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• Part I: Born modeling using recurrent neural networks (RNN)
• Part II: Recover velocities from RTM image (reflectivity)

• Fully-connected
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• Conclusion
• Future works
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• Born modeling using RNN
• Bring the advantages of NN and provides a new aspect of the 

problem

• Solving a non-linear mapping between reflectivity and velocity 
updates.
• Reflectivity to Δ𝑣𝑣 update – use as FWI gradient

Motivation in all
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Part I: Born modeling using Recurrent NN

Modeling and inversion using neural networks
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The Born modeling is governed by the following equations
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Where 𝒎𝒎≔ 2𝛿𝛿𝒗𝒗
𝒗𝒗0

Part I: Born modeling using Recurrent NN
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Intro to basic NN types
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Fully connected

Convolutional

Recurrent

Diagrams from the internet



Intro to basic NN types
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Can we design it better?

Part I: Born modeling using Recurrent NN
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𝒇𝒇 𝒅𝒅RNN



Can we design it better?

Part I: Born modeling using Recurrent NN
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𝒎𝒎, 
𝒇𝒇 𝒅𝒅RNN

𝒇𝒇 𝒅𝒅RNN(𝒎𝒎)



The forward:
set 𝒎𝒎 to a known value and let the RNN to predict only 

once to get 𝒅𝒅.
The inverse:

set 𝒎𝒎 to initial value (zeros) and “train” it with 𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜 for 
getting updates on 𝒎𝒎

Part I: Born modeling using Recurrent NN
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𝒇𝒇 𝒅𝒅RNN(𝒎𝒎)



The RNN architecture:

Part I: Born modeling using Recurrent NN
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The RNN architecture:

Part I: Born modeling using Recurrent NN
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The output

The input

𝒎𝒎 related



Part I: Results
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Part I: Results
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Part II: Recover velocities from RTM results

Modeling and inversion using neural networks
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Part II: Define the problem
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Input
• RTM image 

(reflectivity) NN Output
• Recovered 

velocity

𝑛𝑛𝑥𝑥 1D array 𝑛𝑛𝑥𝑥 1D array



Model size: 𝑛𝑛𝑥𝑥 = 1000

Training:  (8:2 split)
8000 random 1D 4-layer-flat models in the training set
2000 in the cross-validation set 

Testing:
Images come from the same model distribution (or not)

Part II: Fully-connected NN
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input ->          1000 -> 200 -> 200 -> 200 -> 1000       -> output

Part II: Fully-connected NN
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NN

RTM 
Image Velocity

5 layers with 3 hidden
~ 2600 nodes



5 layers, ~2600 weights + 2600 bias

Part II: Fully-connected NN
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5 layers, ~ 2600 weights + 2600 bias

Part II: Fully-connected NN
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On a 3 layer model:

Part II: Fully-connected NN: limitations
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Wrong background velocity:

Part II: Fully-connected NN: limitations
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Wrong wavelet:

Part II: Fully-connected NN: limitations
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8 hidden layers
~ 2344 nodes

Part II: Convolutional NN – version II

24
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3x1 conv
64 filters

3x1 conv
64 filters

…
3x1 conv
64 filters

3x1 conv
64 filters

3x1 conv
64 filters

3x1 conv
64 filters

Fully connected 
to 1000 notes

NN

RTM 
Image

Velocity



Part II: Convolutional NN
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8 hidden layers
~ 7592 nodes

Part II: Convolutional NN – version II
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7x1 conv
64 filters

3x1 conv
64 filters

3x1 conv
512 filters

…
3x1 conv
64 filters

3x1 conv
128 filters

3x1 conv
256 filters

3x1 conv
1024 filters

Fully connected 
to 1000 notes
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Part II: Convolutional NN – version II
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Wrong background velocity:

Part II: Convolutional NN: limitations
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On a 3 layer model:

Part II: Convolutional NN: limitations
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• NNs is …
• dependent on model 

distribution
• highly dependent on the 

wavelet
• Fully-connected NN 

outperforms Convolutional 
for this problem:
• Recovered velocities depends 

not only the nearby features
• Structures are crucial for 

solving geophysics problems

Future works:
• Find a more suitable 

structures/combination of 
NN

• Integrate small scale NNs 
into traditional algorithms

• Choose a better cost 
function that expresses 
more geophysics 
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Conclusions 
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Results:

Part I: Born modeling using Recurrent NN
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