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SUMMARY

In viscoelastic full waveform inversion (FWI), which is typ-
ically based on the generalized standard linear solid (GSLS)
model, the quality factor (Q) is not inverted for directly, but
through an intermediate transformation into relaxation vari-
ables. This adds to the inverse problem for elastic and at-
tenuation models a complex conversion back to Q. We for-
mulate a method integrating a pre-trained multi-layer percep-
tron (MLP) to do the Q-relaxation variable mapping into a Re-
current Neural Network (RNN)-based FWI framework, which
directly inverts for Q and elastic parameters using multiple
SLS layers. The formulation allows straightforward assess-
ment and mitigation of mapping uncertainty through Monte
Carlo dropout. For instance, the approach quantifies the un-
certainty associated with the approximate representation of a
constant Q model with relaxation time variables. The influ-
ence of such uncertainty on the forward modelling synthetic
data and the inversion results are both analyzed. Our approach
is in principle extendable to frequency-variant Q values. We
illustrate several inversion examples to demonstrate the signif-
icance of this type of viscoelastic modelling error analysis for
inversion.

INTRODUCTION

Mechanical wave propagation through real earth media involves
attenuation, a process influenced by geometric spreading, anelas-
tic attenuation, losses during transmission, mode conversion,
scattering, and refraction (Samec and Blangy, 1992; Krebes,
2019). In contrast to perfectly elastic media, where wave en-
ergy is conserved, the inherently anelastic nature of earth ma-
terials results in the progressive alteration of the amplitude and
phase of the seismic wave. The quality factor Q, a dimension-
less measure, quantifies attenuation as the ratio of mean energy
retained in the medium against the energy dissipated in a single
cycle (Fan et al., 2016). Attenuation phenomena critically in-
fluence both the amplitude and phase of seismic recordings, af-
fecting key data modeling practices, including reverse time mi-
gration (RTM) and full-waveform inversion (FWI) (Fathalian
et al., 2020).

The generalized standard linear solid (GSLS) viscoelastic mod-
eling method utilizes relaxation time variables to define the
viscoelastic constitutive relationship. Day and Minster (1984)
investigated the integration of elasticity into 2-D time-domain
modeling via a Padé approximation, leading to the proposal of
the generalized standard linear solid (GSLS) method by Em-
merich and Korn (1987). This technique, grounded in rheo-
logical principles, leverages the finite difference method for
improved computational efficiency. Robertsson et al. (1994)
developed a staggered grid finite difference approach, tailored
to model viscoelastic wavefield using a single layer of stan-

dard linear solid (SLS). In this context, the quality factor Q is
translated into stress and strain relaxation times essential for
forward modeling. Each SLS layer is characterized by distinct
stress and strain relaxation times, making the accurate deter-
mination of these times from the respective Q value a critical
aspect of viscoelastic wavefield simulation.

Viscoelastic full waveform inversion (FWI) is recognized for
its potential to refine seismic imaging and facilitate applica-
tions such as reservoir characterization and CO2 monitoring
(e.g., Fabien-Ouellet et al., 2017; Keating and Innanen, 2019,
2020; Gao et al., 2023; Mirzanejad et al., 2022; Moradi and In-
nanen, 2015; Pan et al., 2023), striving to achieve high-resolution
inversion results for both elastic and attenuation models. De-
spite its promise, the implementation of viscoelastic FWI faces
several technical hurdles. For instance, practical inversion for
attenuation models relies on a simplistic single-layer SLS model,
which has the potential of inadequately representing the fre-
quency dependent variations of the quality factor Q. This is a
problematic example of FWI modeling error.

In this study,we explore the use of neural networks for quanti-
fying this type of forward modeling uncertainty in viscoelastic
FWI. A critical and ongoing area of research is the evaluation
of uncertainty in neural network predictions. Our focus is on
employing the Monte Carlo (MC) dropout method to approx-
imate the posterior uncertainty (Gal and Ghahramani, 2016;
Abdar et al., 2021) of the predicted relaxation time variables
after training. The structure of this abstract is organized as fol-
lows: First, we detail the process of training a neural network
to transform input attenuation level Q values into relaxation
time variables, adhering to the standard linear solid model un-
der the assumption of a constant Q. To mitigate over-fitting,
dropout is employed during training, which is subsequently
used post-training to approximate posterior uncertainty. We
then ascertain the posterior uncertainty of the relaxation vari-
ables for the constant Q model by applying dropout to the neu-
ral network post-training and evaluating its outputs multiple
times. Following this, we calculate viscoelastic FWI using a
Recurrent Neural Network (RNN) (Zhang et al., 2021), ensur-
ing no inverse crime is committed, and assess the modeling
error arising from the relaxation time variables’ limited capa-
bility to accurately represent the constant Q model.

THEORY

Training data are synthetically generated, adhering to the con-
stant Q assumption utilized in this study. This assumption im-
plies that the Q spectrum remains constant Kjartansson (1979)
across the frequencies within the exploration seismic band-
width. Accordingly, random Q values, maintained as constant
across discrete angular frequencies ωi, are generated to serve
as labeled data for training purposes. A total of 2000 random
Q values are produced, with 1000 being integer values ranging
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from 1 to 1000, and the remaining 1000 values derived from a
Uniform distribution bounded between 1 and 1000. These ran-
dom Q values, despite their randomness, are all treated as con-
stants with respect to frequencies and are denoted as Qlabel(ω).

In our formulation, the relaxation variables generated by the
neural network are expressed as follows:

Nmlp(Q;θθθ) = τεnn1
,τσnn1

,τεnn2
,τσnn2

, · · · ,τεnnL
,τσnnL

, (1)

where Nmlp(Q;θθθ) denotes the neural network function map-
ping the Q value to the relaxation times, parameterized by θθθ ,
taking Q value as input, where θθθ is the weight vector contain-
ing all the trainable parameters. Here, τεnnl

and τσnnl
represent

the strain and stress relaxation times, respectively, for the lth

standard linear solid mechanism generated with the neural net-
work. The neural network employed in this study is a multi-
layer perceptron (MLP) network, recognized for its simplicity,
comprising fully connected layers, activation functions, and
the dropout method. Taking the MLP network for training the
2 SLS relaxation time variable as an example, this network will
accept a Q value as input (R1) and outputs relaxation time vari-
ables (R4), specifically τεnn1

, τεnn2
, τσnn1

, and τσnn2
for the two

SLS layers. We utilize Tanh() activation functions for the hid-
den layers and a Sigmoid() activation function for the output
layer, ensuring the relaxation time variables are positive.

Figure 1: Variation of training loss values in generating relaxation variables with an MLP
under the constant Q Model. L = 2 SLS (blue line), L = 3 SLS (yellow line), L = 4 SLS
(green line).

Frequency-dependent Q modeled with the relaxation variables
generated by the neural network Nmlp is denoted as Qnn, which
has the formulation of:

Qnn(ω,Nmlp(Q;θθθ)) =

1−L+
∑L

l=1
1+ω2τεnnl

τσnnl
1+ω2τ2

σnnl∑L
l=1

ω(τεnnl
−τσnnl

)

1+ω2τ2
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. (2)

The objective function for neural network training is defined
as:

θ
∗ = argmin

θθθ

√√√√ I∑
i=1

[
1

Qnn
(
ωi,Nmlp(Q;θθθ)

) − 1
Qlabel(ωi)

]2

,

(3)
where I is the maximum number of discrete angular frequen-
cies. A well-trained network provides a continuous mapping
function relating the Q values to the relaxation variables, im-
plying that the neural network can map any Q value within
the range of interest to its corresponding relaxation variables
on the real axis. The Adam algorithm, with a learning rate of

10−4, is used as the optimizer. The stopping condition is set
to a maximum training epoch of 10000, with a dropout rate of
0.01 employed to prevent overfitting during the training phase.
The objective function value during the training stage for SLS
layers 2, 3, and 4, with respect to the training epoch, are plot-
ted in Figure 1. It is observed that as the number of epochs
increases, the objective function value decreases accordingly;
around 4000 iterations, the objective function values decrease
to a level where the rate of change is minimal, indicating the
convergence of the training process.

In Figure 2(a), we plot the predicted Qnn(ωi,Nmlp(Q;θθθ))) for
Q=30. Using the distribution of the relaxation variables, gen-
erated with the post-trained Nmlp, with a dropout rate 0.5, will
lead us to a series of synthetic Q spectrum plotted as gray lines
in Figure 2. The area spanned by the gray lines can be seen as
the uncertainty quantification of the synthetic Q spectrum. The
synthetic Q spectrum, calculated from the mean generated re-
laxation time variables plotted as the yellow line. From Figure
2, we can see that the mean predicted line matches the con-
stant Q line with an acceptable error. Similar observations can
be seen from the predictions of other Q values. In Figure 2(b),
(c), and (d), we illustrate the comparisons for Q values of 80,
115, and 170, respectively. We can also see that the synthetic
Q spectrum provided by the mean relaxation time variable re-
sults could better represent the constant Q spectrum within the
expiration seismic bandwidth of interest.

