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Abstract 

Various aspects of the anelastic attenuation of seismic data are investigated in this thesis, 

including modeling, measurement, and correction using Gabor deconvolution.  

For the modeling of seismic attenuation, a nonstationary convolution model, the 

reflectivity method, and a finite-difference technique for viscoelastic seismic modeling are 

described.  For the implementation of the nonstationary convolution model, two approaches are 

proposed to incorporate the impulse response representing attenuation process accurately. The 

reflectivity method is implemented for stratified anelastic media, and the implementation is 

validated in terms of producing correct events and amplitudes, accurate incorporation of   

attenuation, and the flexibility to give total and partial response of the media.  For the finite-

difference method of viscoelastic seismic modeling, results obtained from commercial software 

are evaluated. 

For the estimation of seismic attenuation, three new methods are presented, including 

complex spectral-ratio method, interpretive spectral-ratio method, and match-filter method. The 

proposed methods have connections with the classic spectral-ratio method, the spectrum-

modeling method and the match-technique method which are also described. The performances 

of these methods are evaluated in terms of robustness to noise and capacity of estimating   from 

reflection data, using synthetic VSP data, real VSP data and synthetic 1D reflection data. The 

effects of spectral smoothing, frequency band, and stationary deconvolution on   estimation are 

investigated. For the complex spectral ratio-method, the issue of inaccurate reference frequency 

is addressed and three approaches are proposed to deal with real VSP data. In addition, an 

approach to identify the localized low   zone of reflection data is proposed and evaluated using 

synthetic 2D data and field 2D data. Among all the  -estimation methods evaluated in this 
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thesis, the match-filter method is significantly superior to other methods in terms of accuracy and 

robustness to noise when applied to both VSP data and reflection data. 

As a nonstationary processing approach to compensate for seismic attenuation, Gabor 

deconvolution is investigated, and a practical way to correct the white-reflectivity assumption is 

presented. A definition of nonstationary phase rotation is proposed for the removal of phase 

rotation. The temporal color and spectral color of reflectivity are defined, and their influence on 

reflectivity estimation is analyzed in detail for Gabor deconvolution. The color correction 

method is applied to a field 2D line to restore the high frequency components and obtain a better 

well-tie.  
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Chapter One: Introduction 

1.1 Attenuation and dispersion of seismic waves 

When seismic waves propagate in the earth, they experience energy loss. The attenuation 

of propagating wave due to absorption has long been observed (e.g. McDonal et al., 1958; 

Knopoff and MacDonald, 1958).  However, little emphasis is given to the associated dispersion 

in early literature, which leads to the change in the shape of the transient waveforms. The 

absence of dispersion implies that nonlinear friction is the dominant attenuation mechanism 

(McDonal et al., 1958; Knopoff, 1964; White, 1966). Futterman (1962) shows that the 

attenuation is consistent with linear theory of wave propagation, in which the dispersion is a 

necessary consequence of absorption. The resulting dispersion equations are of Kramers-Kr  nig 

type and can be obtained by applying an integral transform, which is a consequence of the 

requirement of causality (Futterman, 1962). 

The seismic attenuation is commonly quantified by quality factor  . There are different 

definitions of  , which is most often defined as the maximum energy stored during a cycle 

divided by the energy loss during the cycle. This definition becomes impractical for the case of 

small  . O’ Connell and Budiansky (1978) give a definition of   in terms of the mean stored 

energy and the energy loss during a cycle. Early laboratory experiments show that   is 

essentially independent of frequency for the seismic bandwidth (Kjartansson, 1979). 

Based on linear theory of wave propagation, there are various models to describe the 

attenuation and the attendant dispersion. For the nearly constant-  model given by Futterman 

(1962),   is independent of frequency for frequencies above a certain characteristic value, which 

can be chosen low enough to be outside our interested frequency range. Between various nearly 
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constant-   models of Lomnitz (1957),  Futterman (1962), Strick (1967), Liu et al. (1976), the 

physical implication of the cut-off frequency is different, which can be chosen quite arbitrarily. 

For the above nearly constant   models, the description of attenuation is restricted to the case 

where   is large (     . 

Kjartansson (1979) presents a linear model for attenuation with   exactly independent of 

frequency, which is completely specified by two parameters, e.g.,   and phase velocity at an 

arbitrary reference frequency.  This constant-   model can describe the attenuation for cases with 

any positive   value. Kjartansson (1979) states that the assumption of linearity of wave 

propagation is well justified for seismic waves while it is likely that   is weakly dependent on 

frequency,  and also shows that the results obtained from the nearly constant-   models and the 

constant-   model approach the same limit when frequency range is limited and   is large.  

1.2 Modeling of seismic attenuation 

 The attenuation of the earth media affects the amplitude and phase of propagating 

seismic waves.  Such an effect, if ignored, can be the source resulting in errors in forward 

modeling, imaging and inversion (e.g. Samec and Blangy, 1992). To obtain realistic and accurate 

modeling results for wave propagation,   attenuation should be incorporated into modeling 

algorithm appropriately, and this can be done either in frequency domain or time domain.  

Usually, it is more convenient to account for   attenuation in frequency domain. For the 

modeling of 1D seismic trace, attenuation can be addressed by nonstationary convolution model 

(Clark, 1968; Margrave, 1998). The attenuated seismic trace is a superposition of scaled 

nonstationary impulse responses, which represent corresponding attenuation process and are 

calculated in frequency domain based on constant-   model. For the 2D or 3D seismic modeling 

of absorptive media, the   attenuation can be incorporated by replacing the real velocity with a 
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frequency dependent complex velocity in the algorithm such as the moment method (Pratt and 

Worthington, 1990; Liao and McMechan, 1996) and reflectivity method (Fuchs and Müller 

1971; Kennett, 1983). The moment method uses an implicit finite-difference scheme to solve the 

monochromatic viscoacoustic wave equation, which is obtained by transforming the acoustic 

wave equation into space-frequency domain and replacing real velocity with the complex 

velocity.  However, this scheme needs to solve a matrix equation for each frequency component 

and the size of the matrix is very large, especially for 3D. The reflectivity method is a frequency-

wavenumber domain method for seismic modeling of layered media, which automatically 

includes contributions from all possible rays within the reflecting zone. The reflectivity method 

was originally developed by Fuchs and Müller (1971).  Their pioneering work was followed by 

Kennett (1975, 1979, 1980), Kind (1976), Stephen (1977), Kennett and Kerry (1979), Kennett 

and Illingworth (1981), Fryer (1981), Kennett and Clark (1983).  For the reflectivity method, the 

reflectivity function for integration is calculated by a matrix or propagator techniques, which 

mainly deals with the computation of the reflection and transmission coefficients for plane 

waves, incident on a plane surface or a stack of homogenous layers.  The coefficients for an 

interface are given analytically according to the Zoeppritz equations, and those for a stack of 

layers are derived by a recursive algorithm proposed by Kennett (1975).  In addition, the 

attenuation effect of anelastic media can be incorporated conveniently in the frequency domain 

using frequency-dependent complex velocity (Kennett, 1975; Sipkin et al, 1978; O’Neil and Hill, 

1979, Cheng and Margrave, 2011a).  The main advantage of the reflectivity method is its 

capacity to give both a total solution of the wavefield and partial results of interest for a layered 

media. The reflectivity method also has some practical disadvantages. The reflectivity function 
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needs to be adequately sampled in wavenumber or slowness and frequency spaces to avoid 

spatial and temporal aliasing (Mallick and Frazer, 1987). 

The incorporation of attenuation in time-domain methods is complicated by the 

convolution-integral form of the stress-strain relation (Christensen, 1982), which is intractable in 

numerical computation. On the other hand, finite-difference methods (e.g. Alterman and 

Loewental, 1972, Kelly et al., 1976) are widely used for the seismic modeling of 2D or 3D 

inhomogenous media, since these methods can produce complete synthetic seismograms for 

arbitrarily heterogeneous media. The definite disadvantage of the time-domain finite-difference 

methods is that they are generally restricted to pure elastic case. They are also difficult to push to 

high frequencies.  With the development of linear viscoelastic theory, the convolution integral 

can be eliminated by introducing memory variables (Liu et al., 1976; Day and Minster, 1984), of 

which each satisfies a first-order differential equation in time.  Then, the resulting system of the 

governing differential equation can be solved by various ways, which allow computing synthetic 

seismograms for models with arbitrary distribution of velocities and quality factors (Emmerich 

and Korn, 1987; Carcione, 1988a, 1988b, 1988c; Carcione, 1993; Krebes and Quiroga-Goode, 

1994; Robertsson et al., 1994; Dong and McMechan, 1995; Xu and McMechan, 1995).  For the 

viscoelastic seismic modeling, there is physical dispersion due to absorption, and the intrinsic 

numerical dispersion of the finite-difference scheme as well (Dablain, 1986).  To avoid the 

confusion of these two types of dispersion, computation of the differential equation with high 

accuracy is necessary. The spatial derivatives can be calculated by pseudo-spectral schemes 

(Carcione, 1988a, 1988b, 1988c, 1993; Tal-Ezer et al., 1990), or high-order finite-difference 

schemes (Levander, 1988;  Robertsson et al., 1994). 
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1.3 Estimation of seismic attenuation 

The attenuation of seismic waves is a property of the earth which is quantified by  . In 

global seismology,   factor can be measured from the time decay of the free oscillations excited 

by earthquakes (Nowroozi, 1968). In exploration seismology,   is conventionally estimated from 

transmission data, such as VSP data (Hague, 1981; Tonn, 1991), crosswell (Quan and Harris, 

1997; Neep et al., 1996) and sonic logging (Sun et al., 2000).  There are various methods for   

estimation such as analytical signal method (Engelhard, 1996), spectral-ratio method (Bath, 

1974), the centroid frequency-shift method (Quan and Harris, 1997), the match-technique 

method (Raikes and White, 1984; Tonn, 1991), and the spectrum-modeling method (Janssen et 

al., 1985; Tonn, 1991; Blias, 2011), and each method has its strengths and limitations.  An 

extensive comparison between various methods for   estimation was made by Tonn (1991) 

using VSP data, and a conclusion was made that the spectral-ratio method is optimal in the 

noise-free case.  However, the estimation given by spectral-ratio method may deteriorate 

drastically with increasing noise (Patton, 1988; Tonn, 1991).  The question of reliable   

estimation remains.   

Usually, it is more practical to estimate   from the surface reflection data.  For   

estimation from reflection data, the tuning effect (Sheriff and Geldart, 1995) of local thin-beds 

should be addressed properly.  Dasgupta and Clark (1998) proposed a   versus offset (QVO) 

method for estimating   from surface data, which essentially applied the classic spectral-ratio 

method on a trace by trace basis to the designatured and NMO corrected CMP gather.  Hackert 

and Parra (2004) proposed an approach to remove this tuning effect from the QVO method using 

reference well log data.   
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Generally, estimating   from noisy data or surface reflection data needs further 

investigation.  As an extension to classic spectral-ratio method, Cheng and Margrave (2008) 

propose a complex spectral-ratio method that employs both the amplitude spectra and the phase 

spectra of signal, in which   is estimated by solving an inverse problem to minimize the misfit 

between the modeled and measured complex spectral ratios. For the classic spectral ratio 

method, it can be troublesome or impossible to find a fixed frequency range to give good   -

estimation results when calculated spectral ratios are not linearly distributed well. To address this 

problem, Cheng and Margrave (2011b) proposed an interpretive spectral-ratio method, which 

automatically choose an appropriate narrow frequency range to give the   estimation. 

In addition, a time-domain match-filter method for   estimation was proposed by Cheng 

and Margrave (2012), and it has been shown to be robust to noise and suitable for application to 

surface reflection data. For the match-filter method, apparent minimum-phase equivalent 

wavelets corresponding to two signals are estimated, and then optimal   is obtained by finding 

the forward   filter that best matches the wavelets.  Theoretically, the match-filter method is a 

sophisticated wavelet-modeling method, which is a time-domain alternative to spectrum-

modeling method (Janssen et al., 1985; Tonn, 1991; Blias, 2011).  The spectrum-modeling 

method is a modified approach to the spectral-ratio method without taking division of spectra.  In 

addition, the match-filter method and the match-technique method (Raikes and White, 1984; 

Tonn, 1991) employ the idea of matching at different stages of their  -estimation procedures.  

Therefore, the above four methods all have theoretical connections but are distinctly different. 

Cheng and Margrave (2013) give a comparison of these methods using synthetic VSP and 

reflection data and real VSP data. 
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1.4 Compensation of seismic attenuation 

Seismic attenuation of real earth causes additional energy loss, especially for high 

frequency components, and waveform distortion of propagating wave. The attenuation should be 

taken account for in seismic data processing, to restore the high frequencies to enhance the 

seismic resolution, and to correct the phases associated with arrival timings of reflections. The 

compensation of   attenuation is addressed by many authors. Their work generally falls into 

three classes: nonstationary deconvolution, inverse   filtering, and inversion. 

For the first category, Clark (1968) propose a nonstationary deconvolution method in 

time-domain. Griffths et al. (1977), and Koehler and Taner (1985) develope time-varying 

predictive deconvoluiton.  Margrave and Lamoureux (2001) present a Gabor deconvolution 

method in Gabor domain based on the nonstationary convolution model given by Margrave 

(1998). The subsequent work about Gabor deconvolution is presented in Margrave et al. (2002, 

2004, 2011), and Montana and Margrave (2006). 

Inverse-  filtering is investigated by a great many authors. Hargreaves and Calvert 

(1991) formulate inverse-  filtering as a migration method.   attenuation is compensated during 

wavefield extrapolation by adopting complex velocity. This approach is followed by Mittet et al. 

(1995), Wang (2002, 2008), Zhang and Wapenaar (2002).  Stability is a common and important 

problem for these inverse-   migration methods, because inverse-   filtering means the 

exponential growth of wavefield with respect to both frequency and time, which is not stable. 

Zhang and Wapenaar (2002) address this problem by limiting the propagating angle of 

wavefield, and Wang (2008) uses an inverse approach to achieve a gain limit for a stable result. 

More recent work is to address the   compensation by inversion methods (Causse et al., 1999; 

Innanen and Lira, 2010; Bai et al., 2012). 
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The inverse-  filter schemes need quite accurate   models and face the stability 

problem.  The Gabor devonvolution is conducted by direct division in Gabor domain. The 

combined Gabor spectrum of attenuation process and source wavelet is estimated from data, and 

the resulting Gabor spectrum is used to divide the Gabor spectrum of seismic trace to give the 

reflectivity estimation. Therefore, Gabor deconvolution does not require a   model, instead 

itestimates and compensates the attenuation in an adaptive way and does not suffer from 

instability.  

Deconvolution algorithms usually assume that the reflectivity has a white amplitude 

spectrum. In practice, the reflectivity is colored, i.e., there are obvious variations in the amplitude 

spectrum of real reflectivity. Walden and Hosken (1985) analyse the refection coefficients from 

various rock sequences around the world, and they find that in most cases the reflectivities are 

pseudo-white only above a corner frequency and their power spectrum falls away at low 

frequencies according to a power law. To make correction to the white-reflectivity assumption, 

deconvolution algorithms should be modified accordingly. Cheng and Margrave (2009a) propose 

a color correction method for Gabor deconvolution, which gives improved estimation with better 

relative amplitude and smaller phase rotation. The feature of the true reflectivity color and its 

influence on Gabor deconvolution are analyzed by Cheng and Margrave (2010).  Cheng and 

Margrave (2011c) apply the color correction to field data and they show that it can help to 

restore the high frequencies and obtain a better well-tie.  

1.5 Motivation of the research in this thesis 

Real earth attenuates and disperses seismic waves. For seismic modeling, incorporation 

of anelastic attenuation can make the modeling result more realistic. For seismic data processing, 

migration, and inversion, the fundamental goal is to obtain correct reflection coefficients for the 
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subsurface. The anelastic behavior of real earth can decease the amplitude and distort the 

waveform of seismic wave and thus has significant effect on the obtained results. For example, 

amplitude analysis for AVO is complicated by   attenuation because the attenuation effects are 

superimposed on AVO signature; Gas clouds can significantly attenuate seismic waves and such 

an attenuation effect can reduce the resolution of migration result. It is important to compensate 

for the anelastic attenuation to make the final result more accurate and reliable. In addition, the 

attenuation can be quantified by quality factor  , which depends on lithology, porosity, and fluid 

or gas saturation. Measurement of   can provide important information about the subsurface to 

facilitate seismic interpretation. Therefore, it is valuable to investigate the anelastic attenuation in 

seismic data. This thesis investigates various aspects of the   attenuation, including modeling, 

measurement, and correction using Gabor deconvolution. 

1.6 Contribution of this thesis 

The objective of this thesis is to review the modeling methods for seismic attenuation, 

including the nonstationary convolution model for seismic trace, the reflectivity method, and 

finite-difference method for viscoelastic modeling, to develop new methods for   estimation that 

are more robust to noise and more suitable to be applied to reflection data, and to investigate 

Gabor deconvolution and develop a practical method to correct the distortion caused by the 

white-reflectivity assumption. 

The contributions of this thesis are summarized as follows: 

 For the implementation of nonstationary convolution model, distortion to constant-   

model caused by direct truncation of the impulse response corresponding to the 

attenuation process is identified.  A band-limited version and a circle-shifted version 

of the original impulse response are adopted to make the implementation accurate. 
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 The reflectivity method is implemented for stratified anelastic media, and the 

implementation is verified in terms of correct events, amplitudes, accurate 

incorporation of   attenuation, and the flexibility to give total and partial response of 

the media. 

 A complex spectral-ratio method for   estimation is presented, which takes an 

inversion approach to estimate   using both the amplitude spectra and the phase 

spectra information.  

 An interpretive spectral-ratio method for   estimation is presented, which 

automatically obtains an optimal localized slope of logarithmic spectra-ratios to give 

  estimation. 

 A match-filter method for   estimation is presented. 

 The multitaper method for spectrum estimation is implemented, and the effect of 

spectrum smoothing for various  -estimation methods is investigated, including 

classic spectral-ratio method, spectrum-modeling method, math-technique method, 

and match-filter method. 

 The effect of stationary deconvolution on   estimation is analyzed theoretically and 

verified with numerical tests. 

 For the complex spectral-ratio method, the influence of inaccurate reference 

frequency for the modeling of phase difference is investigated.  Three approaches are 

proposed to address this problem for its application to real data. 

 A comparison of performance for various  -estimation methods is made using 

synthetic VSP data, real VSP data and synthetic 1D reflection data, including the 
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classic spectral-ratio method, complex spectral-ratio method, interpretive spectral-

ratio method, spectrum-modeling method, match-technique method, and match-filter 

method. 

 Using the match-filter method, an approach to identify the localized low   zone of 

subsurface is proposed and verified with synthetic and field 2D reflection data, and 

this can be used in conjunction with other observations to identify gas reservoir. 

 A color-correction method is presented for Gabor deconvolution, which corrects the 

distortion caused by the white-reflectivity assumption. 

 A practical approach to approximate the time-varying color feature of true 

reflectivity is presented, which makes the color correction method insensitive to 

specific well-log information and regional well-log information useful. 

 A practical way to define and remove the nonstationary phase rotation between two 

wavelets/signals is proposed and verified with numerical test. 

 The temporal color and spectral color of reflectivity color are defined, and their 

connection with relative amplitude distortion and phase rotation is revealed with 

synthetic and real data. 

 The color correction method for Gabor deconvolution is applied to 2D field data, 

which restores high frequency components of seismic data and obtains a better well-

tie. 

1.7 Outline of this thesis 

In Chapter 2, some modeling methods for seismic attenuation are introduced, including a 

nonstationary convolution model, the reflectivity method and finite-difference method for 

viscoelastic seismic modeling. For the implementation of the nonstationary convolution model, 
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the practical issue of accurate incorporation of the impulse response of attenuation process is 

addressed. Two approaches to implement the nonstationary convolution model with accurate 

constant-  attenuation are proposed and tested. The reflectivity method is implemented for 

stratified anelastic media, and the implementation is evaluated in term of producing correct 

events and amplitudes, accurate incorporation of   attenuation, and the flexibility to give total 

and partial response of the media.  For the finite-difference method of viscoelastic modeling, 

results obtained from Tiger software are evaluated. 

In chapter 3, the theory of various  -estimation methods is introduced, including classic 

spectral-ratio method, complex spectral-ratio method, interpretive spectral-ratio method, 

spectrum-modeling method, match-technique method, and match-filter method. The effects of 

spectrum smoothing, frequency band, stationary deconvolution on   estimation are investigated 

using synthetic data.  For the complex spectral ratio method, the issue of inaccurate reference 

frequency for modeling phase difference is addressed using synthetic and real VSP data. The 

performance of above methods is compared in terms of robustness to noise and the capacity of 

dealing with reflection data. In addition, an approach to identify the localized low   zone of 

refection data is proposed and evaluated using synthetic 2D data and field 2D data. 

In chapter 4, Gabor deconvolution is introduced, and a color correction method is 

presented. A practical way to approximate the time-variant color of well-log reflectivity is 

proposed. Synthetic data are used to evaluate the color correction method. Then, the influence of 

the reflectivity color is analyzed in detail. Following that, the color correction method is 

evaluated using a field 2D line with reference well-log information available. 

In chapter 5, final conclusions and some comments are made, and some suggestions on 

future work are provided. 
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Chapter Two:  Reviews of modeling of seismic attenuation 

2.1 Introduction 

Wave propagation in the earth has been known to be anelastic. Such an anelasticity of 

real earth media can cause significant change to both the amplitude and the phase of propagating 

waveform. Attenuation of propagating waveform, if ignored, can be the source resulting in errors 

in forward modeling, imaging and inversion (e.g. Samec and Blangy, 1992).  Therefore, realistic 

simulation of seismic wave propagation in earth media should account for the effect of 

attenuation and dispersion.  

Depending on the circumstance and the actual needs, different methods can be chosen to 

incorporate attenuation into seismic modeling. This chapter gives a brief introduction to a 

nonstationary convolution model for seismic trace, the reflectivity method, and finite-difference 

method for viscoelastic seismic modeling. The nonstationary convolution model is used to 

incorporate   attenuation into 1D seismic trace (Clark, 1968; Margrave, 1998). For its 

implementation, we propose two approaches to incorporate constant   attenuation accurately. 

