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SUMMARY

As field data applications of FWI increase, dealing with both random
and coherent noise in seismic data, and the artifacts they create in FWI
models, becomes increasingly important; noise suppression or esti-
mation is also increasingly important when we transition to elastic-
multiparameter inversion from acoustic approximations. In this study,
we analyzed the influence of random and correlated noise on the esti-
mation of model parameter V p, V s, and density, and, to mitigate their
influence, we adopted a two-stage inversion approach, whose second
stage involves a modified FWI misfit. The data covariance matrix is
calculated from data residuals obtained from an initial run of FWI,
and this is incorporated into the misfit function for a second run. With
the elastic FWI conducted in the frequency domain, and the data co-
variance matrix consequently calculated frequency by frequency, the
approach, though not computationally inexpensive, places reasonable
demands on memory and storage. Random and correlated noise were
examined and estimated, and inversion results were compared with
those of otherwise identical conventional FWI runs. The bootstrap ap-
proach to inclusion of data covariance estimates in FWI appears to be
stable, and to have a strong positive impact especially for correlated
data noise.

INTRODUCTION

Noise in full waveform inversion (FWI) applications refers to varia-
tions in the data which are either (1) not meaningfully predictable with
the underlying simulation equations or the boundary conditions being
used, or (2) predictable, but in a manner too nonlinearly sensitive to
medium property changes to be stably used. In many applications, es-
pecially those on land, this encompasses environmental noise, ground
roll / surface waves, and multiples. Seismic data consequently contain
complex combinations of coherent and incoherent, as well as station-
ary and nonstationary noise. To obtain interpretable seismic images,
seismic data must be carefully de-noised. In real cases, however, noise
cannot be completely suppressed, and for FWI to proceed we would
ideally build into the iterative process weights which accommodate it.
Incorporation of data covariance in the definition of the misfit is a clear
avenue for this, and we have carried out a systematic analysis of the
response of 2D frequency-domain elastic FWI to noise, and adapted
it into a two stage procedure, with the second stage involving a misfit
with data covariance estimated during the first stage.

Noise impacts elastic parameter updates in complicated ways, differ-
ing for each parameter. P- and S-waves have different amplitudes,
and therefore the impact of a single noise level on parts of the inver-
sion concerned with each can be quite different. Likewise P-waves
typically have larger dominant wavelengths than S-waves, as well as
different apparent slowness in data, meaning inversion will tend to re-
spond to coherent noise very differently across the two wave types.
Our goal is to arrive at some relatively broad conclusions about these
varied effects through simulations / synthetic analysis. To add noise in
the frequency domain comparable to noise added in the time domain,
we assume the same signal-to-noise ratio in both domains, and con-
struct the real and imaginary parts of the noise separately, with half
the variance of the desired total.

The covariance matrix characterizes statistical relationships between
each pair of elements in a provided vector. The variances appear on the
diagonal and inter-parameter correlations appear in the off-diagonal
elements. A misfit function which includes the covariance matrix in-
troduces weights giving more or less relevance to data residuals, based
on this information. The least squares (L2) norm of the misfit between

the observed and predicted data is the most commonly used penalty
function for FWI (Tarantola, 2005). In our study, this misfit function
is constructed using simulated data, on top of which additionally sim-
ulated remnant noise (meaning, noise left over after de-noising proce-
dures are complete), has been added, as the observed data, and clean
data simulated with elastic forward modelling in the current model it-
erate as the predicted data. When the observed data are contaminated
by high levels of noise, that noise will tend to produce model arti-
facts, or false structures added to the model in order to explain the
noise. This can in principle be mitigated, if estimates of the noise are
available, by incorporating the data covariance matrix into the misfit
function (Cai and Zelt, 2019). We here fit noise estimation into FWI
by incorporating two stages of FWI, one in which the noise is esti-
mated, and the other in which it is included in the misfit function. We
observe that, in frequency domain FWI, this process of inclusion of the
data covariance can occur frequency by frequency, such that, provided
source and receiver numbers are not too large, memory issues can be
straightforwardly avoided.

