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ABSTRACT 

The kinematics of prestack time migration by the equivalent offset method (EOM) are 
well established as a simple reformulation of the double-square-root equation of seismic 
imaging. EOM is implemented as a nonrecursive diffraction stack, where samples in the 
data space are weighted, filtered, and summed to produce samples in the image space. In 
this dissertation, I determine the exact optimum weighting function that produces an 
image as a stack of angle-dependent reflectivities, and suggest practical alternatives that 
are appropriate for imaging using prestack time migrations. 

The imaging problem is treated as an inverse problem consisting of an estimation 
problem and an appraisal problem. As is typical in geophysical inverse problems, a 
quantitative solution is provided for the estimation problem, and the appraisal problem is 
replaced by a validation process. A framework for qualitative validation of prestack time 
migration is described in terms of accuracy of focusing, accuracy of relative positioning, 
and accuracy of absolute positioning. Quantitative validation is achieved by testing the 
weighting functions using synthetic seismic data. 

The theoretical basis for acoustic wavefield extrapolation is developed from first 
principles. The Kirchhoff-Helmholtz integral representation, the fundamental equation of 
wavefield extrapolation and imaging, provides a mathematical description of Huygens’ 
principle, yields simplified formulae for forward and inverse extrapolation from planar 
and non-planar interfaces, and gives reciprocity relations for Green’s functions and 
acoustic pressure. 

Two methods of depth imaging are developed, Kirchhoff-approximate migration and 
Kirchhoff-approximate migration/inversion. Both rely on the Kirchhoff approximation at 
the reflecting surface. The second method, determined from Born-approximate inversion, 
provides exact expressions for constant-wavespeed common-offset migration/inversion 
required for relative amplitude preserving prestack time migration. The common-shot and 
common-receiver migration/inversion formulae are shown to produce biased estimates 
for asymmetric acquisition configurations. Simplifications to the depth imaging formulae 
are proposed that greatly increase the efficiency of implementation without any 
significant loss of accuracy. 

Relative-amplitude-preserving EOM prestack time migration is tested against 
conventional processing over a portion of LITHOPROBE SNORCLE line 1. EOM prestack 
time migration can provide a better image for interpretation because it enhances imaging 
of steeper dips, and improves relative positioning of reflectors with conflicting dips. 
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CHAPTER 1: INTRODUCTION 

1.1 MOTIVATION FOR THIS STUDY 

Controlled-source reflection seismology is the most effective geophysical tool available 

for imaging the internal structure of the Earth’s crust and upper mantle. Of the 

geophysical techniques, it provides the best resolved images at depth and can provide 

detailed information about subsurface rock properties. However, the processing of 

reflection-seismic data into an interpretable image requires a significant computational 

effort, often under expert supervision (e.g. Gray, 1998a). A reasonable goal, therefore, is 

to seek improvements to the efficiency, accuracy, and utility of existing imaging 

techniques. 

One such technique is the equivalent offset method (EOM) of prestack time migration 

(Bancroft and Geiger, 1994; Bancroft et al., 1998). The kinematic or traveltime 

component of EOM prestack time migration is well established as an exact reformulation 

of the double-square-root (DSR) equation (Bancroft and Geiger, 1994; Fowler, 1997a1; 

Bancroft et al., 1998; Margrave et al., 1999; Li, 1999). The Fourier analogue of space-

time EOM prestack time migration, known as the equivalent wavenumber method 

(EWM) of prestack time migration, is derived in Margrave et al. (1999). They propose a 

dynamic or amplitude component that, unfortunately, cannot be implemented easily in 

 

1 Fowler (1997a) describes a number of transformations from input acquisition variables to intermediate 

variables that in turn can be converted to fully migrated variables by a hyperbolic stack. EOM is one such 

transformation. Another well-known transformation is known as DMO-PSI (dip moveout prestack 

imaging, see Gardner et al., 1986; Forel and Gardner, 1988). Bancroft et al. (1998) compare EOM with 

DMO-PSI. EOM depends on a rough estimate of wavespeed (Li, 1999; Wang et al., 2000) while DMO-PSI 

is independent of wavespeed, although this independence is purchased at the cost of a radial DMO. 
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the space-time domain and does not produce a ‘true-amplitude’ stacked image, where 

peak amplitudes are proportional to an average of angle-dependent reflectivity. Cary 

(1998) suggests that the required amplitude component can be derived from the acoustic 

migration-inversion formula for the common-shot acquisition configuration, as given by 

Docherty (1991), and that the required weighting function for EOM prestack time 

migration will include Jacobians relating both the acquisition configuration and the 

output migrated image to the equivalent-offset domain (the intermediate domain of 

binned data created when using EOM prestack time migration). However, Cary does not 

establish that the common-shot migration-inversion formula is the correct starting point, 

nor how these Jacobians can be easily calculated. Fowler (1997b) also identifies the 

Jacobians as a key to the amplitude component, but does not determine how they might 

be calculated. 

Thus, a comprehensive theoretical basis for true-amplitude EOM prestack time migration 

needs to be established. In this dissertation, a complete theoretical development is 

provided that yields expressions for 2-D, 2.5-D, and 3-D constant-wavespeed prestack 

modeling and migration. The migration expressions are then simplified to yield 

expressions suitable for practical application in Kirchhoff-type prestack time and 

prestack depth migrations (i.e. diffraction stack migrations—see Dellinger et al., 2000; 

Jaramillo et al., 2000). The simplifications are appropriate given seismic data from an 

inhomogeneous subsurface (i.e. with non-constant wavespeed) and given the averaging 

inherent in the output image, which is a sum of prestack migrated gathers. Additional 

expressions are provided that take advantage of coordinates in equivalent offset domain. 

Although amplitudes of the imaged reflectors are no longer ‘true’ as defined by Gray 

(1997), they remain consistent over a wide range of dips, depths and changes in 

acquisition configuration. The resulting imaging technique is best described as a 

‘relative-amplitude-preserving’ EOM prestack time migration. 
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1.1.1 Economic and scientific value of reflection seismology 

Reflection seismology has proven its economic and scientific value in the search for both 

petroleum and minerals, as well as in our quest to understand the structure and evolution 

of the Earth’s crust and upper mantle. Worldwide expenditure for geophysical services is 

estimated to have exceeded US$4 billion in 2000, down from a peak of around US$7 

billion in 19982. The majority of these expenditures are for the acquisition, processing 

and library sales of reflection seismic data3. In fact, reflection seismic technology is the 

most significant technology influencing the oil and gas exploration and production 

business4. 

The reflection-seismic method spearheads the efforts of a number of national and 

international geoscience programs, including Canada’s LITHOPROBE5. To date, more than 

14,000 km of land and more than 3000 km of marine reflection seismic profiles have 

been processed and interpreted by LITHOPROBE geoscientists (Vasudevan et al., 2000). 

The patterns observed in these reflection seismic images allow geoscientists to project a 

detailed knowledge of surface geology into the subsurface, to compare images from 

different transects, and to constrain interpretations with numerical, physical and 

conceptual models of tectonic and depositional processes. Hence, an improved imaging 

 

2 First Break, November 1999, v. 17.11, p. 366. 

3 Non-exclusive seismic data sales are now estimated to account for the majority of new technology 

research, engineering and capital investment in seismic data acquisition (Elrod and Walker, 2000) 

4 As cited in surveys of projected worldwide E & P expenditures in 2000 for over 100 international oil and 

gas companies and more than 200 independents in Canada and the US (First Break, v. 18.2, p. 45). 

5 Other significant efforts include EUROPROBE, COCORP, BIRPS, DEKORP, ECORS, and INDEPTH. 
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technique could enhance existing interpretations and provide a better tool for future 

investigations. 

1.1.2 Objective: efficient and accurate EOM prestack time migration 

In this dissertation, I present a comprehensive physical and mathematical basis for EOM 

prestack time migration. An overview and careful critique of a variety of established 

imaging techniques leads to simplifications that are appropriate given the assumptions 

underlying the physics and mathematics, and given the limitations inherent in 

conventional reflection-seismic data sets. The practical goal of these simplifications is to 

reduce the computational effort and simplify the task of obtaining an image while 

retaining the accuracy of the basic theory. The expected result is an image that can be 

interpreted with more confidence than one produced by either conventional techniques or 

previous implementations of EOM prestack time migration (Bancroft et al., 1998; 

Margrave et al., 1999). In fact, on a test portion of LITHOPROBE SNORCLE6 line 1, van 

der Velden et al. (2001) and van der Velden and Cook (2001), have already demonstrated 

that EOM produces better images of subsurface crustal structure than LITHOPROBE’s 

conventional imaging approach of NMO, stack, and poststack phase-shift migration. 

1.1.3 Apology to the reader for a long introduction 

Some readers experienced in exploration seismology might consider the topics covered in 

this introduction as basic and perhaps unnecessary. However, I feel that the overall 

perspective on prestack time migration presented here is unique, and therefore valuable. 

The reader will also find important original contributions in the introduction. Although I 

 

6 Slave-NORthern Cordillera Lithospheric Evolution (SNORCLE) line 1 was acquired in 1996. Results 

from the original processing and interpretation can be found in Cook et al. (1999). 
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believe that the introduction should be read as a whole, the reader is welcome to skip to 

section 1.7 for a summary of original contributions presented in this dissertation, 

including those found in the introduction and appendices. 

This introduction covers a significant amount of material, but the material and the order 

of presentation have been chosen with a specific intent in mind: to avoid pitfalls 

associated with conventional concepts and definitions used to describe seismic imaging 

in general, and prestack time migration in particular. Thus, I begin with basic principles 

of reflection seismology and work towards a clear definition of the main problem 

addressed in this dissertation. 

Although I ask the reader to suspend their preconceptions, brevity demands that the 

reader be familiar with the basic theory, terminology and methods of reflection 

seismology and seismic imaging. Yilmaz (2001), Sheriff (1991), and Claerbout (1985) 

provide excellent descriptions, but occasionally resort to concepts and definitions that I 

prefer to avoid. Some alternatives are suggested in this chapter. 

1.1.4 Towards an alternate approach to the kinematics and dynamics of prestack 
time migration 

As an example of a concept that is in need of revision, consider the conventional 

derivation for prestack time migration, which typically begins by assuming a constant-

wavespeed7 subsurface. This assumption quickly leads to the conclusion that a non-

recursive implementation of prestack time migration is strictly valid only for a constant-

wavespeed subsurface, and perhaps justifiable for a subsurface with vertical variations in 

 

7 Here I follow Bleistein et al. (2001) and use the term wavespeed to refer to the material property that 

determines the speed of wave propagation, instead of the commonly used but imprecise term ‘velocity’. 
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wavespeed. But practical experience shows that useful images can be obtained in areas 

with complex lateral and vertical variations (e.g. Gray, 1998a). These considerations 

suggest that the conventional derivations for prestack time migration are insufficient, or 

perhaps that the conventional criteria used to judge migration images are stated 

incorrectly. I argue that both could be revised, and propose an alternate approach. The 

following paragraphs expand on this discussion. 

 

Figure 1.1. Equation (1.1) is derived by application of the Pythagorean theorem. 

A basic derivation of the kinematics of prestack time migration can be found in Claerbout 

(1985 p. 163-165), who assumes a constant-wavespeed medium with wavespeed c  and a 

2-D acquisition configuration on a planar surface. The kinematics of prestack time 

migration can be derived by application of the Pythagorean theorem (Figure 1.1), 

yielding Claerbout’s equation (3), which can be re-expressed as 
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In equation (1.1), τ  is the total traveltime from the source location to a subsurface point 

and back to the receiver location. The source-receiver midpoint is a distance  from the 

surface location directly above the subsurface point, while  is half the distance between 

the source and receiver. The two-way traveltime 

mx

h

0τ  is the total traveltime given a zero-

offset source and receiver located directly above the subsurface point, i.e. when surface 

distances  and . The same equation applies in 3-D if both  and  are 

radial distances. A similar derivation can be found in Bancroft et al. (1998), who refer to 

equation (1.1) as the double-square-root (DSR) equation and use it as the basis for 

deriving the kinematics of EOM prestack time migration. 

0=mx 0=h mx h

Claerbout also defines a different (but conceptually similar) DSR equation for double-

downward continuation of the frequency-domain wavefield in either source-receiver or 

midpoint-offset wavenumber coordinates. The midpoint-offset DSR equation (Claerbout, 

1985, equation 17, p. 181) can be re-expressed as 
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where ω  is frequency and k  is wavenumber. This DSR equation forms the basis for 

deriving the kinematics and dynamics of EWM (Margrave et al., 1999). 

Claerbout makes the following statement about equation (1.2): “the double-square-root 

equation contains most nonstatistical aspects of seismic data processing for petroleum 

prospecting” (Claerbout, 1985, p. 181). The alternate viewpoint, as argued in this 

dissertation, is that the kinematic component of the DSR equation (expressed as equation 

1.1) can be considered as a statistical migration operator, where we choose the best-fit 

‘migration wavespeed’ c  for each output point in the image space. In section 1.5.2, I 

derive equation (1.1) for an inhomogeneous medium by a Taylor series expansion of 

mig
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squared-traveltime perturbations, and show that the migration wavespeed is a function of 

the curvature of the wavefield recorded on the surface, i.e. a best-fit parameter that is 

only indirectly related to subsurface wavespeed. The dynamic component suggested by 

equation (1.2) will be shown to be incorrect, because it is based on the concept of double-

downward continuation of the prestack data. Hence, the derivation of the dynamic 

component also requires an alternate approach. The dynamic problem turns out to be 

much more difficult than the kinematic problem. Finding a practical solution is one of the 

main goals of this dissertation. 

1.1.5 Overview of Chapter 1 

In Section 1.2, reflection seismology is described as an echolocation technique, and 

migration as a transformation from a data space to an image space. In Section 1.3, I 

introduce some of the basic concepts and physical principles of reflection seismology. In 

Section 1.4, geophysical inverse theory is applied to the seismic imaging problem, and is 

shown to be the foundation for both the statistical kinematic approach and the theoretical 

dynamic approach. In Section 1.5, a new derivation of the DSR equation is presented. 

The DSR equation is shown to be a reasonable approximation for the kinematics of 

prestack time migration in a generalized inhomogeneous media. In Section 1.6, I return to 

the kinematics and dynamics of EOM prestack time migration. The kinematic solution 

has already been shown to be exact, and so do not need to be addressed further. However, 

previous approaches to the dynamics are shown to be in error. Thus, a dynamic solution 

is still required. The objectives and main contributions of the dissertation are summarized 

in Section 1.7. 
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1.2 BASIC PRINCIPLES OF REFLECTION SEISMOLOGY 

In essence, reflection seismology is a remote-sensing technique based on the principles of 

echolocation8. An energy source at the surface of the Earth introduces sound waves that 

propagate through the various rock layers in the subsurface. Abrupt changes in the 

density and/or elastic moduli of the rock—which typically correspond to layer 

boundaries or structural discontinuities—impede the transmission of the sound waves. At 

each impedance contrast, or ‘reflector’, a small fraction of the propagating energy is 

reflected or diffracted and returns to the surface as a faint echo of the source. The 

magnitude of the fraction is commonly referred to as the reflection coefficient or the 

reflectivity. Receivers that measure either acoustic pressure or particle motion remotely 

sense the ‘reflection events’ that propagate back to the surface. The corresponding 

amplitudes are digitally recorded as time series known as ‘seismograms’, where the zero 

time on each seismogram is the initiation time of the source. To obtain repeated echoes 

from each reflector element in the subsurface, the basic bistatic experiment is repeated 

for numerous source and receiver locations distributed over the surface. The collection of 

seismograms can be thought of as forming a synthetic aperture. The overall objective is 

to process the seismograms to create an image or representation of the subsurface 

reflectors. 

 

8 The New Penguin Dictionary of Science defines echolocation as: A technique for finding the distance, 

and sometimes direction, of a remote object. A measurement is made of the time taken for a pulse of ... 

sound to reach the object and return from it after reflection”. A Dictionary of Science (Oxford University 

Press) and others restrict use of the word to the far more complex physiological process employed by 

animals such as bats. Using radar or sonar terminology, reflection seismology could also be described as a 

bistatic (i.e. source and receiver are separated) synthetic aperture approach to acoustic imaging. 
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Undesired signals are also recorded, including various direct and indirect arrivals from 

the source that do not represent primary reflections or diffractions, and signals from other 

natural and cultural sources. These undesired signals are considered as ‘noise’. The 

seismograms are processed to remove noise and to shape the desired reflections to 

represent a band-limited impulse corresponding to the arrival time of the reflected or 

diffracted source signal. Typically, additional corrections (such as time shifts or ‘statics’) 

are applied so that the seismograms correspond to a simpler physical model than the 

actual unknown true subsurface. 

1.2.1 The data space 

The collection of processed seismograms will be referred to here as the ‘data space’. The 

data space could be one-dimensional (i.e. a vector of all data elements), which will prove 

useful in Section 1.3 where the process of migration is described using matrices. More 

typically, the data space is multidimensional, with a ‘vertical’ dimension corresponding 

to traveltime on the seismograms, and a number of ‘horizontal’ dimensions 

corresponding to the coordinates chosen to define unique source and receiver locations 

for each seismogram9. Often, absolute and/or relative spatial coordinates for the source 

and receiver locations are transformed into more convenient coordinates, such as the 

midpoint location between the shot and receiver, the horizontal offset distance from shot 

to receiver, and an azimuth direction. Other possible horizontal coordinates include 

ordered numerals identifying unique sources, receivers, midpoints, and/or offset bins. 

The seismograms can then be sorted based on the chosen coordinates, which in turn 

determines the number of horizontal dimensions. 

 

9 Rice (1953) proposes a ’resolved-time’ hybrid data/image space with horizontal coordinates in time (see 

also Rice, 1955). 
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1.2.2 Migration: from data space to image space 

The purpose of migration is to construct an image of the subsurface by transforming the 

information in the seismograms from the data space to an ‘image space’ (Figure 1.2). In 

essence, migration attempts to transform the reflection events into a ‘reflectivity map’ 

that represents the spatial distribution of impedance contrasts in the subsurface. Patterns 

in the reflectivity map can often be directly interpreted as representing layer boundaries 

or structural discontinuities. These geometries, in turn, can be interpreted to yield the 

depositional and tectonic history. At each subsurface location, it might also be possible to 

estimate the reflection coefficient (i.e. the fraction of energy reflected) at multiple angles 

of incidence. These amplitude variations with angle (AVA) can be interpreted to yield 

lithology, porosity, and fluid type (e.g. SEG course notes by Hilterman, 2001). 

 

Figure 1.2. Seismic migration is a transformation from a data space to an image space. 
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In the above description of migration, I have avoided any reference to a particular choice 

of coordinates for the image space, or to a particular method of transformation. This is in 

contrast to commonly accepted definitions that imply spatial coordinates for the image 

space. Sheriff (1991) defines migration as “an inversion operation involving 

rearrangement of seismic information elements so that reflections and diffractions are 

plotted at their true locations”, while Yilmaz (2001) states that “migration moves dipping 

reflections to their true subsurface positions and collapses diffractions, thus increasing 

spatial resolution and yielding a seismic image of the subsurface”. The phrases “true 

locations” and “true subsurface positions” are somewhat ambiguous10, but suggest that 

migration should produce an image with accurate absolute positioning, i.e. the 

coordinates of the image should be spatial coordinates and the positioning of reflectors 

within the image should correspond to their true subsurface location. These definitions 

are too restrictive, as they exclude a number of practical image spaces and their 

respective transformations. The image space of “true subsurface locations” is, however, a 

useful concept for developing a physical understanding of a hypothetical exact migration 

(see Section 1.3). 

The more general description adopted here follows Claerbout (1992 p. 107), who defines 

migration as “any data-processing program that converts data into an image”. Thus a 

seismic image can be any representation of the subsurface — just as a photograph is a 

 

10 What is “truth” in any practical implementation? As stated by Snieder and Trampert (1999 fn. p. 123) “It 

is not so difficult to formulate a vague definition such as ‘the true model is the model that corresponds to 

reality and which is only known to the gods.’ We are not aware of any definition that is operational in the 

sense that it provides us with a set of actions that could potentially tell us what the true model really is.” An 

alternate approach follows first-order logic and yields a possibly infinite set of true models, where a true 

model is one that solves the inverse problem. However, this leads to a large and inefficient search space. 

The nature of truth in inverse theory is a topic of current research (e.g. Pfenning, 2001). 
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representation of objects in the real world — and the coordinates of the image can be any 

convenient coordinates. Depending on the coordinates, a criterion such as “accuracy of 

absolute positioning” may not have much meaning. Instead, we are probably more 

interested in accuracy of resolution (i.e. focusing) and accuracy of relative positioning 

(i.e. that the spatial relationship between two reflectors in the subsurface is preserved in 

the image space). These two criteria can be applied to any image space even when the 

concept of absolute positioning is meaningless. A good analogy is a photograph, which 

contains useful information despite distortions such as perspective and foreshortening. 

1.2.3 The image space 

In general, the method of transformation determines the dimensions and coordinates in 

the image space. Since the image space purports to be a representation of the subsurface, 

it typically contains two-dimensional image sections (i.e. vertical planes) or three-

dimensional image volumes that represent their respective sections and volumes in the 

subsurface. However, the image space may contain additional horizontal dimensions such 

as angle, offset, or azimuth. 

The concept of the image space as a representation implies that the coordinates of the 

image space do not need to be spatial coordinates. Typically, the vertical coordinate is 

either depth or traveltime and the horizontal coordinate(s) are absolute or relative 

distance (plus angle, offset, azimuth, etc. as required). Other possible horizontal 

coordinates include ordered numerals identifying unique sources, receivers, midpoints, 

and/or offset bins. Seismic images are often displayed with these non-intuitive horizontal 

coordinates, a practice that is partly historic, but can provide important information about 

acquisition parameters that might affect the interpretation. 
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Often, processes are applied that reduce the number of dimensions in the data space or 

image space to two or three, corresponding to the two or three dimensions of the desired 

image section or image volume representing the subsurface. These processes will be 

referred to here using the generic term ‘stacking’, although this term has a specific 

definition in seismic processing as the process of summation of data elements over offset 

after the application of normal moveout correction (NMO) or normal moveout correction 

followed by dip moveout correction (NMO-DMO). If stacking is applied to a data space, 

the result will be referred to as the stacked data space, or specifically as a stacked data 

section or stacked data volume if the number of dimensions is known. A transformation 

from a stacked data space to an image space with the same number of dimensions is 

defined here as a poststack migration. A transformation from an unstacked or partially 

stacked data space to any possible image space is defined here as a prestack migration. 

The output image space for a prestack migration often includes an extra dimension of 

offset or angle. A stack after prestack migration can collapse this extra dimension, a 

process defined here as stacking prestack migrated gathers. The output image elements 

will be referred to here as ‘stacked reflectivity’. EOM prestack time migration is a 

transformation from an unstacked data space, through a stacked data space known as 

‘equivalent offset gathers’, to image sections or image volumes of stacked reflectivity. 

1.2.4 Towards a definition of time migration 

The modifier ‘time’ in prestack time migration has not yet been defined. The alternative 

is usually considered to be some type of ‘depth’ migration11. Based on the discussion 

 

11 The terms ‘depth migration’ and ‘time migration’ should be treated simply as jargon that indicates 

whether or not an algorithm is capable of producing a correct image in the presence of strong lateral 

wavespeed gradients (Margrave, 2000). This suggests a spectrum of algorithms, with time migrations at 
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above, one might conclude that the output from a time migration is an image space with a 

vertical dimension of time. Yilmaz (2001 p. 464) supports this by stating “the migration 

process that produces a migrated time section is called a time migration”. For now, this is 

a reasonable working definition. A more precise definition is presented in Section 1.5.4. 

1.3 BASIC PHYSICAL CONCEPTS OF WAVEFIELD PROPAGATION AND 
MIGRATION 

In the previous section, I suggested that the processed seismograms contain reflection 

events, and then described migration as a transformation from the data space to an image 

space. In this section, I introduce some basic concepts of mathematics and physics 

required to understand a hypothetical exact true-amplitude migration, i.e. the 

transformation that maps a reflection event in the data space to a reflector in an image 

space of ‘true subsurface locations’, where the peak amplitude represents the angle-

dependent reflectivity. At the end of this section, these concepts are expanded to a 

broader class of transformations and hence possible image spaces. The intent is to 

provide a background for the basic mathematics of geophysical inversion presented in 

Section 1.4 and for the more detailed mathematics of seismic wavefield propagation and 

seismic imaging presented in Chapters 2 and 3. 

1.3.1 Geophysical inversion: driven by the seismic data 

The purpose of geophysical inversion is to estimate earth properties from geophysical 

data. The basic idea is to infer a mathematical expression that explains how the physics 

of the experiment combines with the earth properties to create the recorded data. In this 

mathematical expression, the physics of the experiment and the recorded data are the 

 

one end and depth migrations at the other end. Thus a time migration is strictly valid in c(z) settings 

(perhaps only for constant wavespeed c), whereas a depth migration is valid for c(x,y,z). 
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known quantities, while the earth properties are the unknown quantity. In principle, the 

expression can be solved or ‘inverted’ for the unknown quantity, thereby giving us the 

desired estimates of the earth properties. 

Initially, we have only one known quantity — the geophysical data. For seismic 

reflection data, these are the seismograms recorded on the surface of the earth plus the 

source and receiver locations and characteristics. The other known quantity — the 

physics of the experiment – needs to be expressed in a mathematical form that could 

explain the data given the earth properties we wish to estimate. Determining synthetic 

data from the earth properties is called the forward problem. The inverse problem works 

in the other direction, since we need an expression that takes the data and ‘backs out’ 

some or all of the physics of the experiment, leaving the desired estimates. The resulting 

mathematical expression can be considered as a transformation from the data space to the 

image space, and therefore as a migration. 

With both migration and geophysical inversion, we are free to base our forward and 

inverse mathematical expressions on any useful relation between the data space and the 

image space, no matter how approximate, suspect, or nonexistent the underlying physics. 

There are two reasons why this might be an acceptable approach. A useful image might 

be created using an empirical expression that cannot be explained by current physics and 

mathematics. Or, we might be willing to accept an image that, in some respects, is a 

distortion of the subsurface, especially if the image can be easily produced. Still, the most 

fruitful approach is to create expressions based on an understanding of the physics of the 

experiment. As stated previously, we start with one known quantity—the data. The 

information in the data places a fundamental constraint on the physics in the 

mathematical expressions and on the estimates we can obtain. Thus, it makes sense to 

start with the data and work backwards towards an understanding of the relevant physics. 
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1.3.2 Traveltime and amplitude information in the seismograms 

The seismograms in the data space can be thought of as containing two main types of 

information: traveltime and amplitude. The traveltime for a particular reflection event in 

a single seismogram is the total time taken by the impulse of source energy as it 

propagates from the source location to the reflector element and back to the receiver 

location. Theory, supported by intuition and experiment, suggests that the traveltime for a 

nondispersive wave depends on the travelpath taken by the propagating energy as well as 

the wavespeed of the material along this travelpath. Fermat’s principle of ‘stationary 

time’ tells us that knowledge of the wavespeed alone is sufficient to determine a 

travelpath12. Thus, for an exact migration that creates an image at true subsurface 

locations, the wavespeed is assumed to be known wherever a travelpath in the subsurface 

is possible. 

The amplitude of the reflection event provides information about the strength of the 

impedance contrast. Assuming that the behavior of the source and receiver are well 

understood, the amplitude recorded at the receiver depends on a number of factors in 

addition to the impedance contrast at the reflector of interest. These factors include (but 

are not limited to): geometrical spreading of the propagating wavefield, transmission 

losses at discontinuities in the media, various mechanisms for anelastic attenuation, 

multiples, and noise. 

Given the small displacements associated with wavefield propagation, and assuming that 

attenuation effects have been compensated for (or are negligible), earth materials can be 

approximated by a perfectly elastic continuum. Then, the behavior of a propagating 

 

12 Fermat’s principle can only be formulated for convex slowness surfaces (M. Slawinski, pers. comm.) 
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wavefield is completely determined by the density of the material and elastic constants 

(stiffnesses) that relate stress and strain within the material. These material properties 

define wavespeeds for different modes of wave propagation. However, for the general 

case of an anisotropic and inhomogeneous earth, analytic solutions for determining 

travelpaths for a given mode are not available and numerical solutions are both 

approximate and costly. 

The problem is greatly simplified by assuming that the subsurface is isotropic (but can 

still be inhomogeneous) and by neglecting transmission effects and mode conversions. If 

we are interested only in the compressional mode of wave propagation, the earth can be 

further approximated by acoustic materials. The acoustic earth model is the starting point 

for the theoretical development that begins in Chapter 2. 

I now make two assumptions: that seismic reflection data can be considered as high 

frequency13, i.e. that the kinematics of wavefield propagation can be accurately described 

by raypaths; and that wavefield propagation is linear, i.e. that the principle of 

superposition applies. Although these assumptions can be supported by theory, it is more 

important that they be supported by experimental evidence. Otherwise, a new theory 

would be required. Given that current practice does support these assumptions (e.g. 

Yilmaz, 2001), they can be considered as reasonable, independent of any theoretical 

justification. 

1.3.3 Hagedoorn told us to use diffraction curves 

For a given source and receiver location, the locus of all possible reflector locations that 

satisfy a constant traveltime is commonly referred to as an ‘isochron surface’. Thus, there 

 

13 They satisfy the WKBJ assumption (see Section 2.5). 
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is an isochron surface (possibly multivalued) for each reflection element in the data 

space. Applying the general principle of echolocation, and assuming a sufficient data 

space, the intersection of isochron surfaces determined from different seismograms 

identifies a unique location for the reflector element in the true subsurface. But the 

seismograms contain many reflection events from many different subsurface reflectors, 

so it may be next to impossible to choose the correct reflection event on each 

seismogram14. 

There are two approaches to this problem. The brute force approach is to determine the 

isochron surfaces for all elements in the data space, and then take the subset of these that 

intersect at one location in the true subsurface. This subset will identify specific 

traveltimes on particular seismograms. An alternate but equivalent approach is to take 

 

14 The identification of reflection events was a significant historical problem in the development of 

reflection seismology (see the collection of papers in Gardner, 1985). Imaging was limited to mapping 

subsurface reflectors where a reflection event could be clearly correlated from one seismogram to the next. 

Given a model of the subsurface wavespeed [typically c(z)], the location of the reflector could be estimated 

based on the change in traveltime of the reflection event over a small array of seismograms. Gaby (1945) 

was the first to propose that better relative positioning might be achieved in an image space with a vertical 

coordinate of time rather than depth. Hagedoorn (1955 p. 121) recognized the importance of isochron 

surfaces: “fundamentally, any (migration) method must be based on the determination of surfaces of equal 

reflection times”, and the relationship between isochron curves and diffraction curves (see Hagedoorn’s 

Fig. 6 on p. 93). However, Hagedoorn’s diffraction curve lies, not in the data space, but in an intermediate 

space of “vertically plotted points” with a vertical coordinate of depth instead of time, a practical necessity 

in the days of chart migration before computers. His method produces an exact migration for common-

offset sections if offset-dependent isochron and diffraction curves are used, but he proposes a practical 

method that is a simplification to zero-offset (see Hagedoorn’s Fig. 25 on p. 122) and hence anticipates the 

conventional poststack migration of an NMO corrected stack with no DMO correction. This might explain 

why the necessity for DMO was not ‘discovered’ until the mid 1970’s (Doherty, 1975; Sherwood et al., 

1976; Judson et al., 1978; see also Yilmaz, 1980; Deregowski and Rocca, 1981). 
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one location in the subsurface and determine corresponding traveltimes in the data space. 

Obviously, these are the same traveltimes as found from the subset of isochrons. In the 

data space, the surface of these traveltimes is called a ‘diffraction surface’15. 

Unfortunately, the diffraction surface tends to cross most reflection events, and, if 

tangent to a reflection event, has a tighter curvature. Thus, it is not immediately clear 

how the principle of echolocation can be applied. 

An elegant solution was proposed by Hagedoorn (1955). Instead of reconstructing the 

reflector at a single output location, Hagedoorn suggested that the envelope of isochron 

surfaces from a (vertically plotted) reflection event would reconstruct the reflector 

surface. Bleistein (1999) presents a similar argument, but starts with a reflection event in 

a 2-D zero-offset data space and assumes a 2-D medium ( with constant 

wavespeed  (Figure 1.3a). Suppose the 

),( tx ), zx

c x -coordinate of the zero-offset source and 

receiver locations is denoted by x , the reflection event is located in the data space at 

traveltime t(x ) , and the apparent slowness is given by xxt ∂∂ )( . Then the family of 

isochron curves (circular arcs) can be described as 

 ( ) 0)(2)(),( 22 =+−−= zxx
c

xtxxF x , (1.3) 

where r  is an arbitrary point on the isochron curve for a fixed ),( zx= x  (Figure 1.3b). 

At different source-receiver locations x′ , the traveltime )(xt ′  is different, and thus a new 

set of values x  is required to define another isochron curve in the family. ),( zx ′′=′

                                                 

15 To call it a surface, we have to assume smooth variations in traveltime with perturbations in the source 

and receiver locations. This is a reasonable assumption except in the vicinity of caustics. This smoothness 

assumption underlies the Taylor series expansion for the generalized hyperbolic traveltime relationships 

developed in Section 1.6. 
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Figure 1.3. Given a zero-offset source-receiver location )0,(),( xzx = , each reflection event at time 

)(xt  with apparent slowness xxt ∂∂ )(  in the data space (1.3a) defines an isochron curve ),( zx=x  

in the image space (1.3b). As x  and )(xt  vary along a particular reflection event [e.g. to x ′  and 

)(xt ′ ], a family of isochron curves ( )xxF ),(x  is defined. In a medium with constant wavespeed c , 

each curve is a circular arc 022)(
2

)( =+−− zxx
c

xt . The envelope of isochron curves defines 

the reflector in the image space. 
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As Bleistein (1999) points out in an appendix, the envelope of the isochron surfaces 

satisfies two requirements: first, that each point of the envelope is also a point on some 

curve of the family for some value of x , i.e. the envelope can be thought of as a 

parametric curve with x  as the parameter; and second, right where the curve F = 0 is in 

contact with the envelope at )(xxx = , the tangents of the two curves must be collinear or 

anticollinear. Bleistein shows that, based on these two requirements, the partial derivative 

with respect to x  is zero, i.e. 

 0)(2)()),(( 22 =





 +−−= zxx

cxx
xt

x
xxF

∂
∂

∂
∂

∂
∂ x . (1.4) 

Given known values for x , )(xt , and xxt ∂∂ )( , equations (1.3) and (1.4) can now be 

solved for the unknowns x  and , giving the desired location for the reflector in the 

subsurface. Although mathematically feasible, solving equations does not provide much 

insight into Hagedoorn’s method. 

z

Bleistein suggests a second method: ‘to solve one of the equations for x , usually the 

second, as a function of x , and then substitute the result back into the other equation’. 

Expanding this statement leads to some valuable insight. First, consider that equation 

(1.3) can also be thought of as a family of diffraction curves (hyperbolas – see Figure 

1.4a) at all possible values t(x )  for a fixed point on the reflector , i.e. ),( zx=x

 ( ) 0)(2)()(, 22 =+−−= zxx
c

xtxF xx . (1.5) 

Taking the partial derivative as before yields 

 0)(2)())(,( 22 =





 +−−= zxx

cxx
xt

x
xF

∂
∂

∂
∂

∂
∂ xx , (1.6) 

which is identical to equation (1.4) but now expressed in terms of the diffraction curves. 

Equation (1.6) says that, in the data space, the apparent slowness of the reflection event 
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Figure 1.4. Each reflector location ),( zx=x  in the image space (1.4b) defines a diffraction curve 

( )(, xtx )  in the data space of zero-offset source-receiver locations (1.4a). As x  varies along a particular 

reflector in the image [e.g. to ),( zx ′′=′x ], a family of diffraction curves ( ))(xxF ,x  is defined. In a 

medium with constant wavespeed c , each curve is a hyperbola 022)(
2

)( =+− zxx
c

xt − . The 

envelope of the diffraction curves is the reflection event in the data space with apparent slowness 

xxt ∂∂ )( . 
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and the apparent slowness of the diffraction curve must be equal, i.e. that they are 

tangent. Thus the envelope curve for the diffraction curves is the reflection event in the 

data space. 

Using diffraction curves, the practical method for finding the reflector is as follows: find 

the diffraction curve that is tangent to the apparent slowness of the reflection event in the 

data space and plot the position of the reflection curve at the apex  in the image 

space (Figure 1.4b). As Hagedoorn points out (p. 98 and his Figure 11, reproduced as 

Figure 1.5): “Obviously, from these considerations, the position of the migrated point P 

can be determined uniquely by use of the chart of curves of maximum convexity

),( zx=x

(zc

16 alone, 

because the intersection P of the curve of maximum convexity with the curve of equal 

reflection times through Q must lie on the central axis of the chart of curves of maximum 

convexity.” Note that Hagedoorn’s statement is valid for a constant wavespeed 

subsurface or for a subsurface with vertical variations in wavespeed [i.e.  as 

illustrated in Figure 1.4a]. Lateral variations in wavespeed introduce additional 

complications that will not be discussed here (see Alcock, 1943; Black and Brzostowski, 

1994). I return to the constant wavespeed case. 

)

Equations (1.3) and (1.4) are now examined to see if there is a similar relationship for the 

isochron curves. Given that the isochron curves exist in the space of true subsurface 

locations, it is helpful to re-express both equations in dimensions of length by 

multiplying through by c 2 , yielding 

 

                                                 

16 A curve of maximum convexity is a diffraction curve converted to the space of vertically plotted points. 

The space of vertically plotted point is a data space where the vertical coordinate is the depth-converted 

zero-offset traveltimes, or depth converted NMO-corrected traveltimes for nonzero-offset. 
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Figure 1.5. (Figure 11 of Hagedoorn, 1955). A reflection event at location Q in the space of vertically 

plotted points maps to a reflector at location P in the image space. The isochron curve and the 

diffraction curve that pass through Q and P are defined by the same equation [compare equations (1.3) 

and (1.5)]. The envelope of the isochron curves is the reflector, while the envelope of the diffraction 

curves is the reflection event. 

 22)()(
2

zxxxtc
+−= , (1.7) 

and 
x

zxx
x
xtc

∂
∂

∂
∂ 22)()(

2
+−

= . (1.8) 

Equation (1.7) is the equation of the isochron curve (a circle). The RHS of equation (1.8) 

is the change in radius 22)( zxxr +−∂=∂  as the center of the isochron curve (the 

source-receiver location) is perturbed a distance ∂x . Using basic triangle relationships as 

shown in Figure 1.6, the RHS equals βsin , where β  is the geologic dip. The LHS of 

equation (1.8) equals αtan , where α  is the dip in the unmigrated section of vertically 

plotted points. Thus, equation (1.8) is the ‘migrator’s equation’ βα sintan =  (e.g. 