The reflectivity method (Fuchs and Müller, 1971; Kennett, 1975, 1979) is widely used for the 

computation of synthetic seismograms for layered media due to its capacity of modeling all kinds 

of wave propagation and attenuation for a given model with sufficient accuracy and relatively 

low computation cost.  We implement the reflectivity method for stratified anelastic media, and 

evaluate our implementation in term of generating correct events and accurate incorporation of  

  attenuation (Cheng and Margrave, 2011a). The finite-difference technique for viscoelastic 

modeling has been widely investigated by geophysicists (Emmerich and Korn, 1987, Carcione et 

al., 1988a, 1988b, 1988c; Krebes and Quiroga-Goode, 1994; Robertsson et al., 1994). This 
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chapter introduces the scheme proposed by Robertsson et al. (1994), and evaluates the modeling 

result from the Tiger software developed by the SINTEF research group. 

2.2 A non-stationary convolution model for 1D attenuated seismic trace 

2.2.1 Theory of a non-stationary convolution model 

In this section, we follow Margrave et al. (2011) to give an introduction to the stationary 

and nonstationary convolution models of seismic trace. A 1D reflection seismic trace is usually 

formed by the convolution of the response function corresponding to a layered earth with some 

source wavelet.  For a stationary convolution model, the source wavelet is assumed to be 

constant, meaning that its amplitude and shape do not change with traveltime. The stationary 

convolution model can be approximated in its most simplified form as 

                       
 

  
          ,  (2.1) 

where          is the stationary seismic trace,      is the source wavelet,      is the 

corresponding reflectivity of layered earth in two-way traveltime, and “  ” denotes the 

conventional convolution. 

One way to numerically implement equation (2.1) employs the multiplication of matrices, 

which can be formulated as 

         ,  (2.2) 

where       is a column vector representing the sampled seismic trace,   is a Toeplitz matrix 

formed from     , and column vector   contains the sampled reflectivity. Each column of the 

Toeplitz matrix corresponds to a progressively delayed version of sampled source wavelet.  

Therefore, the matrix-vector multiplication in equation (2.2) is the superposition of different 

versions of source wavelet incorporating the traveltime delay and scaling effect of reflectivity 

coefficient, which clearly demonstrates the linear nature of the stationary convolution model. 
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In practice, when propagating in the earth, a seismic wave is subject to the influence of 

geometrical spreading, anelastic attenuation, transmission loss, etc.  As a result, the source 

wavelet evolves as it propagates.  The resulting seismic trace would be more realistic if we allow 

the appropriate evolution of source wavelet in equation (2.1) or (2.2). Then, to address the 

attenuation of seismic trace, the source wavelet should evolve according to the attenuation law of 

earth. 

 The attenuation effect of earth is most widely described by the constant-   attenuation 

model (Futterman, 1962; Kjartasson, 1979), in which   is independent of frequency or, more 

practically, can be regarded as a constant within the frequency band of interest. Given a 

traveltime   and the corresponding attenuation quality factor  , the impulse response of the 

attenuation process for the specific traveltime   can be obtained from its Fourier amplitude as 

                               
 

  
,  (2.3) 

where        and        are the amplitude spectrum and phase spectrum of        respectively. 

For constant-   attenuation theory (Futterman, 1962; Kjartasson, 1979; Aki and Richards, 1980), 

       is considered to be a minimum-delay pulse.        is given by  

                  ,  (2.4) 

and the phase spectrum        can be obtained by the Hilbert transform over frequency of the 

natural logarithm of       . 

We can infer from the above attenuation function that the attenuation of seismic wave is 

nonstationary, meaning that it depends on both time and frequency.  To address this problem, the 

stationary convolution model was generalized to include attenuation explicitly by Clarke (1968) 
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and Margrave (1998). Assuming a unit impulsive source wave, the 1D nonstationary seismogram 

corresponding to reflectivity      can be formulated as 

         
 

  
            .  (2.5) 

Equation (2.5) is the linear superposition of the impulse response of attenuation process 

scaled by corresponding reflectivity coefficients, which forms a nonstationary convolution by 

allowing the temporal evolution of signal.  Then, for a source wavelet     , the resulting 

seismogram is 

                   
 

  
          .  (2.6) 

Inserting equation (2.5) into equation (2.6) and transforming to the Fourier domain, 

equation (2.6) becomes (Margrave, 1998) 

             
 

  
                         ,  (2.7) 

where      is the Fourier spectrum of source wavelet. 

Then, the numerical implementation of equation (2.6) can be formulated as 

      ,  (2.8) 

where   is a column vector that contains the 1D attenuated seismic trace,   is a non-Toeplitz 

matrix representing         . 

             It should be pointed out that the   value in equation (2.4) is the average   value for the 

specific two-way traveltime   and it is allowed to vary with traveltime. For a layered media, each 

layer may have different   value, so the average   value should be derived from interval   

values. Suppose there are M layers for a given travel-time t with corresponding interval   values 

   and interval traveltime     (          . The average   can be obtained from 
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   .  (2.9) 

In addition, the   attenuation described above is the intrinsic attenuation of the earth. The 

stratigraphic filtering effect of layered media can also case apparent attenuation of seismic wave 

(O’Doherty and Anstey, 1971). The stratigraphic filter is low-frequency preferable and minimum 

phase (Banik et al., 1985).  In this sense, the apparent attenuation is similar to the intrinsic 

attenuation. Therefore, the two attenuation process can be combined to form an effective 

attenuation operator or function which, in most cases, can be used in the nonstationary 

convolution model to account for both intrinsic absorption and stratigraphic filtering of layered 

media (Mateeva et al., 2002).  

The stationary convolution model is theoretically the non-absorptive limit (     of 

the nonstationary convolution model. When    ,        in equation (2.3)  becomes a Dirac’s 

delta function     , then      in equation (2.5) reduces to     , which makes equation (2.6) 

equivalent to equation (2.1). For the numerical implementation of nonstationary convolution 

model, non-Toeplitz matrix   in equation (2.8) becomes an identity matrix in the non-absorptive 

limit and the result is the same as equation (2.2).   

A practical issue for the numerical implementation of the nonstationary convolution 

model given by equation (2.6) is the calculation of the impulse response         . The 

exponential decay of the amplitude spectrum of the impulse response demonstrates the 

attenuation of the absorptive media. According to equation (2.4), the amplitude spectrum does 

not vanish with increasing frequency. The minimum-phase delay of the impulse response 

represents the dispersion of absorptive media to seismic waves, which is a necessary 

consequence of the requirement of causality (Futterman, 1962). The phase spectrum of the 
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impulse response can be obtained from the Hilbert transform of the logarithmic amplitude 

spectrum, which is an integral over the entire frequency range. Theoretically, the calculated 

impulse response should be a causal signal. However, in practice, computation can only be 

conducted over a limited frequency range. Therefore, both the amplitude spectrum and phase 

spectrum are not incorporated perfectly in the inverse Fourier transform to give the response 

impulse. Such an imperfect computation leads to that the calculated impulse response is not 

causal.  This non-causal signal has a tail of nontrivial values, since the discrete Fourier transform 

gives a periodic result and the non-causal part of the result locates at the end of each time cycle. 

Conventional truncation of the tail can cause the amplitude spectrum of truncated pulse not to 

match the exponential decay described by equation (2.4), which, in turn, makes the nonstationary 

model lose accuracy. We propose two approaches to address this problem. One is that, instead of 

direct truncation, the tail of the calculated pulse is circle-shifted to the beginning, and then 

truncation can be made if needed. By introducing a small time delay to the impulse response, the 

amplitude spectrum of exponential decay is preserved.  Another approach is that the original 

amplitude spectrum of the impulse response is modified to a bandlimited version by applying a 

taper to the high frequency part while the part within frequency band of interest remains 

unchanged. Then, the alternative minimum-phase impulse response corresponding to the 

modified amplitude spectrum is calculated.  

2.2.2 Numerical example 

The conventional convolution is illustrated by Figure 2.1. The seismic trace is created 

from a minimum-phase source wavelet with a dominant frequency of      and random 

reflectivity. There is no noticeable attenuation for the resulting trace, since it is a superposition of 

the time-delayed source wavelet scaled by the reflectivity. Using the same source wavelet and 
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random reflectivity, an attenuated seismic trace is created with a constant   value of 50, as 

shown in Figure 2.2. Like the stationary convolution, the seismic trace is obtained from a matrix-

vector product. The matrix is obtained from convolving the minimum-phase source wavelet with 

a time-delayed minimum-phase pulse corresponding to the attenuation process, which does not 

possess Toeplitz symmetry. Compared to the seismic trace shown in Figure 2.1, the resulting 

seismic trace has obvious amplitude decay with traveltime. 

The key of the nonstationary convolution model described by equation (2.8) is the 

calculation of the impulse response (or pulse)          corresponding to the attenuation 

process. Figure 2.3 shows the pulse corresponding to the attenuation process with a traveltime of 

0.2s and constant   of 100, which is calculated from its Fourier spectrum. Due to the 

imperfection calculation in practice, the result is a non-causal signal and the non-causal part will 

appear as a tail of the signal. We can see that calculated pulse has a large spike at the beginning 

and a relatively smaller tail that can not be ignored. To form the matrix    in equation (2.8), 

truncation is necessary during the calculation. However, direct truncation of the pulse can lead to 

the distortion to the original amplitude spectrum that decays exponentially with frequency.  As 

demonstrated in Figure 2.4, the amplitude spectrum of the direct truncated pulse deviates from 

the theoretical exponential decay with respect to frequency. Then, adoption of direct truncation 

of the pulse          may cause the nonstationary convolution model to lose accuracy to some 

degree. To address this problem, as mentioned previously, a circle-shifted version and a 

bandlimited version of the original pulse are proposed for adoption.  Figure 2.5 shows three 

synthetic seismic traces corresponding to three different versions of pulses chosen to form 

matrix   , using the same source wavelet, constant   of 100 and two isolated reflectors. A 

zoomed comparison of the first event in Figure 2.5 is demonstrated in Figure 2.6. We can see 
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that the circle-shift of original pulse introduces a small time delay to the resulting seismic trace, 

and the waveform generated from bandlimited pulse is slightly different from that created from 

directly truncated pulse. The amplitude spectra of the first events of the three seismic traces are 

shown in Figure 2.7. The event created from the bandlimited pulse has the same amplitude 

spectrum as that from circle-shifted pulse at low frequency part, and its amplitude spectrum 

decays to zero more quickly at the high frequency part since a taper is applied to band-limit the 

original pulse. The distortion to amplitude spectrum caused by direct truncation also can be 

observed in Figure 2.7. In addition, when the direct truncated pulse is employed, the resulting 

events have slightly smaller amplitude both in time domain and frequency domain, which is due 

to the loss of signal energy (the tail shown in Figure 2.3) caused by truncation.   estimation by 

spectral-ratio method (this method will be described in chapter 3) is conducted using the events 

of the three seismic traces in Figure 2.5, and the results are shown in Figure 2.8, 2.9 and 2.10.  

The estimated   for the seismic trace created from direct truncated pulse is 110.81, which 

deviates from true value 100. For the cases of circle-shifted pulse and bandlimited pulse, the 

estimation results are 100.04 and 99.96 respectively. The two proposed approaches improve the 

accuracy of the nonstationary convolution model. 
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Figure 2.1. Illustration of the stationary convolution model described by equation (2.2). The 

matrix is a Toeplitz matrix formed from a minimum-phase source wavelet. The resulting seismic 

trace is a superposition of time-delayed source wavelet scaled by reflectivity. 

 

Figure 2.2. Illustration of the nonstationary convolution model described by equation (2.8). The 

matrix is a matrix formed from convolving a minimum-phase source wavelet with a time-

delayed minimum-phase pulse        ) corresponding to the attenuation process.  
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Figure 2.3. The impulse response (pulse) corresponding to the attenuation process with a 

traveltime of      and a constant   of 100. 

 

Figure 2.4. The amplitude of spectrum of a direct truncated pulse shown in Figure 2.3. 
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Figure 2.5. Three synthetic seismic traces corresponding to truncated, circle-shifted and 

bandlimited pulse        ) respectively, using the same source wavelet, two isolated reflector 

and a constant   of 100. 

 

Figure 2.6.  Comparison of the first event shown in Figure 2.5 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.01

-0.005

0

0.005

0.01

time: s

a
m

p
lit

u
d
e

 

 

bandlimited pulse

circle-shifted pulse

truncated pulse

0.28 0.3 0.32 0.34 0.36 0.38

-0.01

-0.005

0

0.005

0.01

time: s

a
m

p
lit

u
d
e

 

 

bandlimited pulse

circle-shifted pulse

truncated pulse

Time (s) 

A
m

p
lit

u
d

e
 

A
m

p
lit

u
d

e
 

Time (s) 



 

25 

 

Figure 2.7 Amplitude spectra of the first events of the three seismic trace shown in Figure 2.5. 

 

Figure 2.8.   estimation using the seismic trace shown in Figure 2.5, which is created from the 

nonstationary convolution model with directly truncated pulse        ). 
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Figure 2.9.   estimation using the seismic trace shown in Figure 2.5, which is created from the 

nonstationary convolution model with circle-shifted pulse        ). 

 

Figure 2.10.   estimation using the seismic trace shown in Figure 2.5, which is created from the 

nonstationary convolution model with bandlimited pulse        ). 
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2.3 Reflectivity method for seismic modeling of stratified anelastic media 

2.3.1 Theory of reflectivity method 

The reflectivity method was originally developed by Fuchs and Müller (1971).  Their 

work was followed by Kennett (1975, 1979, 1980), Kind (1976), Stephen (1977), Kennett and 

Kerry (1979), Kennett and Clark (1983).  The reflectivity method is a wavenumber or slowness 

integration method, which computes the response of a model in the frequency-wavenumber 

domain and automatically includes contributions from all possible rays within the reflecting 

zone. In reflectivity modeling, the wavenumber or slowness integration is calculated by a matrix 

or propagator technique, which mainly deals with the computation of the reflection and 

transmission coefficients for plane waves, incident on a plane surface or a stack of homogenous 

layers. The coefficients for an interface are given analytically according to the Zoeppritz 

equations, and those for a stack of layers are derived by a recursive algorithm proposed by 

Kennett (1975).  For a stratified earth model, the reflectivity method decomposes the propagating 

waves into downgoing waves and upgoing waves, and waves can be decoupled into P, SV and 

SH waves. The reflection, transmission and conversion of all wave modes can be fully described. 

In addition, the attenuation effect of anelastic media can be incorporated conveniently in the 

frequency domain using frequency-dependent complex velocity (Kennett, 1975; Cheng and 

Margrave, 2011a).   

The implementation of the reflectivity method in this chapter is an update of the work of 

Ma et al (2004), which follows the algorithm described by Müller (1985). A brief introduction to 

the theory of reflectivity method is given below, and the modeling result is derived for P-SV 

waves. More details of the algorithm can be found in the tutorial given by Müller (1985). 
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Figure 2.11. Layered media.    - p wave velocity;    - S wave velocity;    - density;    - 

thickness of the i-th layer;     - depth to the surface;    - depth of point source.     - total 

reflection coefficient  matrix corresponds to the upper half space above source location;    - 

total reflection coefficient matrix corresponds to the lower half space below the source position; 

   - total transmission coefficient matrix corresponds to the upper half space. 

Figure 2.11 shows a layered earth model with a single-force point source at depth    in 

layer  . For the  -th layer (            ,    is the P wave velocity,    is the shear wave 

velocity,     is the density,    is the thickness of the layer, and    is the depth of the interface with 

respect to surface. For such a layered media, according to Snell’s law, all waves travel 

horizontally with the same horizontal wavenumber   . Suppose the traveling plane wave has an 

incident angle    at the interface of layer  , then we have 

    
 

  
     ,  (2.10) 

where   is the angular frequency,    is the angle between the wavefront normal and the 

interface normal in layer   . The horizontal slowness of traveling waves can be formulated as 
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,  (2.11) 

and the vertical slowness    for P waves and    for SV waves  respectively can be formulated as 

            ,       
     .  (2.12) 

Assume that the single force   for the point source in Figure 2.11 has frequency 

dependent components            in Cartesian coordinate system. The displacement potentials 

of the single force can be given by slowness-integration with cylindrical coordinates          as 

(Müller, 1985) 

                             
           

 

 

   

                                                         
  

   
        

           
 

 
  ,  (2.13) 

and 

          
 

    
        

           
 

 

                     

                                                     
          

 
        

           
 

 
  ,  (2.14) 

where    and    are given by 

        ,                  .  (2.15)  

In equation (2.13) and (2.14),         is the Bessel function of integer order      ;   

  ,    are the displacement potentials for P waves and SV waves respectively. The traveling P-

SV waves can be divided into downgoing and upgoing waves. For downgoing waves (    ), 

the displacement potential   
  for P waves and potential   

  for SV waves can be obtained as 

(Müller, 1985) 
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where related scaling terms are given by  

        ,     
  

   
  ,     

  

  
  ,         ,    (2.18)  

and 

                ,                .  (2.19) 

For upgoing waves (    ), similar expressions hold for the displacement potentials as 
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where the related scaling terms are given by 

         
  ,      

  

   
  

  ,     
  

  
  

  ,          
  .  (2.22)  

The terms in equations (2.18), (2.22) can be regarded as source amplitudes for the 

downgoing and upgoing wavefields associated with point source, which can be reorganized as 

vectors 

    
      

   
 ,     

      
   
 ,      .  (2.23) 

To obtain the wavefield at receiver level (   ), the complete upgoing wavefield in 

layer   that contains the point source should be determined first, which is the sum of direct 

upgoing waves and all possible reflections and multiples at the layer stacks above and below the 

level     . Suppose that    and    represent the P-SV reflectivity matrices for the part 
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     and the part      respectively.    and    are formed from the reflection coefficients 

for the interaction between P waves and SV waves and can be specified as 
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  .  (2.24) 

Then, the amplitude vectors for the complete upgoing wavefield in layer  , similar to     
  and  

    
 , can be given as (Müller, 1985) 

                          
      

   

                                             
      

  , (     ), (2.25) 

where   is an identity matrix. Assume that    is the transmissivity matrix between the layer 

    
  and layer     

    . The amplitude vectors for the wavefields at      can be 

obtained as 

   
   

  
 

  
        , (     ).  (2.26) 

So, the displacement potentials for P-SV waves at      are 

      
        

             
          

     
 

 
  ,  (2.27) 

and 

      
   

 

   
     

             
          

     
 

 
  .  (2.28) 

Finally, the displacement components can be calculated from the potentials, and the far-field 

results at level      are 

      
  
  
           

   
 

 
   

   ,  (2.29) 

where   ,    are radial and vertical components of displacements respectively. The matrices   ,   

in equation (2.29) are given by 
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 ,      

        

         
 ,  (2.30) 

and 

    
   
    

 .  (2.31) 

The displacements given by equation (2.29) are valid for the case that the velocities   , 

   and density    of the upper half-space are of nonzero values. For the calculation of a realistic 

seismogram, the free-surface condition at     can be approximated by choosing   ,    as the 

values of air, and      . More accurate free-surface condition can be obtained by the limiting 

process     ,     ,      (Müller, 1985).  The parameters   ,   ,    are contained in the 

matrix multiplication     in equation (2.29). By taking the limit,     becomes 

        ,  (2.32) 

where    is the transmissivity matrix between the layer      
  and layer     

     for 

upgoing waves, and   is given by 

   
 

      
         

       
  

   
            

      

      
          

      
 .  (2.33) 

Then, equation (2.29) combined with equation (2.32) gives the exact free-surface 

response of a layered media for a single force point source. 

The reflectivity matrices   ,    and transmissivity matrices   ,    mentioned above for 

the layer stack can be calculated from the reflection coefficients and transmission coefficients of 

layer interfaces, using a recursive scheme (Kennett, 1974; Müller, 1985). The tutorial by Müller 

(1985) gives a detailed description about the recursive algorithm. 

The result in equation (2.29) is due to single force                with frequency 

dependent components.  The extension to the case with source wavelets in time domain is 
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straightforward. Let     be the Fourier transform of the corresponding time-domain component, 

then the seismogram with time-domain displacements can be obtained from the inverse Fourier 

transform of the results given by equation (2.29). 

The reflectivity method has the capacity to compute a complete wavefield for a given 

layered model, including all possible wave types and associated interactions. Such a capacity is 

the main advantage of reflectivity method. In addition, computing a partial media response is 

very convenient for the reflectivity method, which may be of great practical importance. For 

instance, the primary only reflection seismogram can be obtained by setting        
 . By 

choosing the components of   , various partial results can be obtained. It is worthwhile to 

include some of the partial results as options in the computer program. Such a flexibility of 

reflectivity method is a main advantage compared to wave equation methods that usually gives 

the complete response of the media only. 

2.3.2 Practical issues for the implementation of reflectivity method 

2.3.2.1 Incorporation of   attenuation 

For realistic media, the absorption of seismic waves should be taken into account. Since 

the seismogram calculation is conducted in frequency-slowness domain, the most convenient 

way to incorporate attenuation is to make the seismic velocities complex and frequency 

dependent. The adoption of complex velocities can incorporate realistic attenuation into seismic 

modeling (Mallick and Frazer, 1987). The frequency dependency of velocity reflects the 

dispersion of seismic waves, which is connected with absorption and is a requirement for 

causality (Futterman, 1962, Müller, 1985; Mallick and Frazer, 1987). Depending on the 

dependency of   on frequency, i.e. different   laws, there are various ways to construct the 

complex and frequency (Müller, 1985; Mallick and Frazer, 1987). For the reflectivity method for 
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stratified anelastic media described in this chapter, we assume that   is independent of 

frequency, and the complex velocity adopted in our implementation can be approximated as 

when     (Müller, 1985) 

          
 

  
  

 

  
 

 

  
 ,  (2.34) 

where    is a reference frequency,   is the real part of complex velocity      . 

2.3.2.2 Windowing of integral signal 

The synthetic seismogram is obtained by integration over slowness and inverse Fourier 

transform, as shown in equation (2.29). Practical computation is bandlimited because the 

integration is conducted within some finite frequency-band and limited slowness-range. Such a 

truncation of the integral is equivalent to convolving the desired function with a certain kernel, 

which can distort the desired impulse response. To improve the results, it is necessary to use 

some window to taper the signal at its limits .  

