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Summary  

Uncertainty analysis is an important aspect of quantifying the results of the inversion problem. In 
this report, we compare the uncertainty analysis given by two methods for full waveform inversion. 
The first method is by using the approximation of the inverse Hessian to perform the uncertainty 
analysis, as the approximation of the inverse Hessian is closely related to the posterior model 
covariance matrix. The second method is based on a machine learning-based method, which 
uses the Bayesian neural network (BNN) to generate elastic models and then performs the 
inversion. In the BNN, each trainable weight is represented as a Gaussian distributed probability 
distribution function (pdf). When BNN is well trained, we can forward calculate the BNN several 
times and perform the statistic analysis for the prediction results and give the uncertainty analysis 
for the generated models. Our numerical results suggested that both methods can generate 
promising inversion results and reasonable uncertainty quantification when compared with the 
true model errors. 

Theory  

Full-waveform inversion (FWI) addresses the geophysical inverse problem of estimating 
subsurface model parameters from observed waveform data. In most geophysical applications, 
FWI is introduced as an iterative, local optimization problem that attempts to minimize the least-
squares residuals between observed and synthetic data. Mathematically, the inverse problem is 
ill-posed, leading to a non-uniqueness of the solutions. It remains challenging to solve inverse 
problems piratically due to limitations in data acquisition, measurement uncertainties and the non-
uniqueness of the solution (Tarantola, 1984; Lailly, 1983). 
 
Estimations of the resolution or uncertainty in seismic inversions have a long history in geophysics 
and can be analyzed with mathematical tools such as the posterior covariance matrix. The 
posterior covariance matrix is closely related to the inverse Hessian (Fichtner and Trampert, 2011; 
Zhu et al., 2016). However, for practical problems with millions of parameters, it is unfeasible to 
store such vast matrices. With least-squares QR factorization Zhang and McMechan (1995) 
modify classic inversion algorithms with least-squares QR factorization to handle large-scale 
inverse problems. The spatial resolution lengths with a Gaussian approximation to the resolution 
matrix were introduced by An (2012). Trampert et al. (2013) sample the tomographic models for 
resolution lengths with random probing and analyze the direction-dependent resolution lengths of 
waveform tomography by Fichtner and Leeuwen (2015) autocorrelating the randomly sampled 
Hessian. Rawlinson et al. (2014) also gives a detailed explanation for the uncertainty estimation 
for the seismic inversion problem.  
 
Randomized singular-value decomposition (SVD) also attracted attention to geophysi cists, Halko 
et al. (2011), with the development of matrix probing theories in applied mathematics. The 
Bayesian inference workflow for waveform tomography is formulated by Bui-Thanh et al. (2013) 
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by deriving an approximation to the posterior covariance matrix by decomposing the data-misfit 
Hessian into eigenvalues and eigenvectors with randomized SVD. Zhu et al. (2016) improve the 
efficiency of the Hessian computation by exploiting point-spread function (PSF) tests. More recent 
ensemble-based approaches have been introduced to tomography problems by Jordan (2015) 
with the utilization of the Kalman Filter (KF) theory (Kalman, 1960; Evensen, 1994). Liu and Peter 
(2019) used the Square-root variable metric-based elastic FWI to quantify the uncertainties for 
Vp and Vs. The theory part of this report is referred to the paper of Liu and Peter (2019) to provide 
a recent review of uncertainty estimations. In this abstract, we will first use the inverse Hessian 
approximation to give the uncertainty quantification for the two parameters of elastic FWI. As the 
inverse Hessian approximation in this paper is calculated by the Quasi-Newton method, which 
requires starting point given manually, we discuss how this initial guessing of the inverse Hessian 
could influence the final uncertainty quantification. Next, we briefly introduce the BNN-based 
EIFWI, which uses the BNN to generate elastic models. Uncertainty analysis can be given by 
calculating the well-trained neural network several times to perform the statistical analysis of the 
generated elastic models. Then, we will compare the uncertainty quantification given by these 
two methods. 
 

Results 
 
In this section, we will use part of the full Marmousi model as the Vp and Vs models to perform 
the inversion. The size of the model is 100 × 200. The grid length we use here is dx = dz = 20. 
The inversions are all carried out in the time domain. We assume that all the sources are well 
known, and we use Ricker’s wavelet as the source, with the main frequency 10Hz. All the sources 
and receivers are located on the model’s surface, with a shot interval of 600m and a receiver 
interval of 20m. We use the Wolfe condition to calculate the step (Nocedal and Wright, 1999).  
 
