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Summary 
A Taylor series approach is used to derive two elemental 

and complementary wavefield extrapolators directly from the 
Helmholtz equation (i.e. the wave equation after a temporal 
Fourier transform). These extrapolators are for vertical 
propagation when velocity varies arbitrarily in the horizontal 
direction. The Helmholtz equation provides two alternative 
and exact pseudodifferential operator forms for the second 
derivative with respect to the vertical coordinate. These lead to 
alternative but approximate pseudodifferential operators for 
the nth vertical derivative as required in the Taylor series. 
When these approximate operators are substituted into the 
Taylor series, the series can be summed to give the two 
alternative extrapolators: PSPI (phase shift plus interpolation) 
and NSPS (nonstationary phase shift). The resulting 
extrapolators are Fourier integral operators and are 
approximate unless velocity is constant when they both 
simplify to ordinary phase shift. 

An investigation of the accuracy of these approximations 
is done using the composition theorem of pseudodifferential 
operators. The result suggests that NSPS and PSPI produce 
errors that are complementary in that they tend to cancel when 
the extrapolations are averaged together. A numerical example 
supports this conclusion. 

Introduction 
Explicit one-way wavefield extrapolators can be 

conveniently formulated as phase-shift operators in the Fourier 
domain. We take the extrapolation direction to be the vertical 
coordinate (z) and, for a particular extrapolation step, allow 
the velocity to depend only upon the transverse coordinates. 
Gazdag (1978) applied the phase-shift method to the vertical 
extrapolation of waves through a constant-velocity step which 
allowed a v(z) medium to be handled. Berkhout (1981) 
showed that the phase-shift method can be regarded as an 
infinite order Taylor series extrapolation.  

Gazdag and Squazzero (1984) extended phase shift to 
lateral velocity variation through the PSPI algorithm. Stoffa et 
al. (1990) proposed the spilt-step Fourier technique that 
applied the vertical phase delay (thin-lens term) exactly in the 
( ),x ω  domain and used a single reference velocity for the 
angle-dependent delay (focusing term) in the 
( ),xk ω   domain. Better approximations to the above method 
were developed by Wu (1992) and Wu and Wu (1998) as the 
phase-screen method that extended the split-step method by 
improving focusing. Margrave and Ferguson (1997 and 
1999a) used nonstationary filter theory to derive two 
alternative extensions of phase-shift to lateral velocity 
variations. They gave explicit, analytic integral forms for these 

extensions that can be identified as Fourier integral operators 
(Stein, 1993). One form was shown to be a generalization of 
PSPI in the limiting case of very rapid lateral velocity 
variations. The other, called NSPS, has been shown to be the 
( ),x ω  domain transpose of PSPI (Margrave and Ferguson, 
1999b). 

In related developments, Fishman and McCoy (1985) gave 
a general algorithm for factoring the Helmholtz operator, for 
arbitrary lateral velocity variations, into upgoing and 
downgoing operators and derived several approximate 
factorizations. One of their approximations is equivalent to the 
generalized PSPI expression of Margrave and Ferguson 
(1999a). Grimbergen et al. (1998) used eigenvalue 
decomposition to numerically factor the Helmholtz equation. 
For arbitrary lateral velocity variations, they approximated the 
lateral derivatives with finite difference operators and 
achieved a high-quality though computationally intensive 
factorization. Yao and Margrave (2000) demonstrate that a 
similar eigenvalue factorization may be performed in the 
Fourier domain that affords a better lateral derivative. 

In this paper, we show that a Taylor series approach can 
be used to derive the PSPI and NSPS integral operators from 
the Helmholtz equation for laterally varying media. The 
derivation shows precisely how both operators are 
approximate but in complementary ways. We show that first 
order error terms from both operators tend to be similar but 
opposite in sign. This suggests that using them alternately in a 
multi-step extrapolation will lead to higher accuracy. 

Exact second derivatives from the Helmholtz equation 
A seismic wavefield ( )zψ at depth z is predictable from a 

wavefield ( )0ψ  recorded at z = 0 by Taylor series (Berkhout, 
1981). All orders of the depth derivatives of ψ must be known 
at z = 0. However, from the Helmholtz equation, only the 
second-depth derivative is easily found. Two equivalent forms 
of the second derivative, derived from the Helmholtz equation, 
are classifiable as pseudo differential operators or 
nonstationary filters. The two equivalent second derivatives 
yield two approximate forms for the nth-depth derivative, and 
thus to two elemental, but not equivalent, extrapolators. 
(These forms are elemental in that they are simple, 
complementary and can be combined to get higher-order 
extrapolators.) 

The Taylor series expansion of a monochromatic 
wavefield, ( ), ,x zψ ω , in the z coordinate, gives an 

expression for the wavefield at depth z in terms of the 
wavefield at the reference depth 0, and is
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where the ω  dependence is suppressed. In the constant 
velocity case, Berkhout (1981) showed that all orders of 
derivatives can be obtained exactly from the wave equation (in 



the ( ),xk ω  domain and the resulting series can be summed 
to give the phase-shift operator. 