Sheriff, 1991). 
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Figure 1.6. Graphical proof that equation (1.8) is the ‘migrator’s equation’ βα sintan = . The small 

right-angle triangles a and b are similar to the large right-angle triangles with angles α  and β , 

respectively. The large triangles share a common side C and their opposite sides are both equal to 

isochron radius 2)(xctr = . Thus, βα sintan = . 

Using isochron curves, the practical method for finding the envelope curve is as follows: 

find the isochron curve of radius 2)(xct , measure and convert the apparent slowness to 

its depth equivalent αtan , use the migrator’s equation to solve for the geologic dip β , 

determine the point on the isochron curve with dip β , and then plot this as the point 

 on the envelope curve. For a subsurface with vertical variations in wavespeed, 

the procedure is not so easily quantified, but can be simplified by using a chart of 

isochron curves identified by traveltime, with dip angles marked in physical units of 

apparent slowness. Then the traveltime and apparent slowness measured in the data space 

can be plotted directly as the reflector in depth. In fact, this was the accepted procedure 

(e.g. Musgrave, 1952; Dix, 1952) prior to Hagedoorn’s novel method utilizing diffraction 

curves. So Hagedoorn did tell us how to do migration, but clearly argues that the reflector 

envelope can be found more easily using diffraction curves rather than isochron curves. 

),( zx=x
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1.3.4 Hagedoorn’s method as backprojection or backpropagation/imaging 

Hagedoorn’s method can be extended to a multidimensional data space, in which case the 

corresponding families of curves are multidimensional isochron surfaces and diffraction 

surfaces. The results from the previous section suggest that the most effective way to 

implement a migration is by summation over the portion of the diffraction surface that is 

tangent to the reflection event. The optimum portion of the diffraction surface 

corresponds to an aperture of seismograms in the data space, i.e. to an ‘optimum 

migration aperture’. This is an active area of current research (Vanelle and Gajewski, 

2001a; Sun, 2000). The synthetic tests presented in Chapter 4 utilize these concepts to 

minimize computation while ensuring accuracy. 

As pointed out by Bleistein (1999), the process of finding an envelope of a family of 

curves is closely related to the method of stationary phase. The diffraction surface can be 

thought of as a function of phase. By summing the amplitudes of the seismograms as 

defined by this phase function, we might expect that the major contribution will occur 

where the amplitudes are stationary. Details of the method of stationary phase are not 

provided in this dissertation. Good discussions related to seismic imaging can be found in 

Bleistein et al. (2001) and Bleistein and Gray (2001). 

Unfortunately, it is difficult to determine a priori which portion of the diffraction surface 

is tangent to a reflection event (i.e. the stationary point) and if there is more than one 

tangency. Thus, migration is typically implemented as a summation over the entire 

diffraction surface, i.e. as the brute force method mentioned earlier. Then, summation 

over a diffraction surface and superposition of isochrons are identical procedures 

(although practical considerations usually favor a diffraction summation). Since both 

concepts are valuable, they will be used interchangeably depending on the context. 
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Consider summation over an entire diffraction surface in the data space. Although it is 

clear from the previous section that the true subsurface location of the reflector can be 

identified, there is no assurance that the amplitude of the reconstruction will have any 

relevance to the desired reflectivity map of the subsurface. Typically, the subsurface is 

complicated and so there will be many reflection events in the data space. Hence, a given 

diffraction surface will cross many reflection events (as well as noise). The 

corresponding amplitudes on the seismograms will be part of the summation. It would 

appear that, unless we can assume that the summation of these undesired amplitudes will 

all fortuitously cancel, they will seriously affect the amplitude of the reconstructed 

reflector, and may distort reconstruction of the location. 

The truly amazing thing is that, if the correct weighting function is chosen for the 

migration, these unwanted amplitudes in the summation do cancel (often even incorrect 

weighting functions result in reasonable cancellation). The details of how this might 

work are related to Huygens’ principle as embodied in the Kirchhoff-Helmholtz theory of 

forward and inverse wavefield extrapolation (developed in Chapter 2 and Appendix B), 

or to backprojection of the data as embodied in the theory of generalized Radon 

transforms. The theory of generalized Radon transforms is not discussed in detail in this 

dissertation (see Beylkin, 1982, 1985; Miller et al., 1987; Jaramillo, 1999; Jaramillo and 

Bleistein, 1999), although the general results form a basis for the weighting functions 

developed in Chapters 3 and 4. 

A weighted summation over an entire diffraction surface (or the equivalent, a weighted 

superposition of all possible isochrons) can be considered as a backprojection of the 

recorded data or as a backpropagation combined with an imaging condition (Esmersoy 

and Miller, 1989). Both can be implemented as a ‘weighted diffraction stack’. The 

weighting function includes compensation for amplitude effects such as geometrical 
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spreading and a Jacobian17 that relates the surface sampling to an equi-angular 

distribution of isochrons at the image point. The resulting image of the subsurface can, in 

principle, provide accurate estimates of angle-dependent reflectivity.  As mentioned 

previously, determining the correct weighting function is one of the primary objectives of 

this dissertation. The details are left to the main body of the dissertation. 

Note that two purposes have now been given for the weighting function. The first 

purpose is to reconstruct the reflector location without contamination from other 

reflection events. This purpose can be expanded to include other sources of 

contamination such as insufficient data, other elastic wavefields in the data, operator 

aliasing, coherent noise, and a host of other possibilities. The second purpose is to 

reconstruct a peak amplitude that is an accurate estimate of the angle-dependent 

reflection coefficient, or an unbiased average of angle-dependent reflection coefficients. 

These two purposes may conflict, although it is a reasonable assumption that success of 

the second depends on the first. The discussion in this dissertation is limited to the second 

purpose. 

Reconstructing accurate locations without regard to meaningful amplitudes is often called 

‘structural imaging’. Often, the term ‘migration’ is limited to transformations that yield 

structural images, and occasionally to transformations implemented as inverse wavefield 

extrapolation and imaging. Reconstructing accurate angle-dependent reflection 

coefficients is often called ‘true-amplitude migration’, or ‘inversion’. Often, the term 

 

17 A Jacobian is the factor that arises with a change of variables in integration, for example the terms in 

forward modeling and migration formulas associated with equal-area sampling over a planar acquisition 

surface (the Earth’s surface), as opposed to the mathematically simpler (but less practical) equal-area 

sampling over a spherical surface surrounding the spherically symmetric Green’s functions. 
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‘inversion’ is limited to transformations implemented as a backprojection or as a least-

squares solution to a matrix formulation (see section 1.4). I have chosen to use the term 

migration as a general descriptor for a transformation from the data space to an image 

space, in which case it is probably more realistic to consider ‘relative-amplitude 

preserving’ migrations. 

In this and the previous section, the isochron surface was assumed to be a function of the 

spatial coordinates of the true subsurface locations, but the concept of an isochron surface 

can be generalized to any image space and its defining coordinates. As well, an isochron 

surface can be created for any point in the data space, not just reflection events. This 

suggests a more general definition for an isochron surface: the locus of all possible 

elements in the image space corresponding to a single point in the data space. An 

analogous concept relates a single point in the image space to a surface in the data space. 

This surface is referred to as a diffraction surface. 

1.4 SEISMIC IMAGING AS GEOPHYSICAL INVERSE THEORY 

Geophysical inverse theory provides a mathematical framework that allows us to make 

inferences about physical properties in the Earth’s subsurface given data collected on the 

surface18. Seismic imaging methods, which go by various names including migration, 

migration/inversion and least-squares migration, are special cases of more general 

wavefield inversion procedures (Scales, 2001). Thus, the mathematics used to describe 

inversion provide an excellent platform for understanding imaging concepts as well as a 

foundation for the detailed mathematics and physics presented in this dissertation. The 

 

18 In general, the data do not need to be collected on the surface, but this restricted definition is appropriate 

for the seismic imaging problem addressed in this dissertation. 
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mathematics presented in this section follows previous work by Gray (1997). Here, I 

attempt to provide a slightly different perspective and, in particular, address issues 

related to time migration methods such as EOM. 

1.4.1 Geophysical inversion and the validation process 

The basic process of geophysical inversion can be separated into three steps (Figure 1.7). 

First, devise a mathematical expression, known as the forward problem, that describes the 

data in terms of the relevant physics and the desired subsurface properties. Second, use 

the forward problem to devise a mathematical expression that estimates the desired 

subsurface properties from the data. Finally, devise a mathematical expression that 

appraises how good these estimates are. Strictly speaking, the inverse problem is a 

combination of the latter two steps, which Snieder and Trampert (1999) call the 

estimation and appraisal problems19. 

The goal of geophysical inversion is to make inferences about physical properties in the 

Earth’s subsurface. Thus we are free to choose any estimator, even if does not seem to be 

firmly based in relevant physics. This is a common situation in seismic processing and in 

many other areas of exploration geophysics where practicality, robustness, and successful 

application are more important criteria than the existence of a complete theoretical 

description. A good example is seismic deconvolution, which is based more on statistics 

than physics and yet satisfies all these criteria. 

 

19 In this dissertation, I follow the convention adopted in much of the seismic reflection literature and often 

use the term ‘inverse’ to describe the estimation problem by itself. 
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Even in the case of an arbitrary estimator, geophysical inverse theory can still be applied. 

The important problem becomes one of appraisal. However, devising a suitable 

expression for quantitative appraisal is seldom attempted. A more common approach is 

 

Figure 1.7. The inverse problem is a combination of the estimation and appraisal problems. In typical 

applications of seismic processing and imaging, only the estimation problem is addressed—and the 

estimation problem by itself is often referred to as the inverse problem. In this dissertation, the 

appraisal problem is replaced by a validation process, or assessed by qualitative (rather than 

quantitative) methods. 

to replace the appraisal problem by a validation process. Common methods for validation 

include: 

1. theoretical analysis using simple analytic forward problems; 

2. quantitative or qualitative analysis comparing estimates from synthetic or physical 

model data against the known model parameters; 
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3. comparative analysis of estimates from field, synthetic, or physical model data 

against similar estimates from previously validated algorithms; and 

4. comparative analysis of estimates from field data against well data or surface data 

projected into the seismic image (perhaps using geostatistics). 

Another approach to the appraisal problem is to make a qualitative assessment of the 

origins and general characteristics of errors introduced by the estimation problem. Some 

of these characteristics may be acceptable, given the difficulty required to minimize 

them. For example, prestack time migration can often provide good focusing and 

accurate relative positioning of reflector elements with a loss of accurate absolute 

positioning. The concept of a qualitative appraisal categorized in terms of focusing, 

relative positioning and absolute positioning will be explored in more detail later in this 

introduction and appears as a recurring theme throughout the remainder of the 

dissertation. Note, however, that absolute positioning suggests a depth migration, which 

requires a detailed macro-model of the subsurface wavespeed. The estimation of the 

macro-model is an additional inverse problem with all the complications associated with 

estimation and appraisal (or validation). The imaging problem would be greatly 

simplified if this additional inverse problem could be ignored, or perhaps replaced by a 

simpler problem of determining estimators that are independent of the macro-model. In 

fact, this is exactly what prestack time migration offers. This alone is sufficient to justify 

prestack time migration as a valuable step in any processing sequence, even when the 

ultimate aim is an accurate depth migration. The following is a mathematical basis in 

support of this argument. 
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1.4.2 Towards a linear forward problem 

The basic seismic experiment can be developed into a generalized mathematical 

expression that describes the forward problem: 

 di = fi(m) +ei , (1.9) 

where d  is a discrete element of data (in an abstract n-dimensional space of 

measurements comprising the totality of samples, components, source and receiver 

characteristics and locations, etc.), 

i

f i  is a forward theory operator, m  is the earth model, 

and e  is a combination of measurement errors and misfit errors. i

Although equation (1.9) represents the data space as discrete and possibly finite in 

number and extent, the data space could also be considered as continuous and infinite in 

number and extent, and therefore appropriate for the inverse wavefield propagation 

methods of Stolt (1978) and Schneider (1978) or the Fourier transform-like integral 

inversion methods of Cohen and Bleistein (1979), Cohen et al. (1986), and Bleistein et al. 

(1987)20. A continuous data space with infinite extent is assumed for much of the theory 

presented in this dissertation, partly because the forward theory operators are developed 

from principles of continuum mechanics, and partly because conventional 

approximations to the forward theory operators lead to linearized equations with known 

analytic inverses. However, data acquired in the real world are discrete and finite in 

number and extent. There is no approximation in the discrete representation if we assume 

a bandlimited experiment with adequate sampling. 

Equation (1.9) is too general a representation for our intended purposes. The term fi

                                                

(m) 

suggests a possibly nonlinear dependence of the forward theory operator on the model. A 

 

20 A complete description, with consistent notation, can be found in Bleistein et al. (2001). 
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linearized version will prove more useful for inversion and, since the discrete linear form 

can be expressed using matrix notation, is more useful for describing the approximations 

inherent in common migration schemes. The basic linearized form is given by Snieder 

(1999) as 

 di = dxfi (x)m(x) + ei
x
∫ , (1.10) 

where x is typically thought of as a vector of spatial coordinates, but could also be a 

generalized vector of model dependencies (e.g. frequency or angle of incidence). 

Equation (1.10), although adequate, can be significantly improved by introducing a more 

explicit notation tailored to the seismic imaging problem. The basic intent of a more 

detailed notation is to provide additional physical insight. First, I explore the relationship 

between the earth model and the forward theory operator, and then discuss the 

significance of the error term. 

1.4.3 Forward theory operator, earth model, misfit error, and data error 

The earth model and the forward theory operator in equation (1.10) are linked, if only to 

maintain consistency in the physical units. One interpretation is that the earth model is a 

mathematical parameterization of specific physical properties (e.g. wavespeed and 

density) required to predict the data given the physics of the forward theory operator 

(Scales, 2001). An alternate interpretation is that the forward theory operator is an 

appropriate mathematical expression of specific physical phenomena (e.g. elastic wave 

propagation) required to predict the data given the parameterization of the earth model. 

Obviously then, there is a certain arbitrariness in choosing an appropriate combination of 

forward theory operator and model parameters, although an overly simple combination of 

model and forward theory operator could mean that much of the information in the data is 



 36 

 

                                                

described by the error term. As discussed previously, this may be acceptable depending 

on the tradeoff between the characteristics of error and the difficulties introduced by a 

more descriptive combination. 

Typically, the appropriate combination of model and forward theory operator is often 

driven by the dictum “Ask only for what you deserve from the data”21. Properties such as 

wavespeed and density are well known to be ‘blocky’, i.e. they can be represented as 

piecewise continuous functions of the space coordinates with the jumps or steps located 

at the interfaces that give rise to reflections. Given the finite bandwidth of the seismic 

reflection data, it is not possible to obtain accurate estimates of full-bandwidth multi-step 

functions required to represent either wavespeed or density (see Figure 2.9 of Bleistein et 

al., 2001). A more appropriate goal is to invert for a physical property such as 

reflectivity, where each reflector can be represented by a singular function of a surface 

scaled by the angle-dependent reflectivity coefficient. With bandlimited data, then, the 

best estimate we could expect will correspond to a scaled bandlimited singular function 

whose peak value is the angle-dependent reflectivity coefficient. 

The chosen earth model need only be a subset of the many possible physical parameters 

that might have an effect on the data. The forward theory operator could be functionally 

dependent on some of these other relevant physical parameters. For the seismic reflection 

problem, the classic separation places the rough portion of wavespeed and density (i.e. 

the angle-dependent reflectivity) into the model and the smooth portion of wavespeed 

(i.e. the macro-model) into the forward theory operator. Estimation of an accurate macro-

model for the wavespeed can then be posed as a separate inverse problem, if required. 

 

21 Suggested by Bleistein et al. (2001) as a general guideline for solving ill-posed inverse problems such as 

the seismic inverse-scattering problem. 
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For time migration, an appropriate macro-model is chosen by simple statistical criteria 

such as a maximum coherency search and/or by qualitative criteria such as focusing 

and/or relative positioning in the image. That these two inversions can be treated as 

separate is related to the two main types of information—traveltime and amplitude—

found in seismograms. 

Note that, by choosing angle-dependent reflectivity, our earth model now depends on the 

forward theory operator. In other words, the earth model m  is not a constant at any 

spatial location x, but varies depending on the incident angle of the wavefield at the 

reflector. The incident angle is determined by the physics of the seismic experiment, as 

described by the forward theory operator. Thus, the set of physical experiments 

comprising the data for one inversion (an acquisition configuration) must support a single 

estimate of angle-dependent reflectivity. In practice, the data should include specular 

reflections from only one angle of incidence. Other angles of incidence and/or reflection 

should not produce specular reflections

(x)

22. Otherwise, the estimate will be an average of 

angle-dependent reflectivities. Acquisition configurations that support these criteria 

include common-source gathers, common-receiver gathers, and common-offset gathers, 

as well as synthesized gathers that correspond to, for example, a plane-wave source. In 

general, a common-midpoint gather is not suitable, and an estimate derived from all the 

recorded data, as provided by Kirchhoff prestack time migration methods such as EOM, 

will estimate an average of angle-dependent reflectivities.  

 

22 As it turns out, an equally important criterion for an accurate and robust estimate is that these other 

angles of incidence and/or reflection must vary smoothly about the specular angle (Bleistein et al., 2001). 

Berkhout (1985) suggests a combined inversion that estimates reflectivity over a range of angles using all 

available data. The resulting estimate is a matrix of reflectivity values at each subsurface location. A 

concise summary can be found in Gray (1997). 
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With these considerations in mind, the linearized forward problem given by equation 

(1.10) can be re-expressed as 

 di = dV
x
∫ fi x,mc( )mRθ

(x) + e( dVfim∫ ) +e(di ), (1.11) 

where x now refers only to the spatial coordinate,m  is the angle-dependent 

reflectivity, and  the forward theory operator, now an explicit function of the 

subsurface location x and wavespeed macromodel m  with all additional parameters (e.g. 

source and receiver characteristics and locations) denoted by the subscript ( . The error 

is explicitly represented as a combination of misfit error e

Rθ
(x)

c

fi x,mc( )

i)

( dVfim∫ ) and measurement 

error e . The notation chosen for angle-dependent reflectivity attempts to indicate an 

implicit dependence of the angle on the forward theory operator and hence on the 

acquisition configuration. 

(di )

Equation (1.11) implies that there are no time-varying properties in the earth model 

, a reasonable assumption even for time-lapse seismic studies where a set of 

experiments is repeated with intent of imaging ‘snapshots’ of an evolving model. The 

assumption of time invariance allows us to transform our forward theory operator from 

space-time to space-frequency, treat frequency as a constant, and hence reduce the 

dimensionality of the problem by one. This leads to simpler expressions for the forward 

theory operator (e.g. the Helmholtz equation instead of the wave equation), as well as all 

the usual benefits of computation in the frequency domain (e.g. multiplication instead of 

convolution, and that delta functions in time can be expressed as complex exponentials). 

Appendix A provides a brief review and establishes conventions as well as notation for 

delta functions, linear systems, and the Fourier transform. 

)(
θRcmmm =

Ideally, the forward theory operator fi x,mc( ) should be a mathematical expression that 

explains all the physics relevant to the experiment. However, there is still a great deal of 



 39 

 

flexibility afforded by the error term, so it makes sense to choose a forward theory 

operator that simplifies the inversion problem with the expectation that it will not explain 

all of the data. Typically, we seek to express the forward theory operator in an analytic 

form that has a known analytic inverse or whose inverse can be determined numerically 

in a robust and efficient manner. Appropriate analytic theory operators for forward 

wavefield extrapolation and migration/inversion are developed in Chapters 2 and 3, 

respectively.  

1.4.4 The estimation problem: resolution, misfit and measurement errors 

Given that the forward problem is linear, the estimated model can by obtained as a linear 

combination of all the data elements: 

 ˆ m Rθ
(x) = fi

−g (x, ˆ m c )di
i

∑ , (1.12) 

where fi
− g (x , ˆ m c)  is the generalized inverse of the forward theory operator, now with 

dependence on an independently estimated wavespeed macro-model m  and other factors 

implied by the subscript ( . For continuous data, the summation operator could be 

thought of as an integral over, say, acquisition configuration and time (or frequency). If 

so, some of the dependencies in the forward theory operator implied by the subscript (  

could then have to be stated more explicitly. 

ˆ c

i)

i)

The relationship between the earth model m  and the estimated model m  is found 

by substituting equation (1.11) into equation (1.12), yielding 

R R(x) ˆ (x)

  

ˆ m Rθ
(x) = dV

′ x 
∫ fi

−g (x, ˆ m c )
i

∑ fi ( ′ x ,mc )mRθ
( ′ x )

finite resolution
� 	 � � � � � � 
 � � � � � � 

+ fi
−g (x, ˆ m c )

i
∑ e( dVfim∫ ) + fi

− g (x, ˆ m c )
i

∑ e(di )

error propagation
� 	 � � � � � � � � 
 � � � � � � � � 

, 

  (1.13) 
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The second term on the RHS of equation (1.13) describes the error propagation in the 

estimated model, i.e. the artifacts arising from application of the generalized inverse of 

the forward theory operator to the misfit and measurement errors. The first term on the 

RHS of equation (1.13) specifies the maximum resolution that can be obtained. This can 

be demonstrated by adding and subtracting the true earth model 

: m R(x) = dVδ(x − ′ x )
′ x 
∫ mR ( ′ x )

 

  

ˆ m Rθ
(x) = m Rθ

(x) + dV
′ x 
∫ fi

− g (x, ˆ m c ) fi ( ′ x ,mc )
i

∑
resolution kernel

� 	 � � � � 
 � � � � 
−δ(x − ′ x )

 

 

 
 
 

 

 

 
 
 

mRθ
( ′ x ) 

 

  

+ fi
− g (x, ˆ m c )

i
∑ e( dVfim∫ )

misfit error
artifacts

� 	 � � � � 
 � � � � 
+ fi

−g (x, ˆ m c )
i

∑ e(di)

measurement error
artifacts

� 	 � � � 
 � � � 
. (1.14) 

If the resolution kernel fi
−g (x, ˆ m c ) fi ( ′ x ,mc )

i
∑  is equal to a delta function, the second 

term on the RHS of equation (1.14) disappears, and the estimated earth model is equal to 

the true earth model plus the error artifact terms. 

The difference between the estimated earth model and (unknown) true earth model can be 

attributed to three basic factors: resolution error introduced by necessary approximations 

to the inversion operator combined with limitations inherent in the physical experiment, 

misfit error introduced by simplified physics of the forward model (simplified in both the 

forward theory operator and the chosen model), and measurement error arising from 

coherent and random noise recorded along with the ideal unknown true signal. 

It would be a mistake to consider the resolution kernel to be a direct measure of spatial 

resolution, as wrongly suggested by Snieder and Trampert (1999). This will be true only 

if the error term in equation (1.11) contains no misfit error and the measurement errors 

are well behaved (i.e. uncorrelated with the forward theory operator). Consider an 
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arbitrary forward theory operator with an exact inverse but a large misfit error. In this 

case, the application of the inversion operator to the error term, as shown in equations 

(1.13) and (1.14), could easily result in significant degradation of spatial resolution (e.g., 

a constant wavespeed forward modeling operator and inverse prestack time migration 

operator applied to data collected over a subsurface with complicated lateral and vertical 

wavespeed variations). On the other hand, the possible presence of a large misfit term 

does not necessarily indicate poor spatial resolution, although the artifacts might manifest 

themselves by poor absolute positioning. 

1.4.5 Matrix notation: least squares and the conjugate transpose 

Matrix notation simplifies presentation of the remaining concepts. Using matrix notation, 

where m  is the vector of earth model parameters (and so forth ,with bold 

capitals denoting matrices), equations (1.11) through (1.14) can be expressed as: 

= mRθ
(x)

 d = Fm +e Fm + ed , (1.15) 

 ˆ m = F−g d , (1.16) 

 ˆ m = F−g Fm + F− geFm + F− ged , (1.17) 

and . (1.18) N N
resolution measurement errormisfit errorkernel artifactsartifacts

ˆ g g− − −
 
 = + − + +  
 

Fm dm m F F I m F e F e�	

g

Equation (1.18) shows that, when the error terms are well behaved, perfect resolution is 

achieved if the resolution kernel is the identity matrix. However, the argument present in 

the previous paragraph (that the error artifacts could significantly affect spatial 

resolution) applies here as well. 

As stated in the introductory paragraph to this section, all seismic imaging methods — 

including migration, migration/inversion and least squares migration — are special cases 
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of wavefield inversion as described by geophysical inverse theory. Equation (1.16) is of 

particular interest. It states that the estimate we desire can be obtained by applying the 

generalized inverse of the forward theory operator to the data. Unfortunately, the 

generalized inverse is typically not available. In the following paragraphs, I provide a 

brief summary of some of the many ways that the generalized inverse can be 

approximated, and how these approximations relate to conventional seismic imaging 

techniques. This topic is well described in the literature (Pavis, 1989; Gray, 1997; 

Snieder and Trampert, 1999; Scales, 2001—and references cited therein). 

There are three basic classes of inverse problems. If n is the number of parameters in the 

earth model and m is the number of data measurements, a problem is overdetermined if 

 (i.e. data redundancy), underdetermined if n  (i.e. fundamental lack of data), 

and mixed if it contains characteristics of both. Most real seismological problems are 

mixed, in which case the pseudo-inverse solution is the unique one that simultaneously 

satisfies the least square criterion of overdetermined problems and the smallest model 

criterion for underdetermined problems. 

m > n > m

For the unweighted least-squares problem23, the pseudo-inverse solution can be found by 

minimizing the cost function 

 S = d −Fm 2 . (1.19) 

Standard least-squares procedures yield the following model estimate: 

 ˆ m = (FTF)−1 FTd , (1.20) 

                                                 

23 See Scales (2001) for a discussion of the weighted least-squares problem. 
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where (  is called the pseudo-inverse of the forward theory operator. Gray 

(1997) cites LeBras and Clayton (1988) in pointing out that F  can be computed from its 

definition 

FT F)−1 FT

d, Fm

T

= FT d,m , where the  inner product L2 x, y  is the volume integral 

, and states that by writing out the integrals for both inner products, one can 

show that F  is a poorly scaled kinematic migration operator that uses dynamic ray 

tracing to compute amplitudes and traveltimes. In other words, 

dVxTy
V∫

T

 ˆ m = FTd  (1.21) 

can be considered a reasonable estimate of the earth model. Thus, the transpose of the 

forward theory operator (or the conjugate transpose for a complex operator) provides a 

theoretical basis for a reasonable migration algorithm. As pointed out by Claerbout 

(1992), the transpose is a good approximation primarily because the phase of the 

transpose F is the same as the phase of the inverse FT −1 . Thus the additional term 

 in the least squares estimate (equation 1.20) is merely a weighting function that 

affects only the amplitude. Often, true-amplitude processing is not applied to the data 

prior to migration, so the extra effort required to estimate these weights is not warranted. 

A good discussion of the complete least-squares approach (equation 1.20), including 

considerations such as efficiency and practicality, can be found in Gray (1997) and so 

will not be discussed here. 

(FT F)−1

When the forward theory operator  is dependent on phase, applying the transpose is 

equivalent to convolution with the time-reversed forward theory operator, a process of 

cross-correlation sometimes referred to as ‘matched filtering’. Recall the care taken 

previously to place the wavespeed macro-model in the forward theory operator, while 

keeping the angle-dependent reflectivity in the earth model. Claerbout (1992, p. 108) 

argues that “It is a pitfall to imagine that carefully constructing the correct amplitude 

versus offset (i.e. AVO or angle-dependent reflectivity) in a diffraction operator will 

F FT
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make the corresponding migration operator more effective.” The reason is because 

“effort expended to get the correct AVO in the modeling operator affects the migration 

operator (the conjugate) without necessarily making it closer to the inverse.” 

1.4.6 The Delphi scheme: inverting a cascade of forward operators 

In all the preceding discussions, it has been assumed that the forward problem describes 

the complete seismic experiment, from source initiation to wavefield recording. In order 

to make it tractable, the forward problem was linearized, but the forward theory operator 

was treated as a single entity. Consider instead the seismic experiment as a cascade of 

linear operators. Each of these component linear operators might have a simple analytic 

inverse, or be well approximated by a transpose. This is the approach adopted by 

Berkhout (1981), who introduced the ‘Delphi’ scheme (de Bruin, 1992, whose work 

forms the basis for the discussion presented here). The Delphi forward theory operator 

for a 2-D or 2.5-D common-shot seismic experiment24 can be re-expressed as 

 d(z0 ) = Gup (z0 , zg )d(zg ) = Wup(z0 ,zm )R(z m)Wdown (zm ,z0 )
m=1

M

∑
 
  

 
  Sup (z0 ,zs )s(zs ), (1.22) 

where the elements in the data vector d  are the monochromatic responses at the 

receiver locations (each could be an array of buried receivers at depth ) ‘regularized’ to 

a 1xN receiver vector d  at the non-reflecting surface , s  is 

a monochromatic source (possibly an array of buried sources at depth ) ‘regularized’ to 

a 1xN source vector ,  and S  are 

regularization matrices that might also include wavefield extrapolation between different 

depth levels, W  is the NxN forward wavefield extrapolation matrix that takes 

(zg )

(), gz d

)() szs

zg

zs

)sz

)()( 00 gup zzz G=

,()( 00 sup zzz S= G

m , z0 )

z0 (zs )

s

z

),( 0 gup zz ,( 0up z

down(

                                                 

24 For 3-D notation, see Appendix A of de Bruin (1992). 
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the source wavefield from the surface at  down to the reflector at depth , z0 zm R(z m)  is 

the NxN dip- and angle-dependent reflectivity matrix that relates the incident and 

reflected wavefields at depth , and W is the NxN forward wavefield 

extrapolation matrix that takes the reflected wavefield from depth  up to the surface at 

 (Figure 1.8). For a 2-D point 

zm up(z0, zm )

zm

z0

z0 )

x

 

Figure 1.8. The Delphi scheme: The forward problem is separated into a cascade of forward wavefield 

propagators  and , and the angle-dependent reflectivity . This simplifies the inverse 

problem because the exact inverse wavefield propagators  and  can be replaced by the 

conjugate transposes  and . The conjugate transposes are exact for the propagating modes 

and better behaved than the inverse wavefield propagators for evanescent modes. Angle-dependent 

reflectivity  is the desired estimate, and so does not need to be inverted. 

downW

)( mzR

upW

*
down

)( mzR
1−

upW1−
downW

W *
upW

source at the surface, s  has only one non-zero element, but s  could represent any 

superposition of sources including a directed plane wave source or a focused plane wave 

source (Rietveld et al., 1992; Rietveld, 1994). The N regularized surface locations are 

each separated by a distance 

(z0 ) (

∆ , with the total length N∆x  extending beyond the 

receiver line-length to account for the migration aperture. Note that there is an implied 

dependency on frequency in equation (1.22) and subsequent equations. 

Now compare the forward problem as described by equation (1.15) with the cascaded 

forward problem for a single shot gather as described by equation (1.22). With no loss of 
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generality, the elements of the data vector d  in equation (1.15) can also be considered as 

monochromatic responses from monochromatic sources. The vector of earth model 

parameters m  contains all the coefficients of the M reflectivity matrices R(z m) . The 

forward theory operator F  includes all the source, receiver, and wave propagation effects 

modeled by the cascade of forward theory operators described in the previous paragraph. 

Thus, the wavefield extrapolation matrices W  and W  depend on the 

wavespeed macromodel, which is assumed to be known but in practice must be 

determined as a separate estimation problem. Note, however, that the misfit and 

measurement error terms found in equation (1.15) are not included in equation (1.22). 

down(zm , z )0 0up(z , zm )

The conventional Delphi scheme expands the source vector s  into an NxN source 

matrix S  (i.e. one column for each 2-D point source, see Gray, 1997), which yields 

an NxN data matrix D  (i.e. one column for each common-shot record). Applying this 

expansion to equation (1.22) and simplifying the result gives 

(z0 )

(z0 )

(z0 )

 D(z0 ) = Wup (z0 ,z m)R(zm )
m =1

M

∑ Wdown (zm ,z0 )S(z0 ). (1.23) 

The goal of the Delphi scheme is to extract the reflectivity matrix at each depth in the 

subsurface. First, I examine the representation for a single common-shot gather. In 

regularized form, equation (1.22) can be simplified to 

 d(z0 ) = Wup (z0 ,zm )R(zm)
m =1

M

∑ s(zm ), (1.24) 

where s  represents the source wavefield forward propagated 

down to a reflector depth m. 

(z ) = W (z , z )s(z )m down m 0 0

Now apply the ideal inverse wavefield extrapolation operator Wup
−1 (z0 ,zk ) (for depth ) 

to both sides of equation (1.24): 

zk
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  d(zk ) = Wup
−1(zk , z0 )Wup (z0 , zm )R(zm )s(zm )

m=1

k−1

∑

 +Wup
−1 (zk , z0 )Wup (z0 ,zk )R(zk )s(zk ) 

 + Wup
−1 (z k, z0 )Wup (z0 ,z m)R(zm )s(zm )

m= k+1

M

∑ , (1.25) 

where d  is the regularized data inverse extrapolated to depth , 

i.e. the reflected wavefield at the depth of the reflector. 

(zk ) = Wup
−1 (z k, z0 )d(z0 ) zk

In any practical implementation, there could be 1000’s of receivers and, to account for 

migration aperture, a much larger number of regularized surface locations. Finding the 

exact inverse W  of, say, a 10−1 5x105 matrix (and even larger for a 3-D survey) is not 

practical, especially if implemented as a cascade of recursive extrapolators where a 

separate inversion is required for each depth step m. In addition, the exact inverse 

exponentially gains noise in the evanescent modes. Fortunately, the conjugate transpose 

 handles propagating modes exactly as the inverse operator WW * −1  while exponentially 

damping the evanescent modes (see Gray, 1997 for a more detailed discussion). Using 

conjugate transpose operators in place of exact inverses, equation (1.25) can be re-

expressed as 

  d(zk ) = Wup
* (zk ,z0 )Wup(z0 ,zm )R(zm )s(z m)

m=1

k−1

∑

  +Wup
* (zk ,z0 )Wup(z0, zk )R(zk )s(zk )

 + Wup
* (zk ,z0 )Wup(z0 ,zm )R(zm )s(zm )

m= k+1

M

∑ , (1.26) 

where now d . (zk ) = Wup
* (z0 ,zk )d(z0 )
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If there is only one reflector in the subsurface at depth , the first and third terms on the 

RHS of equation (1.26) are zero, and the second term simplifies with the assumption that 

, yielding 

zk

Wup
* (zk, z0 )Wup (z0 , zk ) = I

 d(zk ) = R(zk )s(zk ) . (1.27) 

The diagonal of the monochromatic reflectivity matrix at depth  is estimated directly as 

an element-by-element deconvolution of the reflected wavefield by the forward 

propagated wavefield: 

zk

 R ii(zk ) = di (zk ) / si (zk ). (1.28) 

The desired estimate of angle-dependent reflectivity is the output of the deconvolution at 

zero-time, which is achieved simply by averaging the reflectivities determined from each 

monochromatic experiment (dependence on frequency ω assumed) 

 ˆ R ii(zk ) =
∆ω
2π

di (z k )/ s i(zk )
ω
∑  (1.29) 

Equation (1.29) is commonly referred to as Claerbout’s deconvolution imaging condition 

(Claerbout, 1971). 

If there are many reflectors in the subsurface, the deconvolution imaging condition still 

produces a good estimate of reflectivity. To understand how this works, imagine equation 

(1.26) in the time-domain. The phase or traveltime of the inverse propagated data on the 

LHS will be the same as the traveltime of the forward propagated source, scaled by the 

reflectivity, found in the second term on the RHS. For the first term, the combination 

 with k  places the scaled sources at an earlier time, while for 

the third term, W  with k

Wup
* (zk, z0 )Wup (z0 , zm)

up
* (zk,

> m

up (z0 , zz0 )W m) < m  places the scaled sources at a later 

time. Each monochromatic estimate of angle-dependent reflectivity will not be a good 

estimate, but the average over frequency is equivalent to inverse Fourier transforming the 
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reflectivity estimates and extracting the zero-time value. The deconvolution imaging 

condition forms the basis for common-shot and, invoking reciprocity, common-receiver 

methods of Kirchhoff imaging developed in Chapter 3. In Section 3.7, I propose a new 

zero-phase weighting function for the deconvolution imaging condition that extracts a 

chi-squared estimate of reflectivity at the zero-time value. 

For the more complicated situation involving a data matrix D  and source matrix 

, with reflectors at multiple depth levels m, the deconvolution given by equation 

(1.28) is replaced by 

(z0 )

S(z0 )

 X(zk , zk ) = D(zk ) / S(zk ) (1.30) 

where X  the ‘target impulse response’ for depth , D(zk , zk ) zk (zk ) = Wup
* (zk ,z0 )D(z0 )

(z0 )

, and 

. Hence, the RHS of equation (1.30) is a cascade of conjugate 

transpose and inverse theory operators applied to the data matrix D  given by 

S(zk ) ,z0 )S(z0 )= Wdown(zk

 D(zk )/ S(zk ) = Wup
* (zk ,z0 )D(z0 )S −1(z0 )Wdown

* (z0, zk ). (1.31) 

Using the cascade proposed by equation (1.31), we first right-multiply both sides of 

equation (1.23) with the inverse source matrix S−1 (z0 ) , which is assumed to exist and 

satisfy S , yielding  (z0 )S−1 (z0 ) = I

 X(z0, z0 ) = Wup(z0, zm )R(zm )Wdown (zm ,z 0 )
m =1

k −1

∑  

 +Wup(z0 ,zk )R(zk )Wdown (zk , z0 ) 

 + Wup(z0 ,zm )R(zm )Wdown(zm , z0 )
m= k+1

M

∑ , (1.32) 

where X  is the ‘target impulse response’ at the surface. Now left-

multiply equation (1.24) by W , right-multiply by W , and evaluate the 

conjugate transposes in the second term on the RHS as exact inverses to give 

(z0, z0 ) = D(z0 )S −1 (z0 )

up
* (zk , z0 ) down

* (z0 ,zk )
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Wup
* (zk, z0 )X(z0 , z0 )W *(z0 ,zk ) =  

  Wup
* (zk ,z0 )Wup(z0, zm )R(zm )Wdown (zm , z0 )Wdown

* (z0, zk )
m=1

k−1

∑

 +R(zk ) + Wup
* (zk ,z0 )Wup(z0 ,zm )R(zm )Wdown(zm , z0 )Wdown

* (z0 ,zk )
m= k +1

M

∑ . (1.33) 

Equation (1.33) indicates that all data are affected by the extrapolation operators 

appropriate for the desired depth level zk, including data corresponding to shallower 

depths (first term on RHS) and data corresponding to deeper depths (third term on RHS). 

