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Summary 
Neural operators are extensions of neural networks which in supervised training learn how to map 
complex relationships, such as classes of PDE.  Recent literature reports efforts to develop one 
type of these, the Fourier Neural Operator (FNO) such that it learns to create relatively general 
solutions to PDEs such as the Navier-Stokes equation.  In this study, we seek what we believe is 
the first numerical instance of a Fourier Neural Operator (FNO) be trained to learn the elastic 
wave equation from a synthetic training data set.  FNO attempts to find a manifold for elastic wave 
propagation. The FNO combines a linear transform, the Fourier transform, and a non-linear local 
activation, to produce a network with sufficient freedom to map from a general parameterization 
of a forward wave problem to its solution. Post-training, the FNO is observed to generate accurate 
elastic wave fields at approximately 10 times the speed of traditional finite difference methods on 
a CPU, and about a thousand times faster on a GPU. 

Theory  
Solving the elastic wave equation, a time-or frequency-domain multidimensional partial differential 
equation for one or more components of a wave field, is an essential part of seismic inversion and 
imaging.  Standard methods like those based on finite differences and finite elements are based 
on discretization in space, on a grid or mesh.  Derivatives are computed at or around each grid 
or mesh point, and so from a computational point of view, resolution and computational expense 
form a trade-off.  A coarse grid is fast but captures lower-frequency and wavenumber behavior 
only; fine grids accommodate higher frequency and wavenumber wave phenomena but are 
computationally slow and expensive.  These costs play a dominant role in the practical formulation 
(and use of) processes such as seismic waveform inversion, where for computational reasons we 
are often forced to choose between accuracy / completeness over computational expense and 
time.  The expense of inversion caused by the expense of simulation grows with the maximum 
frequency desired and the maximum resolution needed, but also depth of investigation and model 
extent in general, and any other aspect of the problem that increases the length of the data trace 
being simulated or the number of source points being used. In all modern seismic imaging and 
inversion problems, including and especially waveform inversion, we are motivated to seek out 
accurate techniques for solution of elastic wave equations.  
Inspired by the work introduced by Li Z [1] , we modify their work and train the modified FNO to 
learn the elastic wave equation in both the time domain and frequency domain. We modified the 
FNO to make it more suitable for calculating derivatives in multiple directions. Figure 1 shows out 
modified method of the FNO. After our modification, an elastic FNO network could generate 
elastic wavefields accurately, and at a computational cost about 10 times less than a standard 
finite difference solver when computed on a CPU, and about a thousand times faster on a GPU.   
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FIG1: The structure of the Fourier neural operator, aiming to train a network, which can 
give the rest steps of the wavefields given by the first steps of the wavefields. 𝑈𝑖𝑛 and 
𝑈𝑜𝑢𝑡 are the input steps of the fields and the output predictions of the wavefields.  𝐷𝑝1 
and 𝐷𝑝2 are the dimension projection layer at operates on time axis.  
For time domain training, we use the wavefields generated with the stress velocity isotropic elastic 
wave equation, using the staggered grid finite difference method with 4-orders of accuracy in 
space as the training data. We generate 100 random models, and the random objects with the 
shape of rectangle and circle are located in the simulation area. The shape of the rectangle and 
the diameter of the circle are all randomly generated, and the locations of the objects are also 
randomly located. The VS and density models are obtained through scaling the VP model, with 
the relationship of 𝑉! = 0.7𝑉", and ρ = 1.74𝑉"#.%&.  The sizes of these models are 84 × 84, and the 
grid lengths of the models are dx = dz = 10. The sources of the wavelet are also randomly located 
though out the velocity model. We use Ricker's wavelet as our source. When we are generating 
the training wavefields, the main frequency of the sources is also randomly generated, ranging 
from 5Hz-15Hz. Since the wave fields are generated with the finite difference method, we do not 
tend to use the sources with very high main frequencies to avoid numerical dispersion during the 
forward modeling. We use 20 layers of the PML boundary condition to absorb the boundary 
reflections.  
Figure 2 shows the nine time slices of the true wavefields for one shot located in the right corner 
of the model. We will feed the network 50-time steps of the wavefields and train the network to 
generate the rest 300-time steps for the wavefields. We use 90 models out of the 100-model data 
set as the training models and the rest 10 models as the validation tests. The maximum epoch is 
1500, and the training results are plotted in Figure 3. In this test, we will use 33 Fourier modes, 
and the dimension projection width is 60.  
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FIG2: Nine snap shots of the x component of the wavefields generated with staggered 
grid finite difference method of on random model, regarded as the ground truth for training. 
The comparisons show that the FNO could correctly generate the phase position for different 
components of the wavefields, especially from Figure 3 (a)-(l). The prediction alliances well with 
the ground truth in Figure 2. However, with the increase of the propagation time, the accuracy of 
the prediction decreases, especially in Figure 3 (m)-(p). In Figure 3 (m) and 3 (n), though we have 
the correct phase of the waveforms, their amplitudes are distinct from the ground truth. In Figure 
3 (o) and Figure 3 (p), we can also observe the incorrect source distortion influence that does not 
exist in Figure 2. A proper combination of the dimension projection width and the number of the 
Fourier model could help to release the problem.  
Figure 4 shows the training in the frequency domain. We prepare 800 VP velocity models from 
the 3D Overthrust model and scaling them to obtain the VS and 𝜌 model. The size of the models 
is 2km×2km, with grid length are dx=dz=20. We perform frequency domain forward modeling on 
these models, with staggered-grid finite difference method and get the frequency domain wave 
fields. In each frequency domain forward modeling the source location are randomly generated, 
and the main frequency is also randomly picked from the range of 1Hz-40Hz. Figure 4 shows the 
prediction results of the real and imaginary part of the fields, we could also see that the FNO could 
accurately predict the real and imaginary part of the fields.  
Table 1 shows the Forward modeling computational performance comparison, and we can see 
that the fields generated with FNO is about a thousand time faster than the conventional finite 
difference method with acceptable accuracy. 
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FIG3: Nine snap shots of the x component of the wavefields generated with the FNO. 
With dimension projection width 60 and 33 Fourier models. 

 
FIG4: The training results in frequency domain. The main frequency is 31Hz, and the 
source location is located at 0.25km in depth and 1.37km in distance of the model. (a)-(b) 
are the real part of the wave fields in z direction. (c)-(d) are the wavefields in the x direction. 
(e)-(f) are real part the fields in x direction. (g)-(h) are the imaginary part of the fields in x 
direction. 
Conclusions 
In this study, we train a fast forward modeling method with the Fourier Neural Operator (FNO). If 
the network is well trained, the computational speed for generating the wavefields is about a 
thousand times faster than the traditional finite difference method (python based). The network 
consists of three parts, which are two dimensions projection layers that operate on time, and 
several Fourier layer that learns the spatial partial derivatives. The power of the Fourier Neural 
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operator comes from the combination of the linear operation, operators that resemble partial 
differential calculation (via the Fourier transform), and the non-linear local activation. The training 
in the time domain, the numerical tests suggest that FNO could generate promising wavefields 
within certain prediction steps, however, with the decreasing of accuracy as time propagates. In 
order to avoid this issue. We also perform the training in the frequency domain. The  numerical 
results shows that the predictions in the frequency is also fast and promising. 

Table 1: Forward modeling computational performance comparison (Time domain training) 
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