

Modeling and inversion using neural networks

Zhan Niu, Jian Sun, Daniel Trad

Jan 25, 2019

- Part I: Born modeling using recurrent neural networks (RNN)
- Part II: Recover velocities from RTM image (reflectivity)
 - Fully-connected
 - Convolutional
- Conclusion
- Future works

- Born modeling using RNN
 - Bring the advantages of NN and provides a new aspect of the problem
- Solving a non-linear mapping between reflectivity and velocity updates.
 - Reflectivity to Δv update use as FWI gradient

The Born modeling is governed by the following equations

$$\left(\frac{1}{\boldsymbol{v}_0^2}\frac{\partial^2}{\partial t^2}-\nabla^2\right)\boldsymbol{p}_0=\boldsymbol{f},$$

$$\left(\frac{1}{\boldsymbol{v}_0^2}\frac{\partial^2}{\partial t^2}-\nabla^2\right)\delta\boldsymbol{p}=\frac{1}{\boldsymbol{v}_0^2}\cdot\boldsymbol{m}\cdot\frac{\partial^2}{\delta t^2}\boldsymbol{p}_0,$$

Where $m \coloneqq \frac{2\delta v}{v_0}$

Intro to basic NN types

Diagrams from the internet

Intro to basic NN types

Diagrams from the internet

Can we design it better?

Can we design it better?

The forward:

set m to a known value and let the RNN to predict only once to get d.

The inverse:

set m to initial value (zeros) and "train" it with d_{obs} for getting updates on m

The RNN architecture:

The RNN architecture:

Part II: Recover velocities from RTM results

Model size: $n_x = 1000$

Training: (8:2 split) 8000 random 1D 4-layer-flat models in the training set 2000 in the cross-validation set

Testing:

Images come from the same model distribution (or not)

Part II: Fully-connected NN

input -> 1000 -> 200 -> 200 -> 200 -> 1000 -> output 5 layers with 3 hidden

~ 2600 nodes

Part II: Fully-connected NN

5 layers, ~2600 weights + 2600 bias

19

Part II: Fully-connected NN

5 layers, ~ 2600 weights + 2600 bias

20

Part II: Fully-connected NN: limitations

On a 3 layer model:

Part II: Fully-connected NN: limitations

Wrong background velocity:

Wrong wavelet:

8 hidden layers

~ 2344 nodes

Part II: Convolutional NN

8 hidden layers

~ 7592 nodes

Part II: Convolutional NN – version II

27

Part II: Convolutional NN: limitations

Wrong background velocity:

Part II: Convolutional NN: limitations

On a 3 layer model:

- NNs is ...
 - dependent on model distribution
 - highly dependent on the wavelet
- Fully-connected NN outperforms Convolutional for this problem:
 - Recovered velocities depends not only the nearby features
 - Structures are crucial for solving geophysics problems

Future works:

- Find a more suitable structures/combination of NN
- Integrate small scale NNs
 into traditional algorithms
- Choose a better cost function that expresses more geophysics

- All CREWES sponsors
- NSERC (CRDPJ 46117913)

and thank you

Results:

