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Summary  
Modelling seismic data is a key part of research for acquisition design, imaging, full waveform 
inversion (FWI) and machine learning (ML). The Finite Difference (FD) method is one of the most 
used for structural or stratigraphic modelling because it provides a wide range of options, and its 
accuracy is sufficient for most applications. It is widely used for simulating surveys and also for 
forward and reverse modelling required in RTM and FWI. The applicability of these techniques 
depends strongly on the computational cost of FD because usually many modelling steps are 
required for iterative inversion. Large elastic 3D FWI is prohibitively slow, except when done on 
very large computer clusters. Although cloud computing provides a way to alleviate this issue, 
when it comes to research, development and initial testing, we still rely heavily on local resources. 
Therefore, decreasing computational time for finite-difference modelling has been a key research 
topic since its first use. 
 
In addition, we are on the verge of a different and powerful technology that requires modelling 
even more than traditional techniques: machine learning (ML). This approach promises to be 
significantly more flexible for solving many problems than traditional physics-based approaches. 
While typical forward modelling requires us to write the specific rules that nature follows, ML 
approaches have the potential to extract and implement those rules directly from the data. In the 
first case, we use physics to constrain the range of possible outputs that can be obtained; in the 
ML case, we allow every possible output to occur, and we use pruning by training to eliminate 
non-physical possibilities. The ML approach, pruning by training, is highly dependent on the 
existence of abundant amounts of data in quantities never required before. Therefore, more than 
ever, we see that forward modelling to produce training data is the constraint on what can be 
achieved. 
 
To address this issue, we can consider several approaches, which are combined in real 
applications: 
 

• Obtain more powerful computers, usually in the form of clusters or cloud computing. Large 
clusters require a large amount of energy for power supply and refrigeration. 

 
• Design better algorithms for both modelling and inversion. For example, we can decrease 

the number of inversion iterations by applying proper preconditioning and regularization. 
These often lead to a reduction of computation time in small percentages. 

 
• Use the advances of hardware in the domain of computer science by parallelization 

techniques, which typically require a major restructuring of the software. Therefore, it is 
reasonable to incorporate parallelization into early development.  
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• Use radically different new technologies, like ML and Quantum Computing (QC). This can 
well become extremely important for modelling in the short (ML) to long term (QC). 
Although ML is also considered as a faster radical new technology, when the need for 
training is taken into account, the need for modelling grows combinatorially. 

 
In this abstract, I will discuss the third option to explain some of the reasons why we can’t ignore 
advanced parallelization techniques and leave them as an afterthought. I will show several 
applications where the speedup is between 50-100 times. We will summarize why and how that 
happens. 
 

High-Performance Computing 
High-Performance Computing (HPC) deals with the techniques for parallelization of algorithms. 
Originally a specialized discipline for software engineers and programmers acting in the 
background of major scientific achievements, now it has become a necessary skill for geophysical 
researchers. This is in part because parallel hardware is no longer a specialized tool available 
only to major processing companies but a common tool in regular desktop computers.  
 
The most common HPC parallelization approach is distributed computing for clusters. In this 
model, we have a modest number of nodes, where each node would act as an independent 
computer. The programmer makes them work simultaneously on the same task by using libraries 
like Message Passing Interface (MPI) (Gabriel et al., 2004) that create a main program controlling 
the dataflow, typically run on the head node (called master). The main overhead is passing the 
data to the nodes and collecting intermediate calculations. The communication across nodes and 
master takes a significant toll on computation time so the effort is focused on decreasing this 
communication time. This is usually achieved by doing coarse parallelization, for example, 
sending complete shot gathers to nodes and letting each node do a complete geophysical 
operation like migration or modelling. The combination of multi-core nodes is standard these days 
for any processes that require heavy computations.  
 
Around 10-15 years ago, thanks to the release of the "Compute unified device architecture" 
(CUDA) (Nvidia, 2007), a new philosophy for parallelization became widely available: the use of 
Graphics Processing Units (GPUs). These devices, originally designed for controlling the pixels 
on displays, hide latency (the delay in data arrival) by splitting calculations across thousands to 
millions of threads (lightweight units of execution). They also have cache memories but that is not 
their main mechanism for latency hiding (Cheng et al., 2014; Han and Sharma, 2019). From the 
hardware point of view, this philosophy is possible because the capability demand for each thread 
is much smaller than for CPU threads. The threads on GPUs do not perform the heavy 
optimizations that CPU threads do because they were originally designed for simple operations 
involving pixels. However, as we well know from the evolution of computers, a large number of 
simple operations can perform very complex tasks. GPU programs rely on: 

• A main dataflow controlled by the CPU. This is necessary because GPUs have limited 
capability for many operations, so a CPU is necessary to control the dataflow. 
• The existence of a large number of parallel operations that also each support small vector 
parallelization in what is called Single Instruction Multiple Data (SIMD). 
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• Programmer skills to move information from/to GPU memory with minimum overhead. As 
in the other parallel models, this transference has to be minimized or all the benefits of 
parallelization will be lost. 

 
GPUs require fine-grained parallelization, meaning that operations are subdivided into 
fundamental units. CPUs on the other hand, are designed for coarse scaled parallelization. They 
can handle complicated optimizations on a larger scale than GPU threads can. The CPUs and 
GPUs can be combined in heterogeneous computing models where data moves across the two 
models as it fits for optimized calculation. 
 
