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SUMMARY

Carbon capture and storage is a viable greenhouse gas miti-
gation technology. Monitoring of CO2 should, in addition to
locating the plume, provide quantitative information on CO2
saturation. We propose a full waveform inversion (FWI) al-
gorithm for the prediction of the spatial distribution of CO2
saturation from time-lapse seismic data. The methodology
is based on the application of a rock-physics parameterized
FWI scheme that allows for direct updating of reservoir prop-
erties. We derive porosity and lithology parameters from base-
line data and use them as input to predict CO2 saturation from
monitor data. The method is tested on synthetic time-lapse
data generated for the Johansen formation model. We show
that both the errors in baseline model estimates and the errors
in monitor data could compromise the recovered CO2 satura-
tion model. We propose to use the Tikhonov regularization
that encourages solution smoothness to help the convergence
towards geologically realistic models.

INTRODUCTION

An important technology supporting reduction of greenhouse
gas emissions is the geological storage of carbon dioxide, or
CO2 (Davis et al., 2019; Ringrose, 2020); for instance, deep
saline aquifers have been identified as promising sites for CO2
storage. A critical enabler for CO2 will be reliable and low-
cost monitoring of injection and storage in the subsurface. Time-
lapse seismic surveys provide a monitoring mode in which mi-
gration and distribution of the injected CO2 can be tracked,
and leakage problems if any can be identified (Ghosh et al.,
2015). Ideally, for reliable conformance verification, quantita-
tive estimates/maps of CO2 saturation would be produced by
such technology, to be compared against reservoir modeling
predictions (Dupuy et al., 2021).

Qualitative interpretation of CO2 from analysis of amplitude
changes and time shifts on post-stack seismic images is gen-
erally insufficient to understand detailed reservoir conditions
(Alemie, 2017). Moreover, multiple reflections, interference
effects such as tuning, and attenuation introduce ambiguities
into seismic images which impede estimation of CO2 posi-
tion (Queißer and Singh, 2013b). A promising approach to
address these issues involves seismic full waveform inversion
(FWI), a set of methods with the capacity to produce high-
resolution subsurface models (Tarantola, 1986; Brossier et al.,
2009; Virieux and Operto, 2009). FWI, although more com-
putationally intensive, in principle accounts for all of these
wave propagation effects, and high resolution elastic parame-

ter models derived from FWI can be directly linked to reservoir
properties. FWI therefore appears to be a potentially powerful
tool for quantitative CO2 characterization and monitoring.

In CO2 applications, rock properties are typically extracted se-
quentially, with the seismic inversion process geared towards
determination of elastic properties, from which the actual prop-
erties of interest are subsequently determined, often qualita-
tively (Johnston, 2013; Zhang et al., 2013; Asnaashari et al.,
2015). Queißer and Singh (2013a) applied elastic FWI to the
Sleipner time-lapse seismic data, and correlated velocity changes
with CO2 saturation changes using the Gassmann’s equations;
also at Sleipner, Dupuy et al. (2021) combined acoustic FWI
and rock physics inversion to estimate rock frame properties
from baseline data and CO2 saturation from monitor data. How-
ever, reports of quantitative, waveform-based CO2 saturation
predictions are uncommon.

The sequential approach itself is neither a necessary, nor al-
ways optimal, strategy. The estimation of reservoir proper-
ties directly from the seismic data (as opposed to serially, after
elastic parameters are first estimated) has several advantages,
the main one being that it involves an integrated wave propa-
gation and rock physics formulation, maintaining consistency
between elastic and reservoir properties (Doyen, 2007; Bosch
et al., 2010). Inversions of this type can be found in seismic
amplitude variation with offset (AVO) settings (Spikes et al.,
2007; Grude et al., 2013; Grana et al., 2020), but only very re-
cently have FWI formulations in this mode been examined. Hu
et al. (2021) formulated a direct procedure for updating rock
and fluid properties within elastic FWI. This was achieved by
re-parameterizing the inversion in terms of rock physics prop-
erties, adopting a viewpoint similar to that of Russell et al.
(2011) within an AVO environment. Hu and Innanen (2021)
extended the approach to incorporate prior model information.

