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Summary 

Radon transform (RT) allows the mapping of different seismic events using different basis 
functions. By merging RT with machine learning (ML) in the same workflow, we aim to uncover 
previously unnoticed nonlinearities within these solutions, extending our insights beyond standard 
geophysical seismic processing. We employ the nonlinear capabilities of ML to discern between 
signal and noise within the RT space, even when conventional techniques like localization 
separation, amplitude mute, and their combination (“smart” mute) fall short. This approach 
becomes even more valuable in scenarios where achieving complete spatial separation is 
challenging, for example in the case of multiple or ground roll overlapping primary reflections. Our 
numerical experiments focus on assessing the efficacy of the U-Net in discerning the distinct 
characteristics of ground roll and multiples, employing various workflows. These include a bridge 
approach between Hyperbolic and Parabolic RT, aiming to complement and enhance multiple 
prediction in synthetic data. Additionally, we deploy the Hybrid RT methodology on the Spring 
Coulee data set to forecast ground roll attenuation in the frequency domain and examine 
comparisons, often referred to as crosstalk, between Linear and Parabolic RT spaces. The 
outcomes illustrate that the U-Net has a certain capability in predicting and attenuating ground 
roll. However, persisting challenges lie in completely isolating reflections from the ground roll 
which were compounded by spatial aliasing and the irregular geometry inherent in field data. 

Introduction 

Multiples, resulting from energy reflecting more than once, are distinguishable in the Radon 
Transform (RT) domain. Ground roll, another seismic noise type, has a distinctive linear shape. 
The RT provides a means to distinguish events based on their shapes in the new domain. 

Some examples of applications of RT for noise attenuation with a line boundary are the parabolic 
basis functions (Hampson, 1986), and the “smart” mute (Trad et al., 2003), and they have faced 
limitations. In a perfect scenario signal and noise are well mapped and sampled. This is not what 
happens with field data therefore the signal is extended from what would have been a point to an 
"area of information" in the RT space. These aliasing artifacts (Moore and Kostov, 2002) are the 
result of poor sampling and limited aperture in the data domain. Thus, it will not have a good RT 
panel causing an increase in the amplitude of aliased events (Marfurt et al., 1996) that fall outside 
the slowness analysis window. In this regard, the sparse RT (Thorson and Claerbout, 1985; 
Sacchi and Ulrych, 1995) addresses that problem.  

Furthermore, clustering techniques also mute by spatial localization and amplitude 
simultaneously. We could think of the clustering method as being more intelligent than the mute 
by amplitude. For example, the idea of clustering has been applied to assist velocity auto-picking  
(Smith, 2017) to reduce the time spent doing velocity analysis. However, clustering can be very 
data-dependent since it is an unsupervised technique and that is why we seek alternatives with 
more generalization power.  
Something more flexible than clustering would be deep learning, which provides a methodology 
that can help to better understand noise nonlinearity. Although in classical processing, the physics 
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of the events are taken into account, in the Machine Learning (ML) approach, the network tries to 
find patterns and predicts them based on the images used for training (supervised method). The 
idea behind this process is somewhat like clustering but leveraging the flexibility and ability to 
incorporate vast amounts of not-well-behaved data.  
 
The motivation for the present work is to tackle challenges, such as complex and overlapping 
events, in traditional seismic data processing tools while applying a deep learning technique, more 
specifically the neural network U-Net (Ronneberger et al., 2015) architecture. The emphasis is on 
introducing nonlinearity (inherent characteristic of real data) into the learning process to develop 
an intelligent, pixel-by-pixel approach, exploring label choices and crosstalk between RT panels, 
as well as the use of separate channels for various RT spaces. 

Theory 

Originally introduced by Johann Radon (1917), the RT is a mathematical tool applied to seismic 
data processing and uses different basis functions, such as linear, parabolic, and hyperbolic. 
While linear RT (LRT) and parabolic RT (PRT) are time-invariant and usually calculated in the 
frequency domain, hyperbolic RT (HRT) is time-variant and calculated in the time domain. The 
RT domain can be conveniently manipulated to separate events with different shapes in the CMP 
or shot domain due to the difference in velocity and moveout. 

