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Summary 

Time-lapse full waveform inversion (FWI) stands to play an 

important role in energy-transition applications, particularly 

in monitoring CO2 geo-storage. Because of the nonlinearity 

of the FWI problem, the existence of various sources of 

uncertainty between the baseline and monitor surveys, and 

the likely sparseness (or at least variability) of data coverage 

in these applications, augmenting FWI with robust 

uncertainty quantification methods is of critical importance. 

Within the category of Monte Carlo sampling techniques, 

Hamiltonian (HMC) methods avoid several limitations of 

classical Markov Chain Monte Carlo (MCMC) approaches, 

by combining a simulation of Hamiltonian dynamics within 

the exploration of model space, with a Metropolis 

acceptance step. The result is a relatively affordable 

estimation of the uncertainty in models derived from time-

lapse FWI. In time-lapse applications, we argue for the use 

of posterior information deriving from the baseline inversion 

as prior information within the monitor inversion. We 

demonstrate that this integration enhances the efficiency and 

effectiveness of HMC-based FWI, which are critical features 

of low-cost CO2 monitoring. Our conclusions are based on 

simulations and a synthetic feasibility study, here focusing 

on VSP acquisition configurations.  

Introduction 

The global Carbon Capture, Utilization, and Storage 

(CCUS) sector has undergone significant expansion, as of 

2022, with a combined annual capacity exceeding millions 

of metric tons of CO2. This growth is evidenced by the 

proliferation of over 100 projects at various stages of 

development, including the Shute Creek project in the USA 

(Parker et al., 2011), the Sleipner CCUS project in Norway 

(Furre et al., 2017), and the QUEST project in Canada 

(Duong et al., 2019). An integral component of CO2 

geostorage is the assurance of containment and 

conformance, for which time-lapse seismic monitoring 

stands to play an important role (e.g., Lumley, 2001; Arts et 

al., 2004; Chadwick et al., 2010). In time-lapse seismic, 

changes in subsurface properties of interest are assessed by 

comparing models constructed from baseline and 

subsequent surveys. Driving time-lapse seismic with full 

waveform inversion (FWI) may turn out to be optimal for 

monitoring CO2  storage and injection (Nakata, 2022),

because of its inherent use of maximal amounts of data 

information and its ability in principle to provide high-

resolution subsurface images. Various schemes have been 

proposed for this purpose, including parallel FWI (Plessix et 

al., 2010), sequential FWI (Asnaashari et al., 2015), double 

difference FWI (Zhang, 2013), and joint inversion (Rittgers 

et al., 2016). However, although time-lapse FWI shows 

promise, non-repeatability between surveys due to localized 

spatial variations, differences in acquisition geometries, and 

uncertainties in observations (Kotsi, 2020), are especially 

troublesome for waveform-based methods. Adding to this 

interest in minimizing the risk of false positives or negatives 

in the identification of CO2 containment issues, the 

uncertainty quantification in this technology is important.  

Hamiltonian Monte Carlo, or HMC (Duane et al., 1987) 

methods, which are a general class of tools for uncertainty 

quantification, integrate elements from two distinct 

methodologies: (1) gradient-based optimization, which 

efficiently identifies optima but lacks comprehensive 

uncertainty information, and (2) derivative-free Markov 

Chain Monte Carlo (MCMC) methods, which may overlook 

potentially valuable derivative information. HMC facilitates 

targeted exploration of plausible regions of model space, 

efficiently sampling high-dimensional parameter spaces as 

part of complex Bayesian inference problems (Neal, 1993; 

Brooks et al., 2011). Comprehensive discussions of HMC in 

FWI can be found in Fichtner et al. (2019) and Gebraad et 

al. (2020).  

In this study, we consider the specific application of HMC 

to time-lapse seismic FWI. This problem, which involves 

both baseline and monitoring datasets, and requires 

estimation of two posterior distributions, poses an increased 

computational workload. Additionally, baseline and monitor 

surveys often have distinct acquisition geometries and other 

factors that can be conflated with variations associated with 

injection and plume evolution. Incorporating statistical 

information from the baseline inversion into the monitoring 

inversion has been suggested (Zhou and Lumley, 2021), and 

utilizing this kind of statistical information in time-lapse 

FWI using HMC has also been advocated. Kotsi (2020) 

employed a 4D-HMC algorithm and illustrated its 

performance on a simple 4D problem. De Lima et al. (2023) 

demonstrated the benefits of employing informative prior 

information in time-lapse studies by comparing the 

sequential and parallel approaches with analyzing the non-

repeatability effects associated with different source 

locations in the surveys. In this study, we conduct synthetic 

experiments within a near-parallel time-lapse scheme for 

time-lapse FWI applied to CO2 injection with a permanent 

VSP receiver array and varying surface geometries in 

baseline and monitor surveys. Additionally, we examine the 

significance of integrating the baseline posterior into the 

monitor inversion. Our findings underscore its crucial role in 
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accelerating convergence, thereby reducing computational 

load; and elucidating temporal changes in the subsurface due 

to the injection rather than other factors. 

