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Abstract 

An ultimate goal of seismic exploration is to generate accurate images of the 

subsurface to clearly identify hydrocarbon plays. Seismic data processing plays an 

important role in achieving this goal. One of the key problems in seismic data processing 

is to attenuate multiple reflections from seismic data. Multiple reflections often 

destructively interfere with primary reflections and lead to incorrect seismic images. 

Different approaches have been investigated and applied to the multiple 

attenuation problem, including the Radon transform which is an industry standard and 

has been attracting a lot of attention in the last two decades. In this thesis, Radon 

transform techniques are reviewed and analyzed and a new Radon algorithm, the 

optimized semblance-weighted Radon transform, is introduced. An overview of various 

Radon transform methods is given and the algorithms tested on synthetic and real data. 
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Chapter One: Introduction  

Seismic exploration is widely used in the petroleum industry for hydrocarbon 

discovery. The ultimate goal of seismic exploration is to image and interpret subsurface 

structures—the results of which depend on seismic data processed with tried and tested 

techniques. Seismic data processing is one of the major steps in the exploration process, 

alongside the acquisition and interpretation of seismic data. 

1.1 Basic concepts of seismology 

This section is devoted to basic concepts used in exploration seismology, especially 

those used in this thesis.  

Seismic data are acquired in the field by many pairs of sources and receivers. 

Signals generated by a source located on the surface propagate into the earth and will be 

reflected back to the surface after it hits a subsurface interface. Receivers on the surface 

will record the reflected signals. A few basic concepts are reviewed as follows. 

Common mid-point (CMP) gather 

A common mid-point (CMP) gather is defined as the data collection of traces that 

share the same mid-point position. A midpoint is the middle point between a source and 

receiver pair. An example of the geometry of a CMP gather is shown in Figure 1.1. For 

the three pairs of source points and receivers, they have the same midpoint M on the 

surface. The point D is the midpoint on the reflector and is also called the mid-depth 

point, which is also shared by the three pairs of sources and receivers.  

The variable offset, the distance between each source and receiver pair, is one of 

the two dimensions of CMP gathers. The other dimension is time, which is the traveltime 
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that the signal spends on the travel path from its source point to reflector and then to 

receiver.  

The common depth point (CDP) gather is the same as a CMP gather for a single 

horizontal interface. But they are not the same for dipping interfaces. A CMP gather is 

one of the most frequently used concepts in this thesis.  

Air

Subsurface

- Source - Receiver

Offset Group interval

M

D

Air

Subsurface

- Source - Receiver

Offset Group interval

M

D

 

Figure 1.1 Geometry of a common mid-point (CMP) gather. 

Normal moveout (NMO) correction 

If the model in Figure 1.1 is a constant velocity model, the traveltime  of a 

CMP gather along the raypath from a source to D then back to the associated surface 

receiver is defined as (Figure 1.2): 

( )xt

 ( ) 222
0

2 vxtxt += , (1.1.1) 

where x is offset, the distance between the source and the associated receiver, v is the 

velocity of the medium above the reflector, and  is the two-way vertical traveltime 

along MD or the two-way zero offset traveltime. For a flat reflector as introduced in 

Figure 1.1, Equation (1.1.1) describes a hyperbola with its apex at the zero offset trace in 

0t
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the two-way time-versus-offset plane (Yilmaz, 1987). A CMP gather illustrated in Figure 

1.3 shows the hyperbolic event associated with the model in Figure 1.1 and Equation 

(1.1.1). The difference between the two-way traveltime t(x) at offset x and the zero-offset 

time t0 is called the normal moveout or NMO (Figure 1.3), which can be defined by the 

following equation: 

 ( ) 0NMOt t x t∆ = − . (1.1.2) 

 

v=constant
/ 2t / 2t0 / 2t

/ 2x / 2x

v=constant
/ 2t / 2t0 / 2t

/ 2x / 2x

v=constant
/ 2t / 2t0 / 2t

/ 2x / 2x

 

Figure 1.2 The sketch of the traveltime associated with Figure 1.1. 

The process of NMO correction aims to remove the moveout effect on traveltime 

along the offset dimension. The ideal result of NMO correction of Figure 1.3 is shown in 

Figure 1.4. However, in practice, the wavelet will be distorted and stretched after NMO 

correction. 

Normal moveout is a very basic and important seismology concept. The Radon 

transform, which is the main topic of this thesis and will be discussed later, has a very 

strong relationship with this concept. 
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Figure 1.3 A single-side CMP gather associated with the geometry in Figure 1.1. 
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Figure 1.4 The ideal result of NMO correction in Figure 1.3. 
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CMP stack 

The CMP stacking technique is proposed by Mayne (1962). It is a process of 

gathering the data from NMO-corrected CMP gathers and summing them over offsets. 

The primary associated signals are enhanced by integration over offsets while random 

noise attenuated since primaries are flat on NMO-corrected gathers. Therefore, the 

signal-to-noise ratio is improved after the CMP stacking technique is applied.  

Root Mean Square (RMS) velocity 

In the case of a horizontal layered earth model as shown in Figure 1.5, the NMO 

velocity in Equation (1.1.1) is replaced by the Root Mean Square (RMS) velocity:  

 ( ) 222
0

2
rmsvxtxt += , (1.1.3) 

where the RMS velocity  is defined by the Dix equation (Dix, 1955) as given by: rmsv

 ∑∑
==

∆∆=
N

k
k

N

k
kkrms vv

11

2 ττ , (1.1.4) 

where  is the interval velocity of the kkv th layer in the model, kτ∆  is the vertical 

traveltime in the kth layer and N is the total number of layers above . 0t
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Figure 1.5 A horizontal layered earth model. 

1.2 Historical background to multiple reflections 

Seismic data are acquired by using energy sources to generate elastic waves 

which are reflected back to receivers on the surface by subsurface structures. An example 

of a simple seismic data acquisition geometry, with one source and a pair of receivers is 

shown in Figure 1.6. Primary reflections are those reflected only once at a certain 

subsurface interface before they arrive at the receivers. These primary reflections provide 

us with useful information such as velocities and subsurface structural identification. 

Seismic imaging techniques are developed based on primary reflections. 
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Air 

Subsurface

S R R 

S - Source R - Receiver 

Air 

Subsurface

S R R 

S - Source R - Receiver  

Figure 1.6 Seismic data acquisition geometry and primary reflections. 

However, in addition to primary reflections, receivers also pick up multiple 

reflections, which have been reflected between subsurface reflectors or the surface more 

than once before being received on the surface. Multiple reflections often destructively 

interfere with primary reflections and lead to poor seismic images. The removing of 

multiples from reflection seismograms has been a longstanding problem in exploration 

geophysics. Multiple reflections yield dramatic effects especially on marine seismic 

surveys. Because of the extremely high impedance contrast between the water surface 

and the air, the reflection coefficient of the water-air surface is close to -1. If the water 

bottom is solid, the water layer can trap energy between the water surface and water 

bottom. In this case, multiple reflections can be much stronger than primary reflections. 

Energy trap-related multiples include water-column reverberations (Figure 1.7) and peg-

leg multiples (Figure 1.8). Another major type of multiple is an interbed multiple, shown 

in Figure 1.9, which can happen, for example, in environments with salt. 
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Figure 1.7 Water-column reverberations. 
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Figure 1.8 Peg-leg multiples. 
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Figure 1.9 Interbed multiples. 
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1.3 Review of typical solutions to multiple attenuation 

Before the seismic exploration industry employed the common midpoint (CMP) 

or common depth point (CDP) stacking techniques, multiple identification was used to 

help interpret and recognize primaries (Ellsworth, 1948). The main characteristics of 

multiple reflections include: (1) traveltime; (2) normal moveout; (3) periodicity of events; 

and (4) moveout of dipping reflectors. Backus (1959) may have been the first person to 

attempt to attenuate water reverberations using an inverse filter—the basis of predictive 

deconvolution—using the reverberations’ periodic characteristic. The theory of predictive 

deconvolution itself was proposed by Peacock and Treitel (1969).  

The fact that multiples and primaries exhibit different moveout traveltimes is the 

theoretical underpinning of many other multiple-attenuation techniques, such as the CMP 

stacking technique, the f-k filter and the Radon transform. Mayne (1962) proposed 

multiple suppression using CMP or CDP stacking techniques based on velocity 

differences between primaries and multiples. Typically a primary has less moveout than a 

multiple. If NMO correction is applied using the primary velocities, then the primaries on 

the collected CMP gathers tend to be flat and aligned with each other while the multiples 

are undercorrected and attenuated when they are stacked (Mayne, 1962 and Yilmaz, 

2001). This is considered to be the most robust and effective way to suppress multiples 

and random noise (Foster and Mosher, 1992).  

The dipping information of events is preserved when they are mapped into the f-k 

domain using the 2-D Fourier transform. If a CMP gather is moveout-corrected using a 

velocity mid-way between the primary and the multiple velocities, the primary reflection 

will be over-corrected and the multiple reflection under-corrected, meaning that they will 
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appear in different quadrants in the f-k domain and thereby most of the energies are 

separated from each other (Yilmaz, 1987 and 2001).  

The Karhunen-Loeve (K-L) transform, which optimally extracts coherent multiple 

information from multichannel input data, uses the moveout difference between multiples 

and primaries to attenuate multiples in seismic data processing when CMP gathers are 

corrected using the multiple velocities (Hemon and Mace, 1978; Jones, 1985; Jones and 

Levy, 1987). 

