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Summary  

Linearized AVO inversion methods, such as the weighted stacking, are based on approximations 
of the Zoeppritz equations subject to several assumptions, including the limitation of incidence 
angles to 35-40°. Thus, in long-offset seismic acquisitions these approaches fail. In this project, 
we focused on developing a nonlinear inversion appropriate for these circumstances, modifying 
the Zoeppritz equations in terms of the fractional density and compressional and shear 
impedances and considering synthetic P-P and P-S datasets with different noise and frequency 
content. Overall, three different local optimization algorithms, under a good initial model, 
demonstrated a superior performance respect to the simultaneous weighted stacking, producing 
more accurate results for most elastic parameters. Additionally, the advantages of including both 
datasets instead of only the P-P reflectivities were illustrated.  
 

Forward modeling 

To perform the forward problem, we considered plane wave Zoeppritz equations since 
mathematically these are not conditioned to any particular range of angles. However, in reality a 
plane wave approximation would be made, since seismic data is not produced by plane but 
spherical waves. These equations can be written as: 
 

𝑷𝒖 = 𝒃        (1) 
where:   
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here α, β, ρ, I and J are the P-wave velocity, S-wave velocity, density, compressional impedance 
and shear impedance, respectively. Moreover, equation 1 was re-parameterized in terms of the 
fractional impedances and fractional density, which is familiar from AVO analysis. To accomplish 
this, terms A, C, and D were modified using the following equation commonly applied when 
linearizing problems:  
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𝑌
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As a result, each element of P is a nonlinear function of ∆I/I, ∆J/J, and ∆ρ/ρ. The vector u is 
obtained for a chosen P-wave incidence angle 𝜃1. To work with simultaneous data, different 
incidence angles for P-P and P-S reflectivities were computed through raytracing, in order each 
pair of plane waves reach the same receiver. Hence, the forward problem needs to be performed 
with each of these angles to later construct the appropriate vector of coefficients.  
 

Iterative nonlinear simultaneous inversion 

In an unconstrained optimization, an objective function, without restrictions on the values that the 
variables can take, is minimized (Nocedal and Wright, 2006). This objective function was 
constructed measuring the L2 norm between predicted and observed (dobs) data vectors: 
 

𝛷(𝒎) =
1

2
∑(𝑺𝒖(𝒎, 𝜃𝑗) − 𝒅𝒐𝒃𝒔(𝜃𝑗))

𝐓
𝑁

𝑗=1
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Inside W, σ is the standard deviation of the dataset; S is a sampling operator used to extract only 
the P-P and P-S reflectivities from u. Moreover, with the elastic parameters of m, values of the 
fractional Vp/Vs ratio (∆q/q) can be calculated. 
 
To approach the local minimum, the algorithm selects a direction p and a step length α to move 
per iteration, lowering the cost function until either no more progress is made or the solution is 
approximated with a given accuracy. The local gradient and/or curvature of the objective function 
is used to compute the model update (Sen and Stoffa, 2020), according to: 
 

∆𝒎 = 𝛼𝒑 = −𝛼𝑩−1𝒈       (4) 
 
where B depends on the applied method. In this study, it was set equal to the identity matrix for 
the Steepest Descent method, the Hessian (H) matrix for the Gauss-Newton method, and H + 
λdiag(H) for the Levenberg-Marquardt modification, where λ is a damping parameter adjusted per 
iteration and equivalent to a step size (Tolle, 2003).  
 