METHODS AND SYNTHETIC RESULTS

In Bayesian inversion (e.g., Dettmer et al., 2007), the likelihood for-
mulation includes the data uncertainty distribution, which embodies
both modeling errors and measurement errors. In theory, the likeli-
hood can be formulated and applied with arbitrary uncertainty distri-
butions. However, in practice, the error distribution is unknown in
advance. Therefore, a mathematically simple distribution (e.g., Gaus-
sian) is usually assumed initially.

Different approaches can be adopted to estimate the covariance matri-
ces. If the error is assumed to be random independent, the data co-
variance matrix can be approximated as diagonal, C−1

D = σ2I, where
I is the identity matrix and σ is the standard deviation of the random
error. In this case, as σ is a scalar, the negative log-likelihood is simi-
lar to the conventional L2 norm misfit function. A more sophisticated
approach, beyond assuming that the statistics are simple, or known, is
to analyze the data residuals to incorporate error correlations into the
inversion. The data covariance matrix is estimated from the data resid-
uals in a first past through FWI, assuming uncorrelated errors. The
data covariance matrix can be estimated from the autocovariance of
the data residual after some fixed number of iterations:
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for the jth datum, where d̄ is the mean of the samples. As we do not
have many observing data samples, the synthetic data generated using
the conventional FWI result were utilized to approximate the sample
mean. These values are arranged in the covariance matrix CD. The
FWI misfit function incorporating the data covariance matrix CD is
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where N is the number of data, and dpre and dobs are the predicted
and observing seismic data, respectively.

For each frequency, the dimension of the covariance matrix is (Ns×
Nr)2. In most cases, this size is within the tolerance of the computer
memory capacity.

Assuming the errors to be independent of model parameters, the gra-
dient of the misfit function with respect to the ith model parameter
is
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where ∂dpre /∂mi is the Fréchet derivative, and we observe that the
wavefield residuals have been weighted by the data covariances before
back propagation. Data residual regions which, through the iterative
estimation, appear to contain large errors, are in this calculation down-
weighted and contribute less to the inversion results.

Figure 1: Noise-free synthetic data and noisy data. (a) True data (real
part), (b) noisy data with a SNR equals 20 (real part), (c) synthetic
data of the inverted model (real part), (d) true data (imaginary part),
(e) noisy data with a SNR equals 20 (imaginary part), (f) synthetic
data of the inverted model (imaginary part).

Figure 2: True models and inverted models without noise. (a) true
Vp , (b) true Vs, (c) true density, (d) inverted Vp, (e) inverted Vs, (f)
inverted density.

We first applied the algorithm described above to a toy model with
two circle anomalies. The model spatial interval is 10m. For the first
test, to reduce acquisition effects on model estimation, source lines
and receiver lines were placed on the top and bottom of the model.
We added Gaussian random noise with the SNR of 10 dB, 20 dB, 30
dB, respectively, to the noise-free complex spectra in the frequency
domain (see Fig.1). The noise-free inversion results are shown in Fig.2
for reference. The initial models were the homogeneous background
models without velocity anomalies. The inverted models from noisy
data after 20 iterations with truncated Newton inversion method were
shown in the Fig.3.

We observed a strong dependence of the accuracy of inverted model
parameters on different scales of random noise. When the SNR is
equal to or smaller than 20 dB (Fig.2d-f), there are obvious artifacts in
the inverted models. When the SNR is equal to 10 dB, the outline of
the circle anomalies is not clear.

