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Abstract 

Seismic-to-well ties are important for seismic interpretation and impedance inversion. 

Reflectivity can be calculated directly from well logs while its estimation from seismic data 

requires the determination of the seismic wavelet and the removal of the same. In the presence of 

anelastic attenuation, the constant-Q theory predicts that the seismic wavelet evolves with 

amplitude decay and minimum-phase dispersion. Stationary deconvolution estimates and 

eliminates a single wavelet from the nonstationary trace, resulting in large nonstationary 

amplitude and phase errors. Gabor deconvolution accurately estimates and eliminates the 

amplitude spectra of the propagating wavelets, but only corrects the phase to the seismic Nyquist 

frequency. A phase correction operator is developed to correct the phase to the well logging 

frequency. Both synthetic and real data examples show seismic-to-well ties can be improved by 

correcting their time shifts via smooth dynamic time warping and addressing slowly time-variant 

nonstationarity in a sliding Gaussian window. 
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�̂�(𝑓)  The Fourier transforms of 𝑟(𝑡) 
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RMS Root mean square 

  

𝑠(𝑡)  A seismic trace 

  

�̂�(𝑓)  The Fourier transform of 𝑠(𝑡) 

  

�̂�𝑔(𝜏, 𝑓)  The forward Gabor transform of the seismic trace 
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only 

  

𝑠𝑞𝑖(𝑡)  A nonstationary seismic trace including both Q 
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and internal multiple effects 

  

𝑠𝜃(𝑡)  A trace s after 𝜃 degree phase rotation 

  

𝑠𝜎(𝜏)  A trace 𝑠 windowed by a Gaussian function 𝑔𝜎(𝑡) 

of standard width 2𝜎 centered at time 𝜏 

  

𝑠𝑐𝑎𝑙𝑎𝑟(𝑡)  A time-variant scalar function used to illustrate 

time-variant amplitude balancing 

  

SDTW Smooth dynamic time warping 

  

𝑡, 𝜏 Variables denoting the time coordinate 

  

𝑡𝑠ℎ𝑖𝑓𝑡  A time-variant time shift function used to illustrate 

dynamic time warping and time-variant 

crosscorrelation 

  

TVCC Time-variant crosscorrelation 

  

𝑢(𝑛)  The lag sequence computed by dynamic time 

warping 

  

𝑣0  The reference velocity of the constant-Q model 

  

𝑣𝑘  The velocity of the 𝑘𝑡ℎ layer 
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VSP Vertical seismic profile 

  

𝑤(𝑡), 𝑤0(𝑡) The source wavelet or signature 

  

�̂�(𝑓), 𝑤0̂(𝑓) The Fourier transform of the source wavelet 

  

𝑤𝑄(𝜏, 𝑡)  The propagating wavelet at traveltime 𝜏 

  

𝑤�̂�(𝜏, 𝑓)  The Fourier transform of the propagating wavelet 

at traveltime 𝜏 

  

𝑧𝑘  The depth to the 𝑘𝑡ℎ layer 

  

𝛼(𝜏, 𝑡)  The impulse response of the attenuation process 

for an impulse at time 𝜏 

  

𝛼(𝜏, 𝑓)  The attenuation function in the time-frequency 
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domain, which is the Fourier transform of 𝛼(𝜏, 𝑡) 

over the second variable 

  

∆𝑑𝑟𝑖𝑓𝑡(𝑡)  The residual drift time remaining in the 

nonstationary seismic trace after Gabor 

deconvolution compared to the well reflectivity 

  

∆𝜑(𝑡, 𝑓)  The residual phase remaining in the nonstationary 

seismic trace after Gabor deconvolution compared 

to the well reflectivity 

  

𝜗(𝑡)  A time-variant constant-phase function used to 

illustrate time-variant constant-phase rotation 

  

𝜌  The value of a density log 

  

𝜑𝑤𝑄
(𝑡, 𝑓)  The phase spectrum of the propagating wavelet at 

traveltime 𝑡 

  

𝜑𝑤𝑄
𝐻 (𝑡, 𝑓)  The phase spectrum of the propagating wavelet at 

traveltime 𝑡 estimated by the digital Hilbert 

transform 

  

𝜑𝑤𝑄

𝐻,𝑐(𝑡, 𝑓)  The phase spectrum of the propagating wavelet at 

traveltime 𝑡 estimated by the digital Hilbert 

transform and being phase corrected 
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Chapter One: Introduction 

1.1 Why seismic-to-well ties are important 

Reflection seismology is essential for modern petroleum exploration. Seismic data allows 

us to estimate the subsurface properties between control points of existing wells (Lines and 

Newrick, 2004). Well formations provide us clues about identifying and tracing seismic 

reflections in seismic data interpretation. Moreover, the well measurements can obtain a wide 

bandwidth while seismic data is always bandlimited and lacks very low frequencies due to the 

source, receiver and earth effects. Without low frequency information, seismic inversion can 

only prescribe a deviation of earth property values from an unknown trend, which can be 

compensated by well logs. 

Seismic interpretation and inversion are possible only if we can correlate seismic 

reflections to well log formations. This is usually done by calculating a reflectivity from sonic 

and density logs and then bandlimiting it as a synthetic seismogram to match the seismic trace, 

which should be a robust estimate of bandlimited reflectivity after processing. However, the 

synthetic seismogram and the seismic trace are never seen to be perfectly tied automatically. 

 

1.2 Why seismic-to-well ties are imperfect 

Seismic-to-well ties are the process of using the well information to calibrate the seismic 

estimate (Margrave, 2013c), since seismic-to-well ties are always imperfect for the following 

reasons (Hampson-Russell Software, 2013; Margrave, 2013) 

 Well logging traveltime corresponding to a particular depth, depends on all the velocities 

above that depth including the top of the log to the surface. However, logs are not usually 

recorded near the surface, so the overburden velocities are unknown. 
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 Problems with sonic logs such as cycle skipping or mud invasion produces cumulative 

errors in the calculated traveltime. 

 Problems with seismic traces such as noise or mispositioned events due to imperfect 

processing. 

 The six inch borehole measurements may not represent the wider stratigraphy, structure 

or anisotropy. 

 Well tying is usually done to primary reflectivity but there may be multiples present in 

the seismic data. 

 The presence of anelastic attenuation makes velocity dependent on frequency. Thus, 

velocities propagating at the seismic frequencies (below 50Hz) are systematically lower 

than those measured at the well logging frequency (about 12.5 kHz). 

 Wavelets vary both in space and in time due to anelasitc attenuation, near surface effects, 

inter-bed multiples, NMO stretch, anisotropy and etc. 

This thesis is mainly to address the misties caused by anelastic attenuation. 

 

1.3 Seismic-to-well ties in industrial practice 

The standard steps of seismic-to-well ties modified from White and Simm (2003) are: 

1 Edit well logs and process seismic data. 

2 Calibrate the sonic times to seismic times. 

3 Create a reflectivity using the calibrated sonic times. 

4 Estimate a zero-phase wavelet from the seismic trace at the well location. 

5 Construct a synthetic seismogram by convolving the well reflectivity with the estimated 

wavelet. 
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6 The phase of the seismic trace is rotated by a single constant-phase (independent of 

frequency) to maximize its correlation with the synthetic seismogram. 

In the first step, the standard seismic data processing estimates the reflectivity by 

determining a single seismic wavelet in the target zone and removing the same through 

stationary deconvolution. However, in the presence of anelastic attenuation, the very notion of a 

single seismic wavelet is not robust. The extracted wavelet is adequate for zone-of-interest 

interpretation but becomes increasingly erroneous above and below the analysis window 

(Margrave, 2013). 

The second step is the most important step because timing errors in the synthetic 

seismogram are much more detrimental than amplitude errors (White and Simm, 2003). With 

knowledge of attenuation factor Q, the expected sonic velocities at the seismic frequency can be 

calculated according to the constant-Q theory (Kjartansson, 1979). Or with a VSP (vertical 

seismic profile) or a check-shot survey available, the integrated sonic times and the seismic first 

arrival times are compared at equal depths to create a time-depth relationship. In the most cases 

where Q values, check-shot or VSP surveys are not available, the synthetic seismogram has to go 

through an interpretive stretch-squeeze process to match the same events on seismic trace based 

on their visual similarity. This process is subjective and is often labeled as unscientific (White 

and Simm, 2003). 

Since deconvolution never perfectly eliminates the embedded wavelets from the seismic 

trace especially for the real data, the wavelet estimated in the fourth step is a residual wavelet 

after deconvolution, which should be time-variant as a result of running stationary deconvolution 

on the nonstationary seismic trace. Thus, the time-invariant constant-phase in the sixth step may 

be insufficient to remove the residual phase in the deconvolved seismic trace. A time-variant 
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phase correction operator is needed to rotate the residual wavelets so that the maximum energy is 

centered at the reflection coefficients as required by interpretation and inversion. 

 

1.4 Improving seismic-to-well ties in the literature 

In this thesis, frequency-dependent attenuation is considered as the major cause of the 

misties. The nonstationarity of seismic traces is addressed by many authors, whose studies 

generally fall into two distinct classes: the inverse Q filtering and the nonstationary 

deconvolution (Margrave et al., 2011). The inverse Q filtering is an exponential amplitude 

increase in both time and frequency, so it is unstable blowing up even a small amount of noise 

(Margrave, 2013c). Another difficulty is that the inverse Q filtering requires knowledge of the Q 

structure, which is difficult to measure and can only be crudely estimated at present (Cheng, 

2013). Gabor deconvolution (Margrave et al., 2011) is a nonstationary deconvolution algorithm 

that corrects for both wavelet shape and attenuation. Without Q information, it measures the 

inherent attenuation from the data directly. Thus, the data adaptive process does not suffer from 

instability and better deals with noise. However, large and time-variant phase errors remain in 

the Gabor deconvolved trace compared to the well reflectivity (Margrave, 2013c). 

As seismic-to-well ties involve estimating and correcting relative time shifts between synthetic 

seismogram and seismic traces, Munoz and Dave (2012), Herrera and van der Baan (2014) and 

Herrera et al. (2014) replace the stretching and squeezing step with a constrained dynamic time 

warping (DTW) technique, which can warp synthetic seismogram to tie seismic traces 

automatically. Although a high correlation can usually be achieved, the time shifts estimated by 

DTW are not smooth enough to approximate the actual drift time, and can be distorted by noise 

and phase errors to make them “overtied”. Compton and Hale (2014) further develop a smooth 
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dynamic time warping (SDTW) technique by introducing a coarse sampling interval so that the 

estimated time shifts are smoother and more accurate. Munoz and Hale (2015) apply SDTW to 

seismic-to-well ties. Although the estimated time shifts are more realistic, they are used to warp 

the synthetic seismogram directly to tie the seismic trace, whose nonstationary residual phase is 

not corrected and may lead to inversion errors. 

 

1.5 Overview of chapters 

This thesis is presented in 6 chapters. 

Chapter 2 illustrates a new technique named smooth dynamic time warping to estimate 

smooth time shifts between two traces. 

Chapter 3 builds the stationary and nonstationary convolutional models, the latter of 

which is based on the constant-Q theory. The case of running stationary deconvolution on the 

nonstationary seismic trace to tie the well reflectivity is discussed. A set of nonstationary 

analysis and processing tools is introduced. 

In Chapter 4, the nonstationary seismic trace is tied to the well reflectivity by Gabor 

deconvolution. A phase correction operator is developed with the help of smooth dynamic time 

warping. 

In Chapter 5, nonstationary synthetic seismograms are built and are tied to a Hussar well 

by Gabor deconvolution with phase correction. The Hussar 2-D seismic section is tied to three 

Hussar wells with the help of smooth dynamic time warping and nonstationary analysis and 

processing tools. Bandlimited impedance inversion is conducted to examine the quality of 

seismic-to-well ties. 

In Chapter 6, conclusions from Chapter 2 to 5 are summarized. 



 

6 

1.6 Software and development 

The main software used in this thesis is MATLAB® which is a high-level programming 

language developed by MathWorks. CREWES has been developing a MATLAB toolbox with a 

variety of modeling, processing and utility functions, which are extensively used in this thesis. 

Several new MATLAB tools are developed and some existing MATLAB tools are upgraded as a 

product of this thesis, which will be introduced in the next section. 

 

1.7 Original contributions 

 A new function named DTW is developed to estimate the time shifts between two signals 

by warping one to match the other based on dynamic time warping algorithm. It is 

described in detail in Section 2.2. 

 A new function named DTWs is developed to estimate the smooth time shifts between 

two signals by warping one to match the other based on smooth dynamic time warping 

algorithm. It is described in detail in Section 2.3. 

 A new function named tvccorr is developed to conduct time-variant crosscorrelation 

between two signals. It is described in detail in Section 2.4 and 3.6.3. 

 An existing function named deconf, which performs frequency domain spiking 

deconvolution, is upgraded by adding different window types to smooth the amplitude 

spectrum of the seismic trace. Available choices are boxcar, Gaussian, Hanning and 

Bartlett. 

 An existing function named gabordecon, which performs Gabor deconvolution, is 

upgraded by including phase correction with input Q values or residual drift time. It is 

described in detail in Section 4.3 and 4.4. 
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Chapter Two: Dynamic time warping and smooth dynamic time warping 

2.1 Chapter overview 

This chapter builds a set of tools to estimate the time shifts between two traces. First, a 

new technique called dynamic time warping (DTW) is introduced. It is based on a constraint 

optimization algorithm and is realized by dynamic programming. Then an improved approach 

called smooth dynamic time warping (SDTW) is discussed to estimate smooth time shifts. 

Finally, DTW and SDTW are compared to the common time-variant crosscorrelation (TVCC) 

method. The application of SDTW in drift time or residual drift time estimation in seismic-to-

well ties will be illustrated in Chapter 4 and Chapter 5. 

 

2.2 Dynamic time warping 

2.2.1 Introduction 

Consider two synthetic traces 𝑠1(𝑛) and 𝑠2(𝑛) shown in Figure 2.1 top panel where 𝑛 is 

sample number. Trace 𝑠1(𝑛) is computed by convolving a random reflectivity series with a 

minimum-phase wavelet whose dominant frequency is 30 Hz.Trace 𝑠1(𝑛) is then warped by a 

time-variant shift sequence 𝑡𝑠ℎ𝑖𝑓𝑡(𝑛) to obtain trace 𝑠2(𝑛). The maximum crosscorrelation 

coefficient between 𝑠1(𝑛) and 𝑠2(𝑛) is 0.4 and this occurs at a lag of -24.2 milliseconds (a 

negative lag value indicates 𝑠2 is delayed relative to 𝑠1). Time shift sequence 𝑡𝑠ℎ𝑖𝑓𝑡(𝑛) is a 

sinusoidal function as shown in Figure 2.1 bottom panel. Representing the time shifts 𝑡𝑠ℎ𝑖𝑓𝑡(𝑛) 

as lag 𝑛𝑠ℎ𝑖𝑓𝑡 

 𝑛𝑠ℎ𝑖𝑓𝑡(𝑛) =
𝑡𝑠ℎ𝑖𝑓𝑡(𝑛)

𝑑𝑡
, (2.1) 

where 𝑑𝑡 is the time sample interval and 𝑛𝑠ℎ𝑖𝑓𝑡 is not restricted to integer values. Therefore, the 

two traces are related by 
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 𝑠1(𝑛) = 𝑠2(𝑛 + 𝑛𝑠ℎ𝑖𝑓𝑡(𝑛)).  (2.2) 

The dynamic time warping (DTW) method (Hale, 2013) is adapted to estimate the time shift 

sequence 𝑛𝑠ℎ𝑖𝑓𝑡(𝑛) given the traces 𝑠1(𝑛) and 𝑠2(𝑛). Then trace 𝑠1(𝑛) is warped by the 

estimated 𝑛𝑠ℎ𝑖𝑓𝑡(𝑛) using Equation 2.2 so that the two traces gain a better correlation with each 

other. 

 

Figure 2.1: Two synthetic traces (top) and the time shift sequence between them (bottom). 