Figure 2: Prediction of constant Q models using a three-layer Standard Linear Solid (SLS)
mechanism, with the stress and strain relaxation times generated from a well-trained neural
network employing a 0.5 dropout rate. The Q spectrum, represented by the yellow line, is
calculated from the mean relaxation time variables generated by the neural network

NUMERICAL INVERSION TEST

Inversion overview

To better elucidate the impact of modeling errors on inversion



Modeling error in viscoelastic FWI

results, we calculate viscoelastic FWI without committing in-
verse crime numerically. We will use different numerical mod-
eling methods to calculate the observed and synthetic data.
Specifically, the observed data, Dobs, are calculated by using
the mean relaxation time variables generated by the Nmlp (3
SLS) 1,000 times. During inversion, we utilize a single real-
ization of the post-trained Nmlp (2 SLS) to calculate synthetic
data. Thus, the numerical methods to calculate Dobs, and Dsyn
are different. We use the GSLS viscoelastic wave equation de-
rived according to Fan et al. (2016) with all the relaxation time
variables generated with the post-trained neural network.

Next, our goal is to evaluate the modeling error due to a sin-
gle realization’s inability to accurately represent the constant
Q model. This is achieved by applying Monte Carlo (MC)
dropout in Nmlp (2 SLS) to produce various relaxation vari-
ables and corresponding synthetic data Dtest. Specifically, we
use the inverted Q model to generate test relaxation variables
and calculate the misfit between Dtest and observed data Dobs,
termed error evaluation loss. If this loss is within the accept-
able range of the final FWI loss, Dtest is considered valid for
modeling error quantification. Repeating this process yields
a dataset of Dtest values, with their standard deviation repre-
senting the modeling errors. These errors, stemming from the
relaxation variables’ limited representation of the constant Q
model, inform updates to the elastic and attenuation models,
aiding in analyzing the impact of modeling errors on model
updates.

Marmousi model inversion results

In this section, we calculate viscoelastic FWI on a portion of
the Marmousi model, where a reservoir is situated in the up-
per center of the model. The true models for Vp, Vs, and ρ

are shown in Figure 3 (a), (d), and (g), respectively. The true
attenuation models for Qp and Qs are depicted in Figure 3 (j)
and (m), respectively. The model dimensions are 80× 160,
with a grid spacing of dx = dz = 20m. We use L = 3 layers of
the SLS mechanism and forward propagate the relaxation vari-
ables 1000 times to obtain the mean relaxation variables for
generating the observed data. The source wavelets are Ricker
wavelets with a central frequency of 13Hz, and the reference
frequency for modeling used here is 20Hz. The maximum
recording time is 1.5s with a time interval of 0.002s. The ini-
tial models for Vp, Vs, and ρ are plotted in Figures 3 (b), (e),
and (h). The initial models for the attenuation models are plot-
ted in Figures 3 (b), and (e), respectively. The initial models
are obtained by smoothing the true models with the Gaussian
smoothing method. The receivers are located on the model’s
surface, left and right-most well-log, with an interval of 20m,
for good data illumination.

We employ the Adam algorithm for optimization and set the
maximum iteration number to 300. The relaxation variables
during the inversion are obtained with a single forward realiza-
tion of the post-trained neural network (2 SLS). The inversion
results for test 3, the elastic models Vp, Vs, and ρ are shown
in Figures 3 (c), (f), and (i), respectively. The inversion re-
sults for the attenuation models Qp and Qs, are displayed in
Figures 3 (l) and (o). Compared to the true models, we obtain
promising inversion results for both the elastic and attenuation

models. Acceptable model errors are located in the lower right
corner of the elastic models. The inversion results for Qs also
exhibit some difficulty in accurately describing the shape of
the central reservoir.

Figure 3: Part of the Marmousi model Vp , Vs , and ρ viscoelastic FWI. The models for Vp ,
Vs , and density ρ are from top to bottom in rows. From left to right, in columns are the true
models, initial models, inversion results for test 1, inversion results for test 2, and inversion
results for test 3, respectively.