In addition, the gradient (g) and Hessian (H) take the form: 
 

𝒈 = ∑𝑱𝑗
𝐓𝑾𝐓

𝑁

𝑗=1

𝑾(𝑺𝒖(𝒎, 𝜃𝑗) − 𝒅𝒐𝒃𝒔(𝜃𝑗)) ;      (5)           𝑯 = ∑𝑱𝑗
𝐓𝑾𝐓

𝑁

𝑗=1

𝑾𝑱𝑗       (6) 

Where J is the Jacobian matrix, formed by derivatives of the predicted data with respect to each 
model parameter. Each of its elements, per incidence angle, are obtained through: 
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𝐽𝜇
𝑖 = 𝑆𝐾

𝑖
𝜕𝑢𝐾

𝜕𝑚𝜇
= −𝑆𝐾

𝑖 (𝑃−1)𝐿
𝐾

𝜕𝑃𝑀
𝐿

𝜕𝑚𝜇
𝑢𝑀;       𝑖 = 1,2;  𝜇 = 1,2,3;   𝐾 = 𝑀 = 𝐿 = 1,2,3,4       (7)  

 

When computing J, the main new task is to determine all 48 elements of 
𝜕𝑃𝑀

𝐿

𝜕𝑚𝜇 in equation 7. 

Additionally, the rows of 
𝜕𝑢𝐾

𝜕𝑚𝜇 are formed by the derivative of a coefficient with respect to each 

model parameter; then, to consider the raytracing approach, this matrix is computed twice (one 
time with P-P and another time with the P-S incidence angles), in order the first and third rows 

from  
𝜕𝑢𝐾

𝜕𝑚𝜇
𝑝𝑝

and the second and fourth rows from 
𝜕𝑢𝐾

𝜕𝑚𝜇
𝑝𝑠

form the final 
𝜕𝑢𝐾

𝜕𝑚𝜇 matrix.  

 
Later, values of the model vector are modified per iteration (k) according to: 
 

𝒎𝑘+1 = 𝒎𝑘 + ∆𝒎𝑘        (8) 
 

Comparison between optimization methods 

We designed a two-layer model of solid units in welded contact that does not produce a critical 
angle and assuming a range of offsets from 0 to 4000m with intervals of 80m. This model meets 
most of the underlying assumptions of the weighted stacking (Larsen, 1999), i.e., weak contrast 
of elastic parameters and a value of the Vp/Vs ratio between 1.5 and 2. However, the forward 
modeling showed that almost half of these incidence angles are higher than 35°, reaching a 
maximum of 53° for the P-P dataset and 65° for the P-S data. Thus, it is expected that the 
weighted stacking does not produce accurate estimates under these circumstances.  
 
For the nonlinear inversion, the initial model was constructed from weak perturbations of the true 
values of α, β, and ρ. Nevertheless, since ∆I/I and ∆J/J result from multiplying velocities and 
densities, their initial perturbations were not that small. In addition, estimations were evaluated 
through: 
 

%𝑒𝑟𝑟𝑜𝑟 =

∆(𝐼, 𝐽, 𝑞 𝑜𝑟 𝜌)
(𝐼, 𝐽, 𝑞 𝑜𝑟 𝜌)

|
𝐶𝐴𝐿𝐶𝑈𝐿𝐴𝑇𝐸𝐷

−
∆(𝐼, 𝐽, 𝑞 𝑜𝑟 𝜌)
(𝐼, 𝐽, 𝑞 𝑜𝑟 𝜌)

|
𝑇𝑅𝑈𝐸

∆(𝐼, 𝐽, 𝑞 𝑜𝑟 𝜌)
(𝐼, 𝐽, 𝑞 𝑜𝑟 𝜌)

|
𝑇𝑅𝑈𝐸

× 100              (9) 

 
Figure 1 illustrates results when inverting broadband and noise free reflectivities. Pure Gauss-
Newton had the fastest convergence rate, finding the minimum point at the second iteration. 
However, Steepest Descent and Levenberg-Marquardt had a slower performance, reaching 
convergence at the 17th and 10th iteration, respectively. In addition, estimations were very close 
to the true values with almost zero data residuals. Particularly for Steepest Descent, the RMS 
error of P-P reflectivities increased in early iterations, indicating more instability. Moreover, results 
from all optimizations got trapped into the same local minimum, but these methods were 
significantly superior than the weighted stacking, evidencing error differences of around 2.5% 
between estimates and allowing the calculation of the fractional density.  
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Figure 1. (a) and (b) Convergence of optimization algorithms using broadband and noise free 
reflectivities. (c) Accuracy test performed with estimates from linearized and nonlinear inversions. 
 