To find the time-variant lag between the two traces, an alignment error array 𝑒 is 

calculated according to 

 𝑒(𝑚, 𝑛) = |𝑠1(𝑛) − 𝑠2(𝑛 + 𝑚)| (2.3) 

for all the sample numbers 𝑛 = 1, 2, … , 𝑁 of 𝑠1 and 𝑠2. Lag 𝑚 is set to be −𝐿 ≤ 𝑚 ≤ 𝐿, namely 

for each sample 𝑠1(𝑛), we calculate the absolute differences between 𝑠1(𝑛) and the most 

adjacent 2𝐿 + 1 samples to 𝑠2(𝑛). The alignment error array, computed for the two synthetic 

traces in Figure 2.1 with 𝑁 = 2001 and 𝐿 = 50, is shown in Figure 2.2. The known lag 

sequence 𝑛𝑠ℎ𝑖𝑓𝑡(𝑛) calculated from 𝑡𝑠ℎ𝑖𝑓𝑡(𝑛) by Equation 2.1 is plotted on top of the 
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alignment error array in Figure 2.3. Note that the alignment errors are nearly zero along the 

known lag sequence 𝑛𝑠ℎ𝑖𝑓𝑡(𝑛) where 𝑚(𝑛) is approximate to 𝑛𝑠ℎ𝑖𝑓𝑡(𝑛). There are 1012001 

paths along 𝑛 = 1, 2, … , 2001, among which 𝑛𝑠ℎ𝑖𝑓𝑡(𝑛) is the one whose cumulative error 

summing along its path is the smallest. However, calculating 1012001 cumulative errors and 

finding the smallest one is far beyond the computation ability of a modern computer. 

Fortunately, DTW can solve it by applying suitable constraints to this optimization problem and 

therefore reduce computation dramatically. 

 

 

Figure 2.2: Alignment error array where dark blue indicates the error values are small. 
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Figure 2.3: The known lag sequence is plotted in white on top of the alignment error array. 

 

2.2.2 Constrained optimization 

DTW computes a sequence 𝑢(𝑛) = [𝑢(1), 𝑢(2), … , 𝑢(𝑁)] that closely approximates the 

known lag sequence 𝑛𝑠ℎ𝑖𝑓𝑡(𝑛) = [𝑛𝑠ℎ𝑖𝑓𝑡(1), 𝑛𝑠ℎ𝑖𝑓𝑡(2), … , 𝑛𝑠ℎ𝑖𝑓𝑡(𝑁)] by solving the 

following optimization problem: 

 𝑢(1: 𝑁) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑚(1:𝑁)

𝐷[𝑚(1: 𝑁)], (2.4) 

where 

 
𝐷[𝑚(1: 𝑁)] = ∑ 𝑒(𝑛, 𝑚(𝑛))

𝑁

𝑛=1
 (2.5) 

subject to the constraint 

 |𝑢(𝑛) − 𝑢(𝑛 − 1)| ≤ 1. (2.6) 

The function 𝐷 is referred to as total distance which represents the cumulative errors summing 

along a path from the first sample to the last in the alignment error image shown in Figure 2.2. 
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Equation 2.4 means that DTW chooses a path 𝑢(1: 𝑁) to minimize the total distance among the 

paths satisfying the constraint required by Equation 2.6, the number of which is about 3𝑁, much 

smaller than (2𝐿 + 1)𝑁 but is still too large. The constraint itself indicates that the lag sequence 

𝑢(𝑛) cannot change too rapidly from one sample to the next, which is reasonable for the drift 

time sequence in seismic-to-well ties. When 𝑢(𝑛) − 𝑢(𝑛 − 1) = 1, 𝑠2 is stretched such that its 

two adjacent samples are corresponding to two non-adjacent samples in 𝑠1 with one sample 

between them. When 𝑢(𝑛) − 𝑢(𝑛 − 1) = −1, 𝑠2 is squeezed such that its two adjacent samples 

are corresponding to only one sample in 𝑠1. 

 

2.2.3 Dynamic programming 

DTW is a dynamic programming algorithm, which decomposes a problem into a 

sequence of smaller and nested subproblems. Consider a subpath 𝑢(1: 𝑘) of the minimizing path 

𝑢(1: 𝑁), 𝑢(1: 𝑘) should satisfy 

 𝑢(1: 𝑘) = arg 𝑚𝑖𝑛
𝑚(1:𝑘)

∑ 𝑒(𝑛, 𝑚(𝑛))𝑘
𝑛=1  , (2.7) 

namely 𝑢(1: 𝑘) must be a minimizing subpath, or 𝑢(1: 𝑁) could not minimize 𝐷. In other words, 

𝑢(1: 𝑁) is a globally optimal solution of a minimization problem with many possible local 

minima. According to Equation 2.7, we can further decrease the number of paths we will search 

from 3𝑁 in two steps: accumulation and backtracking. 

In the accumulation step, an array of distances 𝑑(𝑚, 𝑛) is computed recursively from the 

array of alignment errors 𝑒(𝑚, 𝑛) as follows: 

 𝑑(𝑚, 1) = 𝑒(𝑚, 1), (2.8) 
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 𝑑(𝑚, 𝑛) = 𝑒(𝑚, 𝑛) + 𝑚𝑖𝑛 {

𝑑(𝑚 − 1, 𝑛 − 1)

𝑑(𝑚, 𝑛 − 1), 𝑛 = 2,3, … 𝑁
𝑑(𝑚 + 1, 𝑛 − 1)

. (2.9) 

The distance array calculated from the alignment error array in Figure 2.2 is shown in Figure 2.4. 

In the backtracking step we calculate the minimizing path 𝑢(1: 𝑁) starting with the last 

lag 𝑢(𝑁) and ending with the first lag 𝑢(1) as follows: 

 𝑢(𝑁) = arg 𝑚𝑖𝑛
−𝐿≤𝑚≤𝐿

𝑑(𝑚, 𝑁), (2.10) 

 𝑢(𝑛) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑚∈{𝑢(𝑛+1)+1,𝑢(𝑛+1),𝑢(𝑛+1)−1}

𝑑(𝑚, 𝑛), 𝑛 = 𝑁 − 1, 𝑁 − 2, … 1. (2.11) 

The computational complexity of the accumulation step is 𝑂((2𝐿 + 1) × 𝑁) and of the 

backtracking step is 𝑂(𝑁), which is easily realized on a personal computer. 

The lag sequence 𝑢(𝑛) computed by DTW is shown in white on top of the distance array 

in Figure 2.4. The lag sequence 𝑢(𝑛) is represented as time shift sequence 𝑡𝑢(𝑛) by 

 𝑡𝑢(𝑛) = 𝑢(𝑛) × 𝑑𝑡 (2.12) 

and plotted in Figure 2.5 top panel in red with the known time shift sequence 𝑡𝑠ℎ𝑖𝑓𝑡(𝑛) in blue. 

We can observe that the time shift sequence calculated from DTW roughly matches the known 

one except for obvious errors between 0.6 and 1 s. For further study, trace 𝑠1 is warped by the 

estimated lag sequence 𝑢(𝑛) using Equation 2.2 and the time shifted trace (solid blue curve in 

Figure 2.5 bottom panel) is well tied to 𝑠2 (dotted red curve in Figure 2.5 bottom panel) except 

for visible discrepancy at about 0.7 s where the estimated time shifts are obviously erroneous. 

The maximum crosscorrelation coefficient between them is increased to 0.96 at a decreased lag 

of 1 milliseconds. 
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Figure 2.4: Distance array where dark blue indicates the error values are small. The lag 

sequence calculated by DTW is plotted in white on top of the distance array. 

 

 

Figure 2.5: Known and DTW estimated time shift sequences (top). Time shifted 𝒔𝟏 by DTW 

in comparison with 𝒔𝟐 (bottom). 

 



 

14 

2.3 Smooth dynamic time warping 

DTW can roughly estimate the time shifts between two traces, but returns unsmooth 

integer lags, which are not accurate enough. Figure 2.6 is a zoomed-in version of the alignment 

error array in Figure 2.2. With constraint Equation 2.6, DTW searches subpaths of only 3 slope 

values (-1, 0 and 1) shown in red lines, traveling across every two consecutive time samples. 

Thus, the globally optimal path (dotted white curve) calculated by DTW is the combination of 

subpaths with these 3 slopes. As we can see, it cannot well approximate the known lag sequence 

(solid white curve), which is smooth and has multiple slope values between -1 and 1. What is 

more, when traces 𝑠1 and 𝑠2 are not simply the time-shifted version of each other, the ability of 

DTW is in doubt to detect such minute time shift changes for every two consecutive time 

samples, whose interval can be tens times smaller than the time period of seismic events. In 

seismic-to-well ties, the drift time used to calibrate the timing difference between the sonic logs 

and the seismic should be smooth and varies slowly with two-way traveltime to reduce artificial 

events being introduced in the corrected seismic trace. And seismic traces are not related to 

synthetic seismograms by time shifts only, but also involve amplitude and phase changes in the 

presence of anelastic attenuation. 

According to Compton and Hale (2013), smooth dynamic time warping (SDTW) can 

estimate a much smoother time shift sequence with as many possible slopes as required. It is 

more accurate than DTW especially when two traces are not related by time shifts only, but also 

have differences in waveforms, noise and etc. Instead of searching 3 possible subpaths at every 

single time sample, SDTW searches 2ℎ + 1 possible subpaths of multiple slope values ranging 

from -1 to 1 at every ℎ𝑡ℎ sample. Figure 2.7 shows the same alignment error array and 11 

subpaths of different slopes searched for the same sample location by SDTW as Figure 2.6 when 
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the coarse sampling interval ℎ equals 5 samples. Similar to DTW, alignment errors are then 

accumulated along each possible linear subpath across ℎ samples, and the subpath with the 

minimal summation is locally optimal. For a sample on a subpath but at a noninteger lag, its 

alignment error value is approximated by linearly interpolating the alignment error values of its 

two vertically adjacent samples. The white circles in Figure 2.7 are the sample locations where 

the locally optimal subpaths are calculated. By piecewise-linearly interpolating these coarse 

samples, we obtain the globally optimal path (dotted white curve), which approximates the 

known lag sequence (solid white curve) much better than the one from DTW. When ℎ = 1, 

SDTW is equal to DTW. 

 

Figure 2.6: Zoomed-in version of alignment error array, on top of which are the 3 subpaths 

searched for a certain sample location in red lines, the known lag sequence in solid white 

curve and the estimated lag sequence by DTW in dotted white curve. 
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Figure 2.7: Zoomed-in version of alignment error array, on top of which are the 11 

subpaths searched for a certain sample location in red lines, the known lag sequence in 

solid white curve, and the estimated lag sequence by SDTW in dotted white curve with 

white circles indicating the coarse sample locations where its subpaths are calculated. 

 

SDTW searches locally optimal paths every ℎ samples, ending up with a distance array ℎ 

times smaller than the one accumulated by DTW, which saves computation time and memory 

significantly. Numerical tests (not shown here) find that in this case, SDTW does a good job 

when the value of ℎ is about 100. If ℎ is too small, the estimated time shifts are not smooth 

enough. If ℎ is too large, the globally optimal path is composed by only limited number of linear 

subpaths, which cannot well approximate the known time shifts. Furthermore, different 

distributions of the coarse samples result in similar estimates as long as they are approximately 

100 samples apart. Figure 2.8 shows the distance array accumulated by SDTW when ℎ = 100. 

Compared to the distance array calculated by DTW in Figure 2.4, SDTW loses horizontal 

resolution because it estimates time shifts at coarsely sampled locations only, making the 

estimated time shift sequence (solid white curve) smoother and more robust when differences 
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other than time shifts exist between two traces. Figure 2.9 top panel compares the known time 

shift sequence in solid blue curve, the estimate by SDTW when ℎ = 100 in solid red curve with 

red circles indicating the coarse locations with 100 samples apart where the time shifts are 

calculated, and the estimate by DTW after being convolved with a normalized Gaussian window 

with 100 ms half-width in dotted black curve. The time shift sequence estimated by DTW is 

smoothed and better approximates the known time shifts, but it remains obviously erroneous 

from 0.6 to 0.8 s. Thus, smoothing the rough time shifts estimated by DTW is not equal to the 

globally optimal time shifts computed by SDTW. Trace 𝑠1 is warped by the SDTW estimated 

time shifts using Equation 2.2 and the time shifted trace (solid blue curve in Figure 2.9 bottom 

panel) is well tied to trace 𝑠2 (dotted red curve in Figure 2.9 bottom panel). The maximum 

crosscorrelation coefficient between them is 0.98 at a lag of 0.1 milliseconds, indicating a better 

correlation than the result from DTW in Figure 2.5 bottom panel. 
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Figure 2.8: Distance array accumulated every 100th sample. The lag sequence calculated by 

SDTW is plotted in white on top of the distance array. 

 

 

Figure 2.9: Known and estimated time shift sequences (top). Time shifted 𝒔𝟏 by SDTW in 

comparison with 𝒔𝟐 (bottom). 
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2.4 Time-variant crosscorrelation 

The common method, time-variant crosscorrelation (TVCC) is applied to estimate the 

time shifts between traces 𝑠1 and 𝑠2 for comparison with DTW and SDTW. Algorithm details are 

described in Section 1.5.3 using a sinusoid function with a maximum value of 10 ms as the 

known time shift sequence, which is accurately estimated by TVCC. In this section, the known 

sinusoid time shift sequence has the maximum value of 30 ms, implying more rapid changes. 

Figure 2.10 top panel shows the time shifts estimated by TVCC (dotted red curve) using 

Gaussian windows with 100 ms half-width and 10 ms increment, in comparison with the known 

time shifts (solid blue curve). We observe that significant errors and instability occur where the 

time shift sequence increases or decreases rapidly and their corresponding time-variant 

crosscorrelation coefficients are also very low shown in Figure 2.10 middle panel. At these time 

spots, the time shifted trace 𝑠1 (solid blue curve) by the TVCC estimated time shift does not 

align with trace 𝑠2 (dotted red curve) in Figure 2.10. 

TVCC assumes that the time shifts are almost constant within every single Gaussian 

window. We have to choose a window width, which is small enough, but also has to be larger 

than the existing time shift to correctly calculate crosscorrelation coefficient. If the time shifts 

vary rapidly, a suitable window width may not exist and TVCC fails in estimating the time shifts. 

This is why TVCC succeeds when the known sinusoid time shift sequence has the maximum 

value of 10 ms but fails when its maximum value is 30 ms. Without windows, DTW or SDTW 

is more sensitive to the rapidly varying time shifts. Instead of estimating time shifts, this thesis 

employs TVCC to quantitatively examine the correlation between the synthetic seismogram and 

the seismic trace in the well tying procedure. 
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Figure 2.10: The known time shift sequence and its estimate (top). Time-variant 

crosscorrelation coefficient (middle). Time shifted 𝒔𝟏 compared to 𝒔𝟐 (bottom). 

 

2.5 Summary 

 Dynamic time warping can roughly estimate time shifts between two traces automatically 

to achieve a high correlation between them. But the estimated time shifts are not smooth. 

 Smooth dynamic time warping can accurately estimate smooth time shifts between two 

traces automatically to get a good correlation between them. 

 Smoothing the rough time shifts estimated by DTW is not equal to the globally optimal 

time shifts computed by SDTW. 

 Dynamic time warping or smooth dynamic time warping is more sensitive to the rapidly 

varying time shifts than time-variant crosscorrelation. 
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Chapter Three: Seismic-to-well ties by stationary deconvolution 

3.1 Chapter overview 

First, the stationary convolutional model is built to relate the well reflectivity to the 

seismic trace. Then the frequency domain spiking deconvolution algorithm is illustrated as an 

example of the stationary deconvolution to estimate the well reflectivity from the seismic trace. 

Next the stationary convolutional model is extended to nonstationary based on the constant-Q 

theory. A set of analysis and processing tools aimed to address the nonstationarity is introduced 

through synthetic examples. Finally, the nonstationary trace model is deconvolved by the 

standard stationary deconvolution algorithm, followed by the nonstationary analysis and 

processing to tie the well reflectivity. 

 

3.2 Stationary convolutional model 

In a 1-D linear earth, the seismic trace 𝑠(𝑡) can be modeled by the convolution of a 

seismic wavelet 𝑤(𝑡) with the earth’s reflectivity 𝑟(𝑡) (Margrave, 2013a) 

 
𝑠(𝑡) = (𝑤 ∙ 𝑟)(𝑡) ≡ ∫ 𝑤(𝑡 − 𝜏)𝑟(𝜏)𝑑𝜏

∞

−∞

 
(3.1) 

where ∙ is the stationary convolution operator. All th physical effects that require the wavelet to 

evolve such as wavefront spreading, transmission loss, multiples, attenuation, elastic mode 

conversions and noise are ignored. The stationary convolutional model assumes that the seismic 

wavelet 𝑤(𝑡) does not change with traveltime. Figure 3.1 is an illustration of the convolution of 

a minimum-phase wavelet, which models the seismic wavelets generated by dynamite or airgun 

sources, with a reflectivity series to yield a 1-D stationary trace by matrix multiplication. The 



 

22 

waveforms in each column of the Toeplitz matrix are identical and are aligned along the diagonal 

corresponding to the two-way propagation time. 