1.4 The Radon transform 

The Radon transform is a mathematical technique that has been widely used in 

seismic data processing and image analysis. Three types of Radon transforms have been 

used as multiple-attenuation techniques in seismic data processing: the slant-stack or τ-p 

transform; the hyperbolic Radon transform; and the parabolic Radon transform (Trad, 

2001). The slant-stack transform can be combined with predictive deconvolution to 

attenuate multiples in the prestack seismic data based on the periodic characteristic of 

multiples, which is discussed in Chapter 2. In contrast to the slant-stack transform, the 

hyperbolic and parabolic Radon transforms are applied to multiple attenuation based on 

moveout discrimination between multiples and primaries. In this thesis, I will focus more 

on analyzing these two types of the Radon transform. 

The Radon transform was first established by Johan Radon (1917). Deans (1983) 

discusses the mathematical theory, and Durrani and Bisset (1984) examine the 

fundamental properties of the Radon transform. Thorson and Claerbout (1985) utilized 

the hyperbolic Radon transform as a velocity analysis tool, and the parabolic Radon 

transform was applied for the first time as a multiple attenuation technique by Hampson 
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(1986). Since then, Radon transforms have become one of the most widely used 

approaches in attenuating multiples (for example Bradshaw and Ng, 1987; Kelamis et al., 

1990; Kostov, 1990; Foster and Mosher, 1992; Hugonnet and Canadas, 1995; Sacchi and 

Ulrych, 1995; Cary, 1998; Sacchi and Porsani, 1999; Trad, 2001; Oppert, 2002; Trad et 

al., 2002 and 2003; Ng and Perz, 2004). 

However, the resolution of Radon transforms has always been a serious problem 

for geophysicists: investigators have been trying to enhance the focusing power of the 

transform for decades.  

1.5 Objective of the thesis 

This thesis reviews various methods associated with multiple attenuation in seismic 

exploration, with most attention being applied to Radon transforms. Different approaches 

to Radon transforms are analyzed. The scope of this thesis is to evaluate the advantages 

and disadvantages of the various Radon algorithms. 

Because time domain methods are computationally expensive, Radon transforms 

are often implemented in the frequency domain. A high-resolution, or optimized, 

semblance-weighted Radon transform, which is comparable to the frequency domain 

methods in computational expense, is discussed with regard to the time-space domain. 

Synthetic datasets are used to test different Radon algorithms and the optimized 

semblance-weighted Radon approach is also applied to a real dataset from the White 

Rose area off the east coast of Canada.  

1.6 My contributions in this thesis 

• Different approaches to multiple attenuation in seismology are reviewed; 
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• Various Radon transform approaches are discussed and evaluated with synthetic 

datasets; 

• The optimized semblance-weighted Radon transform is coded; 

• The optimized semblance-weighted Radon transform is applied to the real seismic 

dataset. 

1.7 Outline of thesis 

The structure of this thesis is as follows: 

• Chapter 1 provides the background for my research; 

• Chapter 2 reviews different methods associated with multiple attenuation; 

• Chapter 3 reviews and analyzes the various types and algorithms of the Radon 

transform; 

• Chapter 4 evaluates the Radon algorithms with both synthetic and real data. 

• Chapter 5 summarizes my research and provides a discussion of the most relevant 

findings.  
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Chapter Two: Review of multiple suppression techniques 

This chapter provides an overview of the multiple attenuation techniques which 

have been used in the oil and gas exploration industry.  

2.1 CMP stack technique 

The CMP stacking technique is the most robust and effective way to suppress 

multiples in seismology (Foster and Mosher, 1992). Due to the different velocities 

between primaries and multiples, a primary has different, typically less, moveout than a 

multiple reflection on a CMP gather. If NMO correction is applied to CMP gathers using 

the primary velocities, the primaries are flattened while multiples are under-corrected 

(Yilmaz, 2001). When the CMP stacking technique is performed on these NMO-

corrected CMP gathers, the primaries are enhanced because of the superposition of events 

at the zero offset traveltime, while the multiples are spread over a range of time to 

produce smaller amplitudes.  

2.2 Predictive deconvolution  

Predictive deconvolution is a proven multiple suppression method based on the 

periodicity of multiple reflections (Yilmaz, 1987).  

Theory 

The desired output as a time-advanced form of the input series for deconvolution 

produces a predictive process. For a given input series x(t) at a future time t+α, its value 

x(t+α) can be predicted by a prediction filter, where α is called the prediction lag. The 

prediction filter can be estimated by solving the following matrix equation (Peacock and 

Treitel, 1969):  
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where ri is the ith lag of the autocorrelation of the input trace x(t), and ai is the desired 

prediction filter coefficient, α is the prediction lag, and n is the operator length. 

Convolving this operator with the input trace and delaying it by the prediction lag results 

in the output at time (t+α), which can be written as the following equation: 

 ( ) ( ) ( )y t x t a tα+ = ∗ , (2.2.2) 

where ∗ donates convolution, and ( )α+ty  is the output of the input trace at time (t+α).  

For a horizontally layered system with a constant velocity, normal incidence has 

constant interval between multiples, such as water reverberations. In seismology, 

multiples are predictable components with a periodic rate of occurrence, while primaries 

are not. The prediction lag α is defined by the interval between the primary reflection of 

the water bottom and its first order multiple, which depends on the depth of the water 

layer. Multiples can be estimated by a prediction filter. Subtracting multiples from the 

input seismic data tends to produce multiple-free data. This flow is shown in Figure 2.1.  
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Figure 2.1 Predictive deconvolution using the prediction filter (after Yilmaz, 1989). 

 

A prediction error filter can be designed by modifying the prediction filter: 

 
{ }0 1 n 1

( -1) zeros

1, 0, 0, , a , a , , a ,
                

α

−− − −L L

14 2 43
 (2.2.3) 

The application of this filter essentially combines prediction, delay and 

subtracting as outlined in Figure 2.1. Multiple-free seismic data are output by convolving 

the input trace with the prediction error filter. A flowchart of this process is shown in 

Figure 2.2.  
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Figure 2.2 Predictive deconvolution using the prediction error filter (after Yilmaz, 1989). 

Predictive deconvolution in the τ-p domain 

The problem of predictive deconvolution in the x-t domain is that even for 

horizontally layered media, multiples are not periodic for non-zero offset traces. Alam 

and Austin (1981) proved that in the slant-stack or τ-p domain, the periodic characteristic 

of multiples is preserved for non-zero offset traces. A primary, a first order multiple, and 

a second order multiple with the same offset x in Figure 2.3 are used to explain why 

multiples are not periodic in the x-t domain. The traveltimes of the primary, the first order 

multiple and the second order multiple are represented by tp, tm1 and tm2, respectively.  
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tp Traveltime and raypath of the primary
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tm1

d
tm2

S R 

tp Traveltime and raypath of the primary

x

tm1 Traveltime and raypath of the first order multiple
tm2 Traveltime and raypath of the second order multiple  

Figure 2.3 Multiples with the same offset are not periodic in time. 

According to Equation (1.1.1), we can get expressions for each of the traveltimes 

as follows: 

 ( )22
0pt t x v= + , (2.2.4) 

 ( )22
1 02 2mt t x v= + , (2.2.5) 

 ( )22
2 03 3mt t x v= + . (2.2.6) 

We can then easily get ∆t1, the interval between the first order multiple and the primary, 

and ∆t2, the interval between the second and the first order multiples as follows: 

 ( ) ( )22 2
1 0 02 2t t x v t x v∆ = + − + 2 , (2.2.7) 

 ( ) ( )22 2
2 0 03 3 2 2t t x v t x v∆ = + − + 2

2t

. (2.2.8) 

It is not hard to observe that 1t∆ ≠ ∆  at a non-zero offset x, which indicates that multiple 

reflections not periodic at a certain non-zero offset in the x-t domain.  

The traveltimes of the primary and multiple events in this model are plotted in 

Figure 2.4, from which we can also visualize the non-periodic feature of multiples.  



 

 18

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.5

1

1.5

∆t2
∆t1tm2

tm1

tp

Ti
m

e 
(s

)

Offset (m)

x

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.5

1

1.5

∆t2
∆t1tm2

tp

Ti
m

e 
(s

)

Offset (m)

x

tm1

 

Figure 2.4 Sketch of a CMP gather illustrating traveltimes of the events in Figure 2.3. 

The slant-stack transform 

The slant-stack transform is one kind of Radon transform. Other terminologies for 

the transform are the linear Radon transform or the τ-p transform. It is defined by 

summing data in the time-offset domain along a linear path as: 

 ( ) ( ),
x

S p d t px xτ τ= = + ,∑ . (2.2.9) 

Here ( pS , )τ  represents a plane wave; ( ),d t x  is a shot, CMP (common midpoint) or 

CSP (common scatter point, Bancroft et al., 1998) gather;τ is the two-way intercept 

traveltime; t is the two-way traveltime; x is offset; p is a ray parameter defined by 

vp /sinθ=  with wave travel velocity v and the incidence angle θ.  

Theoretically, an event with linear moveout in the time-offset domain can be 

mapped to a point with the slant-stack transform, and a hyperbolic event, such as a 

primary or a multiple event, can be mapped to an ellipse in the τ-p domain as shown 

Figure 2.5 (Treitel et al, 1982).  
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Figure 2.5 The linear and hyperbolic events in the CMP gather (a) and its slant-stack 
transform (b). 

Application to multiple suppression 

One of the features of the slant-stack transform is that multiples are periodic in time 

for all p traces in the τ-p domain (Taner, 1980; Alam and Austin, 1981; and Treitel et al., 

1982). Predictive deconvolution can be applied in the τ-p domain to suppress multiples.  

