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Summary  

Determination of seismic lithology, porosity and pore fluid requires detailed modeling of 
petrophysical logs to improve the correlation with a seismic AVO response. Unfortunately, 
acquiring a full set of logs for all wells in a seismic survey is unpractical, and estimation of sonic, 
shear and density using empirical relationships is the standard approach. While these empirical 
relationships have worked for recon analysis, they have generally not given the details needed 
for accurate geophysical analysis. Machine Learning has given us a new way of investigating 
these relationships, and this presentation will provide insights we learned from analysis using over 
138 wells with DT, Vs & RHOB logs from the North Sea, Australia, and Canada. 

This paper build on work first published in the 2021 Calgary Geoconvention and presented in the 
SEG Machine Learning workshop in the spring of 2022 on a lithological determination using 
machine learn (Emery et al. 2021), using the FORCE 2020 well data from the North Sea (FORCE 
2020), and then tested against wells in the Jeanne d'Arc Basin (Emery, 2006) & from the Poseidon 
3D in NW Australia (Naeine & Prindle, 2018). 

Introduction 

A petrophysical log suite generally covers about 85% of a geological section, but full log sets, 
including sonic (DT), shear (DTS) and density (RHOB), typically make up less than 25%. The 
most significant data gap is the top hole but the increased use of logging while drilling (LWD) has 
making this problem worst as DT logs are generally not acquired as part of a LWD program. 

The regression method (Faust 1951 & 1953, Gardner 1974, Castagna 1985) became the standard 
method to creating missing logs up and through the 1990s (Figure 1). These empirical 
relationships worked well for post-stack interpretation (Tanner 1977, Mitchell 1977, Wagoner 
1988, Brown 1999) and inversion (Lindseth 1977, Aki 1980, Ostrander 1984, Shuey 1985, Russell 
& Hampson 1991, Castagna 1993). 

The adoption of AVO analysis (Russell 1997, Goodway 1997, Connolly 1998, Castagna 1998, 
Hampson 2001 & 2005) as standard practice during the late '90s started to emphasize several 
shortcomings for these basic estimations. Applying rock physics standards (Mavko 1998, Avseth 
2004, Emery 2006, Lee 2006, Russell 2013, Downton 2020) has significantly improved 
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geophysical interpretation, providing knowledge of lithology and fluid types are known before 
estimating missing velocity and density information.  

Machine Learning has recently become popular in petrophysics with multiple publications 
outlining its uses in lithology prediction (Hall 2016, Hall & Hall 2017, Guarido 2019, Emery 2020). 
Regrettably, most of these solutions require complete log data. Machine Learning has also been 
used to improve log prediction using support-vector machines, or SVM (Adeniran 2019, 
Anemangely 2019, Liu 2021, Sebtosheikh 2015), neural networks (Iwuoha 2019, Rezaee 2008), 
both (Mehrad 2022), or combinations of multiple methods (Azadpour 2020, Gupta 2018, Pan 
2022, Zhang 2020). The results from these machine learning predictions have been impressive 
compared to estimates using older empirical relationships. However, the solutions have not been 
generalized nor they are as understandable as solutions derived from rock physics. The primary 
Machine Learning difficulties consist of the ill-conditioning of well logs, uneven sampling, finding 
the correct features engineering solutions, the need to impute missing values and overfitting. 

  
Figure 1: Algebraic Relationships (Mudrock left, Gardner center, Faust right)  

vs Machine Learn (Bottom) 
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During this presentation, we intend on sharing our observation using log normalization & depth 
trend removal on DT, RHOB & DTS estimation using XGBoost (Chen & Guestrin, 2016), one of 
the few Machine Learning solutions that don't require completed datasets.  

Theory – Algebraic Relationships 

Empirical relationships have generally been used to estimate missing log information. Estimating 
DT from resistivity (RES) was proposed by Hacirkoyulu (2006) after Faust (1953) using a 
combination of depth, geological age, and resistivity variation, and is written 

  𝑉! = 𝛾(𝑍𝐹)" #$ 	𝑤ℎ𝑒𝑟𝑒	𝐹 = 	𝑅% 𝑅&.  (1)  

where ɣ = 2.2888, Vp is in km/s and Z in km. F, the formation factor, is defined as the formation 
resistivity (Rt) over the background water resistivity (Rw).    