An expression for the second depth derivative is found 
using the Helmholtz equation 
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where v(x) is the wave propagation velocity. The Fourier 
transform of equation (2) over x gives 
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where the spectrum ψ̂  of ψ  is 
 ( ) ( ) ( )ˆ , , exp xx xk z x z ik x dψ ψ= ∫  (4) 

and the vertical wave number kz is defined through 
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Equation (3) is an exact expression for the second z 
derivative of ψ  and is an adjoint-form pseudodifferential 
operator that maps a wavefield ψ  to the second-depth 
derivative of a spectrum ψ̂ , and whose symbol is 2

zk−  . Ιt is 
also a nonstationary convolution filter. As a nonstationary 
filter, equation (3) is in mixed-domain form, the input being a 
wavefield and the output a spectrum (Margrave, 1998).  

An alternative, exact prescription for the second depth 
derivative is found by substituting for ψ  on the right-hand 
side of equation (2) with the inverse Fourier transform of ψ̂  

 ( ) ( ) ( )1 ˆ, k , exp
2 x x xx z z ik x dkψ ψ
π

= −∫ . (6) 

The operator contained by the square brackets in equation (2) 
can be moved inside the Fourier integral with the result 
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Equation (7) is a standard-form pseudodifferential 
operator (Stein, 1993: 231) that maps a spectrum ψ̂  to the 
second depth derivative of a wavefield ψ , and whose symbol 
is also 2

zk− . It is also a nonstationary combination filter 
(Margrave, 1998). Like the convolution filter in equation (3) 
the combination filter is a mixed-domain filter; the input and 
output are in different domains. These two expressions for the 
second derivative are exact, and therefore, equivalent. 

Estimation of all depth derivatives 
By inspection, the nonstationary convolution filter of 

equation (3) suggests that the nth depth derivative is 
approximately 
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where the hat over the operator ˆ nD±  indicates that a forward 
Fourier integral is applied.  

Similarly, from the combination filter of equation (7) 
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where the derivative operator nD±  applies an inverse Fourier 
transform. 

The operators nD±  and ˆ nD±  provide the exact second 
derivatives but are only approximate for all other orders. In the 
limit of constant velocity they become exact for all n. When 

nD±  and ˆ nD±  are used in the Taylor series expansion, the 
results are the two elemental extrapolation methods PSPI and 
NSPS.  

Returning to equation (1),  the required nth depth 
derivatives can be replaced by nD±  to give 
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or, using the integral form for nD±  and interchanging the order 
of summation and integration leads to 
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where the first term in equation (10) is included through the 
0th term in the summation. Recognizing the series expansion 
for the exponential function allows this to be written as 
 ( ) ( ) ( ) ( ) ( )1 ˆ, 2 , , ,0 exp xx x x xx z x k z k ik dkψ π α ψ−≈ ± −∫  (12) 

where the symbol of this pseudo-differential operator is 
 ( ) ( )( ), exp ,x z xx k , z izk x k± = ±α , (13) 

and kz is given by equation (5).  

Equation (12) is the nonstationary wavefield extrapolator 
identified as the limiting form of PSPI by Margrave and 
Ferguson (1999a). Fishman and McCoy (1985) developed the 
same expression as an approximate factorization of the 
Helmholtz equation when v depends only on the transverse 
coordinates. They characterize it as a high frequency 
approximation.  

The development of a second expression for wavefield 
extrapolation using ˆ nD±  (equation (8)) follows in a similar 
fashion but starts with the Fourier transform of the Taylor 
series in equation (1) 
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After replacing the derivatives with the approximation ˆ nD±  and 
performing similar manipulations as before, this becomes 

 ( ) ( ) ( ) ( )ˆ , , , x,0 exp dx x xk z x k z ik x xψ α ψ≈ ±∫  (15) 

with α given by equation (13). This result is the NSPS 
extrapolator identified by Margrave and Ferguson (1999a). 

Assessing the accuracy of the approximations 
The wavefield extrapolators given by equations (12) and 

(15) have been well described in Margrave and Ferguson 
(1999a). They are equivalent to ordinary phase shift when 



velocity is constant but can give dramatically different results 
with rapid lateral gradients. In the ( ),x ω  domain, they can be 
shown to be the transpose of one another (Margrave and 
Ferguson 1999b). Here we investigate the accuracy of the 
approximations made in the preceding derivation. For this 
purpose, we compare the exact second derivatives (equations 
(3) and (7)) to the result of two applications of the 
approximate first derivatives 1D̂±  and 1D± . This comparison 
reveals error terms in both approximations that are complex 
valued, and have opposing trends.  

Beginning with 1D̂± , the approximate second derivative is 
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where symbol zγ  is  
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1 the approximate second derivative is 
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where *
zγ  is the complex conjugate of zγ . 