In the τ-p space, the traveltime equation is defined by an elliptic equation (Schultz 

and Claerbout, 1978): 

 ( )2 2 2 2
0 1 p vτ τ= − . (2.2.10) 

Here 0τ  is the two-way vertical traveltime. The intercept traveltime for an n-bounce 

multiple in the τ-p space is described by: 

 ( ) ( )22
0 1n n pτ τ= − 2 2v . (2.2.11) 

From Equations (2.2.10) and (2.2.11), it is easy to get ττ nn = , which means that 

multiple events in the τ-p space are exactly periodic in time. An example in the CMP 

domain as shown in Figure 2.6 (a), with the primary P and multiples M1 and M2, is 
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mapped into the τ-p space, as shown in Figure 2.6 (b). The intervals between P and M1 

and between M1 and M2 at a proposed trace p0 in the τ-p space are the same. 
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Figure 2.6 A CMP gather with a primary and its two multiple events and its τ-p stack. 

2.3 Frequency-wavenumber (f-k) filter 

Events with different slopes also show different slopes when they are mapped into 

the f-k domain. Therefore, if a CMP gather (Figure 2.7), which consists of primary and 

multiple events, is NMO-corrected with velocities between the primary velocities and 

multiple velocities (Figure 2.8), primaries will be over-corrected and multiples under-

corrected. The left side of Figure 2.8 is the semblance plot, which contains velocity verse 

time information, of the model in Figure 2.7. Every focused point in the semblance plot 

provides velocity information for every hyperbolic event in the model. The multiple 

events have lower velocities compared to the primary events. The right side of Figure 2.8 

shows the NMO-corrected CMP gather using the velocities between the primary 

velocities and multiple velocities. This NMO corrected CMP gather with primaries and 

multiples are mapped into different quadrants in the f-k space of Figure 2.9. An f-k filter 
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is also defined by the polygon in Figure 2.9. Energy inside the polygon represents 

primaries and passes the filter, while energy outside the polygon represents multiples and 

aliasing of both primaries and multiples and is muted. Inverse f-k transforming the 

filtered data produces an NMO-corrected multiple-free CMP gather (Figure 2.10 (a)). 

Inverse NMO-correction using the velocities which were used for the forward NMO-

correction restores the multiple free primaries (Figure 2.10 (b)).  

The disadvantage of the f-k filter is that the near-offset energy of primaries and 

multiples are mixed in the f-k domain because the near-offset data of both are horizontal. 

They can’t be separated from each other in the f-k domain. That is why we still see 

residual energy of the multiples at near offsets in Figure 2.10.  

 

+ =

Primaries Multiples Primaries+Multiples

+ =

Primaries Multiples Primaries+Multiples  

Figure 2.7 A synthetic CMP gather including primaries and multiples. 
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Figure 2.8 Velocities mid-way between the multiples and primaries for the model in 
Figure 2.7. Left: the semblance plot of the model provides velocity verse time 
information; Right: the NMO-corrected CMP gather using the velocities picked in the 
semblance plot. 

 

 

Figure 2.9 The f-k spectrum of the model in Figure 2.7. The polygon zone is primary 
energy. 
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the most coherent events in the gather and they will map into the first eigenimage of the 

K-L transform. By omitting the first few eigenimages (since the waveform of the 

multiples could be severely distorted by interfering primary events or by the NMO-

correction) and reconstructing the NMO-corrected CMP gather from the rest of 

eigenimages in the K-L domain, one can obtain a CMP gather free of multiples 

associated with the velocity which was used for the NMO-correction (Figure 2.12 (b)). 
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Figure 2.11 A synthetic CMP gather with multiple events at 1.10 s and 1.65 s which have 
a velocity of 1450 m/s (after Jones and Levy, 1987).  
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   (a)         (b) 

Figure 2.12 (a) A data window after NMO-correction with a velocity of 1450 m/s; (b) 
Reconstructed data window omitting the first two eigenimages.   

 

2.5 Radon transform 

Johan Radon (1917) is credited with establishing the Radon transform, a function 

that integrates some physical property of a medium along a particular path. In seismology, 

the generalized Radon transform is defined as an integral of amplitudes: 

 , (2.5.1) ( ) ( )(,u q d t q x x dxτ τ ϕ
∞

−∞
= = +∫ ),

where d(x,t) is the original seismogram; u(τ,q) is its Radon transform; x is a spatial 

variable, such as offset; ϕ(x) defines the curvature upon which the transform curve is 

defined; q is the slope of the curvature; τ is the intercept time; and t is the two-way 

traveltime. The discrete generalized Radon transform has the form: 

 ( ) ( )( ),
x

u q d t q x xτ τ ϕ= = + ,∑ . (2.5.2) 
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A few variations of the Radon transform have been explored in seismology 

including the slant-stack transform, which we discussed previously in Section 2.2, the 

parabolic Radon transform, the hyperbolic Radon transform, and the shifted-hyperbolic 

Radon transform.  

As we mentioned in Section 2.2, ideally the slant-stack transform maps a linear 

event in the x-t domain to a focused point, and a hyperbolic event to an ellipse in the 

transformed domain (Figure 2.5), which can be explained by Equation (2.2.10). Multiples 

are periodic in the τ-p domain and predictive deconvolution can be applied in the τ-p 

domain to remove multiples. 

The other variations of Radon transform, such as the parabolic, hyperbolic and 

shifted-hyperbolic Radon transform, ideally map events with corresponding patterns to 

focused points in the Radon domain. For example, the hyperbolic Radon transform is 

defined as integration by stacking the data along a hyperbolic path. An event with 

hyperbolic moveout in the time-space domain is mapped to a focused point in the model 

domain by the hyperbolic Radon transform. Both primaries and multiples are hyperbolic 

in the time-space domain of CMP gathers but with different velocities, as indicated by 

Equations (2.2.4) to (2.2.6), and they are mapped to different regions in the Radon 

domain when the hyperbolic Radon transform is applied. The parabolic Radon transform 

can be applied to an NMO-corrected (Hampson, 1986) or t2-stretched CMP gather 

(Yilmaz, 1989).  

Multiple suppression of the Radon transform is based on the velocity or moveout 

discriminations between primaries and multiples. From the definition of the Radon 

transform, events with different moveouts are mapped into focused points in different 
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regions in Radon space as illustrated by the semblance plot in Figure 2.8. Since primaries 

and non-associated multiples have different velocities, they can be separated from each 

other in Radon space. If multiples are muted in the Radon domain, multiple-free data can 

be reconstructed in the time-space domain; or if primaries are zeroed in the Radon 

domain and multiples reconstructed in the time-space domain and then subtracted from 

the original seismic data, multiple-free data are obtained. In practice, the latter approach 

is usually used to preserve amplitude versus offset information.  

The details of the parabolic, hyperbolic and shifted-hyperbolic Radon transforms 

are discussed in Chapter 3.   
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Chapter Three: The Radon transform 

3.1 Definition of the Radon transform 

A few variations of the Radon transform have been explored in seismology 

including the parabolic Radon transform on NMO-corrected CMP gathers or common 

shot gathers (Hampson, 1986); the parabolic Radon transform on t2-stretched CMP or 

common shot gathers (Yilmaz, 1989); the hyperbolic Radon transform on NMO-

corrected CMP gathers (Foster and Mosher, 1992); the hyperbolic Radon transform on 

CMP or common shot gathers (Bancroft and Cao, 2004); and the shifted-hyperbolic 

Radon transform (Oppert, 2002; Oppert and Brown, 2002). Different types of Radon 

transform can also be applied over common scatter point gathers (Bancroft et al., 1998). 

Hyperbolic Radon transform 

A generalized formulation of the Radon transform is defined by Equation (2.5.2) in 

Chapter 2. A reflection point on a horizontal layer generates a hyperbolic event on a CMP 

gather (Figure 1.3). In order to map the hyperbolic event to a focused point in the Radon 

domain, the hyperbolic Radon transform over the CMP gather is defined as: 

 ( ) ( )2 2,
x

u q d t qx xτ τ= = +∑ , , (3.1.1) 

where 21 rmsvq = . The summation path is defined by 2t τ= + 2qx , which implies a 

hyperbolic curve. Theoretically, this definition maps hyperbolic events in the time-space 

domain to a point in the Radon domain, as shown in Figure 3.1.  

Because the multiple reflections have different velocities to those primary 

reflections which are not associated with the multiples, they are mapped to different 
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regions in the Radon domain and can be separated from each other. If multiples are 

muted in the Radon domain, multiple-free data can be reconstructed back to the time-

space domain using the inverse Radon transform.  
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Figure 3.1 Hyperbolic events in the CMP domain (a) are mapped to focused points in the 
Radon domain (b) by the hyperbolic Radon transform. 