 

 

Figure 3.1: The stationary convolutional model is illustrated. The left panel is the Toeplitz 

matrix in gray, on top of which are wavelets plotted every 𝟎. 𝟏 second in blue using wiggle-

trace variable-area format. It multiplies a column vector containing a reflectivity series 

(middle) to produce the stationary trace (right). 

 

3.3 Stationary deconvolution 

The ultimate goal of seismic data processing is to estimate the earth’s reflectivity, which, 

theoretically, should be tied to the well reflectivity. This means that the reflectivity estimate from 

deconvolution should be validated by comparing it to reflectivity calculated directly from well 

logs. Deconvolution is one of our major tools for achieving this end by separating the seismic 

wavelet from the reflectivity in the seismic trace. The deconvolution algorithm used in this thesis 

falls into the blind deconvolution category, meaning that the wavelet to be deconvolved is 

unknown and must be estimated from the data itself under physically appropriate assumptions 

about the nature of the reflectivity and the wavelet (Margrave et al., 2011): 
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 The reflectivity 𝑟(𝑡) is a random time series, implying an approximate constant 

amplitude spectrum at all frequencies. 

 The seismic wavelet is a temporally short pulse, implying a smooth Fourier amplitude 

spectrum. It is causal and invertible and its inverse is causal, implying a minimum phase. 

 The seismic wavelet is stationary. 

Take the frequency domain spiking deconvolution as an example. The stationary 

convolutional model in the frequency domain is 

 �̂�(𝑓) = �̂�(𝑓)�̂�(𝑓) (3.2) 

where �̂�(𝑓), �̂�(𝑓) and �̂�(𝑓) are the complex-valued Fourier spectra of 𝑠(𝑡), 𝑤(𝑡) and 𝑟(𝑡) 

respectively. The wavelet design portion of the deconvolution algorithm works on the amplitude 

spectra only. Take the amplitude spectra of Equation 3.2: 

 |�̂�(𝑓)| = |�̂�(𝑓)||�̂�(𝑓)|. (3.3) 

Figure 3.2 shows the amplitude spectra of the wavelet (red), reflectivity (blue) and seismic trace 

(green) in decibels. We can see that the amplitude spectral shape of the embedded wavelet is 

imposed on the seismic trace. This is because the reflectivity is assumed to be statistically white, 

namely 

 |�̂�(𝑓)|̅̅ ̅̅ ̅̅ ̅̅ ≈ 1 (3.4) 

where the overbar denotes the smoothing operation. Thus, we can estimate the amplitude 

spectrum of the wavelet by smoothing |�̂�(𝑓)|: 

 |�̂�(𝑓)|𝑒𝑠𝑡 = |�̂�(𝑓)|̅̅ ̅̅ ̅̅ ̅̅ ≈ |�̂�(𝑓)| (3.5) 
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where the subscript 𝑒𝑠𝑡 indicates the estimate. The back curve in Figure 3.2 is the amplitude 

spectrum of the estimated wavelet by convolving |�̂�(𝑓)| with a 10 Hz half-width Gaussian 

smoother. It well approximates the known wavelet in red curve. 

According to the assumption that the phase of the seismic wavelet is minimum, the phase of the 

wavelet 𝜑𝑤(𝑓) can be computed from its amplitude spectrum via the Hilbert transform 

(Margrave, 2013a) 

 𝜑𝑤(𝑓) = −
1

𝜋
∫

ln|�̂�(�̃�)|
𝑒𝑠𝑡

𝑓−�̃�

∞

−∞
𝑑𝑓. (3.6) 

In the digital implementation, the integral must be calculated within the seismic frequency band 

only 

 𝜑𝑤(𝑓) = −
1

𝜋
∫

ln|�̂�(�̃�)|
𝑒𝑠𝑡

𝑓−�̃�

𝑓𝑁𝑌𝑄

−𝑓𝑁𝑌𝑄
𝑑𝑓, (3.7) 

where 𝑓𝑁𝑌𝑄 is the Nyquist frequency and it equals 250 Hz with a 2 milliseconds sample interval 

in this numerical test. 

Figure 3.3 shows the estimated wavelet (dotted black) on top of the known wavelet (solid 

red) in the time domain. Their maximum crosscorrelation coefficient is 0.98 at a lag of 0.2 

milliseconds, implying an accurate wavelet estimate. Deconvolving the estimated wavelet from 

the seismic trace, the estimated reflectivity is shown in solid black in comparison with the known 

reflectivity in solid blue. Their maximum crosscorrelation coefficient is 0.94 at a lag of 0 

milliseconds, indicating the standard deconvolution algorithm succeeds in the stationary seismic 

trace. However, such nearly perfect results are never seen in practice to make seismic-to-well ties 

trivial (Margrave, 2013c). 
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Figure 3.2: Amplitude spectra of the wavelet, reflectivity, seismic trace and the wavelet 

estimated by the frequency domain spiking deconvolution. 

 

 

Figure 3.3: The known wavelet (solid red), estimated wavelet (dotted black), known 

reflectivity (solid blue) and estimated reflectivity (solid black) in the time domain. The 

wavelets are both delayed by 𝟎. 𝟓 seconds for a better display. 
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3.4 Constant-Q model 

In this thesis, the term nonstationary refers to physical processes that cause data variation 

in both time and frequency. Simpler nonstationary processes that are time variant but not 

frequency variant, such as wavefront spreading are well handled by standard seismic data 

processing methods (Margrave, 2013c). The propagating seismic waves always suffer anelastic 

attenuation, which predicts an exponential amplitude decay in traveltime and frequency 

associated with minimum-phase dispersion. It is considered as a source of nonstationarity. The 

constant-Q model (Kjartansson, 1979) is a widely accepted approximation to observed 

attenuation behaviour. The constant-Q model refers to a Q that is independent of frequency at 

least over the seismic bandwidth, but may still be a function of position. In the constant-Q 

theory, the amplitude spectrum of the wavelet approximates to 

 
|𝑤�̂�(𝑥, 𝑓)| ≈ |𝑤0̂(𝑓)|𝑒

− 
𝜋𝑓𝑥
𝑣0𝑄  

(3.8) 

where |𝑤0̂(𝑓)| is the amplitude spectrum of the source wavelet, |𝑤�̂�(𝑥, 𝑓)| is the amplitude 

spectrum of the propagating wavelet which starts as the source wavelet but travels distance 𝑥, 𝑓 

is frequency, 𝑣0 is the reference velocity measured at the reference frequency 𝑓0 and Q is a rock 

property. Letting 
𝑥

𝑣0
 equals traveltime 𝑡, Equation 3.8 becomes 

 
|𝑤�̂�(𝑡, 𝑓)| ≈ |𝑤0̂(𝑓)|𝑒

− 
𝜋𝑓𝑡

𝑄 . 
(3.9) 

The attenuation is necessarily coupled with minimum phase dispersion (Futterman, 1962). The 

phase spectrum of the propagating wavelet is 

 
𝜑𝑤𝑄

(𝑥, 𝑓) = 𝜑𝑤0
(𝑓) −

2𝜋𝑓𝑥

𝑣(𝑓)
 

(3.10) 



 

27 

where 𝜑𝑤𝑄
(𝑥, 𝑓) is the phase spectrum after travel distance 𝑥, 𝜑𝑤0

(𝑓)  is the phase spectrum of 

the source wavelet, and the frequency dependent phase velocity 𝑣(𝑓) is given by 

 𝑣(𝑓) = 𝑣0(1 +
1

𝜋𝑄
𝑙𝑛

𝑓

𝑓0
) . (3.11) 

Substituting Equation 3.11 into Equation 3.10, 𝜑𝑤𝑄
 is approximate to 

 𝜑𝑤𝑄
(𝑡, 𝑓) ≈ 𝜑𝑤0

(𝑓) − 2𝜋𝑓𝑡(1 −
1

𝜋𝑄
𝑙𝑛

𝑓

𝑓0
). (3.12) 
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Figure 3.4 shows the bandlimited response of the 1-D constant-Q process for various 

traveltimes in the time domain. The progressive widening waveform and the overall diminishing 

amplitude indicate the progressive attenuation of high frequencies. Figure 3.5 is the amplitude 

spectra of the wavelets in Figure 3.4. The blue curve is |𝑤0̂(𝑓)| and the others are |𝑤�̂�(𝑡, 𝑓)| 

computed by Equation 3.9. The seismic wavelet is observed to have continuously decreasing 

bandwidth. Figure 3.6 shows that the velocity is dependent on frequency for various Q values 

according to Equation 3.11. The velocity dispersion is strong for low Q values. The dominant 

frequency of well logging is about 12.5 kHz while that of seismic exploration is typically below 

50 Hz. Thus, the velocities measured by the sonic tool are systematically faster than those 

experienced by seismic waves. In seismic-to-well ties, synthetic seismograms created with well 

logging velocities predict events systematically earlier than seismic traces. The traveltime 

difference due to the discrepancy between seismic and well logging frequencies is called drift 

time and is always positive. 
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Figure 3.4: A minimum-phase source wavelet with a dominant frequency of 30 Hz (red) is 

shown after various traveltimes (blue) assuming a Q of 50. 

 

 

Figure 3.5: Amplitude spectra of the wavelets in Figure 3.4. 
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Figure 3.6: The velocity is dependent on frequency for various Q values assuming 𝒗𝟎 =
𝟑𝟎𝟎𝟎 m/s at the well logging frequency of 𝒇𝟎 = 𝟏𝟐. 𝟓 kHz. 

 

3.5 Nonstationary convolutional model 

The stationary convolutional model is not valid in the presence of frequency-dependent 

attenuation. The stationary convolutional model has been extended to nonstationary by Margrave 

et al. (2011) 

 𝑠(𝑡) = (𝑤0 ∙ 𝛼 ⊙ 𝑟)(𝑡) (3.13) 

where 𝑤0(𝑡) is a minimum-phase source wavelet without attenuation, 𝛼(𝜏, 𝑡) is called the 

attenuation function, and the symbol ⊙ is introduced as the nonstationary convolution operator. 

Assuming an impulsive source, the 1-D nonstationary seismic response 𝐼𝑟 is 

 𝐼𝑟(𝑡) = (𝛼 ⊙ 𝑟)(𝑡) ≡ ∫ 𝛼(𝜏, 𝑡 − 𝜏)
∞

−∞
𝑟(𝜏)𝑑𝜏. (3.14) 
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Including the effect of the nonimpulsive signature 𝑤0(𝑡) as a stationary convolution with the 

nonstationary seismic response 𝐼𝑟(𝑡), Equation 3.13 can be written as 

 𝑠(𝑡) = (𝑤0 ∙ 𝐼𝑟)(𝑡) = ∫ 𝑤0(𝑡 − 𝜏)𝐼𝑟(𝜏)𝑑𝜏
∞

−∞
. (3.15) 

The attenuation function 𝛼(𝜏, 𝑡) is essentially the impulse response of the attenuation process at 

traveltime 𝜏 predicted by the constant-Q theory. In the frequency domain, its amplitude spectrum 

is 

 |𝛼(𝜏, 𝑓)| = 𝑒−𝜋𝑓𝜏/𝑄 (3.16) 

and its phase is minimum for any constant time 𝜏. The propagating wavelet 𝑤𝑄(𝜏, 𝑡), which is 

the source wavelet 𝑤0(𝑡) modified by the attenuation effects after traveltime 𝜏, is 

 𝑤𝑄(𝜏, 𝑡) = (𝑤0 ∙ 𝛼)(𝜏, 𝑡) ≡ ∫ 𝑤0(𝑡 − 𝑡′)
∞

−∞
𝛼(𝜏, 𝑡′)𝑑𝑡′. (3.17) 

Equation 3.13 can also be written as the nonstationary convolution of the propagating wavelet 

with the reflectivity 

 𝑠(𝑡) = (𝑤𝑄 ⊙ 𝑟)(𝑡) = ∫ 𝑤𝑄(𝜏, 𝑡 − 𝜏)
∞

−∞
𝑟(𝜏)𝑑𝜏. (3.18) 
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The nonstationary convolution forms the linear superposition of a set of progressively attenuated 

wavelets scaled by the corresponding reflectivity values, which is shown in Figure 3.7. 

 

 

Figure 3.7: The nonstationary convolutional model is illustrated. The left panel is the Q 

matrix in gray, on top of which are wavelets plotted every 𝟎. 𝟏𝒔 in red using wiggle-trace 

variable-area format. The bandlimited evolving wavelets lag behind the dashed blue 

diagonal by a progressively increasing amount. The Q matrix multiplies a column vector 

containing a reflectivity series (middle) to produce the nonstationary trace (right). 

 

Figure 3.8 compares the stationary trace in Figure 3.1 and the nonstationary trace in 

Figure 3.7. In the time domain (top panel), the nonstationary trace agrees with the stationary 

trace at the beginning, but later shows progressive attenuation effects indicated by the 

diminishing amplitude, the widening waveforms and the delayed events, compared to the 

stationary trace. In the frequency domain, the nonstationary trace has less power at high 

frequencies than the stationary trace. 
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Figure 3.8: Comparison of stationary and nonstationary traces in the time and frequency 

domains. 

 

3.6 Nonstationary analysis and processing tools 

Seismic traces are always nonstationary due to ubiquitous attenuation while synthetic 

seismograms calculated from well reflectivity are usually stationary. In standard seismic-to-well 

ties, not only the trace at the well location, but also other hundreds or even thousands of traces 

are processed by comparing them to a single well reflectivity, in which only very smooth 

information from the well is used. In this thesis, a set of programs have been adopted to analyze 

and address the nonstationarity in amplitude, phase and time shift respectively, by comparing the 

deconvolved nonstationary trace to the well reflectivity within a sliding Gaussian window. This 

section demonstrates how these tools work through synthetic examples. 
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3.6.1 Time-variant amplitude balancing 

A synthetic seismic trace 𝑠1(𝑡) is plotted in solid blue in Figure 3.9 top panel. Trace 

𝑠2(𝑡) is obtained by scaling the amplitude of 𝑠1 with a known time-variant scalar function 

𝑠𝑐𝑎𝑙𝑎𝑟(𝑡) via 

 𝑠2(𝑡) = 𝑠𝑐𝑎𝑙𝑎𝑟(𝑡) 𝑠1(𝑡) (3.19) 

and is plotted in dotted red on top of trace 𝑠1, from which we observe that their amplitudes are 

different. The scalar function 𝑠𝑐𝑎𝑙𝑎𝑟(𝑡) is essentially the absolute value of a sinusoid function 

and is shown in solid blue in Figure 3.9 bottom panel. 

Without knowledge of 𝑠𝑐𝑎𝑙𝑎𝑟(𝑡), time-variant (TV) amplitude balancing can estimate it 

to balance the amplitude of trace 𝑠1 with respect to the reference trace 𝑠2. The scalar function is 

estimated by 

 𝑠𝑐𝑎𝑙𝑎𝑟𝑒𝑠𝑡(𝜏) =
𝑅𝑀𝑆[𝑠2

𝜎(𝜏)]

𝑅𝑀𝑆[𝑠1
𝜎(𝜏)]

 (3.20) 

where 𝑅𝑀𝑆[𝑠1
𝜎(𝜏)] is the root mean square value over 𝑡 of trace 𝑠1(𝑡) windowed by a Gaussian 

function 𝑔𝜎(𝑡) of standard width 2𝜎 centered at time 𝜏, namely 

 𝑅𝑀𝑆[𝑠1
𝜎(𝜏)] = √∫ [𝑠1(𝑡)𝑔𝜎(𝑡 − 𝜏)]2𝑑𝑡

∞

−∞
. (3.21) 

Similarly,   

 
𝑅𝑀𝑆[𝑠2

𝜎(𝜏)] = √∫ [𝑠2(𝑡)𝑔𝜎(𝑡 − 𝜏)]2𝑑𝑡
∞

−∞
. 

(3.22) 

In this case, the Gaussian window is chosen to have a half-width (𝜎) of 200 ms and an increment 

between adjacent windows of 10 ms. The estimated scalar function 𝑠𝑐𝑎𝑙𝑎𝑟𝑒𝑠𝑡(𝑡) is plotted in 

dotted red in Figure 3.9 bottom panel, which approximates the known one but appears smoother. 

