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Summary  
We demonstrate here a fast, stable implicit time-stepping method for numerically solving the 
wave equation in two and three dimensions that makes use of novel operator factorization in a 
grid algebra. The technique is demonstrated with a numerical examples in three dimensions, on 
computation grids of size up to several million grid points. 
  
Numerical solutions to the wave equations that arise in seismic imaging have been richly 
developed over the last 70+ years, and typically depend on explicit time-stepping or Fourier 
techniques for fast, accurate solutions. The counterpart to explicit methods are implicit methods 
which enjoy features such as unconditional stability even with large time steps. Unfortunately such 
methods are typically computationally prohibitive in two and three spatial dimensions. The grid 
algebra technique presented here reduces the complexity to level of the familiar explicit methods 
while retaining high accuracy and stability.  
 

introduction 
Finding efficient numerical methods for solving systems of differential equations that describe 
physical processes is a central challenge in scientific computation [Press 2009, Selvadurai 2000, 
Myint-U 2006]. In seismic imaging, one key step is computing numerical solutions for the wave 
equation that models seismic wave propagation through the earth’s subsurface. Several 
numerical methods for computing wave propagation involve representing the wavefield on a grid 
of nodes or cells in space and modelling its propagation using various finite difference 
approximations to the wave equation. 
 
There is considerable interest in developing implicit solutions for finite-difference methods of 
modelling wave propagation, in order to make use of the inherent advantages of implicit methods, 
such as unconditional stability and accuracy. Some early work on implicit methods for 
multidimensional PDEs goes back to [Stone 1968]; more recent developments focus on such 
things as the alternating direction implicit (ADI) schemes as seen in [Qin 2009]. A central 
challenge in the implicit method is that, somewhere along the line, a system of linear equations 
has to be solved numerically. Here, the high dimensions are a particular problem and even 
general sparse matrix methods only partially alleviate the challenge.  
 
In one dimension Claerbout demonstrated that implicit method are cheaper than other finite 
difference methods since the increased accuracy allows the use of larger time steps. However for 
space dimensions higher than one, the implicit method in standard form becomes prohibitively 
costly [Claerbout 1985]. On the plus side, often implicit methods are unconditionally stable. [Smith 
and Smither 1985]. For a finite-difference operator expressed as a sparse matrix with the non-
zero values falling on a few diagonals, standard LU decomposition ‘fills in’ a very large number of 
zeros between the diagonals [Smith and Smither 1985 ]. The same issue arises with Cholesky 
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factorization. There has long been hope for an approach that can avoid this complication: “It 
seems fortunate that the table contains many zeroes, and we are led to hope for a rapid solution 
method for the simultaneous equations." [Claerbout 1985 ] 
 
We show here that we have obtained this “rapid solution method.” The focus of our research is to 
find factorizations similar to LU decomposition of a linear system, that preserve the local structure 
of the grid. We note the underlying structure in the linear systems based on an organized grid of 
points in 2D or 3D gives additional geometric relationships between coefficients in the linear 
operator. The general sparse matrix techniques do not readily take advantage of these geometric 
relationships, so there is an opportunity to develop algorithmic efficiencies from this extra 
information. As an alternative to the sparse matrix methods, we aim to use the underlying 
geometric structure to perform “matrix operations” directly on the structured linear system to 
produce more efficient linear algebraic methods.  
 
We sometimes call such an approach the grid algebra method, as discussed in our earlier work 
[Lamoureux, Hardeman-Vooys 2016]. We have used this algebraic method to find a nearest 
neighbour factorization of the Laplacian operator in 2D and 3D (and higher) that arises in the 
acoustic wave equation, in a form suitable for the rapid computation of an implicit finite difference 
scheme for time stepping the wave equation. The result is an implicit algorithm that has 
computational complexity of order O(N), where N is the number of points in the computational 
grid. This gives a method with all the advantages of the implicit schemes, while maintaining the 
computational efficiently of explicit schemes.  
 
The derivation of the algorithm using grid algebra is contained in the MSc thesis of the second 
author [Vestrum 2021]. 

 
Method  
Implicit methods are often computationally slow because at some point, a large linear system of 
equations needs to be solved, or a large matrix inverted. For the finite difference method used to 
solve the wave equation in only 1D, the Laplacian matrix is tridiagonal, and can be factored in the 
Cholesky form FF*, where each factor is bi-diagonal and easily inverted via back substitution. This 
accounts for the rapid implicit method in 1D.  
 