Shifted-hyperbola Radon transform 

In a horizontally layered model (Figure 1.5), Castle (1994) showed that Equation 

(1.1.3) is a small offset approximation to the actual response (Figure 3.2). The shifted-

hyperbola equation was recommended by Castle as a solution to the inaccuracies of 

reflection moveout at longer offsets (Figure 3.3). The shifted-hyperbola equation 

proposed by Castle is defined as:  

 ( ) ( )
2

2 2
0 2sh s s

sh

xt t
v

τ τ− = − + , (3.1.2) 

where sht  is the traveltime response of the shifted-hyperbolic moveout equation. The 

asymptotes of the shifted hyperbola will intersect at (x=0, t=τs) instead of (x=0, t=0). The 
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velocity information is now represented by shv . A more common form of the shifted-

hyperbolic moveout equation is introduced by Castle (1994) as:  

 
2 2

0
0 2

11
sh

t xt t
S S v

⎛ ⎞⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (3.1.3) 

where  

 2 2
sh rv Sv= ms , (3.1.4) 

 2
2

4

µ
µ

=S , (3.1.5) 
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1

τ

τ
µ . (3.1.6) 

The shifted-hyperbola curve represents a Dix NMO equation shifted by the time 

( )0 1 1t − S . Equation (3.1.3) can now be written as: 

 
2 4 22 2
0 2 0 22

0 2 2
4 4 4rms

t xt t
v

tµ µµ
µ µ µ

= + + − . (3.1.7) 

Based on Equation (3.1.7), Oppert and Brown (2002) proposed the shifted-hyperbola 

Radon transform should match longer-offset reflection instead of the conventional Dix 

NMO Equation (1.1.3).  
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Figure 3.2 The non-hyperbolic reflection associated with a horizontally layered model as 
shown in Figure 1.5 and geometry of the Dix NMO equation (after Castle, 1994). 
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Figure 3.3 The non-hyperbolic reflection associated with a horizontally layered model as 
shown in Figure 1.5 and geometry of the shifted-hyperbola equation (after Castle, 1994). 

Parabolic Radon transform 

Hampson (1986) showed that multiple reflections on an NMO-corrected CMP 

gather can be approximately seen as parabolic. A parabolic Radon transform can then be 
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built on an NMO-corrected CMP gather by summing the data along the stacking paths 

defined by the equation . The reason to work on the parabolic Radon 

transform is explained in Section 3.3. An exact parabolic curve in the CMP domain can 

theoretically be mapped to a focused point in the parabolic Radon transform.  

2qxt += τ

Consider an event with zero-offset two-way traveltime  and RMS velocity . 

If this event is corrected with a velocity , the event will now appear at time 

0t rmsv

cv ( )xT , 

where: 
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Expanding Equation (3.1.8) in a Taylor series, we get 

 
( )

2 2

0 2 2 2 2
0 0

2

0 2 2 2
0

1 11 1 1
2 2

1 1 11
2

rms c

rms c

x xT x t
v t v t

xt
t v v

⎛ ⎞⎛ ⎞ ⎛
= + + + − + +⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

⎛ ⎞⎛ ⎞
= + − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

L L

L

⎞
⎟
⎠ . (3.1.9) 

A residual velocity  must be able to be found by: rv

 222

111

crmsr vvv
−= . (3.1.10) 

Equation (3.1.10) can then be written as:  

 ( ) Λ++= 2
0

2

0 2 rvt
xtxT  ; (3.1.11) 
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if ( )( ) 10 <<tvx r , the higher order terms can be dropped. Thus, to the extent that Equation 

(3.1.11) is valid, the NMO-corrected events on an input seismogram can be seen 

approximately as parabolae and be mapped to focused points in the Radon domain by: 

 ( ) ( )∑ +==
x

xqxtdqu ,, 2ττ , (3.1.12) 

with 2
021 rvtq = . 

As events deviate from the ideal parabolic form, amplitude smearing can be 

expected in the Radon domain and isolating events becomes harder. Yilmaz (1989) 

brought a different definition of the parabolic Radon transform which is defined over a t2-

stretched CMP or shot gather because a hyperbola in the CMP domain becomes an exact 

parabola after t2-stretching the time axis. Consider events on a CMP gather with 

hyperbolic traveltimes defined by: 

 
2

2 2
0 2

xt t
v

= + . (3.1.13) 

Then, apply stretching in the time direction by setting 't t 2=  and . Equation (3.1.13) 

then takes the form: 

'
0t t= 2

0

 
2

' '
0 2

xt t
v

= + , (3.1.14) 

which is a definition of a parabola. So the parabolic Radon transform can be defined over 

the t2-stretched CMP or shot gathers.  

3.2 The Resolution problem of the Radon transform 

We noted above that, theoretically, a hyperbolic event, for example, in the time-

space domain, is mapped to a focused point in the Radon domain by the conventional 
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hyperbolic Radon transform as defined by Equation (3.1.1). However, in the real world, it 

doesn’t work in this manner. Figure 3.4 (a) shows a hyperbolic event in the time-space 

domain and its Radon panel obtained by the conventional Radon transform. Notice the 

horizontal and oblique smearing energy in Figure 3.4 (b). The horizontal artifact is 

caused by the near-offset energy sharing and the oblique smearing by the far-offset 

truncation. Figure 3.5 shows that the integration paths associated with the same intercept 

time τ  but different velocities or q are all sharing the event data at the near offsets in the 

CMP domain, which causes the horizontal smearing problem of the Radon transform. A 

data point at the zero-offset CMP gather shown in Figure 3.6 (a) is used to examine the 

near-offset artifacts of the forward Radon transform and the result is shown in Figure 3.6 

(b) which looks like a horizontal event across the Radon panel. A CMP gather with a data 

point at the far offset shown in Figure 3.7 (a) is used to investigate far-offset artifacts. Its 

Radon panel shown in Figure 3.7 (b) explains the oblique artifacts in Figure 3.4 (b). 

The smearing problem in the Radon domain decreases our ability to separate events, 

such as multiple energy from primary energy, in the Radon domain to attenuate multiples.  
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Figure 3.4 (a) A hyperbolic event in the time-space domain; and (b) its Radon panel by 
conventional hyperbolic Radon transform. 
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Figure 3.5 Near-offset data-sharing demonstration. 
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Figure 3.6 (a) A one-data-point CMP gather at zero-offset; and (b) its Radon panel. 
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Figure 3.7 (a) A one-data-point CMP gather at the far offset; and (b) its Radon panel. 

 

The dual operator of Equation (2.5.1) is:  

 . (3.2.1) ( ) ( )(' ,d t x u t q x q dqτ ϕ
∞

−∞
= = −∫ ),
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)

However, Beylkin (1987) showed that Equation (3.2.1) is not the inverse transform pair 

of Equation (2.5.1), which means if a model is forward Radon transformed into the 

Radon panel by Equation (2.5.1) and then inverse transformed by Equation (3.2.1), the 

reconstructed model is different from the original model. This can be explained by the 

example in Figure 3.4 and Figure 3.8. The Radon panel in Figure 3.4 (b) is obtained by 

forward Radon transforming the model in Figure 3.4 (a); the reconstructed time-space 

model in Figure 3.8 (a) is then obtained by inverse transforming the panel in Figure 3.4 (b) 

by Equation (3.2.1); continue to work on the forward and inverse Radon transform to 

generate the reconstructed time-space model shown in Figure 3.8 (c) and the Radon panel 

shown in Figure 3.8 (d). We can see from these figures that we keep losing energy in the 

time space models and decreasing the resolution in the Radon panel when keep working 

on the forward and inverse Radon transforms by Equations (2.5.1) and (3.2.1).    

 Beylkin (1987) found that the inverse integral transform pair of Equation (2.5.1) 

is defined by: 

 , (3.2.2) ( ) ( ) ( )( dqqxqtuxtd ∫
∞

∞−
−=∗= ,,' ϕττρ

where ( )ρ τ  is called the rho filter and ∗  denotes convolution. For 2-D data, the rho 

filter ( )ρ τ  has a Fourier transform of the form ( )4exp iω π , where ω  is the temporal 

frequency (Yilmaz, 2001). The dataset d′ (t,x) is the reconstruction of the time-space 

domain dataset from the Radon transform. 
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Figure 3.8 (a) The reconstructed hyperbolic event from Figure 3.4 (b); (b) the Radon 
panel of (a) by the conventional hyperbolic Radon transform; (c) The reconstructed event 
from (b); (d) the Radon panel of (c) by the conventional hyperbolic Radon transform. 

3.3 Solutions to the Radon transform 

Standard least-squares solution 

In order to minimize the amplitude smearing on the conventional Radon panels, a 

least-squares formulation of the Radon methods was proposed by Thorson and Claerbout 

(1985) and Hampson (1986). Reverse mapping from the Radon domain back to the time-

offset space in a discrete form of the continuous formula, Equation (3.2.1), becomes: 

 ( ) ( )( )∑ −==
q

qxqtuxtd ,,' ϕτ , (3.3.1) 
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and its matrix form can be written as: 

 , (3.3.2) Lud' =

where  stands for the reconstructed time-offset space data, u  is a dataset in Radon 

space, and L  is a linear operator defined by integrating the data in Radon space along the 

stacking paths 

'd

( )xqt ϕτ −= . A matrix notation associated with Equation (2.5.2) (the 

forward Radon transform), with LT defined as a linear operator by integrating the data in 

the time-space domain along the stacking path ( )xqt ϕτ −= , can be written as: 

 , (3.3.3) dLu T=

which is a low resolution solution to the Radon algorithms. Our purpose is to find an 

estimate of ( qu , )τ  with higher resolution, such that the difference  between the 

actual input gather  and the modelled time-offset space gather  is minimal 

in the least-squares sense. The matrix notation of 

( xte , )

) )( xtd , ( xtd ,'

( )xte ,  is defined as (Yilmaz, 1989): 

 Lude −= . (3.3.4) 

The least-squares solution for Equation (3.3.4) can be determined (Lines and 

Treitel, 1984). The cumulative squared error S is expressed as: 

 ( ) ( )LudLudee TT −−==S , (3.3.5) 

where T donates matrix transposition. Minimizing S with respect to u gives the desired 

least-squares solution: 

 ( ) dLLLu T1T −
= , (3.3.6) 
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Twhere ( )  is the least-squares or generalized inverse of L . Equation (3.3.6) is one 

form of the discrete Radon transform of 

-1TL L L

( )xtd ,  (Beylkin, 1987). To solve ( qu , )τ  using 

Equation (3.3.6) requires computing the inverse of LTL. It’s impractical to invert this 

matrix due to the instability of the inversion, which is mostly caused by the non-

uniqueness of the stacking paths at the near offsets of the input gather and discrete 

sampling over a finite range of offsets. Furthermore, although the operator LTL is 

diagonally dominant, its side lobes are still significant which causes the smearing along 

the q-axis in the Radon domain.  