The second and third terms on the RHS of equation (1.33) are defined by de Bruin (1992) 

as the ‘target impulse response’ for depth , i.e. zk

X(zk , zk ) = R(zk ) + Wup
* (z k , z0 )Wup (z0 , zm)R(zm )Wdown (z m ,z0 )Wdown

* (z0 ,z k )
m =k+1

M

∑ , (1.34) 

and uses X  to estimate an average of angle-dependent reflectivity and angle-

dependent reflectivity. 

(z , z )k k

The average of angle-dependent reflectivity is just an average of the diagonal elements 

 over frequency (dependence on frequency ω assumed) X ii(zk , zk )

 ˆ R ii(zk ) =
∆ω
2π

X ii(zk , zk )
ω
∑ . (1.35) 

As in the single common-shot gather case presented above, equation (1.35) is equivalent 

to taking an inverse Fourier transform and extracting the zero-time value. Angle-

dependent reflectivity is obtained by a spatial Fourier transform of each column of 

 (i.e. from spatial coordinate x to wavenumber variable kX(zk , zk ) x) followed by a simple 

mapping of the wavenumber variable to the ray parameter p and a complex averaging 

over all frequency contributions (positive frequencies only). The angle-dependent 

estimation problem will not be discussed further here. 
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1.4.7 Problems with the Delphi approach 

There are two subtle problems with de Bruins method for estimating the average of 

angle-dependent reflectivity, as given by equation (1.35). First, applying the cascade of 

conjugate transpose and inverse operators to the data matrix (equation 1.31) does not give 

the desired target impulse response X  (equation 1.34). Instead, the result is the 

RHS of equation (1.33), which is X  plus the sum of all data extrapolated to 

negative time. The negative-time data cannot easily be removed in the frequency domain. 

Allowing it to wrap around time zero to a large positive time is not a solution. One option 

is to Fourier transform the extrapolated data to the time domain, replace the negative-

time data by zeros, and transform back to the frequency domain. However, Claerbout’s 

deconvolution imaging condition (equation 1.35) works for the more general definition of 

 as the complete RHS of equation (1.33). 

(zk , zk )

(zk , zk )

X(zk , zk )

The second problem is that average reflectivities based on the migration of common-shot 

gathers are, in general, biased estimates (Geiger, 2001). The bias depends on the dip and 

depth of the reflector but is negligible if the receiver spread is symmetric about each shot 

location. Bias increases with asymmetry in the receiver spreads and is a maximum for 

one-sided spreads common to marine acquisition. One possible solution is to synthesize 

symmetric spreads using the principle of reciprocity (Vermeer, 1990). A better solution 

should be possible. Finding a way to obtain robust unbiased estimates of average 

reflectivity appropriate for the implementation of EOM prestack time migration is the 

main objective of this dissertation. 

1.4.8 Summary: geophysical inverse theory applied to seismic imaging 

In this section, I presented three related but distinct approaches to applying geophysical 

inverse theory to the seismic imaging problem. For each approach, only the forward 

problem and the estimation problem were discussed. In seismic imaging, the appraisal 
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problem—a necessary part of any complete inversion—is typically replaced by a 

validation process. 

The first approach yielded equation (1.12) as a generalized formula for estimation, 

repeated here as 

 ˆ m Rθ
(x) = fi

−g (x, ˆ m c )di
i

∑ . (1.36) 

In essence, this is the migration/inversion method of Bleistein and co-workers, as well as 

Hubral and co-workers (see discussion and references in Gray, 1997). The unique aspect 

of this approach is that it can describe non-physical wavefields such as those found in a 

common-offset gather. In fact, I will show in Chapters 3 and 4 that this approach 

provides the basis for robust unbiased estimates of average reflectivity suitable for the 

implementation of EOM prestack time migration. 

The second approach yielded equation (1.21) as a generalized formula for estimation, 

repeated here as 

 ˆ m = FTd  (1.37) 

This approach can be described as a matched-filter. The kinematic description of EOM 

prestack migration can be thought of as a conjugate transpose of a forward kinematic 

model25. As with all prestack time migrations, both the forward theory operator and the 

conjugate are approximations to a complete description of the underlying physics. The 

interesting aspect of this approach lies mainly in the description of the errors, given by 

                                                 

25 It would be more correct to describe EOM in terms of continuous theory and employ the adjoint or 

Hermitian adjoint in place of the conjugate transpose. However, the concepts are essentially equivalent, but 

matrix notation has the advantage of being much more compact. 
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equation (1.18) but modified by replacing the generalized inverse F −g  with the transpose 

: FT

 . (1.38) N N N
resolution misfit error measurement errorkernel artifacts artifacts

ˆ T T
 
 = + − + +  
 

Fm dm m F F I m F e F eT

Since the conjugate transpose of the kinematic operator is a good approximation to the 

generalized inverse, the resolution kernel is close to the identity matrix. Hence, there is 

the possibility of obtaining good focusing, even if the underlying forward theory operator 

is a poor approximation to the real physics. The trick is to base the kinematic component 

of the theory operator on a simple hyperbolic traveltime-moveout relationship known as 

the double-square-root (DSR) equation. A generalized derivation for the DSR equation 

based on a Taylor series expansion is presented in the next section. Applying the 

transpose of this simple forward theory operator as the estimator suggests that the 

majority of the error will be found in the misfit error artifacts, primarily as a loss of 

accuracy in absolute positioning. Accuracy in focusing and relative positioning may be 

preserved, depending on local smoothness of traveltime perturbations for specular 

reflected information in the data space. 

The third approach is to view the linear forward theory operator as a cascade of linear 

operators, and to invert only those operators that are required to estimate the model. This 

is the approach initially proposed by Claerbout as the deconvolution imaging condition, 

expressed for a single shot-record as equation (1.21), repeated here as 

 ˆ R ii(zk ) =
∆ω
2π

di (z k )/ s i(zk )
ω
∑ , (1.39) 

and expanded to multiple physical wavefields by the Delft group as equation (1.35), 

repeated here as 
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 ˆ R ii(zk ) =
∆ω
2π

X ii(zk , zk )
ω
∑ . (1.40) 

where the target reflection response X  is given by equation (1.34), repeated here 

as 

(zk , zk )

X(zk , zk ) = R(zk ) + Wup
* (z k , z0 )Wup (z0 , zm)R(zm )Wdown (z m ,z0 )Wdown

* (z0 ,z k )
m =k+1

M

∑ . (1.41) 

This approach can yield good results because the conjugate transposes of the forward 

wavefield extrapolation operators are excellent approximations to their inverses (and are 

more robust). As with the first method, a macro-model of the subsurface wavespeed is 

required for wavefield propagation. 

The basic concept of constructing a forward theory operator as a cascade of linear 

operators is an intuitive approach adopted by all methods. In fact, all three methods will 

prove useful in the quest to establish both a kinematic and a dynamic solution to EOM 

prestack time migration. The kinematic solution has been known for some time as a 

simple re-expression of the DSR equation for a constant wavespeed medium (Bancroft 

and Geiger, 1994). However, the more general derivation presented in the next section 

explains the success of prestack time migration with data collected in areas where the 

subsurface wavespeed has both lateral and vertical variations. 

1.5 KINEMATICS OF REFLECTION EVENTS AND DIFFRACTION 
TRAVELTIME CURVES 

In the previous sections, I defined migration as a transformation from a data space to an 

image space. Using geophysical inverse theory, the migration problem was described as 

an estimation problem, where the desired reflectivity estimates are obtained by applying 

a generalized inverse theory operator to the recorded data. Ideally, the forward theory 

operator is based on the physics of wavefield propagation, which requires a reasonable 
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macro-model of the subsurface wavespeed. It was shown, however, that a broader class 

of forward theory operators can be considered. Of particular interest are forward theory 

operators that are independent of a subsurface macro-model and have simple, robust 

inverses. These can provide good resolution as defined by the resolution kernel, but 

possibly at the expense of larger misfit-error artifacts. The task, then, is to determine a 

forward theory operator that describes the relevant information in the data (traveltimes 

and amplitudes) without recourse to a macro-model. 

In this section, I review previous work that uses a Taylor series expansion to show that 

reflection traveltimes satisfy a generalized hyperbolic relationship independent of the 

subsurface wavespeed and reflectivity. The Taylor series expansion assumes local 

smoothness of traveltime perturbations in the vicinity of the source and receiver 

locations, but no other assumptions about the subsurface. I then show that diffraction 

traveltime surfaces can be defined by a similar hyperbolic operator. By expanding this 

diffraction operator about the surface location of the zero-offset image ray (and assuming 

an isotropic medium), the expression simplifies to the familiar double-square-root (DSR) 

equation. This defines the traveltime or kinematic portion of the desired macro-model-

independent forward theory operator. Unfortunately, this approach does not provide the 

amplitude or dynamic portion. As stated previously, finding a suitable description for the 

dynamic portion turns out to be non-trivial exercise, and will be one of the primary 

objectives of this dissertation. 

1.5.1 Kinematics of reflection events 

Consider a generalized inhomogeneous isotropic medium and make only one additional 

assumption: that traveltime variations, as measured by perturbing the source and receiver 

locations, are locally smooth. Note that this assumption does not preclude discontinuous 

boundaries in wavespeed. Figure 1.9a illustrates the generalized configuration, where all 
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Figure 1.9. A generalized inhomogeneous isotropic medium with only one additional assumption: that 

traveltime variations, as measured by perturbing the source and receiver locations, are locally smooth. 

In the reflection configuration, where the generalized ‘black box’ (a) represents reflections (b) by 

image sources (c), perturbations at the source and receiver create a perturbation at the reflector. In the 

diffraction configuration (d), expansion on a flat surface about the image ray simplifies the generalized 

DSR equation to the standard DSR equation that can be derived for a constant wavespeed medium. 
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propagation effects in the medium, including reflections and refractions, are represented 

as a ‘black box’. The only relevant information is the change in traveltime as the source 

and receiver positions are perturbed. In fact, this is a good description for the information 

content in seismic reflection data. 

For each portion of a reflection event in the primary reflected wavefield, the black box 

subsurface can be thought of as containing a small portion of a single reflector where the 

wavefield propagating from the source is specularly reflected. As the source and/or 

receiver position are perturbed, the point of specular reflection changes. Figure 1.9b 

illustrates this from the surface, while Figure 1.9c illustrates the identical situation for an 

image source location. Invoking an image source is a powerful tool in the study of 

reflection seismic wavefields. It is based on the simple intuitive assumption that 

downward wavefield propagation from the source to the reflector is independent of the 

reflection, and that both of these are independent of the upward propagation from the 

reflector to the source. Combine this with an assumption of linearity — specifically that 

each reflector and each portion of wavefield propagation can be considered 

independently and summed to produce the desired result — and the subsurface can then 

be replaced by many subsurfaces, each individually tailored to the requirements of a 

particular reflection element. This tool will be used repeatedly throughout this 

dissertation. 

Before proceeding with the Taylor series expansion, I establish some notation (adapted 

from Vanelle and Gajewski, 2001b). The perturbed source position vector 

x s = (xs1, xs2 , xs3 ) and receiver position vector xg = (xg1, xg2, xg3 ) can be expressed in 

terms of variations ∆  and ∆  in the unperturbed source and receiver positions as 

 and x

x s

g =

xg

+x s = x s0
+ ∆x s xg0

∆xg . The slowness vectors s  and 0 g0  at the unperturbed 

source and the receiver positions x  and  are defined as s0
xg0
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 s
0 i = −

∂τ
∂xs0i

      and   g
0 i = −

∂τ
∂xgoi

 (1.42) 

while the second-order derivative matrices S , G , and N  are defined as 0 0 0

 S
0 ij = −

∂ 2τ
∂xs0i∂xs0j

= S
0 ji , (1.43) 

 G
0 ij =

∂ 2τ
∂xg0i∂xg0 j

= G
0 ji , (1.44) 

and N
0 ij = −

∂ 2τ
∂xs0i∂xg0j

≠ N
0 ji . (1.45) 

The slownesses and the second-order derivatives are the inverses of the apparent 

wavespeed and the curvatures of the wavefield, respectively, at the unperturbed source 

and receiver locations. 

Now expand the square of the traveltime as a Taylor series expansion about perturbations 

in the source and receiver location. In general, this will be valid everywhere except in the 

vicinity of caustics. The Taylor expansionτ 2 (x g0
+ ∆xg ,x s0

+ ∆x s ) yields the hyperbolic 

traveltime expansion (Vanelle and Gajewski, 2001b), 

  τ 2 (x g, x s ) = τ
0 gs − s 0∆x s

T +g0 ∆xg
T( )2

 . (1.46)   +τ
0 gs −2∆x s N0 ∆xg

T − ∆x s S0∆x s
T + ∆xgG0 ∆xg

T( )+O (3)

Equation (1.46) explains a significant characteristic observed in seismic reflection data: 

that all reflection information can be thought of as approximately hyperbolic in a 

generalized sense. A slightly different derivation, specialized to slowness vectors and 

second-derivative matrices defined on arbitrary curved surfaces, is provided by 

Schleicher et al. (1993). A Taylor series expansion in τ rather than in τ2 (as above) 

suggests that reflection information can be thought of as approximately parabolic in a 
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generalized sense. The hyperbolic approximation, however, is more accurate for simple 

subsurface media [e.g. c(z)] and exact for a constant-wavespeed medium. 

1.5.2 Kinematics of diffraction traveltime curves: the DSR equation 

A similar expansion can be developed for a fixed subsurface location, e.g. at a particular 

point on the reflector (Figure 1.7d). This point can be considered as an infinitesimally 

small oriented patch on the reflector surface, otherwise known as a diffractor 

(Deregowski and Brown, 1983). As we shall see in Sections 2.7 and 3.3, this definition of 

a diffractor as an oriented patch is more useful than the simpler and more common 

definition of a diffractor as a point. The orientation is necessary because the correct 

mathematical definition of Huygens’ principle, as described by Fresnel and Kirchhoff, 

requires both dipole and monopole sources (see Section 2.7). The orientation of the 

dipole corresponds to the orientation of the reflector surface or to the orientation of any 

arbitrary surface used to reconstruct the wavefield. 

The total traveltime from the source to the diffractor to the receiver is broken down into 

two components. The square of the traveltime from the source to a fixed diffractor 

location can be expressed as the hyperbolic traveltime expansion 

   τ
2 (x d ,x s ) = τ

0 ds − s0 ∆x s
T( )2

−τ
0 ds∆x sS0 ∆x s

T +O (3), (1.47) 

while the square of the traveltime from the fixed diffractor location to the receiver can be 

expressed as the hyperbolic traveltime expansion 

   τ
2 (x g, xd ) = τ

0 gd + g0 ∆xg
T( )2

+τ
0 gd∆xg G0∆xg

T +O (3). (1.48) 

The sum of these component traveltimes yields the total diffractor traveltime 

 τ(xg ,x s ) = τ(xg ,xd )+ τ(xd ,x s ), (1.49) 
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which can be expressed as a generalized double-square-root (DSR) equation. 

 τ(xg ,x s ) = τ
0 gd + g0∆xg

T( )2
+τ

0 gd∆xgG0 ∆xg
T  

 
 
+ τ

0 ds − s0 ∆x s
T( )2

−τ
0 ds ∆x sS 0∆x s

T +O (3). (1.50) 

Consider a 2-D subsurface (constant in the x2  direction) with the acquisition line on a 

planar surface in the x1  direction. Thus, the coordinate system is oriented such that 

∆xg1 = xm + h , ∆xs1 = xm − h , and ∆xg2 = ∆xs 2 = ∆xg3 = ∆xs3 = 0 , where xm

s0
=

 is the 

distance of the source-receiver midpoint from an arbitrary origin x , and 

 is the source-receiver half-offset. The diffractor of interest lies in the plane 

g0
= x (0,0,0)

h x2 = 0 . The 

situation can be generalized to 3D, except that now distances to the source and receiver 

are measured as radials from the origin, and the midpoint distance xm  and half-offset h  

are half the sum and half the difference of these radial distances, respectively. 

For the zero-offset ray from the diffractor emerging at the origin, g0 = −s 0

0 ≡

 and 

. Hence, we can define zero-offset apparent slowness pG0 = −S 0 g0 = −s0  with 

p
01 = p

0 2 ≡ p , zero-offset apparent curvature P0 ≡ G0 = −S 0  with P
011 = P

0 22 ≡ P  and 

P
012 = P

0 21 = 0 (Vanelle and Gajewski, 2001b), τ ≡ τ(xg ,x s ), and τ0 2 ≡τ
0 gd = τ

0 ds . 

Inserting these into the generalized DSR equation (equation 1.50) yields 

 τ =
τ0

2
+ p(xm + h) 

 
  

 
 

2

+
τ0

2
P xm + h( )2

+
τ 0

2
+ p(xm − h) 

 
  

 
 

2

+
τ0

2
P xm − h( 2)  (1.51) 

or, equivalently 

 τ =
τ0

2
 
 
  

 
 

2

+
τ 0 p

(xm + h)
+

τ 0

2
P + p2 

 
 

 

 
 xm + h( )2

 

 +
τ 0

2
 
 
  

 
 

2

+
τ 0 p

(xm − h)
+

τ 0

2
P + p2 

 
 

 

 
 xm − h( 2) . (1.52) 
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Equations (1.51) and (1.52) have a much simpler and more familiar form if the expansion 

point is the emergence location on the surface of the ‘image ray’, i.e. the zero-offset ray 

from the diffractor that emerges vertically. In this case, the slowness p = 0 and either of 

these equations simplifies to 

 τ =
τ0

2
 
 
  

 
 

2

+
xm + h( )2

cmig
2 +

τ0

2
 
 
  

 
 

2

+
xm − h( 2

cmig
2

) , (1.53) 

with 

 cmig =
2

τ 0 P
 (1.54) 

as the wavefront-curvature fitting parameter commonly referred to as the ‘migration 

velocity’. Equation (1.53) is the same DSR equation introduced as equation (1.1) in 

Section 1.1.4. Previously, it was derived for a constant wavespeed medium. Here it has 

been derived for an arbitrary inhomogenous isotropic medium and a planar acquisition 

surface. 

1.5.3 The DSR equation as a Taylor series expansion: two perspectives 

Equation (1.53) is a generalized diffraction traveltime expression for an arbitrary 

inhomogeneous isotropic subsurface. Although derived for 2-D, it can be applied in 3-D 

using radial distances as discussed above. The key is to expand the hyperbolic traveltime 

expression about the zero-offset image ray, which means that two-way traveltimeτ0  

corresponds to this ray. As a forward-theory operator, equation (1.53) says that the 

traveltime or kinematic information in the data can be described by a single parameter 

that corresponds to the wavefront curvature at the image-ray location and traveltime τ0 . 

A reasonable question to ask, then, is how far away from this expansion point is the 

Taylor series still valid? 
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This question can be approached from two perspectives. Before I consider these, recall 

that the diffractor was defined as an oriented patch in the subsurface. Of all possible shot 

and receiver locations, only a fraction will correspond to a specular reflection. These will 

be the few seismograms that will make a significant contribution to the primary reflection 

events recorded in the data space. Hence, this is the important part of the data that the 

combination of forward theory operator and model must describe and, in turn, the key 

information that the estimator must address. 

With this concept of ‘specular reflections’ in mind, consider the following two 

perspectives. The first looks at a diffraction point in the unknown earth model that 

generated the data space, with the Taylor series expansion about the emergent location of 

the zero-offset image-ray corresponding to this diffraction point. In combination with the 

two-way traveltime τ0

mig

 along the image ray, this location defines the apex of the 

generalized hyperbolic traveltime surface in the data space, which Black and Brzostowski 

(1994) call the true-diffraction curve. Of course, the important information to fit is the 

specular reflection where we want the diffraction curve to be tangent to the reflection 

event. For a dipping reflector, this specular information may be some distance away from 

the image ray location. From this first perspective, then, it is unlikely that a good fit can 

be achieved unless the subsurface wavespeed varies slowly over this distance. In fact, it 

is well known (Dix, 1955) that an exact solution requires a constant wavespeed medium, 

and that a good approximate solution is possible in a layer cake medium near the image 

ray location (i.e. for shallow dips only) using the root-mean-square wavespeed c  as the 

migration velocity c . 

rms

The second perspective is to look at each specular reflection event in the data space and 

find the best-fit hyperbolic curvature independent of any preconceived idea for the 

image-ray surface location andτ0  that corresponds to a particular diffractor. Recall 
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equations (1.46), (1.51), and (1.52), which show that reflection events and diffraction 

traveltime curves can be expanded about any source and receiver location. Hence we can 

expect that both the reflection events and diffraction traveltime curves are hyperbolic in a 

generalized sense, and that a DSR hyperbolic shape can be found that will fit. Thus, the 

apex of the generalized hyperbola will be defined wherever the best fit to the specular 

information is found. Black and Brzostowski (1994) call this best-fit generalized 

hyperbola the time-migration curve and point out that Hubral’s (1977) assumption that 

the image ray connects time migration with depth migration is incorrect when the time-

migration curve and true-diffraction curve do not coincide. 

Typically, only one time migration curve is defined for each output point. Consider two 

adjacent diffractors with different dips in an inhomogeneous subsurface with lateral 

variations in the wavespeed. The traveltimes and locations in the data space for the 

specular reflection events corresponding to these two diffractors will depend on the 

travelpaths of the specular wavefield. In general, these specular reflection events will be 

separated in the data space. Thus it is likely that there will be two best-fit time-migration 

curves, each with a different apex location in the image space. If these time-migration 

curves are selected, the time migrated image will contain relative positioning errors. 

Alternately, a single best-fit time-migration curve could be applied in an attempt to place 

both diffractors at the same location in the image space. As pointed out by Bevc et al. 

(1995), the time migrated image will contain a focusing error. Absolute positioning, as 

discussed earlier, should not be considered an important objective for a time migration. 

However, a specific characteristic of absolute lateral positioning can be used to create a 

more explicit definition of time migration. 
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1.5.4 A more exact definition for time migration 

For a flat reflection event, i.e. where the specular zero-offset data have no time dip, the 

apex of the time-migration curve will be tangent to the specular portion of the reflection 

event in the data space. Thus the output location in the image space will have the same 

lateral coordinates as a flat reflection event in the data space. Note that, in a medium with 

lateral variations in wavespeed, these reflection events may not correspond to flat 

reflectors in the subsurface. This observation suggests that the definitive characteristic of 

a time migration is that a reflection event in the data space at zero offset with zero time 

dip will have the same lateral coordinates in the image space (Margrave, 2000). This 

definition of time migration is more explicit than the simplified working definition 

proposed in Section 1.1 (that the output image space of a time migration has a vertical 

coordinate of time), but now encompasses a broader spectrum of possible migration 

operators, including some with an output vertical coordinate of depth and others that 

require a more detailed estimate of the wavespeed macro-model [e.g. Gazdag’s (1978) 

phase-shift migration]. 

1.5.5 Extensions to the DSR equation 

A logical extension to the DSR equation (equation 1.53) is to add an additional fitting 

parameter so that a larger class of hyperbolic shapes can be fit. One possibility is to shift 

the time origin that defines the DSR hyperbola. Following the work of de Bazelaire 

(1988) and Castle (1988), who applied shifted hyperbolas to common-midpoint (CMP) 

gathers, a shift τs  can be applied to the DSR equation, yielding 

 τ − τs =
τ 0 −τ s

2
 
 
  

 
 

2

+
xm + h( )2

cmig
2 +

τ 0 −τ s

2
 
 
  

 
 

2

+
xm − h( 2

cmig
2

)
. (1.55) 
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Shifted hyperbolae have been shown to be related to attributes used in macro-model-

independent imaging by Hockt et al. (1999), and to Thompson’s weak anisotropy 

parameter η  in anelliptic prestack time migration by Suaudeau and Siliqi (2001). A tilted 

DSR equation has been proposed by Bancroft et al. (1999). Although promising, 

applications of shifted or tilted DSR equation will not be considered further in this 

dissertation. 

1.6 KINEMATICS AND DYNAMICS OF EOM PRESTACK TIME MIGRATION 

As discussed in Section 1.2, the basic concept of migration can be described in two ways: 

weighted spreading of each point in the data space to produce the corresponding isochron 

surface in the image space, or weighted summation over a diffraction traveltime surface 

in the data space to produce each point in the image space. The second method has a 

natural affinity to the DSR forward theory operator (equation 1.53). The DSR equation 

was shown to be a good possible candidate for a migration operator given that the 

reflection and diffraction kinematics in the data space can be described by generalized 

hyperbolic relationships. 

In this section, I assume that the DSR equation is a suitable description for the kinematic 

component of a migration operator. A complete migration operator also needs to address 

the dynamic component, i.e. the amplitudes. Of course, we are free to assume any 

operator as the generalized inverse, as long as we are willing to live with the associated 

errors. Although the DSR equation will prove to be a good guess for the kinematic 

component, a simple trial and error approach such as this proves less fruitful in the quest 

for an appropriate amplitude expression. As shown in Chapters 2 and 3, the more 

complete theoretical description required to determine the amplitude component also 

justifies summation over a diffraction traveltime surface. Thus the DSR equation, which 
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describes a diffraction traveltime surface, is a reasonable assumption for the kinematic 

component of a migration operator. 

1.6.1 EOM kinematics from the DSR equation 

The essence of the kinematics of EOM prestack time migration (Bancroft and Geiger, 

1994; Bancroft et al., 1998) is a simple reformulation of the DSR equation to a single-

square root (SSR) equation at an equivalent offset h , chosen so that the equivalent two-

way traveltime 2

e

τ e  equals the total traveltime τ , i.e. 

 2τ e = τ , (1.56) 

where 

 2τ e = 2
τ 0

2
 
 
  

 
 

2

+
he

2

cmig
2  (1.57) 

is the SSR equation. Substituting the SSR and DSR equations into equation (1.56) gives 

 2
τ 0

2
 
 
  

 
 

2

+
he

2

cmig
2 =

τ 0

2
 
 
  

 
 

2

+
xm + h( )2

cmig
2 +

τ 0

2
 
 
  

 
 

2

+
xm − h( )2

cmig
2 , (1.58) 

which can be solved for the equivalent offset (Bancroft et al., 1998), yielding 

 he
2 = xm

2 +h2 −
2xmh
τcmig

 

 
 

 

 
 

2

. (1.59) 

Recall that the output points in the image space are defined by the surface location and 

two-way zero-offset traveltime τ0  of the apex of the DSR equation. The output surface 

location can be chosen arbitrarily, in which case xm  and h  define the radial midpoint 

distance and radial source-receiver offset for a given seismogram in the input data space. 

Now consider an intermediate data space consisting of equivalent offset gathers, one 

gather for each output surface location. Equation (1.59) can be used to map each sample 
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(xm ,h,τ)  in the input data space to (he ,τ ) in each and every gather in the intermediate 

data space. In practice, input samples are summed into ‘bins’ of user-defined finite width 

. All the input data on the DSR diffraction traveltime surface now lies on a 

hyperbolic curve (equation 1.57) in the equivalent offset gather. This greatly simplifies 

the selection of appropriate migration velocities for each 

∆he

τ0  in the output image space. 

The desired image is created by applying a standard normal moveout correction and stack 

to the equivalent offset gathers. 

e
2 =

xm

The kinematic mapping formula given by equation (1.57) is accepted as an exact 

equivalent to the full DSR equation (Fowler, 1997a; Margrave et al., 1999; Wang et al., 

2000; Yilmaz, 2001). The two main concerns with the method (e.g. Bednar, 1999) are 

that the mapping formula (equation 1.59) depends on the migration velocity (which is not 

known prior to binning) and that resolution can be degraded if too large a bin width is 

selected. Bancroft and Geiger (1996), Li (1999), and Wang et al. (2000) show that the 

mapping formula is not overly sensitive to the migration velocity and that an approximate 

estimate yields equivalent offset gathers suitable for accurate velocity analysis and 

imaging. Gathers can be recreated with the improved velocity estimates if required. Note, 

however, that if an infinite velocity is chosen, equation (1.59) reduces to an asymptotic 

limit h , which is not a satisfactory mapping operator at smaller xm
2 +h2 τ0 ’s when 

both  and h  are large. This can be avoided by choosing a more reasonable estimate for 

the initial migration velocity. Problems created by selecting too large a bin width can be 

resolved by choosing a smaller bin width. 

Practical implementations of the kinematics of EOM prestack migration have been 

discussed in a number of publications, and so will not be discussed further in this 

dissertation. Interested readers should refer to Li et al. (1997), Bancroft et al. (1998), the 
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US and Canadian patents documents of Bancroft and Geiger (1997; 1998), and the M.Sc. 

thesis by Li (1999, esp. Chapter 3). 

1.6.3 EOM dynamics and migration weighting functions 

The dynamic solution has proved to be more elusive than its kinematic counterpart. 

Margrave et al. (1999) present a wavenumber formulation for EOM based on Stolt 

migration theory (Stolt, 1978; Stolt and Weglein, 1985). The wavenumber formulation 

yields the same kinematic solution as the time-domain approach, but is more obviously 

related to the physics of wavefield propagation than the Taylor series derivation given 

above. The wavenumber formulation also provides a dynamic solution that is, 

unfortunately, cumbersome to implement in the time-domain. However, the dynamic 

solution is of questionable accuracy for two reasons. First, Stolt migration theory is based 

on a double-downward continuation of the prestack data. A discussion of the dynamic 

errors associated with double-downward continuation is beyond the scope of the 

introduction, but is addressed later in Section 4.7 (see also discussion of contribution 10 

in Section 1.7). Second, the mapping of the input data through the equivalent 

wavenumber domain to the output point introduces a Jacobian that, in essence, assumes 

that the mapping process is driven by regular sampling in the equivalent wavenumber 

domain. The amplitude correction associated with this Jacobian is not necessarily 

relevant to a time-domain implementation where the input data are regularly sampled in 

some acquisition configuration. 

A time-domain implementation of EOM prestack migration will require a Jacobian. One 

of the major objectives of this dissertation is to establish just what form this Jacobian 

should take. Fowler (1997b) and Cary (1998) have proposed a Jacobian that assumes that 

the mapping process is driven by regular sampling in the equivalent offset gathers (prior 

to binning). An alternate approach, and the one adopted here, is to establish a Jacobian 
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appropriate for mapping the input data space directly to the output image space. This 

mapping can be considered as a weighted summation over the DSR diffraction surface. 

The equivalent offset gather is just an intermediate domain of partially summed input 

data. Thus no additional Jacobian is required for the mapping process from the input data 

to the equivalent offset gather, or from the equivalent offset gather to the output image 

space. In any case, the combination of these Jacobians should have the same effect as the 

direct Jacobian. 

The main benefit of the direct approach is that there are a variety of possible Jacobians 

published in the exploration seismology literature. Typically, these are buried in a more 

general weighting function that accounts for all amplitude factors in the migration 

operator. This is not a concern because the general weighting function is what we are 

seeking. Valid concerns are that a published migration operator may not take the input 

data to an output image of average or stacked angle-dependent reflectivities, or that there 

may be errors in the assumptions or even in the derivation of the migration operator. 

Although some of the relevant literature is listed below, a detailed review will not be 

provided here. Instead, important aspects of these papers, and others, are discussed at the 

appropriate locations throughout the dissertation. 

That one can ‘go shopping’ through the seismic exploration literature, pick out a number 

of possible weighting functions, and then test them using the various validation processes 

listed in Section 1.3 is, to be frank, an accurate summary of my original efforts. 

Weighting functions proposed by Newman (1975, republished 1990), Schneider (1978), 

Wiggins (1984), Miller et al. (1987), Lumley (1989), Dillon (1990), Docherty (1991), 

and Hanitzsch (1995) were compared with each other by migrating synthetic and field 

data (the third validation process listed in Section 1.3). Although these efforts eventually 

led to the 2.5-D weighting function presented in Chapter 5, they provided scant insight 
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into why the weighting function worked, how it could be modified for other prestack 

time-migration problems (e.g. 3-D data sets), or the significance of various 

approximations used to derive the published weighting functions. A more complete 

understanding of both the forward and inverse problems is required to properly address 

these questions. 

Relevant literature for the forward problem includes Baker and Copson (1950), Morse 

and Feshbach (1953), Trorey (1977), Kuhn and Alhilali (1977), Deregowski and Brown 

(1983), Bleistein (1984), Berkhout (1985), and Wapenaar and Berkhout (1993). The 

forward problem leads naturally to the inverse problems of wavefield propagation 

(Wapenaar and Berkhout, 1989) and true-amplitude migration (Beylkin, 1985; Miller et 

al., 1987; Colton and Kress, 1991; Hanitzsch, 1997; Scales, 1997). As I shall show in 

Chapter 4, the common-offset prestack depth migration formulation determined by 

Bleistein and co-workers (Bleistein et al., 1987; Bleistein, 1987; Jaramillo and Bleistein, 

1999; see Bleistein et al., 2001 for a complete review) provides the basis for weighting 

functions appropriate for EOM prestack time migration. Simplifications to this formula 

by Gray (1998b) and Dellinger et al. (2000) yield a weighting factor similar to the one 

obtained by my original ‘trial and error’ approach. As it turns out, many of the other 

published weighting functions (e.g. Berkhout, 1985; de Bruin, 1992) are designed for a 

common-shot acquisition configuration, which can produce biased estimates of average 

angle-dependent reflectivity (Geiger, 2001); or are fundamentally based on double-

downward continuation (e.g. Stolt, 1978; Stolt and Weglein, 1985; Schultz and 

Sherwood, 1980), which also produces incorrect estimates (see Section 4.7 and 

discussion of contribution 10 in Section 1.7). The key to selecting the optimum weighting 

function is an understanding of the Jacobian that relates the acquisition configuration to 

an output image point. A detailed investigation of the optimum weighting function and its 
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relation to acquisition configuration, including derivations and synthetic tests, is 

presented in Chapter 4. 

1.7 SUMMARY OF OBJECTIVES AND CONTRIBUTIONS 

The main objective of this dissertation is to find accurate and practical expressions for the 

dynamic component of EOM prestack time migration. Previous attempts (Fowler, 1997b; 

Cary, 1998; Margrave et al., 1999) suggest that Jacobians are necessary for the 

transformations from the input data space to the intermediate data space of EO gathers 

and from the EO gathers to the output image space. However, given that the kinematics 

of EOM are well established as an exact re-expression of the DSR equation, and that the 

transformation to the EO gathers can be implemented as a simple unweighted summation, 

the only Jacobian that is required is the direct Jacobian from the data space to the image 

space. The direct Jacobian can be found as part of the dynamic component of many 

prestack migration weighting functions published in the existing literature. 

The task, then, is to determine which one of the published weighting functions is the 

correct one (if any) and how it can be simplified for practical application. This is 

accomplished by a comprehensive analysis of the relevant theory combined with a 

validation process using both synthetic models and field data, as described in the 

following paragraph. 

In Chapter 2, the theory of acoustic wavefield extrapolation is developed from first 

principles. In Chapter 3, this theory is shown to be the foundation for the Kirchhoff-

approximate formulae for prestack depth migration/inversion in a constant wavespeed 

medium. Formulae for the common-shot and common-receiver acquisition configurations 

are derived using principles of wave propagation combined with an imaging condition 

(Claerbout, 1971; Docherty, 1991). Formulae for the common-offset acquisition 
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configuration can only be derived as a Fourier-transform-like inverse (Bleistein et al., 

2001). Only a brief summary of this derivation is provided. In Chapter 4, these formulae 

are re-expressed for prestack time migration/ inversion and adapted for output to an 

image space of stacked reflectivity. The common-shot, common-receiver, and common-

offset versions are then compared using synthetic data from a single dipping reflector in a 

constant wavespeed medium. The common-offset weighting function is shown to be 

correct, and is then developed for practical use. In Chapter 5, relative-amplitude EOM 

prestack time migration is compared against conventional imaging techniques on a test 

portion of the SNORCLE crustal seismic-reflection transect. 

The second objective is to find a more general justification for the DSR kinematics of 

non-recursive prestack time migration algorithms such as EOM. Conventional 

derivations of the DSR equation assume a constant wavespeed subsurface, but practical 

experience suggests that excellent images can be obtained from DSR prestack time 

migrations in areas with significant lateral and vertical variations in subsurface 

wavespeed. The justification, which consists of two main parts, has already been 

presented in the introduction. First, I redefine migration as a transformation from a data 

space to an image space, express the transformation in terms of geophysical inverse 

theory, and from this determine qualitative criteria for evaluating the accuracy of the 

image space. Second, I derive the DSR equation for generalized inhomogeneous media 

using a Taylor series expansion about the best-fit image-ray location. The smoothness 

assumption required for the Taylor series expansion can be related to the qualitative 

accuracy criteria established earlier. 

In this dissertation, there are a number of original contributions. Some of these have 

already been presented in Chapter 1. Others can be found scattered at appropriate 

locations throughout the dissertation. The following is a complete list: 
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1. Justification for Hagedoorn’s (1955) method for reflector mapping using diffraction 

curves (Section 1.3.3). 

2. Establish three general criteria for evaluating the image space: accuracy of focusing, 

accuracy of relative positioning, and accuracy of absolute positioning; and discuss 

their relationship to the imaging problem expressed in terms of geophysical inverse 

theory (Section 1.4.8). 

3. Derivation of DSR equation for an arbitrary inhomogeneous isotropic media using 

Taylor series expansion of squared traveltimes perturbed about the best-fit image-ray 

location (Section 1.5.2). The derivation justifies the use of prestack time migration in 

areas with both lateral and vertical variations in subsurface wavespeed. The only 

assumption is that the traveltime perturbations are smooth over the perturbation 

distance. This assumption will affect accuracy of the horizontal component of 

absolute positioning more than accuracy of relative positioning, and accuracy of 

focusing the least. Accuracy of the vertical component of absolute positioning is not a 

significant concern for prestack time migration where the image space has a vertical 

coordinate of two-way traveltime. 

4. Recognition that Jacobians are not required to take information from the data space to 

the intermediate space of the equivalent offset gather and then to the output image 

space. Instead, a direct Jacobian from data space to image space can be used if the 

equivalent offset gathers are created by a simple binning process (Section 1.6.3). 

5. Derivation of Kirchhoff- and Born-approximate modeling formulae from first 

principles of continuum mechanics, using the Kirchhoff-Helmholtz integral 

representation (KHIR) as a common point of departure (Chapters 2 and 3), thereby 

establishing that the correct form for the monopole source function Sρ (ω) includes a 
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factor accounting for the density of the medium at the source location (Section 2.2). 

