

GeoConvention 2022 1

GPU applications for modelling, imaging, inversion and
machine learning
Daniel Trad
CREWES - University of Calgary

Summary
Modelling seismic data is a key part of research for acquisition design, imaging, full waveform
inversion (FWI) and machine learning (ML). The Finite Difference (FD) method is one of the most
used for structural or stratigraphic modelling because it provides a wide range of options, and its
accuracy is sufficient for most applications. It is widely used for simulating surveys and also for
forward and reverse modelling required in RTM and FWI. The applicability of these techniques
depends strongly on the computational cost of FD because usually many modelling steps are
required for iterative inversion. Large elastic 3D FWI is prohibitively slow, except when done on
very large computer clusters. Although cloud computing provides a way to alleviate this issue,
when it comes to research, development and initial testing, we still rely heavily on local resources.
Therefore, decreasing computational time for finite-difference modelling has been a key research
topic since its first use.

In addition, we are on the verge of a different and powerful technology that requires modelling
even more than traditional techniques: machine learning (ML). This approach promises to be
significantly more flexible for solving many problems than traditional physics-based approaches.
While typical forward modelling requires us to write the specific rules that nature follows, ML
approaches have the potential to extract and implement those rules directly from the data. In the
first case, we use physics to constrain the range of possible outputs that can be obtained; in the
ML case, we allow every possible output to occur, and we use pruning by training to eliminate
non-physical possibilities. The ML approach, pruning by training, is highly dependent on the
existence of abundant amounts of data in quantities never required before. Therefore, more than
ever, we see that forward modelling to produce training data is the constraint on what can be
achieved.

To address this issue, we can consider several approaches, which are combined in real
applications:

• Obtain more powerful computers, usually in the form of clusters or cloud computing. Large
clusters require a large amount of energy for power supply and refrigeration.

• Design better algorithms for both modelling and inversion. For example, we can decrease

the number of inversion iterations by applying proper preconditioning and regularization.
These often lead to a reduction of computation time in small percentages.

• Use the advances of hardware in the domain of computer science by parallelization

techniques, which typically require a major restructuring of the software. Therefore, it is
reasonable to incorporate parallelization into early development.

GeoConvention 2022 2

• Use radically different new technologies, like ML and Quantum Computing (QC). This can
well become extremely important for modelling in the short (ML) to long term (QC).
Although ML is also considered as a faster radical new technology, when the need for
training is taken into account, the need for modelling grows combinatorially.

In this abstract, I will discuss the third option to explain some of the reasons why we can’t ignore
advanced parallelization techniques and leave them as an afterthought. I will show several
applications where the speedup is between 50-100 times. We will summarize why and how that
happens.

High-Performance Computing
High-Performance Computing (HPC) deals with the techniques for parallelization of algorithms.
Originally a specialized discipline for software engineers and programmers acting in the
background of major scientific achievements, now it has become a necessary skill for geophysical
researchers. This is in part because parallel hardware is no longer a specialized tool available
only to major processing companies but a common tool in regular desktop computers.

The most common HPC parallelization approach is distributed computing for clusters. In this
model, we have a modest number of nodes, where each node would act as an independent
computer. The programmer makes them work simultaneously on the same task by using libraries
like Message Passing Interface (MPI) (Gabriel et al., 2004) that create a main program controlling
the dataflow, typically run on the head node (called master). The main overhead is passing the
data to the nodes and collecting intermediate calculations. The communication across nodes and
master takes a significant toll on computation time so the effort is focused on decreasing this
communication time. This is usually achieved by doing coarse parallelization, for example,
sending complete shot gathers to nodes and letting each node do a complete geophysical
operation like migration or modelling. The combination of multi-core nodes is standard these days
for any processes that require heavy computations.