A stable inversion approach was designed by Yilmaz (1989) by perturbing the 

matrix LTL with a damping factor as follows: 

 ( ) dLILLu T1T −
+= β , (3.3.7) 

where the constant β is the damping factor incorporated to add white noise along the 

diagonal of the operator LTL, and I is the identity matrix. In practice for field data, β is 

suggested to be 1% of the largest eigenvalue-squared of the operator LTL (Yilmaz, 1989).  

Frequency domain solution 

However, it is impractical and very time consuming to invert the operator LTL 

due to its large dimensions. Alternative solutions, to work on the parabolic Radon 

transform over NMO-corrected gathers or t2-stretched gathers, were suggested by 

Hampson (1986) and Yilmaz (1989), respectively. Here I discuss why a parabolic Radon 

transform is applied even though events are not exactly parabolic on NMO-corrected 

CMP or shot gathers. The advantage of parabolic moveout over hyperbolic moveout is 
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that the traveltime moveout is invariant along the time axis for a specific value of 

velocity. The discrete form of Equation (3.3.1) defined over parabolic integration paths 

can be written as: 

 ( ) ( )' ,
q

d t x u t qx xτ= = − 2 ,∑ . (3.3.8) 

By Fourier-transforming the time component of Equation (3.3.8), the moveout in the time 

axis becomes a phase shift in the frequency domain (Hampson, 1986 and Yilmaz, 1989): 

 ( ) ( )∑ −=
q

qxiequxd
2

,,' ωωω , (3.3.9) 

where ω is the Fourier dual of t. Equation (3.3.9) can be written in the matrix form of 

(3.3.2) for each frequency component ω of ( )' ,d xω  and ( ),u xω , where L now is a 

complex matrix of dimension n×k: 

 

22 2
11 1 2 1

22 2
21 2 2 2

2 2
1 2

k

k

n n k

i q xi q x i q x

i q xi q x i q x

i q x i q x i q x

e e e

e e e

e e e

ωω ω

ωω ω

ω ω ω

−− −

−− −

− − − 2
n

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

L
M M L M

L

, (3.3.10) 

and and u are complex vectors of lengths n, the number of offsets, and k, the number of 

q, respectively. The elements of the L matrix only depend on the geometry of the input 

gather, and the range of q used in constructing the Radon gather (Yilmaz, 1989). The 

constrained least-squares solution for u, i.e. Equation (3.3.6), now becomes: 

'd

 ( ) 1 *β
−

= +*u L L I L d , (3.3.11) 

where *  is the adjoint of L.  
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⎤
⎥⎦

*

Because of the near-singular character of the complex matrix L, especially for 

small values of ω, the solution given by Equation (3.3.11) is best reformulated in terms of 

the singular value decomposition (SVD) of L (Press et al., 1986, and Yilmaz, 1989). L is 

factored into a product of three matrices (Lines and Treitel, 1984): 

 , (3.3.12) *=L UΛV

where and are unitary matrices and is a diagonal matrix whose elements are the 

singular values of the original matrix . By using this format of L, the constrained 

solution given by Equation (3.3.11) takes the form  

U V Λ

L

 , (3.3.13) ( )β⎡
⎢⎣

-12u = V Λ + I Λ U d

where 

 ( )

2
2
2

2
1 22

2

2
2
2

0

0

λ
λ β

λ
λ ββ

λ
λ β

−

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥++ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

Λ I Λ
O

, (3.3.14) 

and iλ  are the positive square-roots of the eigenvalues 2
iλ  of .  *L L

Kostov (1990) showed that the term ( )βT*L L + I  in Equation (3.3.11), the least-

squares solution of the Radon transform, has a Toeplitz structure even for data that are 

irregularly sampled or non-uniformly weighted in offset. Solving the inverse of this 

Toeplitz matrix using the Levinson recursion is computationally efficient. 
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High-resolution solution in the frequency domain 

The constant regularization parameter, β, provides an inexact approximation of 

events outside the finite aperture range of the data, subsequently smearing energy along 

the q-axis. A variable regularization term is required to constrain the smearing problem of 

the transform in a data-dependent manner. Sacchi and Ulrych (1995) proposed a high-

resolution technique that involves an iterative method of employing the data within the 

sparsity constraint to allow for a better resolution in the transform domain.  

The initial estimation of the transform data u  obtained by Equation (3.3.11) is 

used to determine the regularization parameter to minimize the smearing problems along 

the q-axis in the high-resolution method. The non-constant diagonal regularization matrix, 

, replaces ( )kD u β I  in Equation (3.3.11) and is defined for each iteration as: 

 ( ) 2k
ib u

α
=

+
ID u , (3.3.15) 

where  denotes elements of the vector , and the constant parameters, α and b, are 

optimized for a CMP gather prior to application to the entire dataset. The parameter b is 

included in the damping factor to provide for white noise and may be alternatively 

estimated as 1% of the maximum of 

iu ku

2
iu , while the parameter β may be substituted for α 

(Oppert, 2002). A quantile of  was recommended by Trad et al. (2003) for the 

parameter b. The p quantile of  is the value of  where its cumulative distribution 

takes the value p. The elements of the matrix 

ku

ku ku

( )kD u  are basically inversely proportional 

to the ‘energy’ of the model estimated from the previous preliminary transform. The 



 

 44

diagonal matrix  is computed during each iteration of the high-resolution 

transform and the transform is determined as follows: 

( )kD u

 ( )( ) 1

1k k

−

+ = T* T*u L L + D u L d

)

)

, (3.3.16) 

where  is the model solution at the kku th iteration. Typically three iterations are necessary 

to provide an optimally constrained solution. 

However, the term  in Equation (3.3.16) doesn’t have a Toeplitz 

structure since the main diagonal elements of the regularization matrix D are not constant. 

The fast Levinson algorithm suggested by Kostov (1990) can’t be employed to invert the 

matrix ( . Alternatively, Sacchi and Porsani (1999) proposed a method to 

achieve an effective high-resolution Radon solution, by means of conjugate gradients, at 

a cost comparable to the conventional parabolic least-squares solution computed with the 

Levinson recursive solution. 

( T*L L + D

T*L L + D

Cary (1998) pointed out that imposing a sparseness constraint only in the q 

direction is a necessary but insufficient condition for a desirable solution to resolve 

closely spaced events. In this case, sparseness constraints in both the τ and q directions 

are required to employ a slower time-domain algorithm, which was the stochastic method 

proposed by Thorson and Claerbout (1985) in the time domain. In the stochastic method, 

a non-linear sparse solution in both τ and q directions can be achieved by using the ratio 

of the noise variance to the Radon space u variance instead of a constant damping factor, 

βI in Equation (3.3.7). A time domain high-resolution Radon solution can be written as: 
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 ( )( ) 1

1k k

−

+ = Tu L L + D u LTd , (3.3.17) 

where  is the Radon solution at the kku th iteration. The initial solution  is estimated by 

the standard least-squares solution shown as Equation (3.3.7).  

0u

Semblance-weighted Radon method 

Bradshaw and Ng (1987, unpublished) worked on the parabolic semblance-

weighted Radon transform with the Gauss-Seidel iterative method in the time domain. 

Yilmaz and Taner (1994) used a similar method in the least-squares sense to compute the 

slant-stack.  

The weight function, semblance, was defined by Stoffa et al. (1981). Semblance 

can be written as follows along parabolic trajectories: 

 ( )
( )
( )

2
2

2

,
,

,
l x

x
l x

d t qx x
S q

N d t qx

τ
τ

τ

⎛ ⎞
= +⎜ ⎟

⎝=
= +

∑ ∑
∑∑ 2 x

⎠ , (3.3.18) 

where l is a window size and is usually a wavelet length, and Nx is the number of traces in 

the time-space domain involved in the semblance calculation. Semblance has the 

important property that its value is only dependent on the coherency of events and 

independent of the amplitudes of the input dataset; it ranges from 0 to 1, indicating 

poorest to best fit of the proposed trajectory respectively (Bradshaw and Ng, 1987). 

Weighting the forward Radon transform with semblance can enhance energy cluster 

along those trajectories which fit seismic events well in the seismic dataset while 

weakening energy along those trajectories which badly fit seismic events. Applied in the 
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Gauss-Seidel sense, the semblance-weighted Radon approach produces moderately high-

resolution results. The weighted parabolic Radon transform is then defined as follows: 

 ( ) ( ) ( )2, ,
x

u q S q d t qx xτ τ τ= = + ,∑ . (3.3.19) 

The semblance plot of the model in Figure 3.4 (a) is shown in Figure 3.9 and the Radon 

panel computed by Equation (3.3.19) is shown in Figure 3.10. Comparing the Radon 

panel in Figure 3.10 and the panel in Figure 3.4 (b), the former gives more focused 

energy in the Radon domain.  

According to Bradshaw and Ng (1987) and Ng and Perz (2004), the following 

steps describe one single Gauss-Seidel iteration: 

(a) Given a particular value of q=qi, stack the input gather (k is the iteration 

number and the initial input is the original dataset d) along the proposed 

trajectory q

kd

i; calculate the semblance of the gather along this trajectory; weight 

and threshold the stack with the semblance. This gives an estimate ( ),est iu qτ at 

this qi trace. 