In the frequency domain, we use a two-sided Hanning window to taper the signal, which 

is given as 

        

                                                          
 

 
       

      

     
                            

                                                               

 , (2.35) 

For the slowness integration in equation (2.29), vertically traveling waves have zero 

horizontal slowness and should be included in the resulting synthetic seismograms. Then, a one-

sided Hanning window is used to taper the signal, which is given as 
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 . (2.36) 

2.3.2.3 Treatment of aliasing 

The reflectivity method computes the reflectivity function in the frequency-wavenumber 

domain and then transforms it back to time-distance domain.  Like any other frequency-domain 

techniques for seismic modeling, the reflectivity method needs to address the aliasing problem 

appropriately. In order to avoid aliasing, the calculation of the reflectivity function should be 

adequately sampled in both wavenumber domain and frequency domain. 

The integral in equation (2.29) is oscillatory in that the argument of the Bessel function is 

the product of frequency, slowness and travel distance. A large number of steps are necessary to 

compute the integral accurately when    is large. To avoid spatial aliasing, the step size for 

slowness should be inversely proportional to   . Mallick and Frazer (1987) use a step size of 

              ,  (2.37) 

where      is the largest offset of interest. To reduce the computation cost, Frazer (1978) and 

Frazer and Gettrust (1984) propose a generalized Filon method to compute the integral, which 

reduces the step size to be proportional to         . We will choose     based on equation 

(2.37). 

To avoid temporal aliasing, the step size    of frequency   should be small.  Small    

means a greater computation cost. As an alternative to small   , a complex frequency technique 

is proposed to conduct the integration over frequency (Phinney, 1965; Bouchon and Aki, 1977; 

Spudich and Ascher, 1983). A complex frequency      instead of   is adopted, which means 
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that, instead of desired result     , a dampened version          is calculated, and the desired 

result is recovered from the dampened version by applying a gain correction.  

2.3.3 Numerical test 

A two layer earth model is used to evaluate the reflectivity method, and the physical 

parameters of the layered media are shown in table 2.1.  The point source at depth        

radiates both P and S waves, and has a minimum-phase wavelet with a dominant frequency of 

    . The receivers are located at the surface. The reflectivity modeling results for P-SV waves 

are shown in Figure 2.12 and 2.13.  We can see that all the events are modeled including direct P 

and S waves, reflected PP, PS/SP, SS waves and multiples. For the reflectivity method, we can 

choose to model the primary reflection events only, and the results are shown in Figure 2.14 and 

2.15.  Since a two layer model is used and the source location is close to surface, the PS and SP 

waves have nearly the same traveltime. In Figure 2.14 and 2.15, each trace has three events 

corresponding to PP, PS/SP, SS waves respectively.  We can see that reflectivity method can 

model all kinds of waves with flexibility. 

Table 2.1 A two layer earth model 

Layer 
index 

P wave 
velocity 
(m/sec) 

S wave 
velocity 
(m/sec) 

Density 

(kg/m3) 

Thickness 

(km) 

QP QS 

1 2500 1600 1800 1 10000 10000 

2 3200 1800 2100 2 10000 10000 
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Figure 2.12. Vertical components of P-SV waves for the two-layer model shown in table 2.1. 

 

Figure 2.13. Radial components of P- SV waves for the two-layer model shown in table 2.1. 
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Figure 2.14. Vertical components of primary reflection events for the earth model shown in table 

2.1. 

 

Figure 2.15. Radial components of primary reflection events for the earth model shown in table 

2.1. 
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To evaluate the amplitudes of the events for the reflectivity method, we use the vertical 

components of the primary reflection events shown in Figure 2.14 as an example to derive the 

reflection coefficients for PP and SS waves.  First, a one-layer model is used to estimate the 

amplitudes for incident waves that experience the same geometrical spreading effect as the 

reflected waves.  This one layer model has the same physical parameters as the first layer of the 

earth model shown in table 2.1, while the point source is shifted to the image point          

with respect to the interface in the two layer model and the receivers are remained at the same 

positions.  The vertical components of the direct arrival waves for this one layer model are 

shown in Figure 2.16.  Figure 2.17 shows the amplitudes of the direct P waves in Figure 2.16 and 

the amplitudes of the reflected PP waves in Figure 2.14, from which the reflection coefficients 

for the PP waves can be derived.  From Figure 2.18, we can see that the derived PP reflection 

coefficients match the Zoeppritz ones perfectly before the critical incident angle is reached at an 

offset around      .  Similarly, the reflection coefficients for SS waves are derived and shown 

in Figure 2.19, which match theoretical results as well.  We do not expect a match near or 

beyond the critical angle because the reflectivity method calculates spherical reflection 

coefficients through an integration over plane waves while the Zoeppritz equations are for a 

single plane wave. 

In order to evaluate the incorporation of   attenuation for the modeling method, we use a 

two-layer model shown in table 2.2 to test the reflectivity method, which has the same physical 

parameters, source locations, source wavelet and receiver stations as the two-layer model shown 

in table 2.1 except the   values for P wave and S wave.  The vertical components of the primary 

reflection events are shown in Figure 2.20, which corresponds to the case without   attenuation 

shown in Figure 2.14. Using the trace with an offset of       as an example, a comparison 
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between modeling with   attenuation and without   attenuation is demonstrated by Figure 2.21. 

The amplitude decays due to   attenuation is obvious. Figure 2.22 shows the amplitude spectra 

of the PP events in Figure 2.21.  Then, the spectral-ratio method is used to estimate   , as shown 

in Figure 2.23.  The estimated         is consistent with the   model.  Similarly, using the SS 

events shown in Figure 2.21,    is estimated to be 61.6, as shown in Figure 2.24, which is close 

to theoretical value as well.  We can see that the reflectivity method can incorporate the   

attenuation with sufficient accuracy.  

 

Figure 2.16.  Vertical components of the direct arrivals of a homogenous media with the physical 

parameters of the layer 1 shown in table 1 and a point source at depth            
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Figure 2.17. Amplitudes of the direct P waves in Figure 2.16 and reflected PP waves in Figure 

2.16. 

  

Figure 2.18. Comparison of PP reflection coefficients. 
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Figure 2.19. Comparison of SS reflection coefficients. 

 

Table 2.2 A two layer earth model 

Layer 
index 

P wave 
velocity 
(m/sec) 

S wave 
velocity 
(m/sec) 

Density  

(kg/m3) 

Thickness 

 (km) 

QP QS 

1 2500 1600 1800 1 80 60 

2 3200 1800 2100 2 80 60 
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Figure 2.20. Vertical components of primary reflection events for the earth model shown in table 

2.2. 

 

Figure 2.21. Comparison of the traces with an offset of       shown in Figure 2.14 and Figure 

2.20 respectively. 
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Figure 2.22. Amplitude spectra of the PP events shown in Figure 2.21. 

 

Figure 2.23 .    estimation using spectral-ratio method for the PP events shown in Figure 2.21. 
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Figure 2.24.    estimation using spectral-ratio method for the SS events shown in Figure 2.21. 

2.4 Finite-difference simulation of wave propagation in viscoelastic media 

2.4.1 Basic theory 

For simplicity, we confine our discussion to 1D case. According to Hooke’s law, stress is 

directly proportional to the instantaneous strain in a perfectly elastic media. For realistic media 

such as earth, the stress depends on both the instantaneous strain and the history of strain. 

Christensen (1982) gives a theoretical description of the viscoelastic behavior of material. For 

the 1D special case of pure shear wave in an isotropic homogenous material, the relation between 

stress   and strain   can be formulated as 

                 
 

  
     ,  (2.38) 

where   denotes time convolution and an overhead dot indicates partial differentiation with 

respect to time.   is the relaxation function that determines the behaviour of material, which can 

be given as (Liu et al., 1976; Carcione et al., 1988c; Blanch et al., 1993) 
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        ,  (2.39) 

where         is the relaxed modulus of the media (Pipkin, 1986) and      is the Heaviside 

function,     and     are the strain and stress relaxation times of the  -th relaxation mechanism. 

In equation (2.39), the relaxation function is described by   parallel connected standard linear 

solids (Blanch et al., 1993), which is also the best Padé approximation of a constant   (Day and 

Minster, 1984). 

The Fourier transform of the time derivative of the relaxation function is identified as the 

complex bulk modulus of the media, which can be given as (Carcione et al., 1987) 

               
      

      

 
    .  (2.40) 

The quality factor is then defined as 

      
         

         
.  (2.41) 

In seismic application,   is usually assumed to be constant or slowly frequency varying 

within frequency range of interest. This assumption is supported by experimental results 

(Spencer, 1981; Murchy, 1982). To approximate a constant   over a targeted frequency range 

based on equation (2.39) and (2.40), 1/     should be distributed logarithmically over the 

interested frequency band (Emmerich and Korn, 1987), and the magnitude of   is determined by 

the difference         between strain relaxation time and stress relaxation time (Liu et al., 

1976; Blanch et al., 1993). An approximation to constant   can be obtained through this 

approach with sufficient accuracy. 

 Now, following Robertsson et al. (1994), we will derive the equations for viscoelastic 

media from the stress relaxation function.  From the definition of stress and strain, we have 
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     ,  (2.42) 

and 

    
  

  
,  (2.43) 

where   is pressure and   is particle velocity. From equation (2.38), (2.42) and (2.43), we have 

          ,  (2.44) 

where the overhead dot denotes partial differentiation with respect to time. Substitution of 

equation (2.39) into equation (2.44) yields 

              
   

   
  

    
  

  
    

 
   ,  (2.45) 

where the variables    are so-called memory variables (Carcione et al., 1988c), which are given 

by 

       
 

   
   

   

   
  

 
 

         
  

  
          .  (2.46) 

Taking the time derivative of equation (2.46) leads to 

      
 

   
     

 

   
   

   

   
 
  

  
          .  (2.47) 

From Newton’s second law, we get the equation of motion for 1D case as 

      
  

  
,  (2.48) 

where   is the density. 

 Wave propagation in the 1D viscoelastic media with   sets of linear solids is entirely 

governed by equation (2.45), (2.47) and (2.48). 

2.4.2 Finite difference scheme for implementation 

There are various finite-difference schemes to solve the equations (2.45), (2.47) and 

(2.48). Finite-difference schemes are intrinsically dispersive (Dablain, 1986).  In order not to 
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confuse this numerical dispersion with the physical dispersion of absorptive media, it is 

important to adopt highly accurate schemes to simulate viscoelastic wave propagation while 

keeping the computation cost at moderate level. We will introduce the        scheme proposed 

by Robertsson et al. (1994), which is second-order accurate in time and fourth-order accurate in 

space.  Their        scheme is implemented by a staggered grid scheme, which can be defined 

for one relaxation mechanism as 

 

 
 
 
 
 
 

 
 
 
 
 

       

 
 

  
 
   

 

  
 
 

  
    

   

   

  
  
 
 

 
    

  
 
 

 
    

  
 
 

 
  

  
 
 

 

    
            

       
 

 
   

     
   

     
 

 
 

  
 
   

 

  
 
 

  
    

 

   
 
   

   
   

  
  
 
 

 
    

  
 
 

 
    

  
 
 

 
  

  
 
 

 

    

 
 

    
  

 

  
 

   
 

  
 

  

                                    

 
  
     

   
     

  
  

       
 

         
 

         
 

       
 

    
      

 ,  (2.46) 

where    and    are time step and space step respectively, the indices   and j correspond to time 

and space coordinates respectively. The 1D scheme described above can be extended to 2D or 

3D cases easily. The details about the higher dimension scheme can be found in Robertsson et al. 

(1994). 

2.4.3 Numerical examples 

The synthetic VSP and reflection data in this section are generated from the Tiger 

software developed by the SINTEF research group.  To incorporate the   attenuation into the 

seismic modeling, we use a viscoacoustic media to which The Tiger software gives time-domain 

finite-difference solution in 3D. The source wavelet used for seismic modeling is a Ricker 

wavelet with the peak at      and a maximum frequency of     .   
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 Figure 2.25 shows a simple two-layer velocity model and the zero-offset VSP data with a 

constant   of 50.  It is clear that the downgoing wavelets decay with traveltime or depth.  To 

make a comparison between the two cases with constant-   attenuation and without   

attenuation, we obtain the VSP data for the corresponding acoustic case.  Figure 2.26 shows the 

VSP records at depths of      and      for these two cases. We can see that the downgoing 

wavelet experiences geometrical spreading, transmission loss and   attenuation, and the former 

two factors are the main sources of energy loss. To conduct   estimation, some tapering window 

should be employed to retrieve the downgoing wave from the VSP records.  For the traces shown 

in Figure 2.26, a box-car window is sufficient.  Figure 2.27 shows the logarithmic spectral ratios 

calculated using the wavelets shown in Figure 2.26. The estimated   values for the viscoacoustic 

and acoustic cases are 51.6 and 874.8 respectively, which are consistent with the theoretical   

values. The results show that the finite-difference scheme incorporates the attenuation of 

absorptive media with sufficient accuracy.  

Using the velocity model in Figure 2.25 and a layered   model of       and   =100, 

another VSP data are obtained.  The two VSP traces at depth      and      are shown in 

Figure 2.28. Using these two traces to conduct   estimation by spectral ratio method, the 

corresponding logarithmic spectral ratios are shown in Figure 2.29. Choosing a frequency-band 

of        , the estimated   value is 62.3.  Based on the relation between average   and 

interval   given in equation (2.9), the theoretical average   value from depth      to depth 

     is 60.  Therefore,   estimation theoretically gives average   estimation and can work 

under layered   subsurface, then interval   can be derived from the average  . 
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Figure 2.30 shows a velocity and   model with three layers. A synthetic shot record is 

generated from this three-layer model, as shown in Figure 2.31. The zero-offset trace after first 

break removal is shown in Figure 2.32. For this case, we can retrieve the two reflection events by 

windowing the seismic trace, and then conduct the   estimation using spectral ratio method. The 

calculated logarithmic spectral ratios between the two reflection events are shown in Figure 2.33. 

The estimated   value is 70.2, which is close to the true   value 80. 

Figure 2.34 shows a velocity model calculated from well log. Using this true velocity 

model with a constant   of 50, Zero-offset VSP data are obtained. The two records at depth 

    ,      are shown in Figure 2.35. Applying the box-car window to retrieve the first breaks 

of downgoing wavelets, and then calculating the amplitude spectra leads to the logarithmic 

spectral ratios shown in Figure 2.36. With a frequency band of        , the estimated   is 

56.1. Using the same velocity and   model, a shot record gather is obtained.  The zero-offset 

shot record is shown in Figure 2.37, for which the amplitude decays with traveltime drastically.  

The   estimation from reflection data will not be discussed here, which will be addressed in 

chapter 3. 

From the above tests, we can see that the VSP and reflection data are consistent with the 

velocity and   models, which demonstrate that the finite-difference scheme gives realistic 

modeling result for absorptive media and incorporates the   attenuation with sufficient accuracy. 
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Figure 2.25. (left) a two layer velocity model; (right) the VSP data recorded from          

using the left velocity model and     . 

 

Figure 2.26.  Comparison of VSP traces with/without constant   attenuation. 
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Figure 2.27. The logarithmic spectral ratios calculated from the VSP traces shown in Figure 2.26. 

The estimated   is 51.6 for the viscoacoustic case with constant     , and 874.8 for the 

acoustic case ( box-car window applied before spectrum calculation). 

 

Figure 2.28. Two VSP traces recorded at depth of      and     for a two-layer model with 
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Figure 2.29. The logarithmic spectral ratios calculated from the VSP Traces shown in Figure 

2.28 (box-car window applied before spectrum calculation). 

 

Figure 2.30. A three-layer velocity and   model with                           
         and                     . 
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Figure 2.31. A synthetic shot record generated from the velocity and   model shown in Figure 

2.30. 

 

Figure 2.32. The zero offset seismic trace in Figure 2.31 (first break removed). 
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Figure 2.33. The logarithmic spectral ratio for the two reflection events in Figure 2.32 (box-car 

window used to retrieve separate events before spectrum calculation). Estimated   is 70.2 

compared to true   value of 80 for the 2nd layer shown in Figure 2.30. 

 

Figure 2.34. Velocity model calculated from a well log 0/14-09-023-23W4 in Alberta. 
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Figure 2.35. Two VSP records at depth      and      using the velocity model in Figure 2.34 

and a constant     . 

 

Figure 2.36. The logarithmic spectral ratio calculated from the two traces shown in Figure 2.35 

(box-car window applied to retrieve first breaks before spectrum calculation). Estimated   is 

56.1 and true   value is 50. 
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Figure 2.37. A zero offset shot record using the velocity model shown in Figure 2.34 and a 

constant   of 50 (first break removed). 

2.5 Summary 
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technique for viscoelastic modeling are described in this chapter. All of them can incorporate the 
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The nonstationary convolution model is useful to create 1D attenuated seismic trace. We 

propose two approaches to incorporate the impulse response representing attenuation accurately.  

A bandlimited version or a circle-shifted version of the original impulse response can be adopted 

to preserve its amplitude spectrum, which makes the nonstationary convolution model accurate. 

The reflectivity method is very useful for the seismic modeling of stratified media. We 
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sufficient information for layered earth model. Another advantage is that the reflectivity method 

can give total and partial results of the layered model with flexibility. 

The finite-difference technique is a powerful tool for viscoelastic seismic modeling, 

which can deal with structured subsurface. Testing results shows that the Tiger software gives 

very realistic results. 
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Chapter Three: Measurement of seismic attenuation:   estimation 

3.1 Introduction 

There are various methods for   estimation, and each method has its strengths and 

limitations.  An extensive comparison between various methods for   estimation was made by 

Tonn (1991) using VSP data, and a conclusion was made that the spectral-ratio method is 

optimal in the noise-free case.  However, the estimation given by spectral-ratio method may 

deteriorate drastically with increasing noise (Patton, 1988; Tonn, 1991).  The question of reliable 

  estimation remains.  In addition, it is more practical to estimate   from the surface reflection 

data.  The development of a   estimation method that is suitable for application to reflection data 

is still under investigation. 

The classic spectral ratio method is probably the most wildly used method. As an 

extension to it, Cheng and Margrave (2008) propose a complex spectral-ratio method that 

employs both the amplitude spectra and the phase spectra of signals. For the classic spectral ratio 

method, it can be troublesome to automatically choose an appropriate frequency band to conduct 

the   estimation when calculated spectral ratios are not well linearly distributed. To address this 

problem, Cheng and Margrave (2011b) propose an interpretive spectral-ratio method, which 

automatically chooses a narrow frequency band to give the   estimation.  

A time-domain match-filter method for   estimation is proposed by Cheng and Margrave 

(2012) and has been shown to be robust to noise and suitable for application to surface reflection 

data.  Theoretically, the match-filter method is a sophisticated wavelet-modeling method with 

wavelet estimation employed, which is a time-domain counterpart to spectrum-modeling method 

(Janssen et al., 1985; Tonn, 1991; Blias, 2011).  The spectrum-modeling method is a modified 

approach to the spectral-ratio method without taking division of spectra.  In addition, the match-
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filter method and the match-technique method (Raikes and White, 1984; Tonn, 1991) employ the 

idea of matching at different stages of their  -estimation procedures.  Therefore, the above four 

methods all have theoretical connections but are distinctly different. A comparison between these 

methods in terms of their underlying theory, accuracy and reliability of estimation results is 

given by Cheng and Margrave (2013). 

This chapter introduces the theory of various   estimation methods including the classic 

spectral ratio method, complex spectral ratio method, interpretive spectral ratio method, 

spectrum modeling method, match-technique method and match-filter method. The performance 

of above method is evaluated using synthetic and real VSP data, reflection data. 

3.2 Theory of  -estimation methods 

The theory of the constant-   model for seismic attenuation is well established 

(Futterman, 1962; Kjartansson, 1979; Aki and Richards, 1980).  Suppose that a seismic wavelet 

with amplitude spectrum         has a amplitude spectrum         after traveling in the 

attenuating media for an interval time  . Then, this theory predicts that 

                     
    

 
    (3.1) 

where   is the frequency,   is a geometrical spreading factor. More generally,   can represent all 

frequency-independent energy loss in total, including spherical divergence, reflection and 

transmission loss. 

For   estimation, the case of VSP data is similar to the case of reflection data with 

isolated reflectors.  So, we use the reflection data to form the  -estimation problem. Assume that 

a source wavelet      with a spectrum      travels through a layered earth with a 

corresponding reflectivity      in two-way time, and      denotes the geometrical spreading loss 
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of amplitudes. Consider a localized reflected wavelet      .  It has the contribution from a 

corresponding subset of reflectivity      , which is around two-way time   . We have 

                
 

  
         .  (3.2) 

Then the spectrum of the localized signal       near time    can be approximated by 

                     ,  (3.3) 

where       is the Fourier transform of       and we assume that      changes slowly with 

respect to     . If the attenuation of the layered media is taken into account and the attenuation 

mechanism can be described by the constant   model, equation (3.3) can be modified as 

                               
     

  
 ,  (3.4) 

where    is the average-  value corresponding to the attenuation process with traveltime of   . 

Similarly, consider a localized reflected wavelet       near time    with a corresponding local 

reflectivity series      , it amplitude spectrum can be approximated as 

                               
     

  
 , (3.5) 

where       is the Fourier transform of      ,    is the average-  value corresponding to the 

attenuation process with traveltime of   . 

There are various methods for   estimation, in which   is usually derived from the local 

wavelets      ,       or their Fourier spectra.   

3.2.1 Spectral-ratio methods 

3.2.1.1 Classic spectral-ratio method 

From equation (3.4) and (3.5), the spectral ratio becomes 
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,  (3.6)  

where      is the interval   corresponding to the attenuation process between the two local 

wavelets with traveltime of      .      can be derived from    and    as 

               
   

  
 

   

  
 .  (3.7) 

Based on equation (3.6), the   factor can be estimated from fitting a straight line to the 

logarithmic spectral ratio over a finite frequency range.  Assuming the reflectivities are 

essentially white and there are no significant notches in either spectrum, then the term 

    
     

     
   can be regarded as nearly constant and the estimated   has a direct relation with the 

slope   of the best-fit straight line as  

       
         

 
 . (3.8)  

The above is the basic theory of the classic spectral-ratio method (Spencer et al., 1982), 

which is originally derived for application to VSP data.  When       and       represent single 

isolated reflectors,   estimation from reflection data is similar to the case using VSP data.  At 

this occasion, the     
     

     
    term in equation (3.6) can be approximately constant or, more 

generally, frequency independent.  The computed spectra are smooth when SNR is sufficiently 

high.  In this circumstance, reliable   estimation can be obtained. 