Theory 

In the Bayesian framework, the solution of FWI problems is 

a probability density function of plausible models that 

reasonably represent the observations. Such probability den- 

sity is called the posterior distribution ρ(𝐦|𝐝). According to 

Bayes theorem: 

ρ(𝐦|𝐝) =
ρ(𝐦)ρ(𝐝|𝐦)

ρ(𝐝)
, (1) 

where ρ(𝐦)  is the model’s prior probability distribution, 

ρ(𝐝)  is the probability distribution of the observed data, 

which is often regarded a normalization factor. ρ(𝐝|𝐦) in 

equation 1 is called the likelihood function that represents 

the conditional probability of a dataset generated by a model. 

Typically, under the Gaussian assumption, the likelihood 

and the prior can be shown by (Tarantola, 2005): 

ρ(𝐝|𝐦) ∝ exp[−
1

2
(𝐝syn − 𝐝obs)

𝑇

CD
−1(𝐝syn − 𝐝obs)],

(2) 

ρ(𝐦) ∝ exp (−
1

2
𝐦TCM

−1𝐦),
(3) 

where 𝐝syn  is the synthetic data generated from a given

model with some physics rules, for example, acoustic/elastic 

wave equations. CD
−1  and CM

−1 in equations 2 and 3 is the

inverse covariance matrix of the data and the model. 

Hamiltonian Monte Carlo, nested from the Hamiltonian 

dynamics (Hamilton, 1834), can be conceptually understood 

by fictitiously visualizing a frictionless particle moving 

along a U-shaped surface with varying heights. In this 

scenario, the system’s state is described by the position of 

this particle 𝐪  and its generalized momentum 𝐩 . While 

moving, this particle’s potential energy can be represented 

by 𝑈(𝐪), and its kinetic energy is given by 𝐩T𝐌−1𝐩/2,

where 𝐌 is the mass matrix of this particle. Such mechanics 

can be described by a Hamiltonian equation 𝐻(𝐩, 𝐪): 

𝐻(𝐩, 𝐪) = 𝑈(𝐪) + 𝐾(𝐩). (4) 

The partial derivatives of the Hamiltonian determine how 𝐪 

and 𝐩 change over time 𝑡, as in Hamilton’s equations: 

𝑑𝑞𝑖
𝑑𝑡

= −
𝜕𝐻

𝜕𝑝𝑖
= [𝐌−1𝐩]𝑖 , (5) 

𝑑𝑝𝑖
𝑑𝑡

= −
𝜕𝐻

𝜕𝑞𝑖
= −

𝜕𝑈

𝜕𝑞𝑖
, 

(6) 

where 𝑖 = 1, 2, … , 𝑛 denotes the index in the n-D vector.  

The fundamental idea of HMC involves sampling from an 

auxiliary distribution in a phase space (𝐩,𝐦) with twice the 

original space’s dimensions, where 𝐩  denotes the 

momentum vector, and 𝐦, which replaces 𝐪 in 

equation 4, represents the variables of interest (e.g., model 

parameters in inversion problems). The auxiliary (also called 

canonical) distribution can be shown as (Davey, 2009): 

ρ(𝐩,𝐦) = ρ(𝐩)ρ(𝐦|𝐝) ∝ exp(−𝐻(𝐩,𝐦)), (7) 

where ρ(𝐩) is the momentum distribution, and 𝐻(𝐩,𝐦) is 

the Hamiltonian. 

Following past studies (e.g., Tarantola, 2005; Dettmer et al., 

2010; Dosso et al., 2014; Fichtner et al., 2018; Fu and 

Innanen, 2020), we assume the model and data covariance to 

be known, Gaussian, and uncorrelated. Consequently, the 

posterior, or the potential energy in HMC can be defined as 

follows: 

− log[ρ(𝐦|𝐝)] =
1

2
(𝐝syn − 𝐝obs)

𝑇

CD
−1(𝐝syn − 𝐝obs) +

1

2
𝐦TCM

−1𝐦.
(8) 

We now can outline a fundamental workflow for 

implementing HMC in the context of FWI problems. First, 

the momentum vector, 𝐩, is drawn from a multi-dimensional 

normal distribution with zero means and a covariance matrix 

𝐌. Second, a transition from the current state (𝐩cur, 𝐦cur) is

performed using the Leapfrog method (ISERLES, 1986) to 

a new state (𝐩new, 𝐦new ), which is accepted with the

probability based on a variant of the Metropolis rule 

(Metropolis et al., 1953): 

𝑃𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 = min[1, exp(𝐻(𝐩cur, 𝐦cur)

−𝐻(𝐩new, 𝐦new))]. (9) 

Examples 

In this section, we demonstrate acoustic FWI tests using 

HMC in the frequency domain. We create an artificial 

structure with varying P-wave velocity, before and after CO2 

injection (see Figure 1). Horizontal and vertical grids are set 

at 300 and 100, with a 20-meter interval. We place 30 VSP 

receivers in the middle of the model. Baseline inversion 

involves 75 explosive sources spaced 80 meters apart on the 

surface, while monitor inversion employs half the number of 
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sources with intervals doubled. Synthetic data spans 8 

frequencies (3-15 Hz). We assume Gaussian distribution for 

the P-wave velocity model and maintain consistent data 

covariance. Varying integration lengths and time steps 

follow Fichtner et al. (2018). The mass matrix in HMC is set 

to the identity matrix. Initial models for all tests are identical 

as in Figure 1 (c). To mitigate high-resolution speckles 

caused by random pixel variations, we apply a Gaussian 

filter between iterations. This aligns the proposals with the 

wavelength in our datasets, enhancing compatibility with the 

data. We generate 30,000 samples across all the HMC tests. 