We then adjusted the experiment to involve a more realistic acquisi-
tion, reducing the model size, and acquiring data from surface sources

Figure 3: Inversion results of seismic data with SNR equals to 10 dB,
20 dB, 30 dB. (a) inverted Vp with SNR equals 10 dB, (b) inverted Vs
with SNR equals 10 dB, (c) inverted density with SNR equals 10 dB,
(d) inverted Vp with SNR equals 20 dB, (e) inverted Vs with SNR
equals 20 dB, (f) inverted density with SNR equals 20 dB, (g) inverted
Vp with SNR equals 30 dB, (h) inverted Vs with SNR equals 30 dB,
(i) inverted density with SNR equals 30 dB.

and receivers only. We added random noise with SNR of 16 dB to
the data simulated from the new model shown in Fig.4 a-c. The true
synthetic data and noisy data are shown in Fig.5. In Fig.4, d-f are in-
verted models of the noise-free data after 20 iterations using the trun-
cated newton method, and g-i figures are inverted models of the noisy
data after 20 iterations. In d-f figures, we found the inverted models
are close to the true models, though slight cross-talk artifacts exist.
By contrast, in g-i figures, there are more oscillatory artifacts in the
background and mosaic-like artifacts at the top boundary. The density
inversion result was poorer than the Vp and Vs both with and with-
out noise. Spectra from the predicted data from the inverted model in
Fig.4 g-i are displayed in Fig.5 c and f; simulated data are similar to
the true spectra in panels a-d.

Based on the inversion results above, we next organized for a sec-
ond pass of FWI, to occur with a modified misfit function. The first
step was to calculate the data covariance matrix which would be in-
corporated in the penalty for the first iteration of the second FWI. This
matrix was estimated using the data residuals produced during the first
pass of FWI. The histogram of the real and imaginary parts of the data
residuals are plotted in Fig.6 a and b. The Kstest results for both real
and imaginary part residuals are equal to one, which means the data
residuals follow Gaussian distribution as we defined. Then, the data
residuals were cross-correlated and given a Toeplitz structure to gen-
erate the covariance matrix. From the autocovariance (Fig.6 c), we
can find the diagonal contains relatively large values while the values
of other points are close to zero. This reflects the fact that the data
residuals mainly include independent Gaussian noise.

As the elastic FWI was conducted in the frequency domain, the misfit
was calculated each frequency by each frequency with a total number
of 32. Thus, 32 data covariance matrices were generated, as shown in
Fig.7. The non-diagonal values in all of the matrices are close to zero.

The second pass of FWI was conducted with the modified misfit func-
tion, for 20 iterations; we compared the results thus obtained with the
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Figure 4: True models and inverted models. (a) True Vp, (b) true Vs,
(c) true density, (d) inverted Vp of noise-free data, (e) inverted Vs of
noise-free data, (f) inverted density of noise-free data, (g) inverted Vp
of noisy data with SNR equals 16 dB, (h) inverted Vs of noisy data
with SNR equals 16 dB, (i)inverted density of noisy data with SNR
equals 16 dB.

Figure 5: The spectra of true data, noisy data, and synthetic data. (a)
True spectra of the real part, (b) noisy spectra of the real part, (c) syn-
thetic spectra of the real part generated by the inverted model, (d) true
spectra of the imaginary part, (e) noisy spectra of the imaginary part,
(f) synthetic spectra of the imaginary part generated by the inverted
model.

Figure 6: The histogram and autocovariance of data residuals. (a)
Histogram of real part data residual , (b) histogram of imaginary part
data residual, (c) autocovariance of the data residual in real.

Figure 7: The covariance matrices of 32 frequency bands. (a) to (f) are
the matrices of the first 6 bands.

Figure 8: Inversion results. (a) Inverted Vp model of the first FWI,
(b) Inverted Vs model of the first FWI, (c) Inverted density model of
the first model, (d) the misfit change of the first FWI, (e) inverted Vp
model of the conventional FWI using 40 iterations, (f) inverted Vs
model of the conventional FWI using 40 iterations, (g) inverted den-
sity model of the conventional FWI using 40 iterations, (h) the misfit
change of the conventional FWI with 40 iterations, (i) inverted Vp
model of the second FWI with the modified misfit, (j) inverted Vs
model of the second FWI with the modified misfit, (k) inverted den-
sity model of the second FWI with the modified misfit, (l) the misfit
change of the second FWI with the modified misfit.

conventional method with 40 iterations. The inversion results are dis-
played in Fig.8. The first row are the first-time conventional FWI re-
sults, the second row are the conventional FWI results using totally 40
iterations, and the third row are the second FWI results using modified
misfit. From the comparison of the first two rows, we found though
with more iterations, the results of 40 iterations seem no better than
the results of 20 iterations. More oscillatory artifacts appear in the
background model, especially in the inverted density model. Compar-
ing the third row with the first two rows, we observe that the results
of the new method are better than the first FWI results or conventional
method results after the same iteration number. The improvements are
mainly reflected by the clear outline of the inversion structures, and
fewer artifacts in the background model.