The product Sρ (ω)dω  is the average amplitude of the source function for the packet 

of continuous frequencies in an interval dω  containing ω , and has physical units of 

kg3s-2, i.e. the time derivative of the rate of mass injection. A correct source function 

is derived for the variable-density acoustic case in Wapenaar and Berkhout (1993), 

but insufficient attention to physical units in the constant-density acoustic derivations 

of Bleistein and co-workers (Bleistein et al., 2001) has led to some difficulties in the 

implementation of true-amplitude migration/inversion formulae (e.g. Dellinger et al., 

2000). 

Sρ (

ω ) ˆ F (ω)

ω) S

6. Derivation of a chi-squared fitting function  that should be incorporated into all 

migration/inversion formulae (section 3.6).  is a zero-phase function of 

frequency that is chosen such that 

ˆ F (ω)

ˆ F (ω)

ω )ˆ F (ω)  is a good estimator of the unknown 

signal-to-noise ratio, where Sρ (ω )  is the source spectrum after zero-phase 

deconvolution. For an assumed noise model that is constant with frequency, 

ˆ F (ω) = Sρ ( .  is normalized in both magnitude and physical units such that  

 
1

2π
dω∫ ˆ F ( ρ (ω ) . [equation (3.35)] = 1

7. Recognition that, given regular acquisition configurations over a planar surface, the 

2.5-D and 3-D common-offset weighting functions for migration/inversion are the 

optimum formulae for stacked reflectivity (Sections 4.3 and 4.4). Migration/inversion 

formulae with common-shot or common-receiver weighting functions yield a stacked 

reflectivity with a dip- and depth-dependent bias (Geiger, 2001). 

8. Derivation of practical 2.5-D and 3-D time-domain constant-wavespeed formulae for 

prestack migration/inversion (Section 4.5). These formulae differ only by a constant 
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from similar formulae proposed by Gray (1998b), Dellinger et al. (2000), and Zhang 

et al. (2000). 

9. Derivation of custom weighting functions for 2.5-D and 3-D EOM prestack time 

migration (Sections 4.6 and 4.7). These formulae are based on the practical formulae 

discussed above, but include additional weighting as a function of equivalent offset. 

The custom weights can be designed to have a more uniform dip- and depth-

dependent variation than the practical weights. 

10. Recognition that double-downward continuation prestack migration formulae 

proposed by Wiggins (1984) and Stolt and Weglein (1985) do not produce true-

amplitude angle-dependent reflectivity or true-amplitude stacked reflectivity (Section 

4.7). A similar observation is made by Zhang et al. (2001), who conclude that double-

downward continuation using Claerbout’s finite-difference method is also inaccurate, 

and propose simple factors to compensate for the error. Weglein and Stolt (1999) also 

suggest that a correction factor is required. A correction factor is given in equation 

(1) of Stolt (2002) and derived in his Appendix B. 

11. Application of relative-amplitude preserving EOM prestack time migration to crustal 

seismic data (Chapter 5). 

12. Presentation of a geometric argument for a stationary phase approximation that 

equates the normal derivative of the Green’s function and the normal derivative of the 

upgoing one-way recorded wavefield, justifies the Rayleigh II far-field approximation 

to the Kirchhoff-Helmholtz wavefield extrapolator, and shows that the effects of the 

near-field terms tend to cancel (Appendix B). 
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13. Derivation of the isochron stack from the simplified form of the Kirchhoff-

approximate modeling formula without the stationary phase approximations of 

Jaramillo (1999) and Jaramillo et al. (2000) (Appendix C). 

14. Derivation of relationships between 2-D, 2.5-D, and 3-D modeling and migration/ 

inversion formulae for constant wavespeed (Appendix D). 

I believe that the most significant contribution of this dissertation is the thorough 

documentation and justification of the theory of prestack time migration, both in the 

context of EOM and independent of EOM. Some details of the theory are new, but much 

of it can be found in published literature spanning many decades. To my knowledge, the 

theory of prestack time migration has not previously been compiled as one 

comprehensive work. My hope is that the reader will find that compilation here.
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CHAPTER 2: THEORY OF ACOUSTIC WAVEFIELD EXTRAPOLATION 

2.1 INTRODUCTION 

In this chapter, the theoretical basis for acoustic wavefield extrapolation is developed 

from first principles. The Kirchhoff-Helmholtz integral representation is shown to be the 

fundamental equation of wavefield extrapolation and imaging. The detailed investigation 

presented in this chapter yields a mathematical description of Huygens’ principle, 

simplified formulae for forward and inverse extrapolation from planar and non-planar 

interfaces, and reciprocity relations for Green’s functions and acoustic pressure. The 

imaging problem is addressed in Chapter 3. 

The background required to understand the theory of acoustic wavefield extrapolation is 

quite extensive. In Section 2.2, I derive the two-way nonhomogeneous1 linear acoustic 

wave equation from first principles. The nonhomogeneous scalar wave equation, often 

considered to be restricted to constant density media, is shown to be appropriate for 

variable-density media. The correct physical units for Green’s functions are determined 

by examining monopole and dipole source terms. In Section 2.3, the significance of 

Green’s functions and linearity are discussed. In Section 2.4, one-way free-space Green’s 

functions are determined for the space-time and space-frequency domains, the WKBJ 

approximation is assumed to be valid for an inhomogeneous medium, and the eikonal and 

transport equations are used to derive traveltime and amplitude expressions for one-way 

ray-theoretical Green’s functions. 

 

1 The term “nonhomogeneous” refers to a partial differential equation (PDE) with a source term, and the 

term “inhomogeneous” refers to material properties that depend on position (Epstein and Slawinski, 1998). 
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In Section 2.5, I derive the Kirchhoff-Helmholtz integral representation (KHIR), which 

can be used to reconstructs the acoustic pressure at one spatial location in terms of the 

acoustic pressure elsewhere. The KHIR can be thought of as consisting of three terms: 

the volume-scattered wavefield, the surface-scattered wavefield, and the incident 

wavefield. In Section 2.6, the surface-scattered wavefield term, known as either the 

Kirchhoff-Helmholtz integral (space-frequency domain) or the Kirchhoff integral (space-

time domain), is shown to be the mathematical description Huygens’ principle. The 

surface-scattered wavefield term provides the basis for the Kirchhoff-approximate 

modeling and inversion formulae developed in Chapter 3. The volume-scattered 

wavefield is not discussed in detail, but provides the basis for the Born-approximate 

modeling and inversion formulae, also developed in Chapter 3. In Section 2.7, the 

incident wavefield term is shown to be the basis for reciprocity relations for constant-

density and variable-density media. 

In conventional seismic experiments, the data are not collected over a complete closed 

surface surrounding the volume of interest, as required by the reconstruction integrals. In 

addition, the data consist of only one of either the pressure or its normal derivative, not 

both as required. However, by assuming that the wavefield crosses a planar surface in 

one direction, reconstruction can be accomplished using the simpler Rayleigh I and 

Rayleigh II integrals. These are derived and discussed in Section 2.8. In Section 2.9, I 

examine possibilities for simplified wavefield propagation from a non-planar surface. 

2.2 LINEAR ACOUSTIC AND SCALAR TWO-WAY WAVE EQUATIONS 

The complete description of any mechanical disturbance in a medium requires only three 

basic equations; the equation of continuity (from conservation of mass), the equation of 

motion (from conservation of momentum), and a constitutive relation appropriate for the 

medium. The following derivation of the acoustic two-way wave equation is adapted 
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from a derivation found in Wapenaar and Berkhout (1989, p. 7-13)2. Here, I begin with 

the linearized equation of continuity, 

 
1

K(x)
∂p(x, t)

∂t
+ ∇⋅v(x,t) =

∂iV (x, t)
∂t

, (2.1) 

which incorporates the constitutive relation known as the linearized equation of state for 

adiabatic fluids [see equation (2.3)], and the linearized equation of motion 

 ρ(x)
∂v(x, t)

∂t
+ ∇p(x, t) = fV (x, t), (2.2) 

where x is a Cartesian position vector (x1,x2,x3) = (x,y,z) and t is time. For a propagating 

wavefront in a fluid, the dependent variables of physical interest are 

p the change in pressure (physical units Pa = Nm-2 = kgm-1s-2), i.e. the acoustic 

pressure arising from the acoustic wavefield (defined as p(x,t) = −K(x)∇⋅u(x, t), 

where u(x,t) is the displacement), and 

v the particle velocity of the acoustic wavefield (physical units ms-1), assuming the 

flow velocity of the fluid is zero, 

that together fully represent the linear acoustic wavefield. The fluid is fully represented 

by the material parameters 

ρ the static mass density (physical units kgm-3), henceforth referred to as “density”, 

and 

                                                 

2 See Pierce (1989, Sections 1-2 to 1-6) for an alternate derivation and discussion, particularly the 

derivation of the linearized equation of state for adiabatic fluids on p. 11-15 (especially the footnote on 

p. 15 for inhomogeneous equation of state). Wapenaar and Berkhout (1989, Section I.2.3) provide an 

alternate derivation of the linearized equation of state [equation (2.3) below]. 
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K the adiabatic compression modulus3 (physical units of pressure - Nm-2). 

The adiabatic compression modulus K is the constant of proportionality in the linearized 

equation of state, 

 p(x,t) = K(x)
∆ρ(x,t)

ρ(x)
, (2.3) 

which relates change in pressure p(x,t) to the ratio of change in density ∆ρ (x,t) over 

static density ρ(x). 

The source functions for the wavefield are 

iV the volume injection per unit volume (physical units m3m-3), expressed in 

equation (2.1) as a rate, and 

fV the body force acting per unit volume (physical units Nm-3). 

Note that the source functions are given as distributed sources per unit volume, as both 

the equation of continuity and the equation of motion originate inside time-invariant 

volume integrals expressing the conservation relations for mass and momentum, 

respectively. In Section 2.3.3, these source distributions will be reformulated using delta 

functions, leading to Green’s functions appropriate for the representation theorems 

required for forward and inverse wavefield extrapolation. 

Equation (2.1) states that, in the absence of a time varying source of volume injection, the 

time rate of change of acoustic pressure is proportional to the divergence of the particle 

velocity. Equation (2.2) is in essence Newton’s second law (i.e. F = ma), but also states 

                                                 

3 See Pierce (1989, Sections 1-4 and 1-10) for justification of adiabatic approximation. 
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that the gradient of the acoustic pressure acts as a restoring force that, in the absence of a 

body force, is proportional to the particle acceleration. 

The particle velocity v(x,t) can be eliminated from the set of equations (2.1) and (2.2) by 

dividing the equation of motion (2.2) through by density ρ(x), taking the divergence of 

the result and subtracting the time derivative of the equation of continuity (2.1). 

Replacing the source terms on the RHS with a notationally convenient function sV(x,t) 

yields 

 ∇⋅
1

ρ(x)
∇p(x, t)

 

 
  

 
 −

1
K(x)

∂ 2 p(x, t)
∂t 2 = −sV (x, t). (2.4) 

Equation (2.4) is the linear acoustic two-way wave equation4 for the acoustic pressure 

p(x,t) and is valid for an inhomogeneous anisotropic medium containing arbitrary 

interfaces specified by discontinuities in the fluid parameters ρ(x) and/or K(x) 5. The 

usual practice is to simplify this expression by expanding the divergence term on the 

LHS using an appropriate vector identity, multiplying through by the density and 

rearranging to give 

                                                 

4 There are many types of linear and nonlinear wave equations. An advanced overview can be found in 

Brekhovskikh and Goncharov (1985). Robinson and Silvia (1981, Section 1.1) provide a good elementary 

discussion justifying linear waves. Scales (1997, p. 53-54) show why gravitational effects can be ignored 

when dealing with frequencies commonly used in seismic exploration. 

5 The frequency domain equivalent of equation (2.4) is the basic equation for the acoustic two-parameter 

migration and inversion literature. For example, it is equation (41) in Stolt and Weglein’s 1985 review 

article in Geophysics Golden Anniversary Issue (Stolt and Weglein, 1985) and equation (1) of Wapenaar 

and Berkhout (1993). In addition, it provides the background to Chapter 5 and beyond of the text Elastic 

wavefield extrapolation: redatuming of single- and multicomponent seismic data (Wapenaar and Berkhout, 

1989). 
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where c(x) = [K(x)/ρ(x)]1/2 is the speed of wave propagation in the media, i.e. the 

wavespeed6 (physical units ms-1). This form of the linear acoustic two-way wave 

equation is recognizable as a nonhomogeneous PDE commonly known as the scalar wave 

equation. 

2.2.1 Simplifying the source term in the scalar wave equation 

The second term on the RHS of equation (2.5) can be considered as a source term that is 

significant only when the spatial gradient of ρ(x) is large, i.e. at discontinuities or 

interfaces within the volume. There are two lines of argument that justify ignoring this 

term. The most common approach is to assume that ρ(x) is a smoothly-varying function 

with negligible gradients even at the interfaces (see Brekhovskikh and Goncharov, 1985, 

p. 263)7. This assumption is not as restrictive as it first appears because, to first order, the 

effect of discontinuities in ρ(x) and K(x) remain in the wavespeed c(x). Unfortunately, 

density gradients are not negligible at interfaces, suggesting that we might be introducing 

a significant error by ignoring this term. 

                                                 

6 That c(x) is the wavespeed can be easily shown by solving the 1-D wave equation (or, equivalently, the 3-

D wave equation in spherical coordinates) for an infinite homogeneous medium (e.g. Robinson and Silvia, 

1981, Section 1.3; Wapenaar and Berkhout, 1989, Section I.3.3). 

7 Brekhovskikh and Goncharov (1985, p. 263) show that, in order to drop the second term on the RHS of 

equation (2.5), the space scale of the variation of mass density must be large compared to the wavelength, 

an assumption valid only for propagation in simpler macro subsurface models. Berkhout (1985, Appendix 

C) suggests using a scaled pressure function as a better approximation. 
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A better line of argument leads to the conclusion that the second term on the RHS of 

equation (2.5) is not required. Taken as a secondary source, this term accounts for a 

portion of the reflection and transmission effects arising from density contrasts at each 

interface (given that some of the effects of density contrasts are incorporated in the 

wavespeed). The reflection effects can be ignored for the derivation of wavefield 

extrapolators because we anticipate separating both the forward modeling problem and 

the migration/inversion problem into a cascade of three steps – forward wavefield 

extrapolation between the source and a given interface, boundary or imaging conditions 

defining reflectivity at the interface, and either forward or inverse wavefield 

extrapolation between the interface and the recording surface. With this cascaded 

approach, the mathematical model for reflectivity is not restricted to the acoustic model 

given by equation (2.5). Instead, we can choose a more appropriate mathematical model, 

preferably one that is both directly applicable to the reflection problem and more accurate 

for the assumed elastic Earth model (e.g. the Zoeppritz equations). In addition, we 

anticipate using one-way wavefield extrapolators that account for the primary arrivals 

only (i.e. multiples are ignored). This one-way approach greatly simplifies derivation and 

computation of wavefield extrapolators and their associated Green’s functions. 

However, the amplitude of the one-way wavefield extrapolators will be in error because 

the transmission effects associated with each interface are not included. This is not a 

serious omission, in part because, given an assumed elastic Earth model, the transmission 

effects calculated using a variable-density acoustic model [e.g. by including the second 

term on the RHS of equation (2.5)] are only correct at normal incidence. A more accurate 

approach is to calculate transmission effects at each interface using an elastic model (e.g. 

the Zoeppritz equations) and incorporate them as additional amplitude terms in the one-

way acoustic wavefield extrapolators (see Hanitzsch, 1995). 
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If the second term on the RHS is ignored, equation (2.5) simplifies to 

 ∇ x
2 p(x ,t) −

1
c2 (x)

∂ 2 p(x, t)
∂t2 = −ρ(x)sV (x,t) . (2.6) 

Snell’s law of refraction, which depends only on the variable wavespeed , can be 

determined from the variable-density scalar wave equation [equations (2.4)/(2.5)] or from 

the simplified scalar wave equation [equation (2.6)]. Thus, all the other desirable 

characteristics of an elastic wavefield extrapolator (e.g. the kinematics, raypaths, and 

geometric spreading) can be accurately determined using this simplified scalar wave 

equation. In fact, the independent propagation of P- and S-wave potentials in elastic 

media can be expressed by versions of the scalar wave equation similar to equation (2.6), 

with propagation velocities α and β, respectively

)(xc

8. 

In equation (2.6), the density ρ(x) is often incorporated into the source term (e.g. 

Wapenaar, 1993a). However, keeping the two separate will prove useful when deriving 

Green’s functions, which contain density terms that depend on the location of the Green’s 

function source and observation positions (Snieder and Chapman, 1998). 

2.2.2 Justification for acoustic pressure as the dependent field variable 

In the simplified scalar wave equation given by equation (2.6), the dependent field 

variable is acoustic pressure. Scalar wave equations can be derived for other dependent 

field variables, such as the Cartesian components of the acoustic particle velocity v(x,t), 

                                                 

8 See Scales (1997, p. 55-56). Note that, in Section 1.1.3 α and β denote angles in the migrator’s equation. 

In Section 2.5 and throughout Chapter 3, α denotes the wavespeed perturbation function. 
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the change in density ∆ρ(x,t) (or its equivalent, the condensation s(x,t) 9, which can be 

expressed as the change in acoustic pressure divided by the adiabatic compression 

modulus), or even the change in temperature. However, some of these require 

assumptions of homogeneity (Pierce, 1989, p. 18). A somewhat more abstract description 

of the acoustic field is given by the velocity potential, from which almost all scalar or 

vector field variables can be derived (e.g. acoustic pressure, particle velocity or its 

components, particle displacement or its components, and, via equations of state, change 

in density and temperature). 

However, it can be shown that in the limiting case of an ideal fluid, the P-wave potential 

is identical to the acoustic pressure (see Wapenaar and Berkhout, 1989, Section II.2, esp. 

II.2.5). Hence, I will proceed with equation (2.6). In Section 2.5, I return to the space-

frequency domain equivalent of this equation to develop a special form of Rayleigh’s 

reciprocity theorem known as the Kirchhoff-Helmholtz integral representation—the 

fundamental equation of seismic imaging theory. 

2.2.3 Monopole and dipole source terms 

The source term sV(x,t) on the RHS of equation (2.6) is just a convenient expression for 

the sum of source terms arising from equations (2.1) and (2.2) in the derivation of the 

linear two-way acoustic wave equation: 

 

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∂

∂ρρ . (2.7) 

                                                 

9 Here, the use of s to denote the condensation is in agreement with common use in the historic literature, 

such as Baker and Copson (1950, esp. Sections 3.1 to 3.3 and 4.1) and Tikhonov and Samarskii (1990, 

Section II.1.6). Otherwise, s denotes source functions in the time domain, S(ω) denotes source functions in 

the frequency domain, and S a surface. The context of use should prevent confusion. 
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These terms need to be investigated further for two reasons. First, by re-expressing the 

source functions in terms of delta functions we can develop Green’s functions 

appropriate for the representation theorems required for forward and inverse wavefield 

extrapolation (and determine the correct physical units for the Green’s functions). 

Second, the time varying component of the source functions modifies the amplitude and 

phase characteristics of the propagating wavefield, and so must be considered in any 

complete derivation of an imaging method. 

In its most elementary form, the first term on the RHS of equation (2.7) represents a 

monopole point source of volume injection multiplied by the density10 

 ρ(x)
∂ 2iv (x,t)

∂t 2 = ρ(x)
∂ 2i(t)

∂t 2 δ (x − x s ), (2.8) 

where ∂t
2i(t) is the source signature (physical units m3s-2) giving the time derivative of 

the rate at which volume is added to the fluid outside some small fixed region enclosing 

the source located at xs, and δ(x-xs) is the 3-D spatial delta function (physical units m-3). 

A single marine seismic airgun or a single land seismic dynamite charge can be 

considered as a monopole point source. If necessary, a source array can be synthesized 

from monopoles to produce a far-field signature equivalent to the physical source (Stoffa 

and Ziolkowski, 1983). 

In its most elementary form, the second term on the RHS of equation (2.7) can be 

considered a dipole source of force 

 ρ(x)∇⋅
1

ρ(x)
fv (x,t)

 

 
  

 
 = ρ(x)f(t)∇⋅

δ (x − x s )
ρ(x)

 

 
  

 
 , (2.9) 

                                                 

10 See Pierce (1989, Section 4.3) for a discussion of monopole point sources of mass injection. 
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where f(t) is the source signature (physical units of force - N or kgms-2). The simplest 

representation for a single land vibrator could be considered as a dipole source of vertical 

force . Wapenaar and Berkhout (1989, Section I.3.1) show that, in 

homogeneous media, the wavefield from this dipole source can be determined directly as 

the negative z-derivative of the wavefield from a monopole source. For this reason (and 

because the monopole wavefield is the far easier case

( )(,0,0)( tft z=f

11) only monopole point sources 

will be considered in the remainder of this dissertation. 

2.3 GREEN’S FUNCTIONS AND LINEARITY 

Before I proceed with an in-depth discussion of Green’s functions, I will briefly 

summarize their significance12. In general, a Green’s function is the impulse response of 

a linear system. In our context, a Green’s function is the solution to the linearized 

acoustic wave equation given a causal delta function source. Having a solution implies 

that the problem is properly specified. Ideally, we would like to have an analytic solution 

that satisfies the wave equation and its boundary conditions for any two points in space 

and time (e.g. the delta function source location and the observation location). Since the 

acoustic wave equation is linear, each instance of an analytic solution is a member of an 

infinite set of linear solutions. These can be superposed, yielding more complex solutions 

from the (hopefully) simple Green’s functions. Hence, if we can formulate a 

representation of the desired solution as an integration of known Green’s functions and 

 

11Ignoring Fresnel’s reminder that “Nature is not embarrassed by difficulties of analysis” (Mackay, 1994). 

12 See Bleistein (1984, Section 5.3 and 6.3) for mathematical justifications for the use of Green’s functions 

(esp. p. 155 and p. 175). The popularity of Green’s functions can be attributed to Morse and Feshbach 

(1953, Chapter 7, especially p. 791-793 and p. 803-814 for application to the Helmholtz equation). 
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other known parameters, linearity guarantees that the solution will be meaningful13. A 

suitable representation theorem will be derived in Section 2.5. 

2.3.1 Using simplified Green’s functions in complicated inhomogeneous media 

We desire analytic Green’s functions that provide a valid solution for all space and time. 

This is not practical for wavefield propagation through complicated inhomogeneous 

media. Fortunately, superposition can take place over subdivisions of space and time. We 

can determine simple Green’s functions that are solutions to local problems, and 

superpose the results14. A particularly useful simple solution is the Green’s function for 

an increment in space and time through a homogeneous medium, otherwise known as the 

free-space Green’s function. The material parameters can be changed at each increment. 

In this manner, these simple Green’s functions can approximate wavefield propagation 

through an inhomogeneous medium. Effectively, this concept is known as Huygens’ 

principle. 

A conceptual model of wavefield propagation through an inhomogeneous medium can be 

formed by applying the concept of causality. Causality says, first, that no wavefield can 

spontaneously arise without a cause, and second, that effect follows cause in both time 

 

13 The concept of “meaningful” is deliberately vague, but can be taken to refer the mathematical properties 

of uniqueness, existence, and completeness, and for the inverse problem (which is improperly posed) the 

practical properties of stability and goodness of numerical approximation. 

14 Assuming the high-frequency (ray-theoretical) approximation (Bleistein et al., 2001, p. 5-7 and p. 113-

117). 
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and space15. The Green’s function is the wavefield effect at a given observation point due 

to a very simple cause (the space-time delta function source). Linearity allows us to 

reformulate the effect into a cause, whose effect is given by another Green’s function. 

Therefore, we can take analytic Green’s functions with a global effect (e.g. free-space 

Green’s functions) and apply them locally, then superpose these in time to create 

approximations to more complex Green’s functions. Or we could take a complex Green’s 

function, use linearity to break it down into simple Green’s functions that describe the 

effect at only one distant observation location for a given source location, and superpose 

these in space to create the desired approximation (e.g. ray-theoretical Green’s 

functions). The concept of “wavefield propagation” is, therefore, akin to the concept of 

Green’s functions, which are themselves an elemental part of the description of Huygens’ 

principle16. 

2.3.2 Seismic reflection as a cascade of linear steps 

If wavefield propagation can be considered as separate linear steps, the seismic reflection 

problem can be composed of the separate linear steps of propagation down—reflection—

 

15 Fortunately, the wave equation is symmetric in both time and space, so this second statement about 

causality holds when time is reversed, i.e. that cause must precede effect, and can be determined uniquely. 

A mathematical justification for causality, due to Poisson, can be found in Pierce (1989, p. 173-174). 

16 However, we will find that the Green’s functions in the Kirchhoff-Helmholtz integral representation (the 

mathematical description of wavefield propagation—see Sections 2.5 and 2.6) have their source location at 

the observation point, i.e. where the wavefront will be, not where it was. “And now remains that we find 

out the cause of this effect—or rather say ‘the cause of this defect’, for this effect defective comes by 

cause.” (Shakespeare, 1604, Hamlet Act 2 Scene 2 Lines 101-104). 
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propagation up17. Since we are initially interested in only one reflector along the total 

path, we often choose to ignore the portion of the propagating wavefield that reflects 

from any other interfaces encountered along the way. The part of the propagating 

wavefield that we are interested in, known as the transmitted wavefield, can then be 

calculated as some fraction of the original wavefield (although this correction is seldom 

included). This is the “one-way” approach to wavefield propagation. 

With the propagation problem separated from the reflection problem, it may be 

convenient to describe reflection using entirely different, and appropriately simplified, 

mathematics. We can invoke linearity again to rearrange the physical order into 

propagation down—propagation up—reflection18, and combine the two propagation 

steps, if this proves useful. The reflection problem, and appropriate approximations, will 

be discussed in Section 3.2. First, I return to Green’s functions, and the theoretical 

framework for wavefield propagation that I set out to describe in this section. 

2.3.4 Scalar wave equation for delta function source in the space-time domain 

Green’s functions, then, are the solution of the wave equation to a delta function source. 

Using sV(x,t) to denote a monopole point source [equation (2.8)] in the linearized acoustic 

two-way wave equation [equation (2.6)] and expanding the source function sV(x,t) using 

delta functions in both space and time gives 

 ∇ x
2 p(x ,t) −

1
c2 (x)

∂ 2 p(x, t)
∂t2 = −ρ(x)sδ(x − x s )δ(t − t0 ) , (2.10) 

                                                 

17 Berkhout (1981) applies this concept, known as the “WRW” model, to seismic modeling and imaging. 

More details are provided in Berkhout (1985), Wapenaar and Berkhout (1989), and de Bruin (1992). 

18 Robinson and Silvia (1981, p. 434-439) apply this concept to seismic imaging, using the WKBJ method 

of plane-wave propagation and the double-square root (DSR) equation (for a homogeneous medium). 
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where t0 is the time of the source impulse [the notation p(x,t) suggests t0 = 0], and the 

monopole source amplitude s has physical units equivalent to the rate of volume influx 

(physical units m3s-1). Taking the source to be unit amplitude at location xG and 

absorbing the source physical units and density ρ(x) from the RHS19 into the dependent 

field variable p(x,t) yields 

 ∇ x
2 g(x,xG ,t, tG ) −

1
c2 (x)

∂ 2 g(x, xG , t,tG )
∂t2 = −δ(x − xG)δ(t − tG ) , (2.11) 

where g(x,xG,t,tG) is the Green’s function with physical units of pressure per unit rate of 

mass influx (physical units m-1s-1). The Green’s function describes the wavefield at 

observation position x as a function of time t due to a unit impulse at source position xG 

at time tG. 

Equation (2.11) shows that the Green’s function satisfies the linearized acoustic two-way 

wave equation. However, this equation alone is not sufficient to define the Green’s 

function. A complete specification must include boundary and initial20 conditions for the 

PDE. Time boundary conditions do not pose much of a problem. Typically, the Green’s 

function is restricted to be either forward propagating [i.e. causal: g(x,xG,t,tG) = 0 and 

∂tg(x,xG,t,tG) = 0 for t < tG)] for use in forward wavefield propagation, or backward 

                                                 

19 Under the effect of the delta function on the RHS, ρ(x) becomes ρ(xs) and is therefore a constant relative 

to the operators on the LHS. The pressure p(x,t) (units Nm-2) is divided by the product of the mass density 

and source units (ρ(xs)m3s-1) yielding the Green’s function (units m-1s-1). 

20 Solutions for problems where the initial data are taken to be a distribution (i.e. delta functions) are called 

Riemann functions. Because initial conditions can be considered as boundary conditions in time, no 

distinction will be made in this dissertation between Green’s functions (source and/or boundary data) and 

Riemann functions (initial data)—they are the same other than in name (Bleistein, 1984, Sections 4.4 and 

4.5, esp. discussion on p. 131). 
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propagating [i.e. anticausal: g(x,xG,t,tG) = 0 and ∂tg(x,xG,t,tG) = 0 for tG > 0] for use in 

inverse wavefield extrapolation. Note, however, that Huygens’ principle for forward 

wavefield propagation was originally conceived by Huygens in 1673 using the equivalent 

of backward propagating Green’s functions (Robinson and Silvia, 1981, p. 364). The 

importance of this non-intuitive concept will be discussed further in Section 2.6. 

Spatial boundary conditions and inhomogeneities in the material properties, including 

arbitrary interfaces, require impossibly complicated Green’s functions that defy analytic 

description. The standard approach is to simplify the imaging problem so that simple 

analytic expressions for the Green’s functions can be used. For example, an anti-causal 

free-space Green’s function for homogeneous isotropic media (discussed in Section 2.4) 

lies at the heart of most recursive and nonrecursive time migrations, as well as some 

recursive depth migrations. The standard approach for determining nonrecursive Green’s 

functions for complex media is by invoking the WKBJ (ray-theoretical) approximation 

(Bleistein et al., 2001) (also discussed in Section 2.4). A ray-theoretical Green’s function 

can be thought of as a linear superposition of simple functions relating the phase and 

amplitude response of two points in the medium. In the standard approach, the eikonal 

equation and transport equations are solved to determine phase and amplitude, 

respectively (see Section 2.4.3). 

2.3.4 Scalar wave equation for delta function source in the space-frequency domain 

Note that in equations (2.10) and (2.11) the density ρ(x) and the wavespeed c(x) are time 

invariant, suggesting that a Fourier transform with respect to the time variable will reduce 

the dimensionality of the problem without introducing simplifying assumptions21. This is 

 

21 Causality suggests an alternate, equally valid approach by taking the Laplace transform of the time 

coordinate (see Fokkema and van den Berg, 1993), as opposed to the conventional use of Fourier 
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equivalent to considering monochromatic sources S(ω) and monochromatic wavefields 

P(x,xs,ω) (where the dependence on source location xs is now shown explicitly). Re-

expressing the source function on the RHS of equation (2.10) to include only a spatial 

delta function and taking the Fourier transform with respect to the time variable22 gives 

the simplified scalar wave equation in the space-frequency domain: 

 ∇ x
2 P(x,x s ,ω )+

ω 2

c2 (x)
P(x,x s ,ω ) = −S(ω )ρ(x)δ (x − x s ). (2.12) 

Equation (2.12) is commonly known as the Helmholtz equation. 

Similarly, equation (2.11) can be expressed in the space-frequency domain as 

 ∇ x
2 G0 (x,xG ,ω) +

ω 2

c0
2 (x)

G0 (x,xG ,ω ) = −δ (x − xG ), (2.13) 

where the Green’s function G0(x,xG,ω) (physical units m-1) is the wavefield response at 

observation point x due to a monochromatic point source of unit amplitude at xG. The 

subscript (0) is introduced to denote a reference medium, which will be required later in 

Section 2.5. Note that the conventional listing of independent variables x, xG, and ω 

                                                                                                                                                 

transforms. However, Aki and Richards (1980, Box 5.2, p. 129-130) suggest that Fourier transforms are 

preferred for real signals. Bleistein et al. (2001, Appendix B) explains why a causal Fourier transform is 

appropriate, and then shows that this approach is similar to the Laplace transform approach. 

22 Fourier transform sign conventions follows Aki and Richards (1980, Box 5.2, p. 129-130) and Claerbout 

(1985, p. 63-64): h(x,t) = Re[1/2π ∫0
∞2H(x,ω)e-iω tdω], where only positive frequencies are operated on to 

preserve Hermitian symmetry. Note that the sign convention is opposite to that adopted by Wapenaar and 

Berkhout (1989, Section III.2.1, p. 76-77). H(x,ω) is a spectral density (i.e. spectrum per unit length ω). 

The product H(x,ω)dω is an average amplitude for the packet of continuous frequencies in an interval dω 

containing ω. Hence the physical units should be considered as average amplitudes (an interpretation that 

agrees with practical implementation using finite discrete Fourier transform) and the product H(x,ω)dω 

will have identical units as the time domain equivalent h(x,t). See Appendix A for further discussion. 
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(which I have adopted here) neglects the time difference t - tG, which will reappear later 

as an essential part of the phase in the ray-theoretical Green’s function (see Section 

2.4.2). 

2.4 ONE-WAY FORWARD AND BACKWARD PROPAGATING FREE-SPACE 
AND RAY-THEORETICAL GREEN’S FUNCTIONS 

Up to this point, I have used generalized Green’s functions that satisfy the two-way wave 

equation. As discussed previously (Section 2.3), these Green’s functions quickly become 

unwieldy when inhomogeneous media and/or reflecting boundary conditions are 

introduced. In particular, small errors in specifying the reference media can lead to large 

errors in the two-way propagation of multiply reflected wavefields (Berkhout and 

Wapenaar, 1989)23. For wavefield propagation, it is much easier to ignore multiples 

altogether, either by treating them as coherent noise or addressing them separately using 

other processing steps. The general practice in inverse seismic wavefield propagation is 

to ignore all reflections and scattering, and consider only “one-way” wavefields, which 

were introduced briefly in Section 2.3. 

A one-way approach to wavefield propagation greatly simplifies the calculation of 

Green’s functions. Analytic solutions for one-way Green’s functions are available only 

for homogeneous media and simple depth-dependent functions. Otherwise, it is more 

practical to compute numerical Green’s functions using the ray-theoretical approach 

(Bleistein et al., 2001). Note that the term “one-way” refers to the spatial direction, in the 

sense that we keep track of only the transmitted portion of the propagating wavefield. 

This is distinct from the terms “forward” and “backward” which refer to initially outward 

 

23 See also Wapenaar and Berkhout (1989) Figure V-6 and related discussion on p. 178-180. 
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wavefield propagation in the positive and negative time directions, respectively24 (i.e. a 

reflection surface could result in an inward propagating wavefield that is still progressing 

forward in time). 

2.4.1 Free-space Green’s functions 

In the space-time domain, the forward propagating free-space Green’s functions for an 

unbounded homogeneous medium (Wapenaar and Berkhout, 1989, p. 169)25 is given by 

 ( )
r

crttttg G
GG

0
0

/)(
4
1),,,( −−

=
δ

π
xxG , (2.14) 

and the backward propagating free-space Green’s function by 

 ( )
r

crttttg G
GG

0
0

/)(
4
1),,,( +−

=
δ

π
xxH , (2.15) 

where Gr xx −= . In a homogeneous medium, the wavespeed c0 is independent of the 

coordinates of the Green’s function. Since the Green’s function must contain within it the 

complete description of the wavefield, given all the material properties and boundary 

conditions, the free-space Green’s functions [equations (2.14) and (2.15)] can easily be 

seen to be “one-way” expressions. 

                                                 

24 The wave equation is time symmetric, with exact solutions for both forward and backward wavefield 

propagation. The more general term “inverse seismic wavefield extrapolation” is often used instead of 

“backward wavefield propagation” because the wavefield can be propagated either backward in time (e.g. 

reverse time extrapolation) or in the opposite spatial direction to the time-forward direction (e.g. downward 

continuation of the upgoing wavefield—also using backward propagating Green’s functions). 

25 Wapenaar and Berkhout’s Green’s functions include a mass density term in the numerator because they 

have units of pressure per unit rate of volume influx (units kgm-4s-1) instead of the convention chosen here 

of pressure per unit rate of mass influx (units m-1s-1). The Green’s functions used in this dissertation can be 

thought of as Wapenaar and Berkhout’s Green’s functions normalized by the mass density at the source 

location. 
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Taking the Fourier transform with respect to time τ0 = (t - tG) of equation (2.14) yields 

the forward propagating free-space Green’s functions for a homogeneous medium in the 

space-frequency domain, 

 
  

G 
G 0 (x,xG ,ω ) =

1
4π

eiωr / c0

r
, (2.16) 

and from equation (2.15), the backward propagating free-space Green’s function, 

 
  

H 
G 0 (x,xG ,ω ) =

1
4π

e−iωr / c0

r
, (2.17) 

which is just the complex conjugate of equation (2.16). The term r/c0 in the exponents of 

equations (2.16) and (2.17) is equal to the traveltime τ0 = (t - tG) in the delta functions of 

their time-domain equivalents [equations (2.14) and (2.15), respectively]. The 2.5-D 

forms of the Green’s functions are identical to the 3-D forms given above. The 2-D forms 

are equivalent to a line source and can be found by integrating equations (2.14) and 

(2.15) with respect to coordinate y, assuming both the source and observation locations 

for the Green’s function are in the y = 0 plane. The resulting space-frequency domain 

Green’s functions are zero-order Hankel functions of the first and second kind, 

respectively (see Kuhn and Alhilali, 1977 equations 9b and 9a—note the opposite 

convention for the Fourier transform). A more complete treatment of the 2-D Green’s 

functions, as well as the relationships between 2-D, 2.5-D and 3-D forward modeling and 

migration/ inversion formulae for constant wavespeed, can be found in Appendix D. 

A 2-D (  cross-section through a 3-D space-frequency domain free-space Green’s 

functions can be easily pictured in a 3-D space-time volume (Figure 2.1a). The forward 

propagating free-space Green’s function [equation (2.16)] represents a monochromatic 

wavefield of frequency ω emanating from source location x

), zx

G. The wavefronts (defined as 

surfaces of constant phase) radiate outward from the source location as expanding 
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spheres, or circles in the 2-D (  cross-section. A particular wavefront will have 

traveled a distance r

), zx

G= x − x  from the source point xG to the observation point x in time 

τ0 = r/c0. The sinusoidal amplitude of the wavefront at a given observation location is a 

function of reciprocal distance 1/r. If we take a continuous and infinitely broad spectrum 

of monochromatic radiators all located at position xG and initiated at time tG, they can be 

superposed and will constructively interfere to recreate an impulsive wavefront at the 

elapsed time τ0 = (t - tG). Elsewhere the wavefield will be zero. This single impulsive 

wavefront is the essential physical interpretation of the delta function δ (t − tG ) − r / c0( ) 

in equation (2.14). Thus the phase (normalized by radial frequency ω) can be interpreted 

as having the same physical meaning as the elapsed traveltime, even though the space-

frequency domain Green’s function has no explicit indication of the source initiation time 

tG. 