The baseline inversion yields an acceptance rate of 74.15%, 

with approximately 22,245 accepted samples. To evaluate 

HMC's performance against naive MCMC, we conduct 

monitor inversions using both methods. For a comparable 

computational workload, MCMC attempts 200,000 samples, 

yielding an acceptance rate of around 51.04%. We present 

the uncertainty analysis in Figure 2, comparing variations 

between monitor and baseline model means 𝐦𝑚 − �̅�𝑏

across different sampling stages. It is evident that HMC 

achieves a significant reduction in uncertainty in the 

injection area compared to MCMC, which requires more 

sample iterations for similar outcomes. Additionally, the 

presence of artifacts in undesired areas is mitigated in HMC 

because of fewer random-walk behaviors. Although there 

are minor variations in model means across different 

sampling stages, the standard deviations indicate that HMC 

is more efficient than naive MCMC. 

Next, we use the diagonal of the inverse posterior covariance 

matrix from baseline inversion as prior information for 

monitor inversions. For comparison, we conduct monitor 

inversions without baseline posterior information with other 

settings remaining identical. Figure 3 demonstrates that, 

within the initial 5,000 samples, while the model means 

appear similar, the injection area's uncertainty is notably 

lower when incorporating the baseline posterior. This 

suggests that statistical information from baseline inversions 

significantly contributes to a more affordable and reliable 

uncertainty analysis in monitor inversions. 

Additionally, we explore the constraining role of the 

baseline posterior in monitor HMC-FWI in more detail. The 

statistical information of the initial 5,000 samples is depicted 

in Figure 4. While the model means in Figure 4 (a) and (c) 

are comparable, Figure 4 (e) exhibits higher overall 

uncertainty than Figure 4 (c), where the baseline posterior 

information is utilized. Reference points in Figure 4 (b) and 

(d) represent the injection area and regions with varying ray

path abundance according to our acquisition geometry. In

Figure 4 (c) and (f), clear improvements in uncertainty

analysis can be observed, particularly in the injection area.

Uncertainty in deeper model regions remains to be larger and

less improved because of insufficient ray paths. However,

areas with abundant information appear the least influenced

by the posterior information.

Conclusions 

HMC offers more efficient sampling than naive MCMC, but 

computational costs can still be a concern for larger-scale 

time-lapse FWI problems. Our experiments suggest that 

integrating baseline posterior information into monitor 

inversions could mitigate this issue. By using this 

information to guide the sampler, we can achieve better 

convergence and enhanced sampling efficiency, especially 

when targeting specific areas of interest like CO2 injection 

sites. However, further research is required to optimize the 

incorporation of baseline posterior information, particularly 

concerning the design of the artificial mass matrix in HMC. 

Larger-scale experiments reflecting real-world scenarios 

could yield valuable insights. In summary, our study lays the 

groundwork for developing more efficient time-lapse 

inversion techniques, with significant implications for 

uncertainty quantification in CO2 monitoring applications. 
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Figure 1:  P-wave velocity models and schematic acquisition geometry for HMC-FWI. The source layout is represented by blue stars, and the 

observation well is shown by the black line with receivers indicated by red triangles. (a) true baseline model. (b) true monitor model. (c) the initial 

model for baseline and monitor surveys. 
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Figure 2: Bayesian time-lapse FWI results. The first row shows results from 2,500 samples in HMC and 15,000 samples in MCMC. (a)-(e), 

𝐦𝑚 − 𝐦𝑏 model mean from HMC and MCMC, standard deviations from HMC and MCMC, and a vertical profile in x = 3km with the true 

variation (black line), variation between baseline model mean and monitor inversion from HMC (red line and MCMC (blue line). (f)-(j), 

results using 5,000 samples in HMC and 30,000 samples in MCMC. 

Figure 4: HMC-FWI results with/without baseline posterior. (a)-(c), model mean, standard deviation, and posterior distributions of the 

reference points in the case baseline posterior is involved. (d)-(f), the same statistical information in the case baseline posterior is not 

involved. The dashed lines show the true values at the reference positions. 

Figure 3: HMC-FWI time-lapse results from 5,000 samples. (a) and (b), 𝐦𝑚 −𝐦𝑏 model mean with/without baseline posterior. (c) and (d), 

𝐦𝑚 −𝐦𝑏 standard deviations with/without baseline posterior. (e), a vertical profile in x = 3km with the true variation (black line), variation 

from with (red line), and without (blue line) baseline posterior.  


