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Summary 
It is generally understood that effective use of seismic waveform inversion for modern monitoring 
applications requires that robust quantification of uncertainties be possible. Currently, there is no 
consensus on the optimal methodology. Many candidate methods involve sampling in model 
space in the vicinity of the inverted parameters, but this can represent a dramatic increase in 
computational cost. Classical Markov Chain Monte Carlo (MCMC) methods, while widely used for 
Bayesian inference, are inefficient in this sense, particularly when dealing with high-dimensional 
parameter spaces. To mitigate this, Hamiltonian Monte Carlo (HMC) methods have been 
introduced. By simulating Hamiltonian dynamics and incorporating a Metropolis acceptance step, 
HMC avoids many of the unhelpful trials associated with the random walks in  MCMC. This 
increases the acceptance rate, enabling more efficient parameter space exploration. Additionally, 
generating many plausible model candidates amounts to exploration of the “inversion null space”, 
which can be particularly valuable in inversion problems such as full-waveform inversion (FWI) 
where the model space is complex and multidimensional. The use of HMC in practical FWI is not 
yet common, and so we use this paper to examine its basic behaviour, and flesh out some of its  
advantages in hydrocarbon recovery or CO2 storage, using simulated geological reservoir or 
plume model. Our findings are generally positive about the applicability of HMC in seismic 
inversion and monitoring, but we identify some areas in which standard drawing of candidates 
might be improved in light of this specific (waveform inversion) problem. 
 

Theory 
Hamiltonian dynamics (Hamilton, 1834) can be conceptually understood by fictitiously visualizing 
a frictionless particle moving along a 2D surface with varying heights. In this scenario, the 
system's state is described by the position of this particle 𝒒𝒒 (2D vector) and its generalized 
momentum 𝒑𝒑 (also a 2D vector). While moving, this particle's potential energy can be represented 
by 𝑈𝑈(𝒒𝒒), and its kinetic energy is given by 1

2
𝒑𝒑𝑇𝑇𝑴𝑴−1𝒑𝒑, where 𝑴𝑴 is the mass matrix of this particle. 

A generalization of this matrix is making the off-diagonal entries zeros while keeping the diagonal 
members equal to some preset values, but there are more constrained settings in some more 
complex problems (Fichtner et al., 2021). In most situations, the mass matrix is positive definite. 
When the surface is flat, the particle moves at a constant velocity equal to 𝑴𝑴−1𝒑𝒑. However, if the 
surface inclines, the momentum allows the particle to continue, resulting in decreased kinetic 
energy and increased potential energy. Eventually, when the kinetic energy reaches zero, this 
particle will slide back down the slope, increasing kinetic energy and decreasing potential energy. 
During the whole process, this particle is governed by a "gravitational" force that is parallel to 
−∇𝑈𝑈(𝒒𝒒), which is regarded as the steepest descent direction. Such mechanics can be described 
by a Hamiltonian equation 𝐻𝐻(𝒑𝒑,𝒒𝒒), such that 
 
 𝐻𝐻(𝒑𝒑,𝒒𝒒) = 𝑈𝑈(𝒒𝒒) + 𝐾𝐾(𝒑𝒑). (1) 
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The partial derivatives of the Hamiltonian determine how 𝒒𝒒 and 𝒑𝒑 change over time, 𝑡𝑡, according 
to Hamilton’s equations: 
 𝑑𝑑𝑞𝑞𝑖𝑖

𝑑𝑑𝑡𝑡
=
𝜕𝜕𝐻𝐻
𝜕𝜕𝑝𝑝𝑖𝑖

= [𝑴𝑴−1𝒑𝒑]𝑖𝑖 , 
(2) 

 𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑡𝑡

= −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑞𝑞𝑖𝑖

= −
𝜕𝜕𝑈𝑈
𝜕𝜕𝑞𝑞𝑖𝑖

, (3) 

where 𝑖𝑖 = 1, 2, … ,𝑛𝑛 denotes the index in the n-dimensional vector. 
The fundamental idea behind HMC involves sampling from an auxiliary distribution in a phase 
space with twice the original space's dimensions. The auxiliary distribution is known as the 
canonical distribution (Davey, 2009), and this extended phase space is denoted as (𝒑𝒑,𝒎𝒎), 
where 𝒑𝒑 represents momentum variables and 𝒎𝒎, which replaces 𝒒𝒒 in equation (1), represents 
the variables of interest (e.g., model parameters in inversion problems). Furthermore, artificial 
momentum variables are introduced to align with the quantity of position variables. More 
intuitively, the concept of HMC views a model 𝒎𝒎 as analogous to a particle in mechanics. This 
particle moves from its present position to a new position following a Hamiltonian trajectory 
(Brooks et al., 2011). The geometry of the trajectory is controlled by the misfit that is interpreted 
as potential energy 𝑈𝑈, as well as the kinetic energy 𝐾𝐾 and mass 𝑴𝑴 of the particle, namely the 
artificially introduced auxiliary quantities (Fichtner et al., 2018).  
In many inversion problems including FWI, a plausible assumption of the prior information is the 
Gaussian uncertainties (e.g., Tarantola, 2005; Dettmer et al, 2010; Dosso et al, 2014; Fichtner 
et al, 2021). Consequently, the posterior, namely the potential energy in HMC can be defined as 
the logarithm of the probability density linked to the inversion variables: 
 𝑈𝑈(𝒎𝒎) = −𝑙𝑙𝑙𝑙𝑙𝑙𝜌𝜌𝒎𝒎(𝒎𝒎|𝒅𝒅) =

1
2
�𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒅𝒅𝑜𝑜𝑠𝑠𝑠𝑠�

𝑇𝑇𝑪𝑪𝐷𝐷−1�𝒅𝒅𝑜𝑜𝑠𝑠𝑠𝑠 − 𝒅𝒅𝑜𝑜𝑠𝑠𝑠𝑠� +
1
2
𝒎𝒎𝑇𝑇𝑪𝑪𝑀𝑀−1𝒎𝒎, (4) 

where 𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜 and 𝒅𝒅𝑜𝑜𝑠𝑠𝑠𝑠 is the observed and synthetic (real) data; 𝑪𝑪𝐷𝐷−1 and 𝑪𝑪𝑀𝑀−1 are the inverse of 
the data and the model covariance matrices, respectively. 
By combining the components elucidated in the preceding sections, we can outline a 
fundamental workflow for implementing HMC in the context of FWI problems. Irrespective of the 
dimensionality, the subsurface structures to be estimated can be succinctly represented as a 
one-dimensional vector, constituting the model vector 𝒎𝒎. The momentum vector 𝒑𝒑 is derived 
from a multi-dimensional normal distribution with zero means and a covariance matrix 𝑴𝑴, 
expressed as 𝒩𝒩(0,𝑴𝑴). The adjoint method (Plessix, 2006) is applied to get the gradient of 𝑈𝑈 in 
equation 3. 
 

Results 

In this section, we present an acoustic FWI using HMC in the frequency domain. We artificially 
create a structure with varying P-wave velocity to be estimated (refer to Figure 1). The horizontal 
and vertical grids are chosen to be 100 and 50, respectively, with a grid interval of 20 m. 
Regarding the acquisition system, 48 seismic sources with an interval of 2 grids on the top, 96 
receivers with an interval of 1 grids on the model's surface, and 48 receivers with an interval of 1 
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grids on the model's left and right side. The synthetic data is discretized into a set of 8 frequencies, 
spanning from 1 to 15 Hz. In our inversion process, we consider the physical parameter to be 
inverted as independently and identically distributed following a Gaussian distribution. In addition, 
we assume that the data and the model covariance matrices are identity matrices. The initial 
model was stochastically generated from a uniform distribution centered at the smoothed model, 
with boundaries extending from -150 to +150 relative to the smoothed model. 30,000 samples are 
generated in this problem.  
 

 
Figure 1. P-wave velocity models for HMC-FWI. (a) – (c) true, smoothed, and the initial model. 
 