Next trace 𝑠1 is balanced by 𝑠𝑐𝑎𝑙𝑎𝑟𝑒𝑠𝑡(𝑡) through Equation 3.19 and is plotted in solid black in 
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Figure 3.9 top panel, on top of which the reference trace 𝑠2 is plotted again in dotted red. We see 

their amplitudes are much more similar after TV amplitude balancing of trace 𝑠1. Inherent in this 

and other methods in this section is that the effects we are correcting are very slowly time variant. 

 

 

Figure 3.9: Time-variant amplitude balancing is illustrated. Seismic traces with and 

without time-variant balancing compared to the reference trace (top). The known time-

variant scalar function and its estimate (bottom). 

 

3.6.2 Time-variant constant-phase rotation and estimation 

A synthetic seismic trace 𝑠1(𝑡) is plotted in solid blue in Figure 3.10 top panel. Trace 

𝑠2(𝑡) is obtained by rotating the phase of 𝑠1 with a known time-variant constant-phase function 

𝜗(𝑡) via 

 𝑠2(𝑡) = 𝑐𝑜𝑠𝜗(𝑡) 𝑠1(𝑡) + 𝑠𝑖𝑛𝜗(𝑡) 𝑠1
⊥(𝑡) (3.23) 

where  𝑠1
⊥(𝑡) is 90 degree phase-rotated trace 𝑠1 (Barnes, 2007). Here the constant phase means 

the phase is independent of frequency. Trace 𝑠2(𝑡) is plotted in dotted red on top of trace 𝑠1, 
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from which we observe that they do not match each other. The time-variant constant-phase 𝜗(𝑡) 

is essentially a sinusoid function and is shown in solid blue in Figure 3.10 bottom panel. 

The time-variant constant-phase function 𝜗(𝑡) can be estimated by solving the 

optimization problem 

 𝜗𝑒𝑠𝑡(𝜏) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃∈−180:179

𝑅𝑀𝑆[𝑠1
𝜎,𝜃(𝜏) − 𝑠2

𝜎(𝜏)] (3.24) 

where 𝑠1
𝜎,𝜃

 is the windowed trace 𝑠1
𝜎 rotated by a phase angle 𝜃. Equation 3.24 means that the 

phase 𝜗 at time 𝜏 is estimated by applying a series of constant phases 𝜃 ranging from -180 to 179 

degrees in 1 degree increment to the windowed trace 𝑠1
𝜎 and choosing the optimal phase angle to 

minimize the RMS errors between 𝑠1
𝜎,𝜃

 and 𝑠2
𝜎. In this case, the Gaussian window is chosen to 

have a half-width of 200 ms and an increment of 10 ms. The estimated time-variant constant-

phase 𝜗𝑒𝑠𝑡(𝑡) is plotted in dotted red in Figure 3.10 bottom panel, which approximates the 

known one. Next trace 𝑠1 is rotated by 𝜗𝑒𝑠𝑡(𝑡) through Equation 3.23 and is plotted in solid 

black in Figure 3.10 top panel, on top of which the reference trace 𝑠2 is plotted again in dotted 

red. We see now they are tied to each other. 
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Figure 3.10: Time-variant constant-phase rotation and estimation are illustrated. Seismic 

traces before and after time-variant constant-phase rotation compared to the reference 

trace (top). The known time-variant constant-phase function and its estimate (bottom). 

 

3.6.3 Time-variant crosscorrelation 

A synthetic seismic trace 𝑠1(𝑡) is plotted in solid blue in Figure 3.11 top panel. Trace 

𝑠2(𝑡) is obtained by shifting the time of 𝑠1 with a known time shift function 𝑡𝑠ℎ𝑖𝑓𝑡(𝑡) via 

Equation 2.2 and is plotted in dotted red on top of trace 𝑠1, from which we observe that trace 𝑠2 

is delayed at early times and is advanced at late times compared to trace 𝑠1. The known time shift 

sequence is essentially a sinusoid function with the maximum value of 10 ms and is shown in 

solid blue in Figure 3.11 middle panel. Without knowledge of 𝑡𝑠ℎ𝑖𝑓𝑡, time-variant 

crosscorrelation (TVCC) can estimate it at every Gaussian window center time 𝜏 via 

 𝑡𝑠ℎ𝑖𝑓𝑡𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑡

 (𝑠1
𝜎 ⊗ 𝑠2)(𝑡) (3.25) 

where ⊗ denotes crosscorrelation over time 𝑡. Equation 3.25 means that trace 𝑠1 is windowed by 

a sliding Gaussian function of standard width 2𝜎 centered at time 𝜏 and the estimated time shift 
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corresponding to 𝜏 is the time lag at which the crosscorrelation coefficient between 𝑠1
𝜎 and 𝑠2 is 

maximum. In this case, the Gaussian window is chosen to have a half-width of 100 ms and an 

increment of 10 ms. The estimated time shift function 𝑡𝑠ℎ𝑖𝑓𝑡𝑒𝑠𝑡 is plotted in dotted red in Figure 

3.11 middle panel, which well approximates the known one. Next the time of trace 𝑠1 is shifted 

by 𝑡𝑠ℎ𝑖𝑓𝑡𝑒𝑠𝑡(𝑡) through Equation 2.2 to get trace 𝑠1
𝑠 and is plotted in solid black in Figure 3.11 

top panel, on top of which the reference trace 𝑠2 is plotted again in dotted red. We see now they 

are aligned to each other. 

The time-variant crosscorrelation coefficient at time 𝜏 between 𝑠1
𝑠 and 𝑠2 is calculated by 

 𝑐𝑐 = (𝑠1
𝑠,𝜎 ⊗ 𝑠2

𝜎)(𝑡)|𝑡=0 (3.26) 

where 𝑠1
𝑠,𝜎

 is the time shifted trace 𝑠1
𝑠 windowed by the same sliding Gaussian function as the 

one used to estimate the time-variant time shift sequence. Equation 3.26 means that trace 𝑠1 after 

time shift and 𝑠2 are windowed by the same sliding Gaussian function and the time-variant 

crosscorrelation coefficient corresponding to every Gaussian window center time is calculated 

between 𝑠1
𝑠,𝜎

 and 𝑠2
𝜎 at the zero lag. Figure 3.11 bottom panel exhibits the calculated time-variant 

crosscorrelation coefficient function, whose value is nearly 1 along the whole traveltime, 

indicating good alignment between trace 𝑠1 after time shift and trace 𝑠2. 
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Figure 3.11: Time-variant crosscorrelation is illustrated. Seismic traces before and after 

time-variant time shift compared to the reference trace (top). The known time-variant time 

shift function and its estimate (middle). Time-variant crosscorrelation coefficient (bottom). 

 

3.7 Stationary deconvolution on the nonstationary seismic trace 

While the field recorded traces are always nonstationary because some attenuation is 

always present, they are usually deconvolved by the stationary deconvolution algorithm to tie the 

well reflectivity in the industrial practice. To simulate this process, the frequency domain spiking 

deconvolution is run on the nonstationary trace in Figure 3.7. The deconvolution parameters are 

the same as those used for the stationary trace except that an average wavelet is estimated within 

an imaginary target zone by windowing the nonstationary trace with a 100 ms half-width 

Gaussian function centered at 0.5 s, which is short enough to assume that the wavelet evolution 

is small within it. The Gaussian function is displayed in Figure 3.12. Figure 3.13 compares the 

amplitude spectra of the estimated wavelet (dotted red) with the source wavelet (solid blue), the 

propagating wavelet at 0.5 s (solid green) and at 1 s (solid black) extracted from the Q matrix in 



 

40 

Figure 3.7. The estimated wavelet is seen to best approximate the propagating wavelet traveling 

to the middle time of the deconvolution operator design window. Next the stationary 

deconvolution algorithm calculates the numerical inverse of this estimated wavelet and applies 

this inverse to the entire nonstationary trace, resulting in the catastrophic deconvolved trace 

shown as the green curve in Figure 3.12. The nonstationary catastrophe, named by Margrave 

(2013c), is the consequence of using a single wavelet to deconvolve all the evolving wavelets 

embedded in the nonstationary trace. Figure 3.14 shows the amplitude spectra of three different 

sections of the deconvolved trace in decibels. The 0.4 − 0.6 s section is within the design 

window and is properly whitened. However, the earlier section (0 − 0.2 s) is “overwhitened” 

meaning that its high frequencies are erroneously exaggerated, while the later section (0.8 − 1 s) 

is “underwhitened” meaning that its embedded wavelets are insufficiently collapsed and will 

give an underresolved seismic image. 

Since there is an obvious amplitude imbalance on the deconvolved trace, time-variant 

(TV) amplitude balancing is applied to it with respect to the known reflectivity using a sliding 

Gaussian window with 200 ms half-width and 10 ms increment. Figure 3.12 shows the 

deconvolved trace after balancing in black. Although its amplitude is balanced in time, its 

spectral content is still nonstationary. Finally, the time-variant (TV) constant-phase difference, 

which is assumed to be a first order approximation to the phase errors, is detected between the 

known reflectivity and its estimate using a sliding Gaussian window with 200 ms half-width and 

10 ms increment. Figure 3.15 top panel shows the detected phase difference in black, which gets 

as large as 180 degrees at some time points and is highly nonstationary along the traveltime. The 

amplitude balanced estimate is finally rotated by this phase difference in the same time-variant 

way and is shown in red in Figure 3.12. For a quality check, the time-variant (TV) constant-
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phase difference is measured again between the known reflectivity and its estimate after phase 

rotation and is plotted in red in Figure 3.15 top panel. 

To quantitatively examine the well tying procedure, the time-variant crosscorrelation 

(TVCC) coefficient is measured between the known reflectivity and its estimate at every well-

tying step using a sliding Gaussian window with 200 ms half-width and 10 ms increment. Due 

to the limitation of the TVCC algorithm which is discussed in detail in Section 2.3, the estimated 

time shift sequences are not precise enough in the presence of a few discontinuities, but the 

general trends are trustable. It can be observed from Figure 3.15 middle and bottom panels that 

the crosscorrelation coefficient between the nonstationary trace and the reflectivity decreases 

while the corresponding time shift increases with two-way traveltime due to the progressive 

attenuation. After running the stationary deconvolution on the nonstationary trace, their 

crosscorrelation coefficient is enhanced especially within the design window and the 

corresponding time shift drops. However, the coefficient is still small and nonstationary, and the 

time shift still increases with traveltime because all the wavelets remain minimum-phase after 

deconvolution. After time-variant constant-phase rotation, there is still nonstationary residual 

phase in the rotated trace and its crosscorrelation coefficient with the well reflectivity decreases, 

implying that the phase errors after deconvolution are more complex than those that can be 

corrected by time-variant constant-phase rotation. To conclude, running stationary deconvolution 

on the nonstationary trace results in imbalanced amplitude, nonstationary spectral content and 

erroneous phase compared to the well control, which cannot be properly addressed by the 

nonstationary analysis and processing tools described in Section 1.5. 
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Figure 3.12: A procedure of tying the nonstationary trace to the known reflectivity by 

stationary deconvolution, time-variant amplitude balancing and time-variant constant-

phase rotation. 

 

 

Figure 3.13: The estimated wavelet in comparison with the embedded evolving wavelets 

propagating to different traveltimes in the frequency domain. 
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Figure 3.14: Amplitude spectra of the deconvolved seismic trace within different time 

ranges in decibels. 

 

 

Figure 3.15: The time-variant constant-phase differences between the known reflectivity 

and the deconvolved trace before and after phase rotation (top). The time-variant 

crosscorrelation coefficient sequences between the known reflectivity and the nonstationary 

trace, the deconvolved trace after time-variant amplitude balancing, the deconvolved trace 

after time-variant amplitude balancing and time-variant constant-phase rotation (middle). 

The time-variant time shift sequences at which the coefficients are obtained (bottom). 
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3.8 Summary 

 Stationary deconvolution on a stationary seismic trace can estimate an accurate wavelet 

and eliminate it to tie the well reflectivity. 

 The constant-Q theory predicts seismic wavelet evolution with amplitude decay and 

minimum phase dispersion. 

 The nonstationary seismic trace is the linear superposition of a set of progressively 

attenuated wavelets scaled by the corresponding reflectivity values. 

 Compared to the stationary trace, the nonstationary trace shows progressive attenuation 

effects such as the diminishing amplitude, the widening waveforms and the delayed 

events. 

 By comparing two traces within a sliding Gaussian window, time-variant amplitude 

balancing, time-variant constant-phase rotation and time-variant crosscorrelation can 

correct nonstationary effects that are very slowly time variant. 

 Stationary deconvolution on a nonstationary seismic trace results in large amplitude and 

phase errors, resulting from deconvolving a single wavelet estimated within a target zone 

from the nonstationary trace with embedded evolving wavelets. These errors are 

nonstationary and difficult to be corrected for by time-variant amplitude balancing and 

time-variant constant-phase rotation compared to the well control. 
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Chapter Four: Seismic-to-well ties by Gabor deconvolution 

4.1 Chapter overview 

First, a nonstationary deconvolution algorithm named Gabor deconvolution is illustrated. 

Then the residual phase in the Gabor deconvolved trace is investigated and a phase correction 

operator is developed knowing the Q values and the well logging frequency. Finally, residual 

drift time after Gabor deconvolution is estimated by smooth dynamic time warping as an 

alternate way of phase correction without knowledge of Q or the well logging frequency. 

 

4.2 Gabor deconvolution 

Margrave and Lamoureux (2001) extend the stationary deconvolution theory to the 

nonstationary case using the Gabor transform, which is essentially a windowed Fourier 

transform. The forward Gabor transform decomposes a 1-D temporal signal 𝑠(𝑡) onto a 2-D 

time-frequency spectrum by windowing the signal with a set of Gaussian functions summing to 

unity and Fourier transforming: 

 �̂�𝑔(𝜏, 𝑓) = ∫ 𝑠(𝑡)𝑔𝜎(𝑡 − 𝜏)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡
∞

−∞

 (4.1) 

where 𝑔𝜎(𝑡 − 𝜏) is a Gaussian function of standard width 2𝜎 centered at time 𝜏 and �̂�𝑔(𝜏, 𝑓) is 

the complex-valued Gabor spectrum of 𝑠(𝑡). Given �̂�𝑔(𝜏, 𝑓), the inverse Gabor transform 

recreates the signal via 2-D integration over the time-frequency plane: 

 𝑠(𝑡) = ∫ ∫ �̂�𝑔(𝜏, 𝑓)𝑒2𝜋𝑖𝑓𝑡𝑑𝑓
∞

−∞
𝑑𝜏

∞

−∞
. (4.2) 

Figure 4.1 shows the forward Gabor transform of the nonstationary trace using a set of Gaussian 

windows with 100 ms half-width (𝜎) and 10 ms increment, every 10𝑡ℎ of which is plotted in the 

middle panel. The right panel is the magnitude of its Gabor spectrum, showing that the 
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nonstationary trace contains the greatest power at early times and low frequencies and the rapid 

fluctuations are attributed to the reflectivity. The inverse Gabor transform of the 2-D spectrum 

reconstructs the nonstationary trace, which is consistent with the original one shown in the left 

panel. 

 

 

Figure 4.1: The forward and inverse Gabor transform is demonstrated. The nonstationary 

trace after forward and inverse Gabor transform is on top of the original trace (left). A set 

of selected Gaussian windows used for the forward Gabor transform (middle). The Gabor 

magnitude spectrum of the nonstationary trace (right). 

