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SUMMARY

We want to show a framework to solve geophysical inversion
problems using a gated based quantum computer. The resul-
tant quantum algorithm belongs to the quantum search algo-
rithm class where the query is a forward modelling calculation,
and we look for the minimum residual. This quantum algo-
rithm can find the global minimum in O(

√
N) queries where

N is the number of models. This algorithm does not need
gradient or Hessian calculations, only forward modelling, and
residuals calculation. We illustrate the algorithm with a small
instance of a traveltime tomography problem.

INTRODUCTION

In 1981 quantum computation was proposed by Richard Feyn-
man to simulate quantum systems (Preskill, 2021). Later, in
1985, David Deutsch extended the notion of quantum com-
puter to problems not related to quantum physics (Deutsch and
Penrose, 1985).

Several applications appeared in the following decade showing
that quantum computing is more powerful than classical com-
puting. For example, an exponential speedup was found in the
period finding problem (Simon, 1994) that inspired the Shor
algorithm for factoring large numbers (Shor, 1997) that threat-
ens cryptological systems. The quantum searching algorithm
that inspires the algorithm proposed in this report is also from
that decade (Grover, 1997) and its speedup is quadratic.

Some applications of quantum computing to geophysical prob-
lems have been proposed in the last 10 years. Most of them use
a less powerful technique called quantum annealing (de Falco
and Tamascelli, 2011). Only in the last couple of years general
quantum computing algorithms have been proposed in geo-
physical problems. Alulaiw and Sen (2015) find that quantum
annealing is faster than the simulated annealing and does not
get trapped in local minima when performing seismic prestack
inversion. Moradi et al. (2018) present the different quan-
tum computing concepts necessary for wave modelling appli-
cations in geophysics.

Sarkar and Levin (2018) use quantum annealing to estimate the
rock material percentages with traveltime information. Greer
and O’Malley (2020) introduce a quantum annealing algorithm
to solve constrained optimization problems and applies it to
invert the subsurface P-wave velocity. van der Linde (2021)
solves the residual statics problem using quantum annealing
and quantum-classic hybrid solvers. In Souza et al. (2022) the
velocities of a layered model are inverted using quantum an-
nealing techniques. Albino et al. (2022) solve the same prob-
lem with variational quantum algorithm.

This expanded abstract is structured as follows. First we de-

scribe the classical algorithm for geophysical inversion that
calls the main quantum circuit. Then we show an instance of
this quantum circuit tailored for traveltime tomography and a
small example. At the end we discuss the results and present
some conclusions. It is challenging to introduce the basic quan-
tum computing theory in an expanded abstract, so we will
mention the important aspects and give references. A very
good introductory book is Johnston (2019).

METHODS

Quantum computers work with quantum bits instead of bits
like classical computers. The main difference is that a bit can
be in two mutually exclusive states, 0 or 1, while a qubit can
be in a combination of states |0〉 and |1〉, pronounced “ket”.
This superposition extends exponentially the number of states
a set of qubits can be in. For example, 8 bits can be in only
one of 256 states while 8 qubits can be in the 256 states simul-
taneously. The idea is to use qubits for the model we want to
invert and perform all the calculations in parallel.

A superposition of |0〉 and |1〉 means a linear combination
α |0〉+ β |1〉 where α and β are complex numbers such that
|α|2 + |β |2 = 1. This last condition of the scalars α and β is
related to the act of measuring, or reading in computer par-
lance, a qubit. Sets of qubits can be grouped and interpreted
as number in the same way bits are grouped to for integers and
floating point numbers (Johnston, 2019).

In quantum computation the work is done by quantum gates
that operate on single or multiple qubits. It is possible to per-
form multiplications, summations, and other arithmetic oper-
ations with them. More importantly, they operate simultane-
ously in all the states of a set of quantum qubits. With them
it is possible to perform forward modelling and residuals cal-
culation in a superposition of velocity models in a quantum
parallel way.