Figure 1 (a) and (b) are the true Vp, Vs models respectively. Figure 1 (c) and (d) are inversion 
results for Vp and Vs after 500 iterations after using the BFGS method. We can see that the 
inversion is successful. Most of the structures of the elastic model have been correctly updated, 
especially for the anomaly located in the center of the models. The deeper part of the model is 
less updated, and due to that, we have limited acquisition illumination. If the acquisition system is 
cross-well, which means that we have shots on one side of the model and receivers on the other 
side of the model, we could have better illumination for the deeper part of the model. Figures 1 
(e) and (f) illustrate the uncertainty analysis of the FWI for the Vp, and Vs. Figures 1 (e) and (f) 
are the standard deviation of the posterior sampling for parameter Vp, and Vs using equation 21. 
Figure 1 (g) and (h) are the absolute model errors for the Vp, Vs respectively, which is the 
difference between the true models and MAP models. Our assumption for a successful 
uncertainty quantification is that the uncertainty should match well with the absolute model error. 
From the comparison between the third and the fourth rows, we can see that the errors of the 
center anomaly align well with the standard deviation uncertainty indicating the correct 
quantification of the uncertainty for the shallower part of the elastic model. However, the model 
errors for the deeper parts of the model are poorly reflected in the standard deviation plots. This 
may be because the inverse approximation Hessian is constructed with the gradients and the 
model updates of the FWI. If the model updates and the gradients have small updates in the 
deeper part of the model, then the uncertainty quantification according to such a Hessian also 
has few information uncertainty updates for the deeper part of the model. A reasonable guess for 
the uncertainty for the deeper part of the model should be larger than the shallower part.  
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FIG. 1. FWI uncertainty analysis. (a) true Vp. (b) true Vs. (c) Vp inversion result. (d) Vs inversion 
result (e) Vp standard deviation. (f) Vs standard deviation. (e) Absolute Vp model error. (f) 
Absolute Vs model error. 

We perform the forward calculation using the well-trained BNN 1000 times and obtain a set of the 
1000 models for all the Vp, Vs, and ρ models. As the weights are drawn from the well-trained 
posterior probability distribution function, each forward calculation gives relatively different 
velocity models. Then we calculate the mean and the standard deviation of the velocity models 
to give the uncertainty analysis of these velocities generated with BNN. If the velocity model 
agrees with each other at a certain location of the model, the uncertainty for this point is low (and 
vice-versa). We will compare the standard deviation of the prediction sets for the elastic models 
with the absolute model error. If the standard deviations match well with the model error, then we 
consider that this is a valid uncertainty quantification. The third row of Figure 2 illustrates the 
standard deviation, and the last row demonstrates the absolute model uncertainty. We can see 
that the standard deviations estimated by the BNN match well with the absolute model error. We 
can see that most of the prediction errors are positioned in the center anomaly of the model and 
the deeper layers, and these model errors are all correctly reflected on the standard deviation 
plots. For instance, the largest model error for Vp in Figure 2 (g) is located below the anomaly, 
and we can also observe that the standard deviation below the anomaly is large. We can also 
clearly see more noise is presented on these model errors, especially for the deeper part of the 
model, indicating that we should have high uncertainty in these areas, indicating the successful 
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uncertainty quantification of the FWI. Both the uncertainties given by the inverse approximation 
Hessian and the BNN have the ability to characterize the inverse results for the model uncertainty 
of FWI. BNN method has a good ability to characterize overall uncertain the y of the elastic model, 
but noise can be observed in the MAP model and the uncertainty quantification model. The 
inverse Hessian approximation method is not noise-free but has some limitations on estimating 
the uncertainty of the model where it has weekly illuminated, and a modification of the initial 
guessing could help to release this issue. 

 

FIG3. FWI uncertainty analysis with given by BNN. (a) true Vp. (b) true Vs. (c) Vp BNN FWI result. 
(d) Vs BNN result (e) Vp BNN FWI standard deviation. (f) Vs BNN FWI standard deviation. (e) 
Absolute Vp model error. (f) Absolute Vs model error. 

We perform the forward calculation using the well-trained BNN 1000 times and obtain a set of the 
1000 models for all the Vp, Vs, and ρ models. As the weights are drawn from the well-trained 
posterior probability distribution function, each forward calculation gives relatively different 
velocity models. Then we calculate the mean and the standard deviation of the velocity models 
to give the uncertainty analysis of these velocities generated with BNN. If the velocity model 
agrees with each other at a certain location of the model, the uncertainty for this point is low (and 
vice-versa). We will compare the standard deviation of the prediction sets for the elastic models 
with the absolute model error. If the standard deviations match well with the model error, then we 
consider that this is a valid uncertainty quantification. The third row of Figure 3 illustrates the 
standard deviation, and the last row demonstrates the absolute model uncertainty. We can see 
that the standard deviations estimated by the BNN match well with the absolute model error. We 
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can see that most of the prediction errors are positioned in the center anomaly of the model and 
the deeper layers, and these model errors are all correctly reflected on the standard deviation 
plots. For instance, the largest model error for Vp in Figure 3 (g) is located below the anomaly, 
and we can also observe that the standard deviation below the anomaly is large. We can also 
clearly see more noise is presented on these model errors, especially for the deeper part of the 
model, indicating that we should have high uncertainty in these areas, indicating the successful 
uncertainty quantification of the FWI. 

Conclusions 

Both the uncertainties given by the inverse approximation Hessian and the BNN have the ability 
to characterize the inverse results for the model uncertainty of FWI. BNN method have good ability 
to characterize overall uncertainty of the elastic model, but noise can be observed in the MAP 
model and the uncertainty quantification model. Inverse Hessian approximation method is noise 
free, but have some limitation on estimating the uncertainty of the model where it have weekly 
illuminated, and a modification of the initial guessing could help to release this issue.  We compare 
the uncertainty analysis given by the inverse Hessian approximation method in conventional FWI 
with the uncertainty analysis given by the BNN. Both of the method have successfully captured 
the main characterization of model error, though with a difference in uncertainty patterns. In the 
uncertainty analysis, using the inverse Hessian approximation method, we improve the 
uncertainty analysis by changing the initialization of the inverse Hessian. The deeper part of the 
model has better uncertainty analysis by utilization of such a method. 
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