Around 10-15 years ago, thanks to the release of the "Compute unified device architecture"
(CUDA) (Nvidia, 2007), a new philosophy for parallelization became widely available: the use of
Graphics Processing Units (GPUs). These devices, originally designed for controlling the pixels
on displays, hide latency (the delay in data arrival) by splitting calculations across thousands to
millions of threads (lightweight units of execution). They also have cache memories but that is not
their main mechanism for latency hiding (Cheng et al., 2014; Han and Sharma, 2019). From the
hardware point of view, this philosophy is possible because the capability demand for each thread
is much smaller than for CPU threads. The threads on GPUs do not perform the heavy
optimizations that CPU threads do because they were originally designed for simple operations
involving pixels. However, as we well know from the evolution of computers, a large number of
simple operations can perform very complex tasks. GPU programs rely on:

• A main dataflow controlled by the CPU. This is necessary because GPUs have limited
capability for many operations, so a CPU is necessary to control the dataflow.
• The existence of a large number of parallel operations that also each support small vector
parallelization in what is called Single Instruction Multiple Data (SIMD).

GeoConvention 2022 3

• Programmer skills to move information from/to GPU memory with minimum overhead. As
in the other parallel models, this transference has to be minimized or all the benefits of
parallelization will be lost.

GPUs require fine-grained parallelization, meaning that operations are subdivided into
fundamental units. CPUs on the other hand, are designed for coarse scaled parallelization. They
can handle complicated optimizations on a larger scale than GPU threads can. The CPUs and
GPUs can be combined in heterogeneous computing models where data moves across the two
models as it fits for optimized calculation.

The main complications of working with GPUs come from the hierarchy of memories that GPUs
provide. CPUs also work with different memories (DRAM, L3, L2, L1 caches, registers) but they
also control them. GPUs programming relies on the programmer’s skills to place the variables on
the optimal memory components. For example, GPUs have a type of shared memory with a
bandwidth of 20000 GB/sec, which is more than 100 times faster than CPU DRAM. If we can use
shared memory instead of DRAM we can achieve a 100 times speed up.

In addition to the memory hierarchy, GPUs can support also a special arrangement of threads in
blocks (which can be 1D, 2D or 3D). Blocks are arranged in grids, which can also be 1D, 2D or
3D. Grids are arranged in streaming devices. Typically, a working space is divided into blocks
and grids, and different algorithmic sections can be sent to different streams (sequence of
operations in the GPU). In addition, GPUs are also arranged in clusters, where each node can
have multiple GPUs. The reason for all these hierarchies is to achieve an efficient distribution of
information and memory for large computations. The proper use of all these memory and
computation hierarchies is what makes programming for GPUs more challenging than other types
of parallelization.

Although in principle, parallelization by simultaneous computations with the thousands or millions
of threads a GPU has to offer can lead to significant speedup, in practice efficiency is decreased
by overhead time of moving variables from CPUs to GPUs and back. To get peak performance
on GPU calculations, we need to use what is called "shared memory". This shared memory is
visible to only threads in the same block and its size is small. Therefore, the working arrays have
to be subdivided into small tiles, which are distributed across blocks. Since each block has its
own shared memory, variables can be reused efficiently without the usual problems of cache
coherence (updating cached variables across multiple copies). This subdivision of arrays into
small tiles is similar to the type of model decomposition applied for distributed memory models
(MPI). Each tile has to have an overlapping area with neighbour tiles to share boundary
conditions. Being able to perform computations on variables stored in the shared memory is the
main reason why we can achieve 100× speedups.

In summary, the finite difference algorithm can be solved on GPUs two orders of magnitude faster
than on regular CPUs by using the convolutional pattern. The wavefields, originally allocated in
CPU RAM are transferred to the GPU and decomposed into a series of blocks that lie in a grid.
Each block has hundreds of threads, but most importantly all the threads inside a block have
access to a very small but very fast memory called shared memory (with a parallel bandwidth of
20000Gb/sec, that is as fast as a CPU register). Although all blocks can access variables on the

GeoConvention 2022 4

GPU global memory, they can’t see each other’s shared memory. Therefore to be able to calculate
a wavefield that is continuous across blocks we need to have overlapping regions. The wavefield
is therefore calculated very rapidly by splitting the computations across thousands of threads.