 

 Margrave and Lamoureux (2001) derived that the Gabor transform of the nonstationary 

convolutional model of Equation 3.13 can be approximated as 

 �̂�𝑔(𝜏, 𝑓) ≈ 𝑤0̂(𝑓)𝛼(𝜏, 𝑓)�̂�𝑔(𝜏, 𝑓) (4.3) 

where 𝑤0̂(𝑓) is the Fourier transform of the source wavelet 𝑤0(𝑡) and �̂�𝑔(𝜏, 𝑓) is the Gabor 

transform of the reflectivity 𝑟(𝑡). The Fourier transform of the propagating wavelet in Equation 

3.17 is 
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 𝑤�̂�(𝜏, 𝑓) = 𝑤0̂(𝑓)𝛼(𝜏, 𝑓). (4.4) 

Therefore, Equation 4.3 can also be written as 

 �̂�𝑔(𝜏, 𝑓) ≈ 𝑤�̂�(𝜏, 𝑓)�̂�𝑔(𝜏, 𝑓). (4.5) 

Equation 4.5 shows that within a single Gaussian window which is centered at time 𝜏 and is 

narrow enough, the stationary convolutional model is locally valid. Thus, in the frequency 

domain, the windowed trace is the product of the nonstationary wavelet propagating to time 𝜏 

and the windowed reflectivity. Figure 4.2 displays the magnitude of each component on the right 

hand side of Equation 4.3. The source wavelet is a time-invariant function. The attenuation 

function consists of seamless hyperbolic trajectories with the time and frequency axes as 

asymptotes. The reflectivity varies rapidly in both time and frequency. Figure 4.3 left panel is the 

pointwise product of those three components and it well approximates the Gabor magnitude 

spectrum of the nonstationary trace shown in Figure 4.3 right panel, validating the nonstationary 

convolutional model factorization in the Gabor domain. Figure 4.4 left panel shows the 

pointwise product of the Gabor magnitude spectra of the source wavelet and the attenuation 

function to form the Gabor magnitude spectrum of the propagating wavelet by Equation 4.4. 
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Figure 4.2: The magnitude of three components: the Fourier transform of the source 

wavelet duplicated along the traveltime (left), the attenuation function represented on the 

time-frequency plane (middle) and the Gabor spectrum of the reflectivity (right). 

 

 

Figure 4.3: The pointwise product of the three magnitude spectra in Figure 4.2 (left) and 

the Gabor magnitude spectrum of the nonstationary trace (right), which is the same as 

Figure 4.1 right panel. 
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Figure 4.4: The Gabor magnitude spectra of the propagating wavelet (left), the estimated 

propagating wavelet (middle) and the estimated reflectivity (right) by Gabor 

deconvolution. 

 

In analogy with the stationary deconvolution, estimating �̂�𝑔(𝜏, 𝑓) needs the spectral 

factorization of �̂�𝑔(𝜏, 𝑓) into two unknown parts: the propagating wavelet and the reflectivity. 

This can be solved based on the fact that |𝑤�̂�(𝜏, 𝑓)| is relatively smooth compared to the rapidly 

varying |�̂�𝑔(𝜏, 𝑓)|. Thus, they can be estimated by a spectral smoothing process without knowing 

or estimating Q values. Similar to the stationary deconvolution, the wavelet design portion of 

Gabor deconvolution works on the amplitude spectra only and determines the wavelet phase 

spectrum based on the minimum-phase assumption. Take the absolute values of Equation 4.5: 

 |�̂�𝑔(𝜏, 𝑓)| ≈ |𝑤�̂�(𝜏, 𝑓)||�̂�𝑔(𝜏, 𝑓)|. (4.6) 

The simplest Gabor deconvolution algorithm estimates |𝑤�̂�(𝜏, 𝑓)| by smoothing |�̂�𝑔(𝜏, 𝑓)| via 

convolving it with a 2-D boxcar over 𝜏 and 𝑓 
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 |𝑤�̂�(𝜏, 𝑓)|𝑒𝑠𝑡 = |�̂�𝑔(𝜏, 𝑓)|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . (4.7) 

Since both the source wavelet and the attenuation function are assumed to be minimum-phase, 

the phase of the nonstationary wavelet 𝜑𝑤𝑄
(𝜏, 𝑓) at a constant time 𝜏 is also minimum and is 

calculated by the Hilbert transform 

 𝜑𝑤𝑄
(𝜏, 𝑓) = −

1

𝜋
∫

ln|𝑤�̂�(𝜏,�̃�)|
𝑒𝑠𝑡

𝑓−�̃�

∞

−∞
𝑑𝑓. (4.8) 

In the digital implementation, the integral must be calculated within the seismic frequency band 

only 

 𝜑𝑤𝑄
(𝜏, 𝑓) = −

1

𝜋
∫

ln|𝑤�̂�(𝜏,�̃�)|
𝑒𝑠𝑡

𝑓−�̃�

𝑓𝑁𝑌𝑄

−𝑓𝑁𝑌𝑄
𝑑𝑓. (4.9) 

Next �̂�𝑔(𝜏, 𝑓) is estimated by dividing 𝑤�̂�(𝜏, 𝑓)𝑒𝑠𝑡 from �̂�𝑔(𝜏, 𝑓) and 𝑟𝑒𝑠𝑡(𝑡) is got by inverse 

Gabor transforming 𝑟�̂�(𝜏, 𝑓)𝑒𝑠𝑡. 

Figure 4.4 middle panel shows the Gabor magnitude spectrum of the estimated 

propagating wavelet by convolving the Gabor magnitude spectrum of the nonstationary trace in 

Figure 4.3 right panel with a 2-D boxcar of dimensions 0.2 s by 10 Hz. The estimate 

approximates the known propagating wavelet in Figure 4.4 left panel. Figure 4.4 right panel 

shows the Gabor magnitude spectrum of the estimated reflectivity by pointwise division of 

Figure 4.4 middle panel from Figure 4.3 right panel. It approximates the known reflectivity in 

Figure 4.2 right panel to achieve a strong broadband whitening. 

After the inverse Gabor transform, the nonstationary trace after Gabor deconvolution is 

shown in the time domain as the green curve in Figure 4.5. There is no nonstationary catastrophe 

and the reflectivity is well resolved. The amplitude spectra of its three sections are plotted in 

Figure 4.6, showing the appropriate whitening of all the sections. Next, the amplitude of the 
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Gabor deconvolved trace is balanced and its phase is rotated with respect to the known 

reflectivity in the same time-variant way as the well tying procedure by the stationary 

deconvolution. In this case, the time-variant amplitude balancing changes little of the 

deconvolved trace because the smoothing process does a kind of AGC (automatic gain correction) 

and simultaneously gains the trace in time. Figure 4.5 shows the final estimate in red on top of 

the known reflectivity in blue. It can be observed that they roughly tie in amplitude and spectral 

content but not the phase and/or timing. The time-variant constant-phase differences, 

crosscorrelation coefficient sequences and time shift sequences are also shown in Figure 4.7 as a 

quality control. It can be seen that the results at every well-tying step are similar to the case of 

running the stationary deconvolution. In conclusion, running Gabor deconvolution on the 

nonstationary trace can get reflectivity estimate tying the well reflectivity in amplitude and 

spectral content, but has phase errors which are more complex than those that can be solved by 

time-variant constant-phase rotation. 
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Figure 4.5: A procedure of tying the nonstationary trace to the known reflectivity (blue) by 

Gabor deconvolution, time-variant amplitude balancing and time-variant constant-phase 

rotation. 

 

 

Figure 4.6: Amplitude spectra of the Gabor deconvolved seismic trace within different time 

ranges in decibels. 
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Figure 4.7: The time-variant constant-phase differences between the known reflectivity and 

the Gabor deconvolved trace before and after phase rotation (top). The time-variant 

crosscorrelation coefficient sequences between the known reflectivity and the nonstationary 

trace, the Gabor deconvolved trace after time-variant amplitude balancing, the Gabor 

deconvolved trace after time-variant amplitude balancing and time-variant constant-phase 

rotation (middle). The time-variant time shift sequences at which the coefficients are 

obtained (bottom). 

 

4.3 Phase correction of Gabor deconvolution 

To find out the reason for the residual phase after Gabor deconvolution, the propagating 

wavelets estimated by Gabor deconvolution are investigated. Figure 4.8 shows the estimated 

wavelets propagating to every 0.1 s in black, on top of which are the corresponding wavelets 

embedded in the nonstationary trace in red. Since the spectral separation of the propagating 

wavelets from the reflectivity is only determined to within a scale factor, the estimated wavelets 

are overall scaled so that the maximum amplitude of the estimated wavelet at time zero is equal 

to that of the known source wavelet for easy comparison. It can be observed that the estimated 

wavelets have the correct relative amplitudes and waveforms (except for those at early times 
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suffering from the edge effects), but they appear progressively earlier than the Q wavelets. Both 

the estimated and known wavelets propagating to four times: 0.3 s, 0.4 s, 0.5 s and 0.6 s are 

further studied in the frequency domain. Figure 4.9 compares their normalized amplitude spectra, 

verifying that the smoothing process in Gabor deconvolution estimates accurate amplitude 

spectra of the propagating wavelets. Figure 4.10 compares their unwrapped phase spectra after 

their propagating times at the high frequency reference velocity 𝑣0 being removed. It can be seen 

that the phase estimated by Gabor deconvolution is insufficient compared to the Q wavelets. 

 

 

Figure 4.8: Comparison of the propagating wavelets estimated by Gabor deconvolution and 

those modeled by the Q matrix in Figure 3.7. 
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Figure 4.9: Amplitude spectra of the wavelets propagating to four different times in Figure 

4.8. 

 

 

Figure 4.10: Phase spectra of the wavelets propagating to four different times in Figure 4.8. 
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The phase estimation errors result from the fact that the bandlimited Hilbert transform 

must be used (Equation 4.9) instead of the analytic one (Equation 4.8). The calculated phase is 

essentially with respect to the seismic Nyquist frequency 𝑓𝑁𝑌𝑄 (Margrave et al., 2011) 

 
𝜑𝑤𝑄

𝐻 (𝑡, 𝑓) = 𝜑𝑤0
(𝑓) − 2𝜋𝑓𝑡(1 −

1

𝜋𝑄
𝑙𝑛

𝑓

𝑓𝑁𝑌𝑄
) 

(4.10) 

where 𝜑𝑤𝑄
𝐻 (𝑡, 𝑓) denotes the phase of the propagating wavelet at traveltime 𝑡 estimated by the 

digital Hilbert transform. Its phase delay is less than the actual phase at traveltime 𝑡 with respect 

to the well logging frequency 𝑓𝑤 

 𝜑𝑤𝑄
(𝑡, 𝑓) = 𝜑𝑤0

(𝑓) − 2𝜋𝑓𝑡(1 −
1

𝜋𝑄
𝑙𝑛

𝑓

𝑓𝑤
). (4.11) 

The difference between 𝜑𝑤𝑄
(𝑡, 𝑓) and 𝜑𝑤𝑄

𝐻 (𝑡, 𝑓) is the residual phase remaining in the Gabor 

deconvolved trace compared to the well reflectivity 

 ∆𝜑(𝑡, 𝑓) = 𝜑𝑤𝑄
(𝑡, 𝑓) − 𝜑𝑤𝑄

𝐻 (𝑡, 𝑓) =
2𝑓𝑡

𝑄
𝑙𝑛

𝑓𝑁𝑌𝑄

𝑓𝑤
. (4.12) 

where ∆𝜑(𝑡, 𝑓) denotes the residual phase and it varies with traveltime 𝑡. It can be noticed from 

Equation 4.12 that the residual phase at a constant time 𝑡 is a linear function of frequency 𝑓, 

implying that ∆𝜑(𝑡, 𝑓) essentially acts as a time shift operator in the time domain, namely 

 ∆𝜑(𝑡, 𝑓) = −2𝜋𝑓∆𝑑𝑟𝑖𝑓𝑡(𝑡) (4.13) 

where ∆𝑑𝑟𝑖𝑓𝑡(𝑡) is a time-variant time shift function and is called the residual drift time. 

According to Equations 4.12 and 4.13 

 ∆𝑑𝑟𝑖𝑓𝑡(𝑡) =
𝑡

𝜋𝑄
𝑙𝑛

𝑓𝑤

𝑓𝑁𝑌𝑄
. (4.14) 

The residual drift time is the difference between the event time at the seismic Nyquist frequency 

and at the sonic logging frequency after the difference between the dominant seismic frequency 

and the Nyquist frequency being removed by Gabor deconvolution. In the case of a time-
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invariant 𝑄 value, ∆𝑑𝑟𝑖𝑓𝑡(𝑡) is a linear function of 𝑡. For a layered medium where the average 𝑄 

value varies with traveltime, ∆𝑑𝑟𝑖𝑓𝑡(𝑡) takes on a more complex form. 

Figure 4.11 compares two Q matrixes, of which the only difference is the phases of their 

Q wavelets. The Q wavelet phases in the left panel are constructed with respect to the well 

logging frequency (Equation 4.11), while those in the right panel are with respect to the seismic 

Nyquist frequency (Equation 4.10). Although both sets of the Q wavelets lag behind the dashed 

blue diagonal by a progressively increasing amount, the right-hand set appears less delayed than 

the left-hand set at the same traveltime. Four Q wavelets propagating to 0.3 s, 0.4 s, 0.5 s and 

0.6 s are taken from the Q matrix in Figure 4.11 right panel and their phase spectra are plotted in 

dotted black on top of the corresponding panels in Figure 4.10 to generate Figure 4.12. The 

phase spectra of the propagating wavelets estimated by Gabor deconvolution match those of the 

Q wavelets modeled with respect to the seismic Nyquist frequency. These three sets of wavelets 

are plotted in the time domain in Figure 4.13, showing that the propagating wavelets estimated 

by Gabor deconvolution align those of the Q wavelets modeled with respect to the seismic 

Nyquist frequency, but are earlier than those modeled with respect to the well logging frequency. 

Their timing difference at an individual propagating time is a residual drift time and is denoted 

by a blue brace. 
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Figure 4.11: Comparison of the Q matrixes in gray built using the well logging frequency 

(left, the same as Figure 3.7 left panel) and the seismic Nyquist frequency (right) as the 

reference frequency respectively. 

 

 

Figure 4.12: Same as Figure 4.10 except that the phase spectra of the propagating wavelets 

modeled by the Q matrix with respect to the seismic Nyquist frequency are plotted as well. 
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Figure 4.13: The time-domain propagating wavelets at four different times estimated by 

Gabor deconvolution, modeled by the Q matrixes with respect to the well logging frequency 

and the seismic Nyquist frequency. 

 

The residual phase can be calculated by Equation 4.12 as long as the values of 𝑄 and 𝑓𝑤 

are known. Then the phase of the propagating wavelets estimated by Gabor deconvolution can be 

corrected by 

 𝜑𝑤𝑄

𝐻,𝑐(𝑡, 𝑓) = 𝜑𝑤𝑄
𝐻 (𝑡, 𝑓) + ∆𝜑(𝑡, 𝑓) (4.15) 

where 𝜑𝑤𝑄

𝐻,𝑐(𝑡, 𝑓) is the corrected phase of the propagating wavelet at traveltime 𝑡. With the 

known values of 𝑄 = 50 and 𝑓𝑤 = 12.5 𝑘𝐻𝑧, the phase spectra after correction are calculated 

and are plotted in bold gray in Figure 4.14. They are seen to match those of the Q wavelets with 

respect to the well logging frequency. These three sets of wavelets in Figure 4.14 are plotted in 

the time domain in Figure 4.15, showing that phase correction delays the estimated wavelets by 

the amount of the corresponding residual drift time to align them with the Q wavelets with 

respect to the well logging frequency. Similarly, Figure 4.16 shows the estimated wavelets after 
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phase correction propagating to every 0.1 s in black, the timing of which is consistent with that 

of the corresponding wavelets embedded in the nonstationary trace in red. 

 

 

Figure 4.14: Same as Figure 4.12 except that the wavelets estimated by Gabor 

deconvolution are phase corrected. 
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Figure 4.15: Same as Figure 4.13 except that the wavelets estimated by Gabor 

deconvolution are phase corrected. 

 

 

Figure 4.16: Comparison of the propagating wavelets estimated by Gabor deconvolution 

with phase correction and those modeled by the Q matrix with respect to the well logging 

frequency in Figure 3.7. 
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Deconvolving the estimated wavelets with the corrected phases from the nonstationary 

seismic trace, the estimated reflectivity is shown to be much better tied to the well reflectivity 

than that without phase correction in Figure 4.17. Next, the amplitude of the phase corrected 

reflectivity estimate is balanced and its phase is rotated with respect to the known reflectivity in 

the same time-variant way as before. It can be observed from Figure 4.17 that time-variant 

amplitude balancing and time-variant constant-phase rotation do little change to the phase 

corrected reflectivity estimate. As a quality control, Figure 4.18 shows that phase correction 

reduces both the time-variant constant-phase difference and the time-variant time shift to zero, 

and enhances the time-variant crosscorrelation coefficient between the estimated and known 

reflectivities. It can be concluded that running Gabor deconvolution on the nonstationary trace 

removes the propagating wavelet phase delay to the seismic Nyquist frequency only. By 

correcting the estimated wavelet phase to the well logging frequency, the Gabor deconvolved 

trace can be well tied to the known reflectivity with very little amplitude and phase errors. 
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Figure 4.17: A procedure of tying the nonstationary trace to the known reflectivity (blue) 

by Gabor deconvolution, phase correction, time-variant amplitude balancing and time-

variant constant-phase rotation. 