For reflection data, the spectrum of local wavelets can be significantly affected by the 

corresponding local reflectors, which makes   estimation from surface data difficult. In this 

case,  
     

     
  varies with frequency, and   is not strictly proportional to the slope of the 

logarithmic spectral ratio given by equation (3.6).  Even when the data is noise free, the 

estimated   can significantly deviate from the true value.  The accuracy of the estimated result 
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depends on both the SNR level and the degree to which  
     

     
  can be taken as frequency 

independent, i.e. the extent to which       resembles      .  A correction method to the tuning 

effect of local reflectors was discussed by several publications (Raikes and White, 1984; White, 

1992; Hackert and Parra, 2004).  If well-log data is available,      can be calculated from the 

impedance, then correction can be made to equation (3.6) (Hackert and Parra, 2004) 

     
           

           
      

     

     
  

         

    
. (3.9) 

Therefore, for reflection data,   can also be estimated using the spectral-ratio method.  However, 

the strong dependence of this method on well control makes it most suitable near a well. 

3.2.1.2 Complex spectral-ratio method 

The classic spectral-ratio method described above is commonly used to estimate   from 

VSP data.  However, this method only uses the amplitude spectra of the downgoing wavelets.  

Cheng and Margrave (2008) investigate a complex spectral-ratio method, in which both 

amplitude spectrum and phase spectrum are employed to obtain improved estimation of  .  

In the constant-  theory, the earth can be model as a linear filter, which can be fully 

characterized by the corresponding impulse response. Kjartansson (1979) gives the impulse 

response of the absorptive media in frequency domain as 

            
    

     
       

    

    
 , (3.10) 

where      is the phase velocity.  The frequent dependency of phase velocity is the dispersion of 

seismic wave, which is an essential part of the constant-  attenuation theory. The dispersion 

relation can be approximated as (Kjartansson, 1979, Aki and Richards, 1980)  
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  ,  (3.11) 

which gives the phase velocity      at any frequency in terms of the phase velocity       at an 

arbitrary reference frequency   .  When all the frequencies of interest satisfy the condition 

   
 

  
   

 

  
   ,  (3.12)      

equation (3.10) can be approximated by the following formulation with sufficient precision 

            
   

      
        

    

     
   

 

  
   

 

  
   .  (3.13) 

If time shift is applied to the attenuated impulse response to remove the linear phase 

delay, equation (3.13) becomes 

             
   

      
       

   

      
   

 

  
  . (3.14)   

Consider two attenuated wavelets with travel-distance    and    respectively. Their 

Fourier spectra can be expressed as 

                            
    

       
       

    

       
   

 

  
 , (3.15) 

and 

                            
    

       
       

    

       
   

 

  
  .  (3.16) 

In equation (3.15) and (3.16),    and    are the average-  values corresponding to 

traveltime          and           respectively. Then, the amplitude decay and phase variation 

between these two wavelets can be expressed in frequency domain as 



 

65 

    
     

     
   

         

         
    

         

         
   

 

  
  , (3.17) 

where      is the interval-  value corresponding to the traveltime of              . Similarly,  

     in equation (3.17) is directly connected to the average-  values    and    in equation 

(3.15) and (3.16) according to equation (3.7). 

For the classic spectral-ratio method (Spencer et al., 1982), only the real part of spectral 

ratio in equation (3.17) is considered, and   can be estimated by fitting a straight line to the 

calculated spectral ratios. Either the least-squares (   norm) solution or the    norm solution can 

be chosen for straight-line fitting. For all types of spectral ratio methods described in this 

chapter, the least-squares solution is adopted. Then, similar to the classic spectral-ratio method, 

  can be estimated as   

       
  

 
,  (3.18) 

where   is the slope of the straight line fitted to the real part of calculated spectral ratios, and    

is the travel time given by  

                . (3.19) 

Now, we will use the complex spectral ratios to conduct   estimation. Suppose that 

  complex spectral ratios are obtained for frequency components   ,   , …,   . Let   ,   ,    

and    be the column vectors with   elements expressed as 

 

 
  
 

  
           

      

      
         

      

       
           

      

      
   

 

          
      

      
         

      

      
           

      

      
   

 

                        
 

             
  

  
           

  

  
             

  

  
  
 

 . (3.20) 

Then, equation (3.17) can be rewritten as 
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                , (3.21) 

where   is the reciprocal of     , i.e 

          . (3.22) 

If only the real part of equation (3.21) is considered, the least-squares solution for   

estimation is  

             
    

    
    .  (3.23) 

Similarly, considering the imaginary part of spectral ratios only, the estimated   value can be 

formulated as 

             
    

    
    .  (3.24) 

The estimation results in equation (3.23) and (3.24) only use either amplitude spectrum or 

phase spectrum information of the attenuated wavelets.  By making full use of the spectral 

information, a complex spectral-ratio method can be developed.  Based on equation (3.21), the   

value can be estimated by solving the following matrix equation 

  
  

  
    

  
  
 . (3.25) 

Then, the estimated   value for the complex spectral ratio method can be formulated as 

                     , (3.26) 

where the   and   are two vectors with 2N elements formulated as 

    
  

  
     

  
  
 . (3.27) 

For   estimation in practice, the frequency independent energy loss should be taken into 

account.  Accordingly, equation (3.21) should be modified as  
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                    , (3.28) 

where    is a column vector with   unit elements, and   is a constant term representing the 

frequency independent energy loss. Therefore,   can be obtained by solving the forward model 

                                                          , (3.29) 

where   is a matrix given as 

    
    
   

 ,  (3.30) 

and   is a vector of  that only contains parameter   and  . Then, the least-squares solution for 

equation (3.29) can be formulated as 

              . (3.31) 

Equation (3.31) shows one way to combine amplitude spectrum and phase spectrum to 

give   estimation. The contributions from amplitude spectrum and phase spectrum might be 

unbalanced. To address this issue, matrix  and vector   in equation (3.29) can be modified as 

     
           

           
 ,  (3.32) 

and 

     
      

          
 ,  (3.33) 

where   is a scaling factor between 0 and 1, and can be given manually,    and    are the least-

squares errors when only amplitude spectrum or phase spectrum is employed for the   

estimation. For instance,    and    can be formulated as 

                ,  (3.34) 

and  
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                .  (3.35) 

So, the least-squares solution to the alternative of equation (3.29) can be formulated as 

                  .  (3.36) 

The result in equation (3.36) is a generalized complex spectral-ratio method. The 

contribution to estimation result from amplitude spectrum information and phase spectrum 

information is normalized, and can be adjusted by changing the scaling factor   as well. It 

reduces to the classic spectral-ratio method when    . Only phase information is used for   

estimation when    .  

The complex spectral-method described here is developed only for VSP data. For the 

complex spectral-ratio method, the reference frequency    and frequency component    should be 

chosen to satisfy equation (3.12).  Theoretically, the estimation result varies with reference 

frequency   . In addition, the two wavelets used to conduct   estimation should be aligned 

properly to minimize the linear phase shift.   

When applied to real data, a practical but important issue for the complex spectral-ratio 

method is that an appropriate reference frequency    should be determined first to model the 

phase difference between the local wavelets, since there is no relevant prior knowledge available.  

For real VSP data with good quality, the   estimation based on phase information only should 

obtain a result that is similar to the result given by classic spectral-ratio method. This criterion 

can be used to roughly choose the reference frequency. An alternative approach can be that    is 

determined by minimizing the mismatch between modeled phase difference and measured phase 

difference.  Another approach can be that minimum-phase equivalent wavelets are computed for 

the two original wavelets to conduct subsequent  -estimation, then    can be chosen with the 
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calibration from other  -estimation methods. These three approaches will be investigated using 

real VSP data. 

3.2.1.3 An interpretive spectral-ratio method 

For the classic spectral-ratio method, the calculated spectral ratios, at some circumstance, 

are not suitable for straight-line fitting over a wide frequency band because of effects such as 

unfavorable SNR, tuning effect. The straight-line fitting might be better conducted over a narrow 

frequency band instead, which can be chosen interpretively case by case. 

Cheng and Margrave (2011b) propose an approach to address this problem. First, the 

calculated spectral ratios are approximated by a polynomial curve as 

     
     

     
             

       
 ,  (3.37) 

where   is the order of the polynomial and can be manually chosen according to SNR level,    

(            ) is the coefficient of the polynomial, which can be estimated from the least-

squares solution of the polynomial fitting in equation (3.37). Then, the local slopes can be 

derived from the first order derivative of the polynomial as 

                     
   .  (3.38) 

The local slopes in equation (3.38) could be of either positive or negative values. 

Theoretically, the slopes should be of negative values. Then, we can specify a range for the 

slopes to limit the range of estimated   values. Finally,   can be estimated from a median or 

mean value of the local slopes within the specified range based on equation (3.8). Compared to 

the classic spectral-ratio method, the basic idea of this approach is to obtain a piecewise straight-

line fitting scheme instead of a single straight-line fitting scheme.  
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3.2.2 Spectrum-modeling method 

The spectrum-modeling method directly compares the amplitude spectra of the local 

wavelets, where          is modified by varying   until an optimum approximation to         is 

obtained.  If the   -norm criterion is used for optimization,   can be estimated as (Blias, 2011) 

                                         
         

    
  

 

,  (3.39) 

where the scaling factor         addresses the frequency-independent energy loss and can be 

formulated as 

         
                    

         
    

   
 
  

             
          

    
 

 
    

.  (3.40) 

The spectrum-modeling method differs from the classic spectral-ratio method in the 

following aspects.  Firstly, the criterion used to minimize the objective function for the classic 

spectral-ratio method is least-squares error, which is not necessary for spectrum-modeling.  The 

objective function for minimization in equation (3.39) can be of other criteria, for instance,    

norm.  Secondly, the classic spectral-ratio method assumes that reflection coefficients and phase 

velocities of propagating waves are frequency independent (Jannsen et al., 1985).  Spectrum 

modeling does not necessarily need this assumption.  

Spectrum-modeling method avoids taking spectral division, which can stabilize the 

estimation in presence of noise.  In addition, if the   -norm criterion is used for minimization of 

misfit, the result can be significantly affected by the matching for the frequency components 

with large amplitudes. 
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3.2.3 Match-technique method 

A match technique for   estimation is proposed by Raikes and White (1984). By 

matching the two local wavelets as 

                   ,  (3.41) 

where   denotes convolution,        is the forward filter predicting       from      . Similarly, 

a backward filter        can be obtained by predicting       from      . Then, the transfer 

functions        and        can be computed from        and        by taking Fourier 

transform. Therefore, the spectral power ratio of the two local wavelets is given by  

 
     

     
 

        

         
,  (3.42) 

where       and       are the power spectra of       and       respectively. Then,   can be 

estimated from the spectral power ratio by the classic spectral-ratio method. 

Actually,        gives an approximate estimation of the attenuation operator combined 

with a constant scaling factor. The amplitude spectrum of the operator can be distorted in 

presence of noise.  The spectral coherence of        and         is used to calculate confidence 

limit on which the spectral ratios are computed (Raikes and White, 1984).  The discrepancy 

between         
  and         

   indicates the SNR level and interference due to local 

reflectors.  The convergence of the two curves and their confidence limits can be used to define 

the frequency range within which the spectral ratios are considered reliable.  To sum up, the 

match-technique method for   estimation is conducted in four stages.  First, power transfer 

functions         
  and         

   are estimated by matching the two local wavelets.  Then, a 

frequency range is defined by examining the behavior of power transfer functions. Following 

that, the power spectral ratios over a specific frequency range are estimated from the geometric 
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mean value of         
  and         

   .  Finally,   is estimated from the logarithmic spectral 

ratios. Generally, the match-technique method described here can be regarded as a spectral-ratio 

method with spectrum estimation using some matching technique.  

3.2.4 A match-filter method 

Cheng and Margrave (2012) proposed a match-filter method for   estimation. The 

procedure of this method consists of three stages.  First the smoothed amplitude spectra of the 

local wavelets are computed.  From equation (3.4) and (3.5), the smoothed amplitude spectra can 

be expressed as 

                                                           
     

  
 , (3.43) 

where the overbar indicates smoothing, and 

                                                            
     

  
 . (3.44) 

Suppose                  ,                   are smoothed amplitude spectra. Then, the minimum-phase wavelets 

with amplitude spectra                   and                    can be formulated as 

                                           
               (3.45) 

and 

                                           
             ,  (3.46) 

where     denotes inverse Fourier transform;   denotes Hilbert transform.  Finally,   can be 

estimated by  

                                     
 ,  (3.47) 

where   denotes convolution, and        is the impulse response of attenuation process with a 

quality factor   and traveltime        , which can be formulated as 
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   , (3.48) 

and   is a constant scaling factor which accounts for frequency independent loss and can be 

estimated as 

   
                          
 
  

       
 
    

.  (3.49) 

In words, equation (3.47) says that the optimal   is the one whose corresponding impulse 

response best converts       into      . The scalar   is the unique least-squares scalar required 

to minimize the difference of two signals (often this is called least-squares subtraction).  

For the match-filter method described by equation (3.47), the optimal   is found by a 

direct search over an assumed range of   values with a particular increment since it is a 

nonlinear minimization.        and       in equation (3.45) and (3.46) can be regarded as the 

embedded wavelets at time    and    respectively.  For absorptive media, the embedded wavelet 

evolves with time.  Then,   can be estimated by fitting the evolution of embedded wavelet to 

constant-  model.  Although we assume the embedded wavelet to be minimum phase, in 

practice, this assumption is a convenience and not a prerequisite for our match-filter method, 

since equation (3.47) can be generally regarded as a way to fit the change of spectra in time 

domain using constant-  model.    

In addition, the match-filter method can be regarded as a sophisticated wavelet-modeling 

method.  For the wavelet-modeling method (Jannsen et al., 1985),       is modified synthetically 

by attenuation operators corresponding to varying   values until an optimal approximation to 

       is obtained.  The wavelet-modeling method requires that the difference of the phase 

spectra of the two local waves can be approximated by the phase spectrum of a minimum-phase 

signal, which may be troublesome in practice. Theoretically, the wavelet-modeling method does 
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not work well for reflection data.  By estimating the embedded wavelets of minimum-phase first, 

the match-filter method ensures that matching of them can be conducted successfully. 

The three types of spectral-ratio methods, spectrum modeling method and match-

technique method are frequency-domain methods.  All of them need to define a frequency range 

where the signal dominates for better estimation.  For the implementation of these frequency-

domain methods in this chapter, the frequency range is given manually as an input parameter.  

Compared to the spectral-ratio methods and match-technique method, the match-filter method 

avoids taking spectral division. Compared to the spectrum-modeling method, the match-filter 

method matches the spectra in time domain.  

3.3 Multitaper method for amplitude-spectrum estimation 

For   estimation, many methods involve calculating the amplitude spectra from local 

short-time wavelets. It is not a trivial problem since the local wavelets are subject to tuning 

effects and noise.  For real data, there are usually spikes or notches in the original amplitude 

spectra caused by interaction with reflectivity, which may cause problem for   estimation. 

Appropriate smoothing of amplitude spectra can improve the estimation result.  Therefore, it is 

necessary to obtain an appropriately smoothed spectrum for each individual wavelet at some 

occasion.  The smoothing of amplitude spectra is an important part of match-filter method, and 

can be easily incorporated into the classic spectral-ratio method, interpretive spectral-ratio 

method, spectrum-modeling method and match-technique method discussed in section 3.2. 

Thomson (1982) proposed a multitaper method used to produce a smooth, high resolution 

spectral estimation, which has been shown to provide low variance estimation with less spectral 

leakage when applied to seismic data (Park et al., 1987; Neep et al., 1996, Cheng and Margrave, 

2009b).  When applying the Fourier transform to a finite-length signal or a finite-length segment 
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of infinite signal, it appears that some energy has leaked out of the original spectrum into 

neighbouring frequencies.  Such an effect is called spectral leakage.  The basic idea of mutitaper 

technique is to weight the data by several spectral leakage resistant tapers, and then to form a 

single spectral estimation through combining the spectra of tapered data. The details can be 

found in the original work by Thomson (1982).  We follow the outline given by Park et at (1987) 

to introduce the multitaper method. 

Suppose that our goal is to estimate the smoothed amplitude spectrum                    from the 

finite time series                     corresponding to the local wavelet       , and the 

taper series is                   .  Then, the discrete Fourier transform (DFT) of the 

taper is 

          
   
         . (3.50) 

Here, we assume the interval time between two successive samples is unit one.  The frequency 

can be defined on the principal domain (-1/2, 1/2]. The spectral leakage property of the taper can 

be deduced from its DFT. Suppose the taper is designed to minimize the bias at a given 

frequency    caused by the spectral leakage from outside the frequency band         .  This 

is equivalent to maximizing the fraction of energy within the    frequency band, which can be 

formulated as 

        
          
 
  

          
   
    

. (3.51) 

Substitute equation (3.50) into equation (3.51). The        can be expressed in a matrix 

form 

        
     

   
, (3.52) 

where   is the taper vector , and matrix   has following components 
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                . (3.53) 

Then, equation (3.53) becomes an eigenvalue problem as 

      , (3.54) 

which has a solution with   eigenvalues                  and the associated 

normalized eigenvectors   ,               . The    are so-called discrete prolate 

spheroidal sequences (Slepian, 1978), and are also referred as prolate eigentapers (Park et al, 

1987). A prolate eigentaper with a time-bandwidth product of      is called a p  prolate 

taper, which concentrates the spectral energy within a bandwidth of   .  Note that the matrix   

is a Hermitian matrix. So, the   eigentapers are orthogonal to each other, and each of them 

provides an orthogonal sample of the original wavelet. In general, the tapers are constructed in 

such a way that different parts of wavelet are recovered by different tapers without interference 

while optimizing the resistance to spectral leakage.  

To obtain the spectral estimation by multitaper method, the spectra of tapered data are 

calculated first as 

   
        

    
   
                          . (3.55) 

It is conventional to employ only several lowest order eigentapers in equation (3.55), because the 

resistant to spectral leakage becomes poor with the increase of the order of eigentaper.  Then, an 

estimation can be made from weighted sum of the spectra   
     as 

        
 

 
 

   
      

  

   
   , (3.56) 

where   is the highest order of the selected eigentapers.  A better estimation can be obtained by 

an adaptive multitaper method formulated as 
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, (3.57) 

where the frequency dependent weight function       is given by 

        
         

                 
. (3.58) 

       is the unknown true amplitude spectrum and       is the spectral leakage at frequency   , 

which can be approximated as 

                    
   
   . (3.59) 

The true amplitude spectrum        in equation (3.58) can be replaced by its estimation.  

Then, the adaptive estimation result                   can be obtained through iterative calculation. 

For the multitaper method, it assumes that the input data is noise free. So, in practice, an 

appropriate band-pass filter should be applied to the input signal to suppress the noise before the 

spectrum smoothing. 

3.4 Effect of deconvolution on   estimation 

For the processing of reflection data, denconvlution is an important step in the processing 

flow. Whether the application of deconvolution to reflection data will affect   estimation is 

worthwhile to investigate.   

Suppose that the deconvolution is a stationary deconvolution such as the Wiener spiking 

deconvolution or predictive deconvolution, and the deconvolution operator is      with a Fourier 

spectrum of     . Then, the amplitude spectra of the two dencovolved wavelets can be 

approximated as 

                                      
     

  
 .  (3.60) 

and 
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 .  (3.61) 

We can see that the relation between above amplitude spectra can still be described by 

formula similar to equation (3.6) and (3.17). Therefore, stationary deconvolution will not 

significantly affect the estimation result for all spectral-ratio methods and spectrum-modeling 

method.  For the match-technique method, it can be regarded as a sophisticated spectral-ratio 

method, and the spectral ratio of the deconvolved wavelets still fits the attenuation model. 

Stationary deconvolution does not affect the estimation result for match-technique method as 

well. 

For the match-filter method, the estimated embedded wavelets can be approximated by 

           and            respectively, and these two embedded wavelets can still be 

connected by the forward   filter.  Then,   can be estimated by 

                                            
 ,  (3.62) 

Generally speaking, the same deconvolution operator is applied to local wavelets at the 

case of stationary deconvolution. The relation between the deconvolved wavelets can still be 

described by the   attenuation model.  Therefore, stationary deconvolution will not affect  -

estimation result significantly. However, if the applied deconvolution is nonstationary, the local 

wavelets are actually altered by different deconvolution operators, which might affect the 

inherent attenuation relation between the local wavelets. At this occasion, nonstationary 

deconvolution may significantly change the   estimation results. 
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3.5 Numerical tests 

3.5.1 Comparison of   estimation methods 

3.5.1.1 Synthetic 1D VSP data or reflection data with isolated reflectors 

The ideal case for   estimation is computing   from noise free VSP data, which can be 

simulated as reflection data with isolated reflectors.  A synthetic attenuated seismic trace was 

created by the nonstationary convolution model proposed by Margrave (1998), using two 

isolated reflectors, a minimum-phase wavelet with dominant frequency of      and a constant 

  value of 80, as shown in Figure 3.1. Using the two local events shown in Figure 3.1,   

estimations from the methods discussed in section 3.2 are shown in Figure 3.2 – 3.8.  

The classic spectral-ratio method gives the exact estimation as shown in Figure 3.2. For 

the complex spectral ratio method, the exact reference frequency is use to construct vector    

formulated in equation (3.20) at this time. The estimation result is the same as the classic 

spectral-ratio method when only amplitude spectra are employed. Figure 3.3 shows the 

estimation result of 79.55 when only phase spectra are employed.  The complex spectral-ratio 

method gives the accurate estimation as well. As shown in Figure 3.4 and 3.5, spectrum-

modeling method obtains minimum error when        . The match-technique gives an 

estimation of 81.76 as shown in Figure 3.6.  It is close to the exact   value, but the difference is 

not negligible for the ideal case, which is caused by the approximation made to obtain the 

optimal forward and backward filters for the matching of the two local wavelets. The match-

filter method gives an estimation of 80.06 when fitting error is minimized, as shown in Figure 

3.7 and 3.8.  All the above methods give accurate estimation for the ideal case. 

