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Summary 

Full waveform inversion (FWI) is a promising tool to estimate high-resolution velocity models, but 
it suffers from expensive data acquisition and processing costs. To overcome these challenges, 
FWI using super-shot or blended data with source-encoding strategies have been proposed to 
accelerate FWI process. In previous work, we have presented the synthetic examples using 
amplitude-encoding strategy with Hartley and cosine bases. In both static- and dynamic-encoding 
experiments, amplitude-encoding strategy shows great performance and the latter one requires 
less number of super-shots. In this follow-up work, we further adopt sine and random polarity 
bases as the encoding functions. With dynamic-encoding process, the inversion results also show 
comparable imaging quality and convergency as in the conventional FWI case with further 
reduced computational effort. 

Amplitude-encoding acoustic FWI 

In conventional acoustic FWI, the objective function (data misfit function) is given by 

𝐸(𝒎) =
1

2
𝚫𝐩†𝚫𝐩 =

1

2
||𝐩cal − 𝐩obs||2                                          (1) 

where Δ𝐩, 𝐩obs and 𝐩cal denote the data misfit, the observed and the simulated data, respectively. 
In amplitude-encoding FWI, shot gathers are blended into super-shot gathers by 

𝐩 
sup = 𝐁𝐩                                                                 (2) 

where B is the amplitude encoding matrix, which is defined as  

𝐁 = [
𝑏1,1 ⋯ 𝑏𝑁𝑠𝑖𝑔,1

⋮ ⋱ ⋮
𝑏1,𝑁𝑠𝑢𝑝 ⋯ 𝑏𝑁𝑠𝑖𝑔,𝑁𝑠𝑢𝑝

]

𝑁𝑠𝑢𝑝×𝑁𝑠𝑖𝑔

                                           (3) 

where Nsup is the number of the super-shots and Nsig is the number of the individual shots (Nsup 
< Nsig).  
The ratio between Nsig and Nsup is the factor by which the computational cost is reduced. Since 
usually Nsup is much smaller than Nsig, the encoding FWI would achieve much better efficiency 
due to the reduction of data dimension. Then the encoding objective function is given by: 

𝐸(𝐦) =
1
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𝚫𝐩†𝚫𝐩 =

1
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||𝐩cal − 𝐩obs||2 =

1

2
(𝑝𝑐𝑎𝑙 − 𝑝𝑜𝑏𝑠)𝐁T𝐁(𝑝𝑐𝑎𝑙 − 𝑝𝑜𝑏𝑠)        (4) 

The matrix 𝐁T𝐁 is referred to as the crosstalk matrix, and when it’s equal to the identity matrix, 
the encoding objective function is equal to the traditional objective function. FWI using blended 
data would produce the same results as in conventional FWI cases. Previously, we have used 
Hartley (Tsitsas, 2010) and cosine bases (Hu et al., 2016) as the encoding functions. In this follow-
up work, we further adopt sine and random polarity bases defined in equation 5 and 6. The sine 
basis is defined as (Tsitsas, 2010): 
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bm,n = √
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)                                           (5) 

The random polarity basis can be expressed as (Krebs et al., 2009): 
bm,n = 1 or − 1 

where m = 1,…, Nsig is the shot-index, n = 1,…, Nsup is the super-shot index, and nsig is the 
periodization index, which we set to be half of Nsig. 

Synthetic examples 

In previous work, we have already presented the synthetic examples using Hartley and cosine 
bases (Liu et al., 2021). In this follow-up work, we use the same Marmousi model shown in Fig 
1a to generate 140 shots. The initial model for inversion is shown in Fig 1b. 

 

Fig. 1: a) The true down sampled Marmousi model; b) The initial model. 

For conventional FWI, all the sources are fired individually and shot gathers are recorded 
separately. For amplitude encoding FWI, we apply different amplitude weights to the shot gathers 
to compose super-shots. For comparison, in the experiments, we use Hartley, cosine, sine and 
random polarity as the encoding functions. The crosstalk matrices are shown in Fig 2, which show 
how close they are to an identity matrix. We can notice that there are two main diagonals in sine 
basis case, and only one main diagonal in the random polarity basis case. 

We have previously presented the static- and dynamic-encoding results using Hartley and cosine 
bases, both of which show great performance as in the conventional case (Liu et al., 2021). For 
dynamic-encoding, at first, we still compose the shot gathers into 70 super-shots and run 25 
iterations, then we compose the shot gathers into 35 super-shots and run another 25 iterations 
using the updated velocity model by the first step. Likewise, we then use 14 super-shots and 7 
super-shots for 25 iterations each. So overall, we also update the velocity model 100 times. In 
this paper, for brevity, we only present the dynamic-encoding inversion results in Fig 3. We can 
see the inversion results using sine and random polarity bases shown in Fig 3c and 3d are of the 
same imaging quality as in previous cases. 



 

 

GeoConvention 2022 3 

 

Fig 2: Crosstalk matrices: columns from left to right are by Hartley, cosine, sine and random 
polarity bases; rows from up to down are for 7, 35 and 70 super-shots, respectively. 

 

Fig 3: Inversions results using dynamic-encoding concept by different bases: a) Hartley; b) cosine; 
c) sine and d) random polarity. 

We also compare the data misfit and the vertical profiles in the middle of the model in Fig 4. As 
for the data misfit, when the number of super-shot is reduced during inversion process, there also 
shows discontinuity in the sine basis case, while the misfit curve in the random polarity basis case 
is still smooth. As shown in the vertical profiles, the difference in our experiments is so small, so 
the lines are almost overlapped. 
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Fig 4: Comparisons between different cases: a) data misfit functions versus iteration; b) vertical 
profiles in the middle of the model. 

Conclusions 

In this follow-up work, we use sine and random polarity bases as the encoding functions to 
perform amplitude-encoding acoustic FWI. The dynamic-encoding inversion results show totally 
comparable imaging quality as in the conventional and previous amplitude-encoding cases. 
Amplitude-encoding strategy can mitigate the crosstalk noise very well using all 4 different bases, 
provide good updated velocity models and convergency. 
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