 

 

Figure 4.18: The time-variant constant-phase differences (top), the time-variant 

crosscorrelation coefficient sequences (middle) and the time-variant time shift sequences at 

which the coefficients are obtained (bottom) between the known reflectivity and the Gabor 

deconvolved trace, the Gabor deconvolved trace after phase correction, the Gabor 
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deconvolved trace after phase correction, time-variant amplitude balancing and time-

variant constant-phase rotation. 

 

4.4 Residual drift time estimation after Gabor deconvolution 

As can be seen from Equation 4.13 that applying phase correction in the Gabor domain is 

equivalent to applying a time-variant residual drift time correction by Equation 2.2 in the time 

domain. Figure 4.19 displays that the Gabor deconvolved trace is precisely tied to the well 

reflectivity after its timing is corrected by the residual drift time, which is calculated using the 

known values of Q as well as the well logging frequency via Equation 4.14 and is plotted in solid 

gray in Figure 4.20 top panel. With a time-invariant 𝑄 value, the theoretical residual drift time in 

this case is a linear function of traveltime 𝑡. 

Although Gabor deconvolution with either phase correction or residual drift time 

correction can tie the nonstationary seismic trace to the well reflectivity accurately, neither of 

them works without knowledge of Q or the well logging frequency. Without this information, 

time-variant crosscorrelation and smooth dynamic time warping are tested to estimate the 

residual time-variant drift time by matching the Gabor deconvolved seismic trace to the well 

reflectivity statistically. Figure 4.20 top panel shows the residual drift time estimated by TVCC 

in solid blue using a sliding Gaussian window with 200 ms half-width and 10 ms increment, 

which approximates the known trend but with major discontinuities. The residual drift time 

estimated by SDTW is plotted in dotted red using a coarse sampling interval ℎ equals 200 

samples (namely 0.4 s) and it estimates the known residual drift time perfectly. The timing of the 

Gabor deconvolved seismic trace is corrected by the estimated residual drift time with each 

method and is compared to the well reflectivity respectively in Figure 4.19. It can be observed 
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that the Gabor deconvolved trace corrected by TVCC has obvious misties (indicated by yellow 

boxes), where the estimated residual drift time has discontinuities. In contrast, the Gabor 

deconvolved trace corrected by SDTW is well tied to the known reflectivity. As a quality 

control, the time-variant crosscorrelation coefficient sequences between the well reflectivity and 

the Gabor deconvolved traces with different residual drift time corrections in Figure 4.19 are 

calculated by Equation 3.26 and are plotted in Figure 4.20 bottom panel, from which we see that 

the Gabor deconvolved trace corrected by the SDTW estimated residual drift time ties to the well 

reflectivity as well as that corrected by the known residual drift time and is better than that 

corrected by the TVCC estimated residual drift time. 

 

 

Figure 4.19: The Gabor deconvolved trace corrected by the known residual drift time, the 

residual drift time estimated by time-variant crosscorrelation and the residual drift time 

estimated by smooth dynamic time warping compared to the well reflectivity (blue) 

separately. 
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Figure 4.20: Residual drift time after Gabor deconvolution: the known function, time-

variant crosscorrelation estimate and smooth dynamic time warping estimate (top). Time-

variant time shift sequences between the known reflectivity and the Gabor deconvolved 

trace corrected by the known residual drift time, corrected by the residual drift time 

estimated by time-variant crosscorrelation and corrected by the residual drift time 

estimated by smooth dynamic time warping (bottom). 

 

4.5 Summary 

 Running Gabor deconvolution on the nonstationary trace can get the reflectivity estimate 

tying the well reflectivity in amplitude and spectral content, but has phase errors which 

are more complex than those that can be solved by time-variant constant-phase rotation. 

 Gabor deconvolution accurately estimates the amplitude spectra of the propagating 

wavelets. 

 Gabor deconvolution calculates the phase spectra of the propagating wavelets by the 

digital Hilbert transform, which integrates within the seismic frequency band and corrects 

the drift time to the Nyquist frequency only. 
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 By correcting the estimated wavelet phase to the well logging frequency, the Gabor 

deconvolved trace can be well tied to the known reflectivity with very little amplitude 

and phase errors. 

 Gabor deconvolution with either phase correction or residual drift time correction can tie 

the nonstationary seismic trace to well reflectivity accurately knowing the Q values and 

the well logging frequency. Smooth dynamic time warping can estimate the residual drift 

time without knowledge of Q or the well logging frequency, and the estimation is more 

accurate than time-variant crosscorrelation.  
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Chapter Five: Seismic-to-well ties on Hussar synthetics and field data 

5.1 Chapter overview 

In September 2011, CREWES initiated a seismic experiment near Hussar, Alberta, with 

the goal to study the low frequency content of the seismic data (Margrave et al., 2012). Figure 

5.1 shows the location of the 4.5 km long seismic line and the three intersected wells 12-27, 14-

27 and 14-35. While seismic datasets with different source and receiver types are available, this 

thesis uses the dataset with dynamite source recorded by 10 Hz geophones. P-wave sonic, 

density, and gamma ray logs are available in all the three wells. 

In this chapter, nonstationary synthetic seismogram is first constructed based on Hussar 

well 12-27 by creating a plausible Q structure. Internal multiples are also included in the 

nonstationary synthetic seismogram. The nonstationary seismograms are then tied to the well 

reflectivity by Gabor deconvolution with phase correction, during which the Q values are 

estimated. All the three wells are also tied to the real seismic data, followed by bandlimited 

impedance inversion to examine the quality of seismic-to-well ties. 
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Figure 5.1: The location of the seismic line and wells in Hussar experiment (Lloyd, 2013). 

 

5.2 Seismic-to-well ties on well-based 1-D seismogram models 

5.2.1 Hypothetical Q log 

Figure 5.2 shows a density log and a P-wave velocity log acquired from Hussar well 12-

27. The logs are edited and the overburdens are neglected so that depth zero corresponds to the 

top of the logs. A plausible Q structure is generated by assuming that there is a linear relationship 

between the Q value and the values of P-wave velocity 𝑣𝑝 and density 𝜌 (Margrave, 2013b) 

 𝑄𝑣(𝑧) = 𝑄𝑚𝑖𝑛

𝑣𝑝(𝑧) − 𝑣𝑚𝑎𝑥

𝑣𝑚𝑖𝑛 − 𝑣𝑚𝑎𝑥
+ 𝑄𝑚𝑎𝑥

𝑣𝑝(𝑧) − 𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
 (5.1) 

and 

 𝑄𝜌(𝑧) = 𝑄𝑚𝑖𝑛

𝜌(𝑧) − 𝜌𝑚𝑎𝑥

𝜌𝑚𝑖𝑛 − 𝜌𝑚𝑎𝑥
+ 𝑄𝑚𝑎𝑥

𝜌(𝑧) − 𝜌𝑚𝑖𝑛

𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛
 (5.2) 
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where 𝑄𝑚𝑖𝑛, 𝑄𝑚𝑎𝑥, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥, 𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥 are all specified constants that determine the linear 

relationships by mapping 𝑄𝑚𝑖𝑛 to 𝑣𝑚𝑖𝑛 and 𝜌𝑚𝑖𝑛, as well as mapping 𝑄𝑚𝑎𝑥 to 𝑣𝑚𝑎𝑥 and 𝜌𝑚𝑎𝑥. 

Then the velocity Q and density Q are combined into a final Q 

 
1

𝑄
=

1

𝑄𝑣
+

1

𝑄𝜌
. (5.3) 

Figure 5.2 plots the hypothetical Q log in green, which is created from the density and P-

wave velocity logs given the values 𝑄𝑚𝑖𝑛 = 20, 𝑄𝑚𝑎𝑥 = 100, 𝑣𝑚𝑖𝑛 = 1500 m/s, 𝑣𝑚𝑎𝑥 = 4500 

m/s, 𝜌𝑚𝑖𝑛 = 1800 kg/m3 and 𝜌𝑚𝑎𝑥 = 3000 kg/m3. Note that at a depth where the values of 

density and P-wave velocity are low, the Q value is also small, indicating strong attenuation 

effects. 

With knowledge of the Q structure and the P-wave velocity at the logging frequency of 

12.5 kHz as well as assuming that the dominant seismic frequency is about 30 Hz, the P-wave 

velocity propagating at the seismic frequency can be calculated by Equation 3.11 and is plotted 

in red in Figure 5.2, whose value is systematically lower than that measured by the sonic tool. 

 
Figure 5.2: Logs from Hussar well 12-27. 
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5.2.2 Drift time 

The constant-Q theory predicts that velocity must be frequency dependent. It follows that 

a synthetic seismogram computed from well logs will predict reflection event times 

systematically earlier than those in the seismic data. The difference between the event time at the 

dominant seismic frequency and at the sonic logging frequency is called the drift time 

(Margrave, 2013b). Given a layered medium, the two-way vertical traveltime to depth 𝑧𝑛 is 

calculated by 

 𝑡(𝑧𝑛, 𝑓) = 2 ∑
𝑑𝑧𝑘

𝑣𝑘(𝑓)

𝑛

𝑘=1
 (5.4) 

where 𝑑𝑧𝑘 = 𝑧𝑘+1 − 𝑧𝑘 is the layer thickness, and 𝑣𝑘(𝑓) is the frequency-dependent velocity of 

the 𝑘𝑡ℎ layer. The drift time is calculated as 

 𝑑𝑟𝑖𝑓𝑡(𝑧𝑛) = 𝑡(𝑧𝑛, 𝑓𝑠) − 𝑡(𝑧𝑛, 𝑓𝑤) (5.5) 

where 𝑓𝑠 and 𝑓𝑤 are the dominant frequencies of the seismic and the well logging respectively. 

Plug Equation 5.4 into 5.5 

 𝑑𝑟𝑖𝑓𝑡(𝑧𝑛) = 2 ∑ [
𝑑𝑧𝑘

𝑣𝑘(𝑓𝑠)
−

𝑑𝑧𝑘

𝑣𝑘(𝑓𝑤)
]𝑛

𝑘=1 . (5.6) 

Substitute 𝑣𝑘(𝑓𝑠) for 𝑣𝑘(𝑓𝑤) by Equation 3.11 

 𝑑𝑟𝑖𝑓𝑡(𝑧𝑛) =
1

𝜋
𝑙𝑛

𝑓𝑤

𝑓𝑠
∑

1

𝑄𝑘

2𝑑𝑧𝑘

𝑣𝑘(𝑓𝑤)

𝑛

𝑘=1
 (5.7) 

where 𝑄𝑘 is the interval Q of the 𝑘𝑡ℎ layer. Since the two-way time thickness of the 𝑘𝑡ℎ layer 

𝑑𝑡𝑘 =
2𝑑𝑧𝑘

𝑣𝑘(𝑓𝑤)
, Equation 5.7 becomes 

 𝑑𝑟𝑖𝑓𝑡(𝑧𝑛) =
1

𝜋
𝑙𝑛

𝑓𝑤

𝑓𝑠
∑

𝑑𝑡𝑘

𝑄𝑘

𝑛
𝑘=1 . (5.8) 

The average Q and interval Q are related by 
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 𝑄𝑎𝑣𝑒(𝑧𝑛) = [
1

𝑡𝑛
∑

𝑑𝑡𝑘

𝑄𝑘

𝑛

𝑘=1
]

−1

 (5.9) 

where 𝑄𝑎𝑣𝑒(𝑧𝑛) is the Q value averaged from the surface to the 𝑛𝑡ℎ layer and 𝑡𝑛 is the two-way 

traveltime to the 𝑛𝑡ℎ layer. Substitute Equation 5.9 into 5.8 

 𝑑𝑟𝑖𝑓𝑡(𝑧𝑛) =
𝑡𝑛

𝜋𝑄𝑎𝑣𝑒(𝑧𝑛)
𝑙𝑛

𝑓𝑤

𝑓𝑠
. (5.10) 

As is introduced by Chapter 4, the residual drift time is the difference between the event 

time at the seismic Nyquist frequency and at the sonic logging frequency after the difference 

between the dominant seismic frequency and the Nyquist frequency being removed by Gabor 

deconvolution. Analogous to Equation 5.10, the residual drift time expressed by Equation 4.14 

can also be written as 

 ∆𝑑𝑟𝑖𝑓𝑡(𝑧𝑛) =
𝑡𝑛

𝜋𝑄𝑎𝑣𝑒(𝑧𝑛)
𝑙𝑛

𝑓𝑤

𝑓𝑁𝑌𝑄
. (5.11) 

The two P-wave velocity logs in Figure 5.2 are converted into time-depth curves and are 

shown in Figure 5.3 left panel, from which the two-way traveltime at the seismic frequency is 

seen to be greater than that at the well logging frequency to the same depth. Their difference is 

the drift time shown in Figure 5.3 right panel. 

In seismic-to-well ties, drift time correction is a necessary step to tie the synthetic 

seismogram to the seismic trace. Calculation of drift time in industrial practice needs one of the 

following: (1) estimating Q values and calculating the expected sonic velocities at the seismic 

frequency predicted by the constant-Q theory, (2) acquiring a VSP (vertical seismic profile) or a 

check-shot survey to get traveltime at the seismic frequency corresponding to each depth, (3) 

manually stretching and squeezing the synthetic seismograms until their key events 

interpretatively match those in the seismic traces. Measurement of Q is a difficult process and the 
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actual Q values can only be crudely estimated at present (Margrave, 2013c). A VSP or a check-

shot survey is not always available. Manually stretching and squeezing the synthetic seismogram 

is a tedious process and is usually regarded as cosmetic (White et al., 1998). Without this 

information, smooth dynamic time warping (SDTW) is used to estimate the drift time and the 

residual drift time in the following examples. 

 

 

Figure 5.3: Time-depth relations at different frequencies (left) and the drift time with 

respect to depth (right). 

 

5.2.3 Well-based 1-D seismogram models 

A stationary seismogram is created to simulate the synthetic seismogram to tie well logs 

to seismic traces. Figure 5.4 left panel shows the reflectivity series, which is calculated from the 

density and P-wave velocity logs in Figure 5.2. It is a time series of normal incident P-wave 

reflection coefficients positioned at the two-way traveltime to each subsurface reflector. 

Stationary convolution of the reflectivity with a minimum-phase source wavelet whose dominant 
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frequency is 30 Hz (Figure 5.4 middle panel) is the stationary seismogram 𝑠(𝑡) in Figure 5.4 

right panel. 

To simulate the real seismic trace including Q effects, a synthetic zero-offset VSP model 

is generated using the hypothetical Q log, as well as the same density log, P-wave velocity log 

and source wavelet as those used to construct the stationary seismogram. The algorithm is based 

on propagator matrices proposed by Ganley (1981) and the program is developed by Margrave 

and Daley (2014). Figure 5.5 shows the primaries-only upgoing wavefield with Q effects. The 

trace recorded by the surface receiver is the nonstationary trace with Q effects 𝑠𝑞(𝑡), and is 

plotted on top of the stationary seismogram 𝑠(𝑡) in Figure 5.6. Although not shown here, 𝑠𝑞(𝑡) 

constructed by this algorithm is identical to that created by the nonstationary convolutional 

model described in Chapter 3 using the same input Q values, well logs and source wavelet. 

 

 

Figure 5.4: Construction of a stationary seismogram 𝒔(𝒕). 
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Figure 5.5: The primaries-only upgoing wavefield of the synthetic zero-offset VSP model 

with Q effects. 

 

5.2.4 Tying the nonstationary trace with Q effects to the well reflectivity 

As is shown in Figure 5.6, compared to the stationary seismogram 𝑠 in blue, the 

nonstationary seismic trace 𝑠𝑞 in red is delayed by the amount of drift time, which can be 

calculated via Equation 5.10 knowing Q values, and is plotted with respect to two-way traveltime 

in solid grey in Figure 5.7 top panel. Without knowledge of Q, SDTW can estimate the drift time 

by warping 𝑠𝑞 to tie 𝑠. The estimated drift time is plotted in dotted black in Figure 5.7 top panel 

and is shown to well approximate the known drift time. 