In anticipation of one-way Green’s functions for inhomogeneous media, where the 

elapsed traveltime cannot be calculated by a simple formula such as τ0 = r/c0, traveltime 

will henceforth be defined by τ0(x,xG). As we will see shortly, the ray-theoretical 

approach allows traveltime and amplitudes to be determined using the eikonal equation 

and transport equations, respectively. In fact, traveltime τ0(x,xG) is often referred to as the 

eikonal function (Berkhout, 1985, p. 73). 

The backward propagating space-frequency domain free-space Green’s function 

[equation (2.17)] has a similar physical meaning in the space-time domain (Figure 2.1b) 

except that it represents wavefronts propagating inward towards the source point xG as 

time goes forward, or wavefronts propagating outward as time goes backward (hence the 

name). 
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Figure 2.1. Wavefronts (surfaces of constant phase) in space-time domain for (x,y=0,z) cross-section 

through a 3-D space-frequency domain free-space Green’s function (i.e. a monochromatic radiator) with 

source location at xG = (xG,yG=0,zG). a) Forward propagating free-space Green’s function propagates 

outward as time moves forward. b) Backward propagating free-space Green’s function propagates outward 

as time moves backward – hence the names. 
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This interpretation is perhaps more obvious if we examine the delta function of the space-

time domain equivalent [equation (2.15)]. The delta function is non-zero if 

(t − tG ) + r / c0 = 0, i.e. when t < tG (given that r/c0 is always a positive quantity). 

Following the discussion in the previous paragraph, elapsed traveltime for backward 

propagating one-way Green’s functions for inhomogeneous media can be defined as 

-τ0(x,xG). Hence both the forward and backward Green’s functions [e.g. equations (2.16) 

and (2.17)] can be expressed using the same formula, the only difference being the 

intuitive sign of the traveltime which is positive for forward in time (i.e. a delay in time 

or positive phase lag, giving a “causal” or “retarded” Green’s function) and negative for 

backward in time (i.e. an advance in time or negative phase lag, giving an “anticausal” or 

“advanced” Green’s function). This nice result arises from the choice of sign conventions 

for the Fourier transform, as described in a footnote in Section 2.3.4 and in Appendix A. 

2.4.2 Raypaths and traveltimes for ray-theoretical Green’s functions 

For the ray-theoretical Green’s functions, we require expressions for the traveltime and 

amplitude. We assume that the acoustic pressure can be written as its WKBJ 

approximation (Scales, 1997, p. 78 and p. 117-118), 

 P(x ,x s ,ω ) = S(ω)ρ(x s )A(x,x s )eiφ(x ,xs ,ω) , (2.18) 

where S(ω) is the spectral density of the source, A(x,xs) the Green’s function amplitude at 

location x due to a point source at location xs, ρ(xs) the mass density at the source 

location (a constant) and φ the phase lag. The phase lag and the amplitude are found by 

solving the eikonal and transport equations, respectively. 

The phase lag can be expressed as frequency ω multiplied by elapsed traveltime delay 

τ(x,xs). Hence an equivalent form of equation (2.18) is 

 P(x ,x s ,ω ) = S(ω)ρ(x s )A(x,x s )eiωτ (x,xs ) . (2.19) 
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Substituting equation (2.18) into the homogeneous form of the acoustic wave equation 

[equation (2.12), with no source term on the RHS], equating the real part to zero, and 

assuming ∇2 A A  is negligible26 gives the eikonal equation, 

 ∇xφ(x, x s ,ω )
2

=
ω 2

c2 (x)
, (2.20) 

where the gradient operates on the observation coordinates x. Expressing phase as the 

product of frequency and traveltime, dividing through by ω2, and taking the square root 

of the result yields an alternate form also known as the eikonal equation, 

 ∇xτ (x,x s ) =
1

c(x)
. (2.21) 

Thus traveltime is independent of frequency in the WKBJ approximation. It follows that 

 ∇ xτ (x, x s ) =
ˆ r (x,x s )

c(x)
 (2.22) 

is the slowness vector, where r  is the unit vector along the ray emanating from the 

source point x

ˆ (x,x s )

s that passes through the point x. The ray will follow the locus of points 

x(σ), where σ is arclength, such that 

 
∂x(σ )

∂σ
= ˆ r (x, x s ), (2.23) 

or, equivalently, using equation (2.22), 

 
∂x(σ )

∂σ
= c(x)∇xτ (x,x s ). (2.24) 

                                                 

26 ∇2A/A will be zero if wavespeed is constant. A step-by-step derivation can be found in Scales (1997, p. 

77-79). Berkhout (1985, p. 72-75) provides additional discussion, and shows how the integrated eikonal 

gives the total traveltime (p. 74). A derivation for variable mass density [equation (2.4) in space-frequency 

domain] can be found in Snieder (1994, p. 98-101). 
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The rays are fixed curves in space, so it is often convenient to eliminate the time quantity 

τ in equation (2.24) using the eikonal equation (2.21), thereby obtaining an equation for 

x(σ) that depends only on the wavespeed c(x)27. This yields the differential equation of 

rays 

 
∂

∂σ
1

c(x)
∂x(σ )

∂σ
 
 
  

 
= ∇x

1
c(x)

 
 
  

 
, (2.25) 

which states that the general solution for homogeneous media consists of rays x(σ) that 

are straight lines. 

For inhomogeneous media that satisfy the WKBJ approximation, elapsed traveltime can 

be calculated by integrating incremental traveltime along the raypath. For an increment 

xA
 to xB along the raypath 

 τ(xB, xA ) = ∂τ
A

B

∫ =
∂τ
∂σ

∂σ
A

B

∫ , (2.26) 

to which we can apply some fundamental properties of the gradient28, 

 τ(xB ,xA ) = (∇τ ⋅ ˆ r )∂σ
A

B

∫ = ∇τ ∂σ
A

B

∫ . (2.27) 

and then substitute for ∇τ  using the eikonal equation (2.21), yielding 

                                                 

27 A step by step derivation can be found in Aki and Richards (1980, p. 91-92). A similar derivation, 

expressed in terms of refractive index c0/c(x), can be found in Scales (1997, p. 80-81). In Chapter 11, 

Scales discusses numerical methods for ray tracing based on the differential equation of rays [equation 

(2.25) below] 

28 Recall that ∇τ, r, and x(σ) all point in the same direction. Hence ∂τ/∂σ = ∇τ⋅r = |∇τ|. 
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 τ(xB, xA ) =
1

c(x)
∂σ

A

B

∫ . (2.28) 

Thus traveltime is just the slowness (reciprocal wavespeed) integrated along the raypath. 

A similar derivation, using a reference wavespeed c0(x), yields the WKBJ traveltime for 

the Green’s function, 

 τ0 (x,xG ) =
1

c0 (x)
∂σ∫ . (2.29) 

For homogeneous media, where wavespeed is constant and raypaths are straight lines, 

equations (2.28) and (2.29) show that traveltimes can be simply calculated as distance 

divided by wavespeed. Although this is an intuitively obvious result, it has been derived 

here from first WKBJ (ray-theoretical) assumptions. In fact, this is the physical basis for 

the DSR equation that lies at the heart of the kinematic equivalent offset formulation. 

In complex media, the calculation of traveltimes using equations (2.25) and equation 

(2.29) ignores reflected arrivals. On the other hand, multiple raypaths between two given 

points may result from refraction. Typically all arrivals but one are excluded by 

considering only the first arrival, the maximum energy arrival (Nichols, 1996)29, or some 

other arrival. Hence, ray-theoretical Green’s functions describe one-way wavefields 

propagating in the reference media. 

                                                 

29 Nichols (1996) argues that eikonal solvers are inherently inaccurate because the high-frequency WKBJ 

approximation results in poor traveltime estimates for waves in the seismic bandwidth. Bevc (1995), 

however, shows that a layer-stripping Kirchhoff migration with eikonal traveltimes can produce a good 

image. Layer thicknesses (500m-1500m for the Marmousi model) in the redatuming steps are chosen so 

that the first-arrival traveltimes accurately parameterize the most energetic portions of the wavefield. 
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2.4.3 Amplitude for ray-theoretical Green’s functions from the transport equation 
and the eikonal equation 

The following derivation of amplitude for ray-theoretical Green’s functions is adapted 

from Snieder (1994) and Snieder and Chapman (1998). For ray-theoretical amplitudes, it 

is worthwhile starting with the variable-density form of the acoustic wave equation 

(equation 2.4). The final result will include a simple ratio of mass densities that can be 

ignored if density is constant. Similar to the derivation of the eikonal equation, the WKBJ 

approximation for acoustic pressure [equation (2.18)] is inserted into the homogeneous 

form of the acoustic wave equation [the space-frequency version of equation (2.4) 

multiplied through by density ρ(x), with no source term on the RHS]. Taking the 

imaginary part, without any approximation, gives the transport equation30 

 ∇ x ⋅
S2 (ω)ρ2 (x s )A2 (x,x s )∇ xφ(x,x s ,ω)

ρ(x)
 

 
  

 
 = 0  (2.30) 

where ∇φ is the eikonal for phase and A is the amplitude we wish to solve for. The 

constants wrt x, S(ω) and ρ(xs), can be divided out. From equations (2.20) and (2.22) the 

eikonal can be expressed as 

 ∇φ(x,x s ,ω) =
ω

c(x)
ˆ r (x, x s ) . (2.31) 

Substituting equation (2.31) into equation (2.30), expanding the divergence, and 

rearranging gives 

 A2 (x, x s ) = ∇x
A2 (x,x s )
p(x)c(x)

 
 
  

 
⋅ ˆ r (x, x s )

 

  
 

  
p(x)c(x)

∇ x ⋅ ˆ r (x, x s )
. (2.32) 

                                                 

30 Snieder (1994, p. 98-101) derives this equation through a set of simple problems. Note that his amplitude 

A is equivalent to ρ(xs)A0 in the above derivation. 
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The term in the square brackets on the RHS can be considered to be the square of an 

unknown coefficient C that remains to be determined, while ∇⋅ ˆ r  (i.e. the divergence of 

the neighbouring rays) is proportional to the geometrical spreading J31. Taking the square 

root of equation (2.32) yields 

 A(x,x s ) = C
ρ(x)c(x)
J(x,x s )

. (2.33) 

We can apply the same line of reasoning to the acoustic wave equation for the Green’s 

function in the reference medium [equation (2.13)]. The WKBJ generalization for the 

Green’s function of equation (2.16) (see Stolt and Weglein, 1985, equation [46]) is 

 G0 (x,xG ,ω ) = A0 (x,xG )eiωτ 0 (x ,xG ) , (2.34) 

Substituting equation (2.33) in equation (2.34), with traveltime determined using 

equation (2.29) and the subscript (0) denoting the reference medium, gives 

 G0 (x,xG ,ω ) = C0

ρ0 (x)c0 (x)
J0 (x, xG )

eiωτ 0 (x ,xG ). (2.35) 

In the vicinity of the source point xG, the behaviour of the ray-theoretical Green’s 

function can be described by the free-space Green’s function [equation (2.16)], with 

traveltime re-expressed here in terms of τ0, 

 
  

G 
G 0 (x,xG ,ω ) =

1
4π

eiωτ 0 (x ,xG )

r
. (2.36) 

                                                 

31 See Menke and Abbott (1990, p. 315) for a more complete derivation of geometrical spreading J (= ∇⋅r) 

from equation (2.27). They note that ρ2(xs)A0
2ρ−1(x)c -1(x) is the energy flux per unit area in a plane wave. 

Solving equation (2.27) for ∇⋅r shows that the divergence of neighbouring rays is proportional to the 

fractional change in energy flux per unit area. Further discussion can be found in Pierce (1989, p. 396-

400). 
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Comparing the free-space Green’s function [equation (2.36)] with the ray-theoretical 

Green’s function (equation (2.35) with properties of the medium at the source point) 

yields an expression for the unknown coefficient, 

 C0 =
1

4π ρ0 (xG )c0 (xG )
. (2.37) 

Hence the forward propagating ray-theoretical Green’s function is given by 

 
  

G 
G 0 (x,xG ,ω ) =

1
4π

ρ0 (x)
ρ0 (xG )

c0 (x)
c0 (xG)

eiωτ 0(x ,xG )

J0 (x,xG )
. (2.38) 

The backward propagating ray-theoretical Green’s function will be identical, except for a 

change in sign of the eikonal function [i.e. using -τ0(x,xG) in place of τ0(x,xG)], i.e. 

 
  

H 
G 0 (x,xG ,ω ) =

1
4π

ρ0 (x)
ρ0 (xG )

c0 (x)
c0 (xG)

e−iωτ 0 (x ,xG)

J0 (x,xG )
, (2.39) 

which is just the complex conjugate of equation (2.38). In equations (2.38) and (2.39), 

the wavespeed ratio c0(x)/c0(xG) compensates exactly for the variable-wavespeed 

component of the geometrical spreading J0(x,xG), which is greater when rays travel 

through a medium from low to high wavespeed compared to the opposite direction 

(Snieder and Chapman, 1998) 32. Thus the wavespeed ratio, combined with the geometric 

spreading, will satisfy reciprocity. The density ratio ρ0(x)/ρ0(xG), however, does not 

satisfy reciprocity. In Section 2.7.2, the reciprocity relation for variable-density Green’s 

                                                 

32 Snieder and Chapman (1998) obtain the negative of equations (2.38) and (2.39) because they choose a 

positive delta function as the source term for the acoustic wave equation that defines the Green’s function 

[equation (2.11)]. In addition, their mass-density terms are all in the numerator, because they chose not to 

normalize the Green’s function by the mass density at the source location. Hence their variable mass-

density Green’s functions are reciprocal without the correction factors given in Section 2.7 [equation 

(2.59)]. 
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functions is shown to include the density at the source location [see equation (2.59)]. For 

constant density, the ratio ρ0(x)/ρ0(xG) will be unity, and the ray-theoretical Green’s 

functions given by equations (2.38) and (2.39) will obey a simple reciprocity principle. 

Now we have expressions for forward and backward propagating one-way free-space 

Green’s functions [equations (2.16) and (2.17)] and forward and backward propagating 

ray-theoretical Green’s functions [equations (2.38) and (2.39)]. Equation (2.34) is often 

used as a simplified expression for equation (2.38) [or for equation (2.39) with τ 

negative], where A0 denotes the amplitude term. Similarly, under the WKBJ 

approximation, the ray-theoretical acoustic pressure can be represented by equation 

(2.19). To simplify notation, I will proceed with the theoretical development using the 

generalized acoustic pressure notation [e.g. P(x,xs,ω)] and generalized Green’s function 

notation [e.g. G0(x,xG,ω)] and substitute appropriate expressions when necessary. 

2.5 THE KIRCHHOFF-HELMHOLTZ INTEGRAL REPRESENTATION (KHIR) 
AND THE KIRCHHOFF-HELMHOLTZ INTEGRAL 

The goal of this section is to obtain a representation theorem, whereby the acoustic 

pressure in one part of the medium is determined uniquely by the acoustic pressure 

observed elsewhere. Typically, a representation theorem is obtained by substituting a 

Green’s function into a reciprocity theorem. For acoustic pressure, the appropriate 

reciprocity theorem is known as the Rayleigh reciprocity theorem. The Green’s function 

is chosen as the normalized acoustic pressure in response to a delta function source in the 

reference medium. The result is the Kirchhoff-Helmholtz integral representation (KHIR). 

The KHIR can be thought of as a decomposition of the acoustic wavefield into three 

terms, with each term a function of 1) properties of the acoustic wavefield in a subset of 

the volume and/or on the surface enclosing the volume, and 2) the Green’s function in the 

reference medium. Since we are free to choose both the reference medium and the 
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properties of the Green’s function, the KHIR tells us what properties of the acoustic 

wavefield are required and where they are required in order to determine the acoustic 

pressure. The derivation also determines the conditions under which simple expressions 

for reciprocity are valid, and leads to the mathematical expression of Huygens’ principle. 

2.5.1 The Kirchhoff-Helmholtz integral representation—a specific form of the 
Rayleigh reciprocity theorem 

The general form of the Rayleigh reciprocity theorem is derived for two non-identical 

acoustic wavefields corresponding to two different sets of material properties within the 

same volume (Wapenaar and Berkhout, 1989, Section V.2). Upon first consideration, this 

abstraction appears to be non-physical—how can a volume be composed of two different 

continuous materials at the same time, everywhere? However, if we consider one state of 

the volume to correspond to the unknown true medium that generated the recorded 

wavefield, and the second state to the macro subsurface model33 that serves as the 

reference medium for estimating the forward or inverse wavefield propagation, the 

abstraction becomes both feasible and necessary. 

An appropriate configuration is required for the derivation. Consider a volume V with 

surface S enclosing V, as shown by the de Hoop’s egg34 in Figure 2.2. The surface, which 

has outward-pointing normal nout, may or may not represent a discontinuity in the 

physical properties of either of the two material states. Boundary values on the surface 

 

33 A definition of the macro subsurface model can be found in Berkhout (1985, p. 360). 

34 Named after Adrianus T. de Hoop (Delft University of Technology, The Netherlands) who popularized 

this configuration to represent the domain for the application of a reciprocity theorem in the analysis of a 

wavefield and to symbolize the power of a consistent wavefield description (Fokkema and van den Berg, 

1993, p. vii). 
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Figure 2.2. Configuration (a ‘de Hoop’s egg’) for derivation of the Kirchhoff-Helmholtz integral 

representation [equation (2.44)], a special case of the Rayleigh representation theorem. The observation 

location xG must lie inside volume V surrounded by closed surface S with outward normal nout. Within the 

volume, the properties for the unknown true medium are labeled ρ and c, and for the reference medium ρ0 

and c0. The source location xs could lie inside the volume (as shown), or outside the volume. 

will be specified later, when necessary. Within the volume, the properties for the 

unknown true medium are labeled ρ and c, and for the reference medium ρ0 and c0. The 

position xs indicates the location of the source of the acoustic wavefield P(x,xs,ω) in the 

unknown true medium. In Figure 2.2 xs is shown inside the volume and P(x,xs,ω) 

satisfies the nonhomogeneous Helmholtz equation [equation (2.12)]. However, xs could 

be located outside the volume (e.g. Figure 2.4a), in which case P(x,xs,ω) satisfies the 

homogeneous Helmholtz equation [equation (2.12), with no source terms on the RHS]. 

The position xG indicates the location where the acoustic wavefield will be determined. 

The formulation of the representation theorem requires that this point must lie within the 

volume. xG is also the location of the source for the Green’s function G0(x,xG,ω) in the 

reference medium, where G0(x,xG,ω) satisfies equation (2.13). 

Once again, I adapt a derivation found in Wapenaar and Berkhout (1989, Section V.2). 

Here, I insert the Green’s function directly to derive the Rayleigh reciprocity theorem as 
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a representation theorem. The key is to apply the divergence theorem to a vector function 

Q(x,ω), defined as 

 Q(x,ω ) = G0 (x,xG ,ω)∇ x P(x,x s ,ω ) − P(x,x s ,ω)∇x G0 (x,xG ,ω) . (2.40) 

Taking the divergence of this vector function, 

 ∇⋅Q(x,ω) = G0 (x,xG ,ω )∇x
2 P(x,x s ,ω) − P(x,x s ,ω)∇ x

2G0 (x,xG ,ω ) (2.41) 

and substituting for the terms ∇2P and ∇2G using equations (2.12) and (2.13) gives 

 ∇⋅Q(x,ω) = P(x, x s ,ω )δ (x − xG ) − S(ω)ρ(x)G0 (x, xG ,ω )δ (x − x s )   

 −ω 2 1
c2 (x)

−
1

c0
2 (x)

 

 
 

 

 
 G0 (x,xG ,ω )P(x,x s ,ω) . (2.42) 

In fact, the vector function Q was chosen to ensure that ∇⋅Q  contains terms that can be 

substituted for using the acoustic wave equations (2.12) and (2.13) 35. Now apply the 

divergence theorem to a volume with outward-pointing normal n, 

 Q ⋅ ndS
S
∫ = ∇⋅QdV

V
∫ , (2.43) 

and substitute for Q and ∇⋅  using equations (2.40) and (2.42). The sifting property of 

the delta function [see Appendix A, equation (A-1) and Appendix A of Bleistein et al. 

(2001)] can be applied to volume integrals containing a delta function, yielding 

Q

                                                 

35 Alternately, we can follow the method of Bleistein (1984, Section 4.4, especially p. 121) and reverse-

engineer the vector function Q by looking for the exact divergence ∇⋅Q as a difference of products 

G*LP - PL*G* (where L is the operator ∇2+ω2/c2 and L* is the operator ∇2+ω2/c0
2). Bleistein describes the 

operator L* as the adjoint operator for the wave equation and G* as the adjoint Green’s function (p.124). 
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 P(xG ,x s ,ω) = S(ω )ρ(x s )G0 (x s ,xG ,ω ) 

 + dS
S
∫ G0 (x,xG ,ω )∇x P(x,x s ,ω) − P(x,x s ,ω)∇ xG0 (x,xG ,ω ){ }⋅n  

 + dV
V
∫ ω 2 1

c2 (x)
−

1
c0

2 (x)
 

 
 

 

 
 G0 (x,xG ,ω )P(x,x s ,ω) . (2.44) 

Equation (2.44) is a specific case of Rayleigh’s reciprocity theorem known as the 

acoustic “Kirchhoff-Helmholtz integral representation” (KHIR). Note that the LHS of 

equation (2.44) will be non-zero only if the source point xG in the delta function on the 

RHS of equation (2.13) lies inside the volume. Hence equation (2.44) is valid only when 

the observation point xG for the acoustic pressure P(xG,xs,ω) lies inside the volume V 

enclosed by surface S with outward pointing normal n. An inward pointing normal 

changes the sign of the second term on the RHS (the surface integral). These 

observations will prove useful for determining an appropriate volume and the correct 

orientation of the normal for any arbitrary portion of the surface enclosing the volume. 

2.5.2 Decomposing the KHIR into incident, surface-scattered and volume-scattered 
wavefields 

The KHIR [equation (2.44)] can be thought of as a decomposition of the acoustic 

wavefield into three terms. The terms will be referred to by names commonly used in the 

literature. The first term on the RHS is called the “incident wavefield”. The second term 

(the surface integral) is called the “surface-scattered wavefield”. The third term (the 

volume integral) is called the “volume-scattered wavefield”. Unfortunately, the literal 

physical meaning of “incident” and “scattered” are often narrower than the mathematics 

permits. For example, if the source point xs lies outside an arbitrary volume in a 

homogeneous media, the surface-scattered wavefield reconstructs the incident 

wavefield—there is no scattering per se. This configuration, and ones like it, will be 
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investigated in more detail in the context of Huygens’ principle in Section 2.6. Similarly, 

in some configurations each individual term could represent a non-physical wavefield, 

although the combination of wavefields will have a valid physical interpretation. As an 

example, suppose the source point xs lies inside the volume, which also contains an 

“obstacle” given by the volume-scattered wavefield. Bleistein (1984, p. 159) points out 

that the incident and scattered wavefields are unphysical in the sense that the incident 

wavefield exists everywhere within the volume, and hence the mathematical scattered 

wavefield must carry the “burden” of negating the unphysical incident wavefield in 

regions where it is blocked by the obstacle. Therefore, in order to gain some physical 

insight, it is worthwhile examining each term in detail. Later, in Section 3.2, we revisit 

the KHIR [equation (2.44)] and find that the physical interpretation of these terms is 

more appropriate to the names given here. 

The KHIR [equation (2.44)] is most useful in simpler forms; that is, when one or two of 

the terms on the RHS are zero. Each term on the RHS is a function of 1) the wavefield 

P(x,xs,ω) and/or properties of the wavefield, such as its spatial gradient, source location 

xs and/or source signature S(ω); 2) the volume V and its bounding surface S, as well as 

the boundary conditions on that surface; and 3) the Green’s function and the reference 

medium both inside and outside the volume. We are free to choose the Green’s function 

and the reference medium, and we can often choose a favourable volume and bounding 

surface. These choices determine if a given term on the RHS is zero or non-zero. In other 

words, each term can describe a portion of the wavefield or all of the wavefield. 

2.5.3 The incident wavefield and reciprocity 

The first term on the RHS of (the incident wavefield) will be non-zero only if the source 

point xs on the RHS of equation (2.12) lies inside the volume. The incident wavefield will 

be the only non-zero contribution if both the surface-scattered wavefield and volume-
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scattered wavefield are zero. The surface-scattered wavefield will be zero given rigid, 

free-surface, reflection-free, or impedance boundary conditions, to be discussed further in 

Section 2.7.3 in the context of reciprocity. The volume-scattered wavefield will be zero if 

the reference wavespeed c0 is equal to the unknown true wavespeed c. We are left with 

 P(xG ,x s ,ω) = S(ω )ρ(x s )G0 (x s ,xG ,ω ), (2.45) 

which suggests that the Green’s function G0(xs,xG,ω) includes all possible complexities 

of wavefield propagation inside the volume, including scattering from the boundary 

surface. In fact, we will use these conditions to define reciprocity in Section 2.7. On the 

other hand, it is often useful to choose a simple Green’s function, such as the free-space 

Green’s function [equation (2.16)] or the ray-theoretical Green’s function [equation 

(2.34)]. Assuming a ray-theoretical Green’s function and reciprocity [see equation 

(2.55)], equation (2.45) becomes the WKBJ approximation for the wavefield as given by 

equation (2.19). In these simpler situations, the incident wavefield is often referred to as 

the “direct wavefield”. 

2.5.4 The volume scattered wavefield, wavespeed perturbations, and the Born 
approximation 

The role played by the second term on the RHS of equation (2.44) (the surface-scattered 

wavefield) is perhaps the most interesting, but we will leave it until after the following 

brief examination of the third term. In the third term (the volume-scattered wavefield), 

the unknown true wavespeed c(x) can be defined in terms of the reference wavespeed 

c0(x) and a wavespeed perturbation α(x) as follows: 

 
1

c2 (x)
=

1
c0

2 (x)
1+α (x)( ). (2.46) 

Rearranging equation (2.46), substituting the result into equation (2.44), and assuming 

the surface-scattered wavefield is zero, yields 
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 P(xG ,x s ,ω) = S(ω )ρ(x s )G0 (x s ,xG ,ω ) 

 + dV
V
∫ ω 2 α (x)

c0
2 (x)

G0 (x,xG ,ω )P(x,x s ,ω) . (2.47) 

In this simplified version of the KHIR, the wavefield has been decomposed into an 

incident wavefield and a volume-scattered wavefield. It might be convenient to choose a 

simple Green’s function that propagates through a constant or smoothly varying 

wavespeed model c0(x) with the perturbation α(x) as a step function representing a 

subsurface reflector. In Chapter 3, this expression will provide the starting point for 

Born-approximate inversion. An expression similar to equation (2.47), but including the 

surface-scattered wavefield instead of the volume-scattered wavefield, will provide the 

starting point for Kirchhoff-approximate inversion. 

2.5.5 The surface-scattered wavefield and 
the Kirchhoff-Helmholtz integral equation 

We return now to the second term on the LHS of the KHIR [equation (2.44)] and 

examine some interesting aspects associated with the surface-scattered wavefield. 

Depending on the boundary conditions over the surface and/or the choice of properties 

for the Green’s function, the surface-scattered integral can be non-zero for a source point 

inside or outside the volume. Assuming the source point xs lies inside the volume, the 

surface-scattered integral reconstructs all scattering effects arising from outside the 

volume. If the source point xs lies outside the volume, it reconstructs the incident 

wavefield in addition to these external scattering effects. Of particular interest are 

situations where the surface-scattered wavefield is the only non-zero contribution. This 

will occur when the source point xs lies outside the volume and the reference wavespeed 

c0 is equal to the unknown true wavespeed c. In this case we are left with 
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 P(xG ,x s ,ω) = dS
S
∫ G0 (x,xG ,ω)∇ x P(x, x s ,ω ) − P(x,x s ,ω )∇x G0 (x,xG ,ω){ }⋅ n , 

  (2.48) 

with the reminder that the observation point xG for the acoustic pressure P(xG,xs,ω) on the 

LHS of equation (2.48) must lie within the volume V bounded by the surface S with 

outward pointing normal n. In the seismic reflection literature, equation (2.48) [the 

reduced version of equation (2.44)] is often referred to as the “Kirchhoff-Helmholtz 

integral equation” 36 (Wapenaar and Berkhout, 1989), while its time domain equivalent is 

often referred to as the “Kirchhoff integral equation”37 (Schneider, 1978). 

It is worthwhile examining equation (2.48)—the reduced version of the KHIR—in some 

detail. Equation (2.48) (or its time domain equivalent) is the fundamental equation of 

forward and inverse seismic wavefield extrapolation and can be interpreted as an 

expression of Huygens’ principle. However, the stated form of equation (2.48) is not 

particularly useful for direct application to extrapolation of conventional surface seismic 

data, nor does it express Huygens’ principle in a manner consistent with conventional 

intuition (i.e. secondary sources on a wavefront). 

                                                 

36 There is no obvious naming convention adopted in the literature. Equation (2.48) is often referred to as 

the KHIR (e.g. Wenzel et al., 1990) and equation (2.44) as the Kirchhoff-Helmholtz integral. Henceforth 

these equations will be referred to by either the naming convention adopted above or the equation number, 

i.e. KHIR for the full representation [equation (2.44)], Kirchhoff-Helmholtz integral for reduced version of 

KHIR in the space-frequency domain [equations (2.48) and (2.49)], and Kirchhoff integral for reduced 

version of the KHIR in the space-time domain [equations (2.50), (2.51), and (2.52)]. 

37 Schneider (1978) cites Morse and Feshbach (1953) for the time domain equivalent of equation (2.48) 

[Schneider’s equation (2)], but then refers to a simplified version of this equation, valid only for Dirichlet 

boundary conditions over an infinite planar aperture, as the Kirchhoff integral [Schneider’s equation (4)]. 
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2.5.6 Limitations to the Kirchhoff-Helmholtz integral equation 

Why is equation (2.48) not particularly useful for direct application to extrapolation of 

conventional surface seismic data? Why not just choose an appropriate closed surface S, 

where we have measured both the acoustic pressure and its normal derivative, insert a 

Green’s function suitable for the complexity of the media, as discussed in Sections 2.3 - 

2.5, and then calculate the desired acoustic pressure? Unfortunately, seismic data are 

seldom recorded over a complete closed surface. Typically, all that is available is a finite 

aperture of data recorded over the earth’s surface (often only a finite line), and even then, 

we record only one of either the acoustic pressure or its normal derivative38. These 

limitations are not as restrictive as they first appear, in part because equation (2.48) 

becomes over-determined for most surface seismic applications once some additional 

assumptions have been made. This problem is discussed further in Section 2.8. 

One obvious inconsistency between equation (2.48) and the intuitive interpretation of 

Huygens’ principle is the form of the Green’s function. It might be preferable if the 

Green’s function inside the integral could be given as G(xG,x,ω) instead of G(x,xG,ω), i.e. 

that the source location for the Green’s function is on the surface S, with coordinates x, 

and the observation location at xG, the same observation location as for the desired 

acoustic pressure P(xG,xs,ω). The conventional approach is to invoke reciprocity for the 

Green’s functions, the conditions for which will be discussed in detail in Section 2.7. An 

alternate approach is to determine, through a detailed examination of Huygens’ principle, 

whether reciprocity is really required. 

 

38 Wapenaar (1993a) states that, at a free surface, P is zero and ∂P/∂n is proportional to the normal 

component of the particle velocity, measured by the geophones. A justification (using matrix operator 

notation) is provided in Wapenaar and Berkhout (1989, Sections III.3.2 and XI.3.2, and Appendix A.3). 
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2.6 HUYGENS’ PRINCIPLE AND SEISMIC WAVEFIELD PROPAGATION 

In Traite de la Lumiere (Huygens, 1690), Huygens describes what is commonly known 

as Huygens’ principle as follows39: Every point on a primary wavefront serves as the 

source of spherical secondary wavelets. These secondary wavelets advance with speed 

and frequency equal to that of the primary wave at each point in space. The primary 

wavefront at some later time is the envelope of these secondary wavelets. In an earlier 

work, Horologium Oscillatorium (Huygens, 1673), Huygens provides an alternate 

description of his principle40: At every point on the wavefront, construct a sphere of 

radius c(dt) tangent to the wavefront. The locus of centres of these tangent spheres is the 

advanced wavefront. Although Huygens is concerned with the propagation of light, his 

descriptions apply equally well to the propagation of acoustic or elastic wavefields (see 

Baker and Copson, 1950). Here, I describe forward propagation of a primary wavefront 

using the Kirchhoff-Helmholtz integral [equation (2.48)], in an effort to develop an 

intuitive understanding of how this integral can be used for wavefield extrapolation and 

migration. Given the principle of superposition, it is sufficient to consider a wavefield 

from a point source. 

2.6.1 Kirchhoff-Helmholtz integral equation for a point source – part 1 

The first problem encountered in attempting to apply either of Huygens’ descriptions to 

the Kirchhoff-Helmholtz integral equation (2.48) is that the simplification from the KHIR 

[equation (2.44)] assumes that the point source of the acoustic pressure lies outside the 

closed surface that contains the observation point. This makes it impossible for the 

 

39 translation by Robinson and Silvia (1981, p. 363). 

40 translation by Robinson and Silvia (1981, p. 364). 
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surface S to be a wavefront from a point source. However, if S is an internal surface to an 

infinite external volume (discussed in detail below, and illustrated by Figure 2.4c), then 

the point source could be surrounded by the surface S, and S can be taken as the primary 

wavefront in the context of Huygens’ principle. Then a strict interpretation of equation 

(2.48) agrees with Huygens’ 1673 description, where the Green’s function source point 

xG is at the observation point for the acoustic pressure P(xG,xs,ω). The required Green’s 

function would have to be backward propagating41, i.e. a harmonic spherical wavefront 

that shrinks as time progresses forward (Figure 2.3a). This creates a forward propagating 

wavefront, as required, but does not agree with conventional physical intuition that places 

the sources of the “secondary wavelets” on the primary wavefront. Invoking reciprocity 

for the Green’s function [i.e. using G0(xG,x,ω) in place of G0(x,xG,ω) – see Section 2.8] 

places the Green’s function source point at locations x (the integration variable) on the 

surface S. This leads to an interpretation of equation (2.48) that agrees better with 

Huygens’ 1690 description (Figure 2.3b). The result is that Huygens’ principle does not 

require reciprocity: the 1673 description works fine, although it is somewhat counter-

intuitive. 

The physical interpretation of equation (2.48) is illustrated by the clutch of de Hoop’s 

eggs in Figures 2.4 and 2.5. In Figure 2.4a, the observation point xG is inside the volume 

while the source point xs lies outside. As discussed above, this configuration doesn’t 

make much physical sense if we wish the surface to be a wavefront from a point source. 

However, equation (2.48) does apply to this configuration because it is valid for any 

wavefield measured over any arbitrary closed surface—a more general interpretation due 

 

41 Recall that “backward” refers to the time direction for outward propagation. With time symmetry, the 

backward propagating Green’s function propagates inward as time moves forward. 
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Figure 2.3. (a) A strict interpretation the Kirchhoff-Helmholtz integral equation [equation (2.48)] requires a 

backward propagating Green’s function G ),,(0 ωGxx
H

, with a source at the desired observation location xG. 

This agrees with Huygens’ 1673 description. In (b) reciprocity is invoked, and the wavefront surface is 

reconstructed using a forward propagating Green’s function G ),,(0 ωxxG

G
. This is the more intuitive 

concept of secondary sources that agrees with Huygens’ 1690 description. The same argument applies to the 

Kirchhoff-Helmholtz integral representation [equation (2.44)], where the Green’s functions sources for the 

incident, surface-scattered and volume-scattered wavefields are all at the desired observation location xG. 
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to Helmholtz and Kirchhoff—not just the specific case of a wavefront. The physical 

interpretation agreeing with Huygens’ principle requires a different configuration. 

In Figure 2.4b, the observation point xG is outside the de Hoop’s egg containing the 

source point xs. Since equation (2.48) can only be applied if the observation point is 

found within the volume, we conveniently choose the volume to lie outside of the egg 

instead of inside, and chose a second surface at infinity to ensure that the volume is 

surrounded (in a manner of speaking) by a closed surface (Morse and Feshbach, 1953, p. 

804). The appropriate configuration is redrawn in Figure 2.4c. The volume is now 

constructed between two de Hoop’s eggs, the smaller one containing the source, the 

larger one being the surface at infinity. The outward-pointing normals nout point into the 

smaller egg and out of the larger egg. Replacing the normal for the smaller egg with one 

that points outward (Figure 2.4d-e) reverses the sign of equation (2.48). 

For the configuration shown in Figure 2.4c, then, we have two contributions to the 

surface integral. The Sommerfeld radiation condition (see, for example, Goodman, 1968 

p. 38-39) states that the contribution from the outer surface at infinity is negligible if the 

Green’s function is outward propagating42. Thus, the only contribution to the Kirchhoff-

Helmholtz integral [equation (2.48)], for the configuration shown by Figure 2.4c, is the 

surface integral over the smaller egg. The integral states that the incident wavefield is 

reconstructed by a weighted sum of monopole sources corresponding to the Green’s 

function G0 and dipole sources corresponding to the normal derivative of the Green’s 

 

42 As r → ∞, the free-space Green’s function eiωr/c/(4πr) falls off as 1/r and the surface area as 1/r2: Thus 

the integral decays to zero. This condition can be invoked for an outer surface that is not at infinity if both 

the Green’s function and wavefield are outward propagating on and outside the surface (see Bleistein, 

1984, p. 182-184; Wapenaar and Berkhout, 1989, Appendix B; Bleistein et al., 2001, p. 90). 
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Figure 2.4. For Huygens’ principle, we need a surface corresponding to wavefronts (solid and dotted gray 

lines) from a monochromatic point source located at xs. This is not possible with configuration a). 

Configuration b) is not suitable because observation point xG must lie in volume V surrounded by surface S 

with outward normal nout. Configuration c), with external volume V, requires additional surface S2 at ∞. 

Huygens’ principle is shown in d) with secondary sources (dots) on wavefront surface. Inward normal nin 

changes sign of surface-scattered integral, which is also valid for any generalized surface, as shown in e). 
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function (∇ ) distributed over the surface. The weighting terms are the normal 

derivative of the acoustic wavefield (

G0 ⋅n

∇P⋅ n = ∂P / ∂n ) and the acoustic wavefield P, 

respectively43. If we assume reflection-free boundary conditions for the surface (i.e. that 

the surface is not a physical boundary in the medium), and assume that the surface is a 

wavefront, we can then interpret these monopole and dipole sources as Huygens’ 

“secondary sources” (Figure 2.4d). A fascinating property of the Kirchhoff-Helmholtz 

integral [equation (2.48)] is that the surface does not need to be a wavefront. Instead, the 

secondary sources can be distributed over any arbitrary surface as long as they radiate 

with the appropriate phases and amplitudes as determined by the Kirchhoff-Helmholtz 

integral (Figure 2.4e). 