Then, random noise is added to the synthetic data to evaluate the performance of the  -

estimation methods in more practical circumstances.  Figure 3.9 shows a synthetic seismic trace 
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with a signal-to-noise ratio of        (we define this in the time domain as the ration of the 

RMS values of signal and noise). The amplitude spectra of the two events are show in Figure 

3.10 and Figure 3.11, of which the noise levels are about       and       respectively. The 

two local events in Figure 3.9 are used to test the  -estimation methods discussed in this chapter.  

For the frequency-domain methods, a frequency range of           is used for   estimation.  

For the match-filter method, band-pass filters are applied to suppress the noise before estimating 

the embedded wavelets, and the passing bands for the two local wavelets are      –        and 

     –       respectively. The smoothing of amplitude spectra using multitaper method is not 

conducted at this time.  The results of   estimation are shown in Figure 3.12 – 3.16.  We can see 

that the estimation results are deviated from the exact   value due to the presence of noise.  To 

make a more general comparison of performance for the estimation methods in presence of 

noise, 200 seismic traces are created by adding 200 different random noise series of the same 

level (     ) to the trace shown in Figure 3.1.  Then   estimation is conducted using these 

noise contaminated data.  The histograms of the estimated   values are shown in Figure 3.17 – 

3.23.  For the classic spectral-ratio method, the estimation results have a mean value of 87.08 and 

standard deviation of 26.74, as shown in Figure 3.17. For the complex spectral-ratio method, 

when only the phase spectra are used for   estimation, the results have a mean value of 80.32 

and standard deviation of 7.13.  When both amplitude spectra and phase spectra are used for   

estimation, Figure 3.19 shows the results based on equation (3.31), and Figure 3.20 shows the 

results based on equation (3.36) with      . The results for both cases are comparable to those 

shown in Figure 3.18.  We can see that the employment of phase information significantly 

improve the estimation results for the complex spectral-ratio method.  For the spectrum-
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modeling method, match-technique method and match-filter method, the standard deviations of 

their results are comparable, while the results of match-filter method have the closest mean value 

to true   value. Overall, when the spectrum smoothing is not employed, the complex spectral 

ratio gives the best estimation results, and the result of match-filter is better than the results of 

classic spectral-ratio method, spectrum-modeling method and match-technique method. 

Now, the multi-taper method is employed to smooth the amplitude spectrum for the 

classic spectral ratio method, spectrum-modeling method, match-technique method and match-

filter method. For the local events in Figure 3.9 with a time-length of       and a sample rate 

of    , the corresponding tapers should have 101 sample points. Figure 3.24 shows the five 

lowest order    prolate tapers. These tapers are orthogonal to each other and provide varying 

weight for different parts of the local events. An example of the spectrum estimation is illustrated 

in Figure 3.25.  With the employment of spectrum smoothing, 200 seismic traces with a noise 

level of       are generated to evaluate classic spectral ratio method, spectrum-modeling 

method, match-technique method and match-filter method. The   estimation results are shown in 

Figure 3.26 – 3.29.  For the results of the three frequency domain methods, the mean values are 

obviously distorted while their standard deviation values remain the same level as the case when 

the spectrum estimation is not employed.  For match-filter method, the estimation results, as 

shown in Figure 3.29, are significantly improved, and have accurate mean value of 80.79 and a 

small standard deviation of 7.07, which are comparable to the results of the complex spectral-

ratio method. The above results indicate that the three frequency-domain methods can be 

sensitive to spectrum smoothing. The match-filter method, as a time-domain method, needs the 

embedded wavelets for matching to be smooth, which, in turn, make proper spectrum estimation 
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favorable. Therefore, incorporation of spectrum smoothing can help stabilize the estimation 

result for match-filter method.  

To further investigate the effect of spectrum smoothing on   estimation for the classic 

spectral-ratio method, spectrum-modeling method, match-technique method and match-filter 

method, we use the noise free VSP data to conduct the   estimation with spectrum estimation 

employed (even though the spectrum smoothing is not necessary). For the classic spectral-ratio 

method, the spectrum-modeling method and the match-filter method, the bandlimited amplitude 

spectra of the two local events in Figure 3.1 are shown in Figure 3.30, which are estimated by 

multitaper method with frequency bands of              and           respectively.  

We can see that the original amplitude spectra are modified by the spectrum estimation. These 

smoothed amplitude spectra are used conduct following   estimations.  For the match-technique 

method, the two local wavelets are band-limited to             and            

respectively, and the spectrum estimation by multitaper method is applied to smooth the 

amplitude spectra of the prediction filters for the two band-limited local wavelets.  The results 

for these four methods are shown in Figure 3.31 – 3.34.  We can see that estimated   values for 

the three frequency-domain methods are significantly deviated from the true value. It indicates 

that the three methods are sensitive to the spectrum modification caused by spectrum estimation.  

For match-filter method, it still gives a quite accurate estimation of 76.55, compared to the exact 

value 80.  It indicates that match-filter method is much less sensitive to the modification of 

amplitude spectra caused by spectrum estimation. 
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Figure 3.1. A synthetic seismic trace created with two events, created using two isolated 

reflectors, a minimum phase source wavelet with dominant frequency of     , and a constant   

value of 80. Local event 1 at             and event 2 at             are picked for   

estimation tests. 

 

Figure 3.2.   estimation by the classic spectral-ratio method using the two local events shown in 

Figure 3.1. 
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Figure 3.3.   estimation by the complex spectral-ratio method using the two local events shown 

in Figure 3.1 when only phase spectra are employed. 

 

Figure 3.4.   estimation by spectrum-modeling method using the two local events shown in 

Figure 3.1. 
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Figure 3.5.The fitting error curve for   estimation by spectrum-modeling method corresponding 

to Figure 3.4. 

 

Figure 3.6.   estimation by match-technique method using the two local events shown in Figure 

3.1. 
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Figure 3.7.   estimation by the match-filter method using the two local events shown in Figure 

3.1. 

 

Figure 3.8. The fitting error curve for   estimation by match-filter method corresponding to 

Figure 3.7. 
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Figure 3.9. Synthetic seismic trace with noise, created by adding random noise to the seismic 

trace in Figure 3.1 with      . Local event 1 at             and event 2 at             

are picked for   estimation tests. 

 

Figure 3.10.  Amplitude spectrum of the local event 1 (           ) in Figure 3.9. 
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Figure 3.11.  Amplitude spectrum of the event 2 (           ) second in Figure 3.9. 

 

Figure 3.12.   estimation by classic spectral-ratio method using the two local events shown in 

Figure 3.9. 
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Figure 3.13.   estimation by complex spectral-ratio method using the two local events shown in 

Figure 3.9. 

 

Figure 3.14.   estimation by spectrum-modeling method using the two local events shown in 

Figure 3.9. 
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Figure 3.15.   estimation by match-technique method using the two local events shown in 

Figure 3.9. 

 

Figure 3.16.    estimation by match-filter method using the two local events shown in Figure 

3.9. 
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Figure 3.17. Histogram of the   values estimated by classic spectral-ratio method using 200 

seismic traces (similar to the one shown in Figure 3.9) with noise level of        . 

 

Figure 3.18. Histogram of the   values estimated by complex spectral-ratio method (only phase 

spectra are employed) using 200 seismic traces (similar to the one shown in Figure 3.9) with 

noise level of      . 
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Figure 3.19. Histogram of the   values estimated by complex spectral-ratio method based on 

equation (3.31), using 200 seismic traces (similar to the one shown in Figure 3.9) with noise 

level of      . 

 

Figure 3.20. Histogram of the   values estimated by generalized complex spectral-ratio method 

based on equation (3.36) with      , using 200 seismic traces (similar to the one shown in 

Figure 3.9) with noise level of      . 
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Figure 3.21. Histogram of the   values estimated by spectrum-modeling method using 200 

seismic trace (similar to the one shown in Figure 3.9) with noise level of      . 

 

Figure 3.22. Histogram of the   values estimated by match-technique method using 200 seismic 

trace (similar to the one shown in Figure 3.9) with noise level of      . 
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Figure 3.23. Histogram of the   values estimated by the match-filter method using 200 seismic 

trace (similar to the one shown in Figure 3.9) with noise level of      . 

 

Figure 3.24. The five lowest order    prolate tapers with 101 sample points for the amplitude 

spectrum smoothing of the two local events shown in Figure 3.9. 
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Figure 3.25. Amplitude spectra of the two local events shown in Figure 3.9. Amplitude spectrum 

of event 1(green); Smoothed amplitude spectrum of event 1 (blue); Amplitude spectrum of event 

2 (black); Smoothed amplitude spectrum of event 2 (red). 

 

Figure 3.26. Histogram of the   values estimated by classic spectral-ratio method using 200 

seismic traces with noise level of       (multitaper method is employed for spectrum 

estimation). 
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Figure 3.27. Histogram of the   values estimated by spectrum-modeling method using 200 

seismic traces with noise level of       (multitaper method is employed for spectrum 

estimation). 

 

Figure 3.28. Histogram of the   values estimated by match-technique method using 200 seismic 

trace with noise level of       (multitaper method is employed for spectrum estimation). 
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Figure 3.29. Histogram of the   values estimated by the match-filter method using 200 seismic 

traces with noise level of       (multitaper method is employed for spectrum estimation). 

 

Figure 3.30. Spectrum estimation of for the two events in Figure 3.1 using multitaper method 

with frequency-band limit of      –        and      –       respectively.  
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Figure 3.31.   estimation by classic spectral-ratio method using the amplitude spectra estimated 

by multitaper method shown in Figure 3.30. 

 

Figure 3.32.   estimation by spectrum-modeling method using the amplitude spectra estimated 

by multitaper method shown in Figure 3.30. 
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Figure 3.33.   estimation by match-technique method using the band-pass filtered local events 

shown in Figure 3.1 with frequency band              and             respectively 

(multitaper method is employed for spectrum estimation of prediction filter). 

 

Figure 3.34.   estimation by match-filter method using the amplitude spectra estimated by 

multitaper method shown in Figure 3.30 
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Theoretically, the frequency band used to filter the local wavelets for noise suppression 

can affect the result of match-filter method.  If a band-pass filter with relatively lower high-cut 

frequency is applied to the local wavelet in the deep zone, the loss of high-frequency energy will 

be attributed to   attenuation, which will lead to smaller estimated value than the true value. 

Therefore, in order to obtain accurate estimation, match-filter method requires the match of 

frequency bands for the local wavelets.  From Figure 3.10 and 3.11, we can see that      and 

      correspond to the frequency components of the amplitude spectra that have relative 

magnitudes of -20dB with respective to the maximum amplitudes. Therefore, the frequency band 

     –        for local wave in shallow zone roughly matches the frequency band 

     –       for the wavelet in deep zone.  Then, the estimated   value is close to the true 

value. When the frequency band is poorly chosen for match-filter method, the result can be 

distorted.  For instance, if we use a frequency band of             for the wavelet in deep 

zone, the bandlimited amplitude spectra estimated by the multitaper method are shown in Figure 

3.35, which lead to a distorted   estimation shown in Figure 3.36. For this case, the high-

frequency energy loss of the local wave in deep zone caused by band-pass filtering is attributed 

to   attenuation, which, in turn, leads to a significantly smaller   value than the true one. 

In addition, synthetic VSP data with extensive noise are used to evaluate   estimation 

methods.  The   estimation is conducted using 200 seismic traces with noise level of      . 

Since, as shown previously, frequency-domain methods are sensitive to spectrum modification, 

spectrum estimation is employed only for match-filter method at this time.  The   estimation 

results are shown in Figure 3.37 – 3.43.  The classic spectral-ratio method, spectrum modeling 

method and match-technique method are affected by the increased noise level and give results 
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with significantly deviated mean values and large standard deviation values. Again, for the 

complex spectral ratio method,   estimation is conducted for three cases. The first case is that 

only the phase spectra are used for   estimation; the second one is   estimation based on 

equation (3.31); the third one is the generalized complex spectral-ratio method based on equation 

(3.36) with      .  As shown in Figure 3.38 – 3.40, the results of these three cases are 

comparable and are much better than the results for the other three frequency-domain method. It 

might indicate that the phase difference between the local wavelets is not significantly affected 

by the increased noise level.  The match-filter method, as shown in Figure 3.43, still gives quite 

good estimation with a mean value of 80.02 and standard deviation of 11.82, which is slightly 

better than the results of complex spectral ratio method. Based on the above results, we can see 

that both match-filter method and complex spectral-ratio method are robust to noise. 

For the complex spectral-ratio method, its result is subject to the choosing of reference 

frequency. The accurate reference frequency    (the Nyquist frequency) is used for the above 

tests. To evaluate the influence of inaccurate reference frequency for the complex spectral-ratio 

method, only the phase spectra are used to give estimation result and    is chosen as the Nyquist 

frequency scaled by 0.8.  First,   estimation is conducted using the two local events shown in 

Figure 3.1. As shown in Figure 3.44, the estimated   of 68.32 is deviated from true value 80 for 

this ideal case. Then,   estimation is conducted using 200 seismic traces, similar to the one 

shown in Figure 3.9, with noise level of       and       respectively. The distributions 

of corresponding estimated   values are shown in Figure 3.45 and 3.46.  We can see that the 

mean value of the estimation results is consistent with the ideal case shown in Figure 3.44, which 

is deviated from true value, and the standard deviation values of the estimated results remain at 

the same level as the cases with accurate reference frequency shown in Figure 3.18 and 3.38.  
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Therefore, the complex spectral-ratio method is robust to noise, however its accuracy will 

depend on how well the reference frequency is chosen to match the data. 

 

Figure 3.35. Spectrum estimation of for the two events (          ,            ) in Figure 

3.1 by multitaper method with frequency-band limit of     –       and     –     

respectively.  

 

Figure 3.36.   estimation by match-filter method using the local events in Figure1; Spectrum 

estimation for the two events by multitaper method is employed with frequency band      

       and      –       respectively.  
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Figure 3.37. Histogram of the   values estimated by classic spectral-ratio method using 200 

seismic traces (similar to the one shown in Figure 3.9) with noise level of        . 

 

Figure 3.38. Histogram of the   values estimated by complex spectral-ratio method (only phase 

spectra are employed) using 200 seismic traces (similar to the one shown in Figure 3.9) with 

noise level of        . 
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Figure 3.39. Histogram of the   values estimated by complex spectral-ratio method based on 

equation (3.31), using 200 seismic traces (similar to the one shown in Figure 3.9) with noise 

level of        . 

 

Figure 3.40. Histogram of the   values estimated by generalized complex spectral-ratio method 

based on equation (3.36) with      , using 200 seismic traces (similar to the one shown in 

Figure 3.9) with noise level of        . 
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Figure 3.41. Histogram of the   values estimated by spectrum-modeling method using 200 

seismic trace (similar to the one shown in Figure 3.9) with noise level of        . 

 

Figure 3.42. Histogram of the   values estimated by match-technique method using 200 seismic 

trace (similar to the one shown in Figure 3.9) with noise level of        . 
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Figure 3.43. Histogram of the   values estimated by the match-filter method using 200 seismic 

trace (similar to the one shown in Figure 8) with noise level of         (Multitaper method is 

employed for spectrum estimation). 

 

Figure 3.44.   estimation by complex spectral-ratio method (only phase spectra are employed) 

using the two events shown in Figure 3.1(inaccurate reference frequency is used). 
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Figure 3.45. Histogram of the   values estimated by complex spectral-ratio method (only phase 

spectra are employed) using 200 seismic traces (similar to the one shown in Figure 3.9) with 

noise level of         (inaccurate reference frequency is used). 

 

Figure 3.46. Histogram of the   values estimated by complex spectral-ratio method (only phase 

spectra are employed) using 200 seismic traces (similar to the one shown in Figure 3.9) with 

noise level of         (inaccurate reference frequency is used). 
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3.5.1.2 Real VSP data example 

Now, we will use the real VSP data to evaluate the   estimation methods. Figure 3.47 

shows field zero-offset P-wave VSP data. Since the VSP data consists of downgoing waves and 

upgoing waves, it is necessary to separate the downgoing waves for   estimation. First, the first 

breaks of VSP data are picked and their corresponding time is shown in Figure 3.48.  Linear 

move out is applied to align the events of VSP data.  Then, median filtering is applied to the 

aligned VSP data for upgoing wave suppression.  The downgoing wave VSP data are shown in 

Figure 3.49.  

First, we evaluate the classic spectral ratio method, spectrum-modeling method, match-

technique method and match-filter method. With a fixed trace interval of 100, 230 pairs of 

windowed VSP traces shown in Figure 3.49 are used to conduct   estimation, of which the first 

pair are the VSP trace 101 and 201 and the last pair are VSP trace 330 and 430.  At first, the 

multitaper method is not employed for the frequency-domain methods, and the results are shown 

in Figure 3.50. The estimation results are similar and have the same trend of variations at most 

cases, while match-filter method and spectrum-modeling method give more stable results. Then 

multitaper method is used to smooth the amplitude spectra for the three frequency-domain 

method, and the   -estimation results are shown in Figure 3.51. We can see that the spectrum 

smoothing stabilizes the   estimation for the spectral-ratio method, while match-technique 

method is sensitive to spectrum smoothing. Then, 80 pairs of windowed VSP traces with fixed 

trace interval of 250 are used to investigated the four method, of which the first pair are the VSP 

trace 101 and 351 and the last pair are VSP trace 180 and 430.  When spectrum estimation is not 

conducted for the three frequency-domain method, the  -estimation results are shown in Figure 

3.52. With a larger trace interval (traveltime difference), the attenuation between the two trace 
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becomes more measurable. We can see that the results of spectral-ratio method and match-

technique method are more stable, and all the four methods give more consistent estimation. 

Then, multitaper method for spectrum smoothing is employed for the three frequency-domain 

methods. The corresponding  -estimation results are shown in Figure 3.53. With spectrum 

smoothing, the results of spectral-ratio method are stabilized.  We also can observe that spectral-

ratio method, spectrum-modeling method and match-filter method give quite close estimation 

results. 

Now, we investigate on applying complex spectral-ratio method to real data. A practical 

issue for the complex spectral-ratio method is to choose an appropriate reference frequency    to 

model the phase difference. One approach is to use the results given by other methods such as 

classic spectral-ratio method to calibrate the result of complex spectral-ratio method (only phase 

information is used for   estimation). The reference frequency    can be determined by this way. 

Figure 3.54 shows the   estimation result by classic spectral-ratio method using VSP trace 101 

and 351. When        , similar result is obtained by complex spectral-ratio method, as 

shown in Figure 3.55. Then, with a fixed reference         and trace interval of 250,   

estimation is conducted for 80 pairs of windowed VSP traces, of which the first pair are the VSP 

trace 101 and 351 and the last pair are VSP trace 180 and 430. The  -estimation results are 

shown in Figure 3.56. We can see that the complex ratio-method (only phase information 

employed) gives unreasonable results at some cases.  Another approach is to choose     by a 

least-squares error solution to the modeled phase difference and the computed phase difference. 

The  -estimation results for the 80 pairs of VSP traces are shown in Figure 3.57, and the 

corresponding reference frequencies are shown in Figure 3.58. We can see that the estimated   

values are more stable than results shown in Figure 3.56, while they have significant variations 
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and are obviously deviated from the results given by other methods shown in Figure 3.52 and 

3.53. We also can see that the reference frequencies vary significantly, which may not be 

physically true. Generally, both approaches do not work for the real data, which may indicates 

that the phase difference between wavelets is distorted during the propagation and is not suitable 

to be approximated by the phase of a minimum phase wavelet. To make the complex spectral-

ratio method applicable, minimum-phase equivalent wavelets are computed before   estimation 

for the VSP traces. Then, with the calibration from classic spectral-ratio method, a reference 

frequency          is chosen to model the phase difference. The  -estimation results are 

shown in Figure 3.59, which are stable and similar to the results given by other methods. 

 

Figure 3.47. Ross Lake VSP data (vertical component P-wave). 
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Figure 3.48. First breaks of VSP data shown in Figure 3.47. 

 

Figure 3.49. VSP data with upgoing wave suppression. 
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Figure 3.50.   estimation using 230 pairs of VSP traces shown in Figure 3.49 (Each pair has a 

fixed trace interval of 100; the first pair are the VSP trace 101 and trace 201 and the last pair are 

VSP trace 330 and trace 430); Multitaper method for spectrum estimation is not employed for 

the three frequency-domain methods. 

 

Figure 3.51.   estimation using 230 pairs of VSP traces shown in Figure 3.49 (Each pair has a 

fixed trace interval of 100; the first pair are the VSP trace 101 and trace 201 and the last pair are 

VSP trace 330 and 430); Multitaper method for spectrum estimation is employed for the three 

frequency-domain methods. 

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

 test number

Q

 

 

spectral-ratio method

match-filter method

spectrum-modeling method

match-technique method

0 50 100 150 200 250
0

50

100

150

200

250

300

 test number

Q

 

 

spectral-ratio method

match-filter method

spectrum-modeling method

match-technique method

Test number 

Test number 

Q
 

Test number 

Q
 



 

113 

 

Figure 3.52.   estimation using 80 pairs of VSP traces shown in Figure 3.49 (Each pair has a 

fixed trace interval of 250; the first pair are the VSP trace 101 and 351 and the last pair are VSP 

trace 180 and trace 430); Multitaper method for spectrum estimation is not employed for the 

three frequency-domain methods. 

 

Figure 3.53.   estimation using 80 pairs of VSP traces shown in Figure 3.49 (Each pair has a 

fixed trace interval of 250; the first pair are the VSP trace 101 and 351 and the last pair are VSP 

trace 180 and 430); Multitaper method for spectrum estimation is employed for the three 

frequency-domain methods. 
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Figure 3.54.   estimation by classic spectral-ratio method using of VSP traces 102 and 352 

shown in Figure 3.49. 