RTM and FWI Examples

Let us see some examples to illustrate the speedups achieved by using FD with GPUs in RTM
and FWI. In Figure 1, we see the result for the Sigsbee salt model using 50 shots, each with
10000 samples, and migrating with a bandwidth of 0-25Hz. This model is in a grid with 1200x3200
cells and was calculated using a single desktop and with one GPU, RTX2070, in 20 minutes. The
same result takes one hour 20 minutes, using CPUs and a hybrid MP-MPI distributed model in a
10-node cluster. The GPU implementation takes 1/3 of the time using a computer approximately
10 times smaller than for the CPU case, which also consumes 10 times less energy.

FIG. 1. GPU-RTM for 50 shots with frequency bandwidth between 0-25Hz. a) Initial model, b) RTM. Running
time 20 minutes on a desktop with 1 GPU, 60 minutes in a 10 nodes cluster.

In Figure 2 we see the result from applying multi-stage FWI (Trad, 2021) for a Foothills model.
The multigrid method requires applying the inversion with progressively larger frequencies, and
therefore finer cell grids. Doubling the frequency in a 2D model like this requires approximately
an increase of 8 times in computation time (2X doubling each space dimension and 2X reducing
the time step). In a 3D case, the computation time increase is 16X.

FIG. 2. Multigrid FWI for 50 shots with bandwidth between 0-25Hz. a) Initial model, b) Inverted model with
multigrid FWI in 3 stages (32m cell, max Hz, 16m cell, 16Hz, 8m cell, 25Hz).

GeoConvention 2022 5

In Figure 3, we see the individual stages for the Marmousi model. The calculation times for
these 3 stages (and 3 grids) were compared in both CPU (MPI in a 10-node cluster) and GPU
(1 desktop with 1 GPU). Table 2 shows the expected time increase for the CPU case, but in
Table 3 we don’t see the same time increase. Since calculations in the GPU do not normally
use all the available resources, usually we see that increasing the complexity of the problem or
the number of calculations does not increase the runtime.

FIG. 3. GPU Multigrid FWI results (3 stages) for the Marmousi model. We transition from 8Hz maximum
frequency to 16Hz and then to 25Hz by using 32m cell size, then 16m cell size and finally 8 m cell size.

GeoConvention 2022 6

Conclusions
This abstract compares FD implementations by using GPUs with both distributed (MPI) and
shared memory (multithreaded) approaches. GPUs have tremendous potential for modelling,
RTM and FWI because these methods are essentially bounded in efficiency by the FD algorithms.
GPUs can accelerate FD about 30X-100X by using the convolutional pattern that distributes
calculations across the different memory hierarchies. For the data sizes we checked so far, GPU
resources are under-used, and the computation time is not linear with the number of computations
(superlinear), so modelling algorithms can be made more precise and grids can be made finer for
higher resolution FWI without significant penalty in computational time. This also introduces the
possibility of on-the-fly synthetic generation during neural network training

Acknowledgements
I thank Sam Gray, Torre Zuk, Penliang Yang, CREWES sponsors for contributing to this seismic
research. I also gratefully acknowledge support from NSERC (Natural Science and Engineering
Research Council of Canada) through the grants CRDPJ 461179-13, CRDPJ 543578-19 and
NSERC Discovery Grant.

References

Cheng, J., Grossman, M., and McKercher, T., 2014, Professional CUDA C Programming: Wrox Press Ltd., GBR.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett,
B., Lumsdaine, A. et al., 2004, Open mpi: Goals, concept, and design of a next generation mpi implementation, in
European Parallel Virtual Machine/Message Passing Interface UsersâA˘ Z Group´ Meeting, Springer, 97–104.

Han, J., and Sharma, B., 2019, Learn CUDA Programming: A beginner’s guide to GPU programming and parallel
computing with CUDA 10. x and C/C++: Packt Publishing Ltd.

Nvidia, C., 2007, Compute unified device architecture programming guide.

Trad, D. O., 2020, A multigrid approach for time domain FWI: CREWES Research Report, 32, 54.1–54.20.

Yang, P., Gao, J., and Wang, B., 2014, Rtm using effective boundary saving: A staggered grid gpu implementation:
Computers & Geosciences, 68, 64–72.

Yang, P., Gao, J., and Wang, B., 2015, A graphics processing unit implementation of time-domain fullwaveform
inversion: Geophysics, 80, No. 3, F31–F39.

