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Summary  

Machine Learning has given us a new way of investigating the petrophysical and seismic 
relationship with lithology, porosity and pore fluid. This poster displays our analysis of over 300 
wells with DT, Shear & RHOB logs from the North Sea, New Zealand, Australia, and Canada.  
The learning data used for this analysis is from the FORCE2020 Lithology Prediction Contest 
reworked into 18 mineral categories. As a consequence, we are better able to understand log 
relationships with mineralogy along with estimating missing sonic, shear and density logs than 
using the standard empirical relationships. 
 

Introduction 

The regression method (Faust, 1951; Faust, 1953; Gardner, Garner, & Greogory, 1974; 
Castagna, Batzle, & Eastwood, 1985) became the standard method for creating missing logs. 
These empirical relationships worked well for post-stack interpretation (Tanner & Sheriff, 1977; 
Brown, 1999) and inversion (Lindseth, 1976; Aki & Richards, 1980; Ostrander, 1984; Shuey, 
1985; Russell & Hampson, 1991; Castagna, Batzle, & Kan, 1993). The adoption of AVO analysis 
(Russell B., Hampson, Schuelke, & Quirein, 1997; Goodway, Chen, & Downton, 1997; Connolly, 
1998) during the late '90s started to emphasize several shortcomings of these basic estimations. 
Applying rock physics standards (Mavko, Mukerji, & Dvorkin, 1998; Avseth & Odegaard, 2004; 
Emery & Steward, 2006; Lee, 2006; Russell & Lines, 2013) has significantly improved geophysical 
interpretation, providing knowledge of lithology and fluid types are known before estimating 
missing velocity and density information. 
 
Machine Learning has recently become popular in petrophysics, with multiple publications 
outlining its uses in lithology prediction (Hall B. , 2016; Hall & Hall, 2017; Guarido, 2019; Emery 
D. J., Guarido, Trad, & Innanen, 2021). Regrettably, most of these solutions require complete log 
data. The primary Machine Learning difficulties consist of the ill-conditioning of well logs, uneven 
sampling, finding the correct features engineering solutions, the need to impute missing values 
and overfitting. 
 
This poster focuses on showing the petrophysical, rock physic, and AVO cross plots for common 
mineralogy, the application of these results in the estimation of mineral classes and, the potential 
match to rock lab-derived properties. 

Theory 

The more common methods for estimating Vp, Vs and RHOB are based in physics-based from 
rock lab-derived modulus (Mavko 1988; Dvorkin & Nur 1996), Vp/Vs vs Ip (Avseth & Ødegaard, 
2004; Avseth et al. 2009 & 2010) or from Lambda-Rho/Mu-Rho relationships (Goodway 1997 & 
2001, Hoffe et al. 2008). 
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Estimating Vp & Vs assuming an isotropic rock can be derived from the bulk modulus (K), shear 

modulus () and density () using: 

To estimate Vp & Vs, the first one needs to determine the mineral values for K and , and then 

estimate the variation in values with porosity. This variation with porosity generally requires 
estimating using a combination of a soft (Reuss lower) or hard (Voigt upper) estimation.  
 

Density () generally follows a Voigt averaging, while bulk (K) & shear moduli () generally lie 
between the bounds.  Various averaging technics such as Voigt-Reuss-Hill, Hashin-Shrikman, or 
Kuster-Toksoz, along with the more popular Gassmann’s formulation, have been proposed. Nur 
proposed (Mavko, 1998) a more physical basis for associating a rock’s mineralogy to its log 
properties by assuming that the bulk and shear modulus are equivalent to the mineral grains at 
extremely low porosities and the Reuss bound when the rock loses cohesion (Φc critical porosity).   
 

