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SUMMARY

We introduce and analyze implicit full waveform inversion
(IFWI), which uses a neural network to generate velocity mod-
els and perform full waveform inversion. IFWI carries out in-
version by linking two main networks: a neural network that
generates velocity models, and a recurrent neural network to
perform the modeling. The approach is distinct from conven-
tional waveform inversion in two key ways. First, it reduces
reliance on accurate initial models, relative to conventional
FWI. Instead, it invokes general information about the target
area, for instance estimates of means and standard deviations
of medium properties in the target area, or alternatively well-
log information in the target area. Second, iterative updating
affects the weights in the neural network, rather than the veloc-
ity model directly. Velocity models can be generated in the first
part of the IFWI process in either of two ways: through use of
a multilayer perceptron (MLP) network, or a Bayesian neural
network (BNN). Numerical testing is suggestive that the MLP
based IFWI approach in principle build accurate models in the
absence of an explicit initial model, and the BNN based IFWI
could give the uncertainty analysis for the prediction results.

INTRODUCTION

Full waveform inversion (FWI) is an optimization based in-
verse procedure with the capacity to produce high-resolution
velocity models and subsurface images (Virieux and Operto,
2009). Practical FWI faces several key challenges. On land,
adequate near-surface models typically require elastic or vis-
coelastic propagation models to be considered, and within these,
accurately-determined shallow heterogeneities (Teodor et al.,
2021). However in multi-parameter inversion, different sensi-
tivities across parameter classes cause crosstalk in reconstructed
models (e.g., Keating and Innanen, 2020, 2019). Even in single-
parameter problems challenges arise. The commonly-used `2
norm objective function typically contains many local minima,
requiring either very accurate initial models or high-fidelity
broadband data (Lailly and Bednar, 1983; Tarantola, 1984; Tromp
et al., 2005; Plessix, 2006; Virieux and Operto, 2009); with-
out sufficiently accurate initial models, converge to the right
solution is unlikely. Multiparameter elastic FWI is even more
vulnerable to the problem of local minima, with different wave
modes in the data and larger numbers of elastic parameter classes
involved. Several strategies have been introduced for the se-
lection of initial models. First-arrival traveltime tomography
is often used to retrieve smooth P-wave velocity (Teodor et al.,
2021); surface-wave (SW) analysis and inversion techniques
can be adopted to retrieve the S-wave velocity (Vs) variations,
using processing workflows based on windowing and wave-
field transform to extract and invert local dispersion curves
(DCs). Ren et al. (2021) developed a joint diving/direct and
reflected wave method to build P- and S-wave velocity macro-
models.

Neural networks are rapidly developing as avenues to support
and formulate FWI algorithms; here we develop a network fo-
cused specifically on addressing the interrelated challenges of
EFWI updating and initial model selection. We consider a pro-
cedure linking a model selection network and a simulation net-
work. We examine two promising types of selection network.
The first is the coordinate-based multilayer perceptron (MLP).
Coordinate-based MLPs take low-dimensional coordinates as
input (usually in R2 or R3) and are trained to output a represen-
tation of some generalized target (Tancik et al., 2020). These
networks (e.g., Rahaman et al., 2019; Stanley, 2007; Genova
et al., 2020) have been developed and applied in image repre-
sentation problems, shape representation in texture synthesis,
shape inference from images, and novel view synthesis, and in
these applications have achieved state-of-the-art results (Ra-
haman et al., 2019; Stanley, 2007; Genova et al., 2020; Park
et al., 2019; Liu et al., 2019; Sitzmann et al., 2019). Analysis
of such networks is suggestive that they tend to have a very
strong capacity to resolve low frequencies in the loss function;
whereas difficulties are often reported in their ability to resolve
high-frequency information (Basri et al., 2020; Rahaman et al.,
2019). The second type is the Bayesian neural network (BNN),
first introduced by MacKay (1992). The BNN generates as
output uncertainty estimates for the neural network; it is char-
acterized by weights whose values follow a probability density
function (pdf) over the weight space. The pdf is initialized and
then updated (via Bayes’ theorem) as training progresses; the
network when specified includes best choices for weights, and
an output distribution gauging their uncertainty.

