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Summary

Sparse solutions of linear systems play an essential role in seismic data processing, including de-
noising and interpolation. An additional structure called group sparsity can be used to improve the
performance of the sparse inversion. We propose a robust Orthogonal Matching Pursuit algorithm
with the Radon operators in the frequency slowness (w− p) domain to solve the strong-group spar-
sity problem, which is used to interpolate seismic data. A modified ADMM solver is used to solve
the ℓ1 − ℓ1 problem, which simultaneously makes the algorithm robust to the erratic noise. We com-
pare the performance of the same method with and without the group sparsity constraint. The result
shows that the strong group sparsity inversion performs better than the traditional sparsity inversion.
Both synthetic and real seismic data are being tested to examine the performance of the proposed
algorithm.

Introduction

Sparse representation is an important tool for signal processing, including seismic data processing.
Sparse representation means the seismic signal is sparse (the number of nonzero coefficients k is
much smaller than the total number of coefficients) in some transform domains like Radon, Fourier
and Wavelet.

On the other hand, an additional group structure can be added to the problem, often referred to
as group sparsity or group Lasso (Bach, 2008; Yuan and Lin, 2006; Nardi and Rinaldo, 2008) to
improve the accuracy of the sparse estimation. Many methods have been proposed in seismic data
processing with the idea of group sparsity. Li and Sacchi (2022) and Naghizadeh (2012) group the
coefficients into different dips in the frequency wavenumber ( f −k) domains for seismic data denoising
and interpolation. Vera Rodriguez et al. (2012) use group sparsity for microseismic data denoising.
Trad et al. (2002) use a similar idea for fast calculation of the hyperbolic Radon transform. Chen et al.
(2019) combine the group sparsity and total variation for seismic signal denoising.

One interesting goal is to develop a robust sparse solver to solve the inversion problem for seismic
data corrupted by erratic noise. For instance, Guitton and Symes (2003) replaces the ℓ2 norm with
Huber norm for the residual term to cope with the seismic data with outliers.Trickett et al. (2012) uses
a rank reduction filter to remove the erratic noise in the seismic data. More recently, Li and Sacchi
(2021) developed a sparse and robust Radon transform, estimated via Matching Pursuit, to solve the
simultaneous source separation problem. In this paper, we cooperate the robust inversion with group
sparsity to get a better sparse estimation.

Theory

A seismic signal can be represented as follows:

y = Ax+ e, (1)

Where y denotes the signal, x is the coefficients, and A is a synthesis operator or matrix which can
transfer the coefficients into the seismic signal. e represents additive noise in the signal. In this
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situation, the sparse approximation problem can be expressed as

min
x
∥x∥0 subject to ∥Ax−y∥2

2 ≤ δ , (2)

where ∥x∥0 is the ℓ0 norm, which measure the number of nonzero coefficients of x. and ∥.∥2
2 symbol-

izes the ℓ2 norm (equal to the square root of the the inner product of a vector with itself) used to fit
the residuals. This problem is a combinatorial, nondeterministic polynomial time (NP)-hard problem
for which finding an exact solution is prohibitively expensive. Generally, two groups of methods can
be used to solve the problem 2. One is the convex relaxation, replacing the ℓ0 norm with the ℓ1 norm
Chen et al. (2001). Which transfers the problem into a convex optimization problem.

x̂ = argmin
x

∥Ax−y∥2
2 +λ∥x∥1. (3)

Which is also known as Lasso (Tibshirani, 1996), and can be solved by many methods like FISTA
(Beck and Teboulle, 2009), IRLS (Scales and Gersztenkorn, 1988) and ADMM boyd2011distributed.
Another approach is the greedy method like Matching Pursuit (MP) (Mallat and Zhang, 1993) and
Orthogonal Matching Pursuit (OMP) (Tropp and Gilbert, 2007; Pati et al., 1993).

In some cases, adding a group structure constraint can yield a better estimation (Majumdar and
Ward, 2009; Elhamifar and Vidal, 2011). Unlike the standard sparsity assumption, the sparsity is
measured by the number of nonzero coefficients k. A group-sparse vector can be divided into groups
so that few groups contain nonzero coefficients, but the groups do not need to be sparse.

x̂ = argmin
x

∥Ax−y∥2
2 +β

N

∑
i=1

∥x[i]∥2. (4)

A further refinement, called strong group sparsity, can be made to improve performance (Vincent and
Hansen, 2014; Simon et al., 2013). For the strong sparsity problem, the coefficients are not only
located within a few groups, but the nonzero groups are also sparse.

x̂ = argmin
x

∥Ax−y∥2
2 +λ∥x∥1 +β

N

∑
i=1

∥x[i]∥2. (5)

When the erratic noise corrupts the data, we can use M-estimators like Gaussian−norm,Huber−norm
or ℓ1 − norm to replace the ℓ2 − norm for the error term. For our case, we will use the ℓ1 − norm to
replace the ℓ2 −norm. Then the problem changes to

x̂ = argmin
x

∥Ax−y∥1
1 +λ∥x∥1 +β

N

∑
i=1

∥x[i]∥2. (6)

To solve the problem 6, we use the linear Radon transform to synthesize the seismic signal. And we
use the orthogonal matching pursuit with the ℓ1 − ℓ1 ADMM solver (Wen et al., 2016) to estimate the
sparse Radon coefficients.