The isotropic formulas for deriving moduli’s from Vp, Vs and density () are: 

 

Likewise, the Poisson’s ratio can be derived using Vp and Vs by: 
 

Another rock-physics model involves cross-plotting of Vp/Vs versus Ip, which is relatively 
straightforward using petrophysical logs.  The final common cross-plot we use for evaluating Vp, 

Vs and density is the Lambda-Rho (ρ) Mu-Rho Rho (ρ) variation in lithology and fluids 

(Goodway 1997 & 2001, Hoffe et al. 2008). The formulas used for estimating Lambda-Rho () 

and Mu-Rho () are: 

 

Most of these empirical relationships, along with the rock-physics formulation, are for siliciclastic 
rocks at reservoir depths, temperatures, and pressure.  As the petrophysical logs used for the 
Machine Learning solution in this report vary from near the water bottom to over 5000 meters 
below the sea floor, some variation is expected. The input mineralogy is dominantly siliciclastic 
(88%), with shale making up 72% of the overall, thus providing a reasonable background trend 
that we can use to normalize data between wells and derive mineralogical relationships. Figure 
1, shows the complete dataset, the derived trends from the linear normalization, and the location 
of some of the mineralogy.    
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Figure 1: Bulk Modulus (left) and Lambda-Rho/Mu-Rho (right) cross plots of input data 

Results 

We were fortunate to be provided with a petrophysical analysis for a learning dataset of 118 wells 
(FORCE 2020) and these wells provide a framework for the estimation of mineralogy for the 
remaining wells within the dataset.  Figure 2 shows the Vp, Vs, Vp/Vs, and RHOB cross-plot 
against depth after normalization for the complete dataset.  While a logarithm relationship would 
be expected, our analysis indicated using a simpler linear estimate was more stable. While we 
believe there are potentially multiple geological reasons for not seeing the expected logarithm 
decay with depth, we believe the lack of sufficient shallow well information is the predominant 
factor. Deviation from this linear trend appears to be predominately along diagenetic variation with 
the conversion of smectite to illite and opal-A & CT to quartz being the most significant. 
 
Earlier work (Emery et al., 2021 & 2022) showed that removing this linear trend before performing 
machine learning estimation for mineralogy significantly improves results. The predominant factor 
effecting by this correlation is changes in porosity caused by compaction and the residual porosity 
changes are dominantly the results in mineralogy. Using the linear relationship works well when 
converting the petrophysical logs (figure 1) into rock physic/engineering space (bulk modulus (K), 

shear modulus (), Poisson’s ratio () ), and seismic cross-plots (Vp/Vs vs Ip, LMrho). 

 
This poster demonstrates the advantage of using machine learning as we can show more than a 
simple three mineral classes (quartz-SS, clay-SH, & limestone-LS) but a more diverse mixture of 
mineralogy. Some noteworthy observations, particularly in the modulus cross-plots, of using a 
linear estimation are an underestimation of mineral moduli and an overestimation of critical 
porosity. The LMrho (Figure 3) and Vp/Vs vs lp, agrees with the published relationship for 
mineralogy but also show the shift with burial and mineralogy mixing.   
 
Extending the results using data from offshore New Zealand, Australia and Canada shows how 
machine learning can be generalized for the estimation of mineralogy along with the estimation 
of missing acoustic logs required for AVO and Inversion analysis. Finally, the poster provides a 
comparison against the empirical relationship for Vp, Vs and density. 
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Figure 2: 100% input data plotted against depth, strong discontinuity at -1800 m is assumed to be the 
location of smectite clay conversion into illite. 

 

Figure 3: Lambda-Rho vs Mu-Rho for sandstone (upper-left), siliciclastic shales (upper-right), calc-shales 
(lower-right) and limestone (lower-left) mineralogy. The Grey line from linear Vp, Vs & RHOB fits the 100% 

data and the blue line linear fits the 100% data. 
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Conclusions 

Machine Learning analysis for mineralogy shows how we can improve over previous approaches 
using empirical relationships and extend our understanding of mineralogy and burial on the 
common cross-plots used for seismic analysis. While additional work is required, machine 
learning has helped provide new insights into the determination of mineralogy from both 
petrophysical logs and seismic. 
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