With these ingredients, we formulate what we call implicit
full waveform inversion (IFWI). This involves combining one
of either a coordinate based MLP network, equipped with si-
nusoidal activation functions, or a Bayesian neural network
(BNN), with a theory guided recurrent neural network (RNN)
to generate seismic records. The IFWI proceeds in the man-
ner of a waveform inversion, but does not require an explicit
initial model to begin. The network takes, as input, the spatial
positions of the grid cells associated with the model we wish to
reconstruct. The network (either MLP or BNN) generates ve-
locity models with expected properties. These velocity model
realizations are then sent to the RNN and through it seismic
records are simulated. The residual between the observed and
simulated data are returned, and updating occurs. The final
output of the IFWI procedure is a set of network weights (as
opposed to model parameters), which when used in the final
network generates a suite of elastic models which honour the
data, as opposed to a single, assumed optimal, model. It there-
fore has within it a capacity for uncertainty estimation, and
does not rely on a single initial model. We numerically ana-
lyze it to determine whether it exhibits stability in the absence
of a well-resolved initial model.
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THEORY

In the FWI problem we seek to minimize the following equa-
tion, normally using an l2-norm misfit function

φ(m) =
∑

xr

∫ T

0
||dsyn(xr, t,m)−dobs(xr, t)||2dt, (1)

where dobs represents the observed data, dsyn represents the
synthetic data (obtained through dsyn = Ru), R is the receiver
operator, xr represents the receiver location vector, T is the
maximum receiving time, and m is the model vector. The field
u is obtained with F(u,m) = f, where F is the forward mod-
eling operator and f is the source term. In conventional FWI
we calculate the gradient, ∂φ

∂m , via the adjoint state method,
and update the model unknowns m directly, through, e.g., a
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
or conjugate gradient optimization method. This approach faces
several well-known issues. First, because FWI is a highly non-
linear optimization problem, it depends on an accurate initial
model, without which it will tend to converge to one of many
possible local minima. Second, the quantification of the uncer-
tainties in FWI is difficult and remains an open question.

With these issues in mind, we formulate the multilayer percep-
tron (MLP) and Bayesian neural network (BNN) based IFWI.
In the MLP based IFWI we did not use an explicit initial model
as a start point of the inversion, we use only the well log infor-
mation to perform the inversion. In the BNN based IFWI, we
treat the weights in the neural network as trainable probability
distributions (pdf). If the network is well trained, it could be
used to give the uncertainly analysis for the inversion.

MLP based Implicit elastic FWI

IFWI can be implemented by generating test elastic models
with either an MLP or a BNN; here we will formulate the prob-
lem with both in turn, allowing them to be compared in numer-
ical tests. We start by formulating the full IFWI algorithm with
an MLP and then form a second algorithm by switching out the
MLP for the BNN.

IFWI involves solving for network weights, as training pro-
gresses, to more and more effectively produce realizations of
elastic models. For the IFWI problem, the effective objective
function is:

φ(w)IFWI =
∑

xr

∫ T

0
||d̂syn(xr, t,Nmlp(c;w))−dobs(xr, t)||2dt,

(2)

where Nmlp(c;w) is the MLP network which generates elastic
models. It in turn is formulated as

Nmlp(c;w) = (h1 ◦h2 ◦ · · · ◦hn)mstd +mmean, (3)

where ◦ represents the fact that the hidden layers of the neu-
ral network are linked in sequence, hl stands for the lth hidden
layer (where l ≤ n), n is the maximum number of network lay-
ers, c is the coordinate vector, defining the size of the model
to be generated, w are the trainable weights of the neural net-
work, and mstd and mmean are the standard derivation and the

mean values of the elastic models obtained from prior informa-
tion (e.g., a single or several well logs). These two values are
used to scale the output of the MLP making sure that elastic
property values in the output are within the reasonable range
for the exploration area. The calculation in each hidden layer
is expressed as:

hl(ol) = sin(wlol +bl), (4)

ol , wl and bl are the input, weight and bias vectors in the lth

layer. In the MLP based IFWI we use the sin activation func-
tion. We can see that in IFWI, the elastic model is parame-
terized with the weights and bias in the neural network. The
detailed data dimension in the network has been illustrated in
Table 1.

We train the network as follows. First, we initialize the weights
as fixed values in the MLP. Second, we use the MLP network
to predict the velocity models, which are Vp,Vs, and ρ . In
this study, we use the velocity parameterization. Third, we
solve F(û,Nmlp(c;w)) = f for û, and the synthetic data is ob-
tained with d̂syn = Rû. In this study, we solve û with a re-
current neural network (RNN) (Sun et al., 2020; Zhang et al.,
2020). Fourth, we calculate the residual with equation (2), and
then calculate the gradients by using the automatic differen-
tial method. We update the weights w in Nmlp(c;w) with the

gradient based optimization method: wt = wt−1−α
∂φ(w)IFWI

∂wt−1
,

where t is the iteration time and α is the step length. If biases
are included in the calculation, then the bias vector should be
updated in the same way as the weights. The general work flow
of the IFWI has also been illustrated in Figure 1. This train-
ing process distinguishes it from conventional FWI, in which
the elastic model parameters are solved for explicitly, and are
based on updates of an explicitly selected initial model.