We have applied the method of Hu et al. (2021) to the problem
of CO2 saturation prediction from time-lapse seismic data. To
set out the results of these tests, we first review the rock physics
FWI framework within which direct rock property updates are
calculated. We then systematically examine the response of
the inversion to synthetic time-lapse data generated from the
Johansen model from offshore Norway (Grana et al., 2020).
Specifically, we recover porosity and clay content from the
baseline seismic data, and then use these results as input in
the monitor seismic survey, producing estimates of CO2 satu-
ration. The reliability of the approach is quantified by exam-
ining how errors in baseline model estimates and the errors in
monitor data affect CO2 saturation reconstructions. We end by
discussing inversion strategies to improve the saturation pre-
dictions.
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METHODOLOGY

Elastic FWI with rock-physics parameterizations

The FWI algorithm we apply is an outgrowth of that set out by
Hu and Innanen (2021), which in turn is based on the frequency-
domain inversion formulation of Keating and Innanen (2020).
We consider isotropic elasticity and a 2D medium. In the fre-
quency domain, the elastic wave equations can be discretized
using the finite difference equations, which take the form

Au = f, (1)

where the coefficients of the impedance matrix A depend on
the frequency and the medium properties, u is the displacement
vector and f is the body force vector. The coefficients within
A are determined by iteratively minimizing the differences be-
tween seismic observations dobs, and simulation of data dsyn
within model m. The objective function to be minimized is

E(m) =
1
2

∆dt
∆d∗, (2)

where ∆d = dobs−dsyn contain the data residuals, and the su-
perscripts t and ∗ denote the transpose and the complex con-
jugate, respectively. The gradient of E with respect to the ith
model variable mi is

∇mi E = ℜ

{
ut
(
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∂mi

)t
(A−1)t

∆d∗
}
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where ℜ takes the real part of its argument. Within a Newton
optimization, the search direction δm for model update is the
solution of

H δm =−∇mE, (4)

where H is the Hessian operator. We employ a truncated Gauss
Newton method (Métivier et al., 2017), in which equation (4)
is solved iteratively, involving only Hessian-vector products.

Let m = [m1,m2,m3] represent a reference FWI parameteriza-
tion which is based on three elastic parameters (e.g., the P- and
S-wave velocities plus density) and r = [r1,r2, ...,rn] repre-
sent a desired FWI parameterization based on n different rock
physics properties, we can express the elastic variables at the
ith spatial position as a function of the rock physics variables
at the same position: (m1
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2
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3
i ) = g(r1

i ,r
2
i , ...,r

n
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is the rock physics model. From equation (3), we observe that
the elastic variables are altered at each iteration by an update
proportional to ∂A/mi. To transform to the new parameteriza-
tion r, we compute the chain rule
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for each of j = (1,2, ...,n). Given a conventional FWI scheme
set up to update variables m, within which the partial deriva-
tives of A are known, and given the rock physics model g, so
that the partial derivatives of m with respect to r can be de-
rived, through equation (5) we can move to a new scheme in
which the r are updated.

We examine a classic rock physics model: the stiff-sand model,
which is widely applied to sand and shale formations (Spikes

et al., 2007; Grana, 2016; Wawrzyniak-Guz, 2019). We as-
sume two mineral components, quartz and clay, and two fluid
components, water and CO2. Hence, we define three model
unknowns: porosity (φ ), clay content (C), and CO2 saturation
(Sc). The partial derivatives of velocities and density with re-
spect to r = [φ ,C,Sc] can be calculated numerically.