The nonstationary trace is tied to the well reflectivity by Gabor deconvolution with or 

without phase correction, time-variant amplitude balancing and time-variant constant-phase 

rotation. The final tying results are shown in Figure 5.6 in which the well reflectivities are 

plotted twice in blue while its estimates are in red. We can see that the nonstationary trace is 
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better tied to the well reflectivity with phase correction, during which SDTW estimates the 

residual drift time by warping Gabor deconvolved 𝑠𝑞 to tie the well reflectivity. Figure 5.7 top 

panel shows the estimated residual drift time in dotted red. It is consistent with the known 

residual drift time in solid blue, which is calculated by Equation 5.11 using Q values. As is 

shown in Figure 5.7 middle panel, the time-variant constant-phase difference between Gabor 

deconvolved 𝑠𝑞 and the well reflectivity becomes almost zero along the traveltime after phase 

correction. The time-variant crosscorrelation coefficients between the well reflectivity and its 

estimates are calculated at lag zero and are plotted in Figure 5.7 bottom panel, indicating an 

increased correlation after phase correction. 

 

Figure 5.6: The stationary seismogram 𝒔(𝒕) and the nonstationary trace with Q effects 

𝒔𝒒(𝒕) (top), the reflectivity estimate without phase correction compared to the well 

reflectivity (middle), the reflectivity estimate with phase correction compared to the well 

reflectivity (bottom). 
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Figure 5.7: The estimated drift time and residual drift time sequences compared to the 

known ones (top). The time-variant constant-phase differences between the well reflectivity 

and Gabor deconvolved 𝒔𝒒(𝒕) with and without phase correction (middle). The time-

variant crosscorrelation coefficients at lag zero between the well reflectivity and its 

estimates with and without phase correction (bottom). 

 

5.2.5 Q estimation 

As Figure 5.7 top panel shows, SDTW accurately estimates the drift time and the residual 

drift time without knowledge of Q. Since the Q values are related to the drift time and the 

residual drift time by Equation 5.10 and Equation 5.11 respectively, the average Q can be 

calculated from the estimated drift time via 

 𝑄𝑎𝑣𝑒(𝑧𝑛) =
𝑡𝑛

𝜋𝑑𝑟𝑖𝑓𝑡(𝑧𝑛)
𝑙𝑛

𝑓𝑤

𝑓𝑠
 (5.12) 

or from the estimated residual drift time via 

 𝑄𝑎𝑣𝑒(𝑧𝑛) =
𝑡𝑛

𝜋∆𝑑𝑟𝑖𝑓𝑡(𝑧𝑛)
𝑙𝑛

𝑓𝑤

𝑓𝑁𝑌𝑄
. (5.13) 
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In Figure 5.8, the hypothetical Q log is mapped from depth to two-way traveltime and is 

plotted in solid blue, from which the known average Q is calculated by Equation 5.9 and is 

plotted in solid black. We can observe that the average Q is much smoother than the interval Q. 

The estimated average Q from drift time estimation is plotted in dotted red and that from the 

residual drift time estimation is plotted in dotted green. Although the estimated Q values have 

large errors at very early times, they are roughly precise after 0.2 s. 

 

Figure 5.8: The known interval Q, known average Q, estimated average Q from drift time 

and residual drift time estimation. 

 

Assuming that there is no knowledge or estimation of detailed Q structure, the accuracy of phase 

correction using a time-invariant Q is tested. A series of time-invariant Q values ranging from 20 

to 100 in an increment of 10 are used individually for calculating the residual drift time by 

Equation 5.11 to correct the phase of Gabor deconvolved 𝑠𝑞, followed by time-variant amplitude 

balancing and time-variant constant-phase rotation. Figure 5.9 shows some final reflectivity 

estimates (red) after phase correction with corresponding Q values compared to the well 



 

79 

reflectivity (blue). The overall crosscorrelation coefficients between the well reflectivity and its 

estimates are calculated at lag zero and are plotted in blue Figure 5.10 with respect to the 

corresponding time-invariant Q values used for phase correction. The red star indicates the case 

that the known time-variant Q values are used for phase correction. Its vertical coordinate is the 

crosscorrelation coefficient and its horizontal coordinate is the overall average Q value from 

surface to the log bottom. The black star indicates the case that there is no phase correction. Its 

vertical coordinate is the crosscorrelation coefficient and its horizontal coordinate is the 

maximum Q value being tested. It can be seen that in this example, a time-invariant Q roughly 

ranging from 50 to 70 can plausibly correct the phase errors of Gabor deconvolved 

nonstationary seismic trace to tie the well reflectivity. 

 

 

Figure 5.9: The reflectivity estimates (red) with phase correction using a series of time-

invariant Q values compared to the well reflectivity (blue). 
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Figure 5.10: The overall crosscorrelation coefficients between the reflectivity estimates and 

the well reflectivity at lag zero with respect to the corresponding time-invariant Q values 

used for phase correction. The cases that the known time-variant Q values are used for 

phase correction and there is no phase correction are plotted as stars for reference. 

 

5.2.6 Inclusion of internal multiples 

A more realistic 1-D nonstationary seismogram containing internal multiples is 

constructed by the synthetic zero-offset VSP model using the same Q values, well logs and 

source wavelet. Figure 5.11 shows its upgoing wavefield including both primaries and internal 

multiples with Q effects. The trace recorded at depth zero is the nonstationary trace with both Q 

and internal multiple effects 𝑠𝑞𝑖(𝑡) and is plotted in Figure 5.12 top panel on top of 𝑠(𝑡) and 

𝑠𝑞(𝑡). The events in 𝑠𝑞𝑖(𝑡) are observed to be more decayed in amplitude and more delayed in 

timing than 𝑠𝑞(𝑡). Figure 5.12 bottom panel plots the same known drift time in solid grey and the 

known residual time in solid blue as Figure 5.7 top panel. The SDTW estimated drift time 

between 𝑠(𝑡) and 𝑠𝑞𝑖(𝑡) is plotted in dotted black, which appears greater than the known drift 
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time. The SDTW estimated residual drift time between the well reflectivity and Gabor 

deconvolved 𝑠𝑞𝑖(𝑡) is plotted in dotted red, which is higher than the known residual drift time as 

well. The SDTW estimated time shift between the well reflectivity and Gabor deconvolved 

𝑠𝑞𝑖(𝑡) after phase correction using the known Q values is plotted in dotted green, which is not 

zero. 

Although some multiples could be identified on the upgoing wavefield of a VSP through 

corridor filtering (Lines and Newrick, 2004), as first discussed by O'Doherty and Anstey (1971), 

internal multiples cause a nonstationary filtering effect that is essentially indistinguishable from 

anelastic attenuation and has come to be called stratigraphic filtering. Combination of both 

anelastic attenuation and stratigraphic filtering leads to a single combined effect that can be 

modelled by the constant-Q theory as an apparent Q. The apparent Q, intrinsic Q and 

stratigraphic Q are related by (Richards and Menke, 1983) 

 
1

𝑄𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡
=

1

𝑄𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐
+

1

𝑄𝑠𝑡𝑟𝑎𝑡𝑖𝑔𝑟𝑎𝑝ℎ𝑖𝑐
. (5.14) 

Thus, the value of the apparent Q is lower than that of the intrinsic Q in the presence of internal 

multiples, leading to stronger attenuation effects such as more drift time delay. Figure 5.13 plots 

the same known interval intrinsic Q in solid blue and the known average intrinsic Q in solid 

black as Figure 5.8. The estimated average apparent Q from drift time estimation in Figure 5.12 

bottom panel is plotted in dotted red and that from the residual drift time estimation in Figure 

5.12 bottom panel is plotted in dotted green, whose values are both smaller than the known 

average intrinsic Q. 

The nonstationary trace with both Q and internal multiple effects is tied to the well 

reflectivity by Gabor deconvolution without phase correction, or with phase correction calculated 
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from the known residual drift time, which is associated with the intrinsic Q, or with phase 

correction calculated from the SDTW estimated residual drift time, which is associated with the 

apparent Q, followed by time-variant amplitude balancing and time-variant constant-phase 

rotation. The final tying results are shown in Figure 5.14 in which the well reflectivities are 

plotted three times in blue while its estimates are in red. We can see that the nonstationary trace 

is best tied to the well reflectivity after phase correction, which is associated with the apparent Q. 

As a quality control, the time-variant constant-phase differences used to rotate those reflectivity 

estimates and the time-variant crosscorrelation coefficients at lag zero between those final 

estimates and the well reflectivity are plotted in Figure 5.15. The case that the nonstationary 

trace is multiple free and its phase is corrected after Gabor deconvolution using the intrinsic Q is 

also shown for comparison. As we can see, in the presence of internal multiples, Gabor 

deconvolved 𝑠𝑞𝑖(𝑡) can have the smallest residual phase and maximum correlation with the well 

reflectivity by using the apparent Q to correct its phase, but the final correlation is still worse 

than the multiple-free case. 
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Figure 5.11: The upgoing wavefield of the synthetic zero-offset VSP model with both Q and 

internal multiple effects. 

 

 

Figure 5.12: The stationary seismogram 𝒔(𝒕), the nonstationary trace with Q effects only 

𝒔𝒒(𝒕), the nonstationary trace with both Q and internal multiple effects 𝒔𝒒𝒊(𝒕) (top). The 

estimated drift time and residual drift time sequences compared to the known ones 

(bottom). 
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Figure 5.13: The known interval intrinsic Q, known average intrinsic Q, estimated average 

apparent Q from drift time estimation and that from residual drift time estimation in the 

presence of internal multiples. 

 

 

Figure 5.14: The reflectivity estimate without phase correction (top), with phase correction 

associated with the intrinsic Q (middle) and with phase correction associated with the 

apparent Q (bottom) compared to the well reflectivity. 
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Figure 5.15: The time-variant constant-phase differences between the well reflectivity and 

Gabor deconvolved 𝒔𝒒𝒊(𝒕) without phase correction, with phase correction associated with 

the intrinsic Q, with phase correction associated with the apparent Q and Gabor 

deconvolved 𝒔𝒒(𝒕) with phase correction associated with the intrinsic Q (top). The time-

variant crosscorrelation coefficients at lag zero between the well reflectivity and its final 

estimates (bottom). 

 

5.3 Seismic-to-well ties on Hussar field data 

5.3.1 Data preparation 

The Hussar seismic data is processed through a flow of scaling and noise attenuation, 

spiking deconvolution, statics and velocity analysis, normal moveout removal, common depth 

point stack and migration (Lloyd, 2013). Figure 5.16 shows the fully processed zero-offset 

seismic section. At each well location, the nearest 5 seismic traces are averaged to tie the 

corresponding synthetic seismograms. 

Figure 5.17 shows the density and P-wave velocity logs after a log editing process of 

removing null values, clipping unrealistic values and adding overburdens. Each overburden 

linearly extends the average value of the top 10 sonic or density log samples to the starting value 
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at surface. The starting value for the density logs is 1500 kg/m3 and that for the P-wave sonic 

logs is 1000 μs/m. Five tops called Basal Belly River, Base Fish Scales, Viking, Mannville and 

Medicine River Coal are denoted at the corresponding depth of each well, except that Medicine 

River Coal is missing at well 14-27. The subsurface structure is essentially flat in the Hussar area 

but the same tops appear deeper at well 12-27 than those of the other two wells. This is because 

the logs are measured with respect to the kelly bushing, whose elevation varies with the surface 

elevation and is significantly higher at well 12-27 than that at the other two wells (Margrave et 

al., 2012). In Figure 5.18, a normal incident P-wave reflectivity is calculated from each well and 

is plotted with respect to the two-way traveltime converted from the depth using the sonic log 

values. 

Next a residual wavelet is estimated from each average trace by smoothing its amplitude 

spectrum and applying a zero phase (Cui and Margrave, 2014). The residual wavelet is necessary 

to bandlimit the well reflectivity to the same frequency band of the seismic data. A zero-phase 

wavelet is symmetrical about time zero to make the maximum amount of energy in the wavelet 

be centered at the reflection coefficients, which is required by both interpretation and impedance 

inversion. All the three estimated wavelets are plotted in Figure 5.19 and they look very similar 

to each other.  

Convolving a well reflectivity with the zero-phase wavelet estimated at the well location, 

a synthetic seismogram is created and is compared to the corresponding average trace in Figure 

5.20. Their events are not tied to each other and the overall crosscorrelation coefficient at lag 

zero is very small at each well location. Figure 5.21 plots the synthetic seismograms on the 2-D 

seismic section in the same gray level. The tops are denoted at the corresponding two-way 
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traveltime converted from their depth using the sonic logs. We observe that none of the same 

well formations are tied to the same seismic events. 

 

Figure 5.16: The 2-D seismic section after processing and migration. The three wiggle 

traces in red are the average traces at the corresponding well locations. 

 

 

Figure 5.17: The density log and P-wave velocity log from each well after being edited. 
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Figure 5.18: Reflectivity calculated from each well. 

 

 

Figure 5.19: The zero-phase wavelet estimated from the average trace at each well location. 
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Figure 5.20: The synthetic seismogram and the average trace at the corresponding well 

location before being tied. The cc values annotated are their overall crosscorrelation 

coefficients at lag zero. 

 

 

Figure 5.21: The 2-D seismic section, on top of which are the untied synthetic seismograms 

at the corresponding well locations separated by the dotted red lines. 
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5.3.2 Seismic-to-well ties 

Without Q values or a check-shot/VSP survey available, SDTW is used to estimate the 

time shifts between the synthetic seismograms and the average seismic traces automatically. 

Figure 5.22 top panel shows the estimated time shifts using a coarse sample interval of 100 

samples, namely 0.2 s. The time shifts are attributed to the combination of the residual drift time 

and overestimated sonic overburden, so they are all less than zero although they are getting 

larger with longer traveltime. The absolute values of the time shifts at well 12-27 are larger than 

those of the other two wells by a rough constant, resulting from the fact that its reference depth 

(the kelly bushing elevation) is higher than that of the other two wells. The accuracy of the time 

shift estimation can be verified by the fact that all the three time shift sequences have similar 

slopes because of the flat subsurface geological features in the Hussar area. 

The timing of each well reflectivity is corrected by the corresponding time shifts and is 

plotted on top of the original reflectivity in Figure 5.23. Convolving the time shifted reflectivity 

with the corresponding zero-phase residual wavelet in Figure 5.19, the reconstructed synthetic 

seismogram is plotted in Figure 5.24 compared to the corresponding average trace at each well 

location. Note that in this time calibration step, it is the timing of the well reflectivity that is 

being corrected instead of warping the original synthetic seismograms, so that their embedded 

zero-phase wavelets are not destroyed. 

Next the time-variant constant-phase differences and amplitude scalar functions between 

the synthetic seismograms and the average traces in Figure 5.24 are calculated and plotted in 

Figure 5.22 middle and bottom panels. They are then linearly interpolated and extrapolated in the 

horizontal direction because of the flat subsurface properties in the Hussar area. The 2-D time-

variant constant-phase and the 2-D time-variant amplitude scalar are plotted in Figure 5.25 and 
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Figure 5.26 respectively. It can be seen that the traces near well 12-27 have relatively large phase 

errors at early times while the traces near well 14-27 have relatively large amplitude errors at 

middle times. Each seismic trace is phase rotated and amplitude balanced by the corresponding 

amounts. Since deconvolution is rarely perfect in its attempt to produce a zero-phase wavelet 

from the nonstationary minimum-phase wavelets, phase rotation is important to move the central 

peaks of the residual wavelets in the seismic traces to the positions of the reflection coefficients. 

Figure 5.27 shows that the synthetic seismograms after time calibration are now tied to the 2-D 

seismic section after phase rotation and amplitude balancing very well. The same well tops tie to 

the same seismic events, making major seismic horizons easy to be identified. In Figure 5.28, the 

correlation of each pair of the synthetic seismogram and the average trace is shown to be much 

improved after well tying compare to Figure 5.20. 

 

Figure 5.22: The time shifts between the synthetic seismogram and the average trace at the 

corresponding well location (top). The time-variant constant-phase difference between the 

average trace and the synthetic seismogram after time calibration at each well location 

(middle). The time-variant amplitude scaler function between the phase rotated average 

trace and the synthetic seismogram after time calibration at each well location (bottom). 
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Figure 5.23: The original and time shifted reflectivities at each well. 

 

 

Figure 5.24: The reconstructed synthetic seismogram and the average trace at the 

corresponding well location after the timing of the reflectivity being corrected. The cc 

values annotated are their overall crosscorrelation coefficients at lag zero. 
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Figure 5.25: The 2-D time-variant constant-phase, on top of which are the phases used for 

interpolation and extrapolation at the corresponding well locations separated by the dotted 

white lines. 