Table 1: The MLP network used in IFWI

Layer name Description dimension

Input Coordinate in x and z direction R2×nz×nx

Permute Dimension permute Rnz×nx×2

layer 1 FC layer Rnz×nx×256

activation 1 sin Rnz×nx×256

layer 2 FC layer Rnz×nx×256

activation sin Rnz×nx×256

layer 3 FC layer Rnz×nx×3

Permute Dimension permute R3×nz×nx

Output Scale with well log information R3×nz×nx

BNN based Implicit elastic FWI

In this section, we replace the MLP network with a probabilis-
tic interpretation of neural network learning by implementing
a Bayesian neural network (BNN), denoted as Nbnn(c;θ). The
difference between the BNN and the MLP is that the weights
in the BNN are regarded as probability distribution functions
(pdfs) rather than fixed values.

In the BNN, we seek to estimate the posterior distribution p(w|D),
referred as the probability of w when data vector D is observed.
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Figure 1: IFWI work flow.

This is approximated by a learned distribution weights p(w|θ),
with learnable parameter θ . This process is usually enforced
by minimizing a Kullback-Leibler divergence (KL):

argmin
θ

KL[p(w|θ)||p(w|D)]

=argmin
θ

Ep(w|θ)

[
log

p(w|θ)
p(w|D)

]
=argmin

θ

Ep(w|θ)

[
log

p(w|θ)p(D)

p(D|w)p(w)

]
=argmin

θ

Ep(w|θ)

[
log

p(w|θ)
p(D|w)p(w)

]
,

(5)

using Bayes’ theorem. Minimizing the above loss is equivalent
to minimizing

φ(θ) = logp(w|θ)− logp(w)− logp(D|w). (6)

For simplicity in this study, we assume each element of the
weight vector to follow a Gaussian distribution, and be charac-
terized with a mean value and the standard deviation. During
the forward calculation in the neural network, realizations of
the weights are drawn randomly from their current probability
distribution. For example, assume that wi is the ith value in
vector w, then it can be realized by using the following equa-
tion:

wi = wµi + log(1+ eρwi )wεi , (7)

where wµi is the mean value of wi, and wεi is a random value
generated with the Gaussian distribution, i.e., wεi ∼ N(0,1).
wµi is the value which determines the mean of the probability
distribution for parameter wi. ρwi influences the standard de-
viation for the parameter wi. Each value in the w is obtained
through the above process. We regard the wµi and ρwi as the
training parameters. For simplicity, the training parameters are
all noted as θ . After the weights are realized, the output of the
BNN is obtained with equation (3).

The BNN formulation involves the following training process.
First, we obtain the weights as described above. Second. we
use the weights to calculate the outputs of the network, which
are the elastic property models Vp,Vs, and ρ . Third, use the
same recurrent neural network (RNN) as discussed previously
to carry out forward modeling via F(û,Nbnn(c;θ)) = f and ob-
tain the synthetic data d̂syn. Fourth, we calculate the logp(w|θ),
logp(w), logp(dobs|w), for the objective function (5). For FWI
problem, using logp(dobs|d̂syn) to replace logp(dobs|w). Thus,

the loss function we use for BNN IFWI is defined as:

φ(θ)IFWI = (logp(w|θ)− logp(w))λc− logp(dobs|d̂syn).
(8)

Fifth, we use a gradient based method to update the weights:
θt = θt−1−α

∂φ(θ)IFWI
∂θt−1

, where the t is the iteration time, and
∂φ(θ)

∂θ
is the partial derivative of the loss with respect to the pa-

rameter θ . λc is the value that controls the contribution of the
(logp(w|θ)− logp(w)) term in the loss function. α is the step
length for the gradient based optimization method. The gradi-
ent calculations are performed with an automatic differential
method (autodiff).