An example gate is the negation or X-gate that interchanges
|0〉 with |1〉:

α |0〉+β |1〉 X α |1〉+β |0〉

More gates and the implementation of arithmetic circuits with
them can be found in Johnston (2019) and Vedral et al. (1996).

The next step is to look for the minimum of the residual’s su-
perposition using a quantum search algorithm. A limitation of
quantum computing is that after the calculations in superposi-
tion are performed, only one of the answers can be measured,
randomly. To overcome this limitation, it is possible to in-
crease the probability of the answer we are looking for. The
Grover’s quantum searching algorithm is a way to increase the
probability of the model with the minimum residual, so it can
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be measured at the end. This circuit, also called mirror, can be
found in Johnston (2019).

The main algorithm runs in a classical computer but calls the
main quantum circuit.This algorithm is based in the quantum
minimum search algorithm of Durr and Hoyer (1999) that uses
the general searching algorithms of Boyer et al. (1998). The
pseudocode is shown Algorithm 1.

Algorithm 1: Main optimization algorithm. It runs clas-
sically in a conventional computer but calls the quantum
function quantum circuit that performs the quantum
optimization stage.
Data: Initial model v0, parameters d and measured data t.
Result: Global minimum v.
v← v0
r← classical misfit(v)
outter steps← 0
while outter steps < max steps(N) do

n← 1,λ ← 8/7, inner steps← 0
while inner steps < max iter(N) do

j← buniform(0,n)c
inner steps← inner steps+ j
outter steps← outter steps+ j
// This is the only quantum call

v′← quantum circuit( j,d,t,r)
r′← classical misfit(v′)
if r′ < r then break
else n← min(λn,

√
N)

if r′ < r then r← r′,v← v′

return v

The inputs are an initial model v0, modelling parameters d and
the measured data t. The first part consists in calculating, clas-
sically, the misfit of the initial model that will be used as the
initial reference misfit r. The rest of the algorithm is composed
of two nested loops. The external one runs for a number of it-
erations that is function of the number of possible models N.
A tight upperbound of this value was found in Durr and Hoyer
(1999):

max steps(N) = 22.5
√

N +1.4log2 N (1)

The internal loop runs for a different number of iterations that
is also a function of N. This number was estimated in Boyer
et al. (1998):

max iter(N) =
9
4

√
N (2)

The main quantum circuit is called from inside the inner loop
with a number j of basic steps. This number is chosen ran-
domly between 0 and n, with the value of n starting equal to
one at each external iteration but increasing at a rate dictated
by λ = 8/7 during each internal iteration. The number of outer
and inner steps is incremented by j.

? ∇

Figure 1: Tomography example configuration. It is composed
of a single slowness cell, a source (?) and a receiver (∇).

Apart from j, the main quantum circuit is called with the mod-
elling parameters d, the measured data t and the reference mis-
fit r. At each invocation of this quantum circuit the superpo-
sition of models is initialized again. Its output is a model v′

that might or might not have a misfit smaller than r. The al-
gorithm only knows v′ so it calculates, classically, its misfit r′.
If this misfit is less than r we exit the internal loop. If not, we
increase the maximum number of basic steps n.

When the inner loop finishes, the algorithm updates the refer-
ence misfit r and current model v if the new misfit is less than
the previous one.

Durr and Hoyer (1999) found that this strategy of increasing
gradually the number of basic steps and calling multiple times
the main quantum circuit needs less total basic steps than just
calling once at the beginning the main quantum circuit. It also
avoids the possibility of iterating too many times and missing
the maximum probability the Mirror circuit can achieve.

EXAMPLE

Now we present a step by step simulation of the main quantum
circuit configured for traveltime tomography. We use the most
simple tomography problem to keep calculations and diagrams
small. It is the problem with a single cell and a single time
measurement between source and receiver, as in Figure 1. The
ray length is 2 units and the traveltime measurement is 4 units.

