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Motivation for Different Inversion 

Technique 

• Inversion techniques typically provide a single best-fit 

model while the fit of other models may be only slightly 

worse. 

• Inversion algorithms often get stuck in local minima. 

• Non-uniqueness is often uncharacterized. 

• Dimensionality (e.g. number of layers) may be unknown 

prior to inversion. 

• Uncertainty analysis is desired on individual features 

within a result. 



Bayes’ Theorem 

Incorporates prior knowledge and data to obtain posterior 

probability density function (PDF): 
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What is Markov Chain Monte 

Carlo? 

 

Markov chain: a process in 

which the next state only 

depends on the current state 

 

Monte Carlo: Using random 

numbers to estimate properties 

of a solution 

Example of 3-state Markov 

chain. Courtesy of Gareth 

Jones. 



Metropolis-Hastings Algorithm 

Tests new set of model parameters, 𝒎′, in order to sample the 

posterior probability distribution, 𝑝 𝒎 𝒅 . 
 

Proposal distribution for 𝒎′ 

given current model, 𝒎 : 
 

 𝑞 𝒎′ 𝒎  
 

Acceptance probability: 
 

𝛼 = 𝑚𝑖𝑛 1,
𝑝(𝒎′)𝑝(𝒅|𝒎′)𝑞(𝒎|𝒎′)

𝑝(𝒎)𝑝(𝒅|𝒎)𝑞(𝒎′|𝒎)
 

 

 

Example of progression 

of states. After 

Sambridge (2010). 



MCMC Results 

After Markov chain has converged, models are binned and 

the ratio of models in a given bin is proportional to posterior 

probability in that bin 
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After Piana 

Agostinetti and 

Malinverno (2010) 



Reversible-Jump 

(Transdimensional) MCMC 
Allows for jumps between parameter spaces of different 

dimensions 
 

Acceptance probability changes from 

 

𝛼 = 𝑚𝑖𝑛 1,
𝑝(𝒎′)𝑝(𝒅|𝒎′)𝑞(𝒎|𝒎′)

𝑝(𝒎)𝑝(𝒅|𝒎)𝑞(𝒎′|𝒎)
 

To  

𝛼 = 𝑚𝑖𝑛 1,
𝑝(𝒎′)𝑝(𝒅|𝒎′)𝑞(𝒎|𝒎′)

𝑝(𝒎)𝑝(𝒅|𝒎)𝑞(𝒎′|𝒎)
|J|  

 

Jumps between parameter spaces are commonly done using 

Birth-Death MCMC 



RJMCMC for Receiver Function 

Deconvolution 
• Receiver functions use P to S or S to P conversions from 

teleseismic waves to infer velocity structure 

• Assumed relation between Parent (P) and Daughter (D) waveforms: 

 

𝐷 = 𝑃 ∗ 𝐺 + 𝜀 
 

• Receiver function, G, is parameterized as an unknown number of 

Gaussians at unknown lag times with unknown widths and 

amplitudes. 

• Likelihood of observed daughter waveform given G: 
 

𝑝 𝐷 𝐺 =
1

(2𝜋)𝑛|𝐶𝐷|
𝑒 𝑃∗𝐺−𝐷

𝑇𝐶𝐷
−1
𝑃∗𝐺−𝐷  



Noise Parameterization 

We parameterize the noise covariance matrix with 

hyperparameters σ, λ, and ω0:  
 

𝐶𝐷
𝑖𝑗
= 𝜎2𝑒−λ|𝑡𝑗−𝑡𝑖|cos (𝜔0λ 𝑡𝑗 − 𝑡𝑖 ) 

 Noise Param. 1 Noise Param. 2 

Noise Param. 3 Real Noise 
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Why Correlation Matters 



Process 

• Start with initial model, G, of no Gaussians. 

• Convolve P with G (forward model) and use to calculate 

likelihood. 

• Propose new model by either “birthing” or “killing” a Gaussian, 

changing an existing Gaussian’s amplitude, width, or location, 

or changing a noise hyperparameter. 

• Calculate forward model, likelihood, and acceptance 

probability of new model.  If acceptance probability is greater 

than a random number from 0 to 1, accept the model.  

Otherwise, reject it. 

• Repeat proposal and accept/reject process until convergence 

and then continue, saving models afterwards. 



PS MCMC results 

Wiener Filtering Waveform Pairs MCMC 
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SP MCMC results 

Wiener Filtering MCMC Waveform Pairs 
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SP Result Analysis 
Parent & Daughter Waveforms Location 

1: Amplitudes 2: Amplitudes 

1: Widths 2: Widths 

# of Gaussians Noise σ 

Ensemble Solution 

Posterior Probability 



Spectral Hole Test 

Solve for G when using STF with spectral holes: 
 

𝐷 ∗ 𝑆𝑇𝐹 = 𝑃 ∗ 𝑆𝑇𝐹 ∗ 𝐺 + 𝜀  



Model Comparisons 

Can compare hypotheses H which may be parameterizations or 

forward models: 
 

𝑝 𝒎 𝒅,𝐻 =
𝑝 𝒅 𝒎,𝐻 𝑝(𝒎|𝐻)

𝑝(𝒅|𝐻)
 

With evidence, 𝑝 𝒅 𝐻 : 

𝑝 𝒅 𝐻 =  𝑝 𝒅 𝒎,𝐻 𝑝 𝒎 𝐻 𝑑𝒎 

Point approximations using evidence: 
 

𝐴𝐼𝐶 = −2log [𝑝 𝒅 𝒎𝑚𝑙𝑒 ] + 2𝑘 

𝐵𝐼𝐶 = −2 log 𝑝 𝒅 𝒎𝑚𝑙𝑒 + 𝑘log(𝑛) 

𝐷𝐼𝐶 =  𝐸𝜃[−2 log 𝑝 𝒅 𝒎 + 𝑘𝑒𝑓𝑓 
 

Where 𝒎𝑚𝑙𝑒 is maximum likelihood estimate of the model, k is number 

of parameters, and n is sample size 



Noise Parameterization 1 vs. 3 
Parameterization 3 has higher likelihoods and uses fewer Gaussians. 

X 106 

X 106 



Tomography 
MCMC with parameterization of unknown # of Voronoi nuclei with 

unknown velocities and locations was proposed (Sambridge et al., 1995). 
 

Allows for cells of varying shapes and sizes, and multiple 

parameterizations for the same structure. 

Voronoi 

Nuclei 

Movement of a Voronoi nucleus to a new location.  The velocity structure 

in each of the teal cells has been changed.  After Bodin et al. (2009). 



Joint Inversion 

After Bodin et al., (2012) 
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Joint Inversion 
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Joint Inversion 

Vs (km/s) Vs (km/s) p(discontinuity) 
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After Bodin et al., (2012) 

Well-Constrained 

Features 

More uncertainty 

on these velocities 



Joint Inversion 
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After Bodin et al., (2012) Sharp increase in max. 

posterior model not 

necessarily a discontinuity 



Conclusions 

Transdimensional MCMC: 

• Is a data-driven approach allowing for dimensionality to 

be decided by the data; 

• Results in an ensemble solution of models that can 

make uncertainty analysis simpler; 

• Provides uncertainties on individual features of solutions; 

• Can jump out of local minima and can sample non-

unique solutions. 
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