Figure 4: Modeling error evaluation for part of the Marmousi model inversion test. (a) The
observed record at 1000m of the model. (b) Synthetic data from the final iteration of FWI.
(c) The standard deviation record of the collected Dtest , which is regarded as the modeling
error. (d) Absolute error between (a) and (b). Lower panel: examples of the mean and scaled
standard deviation of two traces calculated from the collected Dtest data sets.

Figure 5: Standard deviation models of 87 updated models for Vp (a), Vs (b), ρ (c), Qp (d), and
Qs (e). These Standard deviation models represent how the inability of relaxation variables to
quantify a constant Q model will influence the FWI results.

Next, we will quantify the modeling error. The MC dropout
rate we set here is 0.5, and we will calculate the loop of the
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modeling error evaluation 100 times. We set the upper and
lower loss bound as the ±2% in the neighborhood of the final
FWI loss. We evaluate 100 relaxation variables, and 87 have
data misfit values within the acceptable range. Thus, 87 Dtest
will be collected to evaluate the modeling error. The standard
deviation of the 87 Dtest is regarded as the modeling error eval-
uated.

In the first row of Figure 4, we display the modeling error eval-
uated for the shot located at 1000m of the model. We plot the
observed data, synthetic data at the final iteration of FWI, the
modeling error evaluated, and the absolute error between the
observed data and the final synthetic data in Figure 4 (a), (b),
(c), and (d), respectively. We can see that the modeling error
evaluated in Figure 4(c) has reflected the main feature of the
data error in Figure 4(d), especially for the reflection waves ar-
rived at around 0.4s of the records. We should not expect the
modeling error evaluated to have the ability to capture all the
features of the absolute data error, as Figure 4 (d) includes all
the errors in inversion. To further observe how the modeling
error influences the Dtest, we plot two traces of the records in
Figure 4, where the trace location is marked in Figure 4(b). In
the bottom panels of Figure 4, the black lines are the synthetic
records for the last iteration of FWI, and the gray area repre-
sents the change of the range of the signal due to the change of
the relaxation variables, quantified by the scaled standard devi-
ation. We can see that the evaluated modeling error influences
both the amplitude and the phase of the synthetic records.

Figure 6: 2022 Snowflake data Vp , Vs , ρ line4 results (2 SLS). (a), (b) and (c) are the initial
model, inversion result, and well-log comparison for Vp . (d), (e) and (f) are the initial model,
inversion result, and well-log comparison for Vs . (g), (h) and (i) are the initial model, inversion
result, and well-log comparison for ρ .

Figure 7: 2022 Snowflake data Qp , Qs line4 results (2 SLS). (a), and (b) are the initial model,
inversion result for Qp . (c) and (d) are the initial model, inversion results for Qs .

Next, we use each of the collected 87 Dtest datasets to evaluate
modeling error. The results are plotted in Figure 5. These Fig-
ures represent the impact of the relaxation variable’s limited
ability to quantify a constant Q model on the FWI results for
the elastic Marmousi model section.

Field data inversion results

To substantiate the efficacy of integrating networks within the
viscoelastic FWI framework, we calculate inversion analysis
using the line4 field data from the 2022 VSP Snowflake dataset
(Hall et al., 2019). The study area is located near Brooks, Al-
berta, focusing on innovative approaches for monitoring car-
bon dioxide sequestration within the Basal Belly River Sand-
stone formation, situated approximately 300 meters below the
surface. As of the end of 2023, approximately 85 tonnes of
CO2 had been injected into this formation. The inversion re-
sults for Vp, Vs, and density (ρ) models are illustrated in Figure
6. Initial models were derived by applying a smoothing filter
to well-log data centered within the study model. These in-
version outcomes are juxtaposed with the smoothed well-log
data, as depicted in Figures 6 (c), (f), and (i). The comparison
reveals a promising correlation between the inversion results
and the well-log data. The inversion results for Qp, and Qs are
plotted in Figure 7.

CONCLUSION

In this study, we develop a neural network to correlate the at-
tenuation factor Q with relaxation times for various SLS mech-
anisms. Our results show that the Q spectrum, obtained from
the mean relaxation variables of a well-trained network, ef-
fectively represents the constant Q model within the seismic
frequency range. This network facilitates direct Q model up-
dates in an RNN-based inversion framework. Additionally, we
explore the impact of modeling errors on viscoelastic FWI, fo-
cusing on errors from inadequate representation of the Q spec-
trum by relaxation time variables. Through numerical and field
data inversion tests, we highlight the significant our methodol-
ogy’s ability to calculate viscoelastic FWI.
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