By using the linear Radon operators in the f − p domain, the problem becomes to minimize the
following cost function.

argmin∥L ∗m−d∥1 +λ∥m∥1 +β

N

∑
i=1

∥m[i]∥2. (7)

where L∗ is the forward Radon operator, which transfers the Radon coefficients in the f − p domain
to the t − x domain. m is the Radon coefficients in the f − p domain. The ∥L ∗m−d∥1 make the cost
function robust to the erratic noise. β ∑

N
i=1 ∥m[i]∥2 is use to promote the group sparsity, and λ∥m∥1

can enhance the sparsity within the groups. To solve this problem, we can use the greedy method; in
our case, we use the orthogonal Matching Pursuit (OMP)(Tropp and Gilbert, 2007; Pati et al., 1993).
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To solve the minimization problem 7, we need to modify the OMP algorithm. Instead of picking one
coefficient each time, we pick a group of coefficients for the basis function selection part. We divide
our coefficients into different groups based on the slowness p. Then we pick the group which has the
maximum ℓ2 norm. And then, we utilize all the coefficients located with all currently pick slowness pT k

by minimizing the following cost function

m̂k
T k = argmin

m̃T k

∥d−L T
n (m̃T k)∥1 +λ∥m∥1. (8)

This ℓ1−ℓ1 minimization problem can be solved by the ℓ1−ℓ1 ADMM solver (Yang and Zhang, 2011;
Wen et al., 2016).

Example

Figure 1 (a) represents a simple 2D synthetic example with three linear events. Part (b) is the shot
gather after we removed 75% of the traces randomly and added the erratic noise manually. Figure 2

Figure 1: Reconstructed result in the t − x domain. (a) Clean data. (b) Synthetic data with erratic
noise and 75% of traces missed.

shows the denoised results of the same method with different constraints. As expected, the ℓ2 − ℓ1
inversion, which is not robust to the erratic noise, has the worst performance. The ℓ1 − ℓ1 inversion
performs better than the ℓ2−ℓ1. Since the data includes a lot of erratic noise with many missed traces,
the ℓ1 −ℓ1 inversion method still has much noise. Part (c) is the ℓ2 −ℓ1 with group sparsity. As we can
see, even with the ℓ2 − ℓ1 inversion, the performance is better than using the ℓ1 − ℓ1 inversion without
group sparsity. And finally, part (g) is the denoised result with ℓ1 − ℓ1 inversion and group sparsity,
which has the best performance.

We also test the proposed algorithm with a 3D data patch from the Western Canadian Basin survey.
This example shows a single window extracted from a prestack volume. The 3D patch includes 301-
time samples and 30 x 30 midpoints extracted from a constant x- and y- offset volume. The prestack
volum was NMO corrected to limit the number of dips. We also apply a low-pass filter with a frequency
cutoff of 70Hz to avoid interpolating high-frequency noise. Then we applied the proposed method to
interpolate this single patch. For this example, we use the 3D Radon operators and compare the
interpolation result with another conventional multidimensional interpolation method. In our case, we
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Figure 2: Reconstructed result in the t −x domain. (a) ℓ2 − ℓ1 without group sparsity, snr=2.35 dB. (b)
Errors between a and clean data. (c) ℓ2−ℓ1 with group sparsity, snr=6.9 dB. (d) Errors between c and
clean data. (e) ℓ1 − ℓ1 without group sparsity, snr=5.22 dB. (f) Errors between e and clean data. (g)
ℓ1 − ℓ1 with group sparsity, snr=14.3 dB. (h) Errors between g and clean data.

compare it with the POCS (Abma and Kabir, 2006). Figure 3 presents the final results. Figure 3
(a) shows six slides of the 3D patch. The original data has many missing traces with large gaps.
It also includes significant noise of unknown distribution and some bad traces; both can be treated
as erratic noise. Figure 3 (b) presents the results after POCS reconstruction. This result shows that
when too many traces are missing, the gaps between the traces become too large and the algorithm’s
output deteriorates. And also, POCS can not remove the erratic noise at the same time. Figure 3 (c)
shows the reconstruction result using the proposed robust method. The reconstruction result of the
proposed robust strong group sparse method shows significant improvement compared to POCS.
Conclusion
We proposed a robust group sparse inversion algorithm which can provide a better sparse estimation
and be robust to the erratic noise simultaneously. The core of the proposed method is based on
the orthogonal Matching Pursuit. We divide the Radon coefficients in the f − p domain into different
slowness groups. In each iteration, the algorithm selected the group with the maximum norm. And
then, the Radon coefficients located within all currently selected groups are directly fitting to the
seismic data in the t − x domain. The coefficient optimization part is solved by the modified ℓ1 − ℓ1
ADMM solver, which makes the algorithm robust to the erratic noise. The tests on both 2D and 3D
synthetic examples prove the effectiveness and robustness of the proposed method. Furthermore,
compared with the traditional MP and OMP algorithm, the proposed algorithm can save the total costs
a lot since it selects one group with multiple coefficients instead of picking just one best-correlated
coefficient like MP and OMP.
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Figure 3: (a) Six slides of a 3D cube real data. (b) POCS interpolation. (c) Robust strong group
sparsity interpolation
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