 

Figure 3.55.   estimation by complex spectral-ratio method with only phase information 

employed (reference frequency         , using of VSP traces 102 and 352 shown in Figure 

3.49.  
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Figure 3.56.   estimation by complex spectral-ratio method with only phase information 

employed (reference frequency         , using 80 pairs of VSP traces shown in Figure 3.49 

(Each pair has a fixed trace interval of 250; the first pair are the VSP trace 101 and 351 and the 

last pair are VSP trace 180 and 430). 

 

Figure 3.57.   estimation by complex spectral-ratio method with only phase information 

employed (reference frequency is choose by a least-square minimization approach , using 80 

pairs of VSP traces shown in Figure 3.49 (Each pair has a fixed trace interval of 250; the first 

pair are the VSP trace 101 and  351 and the last pair are VSP trace 180 and  430). 
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Figure 3.58. The chosen reference frequencies corresponding to the test shown in Figure 3.57. 

 

Figure 3.59.   estimation by complex spectral-ratio method with only phase information 

employed (reference frequency          , using 80 pairs of VSP traces shown in Figure 3.49 

(Each pair has a fixed trace interval of 250; the first pair are the VSP trace 101 and 351 and the 

last pair are VSP trace 180 and 430). Minimum-phase equivalent wavelets are computed before 

  estimation for the VSP traces. 
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3.5.1.3 Synthetic 1D reflection data example 

In this section, synthetic 1D reflection data will be used to evaluate four methods: classic 

spectral-ratio method, spectrum-modeling method, match-technique method and match-filter 

method. A synthetic seismic trace is created using a random reflectivity series, a minimum-phase 

source wavelet with dominant frequency of      and a constant   of 80, as shown in Figure 

3.60.  Two local reflected wavelets are obtained by applying time gates of             and 

             to the attenuated seismic trace, and these two time gates will be used to 

obtain local wavelets for all tests in this section. Figure 3.61 shows the amplitude spectra given 

by multitaper method for these two local wavelets.  The spikes and notches in the original 

spectra of local wavelets are smoothed by the multitaper method, which gives good spectrum 

estimations. 

For   estimation using reflection data, spectrum estimation is necessary and employed 

for all the four methods.    estimation is conducted using the local wavelets. The results are 

shown in Figure 3.62 – 3.65. We can see that, even without noise, the estimation results are 

deviated from the true value due to the tuning effect. Then, attenuated seismic traces are created 

using 200 different random reflectivity series, from which 200 pairs of local reflected waves are 

obtained to conduct the   estimation using the four   estimations. The  -estimation results are 

shown in Figure 3.66 – 3.69. The match-filter method gives best result with the closest mean 

value of 82.49 and the smallest standard deviation of 16.86. Next, the four  -estimation methods 

are further evaluated using reflection date with noise level of       and      . The 

corresponding  -estimation results are shown in Figure      –      . We can see that three 

frequency-domain methods give unreliable results with significantly distorted mean values and 

large standard deviation values, while match-filter method is robust to noise and obtains results 
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with accurate mean value and small standard deviation value, which are similar to the noise-free 

case. 

For the classic spectral-ratio method, the results might be corrupted for two reasons.  

Firstly, even using the smoothed spectra, computed spectral ratios are sensitive to the spectrum 

modification caused by noise and the tuning effect of local reflectors.  Secondly, the calculated 

spectral ratios are not suitable for straight-line fitting over a wide frequency range anymore. At 

this occasion, the interpretive spectral-ratio method presented in this chapter might be more 

suitable than the classic spectral-ratio method. Figure 3.78 and 3.79 demonstrate the   

estimation by these two spectral-ratio methods respectively, using one pair of local wavelets with 

noise level of       as an example.  For this single example, the calculated spectral ratios are 

not suitable for straight-line fitting. The classic spectral-ratio method gives a distorted result of 

148.46. The interpretive spectral-ratio method approximates a piecewise straight-line fitting 

scheme and gives an improved estimation of 71.47. Then, 200 pairs of local wavelets at different 

noise level are used to evaluate the interpretive spectral-ratio method, and the estimation results 

are shown in Figure 3.80 and 3.81. Compared to the results of classic spectral-ratio method 

shown in Figure 3.70 and 3.74, the  -estimation results are significantly improved, but still have 

much larger standard deviation values than the results of match-filter method.  

To evaluate the effect of deconvolution on   estimation, 200 pairs of local wavelets are 

obtained from 200 deconvolved seismic traces using Wiener spiking deconvolution. Then,   

estimation is conducted using these local wavelets using match-filter method. As shown in 

Figure 3.82, the  -estimation results are similar to the case without deconvolution shown in 

Figure 3.66, and have a smaller standard deviation value. This indicates that the   estimation is 

not subject to the effect of stationary deconvolution. 
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Figure 3.60. A random reflectivity series (upper). An attenuated seismic trace created using the 

reflectivity series, a minimum-phase wavelet with dominant frequency of      and a constant   

of 80. 

 

Figure 3.61. Amplitude spectrum of the             part of the seismic trace in Figure 3.60 

(Green). Amplitude spectrum estimated by multitaper method for the             part of 

the seismic trace in Figure 3.60 (Blue). Amplitude spectrum of the              part of the 

seismic trace in Figure 3.60 (Black). Amplitude spectrum estimated by multitaper method for the 

             part of the seismic trace in Figure 3.60 (Red). 
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Figure 3.62.   estimation by spectral-ratio method using the             and       
       parts of the seismic trace shown in Figure 3.60. 

 

Figure 3.63.   estimation by spectrum-modeling method using the             and 

             parts of the seismic trace shown in Figure 3.60. 
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Figure 3.64.   estimation by match-technique method using the             and       
       parts of the seismic trace shown in Figure 3.60. 

 

Figure 3.65.   estimation by match-filter method using the              and       
       parts of the seismic trace shown in Figure 3.60. 
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Figure 3.66. Histogram of the   values estimated by classic spectral-ratio method using the 

            and              parts of 200 seismic traces without noise, which are 

similar to the one shown in Figure 3.60. 

 

Figure 3.67. Histogram of the   values estimated by spectrum-modeling method using the 

            and              parts of 200 seismic traces without noise, which are 

similar to the one shown in Figure 3.60. 
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Figure 3.68. Histogram of the   values estimated by match-technique method using the 

            and               parts of 200 seismic traces without noise, which are 

similar to the one shown in Figure 3.60. 

 

Figure 3.69. Histogram of the   values estimated by match-filter method using the       
      and              parts of 200 seismic traces without noise, which are similar to 

the one shown in Figure 3.60. 
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Figure 3.70. Histogram of the   values estimated by classic spectral-ratio method using the 

            and              parts of 200 seismic traces with noise level of 

     , which are similar to the one shown in Figure 3.60. 

 

Figure 3.71. Histogram of the   values estimated by spectrum-modeling method using the 

            and              parts of 200 seismic traces with noise level of 

     , which are similar to the one shown in Figure 3.60. 
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Figure 3.72. Histogram of the   values estimated by match-technique method using the 

            and              s parts of 200 seismic traces with noise level of 

     , which are similar to the one shown in Figure 3.60. 

 

Figure 3.73. Histogram of the   values estimated by match-filter method using the       
      and              parts of 200 seismic traces with noise level of      , which 

are similar to the one shown in Figure 3.60. 
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Figure 3.74. Histogram of the   values estimated by classic spectral-ratio method using the 

            and              parts of 200 seismic traces with noise level of 

     , which are similar to the one shown in Figure 3.60. 

 

Figure 3.75. Histogram of the   values estimated by spectrum-modeling method using the 

            and              parts of 200 seismic traces with noise level of 

     , which are similar to the one shown in Figure 3.60. 
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Figure 3.76. Histogram of the   values estimated by match-technique method using the 

            and              parts of 200 seismic traces with noise level of 

     , which are similar to the one shown in Figure 3.60. 

 

Figure 3.77. Histogram of the   values estimated by match-filter method using the       
      and              parts of 200 seismic traces with noise level of      , which 

are similar to the one shown in Figure 3.60. 
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Figure 3.78.   estimation by classic spectral-ratio method using the             and 

             parts of a seismic traces with noise level of       which is similar to the 

one shown in Figure 3.60. 

 

Figure 3.79.   estimation by the interpretive spectral-ratio method using the             

and              parts of a seismic traces with noise level of       which is similar to 

the one shown in Figure 3.60. 
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Figure 3.80. Histogram of the   values estimated by the interpretive spectral-ratio method using 

the             and              parts of 200 seismic traces with noise level of 

      which are similar to the one shown in Figure 3.60. 

 

Figure 3.81. Histogram of the   values estimated by the interpretive spectral-ratio method using 

the             and              parts of 200 seismic traces with noise level of 

      which are similar to the one shown in Figure 3.60. 
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Figure 3.82. Histogram of the   values estimated by match-filter method using the       
      and              parts of 200 deconvolved seismic traces which are similar to the 

one shown in Figure 3.60. 

3.5.2 2D synthetic reflection data example for match-filter method 

An important application of   estimation is that the estimation result can be used as a gas 
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low   zone is generated by 3D finite-difference viscoacoustic seismic modeling using Tiger 
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in Figure 3.85.  The low   zone has an extension of      –        in two-way traveltime and 

           in horizontal coordinates. Three shot records corresponding to different source 

locations of the layered earth model are shown in Figure 3.86 – 3.88.  

To indentify the low   zone, two time windows with a fixed small interval slide along a 

seismic trace to obtain pairs of local wavelets. For each pair of them, a   value can be estimated 

and attributed to the time centered between the two time windows. The   estimation is 

conducted to the entire 2D seismic gather trace by trace. Through this approach, a   profile can 

be obtained for the 2D seismic gather.  Since the interval time involved with   estimation is 

small, the attenuation between the two local reflected waves is usually not obvious except that 

the deeper one travels through the low   zone and the shallow one does not.  Therefore, the low 

  zone in the   model will cause a relatively low amplitude area in the estimated   profile.   A 

pair of time windows with a length of       and an interval of       are used to sample the 

seismic traces.  The estimated   profiles for the three shot records are shown in Figure 3.89, 3.90 

and 3.91 respectively.  We can see that there is hyperbolic distribution of estimated   values, and 

the low amplitude area shifts with the varying source locations.  Then three NMO corrected CDP 

gathers are obtained from the shot records with a NMO stretch limit of       The   profiles of 

the three CDP gathers are shown in Figure 3.92, 3.93 and 3.94. We can see that the hyperbolic 

distribution of estimated   values are flattened, and the locations of low amplitude areas in the 

three   profiles are corrected and consistent with each other, which match with the low   zone 

of the   model outlined by a rectangle area very well.  To refine the low amplitude areas of the 

  profiles, the variations of the mean value of   with travel time or depth and horizontal position 

are derived from the zoomed low   areas shown in Figure 3.92 – 3.94.  AS illustrated by Figure 
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3.95 and 3.96, the estimated low   zone should be the areas with a two-way traveltime centered 

at       and horizontal extension from about             , which is a very good match to the 

  model.  Therefore, the match-filter method has the potential to indentify the low   zone of 2D 

reflection data for a layered media. 

To simulate the   profile estimation for real data, random noise of level       is 

added to the NMO applied CDP gather corresponding to the shot record shown in Figure 3.86.  

Then, a   profile is estimated from the noisy CDP gather.  As shown in Figure 3.97, the   

profile is disturbed by noise. To address this problem, the amplitude spectrum of local wavelet 

can be estimated from a small ensemble of neighboring traces. First, the smoothed amplitude 

spectrum is estimated for each trace. Then, the smoothed amplitude spectra of an ensemble is 

scaled and summed using some weighting scheme to give the final spectrum estimation for the 

trace centered in this ensemble. Adopting this approach for spectrum estimation,   profile for the 

noisy CDP gather is obtained and shown in Figure 3.98. We can see that the affect of noise is 

suppressed and the result is similar to the noise free case shown in Figure 3.92. 
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Figure 3.83.  Reflectivity coefficients in two-way travel time for a layered earth model. 

 

Figure 3.84. Velocity and density structure for a layered earth model which has the reflectivity 

coefficients shown in Figure 3.83. 

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

tw
o
-w

a
y
 t

im
e
 :

 s

amplitude

d
e
p
th

 :
 m

Velocity model

 

 

0 500 1000 1500

0

1000

2000

2499

2499.5

2500

2500.5

2501

Density model

 X : m

d
e
p
th

 :
 m

 

 

0 500 1000 1500

0

1000

2000

1000

1500

2000

2500

Amplitude 

  
  
  
T

im
e

 (
s
) 

    X (m) 

  
  
D

e
p
th

 (
m

) 
  

  
D

e
p
th

 (
m

) 



 

134 

 

Figure 3.85.   model for the layered earth model shown in Figure 3.84. 

 

Figure 3.86. Shot record (geometric spreading compensated) for a layered earth model with 

velocity and density structure shown in Figure 3.84,   attenuation structure shown in Figure 

3.85; source location               ), receiver interval:   . 
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Figure 3.87. Shot record (geometric spreading compensated) for a layered earth model with 

velocity and density structure shown in Figure 3.84,   attenuation structure shown in Figure 

3.85; source location                  , receiver interval:   . 

 

Figure 3.88. Shot record (geometric spreading compensated) for a layered earth model with 

velocity and density structure shown in Figure 3.84,   attenuation structure shown in Figure 

3.85; source location                   receiver interval:   . 
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Figure 3.89.   profile estimated by the match-filter method using the shot record shown in 

Figure 3.86. 

 

Figure 3.90.   profile estimated by the match-filter method using the shot record shown in 

Figure 3.87. 
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Figure 3.91.   profile estimated by the match-filter method using the shot record shown in 

Figure 3.88. 

 

Figure 3.92.   profile estimated by the match-filter method using the NMO corrected CDP 

gather corresponding to the shot record shown in Figure 3.86. 
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Figure 3.93.   profile estimated by the match-filter method using the NMO corrected CDP 

gather corresponding to the shot record shown in Figure 3.87. 

 

Figure 3.94.   profile estimated by the match-filter method using the NMO corrected CDP 

gather corresponding to the shot record shown in Figure 3.88. 
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Figure 3.95. The variation of mean   value with two-way time for the zoomed   profiles (#1, 

#2, #3 – the zoomed   profiles shown in Figure 3.92, 3.93, and 3.94 respectively). 

 

Figure 3.96. The variation of mean   value with horizontal coordinates for the zoomed   

profiles (#1, #2, #3 – the zoomed   profiles shown in Figure 3.92, 3.93, and 3.94 respectively). 
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Figure 3.97.   profile estimated by match-filter method using the NMO corrected CDP gather 

with noise level of       corresponding to the shot record shown in Figure 3.86. 

 

Figure 3.98.   profile estimated by match-filter method using the NMO corrected CDP gather 

with noise level of       corresponding to the shot record shown in Figure 3.86 (An 

ensemble of neighboring traces are used for spectrum estimation). 
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3.5.3 2D real reflection data example for multitaper method 

The 2D field data were acquired over the Blackfoot field near Strathmore, Alberta in 

1995. The field data were processed using ProMAX software with a processing job flow 

including geometrical spreading correction, statics correction, predictive deconvolution, NMO 

correction, trace equalization and stacking.  Considering that amplitude spectra of the near-offset 

traces and far-offset traces can be distorted by strong ground rolls and large NMO stretches 

respectively, the traces with moderate offsets are chosen to conduct the stacking. The stacked 

data are displayed in order of CDP bin number, as shown in Figure 3.99.  For the Blackfoot line, 

the target zone is around        in two-way traveltime.  In addition, there is a Well 14-09 

about      away from it, which has nearly the same X coordinate with the trace CDP 36.   

  estimation by the match-filter method is conducted using the              and 

            parts of the traces CDP 25- CDP 265, which roughly gives the average   for 

the time interval             .  The variation of estimated   values with X coordinates 

(CDP bin numbers) is shown in Figure 3.100, and the histogram of the estimated   values is 

shown in Figure 3.101.  The estimated   values vary with the trace positions while they remain 

within a reasonable range.   As shown in Figure 3.102, a   profile was estimated from the CDP 

gather, using sliding windows with a length of       and an interval of      .  We can see 

that, there is measurable attenuation around        nearly across the entire line even a small 

interval time is employed for   estimation, and the target zone of the well 14-09 locates within 

the low amplitude area of the estimated   profile. 
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Figure 3.99 Stacked CDP gather for Blackfoot field data. 

 

Figure 3.100.   values estimated by the match-filter method for the traces CDP 25-265 using 

their              and               parts. 

50 100 150 200 250
60

80

100

120

140

160

180

 CDP 

 E
s
ti
m

a
te

d
 Q



 

143 

 

Figure 3.101. Histogram of the estimated   values shown in Figure 3.100.  

 

Figure 3.102.   profile estimated by the match-filter method for CDP gather shown in Figure 

3.99, using sliding windows with a length of       and an interval of      .   
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3.6 Summary 

The theory of various   estimation methods is introduced in this chapter, including 

classic spectral-ratio method, complex spectral-ratio method, interpretive spectral-ratio methods, 

spectrum- modeling method, match-technique method and match-filter method.  

The performance of above   estimation methods is evaluated using synthetic and field 

data.  Testing on synthetic VSP data shows that match-filter method and complex spectral-ratio 

method are more stable and robust to noise compared to other methods, while all of them can 

give good estimation results for VSP data with moderate noise.  

The classic spectral-ratio method, the spectrum-modeling method and the match-

technique method, as methods in frequency domain, can be sensitive to the distortion of 

amplitude spectrum caused by application of spectrum estimation or noise. For the match-filter 

method, appropriate spectrum smoothing can improve the estimation of embedded wavelets, and, 

in turn, make the estimation result more stable.  

  All the frequency domain methods are subject to the frequency band chosen for   

estimation. Theoretically, the result of match-filter method, as a time-domain method, can also 

be affected by the frequency band used to estimate the embedded wavelets.  Accurate estimation 

results require a rough match of the frequency bands for embedded wavelets, which can be 

chosen based on the evaluation of their amplitude spectra of original local waves. 

Testing on real VSP data shows that match-filter method and spectrum modeling method 

give more stable results, since no spectral division is involved in their algorithm, and all the 

methods can obtain similar results at most cases when VSP data with high SNR is used for   

estimation.  
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Complex spectral-ratio method is subject to the reference frequency chosen for modeling 

phase difference as well. Inaccurate reference frequency can distort the estimation. To apply the 

complex spectral-ratio method to real data, minimum phase equivalent wavelet transformation 

are necessary before   estimation, and the chosen of reference frequency can be chosen with the 

calibration of other methods. 

When applied to reflection data, the classic spectral-ratio method, spectrum-modeling 

method and match-technique method fail. The interpretive spectral-ratio method significantly 

improves the performance of classic spectral-ratio method, while the estimation results still have 

large standard deviation value. In contrast, match-filter method gives quite accurate estimations, 

and is insensitive to noise.  This may indicate that the spectrum estimation of local wavelets by 

multitaper method is mainly affected by the tuning effect of local reflectors instead of noise. 

Testing results show that   estimation can be conducted with reflection data either before or 

after stationary deconvolution.   

When conducting   estimation for a 2D gather, a small ensemble of neighbouring traces 

can be employed to give the final spectrum estimation for a single trace. This approach can help 

to obtain a better smoothed spectrum and stabilize the   estimation. Numerical tests using the 

2D synthetic data and field data demonstrate that the match filter has the potential to identify the 

localized low   zone of the subsurface from surface reflection data. 

  



 

146 

Chapter Four: Gabor deconvolution and the color correction to white-reflectivity 

assumption 

4.1 Introduction 

Deconvolution is an essential part of seismic data processing. The deconvolution 

algorithm is derived from the corresponding convolution model. Conventional deconvolution 

methods are developed based on the stationary convolution model, such as Wiener spiking 

deconvolution.  However, the seismic trace is nonstationary due to attenuation during the 

propagation for various reasons such as   attenuation and geometric spreading.  Deconvolution 

algorithms usually assume that the reflectivity is a random series, meaning that reflectivity has a 

white amplitude spectrum. In practice, the reflectivity is colored, i.e., the magnitude of its 

Fourier amplitude spectrum demonstrates obvious frequency dependency. The white reflectivity 

assumption can lead to distortion of reflectivity estimation. In addition, the color feature of the 

true reflectivity is nonstationary (Cheng and Margarve, 2009a). 

The nonstationary characteristic of both seismic trace and true reflectivity can be 

corrected in a nonstationary way. This chapter gives a basic introduction to Gabor 

deconvolution, and presents the color correction method to white-reflectivity assumption for 

Gabor deconvolution.  The influence of the time-variant reflectivity color is analyzed in detail, 

and synthetic data and field data are used to evaluate the color correction method. 

4.2 Gabor deconvolution 

4.2.1 The Gabor transform 

Gabor transform (GT) provides a manner of time-frequency decomposition of a signal. In 

this section, we will follow Margrave and Lamoureux (2001), Margrave et al (2011) to give a 
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brief introduction to the GT. The continuous GT of a signal      can be defined as (Mertins, 

1999) 

                             
 

  
  ,  (4.1) 

where      is the Gabor analysis window, and   denotes the center of the analysis window. We 

can see that the continuous GT gives local spectrum of the signal by weighting the signal with a 

window function before the Fourier transform. By sliding the analysis window along the signal, 

GT produces a collection of local spectra. So, a time-frequency decomposition of the signal is 

obtained. Even if signal      is nonstationary for the whole time range,       can still be regarded 

to be approximately stationary within a specified time window. From this point of view, GT can 

give a better characterization of nonstationary signal compared with Fourier transform. Given 

       , the signal      can be reconstructed as 

                
 

  
                 ,  (4.2) 

where      is the Gabor synthesis window. To achieve a perfect reconstruction, the analysis 

window and synthesis window should satisfy the following condition 

            
 

  
    .  (4.3)      

When         and            , Gabor transform reduces to Fourier transform. So, Fourier 

transform can be viewed as a particular case of Gabor transform. 

 For practical implementation, a discrete form of Gabor transform should be employed. 