Next, we added a more complex type of noise onto the synthetic data,
which is a combination of random noise with correlated noise. Cor-
related data error was generated by multiplying a Gaussian random
array with the Cholesky decomposition of a constructed data error co-
variance matrix with non-zero decaying off-diagonal terms. We com-
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Figure 9: The spectra of true data, noisy data, and synthetic data. (a)
True spectra of the real part, (b) noisy spectra of the real part, (c) syn-
thetic spectra of the real part generated by the inverted model, (d) true
spectra of the imaginary part, (e) noisy spectra of the imaginary part,
(f) synthetic spectra of the imaginary part generated by the inverted
model.

bined additional random noise with this correlated noise to obtain the
final complex noise to be added. The noisy data spectra are plotted in
Fig.9(b) and (e). Their differences compared with the true spectra can
be observed from the edges and top faces of the cubes.

Figure 10: Histogram of data residuals and covariance matrix. (a)
histogram of the real part data residual, (b) histogram of the imagi-
nary part data residual, (c) autocovariance of the data residual, (d) the
toeplitzed data covariance matrix.

Next, we estimated the data covariance matrices using the same pro-
cedure above. From histograms of the real and imaginary parts of the
data residuals (Fig.10 a and b), we observe that the data residuals, as
expected, do not follow Gaussian distributions. In the autocovariance
(Fig.10 c), small spikes are observed on both sides, meaning different
regions of the data residuals are correlated to some degree. This is also
be reflected in the non-zero values of the off-diagonal elements of the
covariance matrix (Fig.10 d).

The inversion results are shown in Fig.11. As in the case of Fig.8, the
first row are the first-time conventional FWI results, the second row
are the conventional FWI results using totally 40 iterations, and the
third row are the second FWI results using modified misfit. Same as
above, the results after 40 iterations seem to have more artifacts than
results after 20 iterations. The results of the modified FWI results have
less artifacts than the results of conventional method.

Comparing the spectra cubes of the synthetic data generated from the
first FWI and modified FWI, it is hard to observe the difference with
naked eyes. Therefore, these figures are not shown here. From the
inversion results comparison above, improvements in imaging have
been found already.

Figure 11: Inversion results. (a) Inverted Vp model of the first FWI,
(b) Inverted Vs model of the first FWI, (c) Inverted density model of
the first model, (d) the misfit change of the first FWI, (e) inverted Vp
model of the conventional FWI using 40 iterations, (f) inverted Vs
model of the conventional FWI using 40 iterations, (g) inverted den-
sity model of the conventional FWI using 40 iterations, (h) the misfit
change of the conventional FWI with 40 iterations, (i) inverted Vp
model of the second FWI with the modified misfit, (j) inverted Vs
model of the second FWI with the modified misfit, (k) inverted den-
sity model of the second FWI with the modified misfit, (l) the misfit
change of the second FWI with the modified misfit.

CONCLUSIONS

In this study, we developed a methodology to deal with remnant noise,
with particular focus on correlated noise in seismic data. This is im-
plemented by incorporating the data covariance matrix, which is es-
timated from a conventional FWI result, into the misfit function. We
found that random noise in large magnitude have impacts on the ac-
curacy of inversion results. Generally, random noise is less harmful in
model estimation than correlated noise. By estimating the noise from
analysis of residuals generated through a first FWI pass, and incorpo-
rating them within the data covariance matrix, several important types
of error can be estimated and suppressed during inversion. Compared
with the conventional FWI models, more interpretable images with
fewer artifacts result, at moderate increase in computational cost.
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