 

 

Figure 5.26: The 2-D time-variant amplitude scalar, on top of which are the scalars used 

for interpolation and extrapolation at the corresponding well locations separated by the 

dotted white lines. 
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Figure 5.27: The 2-D seismic section after phase rotation and amplitude balancing, on top 

of which are the synthetic seismograms after time calibration at the corresponding well 

locations separated by the dotted red lines. 

 

 

Figure 5.28: The synthetic seismogram and the average trace at the corresponding well 

location after being tied. The cc values annotated are their overall crosscorrelation 

coefficients at lag zero. 
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5.3.3 Bandlimited impedance inversion 

Once the wells are tied to the seismic section, they can provide the low-frequency trend 

when the integrated seismic data is inverted into detailed impedance. The bandlimited impedance 

inversion (BLIMP) (Ferguson and Margrave, 1996) is a simple but powerful seismic inversion 

technique. The low frequency cut-off 𝑓𝑐 and the high-end frequency 𝑓ℎ are two important 

parameters specified by the user. BLIMP estimates acoustic impedance from a seismic trace of 

bandwidth from 𝑓𝑐 to 𝑓ℎ combined with a log impedance of bandwidth below 𝑓𝑐. 

The impedance of the three wells are calculated with respect to two-way traveltime after 

their timing is corrected by the SDTW estimated time shifts. Then the well impedance is linearly 

interpolated and extrapolated in the horizontal direction for the inversion of each trace in the 2-D 

seismic section. Figure 5.29 shows the 2-D interpolated well impedance section. 

The low frequency cut-off 𝑓𝑐 should be the lowest reliable seismic frequency. Selecting 

its value too low, the impedance inversion will contain noise from the seismic. Selecting its 

value too high will cause the seismic data to be overwritten with the well log information, 

causing subtleties in the seismic to be erased (Lloyd, 2013). To determine the optimal value of 

𝑓𝑐, a series of frequency values ranging from 1 to 20 Hz in an increment of 0.5 Hz is tested. The 

trace at each well location is inverted using different testing values of 𝑓𝑐, the corresponding well 

impedance and a high-end frequency 𝑓ℎ of 75 Hz. The 2-norm errors are calculated between each 

seismic impedance inversion and the corresponding low-pass filtered log impedance using 𝑓ℎ=75 

Hz, and are plotted in Figure 5.30 with respect to the values of 𝑓𝑐. The errors drop rapidly with 

an increasing 𝑓𝑐 and become stably small at about 3 Hz for the three wells, so 3 Hz is chosen as 

the optimal low frequency cut-off. Figure 5.31 shows the bandlimited impedance inversion of the 
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2-D seismic section using 𝑓𝑐=3 Hz and 𝑓ℎ=75 Hz, which is roughly consistent with the low-pass 

filtered log impedance at each well location. To qualitatively evaluate the accuracy of the 

seismic impedance inversion, Figure 5.32 compares the low-pass filtered log impedance 𝐼𝑤𝑒𝑙𝑙 

with the bandlimited seismic impedance inversion 𝐼𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 at the corresponding well location. 

Their percent error is calculated by  

 𝑒𝑟𝑟𝑜𝑟 =
𝑛𝑜𝑟𝑚(𝐼𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛−𝐼𝑤𝑒𝑙𝑙)

𝑛𝑜𝑟𝑚(𝐼𝑤𝑒𝑙𝑙)
× 100  (5.15) 

where 𝑛𝑜𝑟𝑚 is the 2-norm. It can be noticed that the percent error is relatively high at well 12-27 

compared to the other two wells. 

 

 

Figure 5.29: The 2-D interpolated well impedance, on top of which are the well impedance 

used for interpolation and extrapolation at the corresponding well locations separated by 

the dotted white lines. 
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Figure 5.30: The 2-norm errors between the log impedance and the impedance inversion of 

the seismic trace at each well location using different low frequency cut-offs. 

 

 

Figure 5.31: Bandlimited impedance inversion of the 2-D seismic section, on top of which 

are the low-pass filtered well impedance separated by the dotted white lines at the 

corresponding well locations with the tops annotated. 

 



 

98 

 

Figure 5.32: Comparison of the low-passed well impedance and the bandlimited seismic 

impedance inversion at each well location with their percent errors denoted. 

 

5.3.4 Discussion 

As is seen from the 2-D time-variant constant-phase section in Figure 5.25, the phase 

values are anomalously large around well 12-27. It is unrealistic to rotate the seismic traces by 

such large phase angles. The phase anomaly may be an indication of insufficient time shift 

correction of well 12-27 since its reference depth level is higher than that of the other two wells. 

To verify this guess, a second iteration of time calibration process is applied. The time shifts 

between the previously time corrected synthetic seismogram and the average seismic trace at 

each well location in Figure 5.24 are estimated by SDTW again and are plotted in Figure 5.33 

top panel. Noticeable time shift amounts are detected even after the first iteration of time 

calibration, especially at well 12-27. Next, the timing of the reflectivity is further corrected by 

these time shifts again to construct the synthetic seismogram with twice time calibration, whose 

time-variant constant-phase difference with the average trace at each well location is calculated 
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and plotted in Figure 5.33 middle panel. The phase is smaller than that in the first iteration 

shown in Figure 5.22 middle panel, indicating that the inadequate time shift correction in the first 

iteration biases the following constant-phase estimation. A third iteration of time calibration is 

employed in the same way and the results are shown in Figure 5.34. The time shifts are all 

reduced to zero and the time-variant constant-phase difference is the same as that in the second 

iteration, verifying that the timing of the three wells is sufficiently corrected after two iterations. 

The reason why time calibration in this case needs several iterations to converge may be that the 

SDTW estimated time shifts are used to correct the timing of the reflectivity instead of warping 

the synthetic seismogram, the latter of which is required by the objective of the SDTW 

algorithm, making this optimization problem nonlinear. 

 

 

Figure 5.33: The results in the second iteration of time calibration are shown. The time 

shifts between the average trace and the synthetic seismogram after time calibration once 

(top). The time-variant constant-phase difference between the average trace and the 

synthetic seismogram after time calibration twice (middle). The time-variant amplitude 

scaler function between the phase rotated average trace and the synthetic seismogram after 

time calibration twice (bottom). 
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Figure 5.34: The results in the third iteration of time calibration are shown. The time shifts 

between the average trace and the synthetic seismogram after time calibration twice (top). 

The time-variant constant-phase difference between the average trace and the synthetic 

seismogram after time calibration three times (middle). The time-variant amplitude scaler 

function between the phase rotated average trace and the synthetic seismogram after time 

calibration three times (bottom). 

 

After two iterations, the time-variant constant-phase difference (Figure 5.33 or Figure 

5.34 middle panel) and the time-variant amplitude scalar (Figure 5.33 or Figure 5.34 bottom 

panel) at three well locations are linearly interpolated and extrapolated in the horizontal 

direction, shown in Figure 5.35 and Figure 5.36 respectively. The phase values are much smaller 

than those in the first iteration in Figure 5.25 while the 2-D amplitude scalar section is almost the 

same as Figure 5.26. The seismic traces are phase rotated and amplitude balanced by the amount 

calculated in the second iteration and the final 2-D seismic section is displayed in Figure 5.37, on 

top of which are the synthetic seismograms after time calibration twice. The well tying result is 

visually similar to that with only one iteration of time calibration as shown in Figure 5.27. Each 
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pair of the tied synthetic seismogram and the average trace is plotted in Figure 5.38 and their 

overall crosscorrelation coefficients are all increased from the first iteration in Figure 5.28. The 

time-variant crosscorrelation coefficients between the synthetic seismogram and the seismic 

trace before well tying, after well tying with time calibration once and after well tying with time 

calibration twice are calculated are plotted in Figure 5.39 for each well location, showing that the 

second iteration of time calibration considerably improves the well tying at early times for well 

12-27.  

 

Figure 5.35: The 2-D time-variant constant-phase after two iterations, on top of which are 

the phases used for interpolation and extrapolation at the corresponding well locations 

separated by the dotted white lines. 
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Figure 5.36: The 2-D time-variant amplitude scalar after two iterations, on top of which are 

the scalars used for interpolation and extrapolation at the corresponding well locations 

separated by the dotted white lines. 

 

 

Figure 5.37: The final well tying results after two iterations of time calibration are shown. 

The 2-D seismic section after phase rotation and amplitude balancing, on top of which are 

the synthetic seismograms after time calibration twice at the corresponding well locations 

separated by the dotted red lines. 
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Figure 5.38: The synthetic seismogram and the average trace at the corresponding well 

location after being tied through two iterations of time calibration. The cc values annotated 

are their overall crosscorrelation coefficients at lag zero. 

 

 

Figure 5.39: The time-variant crosscorrelation coefficients between the synthetic 

seismogram and the seismic trace before well tying, after well tying with time calibration 

once and after well tying with time calibration twice. 
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With the wells tied to the seismic section after two iterations of time calibration, the 

seismic data is inverted to the bandlimited impedance shown in Figure 5.40 using the same 

values of 𝑓𝑐 and 𝑓ℎ. Figure 5.41 also compares the percent error between the low-pass filtered log 

impedance with the bandlimited seismic impedance inversion at each well location. The error is 

slightly higher at well 14-35 while is lower at well 14-27 and well 12-27 than that with well 

tying of one time calibration iteration. Similarly, the impedance percent error is calculated 

between the seismic impedance inversion and the interpolated well impedance at every CDP 

location. Figure 5.42 compares the errors with one and two iterations of time calibration in the 

well tying. The second iteration is seen to bring down the errors significantly around well 12-27, 

verifying better seismic-to-well ties. 

 

Figure 5.40: Bandlimited impedance inversion of the 2-D seismic section, with two 

iterations of time calibration in the well tying, on top of which are the low-pass filtered well 

impedance separated by the dotted white lines at the corresponding well locations with the 

tops annotated. 
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Figure 5.41: Comparison of the low-passed well impedance and the bandlimited seismic 

impedance inversion with two iterations of time calibration in the well tying. Their 

impedance percent errors are denoted. 

 

 

Figure 5.42: The impedance percent errors between the seismic impedance inversion and 

the interpolated well impedance at every CDP location, with one and two iterations of time 

calibration in the well tying. 
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5.4 Summary 

 Smooth dynamic time warping can accurately estimate the drift time and the residual drift 

time automatically without knowledge of Q or a check-shot or a VSP survey. Average Q 

values can be roughly calculated from the estimated drift time or residual drift time. 

 A roughly correct time-invariant Q can plausibly correct the phase errors of Gabor 

deconvolved nonstationary seismic trace to tie the well reflectivity. 

 In the presence of internal multiples, smooth dynamic time warping estimates drift time 

or residual drift time associated with apparent Q, including both intrinsic and 

stratigraphic effects. Gabor deconvolved nonstationary trace using the apparent Q for 

phase correction can be tied to the well reflectivity at best, but the final correlation is still 

worse than the multiple-free case. 

 The time shifts estimated between synthetic seismograms and seismic traces are the 

combination of drift time and sonic overburden estimation errors when tying Hussar 

wells to the field seismic data. 

 The fact that the geological structure is horizontally flat in the Hussar area leads to 

similar time shift characters between the synthetic seismograms and the seismic traces at 

three well locations. It also validates the linear interpolation and extrapolation of the 

time-variant constant-phase and the time-variant scalar from the well locations to other 

CDP locations horizontally. 

 The estimated time shifts are used to calibrate the timing of the reflectivity, instead of 

warping the synthetic seismogram required by the objective of the SDTW algorithm, to 

reserve the embedded zero-phase wavelets but making this optimization problem 

nonlinear and converge only after several iterations. For this Hussar dataset, the first 
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iteration of time calibration is not sufficient, leading to a constant-phase estimation bias. 

After two iterations, the time shifts are adequately corrected and the constant-phase 

difference is reasonably small. 

 After seismic-to-well ties, the same well tops are tied to the same seismic events, making 

major seismic horizons easy to be identified. The correlation of the synthetic seismogram 

and the average trace at each well location is much increased compared to that before 

well tying. 

 The bandlimited impedance inversion of the Hussar seismic data using a low-frequency 

cut-off of 3 Hz and a high-end frequency of 75 Hz is shown to be a good approximation 

to the subsurface properties. The second iteration of time calibration significantly reduces 

the percent errors around well 12-27 between the seismic inversion and well impedance, 

verifying better seismic-to-well ties. 
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Chapter Six: Conclusions 

 Smooth dynamic time warping can accurately estimate smooth time shifts between two 

traces automatically to get a good correlation between them. Dynamic time warping or 

smooth dynamic time warping is more sensitive to the rapidly varying time shifts than 

time-variant crosscorrelation. 

 The constant-Q theory predicts seismic wavelet evolution with amplitude decay and 

minimum phase dispersion. Compared to the stationary trace, the nonstationary trace 

shows progressive attenuation effects such as the diminishing amplitude, the widening 

waveforms and the delayed events. 

 By comparing two traces within a sliding Gaussian window, time-variant amplitude 

balancing, time-variant constant-phase rotation and time-variant crosscorrelation can 

correct nonstationary effects that are very slowly time variant. 

 Stationary deconvolution on a nonstationary seismic trace results in large amplitude and 

phase errors, resulting from deconvolving a single wavelet estimated within a target zone 

from the nonstationary trace with embedded evolving wavelets. These errors are 

nonstationary and difficult to be corrected for by time-variant amplitude balancing and 

time-variant constant-phase rotation compared to the well control. 

 Running Gabor deconvolution on the nonstationary trace can get reflectivity estimate 

tying the well reflectivity in amplitude and spectral content, but has phase errors which 

are more complex than those that can be solved by time-variant constant-phase rotation. 

 Gabor deconvolution accurately estimates the amplitude spectra of the propagating 

wavelets. 
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 Gabor deconvolution calculates the phase spectra of the propagating wavelets by the 

digital Hilbert transform, which integrates within the seismic frequency band and corrects 

the drift time to the Nyquist frequency only. 

 By correcting the estimated wavelet phase to the well logging frequency, the Gabor 

deconvolved trace can be well tied to the known reflectivity with very little amplitude 

and phase errors. 

 Gabor deconvolution with either phase correction or residual drift time correction can tie 

the nonstationary seismic trace to well reflectivity accurately knowing the Q values and 

the well logging frequency. Smooth dynamic time warping can estimate the residual drift 

time without knowledge of Q or the well logging frequency, and the estimation is more 

accurate than time-variant crosscorrelation. 

 Smooth dynamic time warping can accurately estimate the drift time and the residual drift 

time automatically without knowledge of Q or a check-shot or a VSP survey. Average Q 

values can be roughly calculated from the estimated drift time or residual drift time. 

 A roughly correct time-invariant Q can plausibly correct the phase errors of Gabor 

deconvolved nonstationary seismic trace to tie the well reflectivity. 

 In the presence of internal multiples, smooth dynamic time warping estimates drift time 

or residual drift time associated with apparent Q, including both intrinsic and 

stratigraphic effects. Gabor deconvolved nonstationary trace using the apparent Q for 

phase correction can be tied to the well reflectivity at best, but the final correlation is still 

worse than the multiple-free case. 
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 In seismic-to-well ties of Hussar field data, the time shifts estimated between synthetic 

seismograms and seismic traces are the combination of drift time and sonic overburden 

estimation errors when tying Hussar wells to the field seismic data. 

 The fact that the geological structure is horizontally flat in the Hussar area leads to 

similar time shift characters between the synthetic seismograms and the seismic traces at 

three well locations. It also validates the linear interpolation and extrapolation of the 

time-variant constant-phase and the time-variant scalar from the well locations to other 

CDP locations horizontally. 

 The estimated time shifts are used to calibrate the timing of the reflectivity, instead of 

warping the synthetic seismogram required by the objective of the SDTW algorithm, to 

reserve the embedded zero-phase wavelets but making this optimization problem 

nonlinear and converge only after several iterations. For this Hussar dataset, the first 

iteration of time calibration is not sufficient, leading to a constant-phase estimation bias. 

After two iterations, the time shifts are adequately corrected and the constant-phase 

difference is reasonably small. 

 After seismic-to-well ties, the same well tops are tied to the same seismic events, making 

major seismic horizons easy to be identified. The correlation of the synthetic seismogram 

and the average trace at eah well location is much increased compared to that before well 

tying. 

 The bandlimited impedance inversion of the Hussar seismic data using a low-frequency 

cut-off of 3 Hz and a high-end frequency of 75 Hz is shown to be a good approximation 

to the subsurface properties. The second iteration of time calibration significantly reduces 
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the percent errors around well 12-27 between the seismic inversion and well impedance, 

verifying better seismic-to-well ties. 
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