(b) Compute the inverse Radon transform  at this q'
kd i trace and subtract it from the 

current input gather to create a new dataset 1k+d , which is called residual gather 

and will be the new input dataset to calculate the Radon transform along another 

trajectory qi+1. The input energy gradually diminishes as the calculation 

proceeds and the Gauss-Seidel iterations increase.  

(c) Add the current estimate at qi trace, ( ),est iu qτ , to the accumulated estimate in 

the transform domain, ( ),acc iu qτ . 
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(d) Increment to the next q trace, qi+1, and repeat steps (a) to (d) until all q traces 

are covered. The only difference is that the input dataset in step (a) now will be 

the residual dataset 1k+d  obtained in step (b).  

Typically, three passes of the Gauss-Seidel iterations of steps (a)-(d) are sufficient 

to reduce the t-x domain residual energy below an acceptable level (Ng and Perz, 2004). 

After the first iteration, replace the weight function, semblance, by a constant function 

(since the residual energy can be very weak in subsequent iterations), so that the residual 

errors will be gradually removed and stabilized as iterations proceed. After three Gauss-

Seidel iterations, the estimate ( ),accu τ q  is obtained and constitutes the forward Radon 

transform.  
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Figure 3.9 The semblance plot of the model in Figure 3.4 (a). 

 



 

 48

q (s2/m2)

Ti
m

e 
(s

)

q (s2/m2)

Ti
m

e 
(s

)

 

Figure 3.10 The Radon panel of the model in Figure 3.4 (a) obtained by the semblance-
weighted Radon solution (scaled to Figure 3.4 (b)). 

The optimized semblance-weighted Radon solution 

A new high-resolution time domain semblance-weighted Radon solution using the 

Gauss-Seidel scheme was proposed by Ng and Perz (2004). In order to utilize the 

previous transform as a priori information in the current transform to achieve sparseness 

in a Gauss-Seidel scheme, a well-known property of the Gauss-Seidel algorithm should 

be discussed. For early iterations in the algorithm, the model energy tends to reside in 

whichever model components are estimated first. The Gauss-Seidel calculation of the 

semblance-weighted method is based on a sequential q index, which leads to energy 

preference to those q traces which are estimated first. The results from the semblance-

weighted method are then used to estimate the power of q and a new sequence of q traces 

is generated. A new process of semblance-weighted Radon transform now starts over 

from step (a) to step (d) using the current q-estimation sequence. The initial input gather 

is still the original t-x CMP gather. This scheme ensures that the most significant q traces 
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are estimated first and contain the strongest energy, which leads to a solution sparse in 

the q direction. Optionally, the current transform becomes the new preliminary results for 

a revised q-estimation sequence and the process is repeated.  

In order to demonstrate the algorithm strategy that the optimized semblance-

weighted Radon transform adopts, a model is shown in Figure 3.11 with its 5 tentative 

Radon transform stacking trajectories, from top to down, with corresponding to Trace 1, 

2, 3, 4 and 5 respectively in Figure 3.12, which shows an enlarged portion of the Radon 

panel of the model. The true velocity of the event corresponds to Trace 3, which stands 

for a perfect fit trajectory of the event in Figure 3.11. Once the initial Radon model, 

Figure 3.12, is obtained by the semblance-weighted Radon transform, the energy along 

the q-axis can be estimated, which is indicated in Figure 3.12 by a trapezoid. Apparently, 

Trace 3 has the highest energy accumulation among all the traces.  
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Figure 3.11 A model with 5 tentative stacking trajectories. 
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Figure 3.12 A small portion of the Radon transform of the model in Figure 3.11. 

The second iteration of the optimized semblance-weighted algorithm will be first 

employed over Trace 3 and the Radon panel obtained is shown in Figure 3.13. The data 

which are already transformed into the Radon space are then removed from the input 

gather, and the residual gather, shown in Figure 3.14, will be the new input data for the 

next q trace, which in this case could be Trace 2 or 4.  

Since the trajectory of Trace 3 is a perfect fit of the event, there is not much 

energy left after the first run over Trace 3. When we move to the next q trace, there is not 

much smearing energy that can be brought in (Figure 3.15) to the Radon domain. If the 

threshold mentioned in step (a) of the semblance-weighted Radon transform is used, the 

smearing energy can be controlled at a more limited level. 

The procedure of the Gauss-Seidel iterations of the optimized semblance-

weighted Radon solution is summarized as follows: 
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Figure 3.13 The Radon panel of the model obtained by working on Trace 3. 
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Figure 3.14 The updated input data after the data along Trace 3 that have been 
transformed into the Radon space are removed  from the original input data. 



 

 52

1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16

x 10-7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

q (s2/m2)

Ti
m

e 
(s

)

1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16

x 10-7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

q (s2/m2)

Ti
m

e 
(s

)

 

Figure 3.15 The final Radon panel of the model in Figure 3.11 by the optimized 
semblance-weighted Radon solution. 

(a) Calculate the Radon panel, u1, of the input gather d according the steps of the 

semblance-weighted Radon method as described in the section of Semblance-

weighted Radon method. 

(b) Sort the q sequence based on energy cluster of u1 in a descending power. 

(c) Start from qi=q1, then increment to q2, q3, … according to the q sequence obtained 

in step (b), to stack the input gather (k is the iteration number and the initial 

input is the original dataset d) along the proposed trajectory q

kd

i; calculate the 

semblance of the gather along this trajectory; weight and threshold the stack with 

the semblance. This gives an estimate ( ),est iu qτ at this qi trace. 

(d) Compute the inverse Radon transform  at this q'
kd i trace and subtract it from the 

current input gather to create a new dataset kd 1k+d , which is called residual gather 
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and will be the new input dataset to calculate the Radon transform along the next 

trajectory qi+1. The input energy gradually diminishes as the calculation proceeds 

and the Gauss-Seidel iterations increase. 

(e) Add the current estimate at qi trace, ( ),est iu qτ , to the accumulated estimate in the 

transform domain, ( ),acc iu qτ . 

(f) Increment to the next q trace, qi+1, based on the q sequence and repeat steps (c) to 

(e) until all q traces are covered. The only difference is that the input dataset in 

step (c) now will be the residual dataset 1k+d  obtained in step (b). 

3.4 Stacking path analysis 

A precondition of the high-resolution Radon methods is using reasonably accurate 

stacking paths. The more closely the stacking path matches the moveout of events, the 

better the separation of multiples from primaries in Radon space. Parabolic and 

hyperbolic paths are commonly used for the Radon transform in exploration seismology. 

In order to implement a fast computation algorithm in the frequency domain, Hampson 

(1986) developed a DRT (discrete Radon transform) algorithm along the parabolic 

trajectories on NMO-corrected CMP gathers. However, after NMO-correction, multiple 

events are not exactly parabolic. Foster and Mosher (1992) showed that the residual 

moveout of multiples on a CMP gather after NMO-correction is closer to a hyperbola 

rather than a parabola. The hyperbolic stacking path focusing events reflected from depth 

zref  is defined by: 

 ( )2 2
ref reft q x z zτ= + + − . (3.4.1) 
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As mentioned above, for a layered-earth model (Figure 1.5), the interval velocity 

of each layer varies, mostly increases, with depth. The moveout Equation (1.1.3) of 

seismic events which is in use throughout the industry today, is approximately hyperbolic 

only at small offsets and gradually deviates from the hyperbola at far offsets as shown in 

Figure 3.2 (Taner and Koehler, 1969). In this case the shifted-hyperbola moveout 

Equation (3.1.3) can be used as an alternative to build the Radon transform stacking paths, 

as shown in Equation (3.1.7). 

3.5 Analysis of aliasing 

Data aliasing and operator aliasing are involved in seismic data processing. Data 

aliasing is caused by under-sampling a signal with respect to the Nyquist frequency either 

along the time or space direction (Trad, 2001).  

Turner (1990) analyzed data aliasing in both the time and p axes of the linear 

Radon transform. Aliasing in the time direction is governed by the same rule as time 

sampling in the time-space: 

 1
2 nyf

τ∆ ≤ , (3.5.1) 

where τ∆  is the sampling rate of the time axis and nyf  stands for the Nyquist frequency. 