Figure 3 shows part of the circuit for this problem. The part
of the circuit not shown undoes the computation of the part
shown, except the phase inversion. Line d and v have 2 qubits
each one and will be interpreted as unsigned integers. With
this number of qubits they can express 4 numbers from 0 to 3.
The other lines, t∗, tr and r∗, have 4 qubits each one and will
be interpreted as signed integers. They can express numbers
from −8 to 7.

The Table 1 shows the computation states of the circuit in Fig-
ure 3. The numbers under the column stage correspond to the
numbers at the top of the circuit. The other columns have the
contents of each qubit line in the circuit. We swapped tr and
r∗ for convenience.

By convention all qubits are |0〉 at stage 0. During stage 1
the superposition of all possible models is created in v using
Hadamard gates. For convenience we distribute, using the ten-
sor product rules, r∗ and t∗ over v in the next row, also labelled
stage 1. In stage 2 the ray length is input in d. During stage 3
the multiplication of d and v is performed in parallel and stored
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|0〉 |1〉 |2〉 |3〉
1/2

|0〉 |1〉 |2〉 |3〉
1/2

−1/2

|0〉 |1〉 |2〉 |3〉
1/2

−1/2

|0〉 |1〉 |2〉 |3〉
1

Figure 2: Mirror stage effect on the velocity models superpo-
sition in register v. At the beginning all the probabilities are
equal but the quantum circuit flips the phase of the minimum
(top row). The mirror circuit rotates the probabilities around
the mean increasing the probability of the minimum (bottom
row).

in t∗. The next stage introduces the negative of the measured
data, −4, in tr.

Stage 5 adds tr to t∗ and the following stage takes the absolute
value of t∗. At this point the residuals of every possible model
are in t∗. The stage 7 adds the residuals to the total calculated
misfit in r∗. Stages 8 to 12 undo stages 2-6, preserving the
total misfit in r∗. In stage 13 the negative of reference misfit,
−1 in this example, is entered in tr. Notice that only one term
in the superposition has r∗ smaller than the reference misfit.
The next stage adds tr to r∗. Now the term with misfit less
than the reference one is the only with a negative value.

During stage 15 the circuit flips the phase of all the terms with
negative r∗. This phase is the key because it marks the term
with the minimum. The following stages are not in the table
nor in the circuit but they undo all computation performed in
stages 2 to 14. The result is in the last row of the table. It is al-
most the same as row 1, except that the term with the minimum
has a negative phase while the other terms have a positive one.

The next step is to apply the Mirror circuit. Figure 2 shows the
effect of the Mirror circuit on the final superposition v. The
signed coefficients are 0.5 for terms |0〉, |1〉 and |3〉, while it
is −0.5 for |2〉. The coefficients mean is 0.25. After using
the mean as a rotation axis, |2〉 ends with a coefficient equal
to 1 and the other terms with 0. If we read the contents of v
right now, we will obtain |2〉, the answer to this optimization
problem.

There is no need to iterate more times due to the size of this
problem instance. Instances of this problem with bigger mod-
els will need more iterations to obtain the answer at the end.

DISCUSSION

The main attractive of using quantum computation for solving
inverse problems is using quantum superposition. With quan-
tum superposition we can calculate the residuals of a set of

geophysical models in parallel. The main drawback is that it
is not possible to read all of them but just one, depending on
the coefficients of the quantum superposition. It is necessary
to increase the probability of one term, the one corresponding
to the inversion solution, by applying the mirror or Grover’s it-
eration several times. This approach is the same used in quan-
tum searching algorithms (Grover, 1997) and requires around
O(
√

N) iterations when N models are simulated in superposi-
tion. It is still a huge advantage because it allows to explore
the model space with the same number of iterations of a single
gradient based inversion.

In addition, the actual computation done in superposition is
simpler than the classical one because there is no need to com-
pute gradients or Hessians. Only forward modelling and resid-
ual calculation are needed, and this simplifies the quantum op-
erations.