Time-lapse FWI

CO2 monitoring requires accurate and precise predictions of
the CO2 saturation model at any time at which the data are
measured. Although it is possible to jointly invert the three
variables from a single seismic survey, preliminary tests showed
that fluid saturation is very difficult to estimate within this pa-
rameterization. Here we make two assumptions: 1) before
CO2 injection, there is only one fluid component (water) in
the subsurface; 2) φ and C are constant in time. Therefore,
we propose to estimate the three variables sequentially: First,
we apply the rock physics FWI approach to estimate φ and C
from baseline (pre-injection) data; then, we use the same in-
verse method and use the recovered baseline model as input to
estimate Sc from monitor (post-injection) data. The objective
function for baseline model reconstruction is expressed as

Eb =
∥∥dobs b(φ

t ,Ct)−dsyn b(φ ,C)
∥∥2

, (6)

where dobs b and dsyn b denote the observed and synthetic base-
line data, respectively. φ t and Ct denote the true porosity and
clay content models. The objective function for monitor model
reconstruction is

Em =
∥∥dobs m(φ

t ,Ct ,St
c m)−dsyn m(φinv,Cinv,Sc m)

∥∥2
, (7)

where dobs m and dsyn m are the observed and synthetic mon-
itor data, respectively. φinv and Cinv are the inverted porosity
and clay content models from the baseline survey. Sc m is the
CO2 saturation model to estiamte.

NUMERICAL EXAMPLES

We apply the proposed approach to a CO2 sequestration study
based on the Johansen formation model. Physical properties
including porosity and permeability of this model are avail-
able (Eigestad et al., 2009; Bergmo et al., 2011). The original
geo-cellular model is discretized in 100 × 100 × 5 cells, how-
ever, we consider 100 × 5 cells defined on an irregular gird in
the vertical direction (Figure 1a). The initial water saturation
(before injection) is equal to 1 everywhere. The CO2 satura-
tion distribution in Figure 1b is calculated by simulating the
fluid flow in year 110 (Grana et al., 2020).

We make several changes to the model in Figure 1. First, we
define a regular grid and interpolate the scattered data over the
grid; second, we modify the coordinates using relative depth
and position. Moreover, we introduce a clay volume with neg-
ative linear correlation with porosity. The reservoir models
in Figures 2a, 2b, and 3a are then generated to examine the
proposed method. In the numerical experiments, the data are
computed with the same algorithm for observed and synthetic
data in inversion. We use an acquisition geometry with re-
ceivers mimicking a simultaneous surface seismic and vertical
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seismic profile configuration: a line of sources at the top of the
model illuminates receivers on the top and sides of the model.
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Figure 1: True reservoir model of the Johansen formation: (a)
Porosity. (b) CO2 saturation distribution in year 110.

Baseline model reconstruction

For the initial porosity model, we filter the true model of P-
wave velocity and apply a linear regression for porosity. The
low frequency model of velocity is often related to models used
for seismic processing, for example stacking velocities. The
initial clay model is computed from porosity based on the ex-
act relationship between them. The signal-to-noise ratio (SNR)
of the data is assumed to be 10. We adopt the regularization
strategy of Hu and Innanen (2021) to enforce explicit physical
relationships between the updated variables. The recovered
porosity and clay content models are resonably accurate (Fig-
ure 2e and 2f).
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Figure 2: (a,b) True, (c,d) initial, and inverted (e,f) models of
porosity and clay content.

Monitor model reconstruction

In the monitor survey, the observed data is generated from the
true porosity, clay content, and CO2 saturation models; the

synthetic data is generated from the porosity and clay mod-
els estimated from the basline survey plus the current estimate
of CO2 saturation. For the intial guess of the CO2 saturation
distribution, we assume that the plume had migrated 20 traces
to the left and 20 traces to the right, within the reservoir, at the
time the monitor data were acquired (Figure 3b).
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Figure 3: (a) True and (b) initial CO2 saturation models. The
white dashed line denotes the location of the injection well.
The blue dashed line denotes the reservoir boundary.