The main complications of working with GPUs come from the hierarchy of memories that GPUs 
provide. CPUs also work with different memories (DRAM, L3, L2, L1 caches, registers) but they 
also control them. GPUs programming relies on the programmer’s skills to place the variables on 
the optimal memory components. For example, GPUs have a type of shared memory with a 
bandwidth of 20000 GB/sec, which is more than 100 times faster than CPU DRAM. If we can use 
shared memory instead of DRAM we can achieve a 100 times speed up.  
 
In addition to the memory hierarchy, GPUs can support also a special arrangement of threads in 
blocks (which can be 1D, 2D or 3D). Blocks are arranged in grids, which can also be 1D, 2D or 
3D. Grids are arranged in streaming devices. Typically, a working space is divided into blocks 
and grids, and different algorithmic sections can be sent to different streams (sequence of 
operations in the GPU). In addition, GPUs are also arranged in clusters, where each node can 
have multiple GPUs. The reason for all these hierarchies is to achieve an efficient distribution of 
information and memory for large computations. The proper use of all these memory and 
computation hierarchies is what makes programming for GPUs more challenging than other types 
of parallelization. 
 
Although in principle, parallelization by simultaneous computations with the thousands or millions 
of threads a GPU has to offer can lead to significant speedup, in practice efficiency is decreased 
by overhead time of moving variables from CPUs to GPUs and back. To get peak performance 
on GPU calculations, we need to use what is called "shared memory". This shared memory is 
visible to only threads in the same block and its size is small. Therefore, the working arrays have 
to be subdivided into small tiles, which are distributed across blocks. Since each block has its 
own shared memory, variables can be reused efficiently without the usual problems of cache 
coherence (updating cached variables across multiple copies). This subdivision of arrays into 
small tiles is similar to the type of model decomposition applied for distributed memory models 
(MPI). Each tile has to have an overlapping area with neighbour tiles to share boundary 
conditions. Being able to perform computations on variables stored in the shared memory is the 
main reason why we can achieve 100× speedups. 
 
In summary, the finite difference algorithm can be solved on GPUs two orders of magnitude faster 
than on regular CPUs by using the convolutional pattern. The wavefields, originally allocated in 
CPU RAM are transferred to the GPU and decomposed into a series of blocks that lie in a grid. 
Each block has hundreds of threads, but most importantly all the threads inside a block have 
access to a very small but very fast memory called shared memory (with a parallel bandwidth of 
20000Gb/sec, that is as fast as a CPU register). Although all blocks can access variables on the 
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GPU global memory, they can’t see each other’s shared memory. Therefore to be able to calculate 
a wavefield that is continuous across blocks we need to have overlapping regions. The wavefield 
is therefore calculated very rapidly by splitting the computations across thousands of threads. 
 
RTM and FWI Examples  
 
Let us see some examples to illustrate the speedups achieved by using FD with GPUs in RTM 
and FWI. In Figure 1, we see the result for the Sigsbee salt model using 50 shots, each with 
10000 samples, and migrating with a bandwidth of 0-25Hz. This model is in a grid with 1200x3200 
cells and was calculated using a single desktop and with one GPU, RTX2070, in 20 minutes. The 
same result takes one hour 20 minutes, using CPUs and a hybrid MP-MPI distributed model in a 
10-node cluster. The GPU implementation takes 1/3 of the time using a computer approximately 
10 times smaller than for the CPU case, which also consumes 10 times less energy. 
 

 
FIG. 1. GPU-RTM for 50 shots with frequency bandwidth between 0-25Hz. a) Initial model, b) RTM. Running 
time 20 minutes on a desktop with 1 GPU, 60 minutes in a 10 nodes cluster.  
 
In Figure 2 we see the result from applying multi-stage FWI (Trad, 2021) for a Foothills model. 
The multigrid method requires applying the inversion with progressively larger frequencies, and 
therefore finer cell grids. Doubling the frequency in a 2D model like this requires approximately 
an increase of 8 times in computation time (2X doubling each space dimension and 2X reducing 
the time step). In a 3D case, the computation time increase is 16X.  

 
FIG. 2. Multigrid FWI for 50 shots with bandwidth between 0-25Hz. a) Initial model, b) Inverted model with 
multigrid FWI in 3 stages (32m cell, max Hz, 16m cell, 16Hz, 8m cell, 25Hz). 
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In Figure 3, we see the individual stages for the Marmousi model. The calculation times for 
these 3 stages (and 3 grids) were compared in both CPU (MPI in a 10-node cluster) and GPU 
(1 desktop with 1 GPU). Table 2 shows the expected time increase for the CPU case, but in 
Table 3 we don’t see the same time increase. Since calculations in the GPU do not normally 
use all the available resources, usually we see that increasing the complexity of the problem or 
the number of calculations does not increase the runtime.

 

 

FIG. 3. GPU Multigrid FWI results (3 stages) for the Marmousi model. We transition from 8Hz maximum 
frequency to 16Hz and then to 25Hz by using 32m cell size, then 16m cell size and finally 8 m cell size. 
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Conclusions  
This abstract compares FD implementations by using GPUs with both distributed (MPI) and 
shared memory (multithreaded) approaches. GPUs have tremendous potential for modelling, 
RTM and FWI because these methods are essentially bounded in efficiency by the FD algorithms. 
GPUs can accelerate FD about 30X-100X by using the convolutional pattern that distributes 
calculations across the different memory hierarchies. For the data sizes we checked so far, GPU 
resources are under-used, and the computation time is not linear with the number of computations 
(superlinear), so modelling algorithms can be made more precise and grids can be made finer for 
higher resolution FWI without significant penalty in computational time. This also introduces the 
possibility of on-the-fly synthetic generation during neural network training 
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