2.6.2 Kirchhoff-Helmholtz integral equation for a point source – part 2 

What happens after an outward propagating primary wavefront from a point source 

passes an observation location? The observation location now lies inside the closed 

surface that corresponds to the wavefront. Physical intuition suggests that there should be 

no wavefield from a primary wavefront that has already passed a given observation 

location. In the mathematical description of Huygens’ principle, as given by the 

Kirchhoff-Helmholtz integral equation [equation (2.48)], the original wavefront from the 

point source is replaced by secondary sources that radiate in all directions, including back 

into the volume enclosed by this original wavefront surface. Hence, we expect that the 

                                                 

43 Berkhout (1985, p. 139) suggests that the weighting of the monopole sources is given by the normal 

component of the velocity on the surface, while the weighting of each dipole is given by the pressure on 

the surface. As shown by his equation (V-7), the weighting of each dipole is the time derivative of the 

normal component of the velocity multiplied by the mass density, or the normal component of the pressure 

(as stated above). 
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contribution from this surface-scattered integral should be zero for all these interior 

locations. Baker and Copson (1950, p. 31) provide an elegant proof, as follows. 

In Figure 2.5a, both the observation and source points lie within the volume. The special 

case of a spherical wavefront is a trivial case of the more general surface shown by the de 

Hoop’s egg. Diaphragm C divides the volume within the egg into two separate volumes, 

one containing the observation point and one the source (Figures 2.5b-c). Then, the 

situations described above for Figures 2.4a and 2.4c apply separately to each of the 

volumes. But the acoustic pressure calculated at the observation point must be identical, 

irrespective of the volume chosen. Hence the two surface integrals must be equal (Figure 

2.5d). Now we want to combine the two surface integrals into one covering the surface of 

the original egg. First we note that the surface normals for the two configurations are 

oriented in the opposite sense: the normal to the ‘half’ egg containing the observation 

point is oriented outward, while the normal to the ‘half’ egg containing the source point 

is oriented ‘inward’ to egg’s volume (because the normal is oriented outward from the 

volume containing the observation point – see Figure 2.4). Choosing an outward normal 

for the ‘half’ egg containing the source reverses the sign of equation (2.48) (as discussed 

above for Figure 2.4c) and turns the difference of surface integrals into a sum that must 

also be equal to zero. In addition, the contributions from the diaphragm C now cancel 

because the normals are oriented in the opposite sense (Figure 2.5e). The sum of the two 

surface integrals is equivalent to the surface integral over the original egg, which is 

therefore equal to zero (Figure 2.5f). A similar argument can be constructed for an 

observation point and source outside the volume, but this has not been presented nor has 

the configuration been illustrated with a figure. 
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Figure 2.5. The Kirchhoff-Helmholtz integral [equation (2.48)] and/or the surface-scattered integral in the 
KHIR [equation (2.44)] are equal to zero when both the source location xs and observation location xG lie 
within the volume V surrounded by surface S. The proof (Baker and Copson, 1950) is as follows: a) The 
original volume is, b) divided by diaphragm C, c) creating two volumes V1 and V2’. d) The surface-
scattered integrals must be the same, so the difference must equal zero. e) Changing the orientation of the 
normal changes the sign of the surface integral. With opposing normals, integrals over diaphragm surfaces 
C1 and C2 must be equal and opposite. Thus f), the surface-scattered integral over S = S1+S2 equals zero. 
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That the surface-scattered wavefield is zero when source and observation points lie 

within the volume is a result that agrees with the KHIR [equation (2.44)], where we 

might expect the only contribution to arise from the incident wavefield, i.e. from the term 

S(ω)ρ(xs)G0(xs,xG,ω)44. However, a zero result is expected only for reflection-free 

boundary conditions (as required for an outward propagating Green’s function). For other 

boundary conditions, the surface-scattered wavefield will be nonzero. The physical 

explanation for a nonzero contribution is that the incident wavefield is reflected from the 

surface. In Chapter 3, we will chose to ignore the incident wavefield (which can be muted 

from field gathers) and concentrate on the surface-scattered wavefield as representing a 

reflected wavefield of interest. 

2.6.3 Are both the pressure and the normal derivative of pressure required? – part 1 

For Huygens’ principle to work, the values of the weighting factors P and its normal 

derivative ∇  cannot be independent of each other. If the arbitrary surface S is a 

wavefront, the interdependence of P and 

P⋅ n

∇P⋅ n  has a simple physical interpretation. The 

wavefront is reconstructed from a sum of monopoles G0 and dipoles ∇ . The 

monopole radiates a positive wavefield into the material on both sides of the wavefront 

surface. The dipole, with axis normal to the surface, radiates a positive wavefield in one 

direction and a negative wavefield in the opposite direction. The negative wavefield from 

the dipole exactly cancels the positive wavefield from the monopole in the direction the 

wavefield came from, ensuring that the wavefield propagates in one direction only. Thus 

the weighting factors must be related, which implies that, in the case of Huygens’ 

principle, we only need to record one of either the acoustic pressure or its normal 

G0 ⋅n

                                                 

44 For example, the incident wave term can be considered as the WKBJ expression for the acoustic pressure 

[equation (2.19)] given the ray-theoretical Green’s function [equation (2.34)]. 
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derivative. Although this is true if the surface is a wavefront, the more complex case of 

an arbitrary surface and numerous sources for the wavefield [the general case of equation 

(2.48)] is not so straightforward. The information provided by recording both the acoustic 

pressure and its normal derivative is sufficient to keep track of the direction of each 

individual wavefield as it crosses the arbitrary surface. If we already know the direction 

of the wavefield, as we do when recording an upgoing wavefield with surface detectors, a 

record of both the acoustic pressure and its normal derivative should not be required. 

Based solely on the intuition developed in this section, it seems probable that the one-

way wavefield can be reconstructed using a distribution of either dipole or monopoles 

only, where the weighting function is the product of the recorded seismic data (pressure 

or its normal derivative) and a function of the surface geometry relative to the 

reconstruction point. This topic will be investigated more thoroughly in Sections 2.8 and 

2.9. 

2.6.4 Kirchhoff-Helmholtz equation in a homogeneous medium 

One problem with the interpretation of equation (2.48) as Huygens’ principle is honoring 

Huygens’ 1690 phrasing that refers to “spherical secondary wavelets” and his earlier 

1673 phrasing that refers to “sphere(s)”. “Spherical secondary wavelets” suggests a 

homogeneous medium. If the surface S is reflection-free (i.e. not a physical boundary in 

the medium, as expected if the surface represents a wavefront), then Huygens’ principle 

is satisfied by a free-space Green’s function [equations (2.16) or (2.17)]. Reciprocity is 

trivial for the free-space Green’s function, as the Green’s function depends only on the 

distance r = x − xG  and constant reference wavespeed c0. Inserting the forward 

propagating free-space Green’s function [equation (2.16)] into equation (2.48) gives a 

more appropriate mathematical expression of Huygens’ principle (Baker and Copson, 

1950), 
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 P(xG ,x s ,ω) =
1

4π
∂S

S
∫

∂P(x,x s ,ω)
∂n

eiωr / c0

r
− P(x,x s ,ω)

∂
∂n

eiωr / c0

r
 
 
  

 
 
 
 

 
 
 

, (2.49) 

where ∂ ∂n = ∇⋅n . Physical interpretation of equation (2.49) is best served if we assume 

the situation illustrated in Figures 2.4c. The source point xs lies within the smaller egg—

for which the surface normal points inward—and the Sommerfeld radiation condition 

holds (i.e. we can ignore the contribution from infinity so the surface integral is over the 

smaller egg only). Equation (2.49) describes the outward propagation of harmonic 

wavefronts by secondary wavelets that expand as time goes forward. Although equation 

(2.49) is valid for an arbitrary surface (Figure 2.4e), the surface can be taken as a 

wavefront to agree with Huygens’ principle (Figure 2.4d). Note, however, that equation 

(2.49) is strictly valid only in a homogeneous medium with constant wavespeed c0. For 

inhomogeneous media, the radius of the sphere can be chosen to be infinitesimal, and 

proportional to the wavespeed at the source point x of the Green’s function (i.e. on the 

surface S). 

2.6.5 Kirchhoff integral equation in a homogeneous medium 

In order to restrict the acoustic disturbance to the advancing wavefront, Huygens invoked 

imprecise geometrical concepts such as “envelope “ and “tangent spheres”. It took more 

than two centuries to discover the correct analytical description of Huygens’ principle45. 

Helmholtz (1859) extended results introduced by Fresnel (1818, published 1826) and 

Poisson (1819), proving that a monochromatic wavefield could be described by the 

weighted superposition of the wavefield and its normal derivative over an arbitrary 

closed surface, instead of superpositions over the wavefront. Kirchhoff (1882, 1883) 

                                                 

45 A complete discussion can be found in Baker and Copson (1950), including the references cited in this 

paragraph (which are not included in references of this dissertation). 
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showed that the frequency-domain solutions are a specific case of a more general time-

domain theorem applicable to sound waves of any structure and origin, where the 

weighted superposition of a ‘retarded’ or ‘advanced’ wavefield and its normal derivative 

takes place over an arbitrary closed surface. For a homogeneous medium, Kirchhoff’s 

integral is just equation (2.49) expressed in the time domain, 

 p(xG ,x s ,t) =
1

4π
dtG

0

∞

∫ dS
S
∫

∂p(x,x s , tG )
∂n

δ (t − tG ) − r / c0( )
r

 
 
 

 

 − p(x,x s , tG )
∂
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δ (t − tG ) − r / c0( )
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 

 
  

 
 

 
 
 

. (2.50) 

If we imagine the surface of a de Hoop’s egg as an expanding wavefront, then the 

physical process corresponding to Huygens’ principle, as given by equation (2.50), is 

represented in Figures 2.4e and 2.5f. In Figure 2.4e, the expanding wavefront from a 

source point xs has not yet reached the observation point xG. The wavefront that will be 

recorded at the observation point can be constructed by replacing the wavefront with a 

weighted sum of monopoles and dipoles. After the wavefront has passed the observation 

point, as in Figure 2.5f (but imagine that the surface still lies on the expanding 

wavefront), the weighted sum of monopoles and dipoles ensures that the observation 

point will not record a wavefield (see graphical proof in Section 2.6.2). 

We can expand the normal derivative in the second term of equation (2.50), get rid of the 

time integral by the sifting properties of the delta functions, and introduce the notation 

[p(x,xs,t)] to represent the retarded value of the wavefield at time t - r/c0. Then equation 

(2.50) becomes 

p(xG ,x s ,t) =
1

4π
dS

S
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r
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  
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. (2.51) 
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Equation (2.51) is valid only for forward wavefield propagation because the sign of the 

second term in the integrand depends on the sign of the term r/c0 in the delta function. 

For inverse wavefield extrapolation, we can insert the backward propagating free-space 

Green’s function into equation (2.49), i.e. insert e− iωr / c0  in place of eiωr / c0 . Similarly, 

equation (2.50) uses the backward propagating free-space Green’s function with terms 

ofδ (t − tG ) + r / c0( ) in place of δ (t − tG ) − r / c0( ). Following the steps described above to 

derive equation (2.51), and using the notation [p(x,xs,t)] to represent the advanced value 

of the wavefield at time t + r/c0, the advanced version of equation (2.50) becomes 

p(xG ,x s ,t) =
1

4π
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 

 
 
 

. (2.52) 

Equation (2.52) is valid only for inverse wavefield extrapolation. Note that the second 

term in the integrand is opposite in sign to its equivalent in equation (2.51). 

Equations (2.49), (2.50) and (2.51)/(2.52) state that the acoustic pressure at the point xG 

inside the volume, arising from a primary source at point xs outside the volume, can be 

synthesized exactly by integrating the secondary sources over the closed surface S with 

outward normal n. As with equation (2.51), these expressions are valid for any closed 

surface, not just a surface corresponding to a wavefront. 

2.6.6 Kirchhoff integral equation in the modeling and migration literature 

The various forms of Kirchhoff’s time-domain integral equation are some of the 

“fundamental” equations found in the modeling and migration literature. Equation (2.50) 

is equation (2) of Schneider (1978) and the first equation (unnumbered) of Wiggins 

(1984), although both Schneider and Wiggins use the generalized notation G for the 
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Green’s function in place of the free-space Green’s function. Equation (2.51) is equation 

(5.20) of Baker and Copson (1950)46, equation (2) of Timoshin (1970) 47, equation (B-1) 

of French (1975), and equation (A-4) of Kuhn and Alhilali (1977)48. In Section 2.9, the 

Rayleigh II integral (Berkhout, 1985, equation V-28a)49 will be derived from the 

Kirchhoff-Helmholtz integral [equation (2.48)] for extrapolation of pressure data 

acquired on a planar surface. In the time domain, the Rayleigh II integrand is twice the 

last term of the equation (2.49), or twice the last two terms of equation (2.51) and (2.52). 

The Rayleigh II integral for forward extrapolation [from equation (2.51)] is the surface 

integral term of equation (2) of Hilterman (1970), the first of equations (B-2) of French 

(1975), equation (5) of Schneider (1978), and equation (A-1) of Berryhill (1979). For 

inverse extrapolation using the far-field approximation50, the Rayleigh II integrand is 

twice the second term of equation (2.52), yielding equation (1) of Wiggins (1984). 

 

46 Baker and Copson (1950, p. 36-40, 42-44) provide a detailed derivation of equation (2.51), which is 

repeated and expanded upon by Bath (1968, p. 192-198). 

47 Timoshin incorrectly implies in his Figure 1 that his equation (2) is valid for an inward normal (as 

opposed to the outward normal determined from the KHIR), and incorrectly applies the equivalent of 

equation (2.51) for inverse propagation, instead of the correct version as given by equation (2.52). 

48 Kuhn and Alhilali (1977) summarize the use of these equations by various authors in Geophysics. In 

particular, they evaluate the normal derivative of the Green’s function in equation (2.49) and provide a nice 

tie between this result and equation (2) of Trorey (1970) [also the first equation (unnumbered) of Trorey 

(1977)], which are expressed using Laplace transforms and the opposite sign convention for the Fourier 

transform. Kuhn and Alhilali (1977) paper is an excellent study seldom cited in the literature. 

49 I have chosen to follow Berkhout’s naming convention. Kuhn and Alhilali (1977) call this the free-

surface Rayleigh-Sommerfeld construction integral. 

50 Using only the second term in equations (2.51) or (2.52) (i.e., the time-derivative term) gives the far-

field approximation. Schneider (1978) incorrectly calls this the Rayleigh-Sommerfeld diffraction formula 
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It is worthwhile mentioning two caveats whose importance has not been adequately 

stressed during this discussion. First, extra care is required when specifying boundary 

conditions for inverse wavefield propagation. For an inward propagating Green’s 

function, the Sommerfeld radiation condition cannot be invoked (Bleistein et al., 2001). 

As pointed out in Scales (1997, p. 109), Schneider (1978) erroneously uses the 

Sommerfeld radiation condition in his classic paper on migration based on integral 

equation methods, although this error is also made by Timoshin (1970), French (1975), 

and Wiggins (1984) (among others). The second caveat concerns the safe assumption that 

seismic reflection data are never recorded over a closed surface. Even an infinite planar 

surface can introduce artifacts during inverse wavefield propagation51. We will return to 

address these problems in Section 2.8 and then again in Chapter 3, but as a brief preview, 

we will find that one-way wavefields and one-way Green’s functions play a significant 

role in eliminating or reducing the significance of these problems. First, we will establish 

reciprocity relationships for variable-wavespeed and variable-density media. 

2.7 RECIPROCITY RELATIONS FOR GREEN’S FUNCTIONS 
AND ACOUSTIC PRESSURE 

The Rayleigh reciprocity theorem gives the exact expression for acoustic reciprocity for 

an acoustic volume in two states. More often, we are interested in reciprocity in one state. 

For example, a simplified expression for reciprocity of the Green’s function will prove 

particularly useful for the seismic imaging problem. Notice, however, that in the KHIR 

 

of optics and cites Goodman (1968) for this terminology. Comparing equations (3-18) and (3-27) of 

Goodman (and the accompanying text) suggests that the diffraction formula applies only for illumination 

by a point source. The far-field result is more general. In fact, Schneiders equation (5) is identical to 

equation (3-26) of Goodman. 

51 A thorough discussion can be found in Wapenaar (1992). 
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[equation (2.44)], the form of the Green’s functions in the surface- and volume-scattered 

wavefields does not agree with physical intuition, since both involve a Green function 

with source at xG and observation point at x. Our physical intuition is better served if xG 

is the observation point, so that it corresponds with the observation point for P(xG,xs,ω); 

and x is the source point, so that it corresponds with the independent variable in the 

surface and volume integrals52. If the Green’s function obeyed a simple reciprocity 

relation, whereby the source and observer positions could be switched, our dilemma 

would be solved. Generally, this problem seems to arise when using Green’s functions to 

express nonhomogeneous boundary or initial conditions as surface integrals of delta 

functions. Here, I briefly examine the conditions under which simplified reciprocity 

relations apply. 

2.7.1 Green’s function reciprocity in a variable-wavespeed constant-density medium 

First, we consider the KHIR [equation (2.44)] for one state only, noting that if there is no 

difference between the true medium and reference medium, the volume integral 

disappears. As well, if the surface is taken to infinity, the surface-scattered wavefield will 

tend to zero by the Sommerfeld radiation condition. We are left with a simple relation 

between the acoustic pressure and the Green’s function scaled by the source function, 

 P(xG ,x s ,ω) = S(ω )ρ(x s )G0 (x s ,xG ,ω ). (2.53) 

As discussed in Section 2.5.3, equation (2.53) states that the acoustic pressure at location 

xG due to a source at xs is just the incident wavefield as given by the Green’s function 

(pressure per unit rate of mass influx) multiplied by the density ρ(xs) at the source 

                                                 

52 See Morse and Feshbach (1953, Chapter 7). Aki and Richards (1980, p. 29) provide a similar discussion 

of Green’s function reciprocity in elastic representation theorems. 
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location (giving pressure per unit rate of volume influx) multiplied by the source strength 

S(ω). Note, however, that the Green’s function source location is at the observation 

location xG. 

If the derivation leading to equation (2.53) uses a second Green’s function G0(x,xs,ω) in 

place of the acoustic pressure P(x,xs,ω), the source function S(ω) and density ρ(xs) on the 

RHS disappear by virtue of the procedure used to define the Green’s function (Sections 

2.3 and 2.4), yielding the reciprocity relation for constant density acoustic Green’s 

functions, 

 G0 (xG , x s ,ω ) = G0 (x s ,xG ,ω) . (2.54) 

2.7.2 Reciprocity relations for Green’s function and acoustic pressure in 
variable-wavespeed variable-density media 

Equation (2.54) is valid for variable wavespeed53 but is not valid for variable-density 

media. Starting with the variable-density acoustic wave equation [equation (2.4)] and 

following the procedure outlined in Section 2.3 and 2.4 gives 

 ρ0 (x)∇ x ⋅
1

ρ0 (x)
∇x G0 (x, xG ,ω)

 

 
  

 
 +

ω 2

c0
2 (x)

G0 (x, xG ,ω ) = −δ(x − xG ) . (2.55) 

as an expression for the variable-density Green’s function in the space frequency domain 

for a source at location xG. A similar expression is found for a Green’s function with a 

source at location xs: 

 ρ0 (x)∇ x ⋅
1

ρ0 (x)
∇x G0 (x, x s ,ω )

 

 
  

 
 +

ω 2

c0
2 (x)

G0 (x,x s ,ω) = −δ(x − x s ). (2.56) 

                                                 

53 Recall from Section 2.4 that the wavespeed ratio c0(x)/c(x) compensates exactly for the variable-

wavespeed component of the geometrical spreading J0(x,xG) (Snieder and Chapman, 1998). 
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Following the derivation of the KHIR in Section 2.5.1, define a vector function Q(x,ω) as 

 Q(x,ω ) = G0 (x,xG ,ω)
1

ρ0 (x)
∇x P(x,x s ,ω )

 

 
  

 
 − P(x,x s ,ω )

1
ρ0 (x)

∇x G0 (x,xG ,ω)
 

 
  

 
 .(2.57) 

Taking the divergence of this vector function yields 

 
∇ x ⋅Q(x,ω) =

G0 (x,xG ,ω )
ρ0 (x)

ρ0 (x)∇x ⋅
1

ρ0 (x)
∇ xG0 (x,x s ,ω)

 

 
  

 
 

 
 
 

 
 
 

  

 

 −
G(x,x s ,ω )

ρ0 (x)
ρ 0 (x)∇ x ⋅

1
ρ0 (x)

∇xG0 (x, xG ,ω )
 

 
  

 
 

 
 
 

 
 
 

. (2.58) 

Substituting for the terms in the curly brackets in equation (2.58) using equations (2.55) 

and (2.56) yields 

 
∇ x ⋅Q(x,ω) =

G0 (x,x s ,ω)
ρ0 (x)

δ(x − xG ) −
G0 (x,xG ,ω )

ρ0 (x)
δ(x − x s )

  
. (2.59) 

Applying the divergence theorem [equation (2.43)], the sifting property of the delta 

function, and then assuming the surface-scattered wavefield is zero, yields the reciprocity 

relation for variable-density Green’s functions, 

 ρ0 (x s )G0 (xG ,x s ,ω) = ρ0 (xG )G0 (x s ,xG ,ω ). (2.60) 

Equation (2.60) is valid for the variable-density ray-theoretical Green’s functions given 

by equations (2.38) and (2.39). If the density at the Green’s function source location is 

absorbed into the definition of the Green’s function (following Snieder and Chapman, 

1998), the reciprocity relation is given by equation (2.54). I prefer the symmetry of the 

ray-theoretical Green’s functions as defined by equations (2.38) and (2.39). 
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A similar derivation for variable-density using identical source functions at two different 

positions s1 and s2 yields a reciprocity relation for the acoustic pressure, 

 P(x s1 ,x s2
,ω) = P(x s2

,x s1
,ω ). (2.61) 

Equation (2.61) is also valid for constant density. 

2.7.3 Limitations of reciprocity relations 

The reciprocity relations given by equations (2.54), (2.60), and (2.61) are only valid if the 

surface-scattered wavefield in equation (2.44) vanishes. Wapenaar and Berkhout (1989, 

p. 165) prove that there are two cases (in addition to the free-space or reflection-free 

condition discussed above) where reciprocity is guaranteed. If the surface is a rigid 

boundary, the normal component of the particle velocity is zero, i.e. the normal 

derivative of the Green’s function and the normal derivative of the acoustic pressure are 

both zero. If the surface is a free boundary, the Green’s function and the acoustic 

pressure are both zero. In either case, the surface-scattered wavefield is zero. Pierce 

(1989, p. 198) shows that an impedance boundary condition also produces a zero surface-

scattered wavefield. Otherwise, the surface-scattered wavefield must be considered as 

part of the reciprocity relation54. Recall, however, that one-way Green’s functions can be 

used to conveniently eliminate this problem (i.e. by assuming a reflection-free condition 

and handling boundary reflections separately). 

                                                 

54 A further discussion on reciprocity can be found in Pierce (1989, p. 197-199 and p. 163-165). Pierce’s 

footnote on p. 199 suggests that reciprocity of the Green’s function follows if the governing boundary-

value problem is self-adjoint—see suggested references. On p. 164, Pierce suggests that reciprocity of the 

Green’s function is a universal property. 
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Seismic imaging uses a backward propagating Green’s function. The Sommerfeld 

radiation condition is not appropriate for a backward propagating free-space Green’s 

function, except in limited cases (e.g. for the cylindrical walls of an infinite disk). Simple 

reciprocity relations for backward propagating Green’s functions can be obtained for 

rigid or free-surface boundaries, but these are seldom used as boundary conditions for the 

subsurface imaging problem. As discussed previously, one particularly useful method is 

to assume a fully reflection-free boundary for the reference medium, which leads to one-

way Green’s functions (Wapenaar and Berkhout, 1989, p. 181). I will now investigate the 

use of one-way Green’s functions in the Kirchhoff-Helmholtz integral [equation (2.48)]. 

2.8 ONE-WAY RAYLEIGH INTEGRALS FOR FORWARD AND INVERSE 
WAVEFIELD EXTRAPOLATION 

The configurations presented in Section 2.6 assume that data are available over the 

complete bounding surface surrounding the volume. Conventional seismic reflection 

experiments acquire data on the Earth’s surface, which forms only a part of a possible 

bounding surface. In this section it will be shown that, with an incomplete data set as 

described above and given some additional assumptions, an exact solution to the inverse 

wavefield extrapolation problem can still be found. One of the keys to the solution is to 

recognize that the seismic wavefield crosses the acquisition surface in an outward 

direction only. Since we are free to choose an appropriate surface to complete the 

volume—just as we are free to choose the properties of the Green’s functions and the 

reference medium utilized to derive the simplified version of the KHIR in Section 

2.5.5—we choose the remaining part of the bounding surface so that the wavefield 

crosses it in an inward direction. Wapenaar and Berkhout (1989) show that there is a 

negligible contribution to the integral from this part. 
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A second problem arises because the acquisition of conventional seismic reflection data 

is limited to one of either the pressure (marine acquisition) or the normal derivative of the 

pressure (land acquisition), whereas the full Kirchhoff-Helmholtz integral [equation 

(2.48)] requires both. In Section 2.6.3 it was suggested that a recording of either one is 

sufficient to reconstruct a wavefield that crosses an arbitrary surface in one direction. For 

a planar surface, the solutions take the form of simplified Kirchhoff-Helmholtz integrals 

called the Rayleigh I and II integrals. The key here is to use the method of images to 

construct a Green’s function whose value or normal derivative is zero on the acquisition 

surface. For a non-planar surface (i.e. rough topography), a Fourier-domain solution valid 

for constant wavespeed has been implemented by Margrave and Yao (1999), but an exact 

simplified integral solution has yet to be discovered. An approximate solution is implied 

in Berryhill (1979), derived by Wiggins (1984), and refined using adjoint operators by 

Bevc (1995). These solutions are simple because they are just the Rayleigh II integral (or 

the far-field approximation of the Rayleigh II integral) evaluated for each individual 

surface element. The error in the method arises because the dipole Green’s function 

created using the method of images is, in general, nonzero over the remainder of the 

surface. In Appendix B, I present a new geometric justification for a stationary-phase 

approach that suggests that the far-field Rayleigh II integral is reasonable for a non-

planar surface (see also Docherty, 1991). 

In much of the classical migration literature (e.g. Timoshin, 1970 p. 361; French, 1975, p. 

978; Schneider, 1978, p. 50), a configuration appropriate for the forward problem is 

incorrectly applied to the inverse problem. The fundamental error these authors make is 

to invoke Sommerfeld’s radiation condition to ignore the contribution from the remainder 

of the bounding surface over which no data are available. Unfortunately, the Sommerfeld 

radiation condition is valid only for outward propagating wavefields, not for the inward 

propagating Green’s function wavefields required for inverse wavefield extrapolation. A 
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brief review of the forward problem is now presented as a preview to investigating the 

correct approach to the inverse problem. 

2.8.1 Forward wavefield extrapolation from a planar surface 

If we assume that data are acquired on a planar surface (Figure 2.6a), the forward 

problem has an exact integral solution that is a simplification of the full Kirchhoff-

Helmholtz integral [equation (2.48)]. Pierce (1989) provides an excellent summary of 

Rayleigh’s original 1896 boundary-value derivation, where the planar surface is replaced 

by radiation from a thin disk of time-varying thickness; and Sommerfeld’s 1943 Green’s 

function derivation55 using the method of images, the principle of reciprocity, and 

Sommerfeld’s radiation condition. Of the two derivations, Sommerfeld’s derivation is the 

more easily understood given the theory introduced previously in this dissertation. In 

addition, it makes no a priori assumptions about the complexity of the wavespeed model, 

whereas Rayleigh’s derivation is formulated for constant wavespeed. 

In Sommerfeld’s derivation, the Green’s function required to simplify the Kirchhoff-

Helmholtz integral [equation (2.48)] consists of a monopole and its mirror image, where 

the mirror plane is the integration surface S1—typically the (assumed) horizontal surface 

of the earth given by the plane z = 0, but valid for any parallel plane z = constant (see 

Figure 2.6a). The remainder of the closed surface is assumed to be an infinite hemisphere 

S2 with negligible contribution to the integral due to Sommerfeld’s radiation condition. 

The reference medium is also assumed to be symmetric about the plane z = constant. 

 

55 Kuhn and Alhilali (1977) cite a 1912 paper as the source for Sommerfeld’s derivation. I have not 

confirmed which is correct. 
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Figure 2.6. Configurations for forward wavefield extrapolation from a planar surface using image Green’s 

functions: a) downward continuation of a downward propagating wavefield. b) upward continuation of an 

upward propagating wavefield. The only difference is a change in sign in the Rayleigh I or II integrals. 
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The sign of the mirror image portion of the Green’s function can be chosen as either the 

same as or opposite to the sign of the source portion of the Green’s function, resulting in 

a null value for ∇  or G G0 ⋅n 0, respectively, on the boundary surface S1. The first choice 

(image dipoles of the same sign), when applied to the Kirchhoff-Helmholtz integral 

[equation (2.48)] gives the two-way Rayleigh I integral, 

 
  
P(xG ,x s ,ω) = −2 dxdy

S1

∫
G 

G 0 (x,xG ,ω)
∂P(x,x s ,ω )

∂z
 
 
 

 
 
 z=const

. (2.61) 

The second choice (image monopoles of opposite sign) gives the two-way Rayleigh II 

integral, 

 
  
P(xG ,x s ,ω) = 2 dxdy

S1

∫ P(x,x s ,ω)
∂

G
G 0 (x,xG ,ω )

∂z

 
 
 

 
 
 z =const

. (2.62) 

For the forward problem, then, only the pressure P or the normal derivative of the 

pressure ∇  is required to reconstruct the pressure at the observation point. The 

medium can be inhomogeneous, which requires a more complicated Green’s function 

than the free-space Green’s function. 

P⋅ n

The sign of the RHS of equations (2.61) and (2.62) is opposite to the equivalent terms in 

equation (2.48) because, in this case, the partial derivative z∂∂  has a sense opposite to 

the outward pointing normal n (see Figure 2.6a). These two equations, as given, are valid 

for downward continuation of a downward propagating wavefield, e.g. to downward 

continue a source wavefield to a subsurface reflector. Assuming the positive z-axis points 
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downward, the negative of these equations are valid for upward continuation of an 

upward propagating wavefield (see Figure 2.6b)56. 

The use of image Green’s functions implies that the boundary conditions on the 

integration surface are either Neumann [rigid—equation (2.61)] or Dirichlet [free 

surface—equation (2.62)]. Hence the Green’s functions are two-way. As mentioned 

previously in Section 2.5, two-way Green’s functions require exact specification of the 

reference media to properly account for multiples57. One-way Green’s functions allow for 

less accurate specification of the reference media because multiples are not considered 

(Wapenaar and Berkhout, 1989, p. 180-183, Appendix B). In Section 2.5, it was shown 

that both free-space and ray-geometric Green’s functions ignore multiple reflections and 

hence are one-way expressions. In addition, the acquisition surface is commonly treated 

as a planar reflection-free surface across which both the acoustic wavefield and Green’s 

functions propagate in one direction only. These are almost universal assumptions for 

any practical implementation; thus a one-way approach is implied for forward and 

inverse wavefield extrapolation in most of the migration literature. 

 

56 The reader is cautioned about the possible complexity of signs when implementing the free-space 

versions of equations (2.62) and (2.64) in the space-frequency domain [i.e. after expanding the normal 

derivative of the second term of equation (2.49) into far-field and near-field terms]. The correct choice of 

signs depends on the orientation of the z-axis relative to the surface normal, the orientation of the surface 

normal (inward or outward), the sign convention of the Fourier transform, the phase convention of the 

Fourier transform (phase lag or phase lead positive), and the intended use for either forward or inverse 

extrapolation. 

57 Wapenaar and Berkhout (Wapenaar and Berkhout, 1989, p.176-180) show that the assumed boundary 

conditions on the integration surface (Neumann or rigid surface: ∇G0⋅n = 0; Dirichlet or free surface: 

G0 = 0) create the largest multiple problem for two-way Green’s functions, irrespective of the interface 

contrasts within the media. 
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2.8.2 Inverse wavefield extrapolation from a planar surface 

The configuration assumed for the forward problem (Figures 2.6a and 2.6b) is not 

applicable to the inverse problem. The Sommerfeld radiation condition cannot be 

invoked for the lower surface because, in the case of backward propagating Green’s 

functions, there is no guarantee that the integral over the infinite hemisphere will be 

negligible. Wapenaar and Berkhout (1989) discuss in great detail the problem of inverse 

wavefield extrapolation using the Kirchhoff-Helmholtz integral [equation (2.48)] where 

data are available only over a portion of the surface. They introduce an appropriate 

configuration as shown by the cylinder in Figure 2.7: the upper “acquisition surface” 

(where data are available) is labeled S1, the lower surface (where no data are available) is 

labeled S2, and the cylindrical side surface at infinity is labeled S3. The Sommerfeld 

radiation condition is invoked to ignore the contribution from S3. The key is to assume 

one-way wavefields and then determine the conditions under which the contribution to 

the integral from the lower surface S2 can be ignored (see Section 3.2). 

 

Figure 2.7. Configuration for inverse wavefield extrapolation of an upward propagating wavefield recorded 

on a planar surface S1. The wavefield is assumed to be upward propagating as it crosses S2. Hence, the 

contribution to the surface integral from S2 can be ignored. The contribution from S3 (at infinity) can be 

ignored by the Sommerfeld radiation condition. However, there remains a contribution from the edge of S1, 

even it extends to infinity (see Wapenaar, 1992 for a discussion of the infinite aperture paradox). 



 142 

 

                                                

To derive the one-way Rayleigh I and II integrals for inverse wavefield extrapolation 

from a planar surface, Wapenaar and Berkhout (1989) separate both the wavefield and 

the Green’s functions into upgoing and downgoing parts on each of the upper and lower 

surfaces, and then show that contributions to the Kirchhoff-Helmholtz integral [equation 

(2.48)] arise only when the wavefield and Green’s functions propagate in opposite 

directions across the integration surface. With the positive z-axis pointing downward, the 

primary wavefield recorded on the upper surface is assumed to be upgoing while the 

backward propagating Green’s function is downgoing. This gives the contribution to the 

integral that we desire. On the lower surface, both the primary wavefield and the 

backward propagating Green’s function are upgoing. Hence there is no contribution to 

the Kirchhoff-Helmholtz integral from the primary wavefield crossing the lower surface. 

However, the scattered wavefield on the lower surface, arising from reflecting interfaces 

within the volume, is downgoing. Since the backward propagating Green’s function is 

upgoing, this contribution should be included58. By ignoring it, we ignore internal 

multiply reflected waves and include only the transmitted wavefield crossing any 

reflectors that might lie between the surfaces, thereby introducing an error in amplitude 

proportional to the squared reflectivity. An additional error is introduced by ignoring 

evanescent waves, but this approximation comes with a bonus that the resulting inverse 

wavefield propagator is unconditionally stable59. For data recorded on a planar surface, 

 

58 Docherty (1991) provides an alternate (but conceptually identical) justification for ignoring the 

contribution from the lower surface S2. 

59 When using the full Kirchhoff-Helmholtz integral [equation (2.48)] or its simpler time-domain 

equivalents [equations (2.49), (2.50), and (2.52)] for inverse wavefield extrapolation from an acquisition 

surface, only the upgoing wavefield is reconstructed, with similar errors introduced by ignoring multiples 

and evanescent waves. 
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then, Wapenaar and Berkhout (1989) determine that the upgoing wavefield in the 

subsurface can be reconstructed from the normal derivative of the pressure recorded on a 

planar interface by the one-way Rayleigh I integral, 

 
  
P−(xG ,x s ,ω) = −2 dxdy

H 
G 0

+ (x,xG ,ω )
∂P −(x, x s ,ω )

∂z
 
 
 

 
 
 ∫

−∞

∞

∫
S1

. (2.63) 

The upgoing wavefield in the subsurface can be reconstructed from the pressure recorded 

on a planar interface by the one-way Rayleigh II integral, 

 
  
P−(xG ,x s ,ω) = 2 dxdy P −(x, x s ,ω )

∂
H

G 0
+ (x,xG ,ω )

∂z

 
 
 

 
 
 ∫

S1−∞

∞

∫ , (2.64) 

where the superscript (-) indicates the upgoing or negative z-direction. Note that the 

partial derivative ∂/∂z in equations (2.63) and (2.64) is for the z-axis pointing down. 

Although these expressions are not exact for generalized media and boundary conditions, 

they will be exact for the special case of a homogeneous medium with reflection-free 

boundaries (ignoring evanescent waves). Note that inverse wavefield extrapolation from 

a planar surface does result in an artifact, even if the data are available over a surface S1 

of an infinite extent (see Wapenaar, 1992 for a discussion of the infinite aperture 

paradox). 

2.9 INVERSE WAVEFIELD EXTRAPOLATION FROM A NON-PLANAR 
SURFACE 

Equations (2.63) and (2.64) are valid for inverse wavefield extrapolation from a planar 

surface. The Sommerfeld radiation condition has not been required to ignore the 

contribution from the lower surface. A similar argument shows that inverse wavefield 

extrapolation using the Kirchhoff-Helmholtz integral [equation (2.48)], when applied to 
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data acquired over a non-planar open surface, also reconstructs only the upgoing 

wavefield in the subsurface (Wapenaar and Berkhout, 1989, equation VII-61, p. 290), 

 . (2.65) 
  
P−(xG ,x s ,ω) = dS

H
G 0 (x,xG ,ω )∇P(x,x s ,ω) − P(x, x s ,ω )∇

H
G 0 (x,xG ,ω ){ }

S1

∫ ⋅n

The appropriate configuration for the derivation of equation (2.65) is a cylinder with S1 

and S2 as non-planar surfaces (Figure 2.8). Further investigation by Wapenaar (1993a) 

supports the conclusion that the full Kirchhoff-Helmholtz integral as given by equation 

(2.65) is required to reconstruct the upgoing wavefield in the subsurface from data on a 

non-planar open surface. 

 

Figure 2.8. Configuration for inverse wavefield extrapolation of an upward propagating wavefield from a 

non-planar surface S1. The wavefield is assumed to be upward propagating as it crosses nonplanar surface 

S2. Hence, the contribution to the surface integral from S2 can be ignored. The contribution from S3 (at 

infinity) can be ignored by the Sommerfeld radiation condition. However, there remains a contribution 

from the edge of S1, even it extends to infinity (see Wapenaar, 1992 for a discussion of the infinite aperture 

paradox). 