When the density logs are missing or questionable, it is common to use Gardner's relationship to 
estimate density values from the sonic log. The Gardner relationship (Gardner, Garner & Gregory 
1974) is generalized for clastics as: 

   (2)  

where c =1.741, if Vp is in km/s and ρ, is in g/cm3.  

Shear (DTS) logs were not widely acquired until recently, and S-wave velocities are generally 
estimated from the P-wave sonic log. Several empirical Vp-Vs relationships have been proposed 
(Pickett, 1963; Tatham, 1980; Tosaya, 1982; Eastwood and Castagna, 1983; Castagna et al., 
1985: Castagna et al., 1993; Greenberg and Castagna, 1992; Mavko, 1998) with the Castagna et 
al. (1985) mud-rock line being the most widely referenced relationship between P-wave and S-
wave velocities. Castagna et al. (1985) proposed the mudrock line as an approximation to relate 
P-wave to S-wave values.  

     Mud Rock Line – Castagna (1985) 

All three relationships, while helpful, were derived for log, seismic and laboratory measurements 
for Gulf Coast clastics and are reasonable first-order approximation for brine-wet shales and 
sandstones formations in similar depositional environments. Several modifications, using different 
experimental data sets, of the mudrock line have been proposed (Tosayn and Nur, 1982; 
Castagna, 1993; Han, 1986; and Mavko, 1998).  

Machine Learn Method 

For this work, we selected gradient boosting (Friedman 2001) as our machine learning engine 
since as an ensemble method it combines results from a series of decision trees, each solving for 
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the residual error from the previous steps with different decision trees.  The technique uses a 
logistic regression approach which produces a dichotomous outcome (yes/no). We use the 
implementation known as XGBoost (Chen & Guestrin, 2016) which conveniently adds the 
handling of missing data and increases speed by using parallel processing. In our test, this library 
has outperformed other tools. 

As XGBoost builds multiple trees sequentially, each new tree corrects some errors made by a 
previous tree, the model can become computational expensive for large datasets with many 
features. Hyperparameter optimization is a crucial step to improve machine learning metrics but 
can also result in overfitting the training data making the solution area-specific (Emery 2022). For 
example, a geological framework has been shown to dominate both lithofacies and mineralogy 
classification (Emery 2021 & 2022). To make the XGB regression more general for the estimation 
of missing log values, we have removed all location and formation interpretations. 

Feature Engineering 

For this analysis, as training data we used 118 wells from the North Sea, made available by the 
Norwegian Petroleum Directorate for the FORCE 2020 competition.  For testing datasets, we 
used 12 wells from Jeanne d’Arc Basin in Canada (Emery, 2006) and 8 wells in NW Australia 
(Naeine & Prindle, 2018). Three sub-datasets were generated from the 138 wells for DT, RHOB, 
& DTS to create 3 test and validation sets (118/20, 114/20, 46/20). All the wells were from offshore 
settings, and future work will incorporate Western Canada data.  

The logs used for the analysis are DEPTH, gamma ray (GR), deep resistivity (DRES), median 
resistivity (MRES), shallow resistivity (SRES), neutron porosity (NPHI), density (RHOB), slowness 
(DT), shear slowness (DTS), photoelectric absorption (PEF), spontaneous potential (SP), caliper 
(CAL), and borehole size (BS). As the training data was 90% siliciclastic and dominantly shale, 
and we aimed to create a general solution, we chose to estimate a single global trend and analyze 
the residuals. While a more detailed porosity relationship (Ehrenberg 2009) could be appropriate, 
for simplicity, we used a linear depth trend estimated for each log type. For SP, where mud 
conditions dominate the response, a local trend was used to create the residual. 