Since the observed data can be treated as a random variable, because measurements always 
contain random noise (Zhdanov, 2002), broadband and band-limited reflectivities were 
contaminated with noise and each inversion was repeated 5000 times for statistical analyses, 
comparing the maximum likelihood solutions. Figure 2a indicates that for noisy broadband data, 
results from each optimization were very similar, resembling to those of the noise free case. For 
noisy band-limited data, Figure 2b shows that results were almost identical between 
optimizations, but with smaller accuracy than those obtained in Figure 2a. However, errors stayed 
within an acceptable range, except for ∆ρ/ρ which reached a dramatic value of approximately 
66%. Therefore, P-P and P-S datasets have little sensitivity to the fractional density, not doing a 
proper constraint of its band-limited true value. Overall, although the nature of the stacking 
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procedure helps to suppress noise (Larsen, 1999), once more the nonlinear approach produced 
better estimations of most model parameters and for both reflectivity cases.  
 

 
Figure 2. Accuracy tests performed with maximum likelihood solutions from linearized and 
nonlinear inversions. A signal-to-noise ratio of 8 was assigned to 𝑅𝑝𝑝 and of 4 to 𝑅𝑝𝑠. 

 

Advantages of the simultaneous nonlinear inversion  

The benefits of including P-S reflectivities in the inversion were studied with the Pure Gauss-
Newton algorithm. For the conventional P-P inversion, only the first row of S, as well as all 𝜃𝑝𝑝 

were considered. In this case, the condition number of H was approximately 300, while in the 
simultaneous technique it was approximately 24. Thus, similar to the analysis shown by Larsen 
(1999), incorporating P-S data stabilized the inversion. Figure 3 illustrates the posterior 
uncertainty distribution of each estimate after statistically inverting noisy band-limited datasets. 
The conventional inversion generated an almost perfect maximum likelihood solution for ∆I/I, but 
this method showed lack of accuracy and precision for the remaining parameters. Although the 
simultaneous inversion sacrificed accuracy for ∆I/I, it produced maximum likelihood solutions of 
∆J/J and ∆q/q closer to their true values and all the estimations were much more precise, hence 
there is more probability to compute better estimates with this approach. Unfortunately, the 
nonlinear inversion of simultaneous or conventional reflectivities could not generate a good 
maximum likelihood solution for ∆ρ/ρ, but including P-S reflectivities guaranteed more precision. 
 

Conclusions 

Synthetic data allowed to confirm the outperformance of the simultaneous nonlinear AVO 
inversion over the weighted stacking under scenarios of long-offsets. Conditioned to a good initial 
model, estimations of the fractional compressional and shear impedances, as well as the 
fractional Vp/Vs ratio, from local optimizations, were very accurate with remarkably smaller 
percent errors. Additionally, regardless the applied optimization algorithm and depending on the 
type of reflectivities inverted, convergence was reached to the same minimum point, but with 
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different convergence features. Moreover, advantages of applying a simultaneous nonlinear 
inversion over a conventional P-P technique were demonstrated by the high accuracy and 
precision of the results. Finally, the nonlinear inversion had a negative impact when estimating 
∆ρ/ρ from band-limited reflectivities, indicating the inadequacy of the dataset to produce a proper 
constraint to the right answer. Hence, in future work, it is important to determine improvements 
for a better inversion of this elastic parameter. 
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Figure 3. Posterior uncertainty distributions that resulted from noisy band-limited reflectivities; “mt” 
is the band-limited true fractional value. Reflectivities were band-limited as in Figure 2b and 
contaminated with the same noise characteristics.  


