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Summary 

Distributed acoustic sensing is a technology that uses optical fibre to record seismic waves. While 
traditional geophones record the particle velocity created by a passing wave, optical fibre records 
the strain or strain rate. The conversion between the two kinds of signals allows seismic time 
lapse imaging applications with data from these two different recording systems. Here we use 
convolutional neural networks to transform fibre to geophone data. Instead of using a supervised 
model where we provide examples of corresponding fibre and geophone traces, we utilize an 
encoder decoder scheme that receives fibre traces and produces fibre traces. The important 
distinction is that the decoder is deterministic and contains the physics of transforming a 
geophone trace to a fibre trace while the encoder is the convolutional neural network that does 
the opposite transformation. The whole encoder-decoder is trained to be the identity operator on 
fibre traces. At the end of the training, the application of the encoder part alone will perform the 
desired signal conversion from fibre to geophone. 

Introduction 

Time-lapse seismic applications try to minimize the changes of undesired aspects like ambient 
noise, environment differences, near surface effects, recording equipment characteristics, 
acquisition parameters and processing, to truly detect the changes in the seismic observables 
like times, amplitudes, velocities, frequencies, and phases (Jack, 1997). 

Distributed Acoustic Sensing (DAS) is a technology that aims to solve the recording equipment 
part of the time-lapse undesired aspects. DAS uses an optical fibre as the recording element 
instead of the more ubiquitous geophones (Daley et al., 2013; Mateeva et al., 2013; Parker et al., 
2014). DAS optical fibre, when installed permanently, can be reused in different acquisitions to 
maintain the same recording equipment characteristics. 

There are many cases in which transforming from fibre to geophone and vice versa is useful. For 
example, when one of the seismic acquisitions used in the time lapse application was recorded 
with geophones while the others were recorded with fibre. Another example is when we want to 
relate the DAS data to the corresponding geophone data.  
 
In Monsegny et al. (2021) a least squares technique to transform DAS to geophone is presented. 
In this technique a linear system of equations based on DAS principles (Hartog, 2018) is 
assembled and solved by the conjugate gradient method. The result is close to the high frequency 
part of the geophone trace. 
 
Neural networks have been used to solve inversion problems in geophysics (Murat and Rudman, 
1992; Roth and Tarantola, 1994; Poulton, 2002). Convolutional neural networks (CNN) (LeCun et 
al., 1989) are known for solving many computer vision problems. They have several layers and 
in each of them they convolve small filters with the output of the previous layers. 
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Encoder-decoders are another kind of neural network that aims to learn a different representation 
of the input data. The input is encoded into the latent space and then decoded back into the 
original space. In many networks the latent space has lower dimension than the original space, 
so the network is compressing its input. Applying alone the encoder and the decoder allows you 
to translate between these two spaces. 
 
In this paper we present an encoder-decoder neural network that transforms DAS to geophone. 
The encoder part is a CNN that oversees the DAS to geophone transformation. In contrast, the 
decoder part is fully deterministic, and physics based, and transforms geophone to DAS. In this 
way we avoid the supervised training. The first section of this paper presents the neural network, 
the second shows some synthetic and real data experiments and the last discusses the properties 
of the technique. 
 

Methods 
 
Figure 1 displays the specific architecture of the encoder-decoder neural network. The input and 
output are DAS traces, and the whole network is trained to be the identity operator, that is, the 
input DAS trace should be equal to the output DAS one. 
 

 
FIG. 1. DAS to geophone encoder-decoder neural network. The input and output are the DAS trace and the whole 
network acts like an identity operator. The encoder part is a CNN that transforms DAS to geophone, the latent space. 
The decoder part is non trainable, and physics based that transforms geophone to DAS. 

 
The important aspect is to make the latent space be the corresponding geophone trace. For that, 
the decoder network is physics based and non-trainable. This decoder part transforms geophone 
to DAS based on a physical system described in the next section. In contrast, the encoder network 
is a CNN fully trainable that must perform the inverse transformation, DAS to geophone, to make 
the whole network act as an identity operator. 
 
This architecture permits to train the network in an unsupervised way because the physics-based 
decoder part forces the latent space to be the geophone trace corresponding to the DAS input 
trace needed during training. After training we apply only the encoder part to perform the DAS to 
geophone transformation. 
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FIG. 2. A portion of optical fibre of gauge length LG centred at s. The total elongation or contraction of this portion of 
fibre is the difference of the displacements at their ends (From Monsegny et al. (2021)). 
 
Figure 2 shows a portion of optical fibre of gauge length LG centred at s (Monsegny et al., 2021). 
The total elongation or contraction of this portion of fibre, δl(s), is the difference of the 
displacements u at both ends: 

                                                  (1) 
Dividing this by the gauge length and taking the time derivative we obtain an expression for the 
strain rate 𝜀̇ f in terms of the particle velocity v: 

                                           (2) 
We only consider the case where the fibre is straight: v = vz. After discretizing this system for a 
series of positions si along the fibre we arrive at a linear system: 

                (3) 
This system resembles a discrete derivative along the fibre where the operator is centred at s i, 
the points are evaluated a gauge length apart and ∆z = LG. This linear system transforms vertical 
particle, geophone, to strain rate, DAS. To relate this decoder network to the encoder one in the 

next section, we name 𝑔 the vertical particle velocities vector, 𝑑 the strain rates vector, and P the 

matrix. 
 
