERM, see exploding reflector model
ERM migration equation, 174
errors

assignment statement, 22
declaring variables, 22
incorrect matrix sizes, 21
logical, 22
syntax, 21

Euler’s theorem, 36
evanescent region, 95, 154
exploding reflector model, 136–137, 144, 147,

164, 185

f-k analysis, 120–122
Fermat’s principle, 91
filters

bandlimited inverse, 43
causality, 30
impulse response, 29
inverse, 43
linearity, 30
minimum-phase, 43–45
stationarity, 30
stationary linear filter, 29

finite difference
absorbing boundaries, 57
approximation, 175–176
edge effects, 57
grid dispersion, 56
migration, 177
migration algorithms, 180
modelling, 52, 145
sampling, 53
stability requirement, 53
temporal sample rate, 55

first break time, 7
forward modelling, 115
Fourier

amplitude spectrum, 38
causal signal, 43
covolution theorem, 39
extrapolation operator, 160
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filters
causality, 30
impulse response, 29
linearity, 30
stationarity, 30
stationary linear filter, 29

Fourier transform
2-D, 89, 150
definition of, 35
forward, 37
inverse, 37, 119, 150
multidimensional, 89
step function, 42
symmetry, 39, 41

kernel, 37
orthogonality relation, 36
phase shift theorem, 40
phase spectrum, 38
plane waves, 89
spectrum

general expression, 38
frequency

angular, 37
cyclical, 37
temporal, 120

Fresnel zone, 122–123
functions

even, 38
odd, 38

Gauss’ theorem, 168
geometrical spreading equation, 107
global variables

definition, 14
MYPATH, 19
NOSIG, 12
PICK, 16
PICKCOLOR, 17

gray level scheme, 13
Green’s theorem, 168
grid dispersion, 53, 56

Heaviside step function, 42
Helmhotz equation, 170
Hilbert transforms, 43
Hooke’s law (for fluid), 50
horizontal slowness, 89, 125
Huygen’s principle, 133

hyperbolic
diffraction, 140
partial differential equation, 50
summation, 141

image displays, 12
imaging, see migration
imaging condition, 137
impulse response, 29
input variables, 20
inverse modelling, 115

Kirchhoff
diffraction integral, 172
migration, 168

Levinson recursion, 67
local variables, 14

Matlab
function prototypes, 21
functions, 19
input variable, 20
script, 18
vector addressing, 24

Matlabs mathematical functions, 26
matrix

multiplication, 34
trajectory, 22

migrated time display, 166
migration

3-D, 123
definition of, 115
depth migration, 116, 128–129, 166
direct migration, 138
downward continuation, 137
f-k, 150, 155, 180–181
finite difference, 177, 180
Kirchhoff, 168
phase shift, 159, 165–167
recursive migration, 138
time migration, 116, 128–129, 166
wavefront migration, 132

migrator’s equation, 131, 154
minimum-phase

filters, 43–45
inverse, 68
spectrum, 44
wavelet, 67, 68
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multiples, 60
nonstationary, 64
surface related, 62

Newton’s 2nd law, 50
normal-incidence raytrace migration, 126
Nyquist frequency, 66

OBC recording, 63
Ornsby wavelet, 66–67

P-waves, 47, 77, 92
reflection coefficient, 116

parabolic wave equation, 178
phase

phase shift theorem, 40, 163
spectrum, 38

pressure seismogram, 60

Q loss, see anelastic attenuation

randomness, 71
ray code, 104
ray parameter, 89, 92
raypath, 95

isotropic media, 107
normal-incidence, 118
raypath equation, 107
turning point, 96

raytracing
homogenous medium, 92
inhomogeneous media, 105
normal, 148
two-point-raytracing, 98

reference velocity, 159
reflection (angle of), 91
reflection coefficient, 58

of P-waves, 116
reflectivity

3-D, 116
autocorrelation of, 71
bandlimitied, 116
normal incidence, 116
random, 70
spectral color, 71
white, 71

reflector dip, 125
refraction (angle of), 91
resolution, 120

Ricker wavelet, 66–67
Runge-Kutta method, 109

S-waves, 47, 92
sample rate, 119–120
sampling theorem, 124
scattering angle, 133, 181, 184
scattering event, 61
scatterpoint, 173
Schwartz’s Inequality, 82
seismic data

drawing on top of, 17
pre-stack, 118, 122

seismic picking facility, 16
seismic processing

stretching, 48
seismic trace, 5
seismogram

cross correlation, 164
displacement, 62
extrapolated, 137

shear waves, see S-waves
signal-to-noise ratio, 73, 122
Snell’s law, 91–92
source ghost, 46
source waveform, 60
spatial aliasing, 184
spectral color, 71
spherical divergence (spreading), 47
static shift operator, 162
stationary traveltime, 91
Stolt stretch, 159
stress

in relation to strain, 50
synthetic seismograms

1-D, 57
codes, 70

random reflectivity, 70
with multiples, 75

in MATLAB, 64
multiple layer, 61
multiples, 60
primaries only, 59
random noise, 73
source waveform, 60

Taylor series, 175
time-depth conversion, 124
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time-depth curve, 78
time-dip, 89
time-stepping simulation, 53
Toeplitz matrices, 34
trace envelope, 6
trace excursion, 11
translation invariance, 29
transmission coefficient, 58
transmission loss, 60
traveltime, 78

curves, 133–134, 167
general expression, 93

unit causal function, 42
universal velocity function, 95

vector programming, 25
velocity

apparent, 89, 91
average, 79
instantaneous, 77, 124

traveltime, 78
interval, 82, 85
inversion, 76
mean, 80
physical, 76
real, 89
root-mean-square (rms), 81
stacking, 85
time-dip, 89
universal velocity function, 95
velocity measures, 76

vertical traveltime, 78
volume dilatation, 50

wave
crest, 90
direction of propagation, 90
displacement, 63
in an inhomogeneous fluid, 50–51
incident, 61
longitudinal, 49
of displacement, 61
periodic plane wave, 91
pressure, 63
scattering, 61
transverse, 49
velocity, 49, 120

wave equations

1-D scalar, 49
accoustic, 52
eikonal equation, 107
for pressure, 51
geometrical spreading, 107
hyperbolic partial differential equation, 48
parabolic, 178
scalar, 47
variable-velocity scalar, 106

wavefield
conditions, 57
extrapolation, 163–165
snapshot, 52
timestepping, 52

wavefront propagation, 91–92
wavelength

apparent, 90
minimum, 53

wavelet
amplitude spectrum, 67
analysis, 57
code, 64
minimum-phase, 67
normalization, 66
Ornsby, 66–67
Ricker, 66–67
temporal length, 66

wavenumber, 119–121
wavenumber vector, 90
white reflectivity, 71
wiggle trace display, 6
WTVA, 9–12

z-transform, 32
zero-offset diffraction hyperbola, 174
zero-offset section, 117, 131
Zoeppritz equations, 117
ZOS, see zero-offset section