Classical computers use floating point formats to encode the
inverted models and perform the optimization. In the quan-
tum computing case, the number of available qubits, that is
scarce for the moment, constraints the range and precision of
the numbers in the quantum calculations. We used very few
qubits and a very small problem to test the concept of quantum
inversion and because simulating a quantum computer with a
classical one is computationally expensive. However, there are
reports that predict up to thousands or even millions of qubits
by the end of this decade (IBM Computing, 2021; Google,
2022). Although this refers to physical qubits and not logi-
cal qubits, the increase in the size of the applications will be
worthwhile.

The traveltime tomography with fixed raypaths required a sim-
ple forward modelling. More complex modellings, like full
wave simulations, are still a challenge due to their complexity.
In quantum computing every operation should be reversible,
because quantum systems are, and this means that more ef-
fort has to be spent in coding numerical computations in quan-
tum terms. Future quantum compilers can leverage this issue,
though.
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Figure 3: Quantum circuit for tomography. Quantum registers are d for ray lengths, v for velocities, t∗ for calculated traveltimes,
tr for measured traveltimes and test misfits, and r∗ for calculated misfits. The numbers above are for cross reference with Table 1.

Stage tr r∗ t∗ v d
0 |0〉 |0〉 |0〉 |0〉 |0〉
1 |0〉 |0〉 |0〉 1

2 |0〉+
1
2 |1〉+

1
2 |2〉+

1
2 |3〉 |0〉

1 |0〉 1
2 |000〉+ 1

2 |001〉+ 1
2 |002〉+ 1

2 |003〉 |0〉
2 |0〉 1

2 |000〉+ 1
2 |001〉+ 1

2 |002〉+ 1
2 |003〉 |2〉

3 |0〉 1
2 |000〉+ 1

2 |021〉+ 1
2 |042〉+ 1

2 |063〉 |2〉
4 |−4〉 1

2 |000〉+ 1
2 |021〉+ 1

2 |042〉+ 1
2 |063〉 |2〉

5 |−4〉 1
2 |0(−4)0〉+ 1

2 |0(−2)1〉+ 1
2 |002〉+ 1

2 |023〉 |2〉
6 |−4〉 1

2 |040〉+ 1
2 |021〉+ 1

2 |002〉+ 1
2 |023〉 |2〉

7 |−4〉 1
2 |440〉+ 1

2 |221〉+ 1
2 |002〉+ 1

2 |223〉 |2〉
8 |−4〉 1

2 |4(−4)0〉+ 1
2 |2(−2)1〉+ 1

2 |002〉+ 1
2 |223〉 |2〉

9 |−4〉 1
2 |400〉+ 1

2 |221〉+ 1
2 |042〉+ 1

2 |263〉 |2〉
10 |0〉 1

2 |400〉+ 1
2 |221〉+ 1

2 |042〉+ 1
2 |263〉 |2〉

11 |0〉 1
2 |400〉+ 1

2 |201〉+ 1
2 |002〉+ 1

2 |203〉 |2〉
12 |0〉 1

2 |400〉+ 1
2 |201〉+ 1

2 |002〉+ 1
2 |203〉 |0〉

13 |−1〉 1
2 |400〉+ 1

2 |201〉+ 1
2 |002〉+ 1

2 |203〉 |0〉
14 |−1〉 1

2 |300〉+ 1
2 |101〉+ 1

2 |(−1)02〉+ 1
2 |103〉 |0〉

15 |−1〉 1
2 |300〉+ 1

2 |101〉− 1
2 |(−1)02〉+ 1

2 |103〉 |0〉
...

End |0〉 |0〉 |0〉 1
2 |0〉+

1
2 |1〉−

1
2 |2〉+

1
2 |3〉 |0〉

Table 1: Computation states of the tomography circuit if Figure 3. The numbers in the column stage refer to the numbers on top
of that figure. Each column is the state of one of the circuit registers. For convenience some registers are gather together. The
important outcome is that the sign of the minimum, |2〉, has been flipped so the mirror circuit can increase its probability to be
measured.
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