The decoder part of the encoder-decoder network applies this linear operator in a deterministic 
non trainable way. As mentioned before, due that the whole network must be an identity operator, 
this forces the encoder part to be the inverse of this linear operator, that is, to transform strain 
rate, DAS, to particle velocity, geophone. 
 
The encoder network is a fully trainable CNN that, as mentioned before, must be the inverse of 
the physics guided untrainable decoder network. Its input is a DAS trace and its output, in the 
latent space, is a geophone one. 
 

The encoder has two 1D convolutional layers. The first one is composed of M filters 𝐹1
𝑇= (𝐹1

1,..., 

𝐹1
𝑀)T applied to the input DAS trace 𝑑 (ignoring the activation functions): 
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                                                                  (4) 

and producing M filtered traces (𝑟
1
,...,𝑟

𝑀
)T . The second layer is a combining filter F2 = (𝐹2

1,...,𝐹2
𝑀) 

that joins all the filtered traces: 

                                           (5) 
and produces the geophone trace 𝑔. 

 
Both 1D convolutional layers use the Hyperbolic Tangent activation function. Here we depart from 
using the Rectified Linear activation function (ReLU) because the layers must produce traces with 
negative and positive values and ReLU only outputs positive ones. We also tested other activation 
functions and obtained comparable results. In addition, we did not use a bias vector and the 
function initializer was the Xavier normal initializer (Glorot and Bengio, 2010). 
 

The operator P is physics based and deterministic. On the other hand, the filters 𝐹1
𝑖 and F2 are to 

be selected by the neural network training algorithm such that input the DAS trace 𝑑 is as close 

as possible to the output DAS trace 𝑑
⋅
 . 

 
After training, the encoder network approximates the inverse of the decoder operator. We apply 
this encoder network alone to transform DAS traces to geophone ones. 
 

Field Experiments 
 
We tested the neural network with DAS data from the Containment and Monitoring Field Research 
Station (CaMI-FRS) at Brooks, Alberta, Canada. In this research facility 5Km of optical fibre are 
permanently installed and used for DAS experiments. Part of this fibre is inside two 300m 
observation wells. The data we used is from a straight segment of fibre inside one of these wells. 
 
We selected 17 shot gathers from a walkaway vertical seismic experiment (VSP) made in July 
2017. The source was an IVI Envirovibe with a linear sweep between 10Hz and 150Hz. The 
separation between shot points was 20m. The DAS recorded traces every 25cm with a 10m gauge 
length. All the traces were normalized. 
 
We tested different number of filters in the first CNN layer of the encoder network (M in the 
previous section). The smallest one with good performance was M = 20. We made the length of 
each convolutional filter an integral multiple of the gauge length, LG = 10m. The smallest number 
that gave good results was 2LG. 
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For the neural network training we used 100 iterations, a learning rate of 0.001 and a batch size 
of 32 traces. The training was performed with 10% of the traces, sampled regularly, using the 
Adam optimizer. The validation split inside the neural network training was 0.5. We also used 
kernel regularization to maintain the filters coefficients small. The regularization coefficients were 
0.001 for the first convolutional layer and 0.1 for the second. The neural network converged to an 
error less than 5%. 
 
Figure 3 displays two sets of shot gathers. The top row is from a source located 200m from the 
well. The bottom row is from a gather 10m from the well. On the left column are the input DAS 
gathers and on the right are the DAS gathers predicted by the neural network. Remember that 
the neural network was trained with the objective to make these two columns as similar as 
possible. The central column is the geophone trace predicted by the encoder part of the neural 
network alone. These gathers are in the encoder-decoder latent space. 

 
FIG. 3. Far, above, and near, below, gathers. Left column are the input DAS gathers, the middle column contains the 
predicted geophone gathers (in the latent space), and the right column are the predicted DAS gathers. 
 

Figure 4 shows two sets of traces from the far and near gathers presented in Figure 3. The 
continuous thick black line is the input DAS trace and the continuous thin red line is the predicted 
output DAS trace. As mentioned before, the neural network was trained to make these two traces 
as equal as possible. The dashed blue line is the geophone trace predicted by the encoder alone. 
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FIG. 4. Trace comparison from the original and inverted gathers of Figure 3. Above is from the far gathers and below 
from the near ones. Continuous thick black line is the original DAS trace, continuous thin red one is the predicted DAS 
trace. Dashed blue line is the predicted geophone trace in the latent space. 
 

Conclusions 
 
The DAS-to-geophone encoder decoder CNN is an example of a physics-based unsupervised 
neural network. The system was guided by physical principles, part of the network oversaw 
inverting the physical process and we did not have to supply examples of input and output traces. 
 
More work is needed to examine the results of the DAS-to-geophone encoder-decoder CNN with 
the field data. Some results in the quality of the imaging with this transformed data would be 
useful. 
 
The physics part of the neural network in the decoder can be improved and the encoder will adjust 
itself with the neural network training. This kind of network can also be used for other purposes 
by making the decoder part physics based. 
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