We first carry out noise-free tests to examine the impact of
baseline model estimates. Three cases are considered: the
baseline model is poorly, properly, and perfectly resolved. For
this, we use the initial model in Figure 2c and 2d, the inverted
model in Figure 2e and 2f, and the true model in Figure 2a and
2b, respectively, as input. The results are plotted in Figure 4.
For the case of poor baseline model, we can clearly observe the
effect known as parameter crosstalk, i.e., errors in the baseline
model are mapped to the updates of CO2 saturation (Figure
4a). With proper baseline model, the saturation model is re-
covered to some extent, with the shape of the plume slightly
distorted and the parameter values slightly overestimated (Fig-
ure 4b). These can be interpretated as a consequence of erro-
neous baseline model input, if using the case of perfect base-
line model as a reference (Figure 4c).

Next we repeat the experiment in Figure 4b to examine ran-
dom noise effects. We add white Gaussian noise to the data
considering three noise levels: signal-to-noise ratio are 20, 10,
and 5. Compared to the noise-free case, the recovered models
are contaminated by artifacts more seriously (Figure 5a-5c). In
the cases with moderate and strong noise (SNR=10 and 5), the
plume behavior is undesirable, with CO2 patchily distributed
over large areas.

The results suggest that CO2 saturation is very sensitive to data
errors. This likely originates from the small impact of CO2
saturation on elastic parameters. To stabilize the inversion,
we consider the first-order Tikhonov regularization, which is
based on the assumption that neighboring points in the model
should be close in value, leading to smooth solutions (Tikhonov
and Arsenin, 1977). We use a fixed hyper-parameter and choose
its value such that the ratio between the model penalty and
data misfit terms is 5× 10−3 at the first iteration, following
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the strategy advocated by Asnaashari et al. (2013). We repeat
the experiments in Figure 5a-5c using the regularized scheme
and plot the results in Figure 5d-5f. Large discontinuities are
preserved while small ones are pushed toward zero, leading to
estimates that match more closely the true model.
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Figure 4: Inversion test to examine the impact of baseline
model estimates on monitor model reconstruction. (a-c) The
recovered CO2 saturation models and (d-f) the corresponding
model errors.
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Figure 5: Inversion test to examine random noise effects, us-
ing the inverted baseline model (Figs 2c and d) as input. (a-c)
Recovered CO2 saturation models with a signal-to-noise ratio
of 20, 10, and 5, respectively. (d-f) Repeat (a-c) using smooth-
ness constraint.

In Figure 6, we compare the convergence properties of the so-
lutions among four experiments that we have previously car-
ried out. We use the model error e = ‖m−mt‖2/ ‖m0−mt‖2,
where m, m0, and mt represent the inverted, initial and true

models, respectively. We observe that the combined uncer-
tainty (uncertainties in baseline model and monitor data) causes
large and sustained increases in model error, especially at later
stages after the introduction of higher frequency data. Compar-
ing this to the evolution of the model error with the smoothness
constraint, the convergence characteristics of a reliable inver-
sion is retained.
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Figure 6: Model error reductions of CO2 saturation in different
experiments. Solid line: perfect baseline model and noise-free
monitor data (Figure 4c). Dotted line: proper baseline model
and noise-free monitor data (Figure 4b). Dashed line: proper
baseline model and noisy data (Figure 5b). Solid line with
markers: with smoothness constraint (Figure 5e).

CONCLUSION

We present a quantitative CO2 monitoring approach which is
based on seismic FWI. Unlike conventional FWI approaches
which aim at determination of elastic properties, the proposed
scheme allows direct prediction of rock physics properties from
seismic data. The method was validated on synthetic data gen-
erated for the Johansen formation model. The inversion results
show high prediction accuracy for baseline porosity and clay
content models but seriously harmful effects of the uncertain-
ties in baseline model and monitor data on the predicted CO2
saturation. We show that it is recommended to impose smooth-
ness on the solution to mitigate undesired discontinuities and
to obtain meaningful CO2 saturation distributions. The pro-
posed methodology was applied to a deep saline aquifer but
could be extended to depleted hydrocarbon reservoirs as well
as enhanced oil recovery and carbon capture, utilization, and
storage (CCUS) applications.
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