Equations (16) and (18) are pseudo-differential equations 
that map the wavefield ψ  (equation (16)) or the spectrum ψ̂  
(equation (18)) to their approximate second depth derivatives 
simultaneous with a change in Fourier domain. The symbol 

zγ  is the composition of symbols ( ),z xk x k  and ( ),zk y m . A 
general theorem for a composition of symbols (Stein, 1993: 
237-238) can be used to provide an asymptotic formula for zγ  
with the result 
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Since the even terms are real, *
zγ  will have the opposite sign 

for every other term. The first term in this asymptotic series 
reproduces the action of the exact second-depth derivative. 
Higher order terms represent error, and the odd numbered 
terms are complex. Generation of complex terms by 
application of ˆ nD±  or nD±  may explain the instability of PSPI 

observed by Etgen (1994) and demonstrated for NSPS by 
Margrave and Ferguson (1999b). Unconstrained complex 
values in the exponent, kz, of α (equation 13) can lead to 
instability during recursive application. 

This result suggests, though it falls short of a proof, that 
the first-order errors in the PSPI and NSPS extrapolators tend 
to cancel one another. NSPS uses ˆ nD±  while PSPI uses nD±  and 
these derivative operators have been shown to have 
complementary errors. However, the extrapolators also use all 
other orders of the D operators so the complete story is much 
more complex than we present here. 

The validity of the asymptotic series (equation (19) 
requires the existence of all orders of spatial and wavenumber 
derivatives of kz. The wavenumber derivatives will exist to all 
orders except possibly at the evanescent boundary. The spatial 
derivatives impose a smoothness condition on v(x). This 
condition is not necessarily required for the NSPS and PSPI 
extrapolators themselves, but it is needed for this form of error 
analysis. 

These investigations, together with the fact that NSPS and 
PSPI are the ( ),x ω  domain transposes of one another, suggest 
that a symmetric combination of these elemental extrapolators 
may be more accurate. This does indeed seem to be the case as 
was reported by Margrave and Ferguson (1999b) but there are 
many possible symmetric forms. Also, either NSPS or PSPI is 
as accurate as the best explicit finite difference technique and 
accuracy increases as the extrapolation step size decreases. So 
the need for higher-order symmetric forms may be academic. 

As an illustration, consider an initial wavefield consisting 
of nine bandlimited impulses arranged symmetrically from -
1500 m to +1500 at .52 seconds. Let a velocity model be 
defined such that v=5000 m/s if x<0 and v=2000 m/s if x>0. 
Figure 1 shows the result of the extrapolation of the initial 
wavefield 200 m upward using NSPS while Figure 2 shows 
the result from using PSPI. The PSPI result shows 
characteristic wavefield discontinuities where the velocity 
model is discontinuous. While the NSPS result looks more 
pleasing it is also incorrect since the hyperbolae should change 
slope where they cross the velocity boundary. (The PSPI result 
does change slope but is discontinuous.) Figure 3 shows the 
simple arithmetic average of the results in Figures 1 and 2. 
The result in Figure 3 is more physical than either of the 
others because it has minimal discontinuities and events tend 
to change slope at velocity boundaries. The arithmetic average 
is a type of symmetric extrapolator. Another possibility is the 
alternating cascade of NSPS and PSPI. Even though this 
example violates the conventions of the derivation in that kz is 
discontinuous, the expected complementary behavior is still 
seen. This suggests that the result is more general than the 
limitations of our derivation might indicate. 

Conclusions 
The NSPS and PSPI wavefield extrapolators can be 

derived from the Helmholtz equation for laterally varying 
media. The Taylor series approach relies on the development 
of approximate pseudodifferential operators for the nth order 
wavefield derivatives taken in the extrapolation direction. Two 
alternative forms for such operators were developed from the 
Helmholtz equation. Both forms have the same kernel but one 
applies it with a change from the Fourier wavenumber domain 
to the space domain and the other changes domains in the 
reverse direction. When these approximate derivatives are 
used in the Taylor series, the series can be summed to generate 
two alternative wavefield extrapolators of the familiar 
exponential form. 



The effectiveness of the approximate derivative operators 
was assessed using the composition theorem of 
pseudodifferential operators. The result suggests that the two 
elementary extrapolators are complementary in that their 
errors tend to oppose one another. A numerical example 
supports this by showing that the average of NSPS and PSPI 
extrapolations is superior to either alone. 
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Figure 1. A horizontal alignment of 9 bandlimited impulses 
have been upward extrapolated 200 m using NSPS through a 
velocity model that is discontinuous at x=0. On the left, the 
velocity was 5000 m/s and on the right it was 2000 m/s. 

 
Figure 2. A similar result to Figure 1 except that the PSPI 
extrapolator has been used. 

 
Figure 3. The wavefield of Figures 1 and 2 have been 
arithmetically averaged. 