In addition, as compaction trends are referenced to burial depth (below seafloor), correcting for 
variation in water depth is essential. Again, for simplicity, the strategy used was to apply a bulk 
shift using the residual for an individual log from the background trend. This solution worked well 
except for the NW Australia data, that was more a carbonate system than siliciclastic, where we 
need to reduce the bulk shift for the resistivity and slowness logs. 

Standard Petrophysical sub-products were also created: resistivity crossover (RDEP-RMED), 
average resistivity (RDEP+RMED, RDEP only RMED not available), NPHI-DPHI crossover, and 
the impedance (Vp x RHOB). To guarantee input independence for the XGBoost solution, testing 
was done using either the slowness (DT, DTS), the velocity (Vp, Vs), or the Vp & Vp/Vs ratio.  
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Multiple combinations of XGBoost tests were conducted using the raw input data, water bottom 
correction, and residual after removing the depth trend. 

Results 

As DTS is the most under-sampled petrophysical log, we will first cover its results first (Figure 2). 
XGBoost models were built using the FORCE2020 dataset and evaluated against the Jeanne 
d’Arc and NW Australia data. A feature importance analysis (Figure 3) for Vs estimation indicates 
a dominance of Vp followed by NPHI and then RDEP. A surprising outcome was the relatively 
low importance of GR and RHOB.    

Figure 2: Vs prediction versus Mudrock & measure log (left), Mudrock vs real value (center), 
XGB prediction vs real (right) 

Evaluation of RHOB indicates a high importance (Figure 3 center panel) again for Vp but 
modifying the role of NPHI and, to a less extent, RDEP. Surprisingly, GR seemed to have low 
importance in the estimations. The RHOB estimation shows a more balance feature importance, 
with Vp still being the most significant but a more balanced RDEP, NPHI, and GR. Minor 
importance was found from the PEF, RESdiff logs, and the lowest importance was found for the 
SP log. 

In most circumstances, when DT needs to be estimated, RHOB and Vs would also be missing, 
and therefore the input log suite was reduced to GR, RDEP, RESdiff, NPHI, SP & PEF. The Faust 
approximation (Figure 1 – upper right) showed poor correlation   and the result from XGBoost 
(Figure 1 - lower right) showed a much higher correlation. The feature importance indicates that 
Vp can be estimated from NPHI and DRES (Figure 3) and to a lesser GR and RESdiff. 
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Figure 3: Feature Important (normal – top, residual – bottom) for Vs (left),  

RHOB (center), Vp (right) 

Observations  

The evaluation against the wells (Figure 4) in the Jeanne d’Arc Basin & NW Australia showed a 
mixed response. Machine learning estimation of Vp over Faust was superior (note the higher 
correlation). RHOB over Gardner was good, but Vp over Castagna was only fair. The amount of 
available log data and the degree of feature importance had a relationship to the overall 
performance of machine learning.  

The Faust estimation of Vp has almost no correlation (R2 = 0.05), while machine learning shows 
a significant correlation (R2 = 0.76). The Vp estimation using only RDEP and GR reduces R2 
(0.71), but the regional trend dominates this. Estimating changes from the residual show more of 
the difference in R2 (0.57 and 0.40 LWD) with an improved RMSE. 

Predicting RHOB with the addition of RDEP & NPHI again show an improvement compared to 
Gardner’s (R2 0.76 from 0.60, RMSE 26217 compared to 51009). A baseline shift error appears 
still to exist, and additional work will be required 

Vp dominates the Vs estimated through machine learning and, as such, only shows a moderate 
difference from the Castagna mudrock calculation (R2 0.61 from 0.53, RMSE 53329 compared 
to 64406). 
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Figure 4: Example blind estimation, blue real, green empirical relationship &  

red result from machine learning 

Conclusions 

Machine Learning analysis for estimation of missing logs shows a significant improvement over 
previous approaches using empirical relationships. From the three relationships investigated, 
Faust, Gardner and Castagna, we found that the Castagna relationship was the closest to the 
machine learning results. While additional work is required, machine learning shows promise in 
estimating petrophysical logs and discovering new insights into the   importance of the various 
parameters. 
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