The HRT (Thorson and Claerbout, 1985) is the most suitable to map seismic gathers because on 
CMP gathers the reflection events are described by hyperbolas. From a geometrical point of view, 
the HRT maps nearly hyperbolic events in the CMP gathers (offset 𝑥, time 𝑡) to points in the RT 
space by using the hyperbolic moveout equation (Yilmaz, 2001): 

𝑡 = √τ2 +
𝑥2

𝑣2,              (1) 

  
where 𝜏 is the zero-offset intercept time, 𝑣 is the stacking velocity and having the ray parameter 
𝑝 as its reciprocal (1/𝑣). Thus, the HRT can be calculated by summing the amplitudes over the 
hyperbolas. 

The LRT, also known as slant-stack (Treitel et al., 1982; Claerbout, 1985) or 𝜏 − 𝑝 domain, is 
done by applying linear moveout to the seismic gather (shot for the case of a flat layered earth 
model, CMP for other cases) and summing amplitudes over the offset 𝑥 such as: 

                                                                 𝑡 = 𝜏 + 𝑝𝑥,                                                                  (2) 
 

where 𝑝 represents the ray parameter or horizontal slowness in which 𝑝 = (sin 𝜃) /𝑣 . In this case 

𝜃 is the incident angle (between the ray being reflected and the vertical axis). 

To make the reflection events have a parabolic shape Hampson (1986) took CMP gathers and 
applied the NMO correction using the hyperbolic moveout (Equation 1) with the stacking velocity 
of the primaries to get the PRT. This will allow the summation along the parabola travel time curve 
that can be represented by: 

                                                                 𝑡 = 𝜏 + 𝑞𝑥2,                                                                  (3) 

where 𝑞 represents the ray parameter or slowness described as the reciprocal of the 𝑟𝑚𝑠 velocity, 

𝜏 is the intersection with the zero offset and 𝑡 is the time after NMO correction. The PRT in the 
velocity domain was described by Yilmaz (1989). 
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In the case of land seismic the reflections can be approximated to parabolic-shaped events after 
being sorted by CMP and NMO correction is applied. Ground roll is a geometrically linear-shaped 
event. Since these two events usually appear superimposed in the data but do not simultaneously 
focus on a basic RT then Trad (2001) and Trad et al. (2001) introduced the concept of hybrid RT. 
It is because linear and parabolic (pseudo-hyperbolic) RTs are time-invariant, therefore they are 
calculated in the frequency domain. Because they have similar parameters it is possible to put 
the two RTs side by side in similar axes.  

One of the most applied Convolutional Neural Network architectures is the U-Net (Ronneberger 
et al., 2015), mostly used for image segmentation problems. We modified that and used this 
network to perform regression to predict noise or the noise attenuated data in the RT. As 
mentioned before (Fontes et al., 2023), the U-Net architecture is characterized by its assembly of 
convolutional and pooling layers within an encoder-decoder framework. In the encoder part, the 
network uses four stages to down-sampling, progressively reducing input data dimensions while 
simultaneously increasing the number of feature maps (with the option to employ multiple 
channels). During the decoder part, the network up-samples the data using four steps while 
decreasing the number of filters. The purpose of training a neural network is to learn the weights 
and biases and use the backpropagation until the result is satisfactory for your needs, in our case, 
multiple prediction and ground roll attenuation. The choice of label has significant importance 
within this method as they contain critical information used by the network to learn how to identify 
specific features within an image. 

Workflow 

To better understand how this U-Net worked in multiple prediction and ground roll attenuation 
some tests were carried out by inputting different RT panels into the network. Because of the 
different nature of ground roll and multiples, different workflows were applied to understand how 
the ML approach proposed can help in understanding how sparseness and the non-linear 
characters of field seismic data are handled while predicting the desired events (multiples for 
future adaptive subtraction or prediction of the ground roll attenuated version). 

The first example was performed with synthetic data obtained with a convolutional model from 
simple earth velocity models, providing some control over the types of multiples. We generated: 
1) a data set with primaries and multiples together, and 2) another data set with multiples only. 
Then, these data sets are transformed into RT panels. Data set 1 serves as inputs, and the 
multiple-only panels serve as labels. These inputs and labels can be used to train the network to 
predict the boundary between primaries and multiples. Figure 1 summarizes the workflow used 
in the following numerical examples. Figure 2 shows the second example, which was done using 
the Spring Coulee data set. 