An adaptive tuning strategy is applied to enhance the stability and increase the acceptance rate. 
We implement a dynamic integration length randomly chosen from the range of 30 to 50. The 
adjustment of the time step is based on the acceptance rate within the sampling subset. If the 
acceptance rate falls below 65%, we decrease ∆𝑡𝑡 by a factor of 0.8. Conversely, when the 
acceptance rate within a subset exceeds 85%, we increase the time step by a reciprocal of 0.8.  
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Figure 2. HMC-FWI results. The white star denotes the model position at (1540, 400), the blue 
star denotes the model position at (500, 760), and the red star denotes the model position at 
(500, 240). (a) mean of the accepted models. (b) the standard deviation of the accepted models. 
(c) probability distribution of models at positions denoted by the three stars, and the dashed line 
shows the true values at these positions. 
The overall acceptance rate is approximately 78.02%, elucidating 23,407 plausible model 
candidates. The model mean depicted in Figure 2 (a) exhibits a similar structure to the true model. 
Employing the uncertainty plot presented in Figure 2 (b), we conduct a detailed analysis focusing 
on points corresponding to varying uncertainty levels representing low, moderate, and high 
uncertainties. This analysis is further elucidated by the distributions shown in Figure 2 (c). For 
positions characterized by a low standard deviation value, the P-wave velocity reveals a normal 
distribution centered around the true model value. In positions with a moderate standard deviation 
value, the model distribution manifests as a near Gaussian distribution, with a slight deviation on 
the higher-value side but still maintaining a central alignment with the true model value. However, 
positions characterized by a high standard deviation result in a multi-modal distribution, with the 
majority of models aligning with the true model value. Examining two vertical profiles intersecting 
the reference points illustrated in Figure 2 for comparison in Figure 3, it is evident that the HMC 
mean model closely approximates the true profile. 
 

 
Figure 3. Vertical profile crossing reference points in Figure 2. The blue lines are the true 
profiles, and the red lines are the profiles of the HMC mean model. (a) profile crossing x=500. 
(b) profile crossing x=1540. 
 
While this study does not explicitly conduct a well-defined inversion nullspace analysis as 
demonstrated by (Fichtner et al., 2021), HMC, as other MC variants, generates a chain 
consisting of model candidates with associated objective function values. We have set the 
tolerance to be 0.11% of the initial objective function value, as observed in the small window 
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where the objective function oscillates around a certain value in Figure 4. This tolerance 
criterion has yielded approximately 2,228 plausible models, of which 9 are displayed in Figure 5. 
 
 
 

 
Figure 4. Misfit’s log variation with iteration. 

 

 
Figure 5. 9 models in the subset with objective function’s values lower than 0.11% of the initial 
values. (a)-(i) are evenly selected models from the subset. The data misfit is shown by Φ, and 
the model misfit is shown by RMSE on top of each subplot. 
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In each subplot of Figure 5, the top section presents both objective function values and root-
mean-square errors (RMSEs) between the true model and each candidate in the inversion 
nullspace. A comparison of these values reveals a noteworthy characteristic of the inversion 
nullspace, namely, the model that results in a lower objective function value is not necessarily 
more accurate. For instance, the model in Figure 5 (b) yields a relatively larger objective 
function value compared to the model in Figure 5 (a), yet the accuracy of the former is not 
correspondingly greater. This observation contributes to a more comprehensive understanding 
of uncertainty and underscores the need to complement FWI uncertainty delineation with 
additional information. 
 

Conclusions 
This study has presented a thorough overview of HMC, elucidating its conceptual foundation, key 
components, and numerical implementation. HMC has demonstrated clear advantages over 
conventional MC methods in the context of FWI. Notably, it exhibits a higher acceptance rate, 
improved efficiency in exploring null spaces, and the potential for faster convergence. As we move 
forward, our research focus will be directed toward refining the tuning of the HMC algorithm to 
enhance its adaptability and efficacy in diverse FWI scenarios. By harnessing the full potential of 
HMC, we anticipate achieving more reliable and efficient inversion results in seismic imaging 
applications, ultimately contributing to advancements in subsurface characterization and 
exploration. 
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