Given a time spacing of    and frequency spacing of   , the discrete Gabor transform is given 

by 

                      
 

  
  ,  (4.4) 

where         is the Gabor frame defined as 
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                         .  (4.5) 

If the Gabor frames are orthonormal to each other, the signal can be recovered from the 

Gabor frame operator defined by  

                              .  (4.6) 

However, the Gabor frames in equation (4.5) do not form an orthonormal basis. For the DGT, the 

reconstruction of signal should involve the inversion of the Gabor frame operator. So, the 

recovery of      can be formulated as 

                       
                              ,  (4.7)    

where           
           is the dual Gabor frame. The Gabor frames are complete in  

      on condition that        (Margrave and Lamoureux, 2001). We can exactly recover 

the signal by (4.7). However, it is hard to get an inversion of the Gabor frame. In practice, we 

can choose an approximate way to implement the discrete Gabor transform. 

If we can find a set of analysis window          to make the following equation hold 

                                ,  (4.8) 

where                   . Then, we apply a forward Fourier transform  

                ,  (4.9) 

where       is given by 

               
       

  
  .  (4.10) 

And, we can reconstruct the signal by  

                .  (4.11) 

Therefore, we can get the approximate forward and inverse discrete Gabor transform by (4.10) 

and (4.11). The requirement for equation (4.8) can be written as 
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               .  (4.12) 

The Gaussians can be a good choice of the analysis window, i.e. 

           
  

   
         

    ,   (4.13) 

where   is the Gaussian half-width. Margrave and Lamoureux (2001) gave a precise expression 

of the summation of the Gaussians, which is 

                   
   

  
             

 
  . (4.14) 

We can use the second term in (4.14) to estimate the approximate errors. So, the error can 

be made as small as we want by increasing the ratio     . For geophysical applications, the error 

is negligible when          (Margrave and Lamoureux, 2001).   

The inherent end effect of the approximate discrete Gabor transform can be further 

reduced by normalization using the summation curve. The Gabor transform given in equation 

(4.10) can be normalized as (Margrave and Lamoureux, 2001) 

         
       

       

    

      
 ,  (4.15)   

Where                     is the actual summation curve of Gabor transform. 

4.2.2 The Gabor deconvolution algorithm 

Gabor deconvolution is based on a nonstatioanry convolution model of the seismic trace.  

Margrave and Lamoureux (2002) presented a seismic trace model addressing the seismic wavelet 

and the nonstationary effect of constant-  attenuation.  The nonstationary convolution model is 

introduced in chapter 1, and will be restated here for introducing Gabor deconvloution algorithm. 

The attenuated seismic trace can be modeled as 
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,  (4.16) 

where      and      are the Fourier spectra of the seismic trace      and seismic source 

wavelet       respectively;      is the reflectivity, and         is the constant-  transfer 

function given by 

          
 
   

 
    

   

 
 
,  (4.17)           

where   denotes the Hilbert transform.  Then, the Gabor transform of the attenuated seismic 

trace can be approximated by (Margrave and Lamoureux, 2002; Margrave et al, 2011) 

                            ,  (4.18) 

where         is the Gabor transform of reflectivity.  

Based on equation (4.18),                 can be estimated by smoothing           

with an assumption that           . The simplest smoothing can be achieved by convolving 

          with a 2-D boxcar over      .  Let                       be a proper smoothing of          .  

With a minimum-phase assumption, the attenuated wavelet or propagating wavelet is estimated 

as  

                                           ,  (4.19) 

where the phase        is given by the Hilbert transform (over frequency), 

                                    .  (4.20) 

Therefore, an estimation of the reflectivity can be formulated in the Gabor spectral 

domain as 

                         , (4.21)  

where        is the deconvolution operator formulated as 
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         ,  (4.22) 

in which   is the stability factor, and      is the maximum value of                      . 

4.2.3 Examples 

First, we will use some examples to evaluate the approximate discrete Gabor transform. 

Figure 4.1 shows the summation curve of a set of Gaussian with a Gaussian half-width of 

       and a window spacing of    0.04s. We can see that the summation is a very good 

approximation to unity except at the both ends. Figure 4.2 shows a suit of summation curves with 

a fixed Gaussian width of        and varied window spacing of         ,      ,      and 

    . As      increases, the error term in equation (4.14) becomes more obvious. For the signal 

reconstruction using the approximate discrete Gabor transform, Figure 4.3 shows the difference 

between the original signal and the reconstructed signal. The deviations occur at both ends, 

which are the inherent error resulting from equation (4.12) and (4.14). Figure 4.4 shows the 

signal reconstruction using the normalized Gabor transform. We can notice that that the inherent 

error is reduced by the normalization. 

Then, an attenuated seismic trace created according to equation (4.16) is shown in Figure 

4.5. The source/embedded wavelet is a minimum-phase wave with a dominant frequency of 

    . And the attenuation is predicted using the constant-  model with a   value of 50. We can 

see that the modeled seismic trace decays with time gradually. A comparison of Gabor 

deconvolution and stationary deconvolution (for instance, the Wiener spiking deconvolution) is 

illustrated by Figure 4.6. For stationary deconvolution, proceeding AGC is applied to the 

attenuated seismic trace. While for Gabor deconvolution, the proceeding gain correction is not 

necessary. We can see that Gabor deconvolution produces a good estimation of the actual 
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reflectivity, which is better than the result of Wiener spiking deconvolution. Figure 4.7 shows the 

magnitude of the Gabor spectrum of bandlimited actual reflectivity. For the frequency 

components within the frequency-band          , their magnitude is approximately of the 

same level. However, the relative magnitude may vary with time. For instance, there is a local 

high amplitude row near        corresponding to the spike near      of the actual reflectivity. 

Generally, the assumption of             is reasonable when we derive the Gabor 

deconvolution algorithm. The magnitude of the Gabor spectrum of attenuated seismic trace is 

shown in Figure 4.8.  We can see the amplitude decays with increasing frequency and travel-

time. The magnitude of the Gabor spectra for the two deconvolution algorithms are shown in 

Figure 4.9 and 4.10. For the stationary deconvolution, the Gabor spectrum of the estimated 

reflectivity is obviously distorted compared to the one shown in Figure 4.7. For the Gabor 

deconvolution, the Gabor spectrum of the estimated result has magnitude of approximately the 

same level over all frequency (within the given frequency band) and traveltime, which is 

consistent with the assumption             of conventional Gabor deconvolution. When this 

assumption violated, the estimated result might be distorted as well. For instance, the local high 

amplitude row near        in Figure 4.7 is not addressed by conventional Gabor 

dencovolution, the spike near      of the actual is not recovered by the deconvolution. 

Generally, for deconvolution algorithms, how well the reflectivity is estimated depends on how 

well the involved assumptions address the reality. 
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Figure 4.1. The summation curve of a set of Gaussian windows with half-with of        and 

spacing of          (red: summation curve; blue: Gaussian windows). 

 

Figure 4.2. The summation curves of a set of Gaussian windows with fix Gaussian width of      
and varied window spacing of      ,      ,     , and     . 
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Figure 4.3. Signal reconstruction using approximate discrete Gabor transform. 

  

Figure 4.4. Signal reconstruction using normalized discrete Gabor transform. 
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Figure 4.5. An attenuated seismic trace created from random/white reflectivity by a constant-  

model. The source wavelet is a minimum-phase wave with a dominant frequency of      and 

the   value is 50. 

 

Figure 4.6. Results of the Gabor deconvolution and Wiener spiking deconvolution. (blue) The 

attenuated seismic trace shown in Figure 4.5. (green) The result of Winner spiking deconvolution 

proceeded by AGC. (red) The result of Gabor deconvolution without proceeding gain correction. 

(black) The bandlimited actual reflectivity. 
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 Figure 4.7. Magnitude of the Gabor transform of the band-limited actual reflectivity in Figure 

4.6. 

 

Figure 4.8. Magnitude of the Gabor transform of the attenuated seismic trace in Figure 4.6. 
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Figure 4.9. Magnitude of the Gabor transform of the estimated reflectivity by the Wiener spiking 

deconvolution in Figure 4.6.  

 

Figure 4.10. Magnitude of the Gabor transform of estimated reflectivity by Gabor deconvolution 

in Figure 4.6.  
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4.3 Color correction for Gabor deconvolution 

4.3.1 Theory of the color correction method 

If the assumption of white reflectivity is violated, i.e.           deviates from unity 

significantly, which is usually true in practice. Then deconvolution algorithm discussed above 

should modified accordingly, since it always gives estimation result with white amplitude 

spectrum (              ), which may differ from the true nonwhite reflectivity apparently.  If 

some relevant regional well log information is available, we can conduct color correction to the 

Gabor deconvolution.  

Suppose that   
       is the Gabor transform of the nonwhite reflectivity       calculated 

from a well log, and    
                    is the corresponding smoothed amplitude spectrum.  The Gabor 

deconvolution operator with color correction can be formulated as (Cheng and Margrave, 2009a) 

         
   
                    

                           
         ,  (4.23) 

where   is the stability factor,      is the maximum value of                      , and the phase         

is given by the Hilbert transform (over frequency), 

               
   
                    

                           
  .  (4.24) 

The estimation of nonwhite reflectivity can be expressed in Gabor domain as 

             
          

                    

                           
        .  (4.25) 

While equation (4.25) uses well log information to estimate the non-white reflectivity, 

what we need is only a smoothed Gabor amplitude spectrum.  Neither detail nor phase 

information is needed.  It is quite likely that this required well information is a very slowly 
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changing function of position so that wells that are quite distant can still be used for color 

correction to conventional Gabor deconvolution. 

The estimated result with the white reflectivity assumption can be viewed as a special 

case where     
                    is nearly constant.  When the real    

                    has obvious amplitude 

fluctuations, a white-reflectivity estimation tends to enlarge some particular parts of reflectivity 

series, which correspond to the low amplitude areas of    
                   .  In addition, the effect of color 

correction depends on how much    
                    departs from unity or a constant and how reliable the 

employed    
                    is, which, in turn, is subject to the available frequency band and 

completeness of well log information. 

The key point of the correction method is that how to obtain an appropriate    
                   .  If 

sufficient well log information is available,        and      nearly have the same length in time, 

which can be denoted by a time interval         .     
                    can be directly obtained from the 

Gabor spectrum of      .  For this case, color correction can improve the reflectivity estimation 

effectively. 

4.3.2 Practical consideration for the color correction method 

 In practice, the well log is usually incomplete and limited to some depth range, which 

corresponds to only a part of the whole seismic trace recorded at the surface.  On this occasion, 

we need to use the limited well log to estimate a complete    
                   , which should be of the 

same size with         in time-frequency domain as indicated by equation (4.25).  There may be 

different ways to achieve this.  One way assumes that the color feature of nonwhite reflectivity is 

temporally stationary, i.e.    
                    only changes with frequency  .  Suppose that         is the 
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incomplete reflectivity series with a time interval         (             ), and its’ Fourier 

spectrum is       . Then,    
                    can be approximated by a smoothed version of       .  

There are various ways to do the smoothing.  In this chapter, we use a polynomial approximation 

approach. The order of the polynomial can be chosen manually as an input parameter for the 

correction method, and we use the polynomial approximation with highest order of 2 as example 

to introduce the approach. So, the spectrum of well-log reflectivity        can be approximated 

as 

                    
 ,  (4.26) 

where   ,    and    are constants determined using a least-squares algorithm. So,    
                    can 

be modeled as 

    
                              

 .  (4.27) 

As an alternative, another way derives     
                    from the Gabor spectrum,          of 

the incomplete reflectivity       , based on an assumption that the color feature of nonwhite 

reflectivity is slowly time-variant.  First,          is smoothed as  

              
       

        
      ,             (4.28) 

where   
    ,        , is a coefficient curve and limited to the interval         because of the 

incompleteness of       .  Then,    
                    can be expressed as 

    
                                       

 ,            ,  (4.29) 

where      ,        , can be obtained as 
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 .  (4.30) 

When multiple well logs of the same region are available, we can take full advantage of 

all available information. First, the Gabor spectra of well-log reflectivities are smoothed using 

equation (4.28).  So, we can get a set of coefficient curves. Then,     
                    is still modeled by 

equation (4.29), while       is calculated by combining all the coefficient curves of each well 

log through interpolation and extrapolation.  Through this approach, we can approximate the true 

   
                    very well if the well logs are well distributed in time and the color feature of nonwhite 

reflectivity is not drastically time-variant.  

4.3.3 Examples 

A 0.85s long reflectivity series, calculated from a well log 14-09, is used to test the color 

correction method.  Figure 4.11 shows the reflectivity series and its amplitude spectrum. There is 

an obvious roll-off in the amplitude spectrum from      to      , which indicates that the 

reflectivity is not white.  The Gabor amplitude spectrum of the reflectivity series is shown in 

Figure 4.12.  The low amplitude zone around      is apparent, which demonstrates that the color 

feature of the nonwhite reflectivity is time-variant. 

According to equation (4.16), a synthetic attenuated seismic trace was created by 

applying a forward   filter to the nonwhite reflectivity, and then convolving the result with a 

source wavelet.  For the examples in this section, the   value is 50, and the source wavelet is a 

minimum phase wavelet with a dominant frequency of     .  Supposing that a complete well 

log is available and the effective frequency band for deconvolution is         , a testing on 

color correction method, directly conducted according to equation (4.25), is shown in Figure 
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4.13.  We can see that conventional Gabor deconvolution, with white reflectivity assumption, 

gave an obviously enlarged estimation from      to      compared to the true reflectivity series, 

which corresponds to the low magnitude area of the Gabor spectrum shown in Figure 4.12.  With 

color correction, the estimated result is very close to the true reflectivity.  With sufficient well 

log information and wide frequency band for deconvolution, such a case is ideal for applying 

color correction. 

However, the available frequency band may be limited by the quality of seismic data in 

practice.  Figure 4.14 and 4.15 show the results of the Gabor deconvolution with a frequency 

band of          and         respectively.  As demonstrated by Figure 4.13, 4.14, and 

4.15, the color correction method, even with complete well log information, gradually loses its 

advantage over conventional deconvolution method when the frequency band becomes 

increasingly limited.  

In addition, the actual well log is usually recorded within some depth range and is 

incomplete compared with the seismic trace.  Figure 4.16 shows a truncated part of the nonwhite 

reflectivity shown in Figure 4.11, its amplitude spectrum and the polynomial approximation of 

amplitude spectrum.  Assuming the color feature of nonwhite reflectivity is stable, color 

correction was conducted using equation (4.25) and (4.27). The result is shown in Figure 4.17. 

For this case, color correction improved the estimation by addressing the nonwhite Fourier 

spectrum shown in Figure 4.16, for example, the estimated reflectivity series is obviously more 

accurate around 0.19s and 0.36s, but it still gives an enlarged estimation around 0.5s because the 

time-variant color feature is not honored.  Taking the time-variant color feature of nonwhite 

reflectivity into account, the Gabor spectrum can be smoothed using equation (4.28).  For the 

complete nonwhite reflectivity series, the coefficient curves for the polynomial approximation 
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with highest order of 2 are shown in Figure 4.18, in which the smooth curves indicate the color 

feature of nonwhite reflectivity is slowly time-variant.  For the incomplete reflectivity series 

shown in Figure 4.16, the coefficient curves can be created using equation (4.30).  The color 

correction method was applied using equation (4.25) and (4.29).  Figure 4.19 shows the 

deconvolved results.  We can see that the reflectivity series around 0.5s is estimated with better 

relative amplitudes compared with the result in Figure 4.17, which is due to the partially 

addressing of the time-variant color feature.  

When multiple incomplete well logs of the same area are available, the coefficient curves 

can be obtained through interpolation and extrapolation.  An example for this case is illustrated 

by Figure 4.20.  The coefficient values for time interval             and             are 

obtained from two well logs using equation (4.28) respectively.  Then, the coefficient values for 

other time intervals are obtained through interpolation and constant extrapolation.  After 

modeling the Gabor spectrum of the nonwhite reflectivity, the color correction is applied 

according to equation (4.25), whose results are shown in Figure 4.21. We can see that the 

deconvolved trace with color correction matches the true reflectivity well, because the time-

variant feature of the nonwhite reflectivity is addressed with sufficient accuracy.  



 

164 

 

Figure 4.11. (a) Nonwhite reflectivity calculated from well log 14-09. (b) The amplitude Fourier 

spectrum of nonwhite reflectivity.  

 

Figure 4.12. Amplitude Gabor spectrum of the nonwhite reflectivity shown in Figure 4.11. 
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Figure 4.13. Gabor deconvolution with a frequency band of           . (a) Non-white 

reflectivity. (b) Synthetic attenuated trace. (c) Gabor deconvolved trace without color correction. 

(d)  Gabor deconvolved trace with color correction using a complete reference well log. 

 

Figure 4.14. Gabor deconvolution with a frequency band of           . (a) Nonwhite 

reflectivity. (b) Synthetic attenuated trace. (c) Gabor deconvolved trace without color correction. 

(d) Gabor deconvolved trace with color correction using a complete reference well log. 
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Figure 4.15. Gabor deconvolution with a frequency band of          . (a) Nonwhite 

reflectivity. (b) Synthetic attenuated trace. (c) Gabor deconvolved trace without color correction. 

(d) Gabor deconvolved trace with color correction using a complete well log. 

 

Figure 4.16. (a) Incomplete nonwhite reflectivity: the           part of the reflectivity series 

shown in Figure 4.11. (b) The amplitude spectrum of the incomplete reflectivity and its 

polynomial approximation with highest order of 2. 
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Figure 4.17. Color correction using single incomplete well log shown in Figure 4.16. (a) 

Nonwhite reflectivity. (b) Synthetic attenuated trace. (c) Gabor deconvolved trace. (d)  Gabor 

deconvolved trace with color correction using equation (4.25) and (4.27). 

 

Figure 4.18. Coefficient curves for polynomial approximation of Gabor spectrum of the 

nonwhite reflectivity. (a) Coefficient curve      . (b) Coefficient curve      . (c) Coefficient 

curve      . 
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Figure 4.19. Color correction using single incomplete well log shown in Figure 4.16. (a) 

Nonwhite reflectivity. (b) Synthetic attenuated trace. (c) Gabor deconvolved trace without color 

correction. (d)  Gabor deconvolved trace with color correction based equation (4.25) and (4.30). 

 

Figure 4.20. Calculation of coefficient curves for polynomial approximation of the Gabor 

spectrum of the nonwhite reflectivity using two incomplete reflectivity series (One is from 0.2s 

to 0.4s, the other is from 0.6s to 0.8s) (a) Coefficient curve      . (b) Coefficient curve      . 
(c) Coefficient curve      . 
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Figure 4.21. Color correction using multiple well logs. (a) Nonwhite reflectivity. (b) Synthetic 

attenuated trace. (c) Gabor deconvolved trace without color correction. (d)  Gabor deconvolved 

trace with color correction; The coefficient curves shown in Figure 4.20 are used to build the 

Gabor spectrum of nonwhite reflectivity according to equation (4.30). 

4.4 The influence of reflectivity color 

4.4.1 Amplitude distortion and phase rotation 

When the real                       demonstrates obvious spectral or temporal color feature, a white 

reflectivity estimation tends to have distorted relative amplitude and large phase rotation 

compared with true reflectivity.  The relative amplitude can be revealed by comparing the 

envelopes of the estimated reflectivity and the true reflectivity calculated from well log.  A 

simple way to roughly estimate the envelope of a signal      is formulated as  

                    , (4.31) 

where       is the Hilbert transform of     . 

A definition of the nonstationary phase rotation was proposed by Cheng and Margrave 

(2009a) as following 
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                                       , (4.32) 

where      is the time-variant phase rotation,        is the 90 degree phase rotated version 

of      , and       is the nonstationary phase rotated version of     . The time-variant phase 

rotation between two signal       and       can be measured through least-square analysis  

                                         ,             (4.33) 

where         is a window  function center at   ,                 is a rotated version of 

             by a constant phase  . Then, the nonstationary phase rotation can be removed 

based on equation (4.32).  It should be pointed out that the phase rotation in equation (4.33) is 

measured with some time interval, which is usually larger than sampling rate. Then, to apply the 

phase rotation by equation (4.32), the phase term      for each sampling time can be obtained 

from       by interpolation. 

The distortion of deconvolution result can be evaluated in term of amplitude distortion 

and phase rotation. The color feature of real reflectivity can be decomposed into temporal color 

and spectral color. Cheng and Margrave (2010) investigated the influence of reflectivity color on 

Gabor deconvolution. We will use some examples to reveal the relation between the color 

features and the distortion of reflectivity estimation. 

4.4.2 Examples 

The true reflectivity in Figure 4.11 was rotated by 60 degree, and the result is shown in 

Figure 4.22. Use these two reflectivity series to test the method of measuring nonstationary 

phased rotation as formulated by equation (4.33). The measured phase rotation is shown in 

Figure 4.23. We can see that the measurement is accurate with a relative error less than 1%. 

The nonstationary phase rotation between the estimated reflectivity and true reflectivity is 

shown in Figure 4.24, which is measured in Gabor (Gaussian) windows using the reflectivity 
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series shown in Figure 4.13.  The result of color correction has much smaller phase rotation 

compared with that of conventional Gabor deconvolution.  To evaluate the definition of 

nonstationary phase rotation as equation (4.32), phase correction is applied to the estimated 

reflectivity in Gabor windows (method 1) and based on equation (4.32) (method 2) respectively.   

And then the remaining phase rotation with respect to true reflectivity is re-measured, which is 

shown in Figure 4.25.   For the estimated results of deconvolution, phase correction can obtain 

better result for the case with color correction than those of conventional Gabor deconvolution, 

which may indicate that phase correction can achieve better results when the amplitude spectra 

of signals are close to each other.  In addition, for phase correction, method 2 obtains a slightly 

better result compared with method 1, which means that the definition of nonstationary phase 

rotation as equation (4.32) is, to some degree, practical.  

Figure 4.26 shows the envelopes of the estimated reflectivity and the true reflectivity. We 

can see that conventional Gabor deconvolution gives result with obviously distorted relative 

amplitude.  With the application of color correction, amplitude distortion is mitigated. 

To distinguish the influence of spectral color and temporal color on Gabor deconvolution, 

we separated these two color feature from the Gabor spectrum of the reflectivity. Figure 4.27 and 

4.28 show the temporal color retrieved version and spectral color retrieved version of Figure 4.12 

respectively. Color correction was applied using the spectral color and temporal color separately. 