Aliasing in the p direction is governed by: 

 
( )max min

1

ny

p
f x x

∆ ≤
−

, (3.5.2) 

where maxx  and minx  are the maximum and minimum offsets, respectively, in the time-

space domain, and  is the sampling rate in the slant-stack domain (Turner, 1990, and p∆
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Trad, 2001). The parabolic Radon transform can be regarded as a linear Radon transform 

after an x2 stretch in the time-space domain (Hugonnet and Canadas, 1995). So the 

critical sampling interval of the parabolic Radon transform is determined by: 

 
( )2 2

max min

1

ny

q
f x x

∆ ≤
−

. (3.5.3) 

The sampling interval in the offset direction of the time-space domain of the 

linear Radon transform is given by (Turner, 1990): 

 
( )max min

1

ny

x
f p p

∆ ≤
−

. (3.5.4) 

After the variable transform of 2x x⇒  and 2x x x∆ ⇒ ∆  is applied, the  requirement 

for the parabolic Radon transform can be determined: 

x∆

 
( )max minmax

1
2 ny

x
f x q q

∆ ≤
−

. (3.5.5) 

Cary (1998) and Trad (2001) both pointed out that the aliasing problem of the 

Radon transform is also associated with the use of the operator. When a continuous 

function  is sampled, its discrete function doesn’t fully represent the data in the 

continuous field and the sinc function operator has to be applied to its discrete form to 

fully reconstruct the information and prevent aliasing: 

( ,d x t )

 ( ) ( ), , j i
i j

t x

t t x xd x t d x t Sinc Sinc
t x

−⎛ ⎞ −⎛= ⎜ ⎟ ⎜∆ ∆⎝ ⎠⎝ ⎠
∑∑ ⎞

⎟ , (3.5.6) 

where  and  are the Nyquist sample rates along the time and space directions, 

respectively. 

t∆ x∆
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Chapter Four: Application of different Radon methods  

4.1 Synthetic data examples of the Radon transforms 

This chapter is devoted to comparing different Radon algorithms through their 

application on a synthetic dataset. The synthetic NMO-corrected CMP gather shown in 

Figure 4.1 contains offsets from 0 to 2500 m and the trace interval is 20 m. Two 

primaries, Pa and Pb, with constant amplitudes across the offsets, flat after NMO 

correction, are located at 0.3 s and 0.57 s respectively. One of the five multiple events in 

parabolic shapes, Ma, has the same traveltime as Pa at zero offset and its moveout at the 

far offset is 20 ms. Notice from Figure 4.2, an enlarged portion of Figure 4.1, that Ma is 

very close to Pa and they are difficult to differentiate. They are partially mixed with each 

other even at far offsets and there is only 20 ms between their peaks at the farthest offset. 

Mb, with a zero offset traveltime of 0.5 s and moveout of 70 ms at the far offset, overlaps 

the primary Pb at far offsets. Mc is located at 0.7 s at zero offset. This event has uniform 

amplitudes and is not interfered with by any other event. Md, with a vertical traveltime of 

1.02 s and a moveout of 120 ms at the far offset, has variable amplitudes at the near 

offsets; and Me, with a vertical traveltime of 1.3 s and a moveout of 150 ms at the far 

offset, shows variable amplitude effects at far offsets.  

The least-squares solution to the Radon transform in the frequency domain shown 

in Equation (3.3.6) is examined first. The optimum value of the damping factor, β, which 

is related to the noise level in the input dataset and guarantees the stability of inversion in 

Equation (3.3.11) (Yilmaz, 1989), is selected to be 1% of the largest eigenvalue of the 

operator , T*L L 2
1λ , to compute the Radon panel of the CMP gather shown in Figure 4.1 
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Figure 4.1 A synthetic NMO-corrected CMP gather including two primaries Pa and Pb 
and five multiples Ma, Mb, Mc, Md and Me.  
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Figure 4.2 An enlarged portion of the model in Figure 4.1. Notice that Pa and Ma are 
hard to separate even though they are enlarged. 
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and the reconstructed CMP gather. The results are shown in Figure 4.3: (a) the model; (b) 

the Radon panel; (c) the reconstructed gather from the Radon panel using Equation 

(3.2.1); and (d) the residual gather which is obtained by subtracting the reconstructed 

gather from the original model. The Figures (c) and (d) are scaled to figure (a). All events 

are smeared in the Radon panel. The smear across the q-axis horizontally indicated by Sq 

is caused by energy sharing at the near offsets and the oblique smear indicated by Sτ is 

caused by far-offset energy sharing. In particular, events Pa and Ma are smeared together 

because the moveouts between the two events are too small and it is impossible to 

differentiate them.  
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Figure 4.3 Results of the least-squares solution: (a) the model; (b) the Radon panel; (c) 
the reconstructed gather; and (d) the residual gather by subtracting (c) from (a). 
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)

The high-resolution frequency domain solution proposed by Sacchi and Ulrych 

(1995) is then applied to the model. The first iteration of the high-resolution Radon 

solution involves the same damping factor as the least-squares solution: i.e., the previous 

results from the least-squares method (Figure 4.3 (b)) are used to compute the high-

resolution Radon panel in the following iterations. The damping factor in the iterations 

other than the first one, the matrix D in Equation (3.3.16), is determined by the Radon 

results from the previous iteration, as defined by Equation (3.3.15), for sparsity 

constraints in the q direction. The use of the adaptive damping factor D intends to 

eliminate the smear across the q-axis. The amount of sparsity imposed on the operator is 

limited by the regularization parameters, α and b (Oppert, 2002). If large values are used 

for the factor α, the matrix ( 1−T*L L + D  is diagonally dominant and sharp distributions 

between events and background noise in the model will be created (Sacchi and Ulrych, 

1995 and Oppert, 2002). The background power b stabilizes the damping factor D when 

ui approaches zero. In order to avoid the tedious computation to get the regularization 

parameters, Oppert (2002) suggested the parameter b be equal to 1% of the maximum 

value of 2
iu , which is the transformed data from the previous iteration, and α be 0.01% 

to 1% of the maximum of the main diagonal of the operator matrix . Trad et al. 

(2003) proposed the use of a quantile of 

T*L L

2
iu  to estimate the constant regularization b and 

1 is used for α in Equation (3.3.15). In this example, the 70% quantile of 2
iu  is used for 

b. The results are shown in Figure 4.4. 
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Figure 4.4 Results of the high-resolution method: (a) the model; (b) the Radon panel; (c) 
the reconstructed gather; and (d) the residual gather by subtracting (c) from (a). 

Comparing Figure 4.3 (c-d) and Figure 4.4 (c-d) shows that the conventional 

least-squares solution gives more exact reconstruction, which is the way the least-squares 

solution is designed, than the high-resolution algorithm. The residual gather Figure 4.3 (d) 

calculated by subtracting the reconstructed gather (c) from the original input CMP gather 

(a) is only random noise. The drawback of the high-resolution solution is that it destroys 

the reconstruction of the original data, which can be verified by Figure 4.4 (d) where the 

residual events can be clearly seen. Comparing Figure 4.3 (b) and Figure 4.4 (b), the 

high-resolution method produced more focused events in the Radon panel. One important 

observation from Figure 4.4 (b) is that there is energy leakage along the time axis within 
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the q range of about 0~3.5×10-8 s2/m2. This is because the sparsity solution in the 

frequency domain is only constrained in the q direction, not along the time axis. Even 

though the high-resolution method obviously compressed the events much more than the 

least-squares method, event Ma can’t be separated from event Pa.  

The results of the Gauss-Seidel iterative semblance-weighted Radon method 

introduced by Bradshaw and Ng (1987) are shown in Figure 4.5. Compared to the least-

squares solution and the frequency domain high-resolution method, the forward Radon 

panel calculated by this method in Figure 4.5 (b) is further improved. The smear in both τ 

and q directions are obviously reduced and there is no sign of the energy leakage that the 

frequency domain high-resolution method shows due to its employment in the time 

domain. The utilization of semblance information defined by Equation (3.3.18) in the 

weighting function of the Radon transform, Equation (3.3.19), results in the sparsity 

constraints. The Gauss-Seidel iterative method also attempts to minimize the smearing 

problem by removing the transformed energy from the original input dataset for each q 

trace during calculation. However, the event Ma can not yet be separated from the event 

Pa even though this method resulted in fairly good resolution in the Radon panel. The 

reconstructed CMP gather shown in Figure 4.5 and the residual energy in Figure 4.5 (d) 

show that reconstruction with minimal errors is obtainable by this method.  
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Figure 4.5 Results of the semblance-weighted Radon method: (a) the model; (b) the 
Radon panel; (c) the reconstructed gather; and (d) the residual gather. 

Even though Figure 4.5 (b) shows impressive results in the Radon panel, it is not 

perfect. The philosophy of the Gauss-Seidel method is that for early iterations, most of 

the energy in the data space, or in the CMP gather in this case, resides in whichever 

model components are estimated first (Ng and Perz, 2004). This is the reason why the 

Gauss-Seidel method still produces smearing energy in the Radon panel. During the 

implementation of the Gauss-Seidel algorithm, the calculation is performed based on 

sequential q traces. The energy is first taken by the earlier q traces, which can be 

explained using the example in Figure 4.6. For the model in Figure 4.6 (a), there are two 

tentative q traces, q1 and q2, with the latter as the best fit of the event in the gather, as 
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shown in Figure 4.6 (a). The Radon transform is first performed over q1 and then q2. 

After the Gauss-Seidel algorithm for the Radon transform is performed over q1, some of 

the data along this trace are stacked into the Radon panel as shown in Figure 4.6 (b), 

which stands for the smearing energy, and are then removed from the input dataset. The 

residual dataset is shown in Figure 4.6 (c). The model in (c) loses some data compared to 

the model in (a). When the computation is moved to the trace q2, which stands for the 

perfect fit of the event trajectory as we mentioned, the input data model is now 

incomplete. Therefore, the final Radon panel obtained by the algorithm shown in Figure 

4.6 (d) is biased.  

The analysis of the Gauss-Seidel algorithm performed on the model in Figure 4.6 

above led us to think about performing the algorithm first over the trace q2 rather than q1. 

If the transform is first estimated along the trajectories which best fit the events in the 

CMP gather, most of energy in the model would be stacked into the positions defined by 

these trajectories or q traces and the smear in Figure 4.5 (b) could be further reduced. 