2.9.1 Are both the pressure and the normal derivative of pressure required? – part 2 

The reconstruction given by equation (2.65) correctly accounts for upgoing internal 

reflections from the bottom of the S1 surface and, if implemented as an iterative 

downward continuation with the upper S1 and lower S2 surfaces at the wavespeed 

discontinuities (the reflector surfaces), the full integral also accounts for transmission 

effects across the interface, thus eliminating the error in amplitude proportional to 
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squared reflectivity. As well, equation (2.65) is valid for one-way or two-way wavefields 

and Green’s functions. 

These additional benefits suggest that the full Kirchhoff-Helmholtz integral as given by 

equation (2.65) might well be overdetermined for the simpler goal of wavefield 

reconstruction from an arbitrary surface in a homogeneous medium. Indeed, Margrave 

and Yao (1999) show that, for constant wavespeed, a pseudo-inversion of a generalized 

phase-shift plus interpolation (PSPI) extrapolator exactly reconstructs the wavefield in 

the subsurface using only the pressure recorded on the non-planar surface. The exactness 

of the method can be justified with the following thought experiment. It is trivial to show 

that a single plane wave of known propagation direction can be reconstructed using only 

the pressure recorded on a non-planar surface. The normal derivative of the pressure is 

synthesized on the surface using the time derivative of the recorded pressure, the 

wavespeed, the propagation direction of the incident plane wave, and the normal 

direction at the surface, all of which are known. Effectively, then, there is sufficient 

information to reconstruct the upgoing plane wave using the full Kirchhoff-Helmholtz 

integral, which is known to be exact. Each recursive step of the pseudo-inverse method 

implies a plane-wave decomposition at the output points on a planar surface within the 

volume. Given constant wavespeed, this decomposition will also be valid at the input 

points on the non-planar surface. Thus, an exact reconstruction is possible. Margrave and 

Yao (1999) show that the pseudo-inverse reconstruction includes evanescent energy 

recorded on the input surface, although practical implementation must ignore evanescent 

energy to maintain stability. Variable wavespeed creates a problem in that the plane wave 

decomposition at the output surface will not be valid for the input surface. In practice, 

small recursion steps reduce the error such that its magnitude is insignificant compared to 

the errors introduced by noise or by inaccuracies in the reference wavespeed model. 
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2.9.2 Love’s 1903 theorem of determinacy 

The proof that only one of either the pressure or its normal derivative is sufficient to 

reconstruct the wavefield is found in Love’s 1903 theorem of determinacy of the 

solution. A summary by Baker and Copson (1950, p. 40-41) is applicable to forward 

extrapolation using the time domain version of the Kirchhoff-Helmholtz equation, i.e. 

equation (2.51) —the free space version—repeated here as 

p(xG ,x s ,t) =
1

4π
dS

S
∫

1
r

∂p(x,x s , t)
∂n

 
  

 
  +

1
c0 r

∂p(x,x s , t)
∂t

 
  

 
  

∂r
∂n

+
1
r 2 p(x,x s ,t)[ ]∂r

∂n
 
 
 

 
 
 

. (2.51) 

Baker and Copson write (underlining added for emphasis): 

The formulae of Kirchhoff enable us to express the value of p at a point xG 

on one side of a closed surface S and at the instant t, in terms of the 

surface values of p and its first partial derivatives at previous instants. 

Actually the data are redundant, inasmuch as a knowledge of the surface 

values of p alone for all values of t is sufficient to determine those of 

∂p/∂t, and is, in fact, sufficient, with a knowledge of the initial values of p 

and ∂p/∂t, to determine p throughout the whole region of space in which it 

satisfies the equation of wave-motions and the prescribed conditions of 

continuity. This statement constitutes a part of the theorem of determinacy 

of the solution of the equation of wave-motions; it follows from it that, if p 

and ∂p/∂t are given everywhere initially and p is given for all values of t 

on the surface S, ∂p/∂n can have only one definite value at any point of S 

at any given instant. The surface values of ∂p/∂n would also suffice in the 

same way for the determination of p; this constitutes the other part of the 

theorem of determinacy. 
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The argument, as given, is restricted to the forward problem. However, with appropriate 

modification it applies equally well to the inverse problem. We will consider both 

problems and discuss them in the context of specific applications to seismic wavefield 

extrapolation. 

2.9.3 Forward (downward) extrapolation from a point source 

For forward extrapolation of seismic data, the difficulty lies in knowing the initial values 

of p and ∂p/∂t everywhere. A typical forward problem is downward extrapolation of the 

downgoing source wavefield. The initial values are all zero, except for the known 

(assumed) value of the monopole source at one location on the non-planar surface (recall 

from Section 2.2 that any source can be derived or synthesized from the monopole 

response). The wavefield can be reconstructed using either recursive or nonrecursive 

methods. In implementing a recursive downward extrapolation of the downgoing 

wavefield, we are free to choose the geometry of the output surface. The output surface 

may as well be planar, which neatly sidesteps the problem of subsequent recursions from 

a non-planar surface. The first recursion, from the point source on the non-planar input 

surface, follows the nonrecursive implementation discussed below whereby no integral 

reconstruction is required. Subsequent recursions typically use the free-space version of 

the forward propagating one-way Rayleigh II integral, derived in the time domain by 

Schneider (1978) for a planar surface at z = constant and the z-axis positive downward as 

 p+ (xG , x s , t) =
1

2π
dS

cosθ
rc0

∂p+ (x,x s , t − r c0 )
∂t

+
c0

r
p+ (x,x s , t − r c0 )

 
 
 

 
 
 S1

∫ , (2.66) 

i.e. twice the last two terms of equation (2.51) with the normal derivative evaluated as a z 

derivative. In a constant wavespeed medium, cosθ = ∂r / ∂z . 
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A nonrecursive implementation is even easier because an integral equation is not 

required. For one-way nonrecursive downward extrapolation of the downgoing 

wavefield, the desired wavefield is simply the incident wavefield. The incident wavefield 

from a point source is the first term on the RHS of the KHIR [equation (2.44)], which is 

just the Green’s function multiplied by source signature [e.g. equation (2.19) for a ray-

theoretical Green’s function in the space-frequency domain]. Hence, the Kirchhoff-

Helmholtz or Kirchhoff integrals are not required, nor are any approximations (a useful 

observation that will reappear in Section 3.2 in the context of migration). 

2.9.4 Forward (upward) extrapolation of an upgoing wavefield 

A second example of a forward problem is changing the datum to higher elevation in 

areas of rugged topography, i.e. the upward extrapolation of the upgoing wavefield 

recorded on a non-planar surface. In this case, the initial values of p and ∂p/∂t can be 

assumed to be zero. Berryhill (1979) breaks the non-planar surface into planar elements 

and devises a localized coordinate system [denoted as ′ x , ′ y , ′ z ( )] with the -direction 

normal to each element

′ z 
60. Berryhill’s equation (A-1) is the free-space version of the 

forward propagating one-way Rayleigh II integral for the ′ -axis positive upward, z 

 p+ (xG , x s , t) =
1

2π
d ′ S 

cos ′ θ 
′ r c0

∂p+ ( ′ x , ′ x s , t − ′ r c0 )
∂t

+
c0

′ r 
p+ ( ′ x , ′ x s , t − ′ r c0 )

 
 
 

 
 
 S1

∫ . (2.67) 

with the far-field response and the near field response given by the first and second terms 

in the curly brackets, respectively. Equation (2.67) is identical to equation (2.66) except 

for the localized nature of the coordinate system and the positive upward orientation of 

                                                 

60 Berryhill (1979) develops his redatuming method based on the use of planar elements in the 2-D and 3-D 

zero-offset modeling theories of Trorey (1970) and Hilterman (1970); who in turn cites Biot and Tolstoy 

(1957) and Mitzner (1967), respectively, for the origin of the methods. 
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the -axis. Berryhill (1979, p. 1330) claims that that his implementation of equation 

(2.67) is “a precise and efficient computerized form of Huygens’ principle”. Bevc (1995) 

implements only the far-field term in his redatuming method, and claims in Section 1.1 of 

his dissertation that “Berryhill’s time domain formulation is accurate since it includes the 

near-field term”. These implementations may be accurate and/or precise, but they are not 

exact. Berryhill’s forward wavefield extrapolation using equation (2.67) is an 

approximation for a non-planar surface. The approximation arises because a simple 

application of the method of images to a “local” surface element creates a local dipole 

Green’s function that satisfies the boundary conditions only at surface elements that are 

tangential to the local element. Hence, the “global” Green’s function that is numerically 

synthesized from the local functions does not satisfy the boundary conditions required by 

the Rayleigh II integral. Fortunately, a dipole has small values over directions nearly 

perpendicular to the dipole axis (which is normal to the local element), i.e. the error in 

the approximation is small for surface elements that are nearly tangential to the local 

element. The nature of this approximation will be investigated more thoroughly in the 

following paragraphs, but in the context of inverse extrapolation of seismic wavefields. 

′ z 

2.9.5 Inverse (downward) extrapolation of an upgoing wavefield 

I now return to the theorem of determinacy and apply it to inverse extrapolation of 

seismic data (e.g. downward extrapolation of the upgoing wavefield). For inverse 

extrapolation, the final values of P and ∂P/∂t are required everywhere instead of the 

initial values. French (1975) assumes that the data records are sufficiently long such that, 

eventually, no measurable reflected energy crosses the acquisition surface. Thus the final 

values can be assumed to be zero everywhere, the theorem of determinacy can be 

applied, and acquisition of either P or ∂P/∂n is sufficient. This argument can be applied 

more rigorously to the recording and reconstruction of one-way primary wavefields. Only 
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the one-way upgoing primary wavefield can be reconstructed. A finite record length 

progressively limits the aperture of available surface data as the depth of the 

reconstruction point xG increases: the deeper the point, the poorer the reconstruction of 

the wavefield61. However, the theorem of determinacy will still apply, and the upgoing 

wavefield in the subsurface can be reconstructed from knowledge of either P or ∂P/∂n 

recorded on a non-planar surface. 

Based on the arguments presented above, it can be concluded that inverse wavefield 

extrapolation from a non-planar surface does not require a record of both the pressure and 

its normal derivative. However, a way of incorporating this knowledge to devise an exact 

but simple inverse propagator similar to the Rayleigh I and II integrals [equations (2.63) 

and (2.64)] has yet to be accomplished. Berryhill (1979) implements inverse wavefield 

extrapolation using his forward extrapolator (see above) by time reversing the input 

traces prior to extrapolation and time reversing the output traces after. (Wiggins, 1984) 

derives the far-field equivalent of Berryhill’s inverse extrapolator directly from the 

Kirchhoff integral [equation (2.50)] using a backward propagating free-space Green’s 

function. The free-space version of the inverse propagating one-way Rayleigh II integral 

for the -axis positive downward is given by ′ z 

 p− (xG , x s , t) =
1

2π
d ′ S 

cos ′ θ 
′ r c0

∂p− ( ′ x , ′ x s , t + ′ r c0 )
∂t

−
c0

r
p− ( ′ x , ′ x s , t + ′ r c0 )

 
 
 

 
 
 S1

∫ , (2.68) 

with the far-field response and the near field response given by the first and second terms 

in the curly brackets, respectively. Equation (2.68) is twice the last two terms of equation 

(2.52) with the normal derivative evaluated as a z derivative. The far-field version of 

equation (2.68) is equation (1) of Wiggins (1984). 

                                                 

61 See chapter 4 of Margrave (2000). 
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Wiggins suggests that the localized version of the Rayleigh II integral62 is “a good 

approximation so long as undulations in the surface are small over a wavelength” and 

cites Beckman and Spizzichio (1963) as justification for this statement. However, what 

Beckman and Spizzichio refer to, as encapsulated in their Figure 3.4, is the standard 

Kirchhoff approximation for estimating an unknown wavefield on a surface in terms of 

the estimated value of the incident wavefield and its normal derivative at a time 

corresponding to arrival at the surface. The Kirchhoff approximation neglects curvature 

of the surface, as well as the edge effects of the planar surface element. These are valid 

concerns for a reflector (as we shall discover in Section 3.3), but not for an arbitrary 

surface over which we have measured the (assumed) exact values of the wavefield and, 

perhaps, its normal derivative. Instead (as discussed above) the approximation arises 

because the global Green’s function synthesized from the local dipoles does not satisfy 

the boundary conditions required by the Rayleigh II integral. The same is true for the 

Rayleigh I integral. An integration that includes the erroneous local Green’s functions 

can introduce artifacts into the reconstructed wavefield. The magnitude of the artifacts is 

related to the phase at the dominant frequency of the wavelet, and the geometry of the 

reconstruction. The relationship is complex, and justifies further study. A more extensive 

study is not presented in this dissertation. However, the topic is revisited briefly in 

Section 3.4, where it is concluded that, although theoretically incorrect, either of the 

Rayleigh I or Rayleigh II integrals can be practically applied for time migration from a 

non-planar source. 

 

62 In this paragraph, I drop the qualifier “free-space inverse propagating one-way”, which is implied. 
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2.10 SUMMARY 

This chapter began with a derivation of the acoustic wave equation and Green’s functions 

as necessary background for forward and inverse wavefield extrapolation. The Kirchhoff-

Helmholtz integral representation [KHIR, equation (2.44)] was derived as the basic 

equation describing the acoustic wavefield in terms of incident and scattered wavefields. 

The volume-scattered wavefield [second term of equation (2.47)] was shown to be a 

function of the wavespeed perturbation α(x) [defined by equation (2.46)]. The surface 

scattered wavefield was shown to be the Kirchhoff-Helmholtz integral in the space-

frequency domain [equation (2.48)—in free-space, equation (2.49)], also known as the 

Kirchhoff integral in the space-time domain [free-space version given by equations 

(2.50), (2.51) and (2.52)]. A number of configurations were examined in order to gain an 

intuitive understanding of the physical meaning of the integral in the context of Huygens’ 

principle and inverse wavefield extrapolation from an arbitrary surface. 

In the case of Huygens’ principle, reconstruction of the wavefront was shown to be 

equivalent to replacing the propagating wavefield with secondary sources distributed 

over the wavefront surface. The Kirchhoff-Helmholtz integral [equation (2.48)] is then 

interpreted as a superposition of weighted monopoles and dipoles that radiates wavefields 

in both directions. Assuming that the one-way wavefield we are interested in is 

propagating outward63, the inward propagating contributions must cancel. To do so, they 

must be equal and of opposite sign. Thus the outward propagating contributions must 

also be equal. Intuitively, then, this suggests that the one-way outward propagating 

wavefield can be reconstructed from twice the wavefield of either the monopole or dipole 

portion of the Kirchhoff-Helmholtz integral. 

 

63 Recall from Section 2.4 that a wavefield can propagate outward either forward or backward in time 
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This intuitive idea was then applied to inverse wavefield extrapolation from an arbitrarily 

reflection-free surface. First, the theory was restricted to more realistic acquisition 

conditions, whereby data are available only over part of a closed surface and only one of 

either the pressure or its normal derivative is measured. Given these restrictions, and the 

additional assumptions of one-way wavefields and a planar surface, an almost exact 

reconstruction (neglecting evanescent waves) is possible by a superposition of weighted 

monopoles (the Rayleigh I integral) or weighted dipoles (the Rayleigh II integral). The 

restriction of a planar surface was removed by considering the Rayleigh I and II integrals 

as composed of local image Green’s functions, one for each surface element. The theory 

developed in this chapter will be used in Chapter 3 to develop various formulas for 

migration and inversion. These, in turn, provide a basis for Chapter 4, where I determine 

robust and efficient weighting functions for prestack migration by the method of 

equivalent offset. 
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CHAPTER 3: DEPTH IMAGING BY RAY-THEORETICAL 
KIRCHHOFF-APPROXIMATE MIGRATION/INVERSION 

3.1 INTRODUCTION 

In this chapter, I derive fundamental expressions for depth imaging of subsurface 

reflectors from surface seismic data. These expressions will be given as generalized 

formulas that convert upward propagating pressure data acquired on a non-reflecting 

surface into depth images of reflectivity in the subsurface. The source is assumed to be a 

monopole of volume injection. The term imaging is used here in the context described by 

Hubral et al. (1996) and refers to a migration scheme that accounts for seismic wavelet 

shapes and amplitudes in addition to arrival times and subsurface geometry. Indeed, 

following the pioneering work of Bleistein (1984), the output image of a given reflector 

will correspond to an aperture limited singular function whose peak amplitude is 

proportional to the angle-dependent geometrical-optics reflection coefficient. 

3.1.1 Overview of depth imaging methods 

Two methods of depth imaging are developed. The first method—ray-theoretical 

Kirchhoff-approximate migration—is based on inverse wavefield propagation and 

Claerbout’s deconvolution imaging condition (Claerbout, 1971). The term ‘Kirchhoff-

approximate’ has two meanings. The first meaning refers to the forward modeling 

approximation whereby the unknown scattered wavefield at the reflector is replaced by 

the product of an incident wavefield from the source times an angle-dependent reflection 

coefficient. In fact, Claerbout’s deconvolution imaging condition will be shown to be a 

simple reformulation of this Kirchhoff approximation [compare equations (3.10) and 

(3.25)]. The second meaning refers to the Kirchhoff-Helmholtz integral equation, which 

estimates the unknown scattered wavefield at the reflector by inverse propagation of the 
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wavefield recorded at the surface. Unfortunately, reliance on inverse wavefield 

propagation limits Kirchhoff-approximate migration to real or synthetic wavefields such 

as common-shot or common-receiver gathers, and leaves open the question of how a 

number of migrated common-shot or common-receiver gathers can be best combined to 

produce a migrated stack. 

The second method attempts to circumvent these difficulties by inverting a forward 

modeling operator based on the Born approximation to volume scattering. The leading 

order approximation to this volume integral is recognized as a Fourier-transform-like 

integral that can be inverted to reconstruct the linearized Born reflection coefficient. 

Unfortunately, the resulting Born-approximate inversion formula is valid only for small 

increments in the medium parameters across reflectors and small angles of incidence 

compared to the critical angle (Bleistein et al., 2001, p. 102). 

What we desire is a migration/inversion approach valid for common-offset acquisition 

configurations and retains accuracy for both large reflectivities and large angles of 

incidence. For the restricted cases of common-shot and common-receiver acquisition 

configurations, the volume-integral approach based on the Born approximation can be 

shown to produce an almost identical formula as the surface-integral approach based on 

the Kirchhoff approximation. This suggests that the Born-approximate inversion formula 

can be applied to estimate large reflectivities at large angles of incidence in any 

configuration1, and is therefore the formula we desire for the common-offset 

configuration. 

 

1 Bleistein et al. (2001, see Section 3.7 and 5.4, discussion in Section 5.1.4, and summary in Sections 5.1.6 

and 5.1.7) validate this assumption analytically by applying the Born-approximate inversion formula to 

Kirchhoff-approximate forward model data for a single reflector. 
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The resulting approach is called ray-theoretical Kirchhoff-approximate migration/ 

inversion, in part to stress the importance of the Kirchhoff approximation at the reflector, 

in part because the approach can be derived in an alternate manner directly from the 

Kirchhoff-approximate forward modeling formula (Jaramillo, 1999; Bleistein et al., 2001, 

Section 5.1.7 ), and in part because both the Born-approximate and Kirchhoff-

approximate forward modeling formulae can be transformed in to almost identical time-

domain isochron stack operators (Jaramillo, 1999; Jaramillo and Bleistein, 1999, and 

alternate derivation in Appendix C of this dissertation). 

The essence of imaging in Kirchhoff-approximate migration/inversion is the concept of 

‘weighted isochron superposition’, which is asymptotically equivalent to an inverse 

generalized Radon transform. Weighted isochron superposition allows us to reconstruct 

an image of the subsurface from a non-physical wavefield such as a common-offset 

gather. This is essential, because in Chapter 4, I show that the common-offset migration 

weight yields unbiased estimates of an average of angle-dependent reflectivity. This is 

exactly what is required for migration techniques (such as EOM) that create a stack of 

migrated gathers. 

3.1.2 Overview of Chapter 3 

In Sections 3.2 and 3.3, one-way Green’s functions and superposition are applied to a 

generalized version of the Kirchhoff-Helmholtz integral representation (KHIR). This lays 

the foundation for ray-theoretical Kirchhoff-approximate forward modeling of the 

prestack wavefield (Section 3.4), a generalized Kirchhoff-Helmholtz (KH) integral for 

inverse propagation of a recorded wavefield (Section 3.5), and ray-theoretical Born-

approximate forward-modeling of the prestack wavefield (Section 3.8). 
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In Section 3.6, Claerbout’s deconvolution imaging condition is examined in detail. In the 

frequency domain, the deconvolution imaging condition is a simple ratio of the recorded 

wavefield (inverse propagated to the reflector location using the KH integral) and the 

source wavefield (forward propagated to the reflector location as an incident wavefield). 

I present a new derivation that produces a chi-squared estimate of angle-dependent 

reflectivity from estimates at each frequency. In Section 3.7, the optimum chi-squared 

deconvolution imaging condition is used to derive the ray-theoretical Kirchhoff-

approximate migration formula. 

In Section 3.9, I present a summary of the derivation of the ray-theoretical Born-

approximate migration/inversion formula (see Bleistein et al., 2001 for complete 

derivation). As discussed previously, the migration/inversion formula is not limited by 

the Born-approximation, and is therefore referred to as the ray-theoretical Kirchhoff-

approximate migration/inversion formula. In Section 3.10, this formula is simplified for 

common-shot and common-offset acquisition configurations in a constant wavespeed 

medium. Migration/inversion formulae appropriate for 2.5-D are given, but are not 

derived in this dissertation. Derivation of the 2-D forward modeling and 

migration/inversion formulae for constant wavespeed are presented in Appendix D, along 

with relationships between the 2-D, 2.5-D and 3-D formulae. 

3.2 GENERALIZED KHIR FOR FORWARD AND INVERSE SCATTERING 

Each of the depth imaging expressions will be developed from the Kirchhoff-Helmholtz 

integral representation (KHIR), derived previously in Section 2.5.1. The relationship 

between the imaging expressions and the KHIR is not immediately obvious. For 

example, there is no term corresponding to reflectivity in the KHIR, although the 

wavespeed perturbation in the volume-scattered wavefield is close—as a step function it 

becomes the source of reflectivity for the Born-approximate method. Nor is it obvious 



 159 

 

how the KHIR can explain both propagation down and propagation up, as might be 

required for a prestack imaging expression. In this section, a unified approach to prestack 

seismic imaging is developed using the KHIR as the fundamental equation. 

First, the KHIR is developed in a generalized sense, i.e. the purpose of the development 

is not explicitly in terms of a forward or inverse application but can be considered as 

both. This is not easy to do, because it requires that our conceptual understanding take on 

a double meaning. As an example, consider an upward propagating wavefield from a 

source at depth that crosses two somewhat horizontal surfaces (as described in Section 

2.8.2). The KHIR can describe both the forward and the inverse propagation of the 

wavefield, depending on the propagation direction of the Green’s function. It makes 

intuitive sense that, for forward propagation, the integral defining the surface-scattered 

wavefield has meaning only over the lower surface. For inverse propagation, the integral 

has meaning only over the upper surface. By using a generalized Green’s function, the 

KHIR can describe both propagation directions in one generalized expression. 

3.2.1 Reformulation of the KHIR using a generalized Green’s functions 

I begin with a reformulation of the KHIR using a generalized Green’s function, where the 

Green’s function could be either forward or inverse propagating. The KHIR is defined in 

terms of two wavefields propagating in two different media. One is the unknown true 

media. We choose the reference media and hence the Green’s function that satisfies it, 

and then to take one step beyond—by approximating the Green’s function with 

something entirely practical! All this can be done before we specify whether the Green’s 

function is forward or inverse propagating. 

The expression for wavespeed perturbation [equation (2.46)] can be substituted into the 

KHIR [equation (2.44)]. With this substitution, the KHIR can be re-expressed as 
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 P(xG ,x s ,ω) = S(ω )ρ(x s )G0 (x s ,xG ,ω ) 

 + dS
x
∫ G0 (x,xG ,ω )∇x P(x,x s ,ω) − P(x,x s ,ω)∇ xG0 (x,xG ,ω ){ }⋅n , 

 + dV
x
∫ ω 2 α(x)

c0
2 (x)

 

 
 

 

 
 G0 (x, xG ,ω )P(x, x s ,ω ). (3.1) 

Here, the Green’s function propagates in its ‘mathematical’ sense, agreeing with 

Huygens’ 1673 interpretation for forward propagation (i.e. the Green’s function source is 

at the observation location—see Sections 2.5.6 and 2.6.1). Equation (3.1) is derived in 

terms of two non-identical acoustic wavefields corresponding to two different sets of 

material properties within the same volume. As pointed out in Section 2.5.2, we are free 

to choose the configuration, i.e. the shape of the volume and the location of the 

boundaries. In addition, we can choose the reference medium within and outside the 

volume. The reference medium determines the corresponding Green’s function, including 

its behavior at the boundaries. 

It is important to note that the KHIR is a complete description of the total wavefield 

independent of the complexity of the unknown true medium and associated wavefield, 

and independent of the choice of the reference medium and corresponding Green’s 

function. Given that the Green’s function is a complete solution to the wave equation in 

the reference medium, the choice of reference medium just determines how that total is 

distributed amongst the various terms. On the other hand, if the Green’s function is an 

approximate solution to the wave equation in the reference medium (e.g. one-way ray-

theoretical Green’s functions for a complex medium), it follows that the KHIR will also 

be approximate. The relationship between the various choices, approximations, and 

distributions will be investigated in detail shortly. 
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3.3.2 Superposition of the KHIR 

A second reason why equation (3.1) provides flexibility is because it is derived from the 

linearized acoustic wave equation. Hence, we might expect to be able to superpose 

simple solutions to create more complex solutions. This is true for many applications of 

the equation (or its parts), but not for all. We have already come across an example—

Rayleigh I and II propagation from a nonplanar surface—where a superposition of local 

Green’s functions does not exactly reconstruct the global Green’s function. Non-linearity 

can also arise because both the surface-scattered and volume-scattered wavefields are 

expressed in terms of the unknown acoustic pressure within the volume. Equation (3.1) 

can be recursively substituted back into itself, giving a series expression in terms of 

multiply scattered wavefields. In the case of the volume-scattered wavefield, the Born 

method derives its name from the approximation that linearizes the series equation. The 

linearized Born equation will be developed in Section 3.8, and then applied to the 

imaging problem in Section 3.9. 

Superposition is valid in many applications, however. An important example introduced 

in Section 2.3.2 is to consider the seismic reflection problem to be composed of the 

separate linear steps of propagation down—reflection—propagation up. The propagation 

steps can be described by the Kirchhoff-Helmholtz integral or the simpler Rayleigh I or II 

integrals. Reflection can be described using a separate approximation, such as 

Claerbout’s deconvolution imaging condition. A second example of superposition was 

introduced in Section 2.8.2, whereby the wavefield and the Green’s function are 

considered as a sum of upgoing and downgoing parts. Only those combinations of 

wavefield and Green’s function that propagate in opposite directions across the interface 

contribute to the reconstruction integral—a concept that will be used extensively in 



 162 

 

Section 3.3. In fact, superposition underlies many applications of the KHIR. 

Unfortunately, the intricacies are not explicitly stated in much of the seismic literature. 

3.2.3 Reference medium chosen to make boundary non-reflective 

The various terms on the RHS of the KHIR [equation (3.1)] can be thought of as 

decomposition of the total acoustic pressure ),,( ωsGtP xx  into the sum 

 Pt (xG ,x s ,ω ) = Pi(xG , x s ,ω ) + PS (xG , x s ,ω ) + PV (xG , x s ,ω ), (3.2) 

where Pi (xG , x s ,ω ) is the incident wavefield, PS (xG , x s ,ω ) is the surface-scattered 

wavefield, and PV (xG , x s ,ω ) the volume-scattered wavefield. There is a subtle but 

important difference between this decomposition and the analysis of individual terms 

presented in Sections 2.5.3 through 2.5.5. There, for a restricted class of unknown true 

media (e.g. homogeneous), specific configurations and boundary conditions resulted in 

some terms equaling zero, such that the total acoustic wavefield was described by only 

one term. The important choices included the shape of the volume and propagation 

direction of the Green’s function across the boundaries. Application is limited to acoustic 

wavefields that cross the bounding surfaces in one direction only. These considerations 

lead to expressions for one-way forward and inverse wavefield propagation, but do not 

provide a complete description at the reflector when the incident wavefield and surface-

scattered wavefield travel in opposite directions. However, one-way wavefields can be 

used as part of a more complete description, as will be shown shortly. 

Here, more general situations are examined to investigate how the total wavefield can be 

distributed amongst the various terms in the KHIR. We will also use superposition to 

simplify the complicated wavefields arising from boundary reflections. In the end, we 

may have to ignore a portion of the total wavefield, typically because it cannot be 

accounted for in any practical implementation. But hopefully, these leftovers will be 
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small, or can be dealt with in some other manner. Practicality often forces us to ignore 

these terms and live with the consequences of the resulting approximation. 

Recall from Section 2.5.2 that the literal interpretation of the terms ‘incident’ and 

‘scattered’ are more restrictive than the mathematics permits. The choice of Green’s 

function determines which components of the wavefield are described by the various 

terms in equation (3.1). If the source and observation points lie within the volume and the 

Green’s function is defined with the exact unknown true wavespeed model such that it 

accounts for all reflections (including those from outside the volume), the only non-zero 

term is the incident wavefield. But this “incident” wavefield describes all the “scattering” 

effects. As pointed out by Wapenaar and Berkhout (1989), complicated Green’s functions 

are not practical, and can be avoided, in part, by choosing a Green’s function that is one-

way at the boundary. The simplest way to accomplish this is to extend the reference 

media outside the boundary with the exact wavespeed inside the boundary. The boundary 

for the reference medium becomes totally non-reflecting, and the incident wavefield no 

longer accounts for the reflection from the boundary. However, because the same 

Green’s function is used in all terms of the KHIR, the reflection from the boundary is 

now found in the surface-scattered wavefield. 

The choice of a reference wavespeed with a non-reflective boundary means that the 

reference wavespeed no longer matches the unknown true wavespeed outside of the 

boundary. The Green’s function, and hence the incident wavefield term, do not accurately 

describe scattering (i.e. reflections) arising from outside the volume. But the same 

Green’s function is used in the surface-scattered wavefield. Thus the surface-scattered 

wavefield now includes a portion that exactly accounts for the ‘error’ arising from the 

inaccurate Green’s function used to describe the incident wavefield. Taking this further, 

we can choose a relatively homogeneous reference wavespeed outside the volume and 
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force all the external-reflected wavefield from the incident wavefield into the surface-

scattered wavefield. The Green’s function is then completely one-way outside the 

volume. With this choice, the surface-scattered wavefield acts as a wavefield 

extrapolator, as discussed in Section 2.8. In fact, this is what we desire, as it is more 

practical to extrapolate the wavefield (including the external-reflected portion) rather 

than to estimate it using the Green’s function. Typically, the external-reflected wavefield 

contains reflections from deeper in the subsurface. Subsequent choices of configuration 

and Green’s function can account for deeper reflections. Repeated application of the 

KHIR is a fundamental concept in the imaging of a number of reflections in the 

subsurface, for both recursive and nonrecursive methods. 

3.2.4 Green’s functions chosen to be one-way 

So far, we have chosen a reference configuration that exactly matches the unknown true 

configuration inside the volume, but not outside. No approximations have been made. 

The KHIR still describes the total wavefield. In fact, we could choose any reference 

configuration, and the total wavefield described by the KHIR will be distributed 

somehow amongst the three terms, as described by equation (3.2)2. The only condition is 

that the Green’s function must be a complete solution to the wave equation given the 

chosen reference configuration. Thus we are assuming that the Green’s function is two-

way within the volume and completely describes the internal multiple reflections. Hence 

both the incident and surface-scattered wavefields include these internal multiples. 

 

2 In the example described so far, there is an exact match between the reference configuration and the 

unknown true configuration within the volume. Hence, there is no perturbation α(x) and the volume-

scattered wavefield is zero. If the match is not exact, there is a perturbation and the volume-scattered 

wavefield is not zero. 
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As stated previously, it is not practical to design a Green’s function that includes multiple 

reflections. Typically, the Green’s function is chosen to be one-way everywhere. If the 

reference medium and the unknown true medium remain identical within the volume, 

then the one-way Green’s function is an approximation to the two-way Green’s function 

that solves the wave equation in the reference medium. Each of the three terms in the 

KHIR is now an approximation (each is formulated in terms of the approximate Green’s 

function) and their sum no longer equals the total wavefield. 

The choice of a one-way Green’s function is one of the keys to creating a practical 

solution, although we have not yet decided on a forward or inverse application. The 

incident wavefield is a reasonable approximation to the direct wavefield from the source 

to observation point. The surface-scattered wavefield is a reasonable approximation to 

the wavefield reflected from the bounding surface, but also includes the external-

scattered wavefield from reflectors outside the volume. The volume-scattered wavefield 

is non-zero only if the wavespeed perturbation α(x) is non-zero. Intuitively, this is what 

we desire. 

3.3 ONE-WAY GREEN’S FUNCTIONS AND SUPERPOSITION APPLIED TO 
THE KHIR 

3.3.1 Scattered wavefields from upper and lower surfaces 

Now assume a configuration where the volume is an infinite-radius cylinder, bounded 

above by the nonplanar recording surface S1 and below by a nonplanar reflector S2, as 

shown in Figure 3.1. Both the recording surface and the reflector have unknown 

reflection coefficients that could depend on any number of parameters, including angle of 

incidence or even elastic parameters that are not incorporated in the acoustic propagation 

model. Later, the reflector of interest (S2) will be denoted as Σ to simplify the notation. 

The unknown true medium contains additional reflector surfaces Sk located beneath the 
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surface S2. The reference medium is identical to the unknown true media within the 

volume and is non-reflective elsewhere, including on the boundary. Hence the wavespeed 

perturbation α(x) is zero and there is no volume-scattered wavefield3. The monopole 

source is located at xs within the volume, so the incident wavefield is non-zero. The 

Green’s function    is chosen to be one-way everywhere
I

G 0 (x,xG ,ω ) 4, but the propagation 

direction has not been chosen, as indicated by the raised double-ended arrow. With this 

choice of Green’s function, the KHIR is, in general, an approximation. 

 

Figure 3.1. a) Configuration for generalized 3-D KHIR is an infinite radius cylinder. 

Given the assumptions stated above, the concept of superposition, as expressed by 

equation (3.2), is then applied. In addition, the surface-scattered wavefield can be 

expressed as separate contributions from the upper and lower surfaces. The upper surface 

S1 has coordinates x1 and upward directed normal n1
− . The lower surface S2 has 

coordinates x2 and downward directed normal n 2
+ . The contribution from the cylinder 

                                                 

3 This is not a restrictive assumption. If the reference wavespeed is not identical to the unknown true 

wavespeed, the volume-scattered integral can be taken over to the LHS and considered as an unknown 

error in the estimation of acoustic pressure. 

4 The Green’s function is only required to be one-way at the boundary, although for practical reasons (e.g. 

when using free-space or ray-theoretical Green’s functions), it is assumed here to be one-way everywhere. 
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side surface at infinity is assumed to be zero or is neglected, depending on the 

propagation direction of the Green’s function (Wapenaar, 1992). Thus, equation (3.1) 

becomes 

Pt (xG ,x s ,ω ) ≅ Pi(xG , x s ,ω ) + PS1
(xG , x s ,ω ) + PS2

(xG ,x s ,ω ) 

    ≅ S(ω)ρ(x s )
I

G 0 (x s ,xG ,ω)

  
  
+ dS

x1

∫
I

G 0 (x1 ,xG ,ω)∇ x1
Pt(x1 ,x s ,ω ) − Pt (x1,x s ,ω )∇ x1

I
G 0 (x1 ,xG ,ω)[ ]⋅n1

−

 . 
  
+ dS

x2

∫
I

G 0 (x2 ,xG ,ω )∇x2
Pt (x2 ,x s ,ω) − Pt (x2 ,x s ,ω)∇x2

I
G 0 (x2 ,xG ,ω )[ ]⋅ n2

+

  (3.3) 

3.3.2 Decomposing the total wavefield into upgoing and downgoing wavefields 

As discussed previously, the one-way Green’s function leads to a practical interpretation 

of the incident wavefield Pi(xG,xs,ω) as an approximation of the direct wavefield. 

Unfortunately, the surface-scattered wavefields are not yet in a practical form, as they are 

expressed in terms of the unknown total wavefield Pt (x j ,x s ,ω) at the bounding surface j. 

Berkhout and Wapenaar (1989) and Wapenaar et al. (1989) show that, for planar 

surfaces, the only contribution to the surface-scattered wavefield occurs when the 

acoustic wavefield and Green’s wavefield propagate in opposite directions across the 

surface. Before this can be applied to equation (3.3), we need to decompose the total 

wavefield on the surface into a superposition of upgoing (-) and downgoing (+) 

wavefields, as given by 

 Pt (x j ,x s ,ω) = Pt
− (x j ,x s ,ω) + Pt

+ (x j ,x s ,ω) . (3.4) 

On the upper surface (j = 1), the upgoing wavefield is composed of the incident 

wavefield plus all scattered wavefields (including multiples) propagating in an upward 

direction from any reflectors located on or below the surface. Ignoring subsurface 
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multiple reflections, each of these reflected wavefields can be thought of as arising from 

an image source located below their respective reflecting surface, as illustrated in Figure 

3.2. If a particular reflector is non-planar, there is the possibility of an infinite number of 

image source locations. The generalized location of the image source(s) is indicated by 

. Although the notation is somewhat awkward, the concept of an image source is 

crucial if we want to determine the correct direction of increasing phase (as given by the 

traveltime gradient). Using the subscript (S

x ′ s 

k) to denote the scattered wavefield from the 

kth reflector, the upgoing wavefield on the upper surface is then the superposition 

 Pt
−(x1, x s ,ω ) = Pi

− (x1,x s ,ω) + PS2

− (x1,x ′ s ,ω ) + PSk

− (x1,x ′ s ,ω)
k =3

∞

∑ . (3.5) 

 

Figure 3.2. Upgoing and downgoing wavefields on upper (S1) and lower (S2) surfaces. 
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The downgoing wavefield is composed of all scattered wavefields (including multiples) 

propagating in a downward direction from any reflectors located on or above the surface. 