The results are shown in Figure 4.29. The spectral color addressed estimation has similar 

waveform but distorted amplitude compared to the true reflectivity. The temporal color 

addressed estimation demonstrates close amplitude but different waveform compared to the true 

reflectivity. A comparison of the envelopes of the estimated reflectivity is shown in Figure 4.30 

and Figure 4.31 displays the nonstationary phase rotation between the estimated reflectivity and 
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the true reflectivity. The results demonstrate that the spectral color is connected to large phase 

rotation while the temporal color is connected with amplitude distribution.  

 

Figure 4.22. The true reflectivity series in Figure 4.11 and its 60 degree rotated version 

 

Figure 4.23. Phase rotation measurement for the two reflectivity series shown in Figure 4.22. 
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Figure 4.24. Nonstationary phase rotation of estimated reflectivity in Figure 4.13. 

 

Figure 4.25. Remaining phase rotation after phase correction for the deconvolved results shown 

in Figure 4.13. 
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Figure 4.26. Envelopes of the reflectivity series shown in Figure 4.13. 

 

Figure 4.27. Temporal color of the Gabor spectrum shown in Figure 4.12. 
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Figure. 4.28. Spectral color of the Gabor spectrum shown in Figure 4.12. 

 

Figure 4.29. Reflectivity estimations: (a) true reflectivity; (b) full color correction estimation; (c) 

temporal color addressed estimation; (d) spectral color addressed estimation. 
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Figure 4.30. Phase rotation of reflectivity estimations shown in Figure 4.29. 

 

Figure 4.31. Envelopes of the reflectivity series shown in Figure 4.29. 
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4.5 Application of the color correction method to field data 

The field data used to test our color correction method is a 2D seismic line with 159 shots 

and 151 receiver stations, which was acquired over Blackfoot field near Strathmore, Alberta in 

1995. The reference well log is well 14-09 with a recorded depth range from      to about 

     , and which is about      away from the seismic line and can be projected to the 

seismic line using the X-Y coordinates.  

The density log, P wave velocity log, computed reflectivity and synthetic seismic trace of 

well 14-09 are shown in Figure 4.32. Figure 4.33 shows the Gabor spectrum of the nonwhite 

reflectivity, whose amplitude depends on both time and frequency. Here an initial time shift of 

210 was employed to align well log data to the field data, which was estimated based on the 

depth data, velocity data and correlation between synthetic seismic trace and the field data.  In 

general, the true reflectivity calculated from well 14-09 has obvious spectral color and temporal 

color. As shown in Figure 4.34, the spectral color can be visualized on a normalized version with 

respect to time of the true Gabor spectrum. The temporal color roughly tells how the magnitude 

of localized reflectivity changes with time, as illustrated by Figure 4.35. 

The spectral color correction is probably more of our interest from the point view of 

deconvolution due to its connection with phase rotation of the estimation result.  The spectral 

color can be regarded as normalized color correction. Since the spectral color is not sensitive to 

the alignment error of well log to field data, spectral color correction may be preferable for 

prestack  deconvolution. The spectral and temporal color correction can be a choice for poststack 

deconvolution.  Henley et al (2010) gave a detailed description about the implementation of 

color correction to field data using ProMAX. 
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The Blackfoot seismic data was processed using ProMAX with a flow of static 

correction, geometric spreading correction, prestack Gabor decon (with or without color 

correction), NMO, stacking, poststack Gabor decon (with or without color correction), and 

Kirchhoff time migration. To align the well log roughly with the field data, an initial time of 

     , as mentioned previously, was applied to the well log data. For Gabor deconvolution 

case, both prestack and poststack deconvolution were conducted using conventional Gabor 

deconvolution.  For spectral color correction case, both prestack and poststack deconvolution 

were conducted using Gabor deconvolution with spectral color correction.  For the full color 

correction case, Gabor deconvolution with spectral color correction and Gabor deconvolution 

with full color correction were used for prestack deconvolution and poststack deconvolution 

respectively. The migrated seismic data for these three cases are shown as Figure 4.36, 4.37 and 

4.38. To compare the above results, some zoomed parts are shown from Figure 4.39 to Figure 

4.41.  From Figure 4.40, we can observe the separated events at        and      , which are 

not clear in Figure 4.39. Compared with Figure 4.40, there is a lower amplitude zone around 

      in Figure 4.41, which corresponds to the low amplitude zone around 0.7s in Figure 4.35. 

A spectral analysis was conducted using the seismic data shown in Figure 4.36, 4.37 and 4.38. 

The average amplitude spectrum of the traces with CDP number from 50 to 250 and time range 

from       to        was calculated,   as shown in Figure 4.42.  The seismic data with color 

correction applied has higher amplitude for those frequency components over     .  From the 

above comparison in time domain and frequency domain, we can see that spectral color 

correction strengthen the high frequency components of seismic data.  Compared to spectral 

color correction, full color correction modifies the amplitude of the seismic trace according to 

well log information as well.  To track the variation of frequency band of seismic data during the 
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data processing, using the spectral color correction case as an example, average amplitude 

spectra were calculated from seismic data after the implementation of prestack deconvolution, 

stacking, poststack deconvolution and migration.  As shown in Figure 4.43, deconvolution 

whitens the seismic data to recover high frequency components, while stacking significantly de-

whiten the spectrum of seismic data when it attenuates the noise.  Kirchhoff migration, which 

can be regarded as stacking along the diffraction curves, slightly de-whitens the seismic data as 

well. 

 

Figure 4.32. Well log 1409. From left to right: synthetic seismic trace, Ricker wavelet with a 

dominant frequency of     , computed reflectivity, P wave velocity and density. 



 

180 

 

Figure 4.33.  Gabor amplitude spectrum of the nonwhite reflectivity shown in Figure 4.32. 

 

Figure 4.34.  Similar to Figure 4.33 except that each constant-time row of the Gabor amplitude 

spectrum has been independently normalized to remove the temporal variation.  This emphasizes 

the spectral color of the nonwhite reflectivity shown in Figure 4.32. 
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Figure 4.35. The temporal variation of the Gabor spectrum shown in Figure 4.33. This 

emphasizes the temporal color of the nonwhite reflectivity shown in Figure 4.32.        

 

Figure 4.36.  Migrated seismic data with Gabor deconvolution applied. 
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Figure 4.37.  Migrated seismic data with spectral color correction applied. 

 

Figure 4.38. Migrated seismic section with full color correction applied. 
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Figure 4.39.  A zoomed part of the seismic data shown in Figure 4.36. 

 

Figure 4.40. A zoomed part of the seismic data shown in Figure 4.37. 
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Figure 4.41. A zoomed part of the seismic data shown in Figure 4.38. 

 

Figure 4.42. The average amplitude spectra of the seismic data (CDP 50-250, time:       
      ) shown in Figure 4.36, 4.37 and 4.38 and the amplitude spectrum of synthetic seismic 

trace shown in Figure 4.32. 
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Figure 4.43. The average amplitude spectral of seismic data at different stage of data processing 

flow for the spectral color correction case. Blue: after prestack decon. (FFID: 7, CHAN 21-71, 

time:             ); Green: after stacking (CDP 150-200, time:             ); Red: 

after poststack decon. (CDP 150-200, time:             ); Black: after Kirchhoff time 

migration (CDP 150-200, time:             ). 
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seismic trace of CDP 37 that has nearly the same X coordinate.  The correlation of the synthetic 

trace to the migrated seismic data is shown as Figure 4.45, 4.46 and 4.47. We can see that the 

spectral color correction and full color correction have similar results. With color correction 

applied, the seismic data has higher frequency components for the events around       and 

     , all of which roughly match the synthetic seismic trace. For the correlation time range 

from       to       , the phase rotation between the migrated seismic traces and synthetic 

seismic trace was measured and shown in Figure 4.48.  The phase rotation for the spectral color 

correction case and full color correction case is similar and comparable to the conventional 

Gabor deconvolution case.  So, with color correction applied, seismic data has more high 

frequency components and roughly tie better to the well log data. In other words, color 

correction can improve the resolution of seismic data. 

 

Figure 4.44. Lower part the well 14-09. From left to right: synthetic seismic trace, computed 

reflectivity, P wave velocity and density. 
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Figure 4.45. Correlation of synthetic seismic trace and migrated seismic data with Gabor decon. 

Blue: synthetic seismic trace; Red: migrated seismic trace with CDP 37; Black: migrated seismic 

traces around CDP 37. 

 

Figure 4.46. Correlation of synthetic seismic trace and migrated seismic data with spectral color 

correction.  Blue: synthetic seismic trace; Red: migrated seismic trace with CDP 37; Black: 

migrated seismic traces around CDP 37. 
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Figure 4.47. Correlation of synthetic seismic trace and migrated seismic data with full color 

correction.  Blue: synthetic seismic trace; Red: migrated seismic trace with CDP 37; Black: 

migrated seismic traces around CDP 37. 

 

Figure 4.48. Phase rotation between synthetic seismic trace and migrated seismic trace of CDP 

37 from      to   . 
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4.6 Summary 

The Gabor transform decomposes a signal into time-frequency domain by windowing the 

signal with a set of windows and then doing the Fourier transform, which provide a local 

spectrum of a signal. By this localization processing, Gabor transform can extend the Fourier 

transform to the nonstationary realm. The discrete Gabor transform can be easily realized using 

an approximate way, whose error can be well controlled by properly choosing of parameters. 

The Gabor deconvolution algorithm is developed based on a nonstationary convolution 

model. It can estimate the attenuated propagating wavelet, which can address the constant-

  attenuation inherently and is equivalent to applying an inverse-  compensation to seismic 

trace when conducting the deconvolution. Therefore, Gabor deconvolution can be regarded as a 

combination of stationary deconvolution, inverse-  filtering and gain correction. Testing on 

synthetic data shows that Gabor deconvolution can provide better estimation of reflectivity than 

conventional Wiener spiking deconvolution.  

In practice, the reflectivity is usually nonwhite and the color feature is time-variant, 

which needs to be corrected in a nonstationary way.  A color correction method is presented in 

this chapter. If relevant well-log information is available, color correction can be incorporated 

into Gabor deconvolution in a nonstationary way. To make the correction method practical, the 

time-variant reflectivity color can be approximated by a low-order polynomial fitting over 

frequency with time-variant coefficients. This approach addresses the nonstatioanry reflectivity 

color appropriately, and it also deals with incomplete well-log or multi-well log information 

conveniently. 

The distortion of reflectivity estimation can be divided into relative amplitude distortion 

and phase rotation. Color correction can significantly improve the reflectivity estimation with 
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smaller relative distortion and phase rotation. The effect of color correction depends on the 

frequency band available. When frequency band becomes narrow, color correction may lose its 

effect gradually.  In addition, a practical way to measure and remove the nonstationary phase 

rotation between two associated signals is proposed, which can be used to remove the phase 

rotation of estimated reflectivity. 

The time-variant reflectivity color can be decomposed into spectral color and reflectivity 

color.  Testing with synthetic data and field data both reveal that the temporal color and spectral 

color are responsible for amplitude distortion and phase rotation respectively.  

The color correction method is applied to a field 2D line. Testing results, to some degree, 

indicate that color correction can improve the resolution of seismic data and obtain a better tie to 

the well-log data. 

 In addition, data processing result of the field 2D line shows that deconvolution can 

whiten the spectrum of seismic data to recover high frequency components, while stacking and 

Kirchhoff time migration, at different levels, de-whiten the spectrum of seismic data. 
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Chapter Five: Conclusions 

5.1 Modeling of seismic attenuation 

A nonstationary convolution model, the reflectivity method, and a finite-difference 

technique for viscoelastic modeling are reviewed. All of them can incorporate the attenuation 

into their modeling results with sufficient accuracy. Depending on the circumstance and our 

needs, we can choose these methods to produce realistic results for absorptive media. 

 For the implementation of the nonstationary convolution model, the key issue is to 

incorporate the impulse response representing attenuation accurately.  In the matrix-vector 

production form of the nonstationary model, truncation of the original impulse response is 

necessary. The amplitude spectrum of the truncated impulse response is distorted if a direct 

truncation is made, which makes the incorporation of   attenuation inaccurate. A bandlimited 

version or a circle-shifted version of the original impulse response can be adopted to preserve its 

amplitude spectrum, which can incorporate constant-  attenuation accurately. 

The reflectivity method is very useful and widely used for the seismic modeling of 

stratified media. We implement this method for stratified anelastic media. It can model all kinds 

of waves and address the geometric spreading and   attenuation properly. This makes the 

modeling result realistic and gives sufficient information for layered earth model. In addition, 

testing results show that the amplitudes of reflection events are consistent with the result given 

by Zoeppritz equation.  Another advantage of the reflectivity method is its flexibility, which is 

demonstrated by our implementation as well. 

The finite-difference technique is a powerful tool for viscoelastic seismic modeling, 

which can deal with 2D or 3D heterogeneous media and arbitrary distribution of quality factors. 
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Synthetic seismograms obtained from the Tiger software show that finite difference technique 

can produce very realistic results. 

5.2 Measurement of seismic attenuation 

To develop a  -estimation method that is robust to noise and suitable for application to 

reflection data, three new methods are presented for   estimation in this thesis, including 

complex spectral-ratio method, interpretive spectral-ratio method, and match-filter method.  In 

contrast to the classic spectral ratio method, the complex spectral-ratio method takes full use of 

both amplitude spectra and phase spectra. It adopts an inversion approach to estimation of  .  In 

addition, it can give different weights to amplitude spectra information and phase information to 

give final estimation. Therefore, the classic spectral-ratio method is a special case of complex 

spectral-ratio method.  For the interpretive spectral-ratio method, it simulates the case that   is 

estimated by classic spectral-ratio method with a manual picking of frequency band.  By 

obtaining local slopes of the calculated spectral ratios through polynomial fitting, a piecewise 

linear-line fitting scheme is approximated. Then it automatically chooses a local and optimal 

piece to give the final estimation. When the order of polynomial fitting is one, it reduces to the 

classic spectral-ratio method. For the match-filter method, it only employs the amplitude spectra 

information, and can be regarded as, to some degree, matching the amplitude spectra in time 

domain to avoid the spectral division.  The spectrum smoothing before the minimum-phase 

wavelet calculation is helpful for two reasons. First, smoothed amplitude spectrum can lead to a 

smooth minimum-phase wavelet. The matching between two smooth wavelets can be stable, 

since both of them are of minimum-phase and they have similar waveforms. Second, the 

spectrum smoothing can help to mitigate the influence of local reflectors. The ideal case is that 

the amplitude spectra of local reflectors cancel with each other, such as the VSP data case. 
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Reflectivity is assumed to be random series, which has similar smoothed amplitude spectrum. 

Therefore, smoothing can help to reduce the influence of local reflectivities when we conduct   

estimation using reflection data. 

 Theoretically, the three proposed methods have connection with the spectral-ratio 

method, the spectrum-modeling method and the match-technique method. Among all these 

methods, the match-filter method is a time-domain method while other methods are frequency-

domain methods. The spectrum division is involved for the spectral ratio methods and match 

technique method, and is absent in spectrum-modeling method. The match-technique method can 

be regarded as a sophisticated spectral-ratio method with spectral-ratio estimation, and match-

filter method can be regarded as a sophisticated wavelet modeling method with wavelet 

estimation. The match-filter method, to some degree, can be regarded as the counterpart of 

spectrum-modeling method in time domain. 

The performance of above  -estimation methods is evaluated using synthetic and field 

VSP data.  Testing on synthetic VSP data shows that match-filter method and complex spectral-

ratio method are more stable and robust to noise compared to other methods while all of them 

can give good estimation results for VSP data with moderate noise. Testing on real VSP data 

shows that the match-filter method and the spectrum-modeling method give more stable results, 

since no spectral division is involved in their algorithm, and all the methods can obtain similar 

results at most cases when VSP data with high SNR is used for   estimation.   

For the effect of spectrum smoothing, classic spectral-ratio method, spectrum-modeling 

method and match-technique method, as methods in frequency domain, are sensitive to the 

distortion of amplitude spectrum caused by application of spectrum estimation, which is shown 

by the testing results using synthetic VSP data. Therefore, for these three methods, spectrum 
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smoothing should be optional for application to VSP data depending on the SNR level. For the 

match-filter method, appropriate spectrum smoothing can improve the estimation of embedded 

wavelets, and, in turn, make the estimation result more stable. Testing results show that spectrum 

smoothing can improve the performance for all cases. Therefore, spectrum smoothing can be an 

integrated part of the match-filter method. 

All the frequency domain methods are directly subject to the frequency band chosen for 

  estimation. Theoretically, the result of the match-filter method can be affected by the 

frequency band used to estimate the embedded wavelets.  Accurate estimation of   requires a 

rough match of the frequency bands for embedded wavelets, which can be chosen based on the 

evaluation of their amplitude spectra of original local waves. 

 For the complex spectral ratio-method, testing results with synthetic VSP data show that 

  estimation is dominated by the phase information when the misfits from amplitude spectra and 

phase difference are equally weighted, which might indicate that we can obtain better estimation 

result using phase information than using amplitude spectra information.  In addition, complex 

spectral-ratio method is subject to the reference frequency chosen for modeling phase difference 

as well.  Inaccurate reference frequency can distort the estimation. To address this problem, the 

calibration of other methods can be used to choose reference frequency, with the expectation that 

they should obtain similar results. An alternative approach can be that the reference frequency is 

determined by minimizing the mismatch between modeled phase difference and measured phase 

difference. However, these two approaches fail when we conducted   estimation with real VSP 

data, which might indicate that the phase relation is not preserved as well as the amplitude 

spectrum relation between propagating wavelets for field VSP data. To successfully apply the 

complex spectral-ratio method to real VSP data, minimum-phase equivalent wavelet 
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transformation might be necessary before   estimation, and the reference frequency can be 

chosen with the calibration of other methods. When applied properly, the complex spectral-ratio 

method can obtain similar results to match-filter method. 

When applied to reflection data, the classic spectral-ratio method, spectrum-modeling 

method and match-technique method fail. The interpretive spectral-ratio method significantly 

improves the performance of classic spectral-ratio method, while the estimation results still have 

large standard deviation value. In contrast, match-filter method gives quite accurate and stable 

results. The estimation results of match-filter method are quite insensitive to noise, which may 

indicate that the spectrum estimation of local wavelets by multitaper method is mainly affected 

by the tuning effect of local reflectors instead of noise.  Theoretical analysis shows that   

estimation can be applied to reflection data either before or after stationary deconvolution, which 

is verified with the test using synthetic 1D data. 

When conducting   estimation for a 2D gather, a small ensemble of neighbouring traces 

can be employed to give the final spectrum estimation for a single trace centered at this 

ensemble. This approach can help to obtain a better smoothed spectrum and stabilize the   

estimation. To identify the low   zone of subsurface,   profiles can be obtained from CDP 

gathers using match-filter method, then the low   zone can be identified by evaluating the 

variation of estimated   with respect to travel-time and horizontal coordinates. Testing with 

synthetic 2D reflection data and field data demonstrates that this approach has the potential to 

identify the localized low   zone from reflection data for a layered media. 

Generally, for all the  -estimation methods discussed in this thesis, the match-filter is 

significantly superior to others in terms of accuracy and robustness to noise, and is much more 

suitable to be applied to reflection data. 
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5.3 Gabor deconvolution and the color correction to white-reflectivity assumption 

Gabor deconvolution estimates the attenuated propagating wavelet and de-signature it 

from the seismic trace.  Through this approach, Gabor deconvolution addresses the constant-  

attenuation inherently and is equivalent to make an inverse-  compensation to seismic trace 

when conducting the deconvolution. Therefore, Gabor deconvolution can be regarded as a 

combination of stationary deconvolution, inverse-  filtering and gain correction. Testing on 

synthetic data shows that Gabor deconvolution can provide better estimation of reflectivity than 

conventional Wiener spiking deconvolution.  

In practice, the reflectivity usually does not have a white amplitude spectrum, and the 

reflectivity color is time-variant, which is obvious when the reflectivity is transformed into 

Gabor domain. The white-reflectivity assumption can lead to distortion to reflectivity estimation. 

To address this problem, a color correction for Gabor deconvolution is presented, in which the 

correction to white reflectivity assumption is incorporated into deconvolution algorithm in a non-

stationary way using relevant well-log reflectivity.  

To make the color correction method practical, the Gabor spectrum of well-log 

reflectivity is approximated by low-order polynomial fitting with time-variant coefficients.  The 

time-variant feature of reflectivity is addressed by the time-variant coefficients.  The adoption of 

low-order polynomial fitting means that only a rough trend of the reflectivity color is needed, 

which makes the color correction method insensitive to a particular well and well-log 

information from the same region useful.  

The distortion of reflectivity estimation can be evaluated in term of distortion of relative 

amplitude and nonstationary phase rotation. The distortion of relative amplitudes can be 

evaluated by comparing the envelopes of estimated reflectivity and true reflectivity. The 
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nonstationary phase rotation can be measured in Gabor windows.  A practical definition of 

nonstationary phase rotation is proposed, which can be used to remove the phase rotation of 

estimated reflectivity. Testing results with synthetic data show that color correction can 

significantly improve the reflectivity estimation with better relative amplitude and smaller phase 

rotation. Test with synthetic data shows that the effect of color correction is subject to the 

frequency band available. When the frequency band is limited, color correction will lose its 

effect gradually. 

The time-variant reflectivity color can be decomposed into temporal color and spectral 

color.  Testing results with synthetic data and field data both demonstrate that the temporal color 

and spectral color are responsible for distortion of relative amplitude and phase rotation 

respectively.  

The color correction method is applied to a field 2D line where reference well-log 

information is available. Testing on field data, to some degree, indicates that color correction can 

restore the high frequency components of seismic data and obtain a better tie to the well log data. 

The results from the data processing of a field 2D line indicate that deconvolution can 

whiten the spectrum of seismic data to recover high frequency components, while stacking and 

Kirchhoff time migration de-whiten the spectrum of seismic data at different levels.  

5.4 Future work 

 For the   estimation methods described in this thesis, the match-filter method has been 

shown to be suitable for application to reflection data and give accurate and stable results even in 

presence of extensive noise.  The match-filter method can be further evaluated using reflection 

data with associated VSP data by comparing the results obtained from these two datasets. In 

addition, schemes to obtain reliable interval-  structure for seismic data using VSP data or 
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surface reflection data need further investigation, and the match-filter can be incorporated into 

the schemes because of its high accuracy and stability for   estimation.  
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