This is the so-called optimized semblance-weighted Radon transform (Ng and Perz, 

2004). It’s suggested that the distribution information of the Radon panel along the q-axis 

be estimated from the preliminary result in Figure 4.5 (b), calculated by the Gauss-Seidel 

iterative method, and a sequence in the sense of descending power of q is set up. The new 

Gauss-Seidel scheme is employed using the new q sequence, which suggests that the 

Radon transform is first estimated along the most important trajectories, or the 

trajectories best describing the events in the data space. This implementation in turn leads 

to a solution sparse in both the q-axis and the time direction (Ng and Perz, 2004). The 

result of the model in Figure 4.6 (a) using this optimized semblance-weighted Radon 
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algorithm is shown in Figure 4.7. We can see that the wiggle is not biased and there is 

very limited smear information on the trace q1.  
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Figure 4.6 The Gauss-Seidel algorithm: (a) a CMP model with two tentative q traces; (b) 
the Radon panel obtained after the Gauss-Seidel Radon transform is performed over q1; 
(c) the residual input model after the Gauss-Seidel Radon method is performed over q1; 
and (d) the Radon panel obtained by performing the algorithm over q1 and q2. 

The results of the optimized Gauss-Seidel semblance-weighted Radon transform 

of the model in Figure 4.1 are shown in Figure 4.8. The Radon panel in Figure 4.8 (b) is 

very impressive in that the events Pa and Ma can be clearly separated from each other 

even though there is only a 20 ms interval between the peaks of them at the farthest offset. 

The reconstruction of the CMP gather shown in Figure 4.8 (c) and the residual energy 

shown in (d) indicate a very good reconstruction.  
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Figure 4.7 The Radon panel of the model in Figure 4.6 (a) obtained by performing the 

optimized semblance-weighted Radon algorithm.  
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Figure 4.8 Results of the optimized semblance-weighted Radon method: (a) the model; (b) 
the Radon panel; (c) the reconstructed gather; and (d) the residual gather. 
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In this example, the input CMP gather in Figure 4.1 is NMO-corrected before the 

Radon analysis. In the case of a CMP gather without NMO-correction, the t2-stretching 

scheme proposed by Yilmaz (1989) can be employed to implement the parabolic Radon 

technique since a hyperbola becomes a parabola exactly after square stretching along the 

t-axis. However, in practice, the NMO-corrected CMP gather is preferred because the 

non-corrected gather has distinctly larger moveout than the corrected gather. The 

algorithm is much more expensive if it is applied on the non-corrected gather rather than 

the corrected one since a larger range of q traces have to be adopted. 

In order to test the resolution of the different algorithms in the Radon panel without 

being effected by the stacking path pattern, the events in the synthetic CMP gather shown 

in Figure 4.1 are designed to be exactly parabolic. This is not true in real seismology even 

though the events on the CMP gather are exactly hyperbolic before NMO-correction; 

they are approximately parabolic after the correction. However, the utilization of 

parabolic events demonstrated the success of the different algorithms on the Radon 

transform analysis.  

Another feature of the synthetic dataset is that the wavelet used is identical at all 

times and offsets. In real data, the wavelet is stretched by NMO correction. Consequently 

the synthetic data will show more optimistic view of the high resolution Radon transform. 

For real datasets, stretch effect is usually muted after NMO correction. 

4.2 Real data example 

The White Rose oilfield is located offshore Newfoundland on the east coast of 

Canada. The water depth there is about 120 m. Due to the hard water-bottom, high ocean-
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bottom reflection coefficients create strong water-column reverberations in this area. 

High impedance contrast also occurs at the Tertiary-Cretaceous unconformity, which 

causes serious peg-leg multiple problems. Underlying this Tertiary-Cretaceous 

unconformity is the target reservoir, the Avalon sandstone formation, which is strongly 

affected by the peg-leg multiples. 

The CMP gather in this area shown in Figure 4.9 has been chosen to illustrate the 

serious multiple problems. From the figure, we can easily see the water-column 

reverberations above the reflection of the Tertiary-Cretaceous unconformity at about 2.2 s, 

and the peg-leg multiples of this reflector below 2.2 s with a periodicity of about 0.16 s. 

The strong multiples can also be recognized from the semblance plot of this CMP gather 

in Figure 4.10. The semblance plot also shows that there is a much weaker primary event 

located at about 2.7 s overlain by the strong peg-leg multiples of the Tertiary-Cretaceous 

unconformity. This reflection will be very hard to interpret on a stack section.  

We have concluded that a faster computation of the Radon transform can be 

achieved by performing the algorithm on an NMO-corrected gather rather than an 

original gather since the NMO-corrected gather has smaller moveouts. The NMO-

corrected version of the CMP gather in Figure 4.9 is shown in Figure 4.11 based on the 

velocity analysis in Figure 4.10. This NMO-corrected gather is used to perform the 

optimized semblance-weighted Radon method and the obtained Radon panel is shown in 

Figure 4.12. The full reconstruction of the Radon panel back into the time-space domain 

and the residual gather which is the difference between the full reconstructed gather from 

the original gather are shown in Figure 4.13 and Figure 4.14, respectively. The residual 
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gather is only random noise and shows very minor amplitudes compared to Figure 4.9 

and Figure 4.13. The success of the optimized semblance-weighted Radon method is 

again verified on the real data example by the two figures, Figure 4.13 and Figure 4.14.  

 

Figure 4.9 The original CMP gather. 
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Figure 4.10 The semblance plot of the CMP gather in Figure 4.9. 
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Figure 4.11 The NMO-corrected CMP gather. (Scaled to Figure 4.9) 
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Figure 4.12 The Radon panel obtained by the optimized semblance-weighted Radon 
transform method. Primaries are indicated by circles. The blue curves indicate the muting 
boundaries. 
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Figure 4.13 The full reconstruction of the CMP gather from Figure 4.12. (Scaled to 

Figure 4.9) 



 

 73

 

 

Figure 4.14 The difference between the full reconstruction and the original CMP gather. 

(Scaled to Figure 4.9) 



 

 74

The two primaries located at around 0 ms on the q-axis, 2.2 s and 2.7 s in time, 

indicated by the pink circles, can easily be separated from the multiple reflections which 

are mainly on the positive side on the q-axis (Figure 4.12). The primaries are muted in 

this Radon panel, indicated by the blue curves in Figure 4.12, before the inverse Radon 

transform is performed so that only multiple reflections are reconstructed back to the 

time-space domain (Figure 4.15). The multiple-free gather is then obtained by subtracting 

the multiple-only gather from the original gather and the result is shown in Figure 4.16. 

We can see that the multiple-free gather is free of primaries and the primary-only gather 

contains only the primaries and random noise. 

In order to further examine the processing results of the Radon transform, the 

modelled multiple gather and the primary gather are inverse NMO-corrected, as shown in 

Figure 4.17 and Figure 4.19, respectively and their semblance plots are shown in Figure 

4.19 and Figure 4.20, respectively. Only energy from multiple reflections is left out in 

Figure 4.19 and only energy from primary reflections remains in Figure 4.20. 

Although the Radon transform can have a hard time in short-period multiples, the 

example we used shows us that the Radon transform can be a great choice on multiple 

attenuation if the high-resolution algorithm is employed. For long-period multiples, the 

muting in the Radon domain is much easier and the Radon transform can do an even 

better job of multiple attenuation.  
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Figure 4.15 The reconstructed multiple-only gather. (Scaled to Figure 4.9) 
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Figure 4.16 The modelled primary-only gather obtained by subtracting the multiple-only 
gather from the original CMP gather. (Scaled to Figure 4.9) 
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Figure 4.17 The inverse NMO-corrected multiple-only gather from Figure 4.15. (Scaled 

to Figure 4.9) 
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Figure 4.18 The inverse NMO-corrected primary-only gather from Figure 4.16. (Scaled 

to Figure 4.9) 
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Figure 4.19 The semblance plot of the modelled multiple-only gather. 
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Figure 4.20 The semblance plot of the modelled primary-only gather. 
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The stack section without demultiple technique applied and the section with the 

optimized semblance-weighted Radon technique applied are shown in Figure 4.21 (a) and 

(b), respectively. Comparing the two sections, multiples are very strong in Figure 4.21 (a) 

and reduced dramatically in (b). Some weaker primary events become visible after 

multiple attenuation.  
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Figure 4.21 (a) The stack section without multiple attenuation technique applied; (b) the 
stack section with the optimized semblance-weighted Radon method applied on multiple 
attenuation. 
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Chapter Five: Conclusions 

The problem of multiple reflections in exploration seismology is discussed in this 

thesis. In particular, various algorithms pertaining to the Radon transform have been 

analyzed. The parabolic Radon transform in the frequency domain has been an industry 

preference since its publication because of its time-invariant property and fast 

implementation in the frequency domain. But the hyperbolic Radon transform shows 

different characteristics from the parabolic Radon transform in that the former is time 

variant and it can’t be implemented in the frequency domain so that its inversion becomes 

a difficult and very time consuming task.  

An optimized semblance-weighting Radon method is analyzed and discussed in 

Chapter 3 and 4 with both synthetic and real datasets. This algorithm adopts the concept 

that the transform is implemented sequentially along the q-axis from strong to weak 

energy. Since there is no inversion involved in this algorithm, there isn’t very much extra 

computational time expense in the hyperbolic Radon transform compared to the parabolic 

one if the optimized semblance-weighted Radon method is adopted. Therefore, this 

optimized method is superior to the frequency domain parabolic Radon transform 

because the seismic reflections including primaries and multiples exhibit hyperbolic 

characteristics in the time space domain. If long-offset data are involved, the parabolic 

Radon transform will induce significant resolution problems. 

The application of this algorithm to the numerical and field data demonstrates the 

validity of the method.  The optimized semblance-weighted Radon transform in time 

domain has many useful properties that will be of benefit to the seismic processing 
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industry such as velocity analysis. This method will be able to provide better resolution 

for velocity analysis compared to the current used semblance plot.  
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