Examples and Discussion 

Bridge with Parabolic and Hyperbolic RT - prediction of multiples: 

As seen in Fontes et al. (2023), the sparse version does not necessarily provide a better prediction 
while using the ML approach. The concept of sparseness is usually directly related to the 
resolution of the result, but while using an RT model with fewer details and more pixels with 
content close to zero the U-Net seems to not learn as much. Furthermore, it is important to 
mention that the example uses synthetic data, so these effects could be even stronger since field 
data can be affected by so many other elements. Now the idea is to try to see if Hyperbolic and 
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Parabolic RT can complement each other. But since one is done in the time and the other in the 
frequency domain the two channels do not correspond pixel by pixel to each other. With the effort 
of trying to build an intermediate transformation towards enforcing sparseness and therefore 
having a higher resolution prediction some tests were done. Figure 1 illustrates the workflow for 
the Bridge test. By having the input data as multiples and primaries in the HRT, and labels as 
multiples and primaries PRT, we can predict an "intermediary2" output, which does not have 
physical meaning since the input and the label have different x-axis. This intermediary output 
bridge into being the input RT panel, and by using the PRT as a label we can predict the RT with 
multiples only and convert back to the data domain. 

Hybrid RT - predicting ground roll attenuation: 

Intending to understand whether it is possible to map different events into different RT spaces, 
Trad (2001) applied the hybrid operator for ground roll attenuation. It was shown that it is possible 
to do such mapping if the two basis functions are quite different. The LRT maps reflections and 
ground roll into ellipses and linear events in the model space, respectively. In the case of the PRT 
reflections in the data space map into approximate points in the model space. By having the two 
spaces simultaneously mapping the same data we can analyze the possibility of crosstalk in 
information from the reflection events since these are mapped both by the Linear and the 
Parabolic RT domains. It is important to remember that spatial aliasing plays a big part in this, 
especially in the case of ground roll. As well as the band-limited nature of seismic data and 
irregularity in geometry which is usually the case for field data. The Spring Coulee dataset was 
acquired by CREWES in 2008 and it contains 54 shots, using a dynamite source, with a total of 
34857 traces. The geometry of acquisition was split-spread, with around 600 receivers per shot, 
0.002 sample rate and 2001 number of samples per trace. 

There are several methods for ground roll removal in literature and this abstract does not aim to 
suggest a new method. Rather, we would like to discuss how we could apply the Hybrid RT with 
the idea of predicting, using neural networks, a model space that contains less noise. While doing 
that we will use the idea that the 2 RT spaces map different events and therefore it can work as 
three (two linear: positive and negative, and one parabolic) channels in the U-net training. Figure 
2 illustrates the workflow, in which we introduce the concept of trying to enforce sparseness in 
the model by using a label in the training that has the desired basis function (representing the 
reflections) that we would like to keep.  

Conclusions 

RT is an important tool for separating seismic events. The U-Net was able to partially predict 
multiples while using the bridge workflow using Intermediary2 and PRT as label. The choice of 
label is important for this application of U-Net. However, it is not evident if this approach 
contributes to generalization since it is not clear if it improves for the parabolic workflow. 
Furthermore, for future subtraction of the predicted multiples scaling and matching filter are 
necessary. The train with Hybrid RT split into three channels, -Linear, +Linear and Parabolic, and 
using Parabolic RT labels resulted in fair predictions of reflections. A further improvement is to 
have the solution using model weights. These weights allow the mapping of a particular event 
with a preference for one of the operators. 
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Figure 1. Bridge workflow using Hyperbolic RT as input data, Parabolic RT as input label. All of them have an input 

CMP with primaries and multiple. Then Intermediary 2 is used as new input data (primaries and multiples) and 

Parabolic RT (multiples only) is used as new input label. 
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Figure 2. Hybrid RT with a three channels workflow. Spring Coulee CMP gathers are the input data, with the ground 

roll and primaries and, the input label, with the version of the original being FK filtered to approximate a label with 

~reflections only. Then the Hybrid RT is applied to generate the hybrid panels of the input and label to feed the U-

Net. After training, the network then predicts panels with ~reflections only, attenuating the ground roll.  
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