NUMERICAL TESTS

MLP IFWI numerical test

In this section, we will use the IFWI to perform the elastic full
waveform inversion. The 2D Vp model is obtained through the
3D Overthrust model, and the Vs and density models are cal-
culated through scaling the true Vp model. The size of elastic
models is 100× 125, and we use dx = dz = 20m as the grad
length of the model. The source wavelet is Ricker’s directional
wavelet with a main frequency of 15Hz. The maximum receiv-
ing time is 2.6 seconds, with dt = 0.002sec. To calculale the
synthetic training data we use a staggered grid stress velocity
finite difference method with 10 cells-width PML boundaries.
The maximum number of iterations is set to 2000.

Figure 2: True models. (a) True Vp models. (b)True Vs model.
(c) True density ρ model. The green triangles are the receiver
positions. The green lines are the well log positions.

Figure 2 (a) shows the acquisition geometries that we use in
this study. In these tests, we locate shots on the surface and
the well logs, and the receivers are located on the surface of
the model. As mentioned above, the MLP network needs the
well log information for scaling the output of the network. The
well log positions are also illustrated in Figure 2 (a). Figure 3
shows inversion results using well log 1. The subfigures in
Figure 3 from left to right, in columns, are the inversion re-
sults at 1, 100, 300, 500, and 2000 iterations, and from top to
bottom, in rows, are Vp, Vs, and density. We can see that after
300 iterations, the network could generate the general back-
ground of the model. After 500 iterations, we can see some
geological-meaningful structures at 1km depth in the results.
After 1000 iterations, more details are added to the velocity
models. After 2000 iterations, the structure of the deeper part
of the model has been recovered. We can see that in IFWI we
can recover the general structure of the investigation area with
only one well log information with the absence of an explicit
initial model.

BNN IFWI numerical test
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Figure 3: Elastic IFW inversion results using well log 1. Figure
(a)-(e) shows the inversion results of the Vp model at 1, 100,
300, 500, 1000 and 2000 epochs. The second and the third row
shows the inversion results for Vs and density.

Figure 4: Vertical profile of the IFWI for Vp, Vs and density at
1, 100, 500, 1000, and 2000 iterations.

In this section, we will use the Bayesian neural network to
generate velocity models. The size of the model we use in
this test is 100×130 and the grid length we use in this test is
dx = dz = 20m. The main frequency of the source wavelet is
10Hz, and the maximum receiving time is 3s. The inversion
takes 1000 iterations.

Figure 5: BNN elastic IFWI Overthrust model Vp, Vs and ρ

prediction results. The first row is the prediction for Vp. The
second row are the predictions for Vs. The third row are the
predictions for ρ at different iterations of training.

Figure 5 shows the prediction of the BNN at 10, 50, 100, 500
iterations. In Figure 5, from top to bottom in rows are the
Vp, Vs, and ρ predictions respectively. From left to right in
columns, in Figure 5 are the true, and BNN IFWI prediction
results at 1, 10, 50, 100, 500 iterations. We can also clearly see
how the BNN IFWI can correctly recover the velocity models
progressively. The final output of the network aligns well with
the true models.

Figure 6: Overthrust model Vertical profile of the BNN elastic
IFWI for Vp, Vs and density.

In the BNN, the weights are regarded as probability distribu-
tions functions. The models in Figure 5 are just one realization
of the models generated with BNN, but different velocity mod-
els will be generated for each forward calculation. We produce
100 forward predictions using the trained BNN and then per-
form the statistic analysis of the results to obtain the mean and
the standard deviation of the model. The prediction results for
the BNN IFWI are plotted in Figure 6: from left to right, we
see the predictions for Vp, Vs and ρ located at 100m of the
models. We plot the mean and the 95% confidence for the
prediction results, which gives the uncertainty analysis of FWI
results, demonstrating that the BNN IFWI could give uncer-
tainty analysis for prediction results.

CONCLUSIONS

In this study, we introduce the MLP based IFWI to perform
inversion without using an explicit initial model for mitigat-
ing the initial mode-dependent problem for FWI. We also in-
troduce the BNN based IFWI to give the uncertainty analy-
sis for FWI. IFWI consists of two parts. The first part is a
coordinated-based network, and the second part is an RNN
based neural network forward modeling method. The first part
of the network takes the coordinate information as the input
and predict the velocity models. In the second part, the ve-
locity models are sending into the RNN for obtaining the syn-
thetic data. The weights in network are updated according the
the residual between the synthetic data and observed data. For
MLP based IFWI, the weights are fixed values. In BNN IFWI,
the weights are regarded as probability distribution functions.
The numerical tests demonstrate how the velocity model gen-
erated with the MLP based IFWI evolves through iterations.
The predictions results of the MLP based IFW align well with
the true models. We also show that the BNN based IFWI could
give the uncertainty analysis for the prediction results.
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