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‘Machine learning is a field of computer science that gives
computer systems the ability to "learn" (i.e. progressively improve
performance on a specific task) with data, without being explicitly
programmed.’

Wikipedia
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Supervised Learning
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Unsupervised Learning

• Unlabeled data
• No evaluation of the accuracy
• Approaches to unsupervised learning include:

• Clustering
• Anomaly detection
• Neural Networks
• And a few others...
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Smith, K. J., 2017, Machine learning assisted auto-picking, 
SEG International Exposition and 87th Annual Meeting, 5686-
5690

6www.crewes.org



7

● Guide velocity (one CMP manually picked)
● Semblance
● Threshold (red or blue)
● Filter using others attributes (not clear)
● Group picks into “clusters”
● Determine clusters centers as the picking velocity
● Include new estimation in the guide velocity
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Clustering > k-means (or k-nearest neighbours)?

Stop criteria (convergence)?
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● Marine data
● CMP gather - NMO correction
● “The gather from the machine-picked velocity is 

virtually indistinguishable from the gather with 
the hand-picked velocity”
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Paolo, B., Lipari, V., Tubaro, S., 2017, A machine learning 
approach to facies classification using well logs, SEG 
International Exposition and 87th Annual Meeting, 2137-2142

12www.crewes.org



One of the proposed solutions of a Machine Learning Contest in 2016:

https://github.com/seg/2016-ml-contest

It was a contest to classify facies using the given well logs. The author's 
solution can be downloaded from:

https://bitbucket.org/polimi-ispl/
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Well Logs (fd,w)
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• Gamma ray
• Resistivity
• Photoelectric effect
• Neutron-density porosity difference
• Average neutron-density porosity
• Nonmarine/marine indicator
• Relative position

Facies (cd,w)

• Nonmarice sandstone (SS)
• Nonmarine coarse siltstone (CSiS)
• Nonmarine fine siltstone (FSiS)
• Marine siltstone and shale (SiSh)
• Mudstone (MS)
• Wackestone (WS)
• Dolomite (D)
• Packstone-grainstone (PS)
• Phylloid-algal bafflestone (BS)
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Classification > Gradient boosting classifier (an ensemble of decision trees)
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Proposed solution > Feature augmentation (generate new features from the available ones)



Confusion Matrix
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Accuracy = 0.53 Accuracy = 0.48
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Unbalanced classification
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Silva, A., Neto, I. L., Carrasquilha, A., Missagia, R., Ceia, M., 
Archilha, N., 2013, Neural network computing for lithology 
prediction of carbonate- siliciclastic rocks using elastic, 
mineralogical and petrographic properties, Thirteenth 
International Congress of the Brazilian Geophysical Society, 
1055-1058
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Accuracy = 84.52%



Lewis, W., Vigh, D., 2017, Deep learning prior models from 
seismic images for full-waveform inversion, SEG International 
Exposition and 87th Annual Meeting, 1512-1517
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• FWI > issues inverting salt bodies

• Regularization using Tikhonov method

• Uses information from others surveys

• Train a “Convolutional Neural Networks” model for salt bodies

• Incorporates in the FWI routine
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Comments

• Machine learning is an area in full expansion and applicable on 

many different sciences.

• Increased computer power, such as use of GPUs.

• Need to handle “big data”.

• Promising applicability in geophysics/geology

• We should be part of this!
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