In 2 dimensions, we observe that a nearest neighbour operator 𝑣 = 𝐹𝑢	of the form  
  

𝑣!" = 𝑎𝑢!" + 𝑏𝑢!#$," + 𝑐𝑢!,"#$	 + 𝑑𝑢!#$,"#$	 
 
and its adjoint operator can serve as factors for the shifted 2D Laplacian on a 9-point stencil, for 
a judicious choice of parameters 𝑎, 𝑏, 𝑐, 𝑑. The computational speed-up occurs because this 
operator can be inverted quickly by back-substitution on the grid, as we can re-arrange the 
previous equation to solve for u as: 
 

𝑢!" = (𝑣!" − 𝑏𝑢!#$,"	 − 𝑐𝑢!,"#$ − 𝑑𝑢!#$,"#$)/𝑎	 
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Taking into account a rectangular grid (different spacings in the x and y directions), the right choice 
for parameters is 

𝑎 =
01 +	21 + 4𝜖𝜆'601 +	21 + 4𝜖𝜆(6

4
 

𝑏 =
01 −	21 + 4𝜖𝜆'601 +	21 + 4𝜖𝜆(6

4
 

𝑐 =
01 +	21 + 4𝜖𝜆'601 −	21 + 4𝜖𝜆(6

4
 

𝑑 =
01 −	21 + 4𝜖𝜆'601 −	21 + 4𝜖𝜆(6

4
 

Here, the constants 𝜆' , 𝜆( relate the relative grid spacing in the x,y directions respectively, and 

𝜖 = 𝑐) *+
!

*,!
 is the CFL parameter for finite differences that appears in the shifted Laplacian 1 − 𝜖𝐿. 

 
A similar factorization occurs in 3D, also for rectangular grids (i.e. different grid spacing in different 
directions) with 8 parameters required and a 27 point stencil for the shifted Laplacian obtained. In 
both the 2D and 3D case, the order of operations is O(N) per time step, where N is the number of 
points on the computational grid. This is the same order as for the usual explicit methods.  
 

Numerical examples 
Figures 1 and 2 below show various time slices for a numerical simulation with this method, 
illustrating one or two initial Gaussian pulses propagating through a homogeneous medium.  
 
Figure 1 shows four time slices, on three different computational grids of size 151x151x151, 
151x85x151 and 151x76x151. These have the number of grid points N ranging from 1.7 to 3.5 
million, and verify that the order of numerical operations per time step is indeed O(N), just as in 
the explicit FD methods. Note that even though the grid cells are non-square in two of the grids, 
the wave continues to propagate with a uniform circular wavefront, as in the square grid case. In 
the right-most column, we do see some numerical dispersion in the last time step, which could be 
a result in a loss of accuracy as the grid spacing in the y dimension becomes large.  
 
Figure 2 shows six time slices on a non-rectangular grid of size 101x101x51 and illustrates the 
interaction between two wavefronts propagating in a homogenous medium. The polarity of the 
wavefronts and their interaction (destructive interference) at the front-intersections behave as 
expected, demonstrating some accuracy in the physics of the modelling, as expected. There is 
little evidence of dispersion, even in this non-rectangular grid.  
 
The numerical examples were computed in Python 3 in a Jupyter notebook, in a single thread, 
running on a reasonable fast Intel laptop. The code is available on the Github repository of the 
second author.  
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Figure 1. 3D Wave propagation on non-square grids, with up to 3.5 million grid points. 
 

Wave factoring

FIG. 9. 3D implicit, three grid spacings, z = 0 slice, t = 0, 100, 200, 300 msec.
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Figure 2. Two 3D Interacting wavefronts on non-square grids, with  500,000 grid points. 
 

Additive Information  
There are further developments in this method. There are formulas for factorizations on triangular 
girds, and we have developed parallel implementations that are suitable for GPU processing. We 
continue work on implementing the grid factorization for variable velocity cases, higher order 
Laplacians, and handle general boundary conditions.  
 

Lamoureux et al.

FIG. 10. 3D implicit with two sources, t = 0, 50, 100, 150, 200, 250 msec.
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