If the upper recording surface is assumed to be a free surface, and subsurface multiple 

reflections are ignored, the downgoing wavefield is the superposition of the incident 

wavefield from an image source above the upper surface plus wavefields from multiple-

image sources for each upgoing reflected wavefield. The generalized location of the 

multiple-image sources is indicated by x ′ ′ . Using the subscript (Ss k1) to denote the 

scattered wavefield reflected first across the kth reflector then across the upper surface, 

downgoing wavefield on the upper surface is the superposition 

 Pt
+(x1, x s ,ω ) = PS1

+ (x1,x ′ s ,ω) + PS21

+ (x1, x ′ ′ s ,ω) + PSk1

+ (x1,x ′ ′ s ,ω )
k =3

∞

∑  (3.6) 

Applying these same concepts to the lower surface (j = 2), the downgoing wavefield on 

the lower surface is the superposition 

 Pt
+(x2 ,x s ,ω ) = Pi

+(x2 ,x s ,ω )+ PS1

+(x2 ,x ′ s ,ω ) + PS21

+ (x2 ,x ′ ′ s ,ω ) + PSk 1

+ (x2 ,x ′ ′ s ,ω)
k= 3

∞

∑ , (3.7) 

where it is assumed that there are no reflectors between the source and the upper surface. 

The upgoing wavefield on the lower surface is the superposition 

 Pt
−(x2 ,x s ,ω ) = PS2

−(x2 , x ′ s ,ω ) + PSk

− (x1,x ′ ′ s ,ω )
k=3

∞

∑ . (3.8) 

As illustrated in Figure 3.2, the last three terms on the RHS of equation (3.7) are identical 

to the three terms on the RHS of equation (3.6), i.e. the downgoing scattered wavefield 

on the lower surface is the same as the downgoing scattered wavefield on the upper 

surface. Similarly, the last two terms on the RHS of equation (3.5) are identical to the 

two terms on the RHS of equation (3.8), i.e. the upgoing scattered wavefield on the upper 

surface is the same as the upgoing scattered wavefield on the lower surface. Obviously, 
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this assumes that the wavefields suffer no transmission losses while propagating between 

the upper and lower surfaces. 

3.4 RAY-THEORETICAL KIRCHHOFF-APPROXIMATE MODELING 

The concepts introduced in Section 3.3 can now be applied to a specific application of the 

KHIR. The propagation direction of the Green’s function determines whether the KHIR 

describes forward propagation or inverse propagation. Choosing the propagation 

direction for the Green’s function will greatly simplify the substitution of equations (3.4) 

through (3.8) into the surface-scattered wavefields in equation (3.3). We start with a 

forward propagating Green’s function in order to derive expressions for prestack 

modeling of seismic reflection data. 

As discussed previously, we need only consider acoustic wavefields propagating in the 

opposite direction to the Green’s function. Recall from Section 2.6 that the Green’s 

function source location xG—the output point for the KHIR—must lie within the volume 

(or on the boundary). For the surface-scattered wavefields, the observation point for the 

Green’s function is on the surface. Thus the one-way forward propagating Green’s 

functions    can be decomposed into an upgoing Green’s wavefield 

 on the upper surface and a downgoing Green’s wavefield    on 

the lower surface. Therefore, only the downgoing acoustic wavefield on the upper 

surface, as given by equation (3.6), and the upgoing acoustic wavefield on the lower 

surface, as given by equation (3.8), contribute to the surface-scattered wavefields in 

equation (3.3). This produces five surface-scattered wavefields (two of which are infinite 

summations). 

G
G 0 (x,xG ,ω )

,ω )  
G

G 0
− (x1, xG

G
G 0

+ (x2, xG ,ω)
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3.4.1 Simple forward model with a non-reflective upper surface and a reflective 
lower surface 

In a simple forward modeling application, we might wish to ignore all surface-related 

multiples by modeling the upper surface as totally non-reflective. In this case, there will 

be no downgoing wavefield at the upper surface and there will be no contribution from 

equation (3.6) [i.e. Pt
+(x,x s ,ω) = 0 ]. There are two contributions to the upgoing 

wavefield on the lower surface, but the only contribution of interest is the upgoing 

reflected wavefield from the lower surface, as given by the first term on the RHS of 

equation (3.8). Deeper reflections can be modeled using a separate application of the 

KHIR and superposed to give the desired result5. In this simple forward modeling 

application, there is only one contribution to the surface-scattered wavefield, i.e. the 

primary-reflected wavefield from the lower surface. Substituting ΣR in place of S2 to 

indicate the lower reflector surface, equation (3.3) becomes 

  ),,(),,(),,( ωωω Σ sGsGisGt R
PPP xxxxxx −+≅

   ≅ S(ω)ρ(x s )
G

G 0 (x s ,xG ,ω)  

 { +
′

−+ ⋅∇+ ∫ RsRGRR RR

R

PGd nxxxx x
x

),,(),,(0 ωωΣ Σ

G
 

 }++
′

− ⋅∇− RGRsR GP
RR

nxxxx x ),,(),,( 0 ωωΣ

G
 (3.9) 

The surface-scattered wavefield  is now identified as an upgoing 

wavefield, and the unit vector n  is the downward pointing normal to the reflector 

surface Σ

),,( ωΣ sGR
P xx−

+
R

R. The Green’s function   
G

G 0 (x s ,xG ,ω ) in the incident wavefield Pi (xG , x s ,ω ) 

could be either upgoing or downgoing depending on the relative position of the Green’s 

function source location xG and observation location xs. 

                                                 

5 As an example, consider upward continuation of a wavefield recorded on the lower surface. In this case, 

we would expect the upgoing wavefield on the lower surface to contain all reflected energy from reflectors 

deeper in the subsurface, as indicated by the summation term in equation (3.8). 
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)

                                                

3.4.2 The Kirchhoff approximation of the upgoing reflected wavefield 

For a forward modeling application, there is no indication of how one might 

obtain the upgoing reflected wavefield  nor its normal derivative 

 at the reflector surface Σ

),,( ωΣ sRR
P ′

− xx
+

′
− ⋅∇ RsRRR

P nxxx ),,( ωΣ

),,( ωsRiP xx+

R. Without them, the surface-scattered 

integral cannot be evaluated. The Kirchhoff approximation assumes that the upgoing 

reflected wavefield at the surface is equal to the downgoing incident wavefield 

 at the surface multiplied by the angle-dependent geometrical-optics 

reflection coefficient ),( sRR xxθ
6, where the subscript (θ) denotes the angle of incidence 

at the reflector surface7. The mathematical expression of the Kirchhoff approximation 

must preserve the direction of increasing phase as given by the traveltime gradient. 

Hence, the downgoing incident wavefield is replaced by an upgoing incident wavefield 

from the image source, yielding 

 . (3.10) ,,(),(),,( ωω θΣ sRisRsR PRP
R ′

−
′

− ≅ xxxxxx

 

6 Other reflection coefficients could be used, including angle-independent (constant) and elastic (e.g. 

Zoeppritz). One criterion for evaluating if a given reflection coefficient is appropriate is to compare the 

accuracy of the modeled diffraction responses with theoretical responses determined by other means, or 

with physical model data. Bleistein (1984, p. 296-299) uses the method of stationary phase to extend the 

application of Rθ(xR,xs), which is strictly valid only for the ordinary reflected ray (angle incidence = angle 

reflection), to zero-offset diffracted rays. The Kirchhoff-approximate method produces a good estimate of 

the exact diffraction response. The estimate ‘degrades gracefully’ with increasing offset from the normal 

direction. Trorey (1970, Fig. 8) provides an alternate discussion and applicable model results. The 

geometrical-optics reflection coefficient is derived in Bleistein (1984, p. 273-276), and in Bleistein et al. 

(2001, Section 3.7). The derivation will not be repeated here. 

7 The angle of incidence θ is not given as a parameter for the geometrical-optics reflection coefficient 

because the source location xs and subsurface location xR determine the angle for a known reflection 

surface ΣR. 
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)

Intuitively, then, the reflection coefficient  can be thought of as a transmission 

coefficient . 

),( sRR xxθ

),( sRR ′xxθ

It is incorrect to assume that the upgoing incident wavefield can be approximated by the 

first term on the RHS of equation (3.9), i.e. by the source parameters Sρ(ω) = S(ω)ρ(xs) 

times the appropriate one-way forward propagating Green’s function. This assumption 

yields 

 ,,()(),(),,( 0 ωωω ρθΣ RssRsR GSRP
R

xxxxxx ′
+

′
− ≅

G
. (3.11) 

where the Green’s function propagates downward from the Green’s function source 

location xΣ on the lower surface to the Green’s function observation location x  at the 

image source location. Thus, the direction of increasing phase on the LHS and RHS of 

equation (3.11) do not agree. Instead, I assume that the correct approximation for the 

upgoing incident wavefield is given by 

′ s 

 ),,()(),(),,( 0 ωωω ρθΣ sRsRsR GSRP
R ′

−
′

− ≅ xxxxxx
G

. (3.12) 

3.4.3 Using ray-theoretical Green’s functions to determine normal derivatives 

Now insert the WKBJ (ray-theoretical) approximation for the Green’s function as given 

by equation (2.34) into equation (3.11), yielding 

 . (3.13) ),(
0

0),()(),(),,( sR

R

i
sRsRsR eASRP ′
′′

− ≅ xxxxxxxx ωτ
ρθΣ ωω

As an alternate notation, I will occasionally refer to the ray-theoretical amplitude as  

and the traveltime as 

sRA ′

sR ′τ , with the subscript ( )sR ′  indicating the raypath from the image 

source to reflector (or other locations, as needed). In any practical implementation the 

amplitude and traveltime would be calculated from the true source location to the 

reflector, as the distinction is only significant for determining the direction associated 

with the gradient of the traveltime. 
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The expression for ∇  can be approximated by keeping the leading 

order term in ω of the normal derivative of equation (3.13) (Carter and Frazer, 1984), as 

given by 

+
′

− ⋅ RsRRR
P nxxx ),,( ωΣ

 . (3.14) +
′′

+
′

− ⋅∇≅⋅∇ ′
RsR

i
sRsRRsR R

sR

RR
eASRiP nxxxxxxnxx x

xx
x ),(),()(),(),,( 0

),(
0

0 τωωω ωτ
ρθΣ

The traveltime gradient determines the direction of increasing phase; hence ∇ sR ′τ  points 

in the direction of the specularly reflected ray, i.e. upward from the reflector surface, as 

shown in Figure 3.3a. Docherty (1991) states that this is necessarily so, but does not 

 

 
Figure 3.3. Direction of traveltime gradients on lower reflector surface and upper acquisition surface. a) 

sR ′∇τ , at  on reflector surface Rx )( 2SR =Σ , is upgoing from image source location . s′x Rsτ∇  is 

downgoing from source location . b) s Rgx τ∇ , at x  on R RΣ , is downgoing from receiver location 

 on acquisition surface )(gx = Gx )( 1SSg = . 
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invoke an image source so the justification for the upward direction is not obvious8. 

Similarly, the WKBJ approximation for the Green’s function ),,(0 ωGRG xx+
G

 is given by 

 , (3.15) ),(
00

0),(),,( GRi
GRGR eAG xxxxxx ωτω ≅+

G

and the normal derivative approximated by 

 . (3.16) +++ ⋅∇≅⋅∇ RGR
i

GRRGR R

GR

R
eAiG nxxxxnxx x

xx
x ),(),(),,( 0

),(
00

0 τωω ωτ
G

with RGτ∇  pointing in the downward direction, as shown in Figure 3.3b. In a forward 

modeling application, the Green’s function source is the receiver (i.e. geophone or hydro-

phone) position and will now be indicated by the subscript (g), as shown in Figure 3.3b. 

3.4.4 The ray-theoretical Kirchhoff-approximate modeling formula 

Introducing the new notation, substituting equation (3.13) through (3.16) into equation 

(3.9), and subtracting the incident wavefield   Pi (xg ,x s ,ω) = Sρ(ω)
G

G 0 (x s ,x g,ω)  yields 

  ),(),(),()(),,( 00 gRsRsRRsg ARAdSiP
R

R
xxxxxxxx

x
θρΣ Σωωω ′

− ∫≅

 ( ) ( )),(),(
00

00),(),( gRsR

RR

i
RgRRsR e xxxx

xx nxxnxx ττωττ +++
′

′⋅∇−⋅∇× . (3.17) 

Equation (3.17) is the ray-theoretical Kirchhoff-approximate modeling formula for the 

upgoing wavefield at receiver location xg arising from a point source at location xs and 

reflected from surface ΣR with angle-dependent reflectivity coefficient . In this 

case, the term ‘Kirchhoff-approximate’ refers to the assumption that both the scattered 

wavefield  and its normal derivative ∇ at the surface of 

the reflector can be expressed in terms of the incident wavefield, as given by equations 

),( sRR xxθ

+
Rn),,( ωΣ sRR

P ′
− xx ′

− ⋅sRP
R

xxx ),,( ωΣ

                                                 

8 Docherty (1991) discusses the inverse problem through a comparison of Kirchhoff integral formulas for 

migration and inversion. My attempts to understand subtle inconsistencies in Docherty’s paper provide 

much of the impetus for the theoretical development presented in this section. 
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(3.13) and (3.14). This approximation is valid only if the radius of curvature of the 

irregularities on the reflector surface is large compared with the wavelength (Beckman 

and Spizzichio, 1963, p. 20). The effect of reflector curvature on a larger scale can be 

incorporated into the reflection coefficient, as shown by Bleistein (1984, p. 287-289). 

The obliquity factor9 ( )++
′ ⋅∇−⋅∇ RgRRsR RR

nxxnxx xx ),(),( 00 ττ

                  

 can be thought of as a 

weighting factor that compensates for the increased cross-sectional area of ray-tubes that 

intersect the reflection surface at an oblique angle. 

 

Retaining only the leading order term in ω is equivalent to a far field approximation. 

Equation (3.17) is therefore closely related to the Fresnel-Kirchhoff diffraction formula 

of optics [Elmore and Heald, 1969, equation (9.4.16); Goodman, 1968, equation (3.18)]. 

Hence it would be more appropriate to use the term ‘Fresnel-Kirchhoff-approximate’, but 

I follow Bleistein (1984, p. 281) and refer to the result as the Kirchhoff approximation. 

                              

9 The use of the term ‘obliquity factor’ to refer to the geometry of the incident and reflected wavefields at 

the reflector is in agreement with the original terminology arising from optics (see Elmore and Heald, 

1969, p. 331; Goodman, 1968, p. 42). Kuhn and Alhilali (1977) describe a number of ‘directivity 

functions’, which they use as synonyms for the ‘obliquity’ or ‘inclination’ factor. Esmersoy and Miller 

(1989) use the term ‘obliquity factor’ for the geometry at the reflector, as do Bleistein et al. (2001, p. 226). 

French (1975) uses the term ‘oblique’ in an entirely different context when he refers to a profile taken at an 

angle to the dip direction of 2-D subsurface structure. Schneider (1978), however, uses the term ‘obliquity 

factor’ incorrectly when he describes the ∂r/∂n =  cosθ factor arising from the Rayleigh II integral with the 

free-space Green’s function [Goodman, 1968, equation (3-26)]. He confuses this with the obliquity factor 

of the Rayleigh-Sommerfeld diffraction formula, although the two are closely related [Goodman, 1968, 

equation (3-27)]. Schneider’s incorrect usage permeates the exploration literature, and should be 

abandoned. I prefer to use the term ‘receiver directivity’ to describe the ∂rg/∂n = cosθg factor over the 

surface of receivers, and ‘source directivity’ to describe the ∂rs/∂n = cosθs factor over the surface of 

sources (if applicable), where rg and rs denote the ray directions at the receiver and source, respectively. 
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3.4.5 A simplified notation for the ray-theoretical Kirchhoff-approximate modeling 
formula 

The ray-theoretical Kirchhoff-approximate modeling formula as given by equation (3.17) 

should be the starting point for the ray-theoretical Kirchhoff-approximate migration 

formula to be derived in Section 3.7. However, the direction of the traveltime gradients 

as given in equation (3.17) is not the convention adopted in the most recent literature. My 

result agrees with the free-space version presented in Goodman [1968, Figure 3.5 and 

equation (3-18)], who uses an opposite pointing surface normal and expresses the normal 

derivatives of the traveltime gradients at the surface as the cosine of the angle between 

the ray direction and the normal. It also agrees with Figure 2a of Docherty (1991), who 

develops a surface-scattered wavefield for inverse propagation. However, it does not 

agree with the modeling formulas of Bleistein et al. [2001, equations (7.2.1) and (7.2.2)] 

and Jaramillo and Bleistein [1999, equation (2)]. It is not clear how these authors 

determine the direction of their traveltime gradients, but the convention presented in their 

equations and accompanying figures leads to a simplified notation for equation (3.17). 

Strictly speaking, the simplified notation is incorrect, but will be adopted here so that the 

results presented in this dissertation can be compared with the recent literature of 

Bleistein and co-workers. 

First, notice that the phase in the exponential term in equation (3.17) is expressed as a 

product of frequency and the sum of traveltimes RgsR ττ +′ , whereas the obliquity factor 

( )++
′ ⋅∇−⋅∇ RgRRsR RR

nxxnxx xx ),(),( 00 ττ  is expressed, in a general sense, as a difference 

of traveltimes. It would be notationally convenient to replace the total traveltime in both 

expressions with what Jaramillo and Bleistein (1999) call the ‘phase’ RgRs ττφ +=0 . In 

the obliquity factor, the traveltime gradient s′R∇τ  points in the upward direction of the 

specularly reflected ray, and forms an obtuse angle with the downward pointing surface 

normal . If instead we assume that +
Rn Rsτ∇  points in the downward direction of the 
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incident ray (now denoted by subscript ), it forms an acute angle with the normal and 

the dot product is the same magnitude but opposite sign (Figure 3.3a). Now  

and ∇  are the same sign (see Appendix C for further discussion). An upward 

pointing surface normal changes the sign of both, and the obliquity factor can be re-

expressed as 

Rs

(0τ

+⋅∇ RRs nτ

), 21

+⋅ RRg nτ

ξξ

)(ξg

0A=

),(0 ξRxωφ,R x

−
R

,

,,(
R sgP xxΣ

−

Σ R
P−

Rx

 . (3.18) −−− ⋅∇=⋅∇+⋅∇ RRRgRRsR RRR
nxnxxnxx xxx ),(),),( 00 ξφτ

In equation (3.18), it is assumed that the source and receiver are located on the recording 

surface. The recording surface is parameterized by the 2-D parameter (=ξ

)(ξs

, so that 

the source and receiver locations are identified with the 3-D vectors  and x x , 

respectively. The ‘phase’ ),(0 ξRxφ  represents the total traveltime from source xs to 

reflector point xR to receiver xg, but also retains (by virtue of the readers understanding) 

the directions of the individual traveltime gradients. Similarly, the product of the WKBJ 

amplitude factors can be represented using the simplified notation 

 ),(),(),( 0 gRsRRgs AA xxxxx× ξ . (3.19) 

Using equations (3.18) and (3.19), the ray-theoretical Kirchhoff-approximate modeling 

formula [equation (3.17)] can be re-expressed as 

 ( )0 ),(),()()() ξξ
R

R

i
RRRgssR eARdSi x

x

nxxxθρ φΣωωω −
× ⋅∇≅ ∫ . (3.20) 

Equation (3.20) is essentially equation (2) of Jaramillo and Bleistein (1999), with some 

minor differences in notation. The physical interpretation is as follows. The upgoing 

wavefield  at observation (receiver) location x),,( ωsg xx g originates as a downgoing 

wavefield from point source location xs and is scattered at location xR from reflector 

surface ΣR with upward pointing normal n . The upgoing wavefield is expressed as an 

integral over the reflection surface of WKBJ-approximate wavefields. The amplitude 

(geometric spreading) is given by )( ξgsA × —the product of WKBJ amplitudes from 
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source to reflector and reflector to receiver—and is modified by the angle-dependent 

reflection coefficient , the obliquity factor , the source 

signature 

),( sRR xxθ
−⋅∇ RRR

nxx ),( ξτφ

Sρ (ω), and the time derivative (-iω). The phase is given by ),( ξRxτφ , the sum 

of the traveltimes. 

),ξ( Ri xωφ

The integrand in equation (3.20) consists of two fundamentally different parts, a 

weighting function that is the product of the reflection coefficient, the WKBJ amplitudes, 

and the obliquity factor; and a ‘phase function’ given by the term e . The main 

contribution to the integral over the reflector surface occurs when the phase function is 

stationary. Intuitively, the geometry for stationary phase occurs when the angle of 

incidence is equal to the angle of reflection, i.e. at the specular angle of reflection. 

Bleistein (1999) provides an excellent conceptual overview of the method of stationary 

phase applied to migration and inversion. A more rigorous mathematical discussion can 

be found in Bleistein (1984, p. 77-89). Application of the method of stationary phase will 

prove to be an important simplification in the development of practical expressions for 

inverse propagation and imaging, as we shall see shortly. 

The reader may have noticed that the earlier reference to Berkhout and Wapenaar (1989) 

and Wapenaar et al. (1989) requires a planar surface to justify ignoring both the acoustic 

and forward propagating Green’s wavefields traveling in the same direction across a 

surface. Wapenaar (1993a) proposes a method that allows robust downward extrapolation 

of primary upgoing waves measured on a non-planar interface, but states that the method 

is not suitable for modeling applications. In fact, the use of the KHIR [equation (3.1)] as 

a valid acoustic representation theorem for one-way wavefields is questioned by 

Wapenaar and Grimbergen (1996) and Wapenaar (1996), who propose instead one-way 

reciprocity and representation theorems. Simplification of the problem by decomposition 

into one-way wavefields is not the only practical method. Docherty (1991) invokes 
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stationary phase to justify ignoring the wavefield combinations appropriate for forward 

extrapolation. Docherty’s discussion is well illustrated with figures and will not be 

repeated here. However, given the approximations discussed so far (in particular that 

multiple reflections and transmission effects are ignored) and keeping in mind the 

intended use of the expressions for time migration (which has its own long list of 

approximations) the analysis presented in this section is substantially correct for a 

nonplanar surface 

3.5 REFORMULATING THE GENERALIZED KHIR FOR INVERSE 
WAVEFIELD PROPAGATION 

I now develop an inverse wavefield propagation formula by inserting a superposition of 

appropriate acoustic wavefields and one-way inverse propagating Green’s functions into 

the generalized KHIR [equation (3.3)]. The result will be similar to the Kirchhoff-

Helmholtz integral [equation (2.48)]. In this case, however, an approximate expression is 

developed for generalized media using principles of superposition and one-way 

wavefields. 

As discussed previously, we need to consider only acoustic wavefields propagating in the 

opposite direction to the Green’s function. The one-way inverse propagating Green’s 

functions    can be decomposed into a downgoing Green’s wavefield 

 on the upper surface and an upgoing Green’s wavefield    on 

the lower surface. Therefore, only the upgoing acoustic wavefield on the upper surface, 

as given by equation (3.5), and the downgoing acoustic wavefield on the lower surface, 

as given by equation (3.7), contribute to the surface-scattered wavefields in equation 

(3.3). This produces seven surface-scattered wavefields (two of which are infinite 

summations). 

H
G 0 (x,xG ,ω )

,ω )  
H

G 0
+ (x1, xG

H
G 0

− (x2, xG ,ω )
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3.5.1 Upper surface non-reflective after removal of free-surface multiples 

Typically, seismic data are recorded only on the upper surface. Hence, we require an 

expression for inverse propagation that does not require a surface-scattered wavefield 

recorded on the lower surface. As shown by equation (3.7), the downgoing wavefield at 

the lower surface is a superposition of the downgoing incident wavefield and the 

reflection across the upper surface of all upgoing primary-scattered wavefields. If the 

upper surface is a free surface (reflection coefficient = -1), these multiply reflected 

wavefields will be similar in amplitude to the upgoing primary wavefield. Removal of the 

free-surface multiples is an important preprocessing step (Verschuur et al., 1992; or, for 

additional references, Wapenaar, 1996). Assuming free-surface multiples have been 

removed, the contribution from the downgoing scattered-wavefield on the lower surface 

can be ignored. However, the downgoing incident wavefield on the lower surface cannot 

be ignored, and equation (3.7) reduces to 

 Pt
+(x2 ,x s ,ω ) = Pi

+ (x2 ,x s ,ω ). (3.21) 

Both the incident and surface-scattered wavefield from the upper surface are relevant. In 

anticipation of the upper surface representing the surface of receivers or geophones, 

denoted by locations xg, equation (3.5) can be re-expressed as 

 Pt
−(xg ,x s ,ω ) = Pi

−(x g, x s ,ω ) + PS2

− (xg ,x ′ s ,ω) + PSk

−(xg ,x ′ s ,ω)
k =3

∞

∑ . (3.22) 

It is interesting to note that the terms on the RHS of equation (3.5) [re-expressed as 

equation (3.22)] are the same amplitude but opposite in sign to the corresponding terms 

on the RHS of equation (3.6). Their sum, as given by equation (3.4), equals zero, i.e. the 

total acoustic pressure recorded on a free surface is zero. On the other hand, the normal 

derivative of the total acoustic pressure is double the normal derivative of either the 

upgoing or downgoing component (the image source is opposite in sign), so the surface-
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scattered integrals in equation (3.3) are non-zero. This introduces complications that are 

beyond the scope of this dissertation (see Hanitzsch, 1995). Instead, it is assumed that the 

preprocessing that removes the free-surface multiples converts the free surface into a 

non-reflecting surface, where only the upgoing wavefields need to be considered. 

3.5.2 Justification for muting the incident wavefield 

Substituting equations (3.21) and (3.22) and appropriate one-way Green’s functions into 

the surface-scattered wavefields of equation (3.3) yields 

 Pt (xG ,x s ,ω ) ≅ Pi(xG , x s ,ω ) + PSg

− (xG , x s ,ω ) + PS2

− (xG , x s ,ω ) 

    ≅ Sρ (ω )
H

G 0 (x s ,xG ,ω)

 
  
+ dS

xg

∫
H 

G 0
+(xg, xG ,ω)∇xg

PS2

− (xg ,x ′ s ,ω ) + PSk

−(x g, x ′ s ,ω )
k= 3

∞

∑ 
 
 

 
 
 

 
 
 

, 

 
  
− PS2

− (xg ,x ′ s ,ω ) + PSk

− (xg, x ′ s ,ω )
k= 3

∞

∑ 
 
 

 
 
 ∇ xg

H 
G 0

+ (xg ,xG ,ω )
 
 
 

⋅n g
−  

 
  
+ dS

xg

∫
H

G 0
+ (xg, xG ,ω )∇xg

Pi
− (xg ,x s ,ω) − Pi

− (xg ,x s ,ω )∇ xg

H
G 0

+(xg , xG ,ω ){ }⋅n g
−  

  + dS∫ , 
  x2

H
G 0

− (x2 , xG ,ω )∇x2
Pi

+(x2 ,x s ,ω ) − Pi
+ (x2 ,x s ,ω)∇ x2

H
G 0

− (x2 ,xG ,ω){ }⋅n2
+

  (3.23) 

where n  denotes the upward pointing normal on the upper surface Sg
−

g and n  denotes the 

downward pointing normal on the lower surface S

2
+

2. 

In equation (3.23), the incident wavefield Pi (xG , x s ,ω ) appears to be described twice, 

first by the term    (i.e. the source function times the generalized one-

way inverse propagating Green’s function) and second by the scattered wavefield over 

the “enclosing” surface (i.e. the combined effect of the second and third surface 

Sρ (ω)
H

G 0 (x s ,xG ,ω )



 183 

 

integrals). Fortunately, the first description of the incident wavefield is zero for a causal 

source and anticausal Green’s function10. The argument justifying this conclusion is 

similar to one presented previously in Section 2.6.2 (see Figure 2.5) and will not be 

developed here. The result is that the incident wavefield at location xG is reconstructed by 

inverse wavefield propagation from surface scattered wavefields recorded on both the 

upper and lower surfaces. Given the assumption that the wavefield on the lower surface 

has not been recorded, a correct reconstruction of the incident wavefield is (in general) 

not possible. The solution is to ignore the incident wavefield in equation (3.23) by 

subtracting it from the total wavefield, leaving only the scattered wavefield from the 

reflectors. Practically, this is accomplished by muting the incident wavefield. 

3.5.3 The Kirchhoff-Helmholtz integral restricted to one-way wavefields and 
Green’s functions 

Equation (3.23) can be further simplified by introducing the notation PS
−(xg ,x ′ s ,ω ) to 

indicate the sum of upgoing surface-scattered wavefields. After subtracting the incident 

wavefield terms and incorporating the change of notation, equation (3.23) becomes 

 
  
PS

−(xG ,x s ,ω) = dSg
xg

∫
H

G 0
+ (xg ,xG ,ω )∇xg

PS
−(xg ,x ′ s ,ω ){  

H
   −PS

− (xg ,x ′ s ,ω)∇ xg
G 0

+ (xg ,xG ,ω )}⋅n g
− . (3.24) 

Thus, the upgoing surface-scattered wavefield PS
−(xG ,x s ,ω)  can, in principle, be 

reconstructed at any location xG in the subsurface by inverse extrapolation of the 

wavefield recorded on the upper surface. Equation (3.24) is just the Kirchhoff-Helmholtz 

                                                 

10 One could argue that the incident wave is nonzero for an anticausal source and anticausal Green’s 

function, although this application does not have much practical value (Tygel and Hubral, 1987 for an 

alternate perspective). 
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integral (equation 2.65) restricted to one-way wavefields and Green’s functions. The 

discussion presented in Section 2.8.2 applies here as well, given that internal multiply 

reflected waves and evanescent waves are ignored and only the transmitted portion of the 

wavefield is considered. 

Note that equation (3.24) provides no information about the location of any of the 

reflectors, and that the wavefield is assumed to be upgoing everywhere. Hence, equation 

(3.24) will inverse extrapolate the wavefield from a given reflector through the reflector 

location back to the image source locations x  beneath the reflector (and further into 

negative time—see Esmersoy and Oristaglio, 1988, Figure 2). The ‘over-extrapolated’ 

wavefield may or may not reconstruct coherently depending on the complexity of the 

reflector surface and the macro subsurface wavespeed model. The obvious conclusion, 

then, is that substitution of an inverse propagating Green’s function into the KHIR does 

not produce a prestack imaging formula. Something else is needed if we wish to image 

reflectors in the subsurface. The intuitive approach is to incorporate an ‘imaging 

condition’ with desired output being a map of the reflectivity in the subsurface. But on 

what basis is an appropriate imaging condition selected? This question will be addressed 

in the next section. 

′ s 

3.6 IMAGING CONDITIONS FOR MIGRATION/INVERSION OF COMMON-
SHOT GATHERS 

An imaging condition can be thought of as a prescription for creating a reflector map. 

The reflector map has two key elements: estimates of the ‘strength’ or amplitude of the 

reflection coefficients, and estimates of the location of the reflectors in either depth or 

time. In Sections 3.4 and 3.5, the forward modeling formula used the angle-dependent 

reflection coefficient  as a known input to determine the output modeled data. 

Imaging, on the other hand, is an inverse procedure that uses the inverse extrapolated 

),( sRR xxθ
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recorded data (among other parameters) as input to model the output reflector map. Thus 

it is entirely conceivable that the imaging condition provides multiple estimates at a 

given location, i.e. the estimated amplitude could depend on angle of incidence, 

frequency, or some other parameter. Here, I restrict the model of the unknown underlying 

physical process (reflectivity) to a dependence on angle only11. Estimates at each 

frequency, however, will vary due to uncertainty introduced by noise and model misfit 

errors12. What is required is a method for obtaining a good estimate of the angle-

dependent reflectivity from the estimates at each frequency. 

3.6.1 A statistical ‘best-fit’ approach to the imaging condition 

A simple approach to inversion is fitting a model to data, where the estimates of the 

parameters in the model are constrained by a ‘best-fit’ criterion. A classic example is 

least squares fit of a line  to a collection of data points . In this case, the 

range of the data points are themselves estimates (perhaps from an ensemble of possible 

inputs) and the intercept a  and slope b  are the required estimates of the model 

parameters. In fact, the imaging condition is a subset of this exact problem. The data 

points are estimates of the angle-dependent reflectivity at a fixed angle as a function of 

frequency, i.e. 

y = ˆ a + ˆ b x

ˆ 

),( ii yx

ˆ 

( ))(ˆ, ωω θR . We desire a robust average over frequency, which is simply 

                                                 

11 Bleistein (1984; 1986) derives the angle-dependent geometric optics reflection coefficient by selecting a 

ray-theoretical causal Green’s function and assuming two boundary conditions known as the Kirchhoff 

approximation. The boundary conditions assume that the wavefield and its normal derivative are 

continuous across the reflecting boundary. 

12 The simplest approach, and the one taken here, is to assume that estimators remain independent. A more 

complete study would investigate the correlated structure between estimators. The use of zero padding and 

the fast Fourier transform almost guarantees that adjacent estimators (in frequency) are correlated. 
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the best fit of a line constrained to zero slope. The key is to determine the optimum 

criterion to constrain the ‘best-fit’. 

Each reflectivity estimate  can be thought of as arising from an ensemble of 

possible reflectivities. Imagine that the underlying data set is a number of seismic shot 

records collected for a fixed shot location. For a given subsurface location, then, the 

angle of incidence is fixed. Thus the estimate of reflectivity at each frequency is a sample 

from a distribution of possible values about the unknown true reflectivity. All in all, it is 

unlikely that this distribution behaves as nicely as we would like. A normal or Gaussian 

distribution is ideal, mainly because L1 and L2 norms produce unbiased estimates of the 

unknown true value. In most cases, however, the Gaussian assumption is not justified and 

estimates based on either norm are biased. Biased estimates can arise from outliers to a 

distribution that can otherwise be described as Gaussian, or from a well-behaved 

distribution that is just not Gaussian—and there are plenty of these. Iterative robust 

estimators are the best approach to tackling the first problem (see Press et al., 1992), but 

the second problem is more insidious. For some non-Gaussian distributions, L1 and L2 

estimators are biased even if outliers are eliminated. 

ˆ R θ (ω)

Some of the simplest examples of biased estimators are those that assume a Gaussian 

distribution of a noise process associated with some signal, and then effect a 

transformation to the signal that must, of course, transform the noise distribution. The 

resulting distribution may not be Gaussian. The reflectivity estimator is one such 

example. In short, it can be thought of as a gain estimator defined as the ratio of two 

amplitude estimators. If we assume that the underlying noise model in the recorded data 

is distributed as Gaussian, neither the amplitude nor the gain estimators end up as a 

Gaussian distribution. The conventional approach is to use a standard best-fit criterion, 

such as least squares (L2 norm), but then down weight the estimates that might be 
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expected to have the largest bias, i.e. a weighted least squares fit where the weighting 

function is primarily designed to reduce bias. This will be the approach taken here. As we 

shall see, the optimum weighting function turns out to be the signal-to-noise ratio. 

In physics, the conventional approach is to base the design of the model on the 

underlying physical principles. Because of inherent assumptions and approximations, the 

model will not incorporate the true complexity of the physical process that generated the 

data. Thus there will be a component of misfit in addition to any noise. The combination 

of these influences can be thought of as error. However, the two cannot easily be 

separated. The presence of a systematic misfit is often taken as evidence that the 

underlying model is insufficient, but the discussion in the previous paragraph suggests 

that bias (systematic error) can result from the underlying noise. To further complicate 

matters, the true nature of the underlying noise is unknown. Hence we have to assume a 

noise model. All of these considerations suggest an approach rooted in statistics, where 

the objective is to design an estimator that is optimum in some sense. As we shall see, the 

reflectivity estimate chosen here will be optimum in a chi-squared sense. The end result 

is that the application of an imaging condition provides no guarantee that a ‘true’ 

reflection coefficient is being estimated. In fact, most imaging conditions are based on 

physical intuition tempered by practicality, as opposed to rigorous application of 

theory13. In this section, I combine intuition with statistics to come up with an optimum 

estimate of the reflectivity map. 

 

13 Esmersoy and Oristaglio (1988) provide a good discussion on this point, and compares the objectives of 

imaging (migration) vs. inversion. See also Miller et al. (1987) and Gazdag and Sguazzero (1984). 
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3.6.2 Claerbout’s imaging conditions from the Kirchhoff approximation 

Claerbout (1971) provides the following fundamental principle for creating a reflector 

map in depth: reflectors exist at points in the ground where the first arrival of the 

downgoing wave is time coincident with an upgoing wave. Chang and McMechan (1986) 

call this principle the ‘time-coincidence’ imaging condition. By itself, it is incomplete, as 

it provides a method for determining the correct phase for a given subsurface location but 

not the amplitude of the reflectivity coefficient. Claerbout goes on to define the 

amplitude as the ratio of the upgoing and downgoing wavefields at the subsurface 

location xG (which may or may not be located on a reflector). Claerbout’s time-

coincidence imaging condition, combined with the amplitude definition, can be thought 

of as a reformulation of the Kirchhoff approximation [equation (3.10)], re-expressed here 

for monochromatic wavefields as 

 
),,(
),,(

),(
ω
ωΣ

θ
sRi

sR
sR P

P
R R

′
−

′
−

≅
xx
xx

xx . (3.25) 

Equation (3.25) suggests the physically intuitive concept that the reflection coefficient is 

the ratio of the incident and reflected wavefields. In Sections 3.4 and 3.5, this concept 

justified the amplitude of the reflected wavefield  given a known incident 

wavefield  and reflectivity coefficient . 

),,( ωΣ sRR
P ′

− xx

),( sRR xxθ),,( ωsRiP ′
− xx

Now, we assume that the incident and reflected wavefields are known and can be used to 

determine the reflectivity coefficient. The location in the subsurface may or may not be 

on a reflector, so we replace the reflector location xR with the imaging location xG. The 

correct direction for the traveltime gradients at the imaging location xG can be inferred 

from the direction of the wavefield, so we replace the image source location x  with the 

source location x . The upgoing wavefield  scattered by the reflector is 

then replaced with the upgoing wavefield 

′ s 

s ),,( ωΣ sRR
P ′

− xx

PS
−(xG ,x s ,ω)  inverse extrapolated from the 
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receiver surface [equation (3.24)]. We will not require any gradients of the traveltime for 

the incident wavefield, and so can replace the upgoing incident wavefield  

from the image source with a more intuitive downgoing incident wavefield 

),,( ωsRiP ′
− xx

Pi
+(xG ,x s ,ω)  

forward extrapolated from the source. With these substitutions, equation (3.25) becomes 

the definition of the angle-dependent reflectivity estimate at frequency ω, as given by 

 ˆ R θ (xG ,x s ,ω) ≡
PS

− (xG ,x s ,ω)
Pi

+ (xG ,x s ,ω)
. (3.26) 

Fundamentally, equation (3.26) describes inversion, whereas equation (3.25) is just a 

reformulation of a forward modeling equation. The raised hat indicates that the 

reflectivity coefficient is now an estimate. For equation (3.26) to be 

meaningful, the inverse extrapolated wavefield 

ˆ R θ (xG ,x s ,ω)

PS
−(xG ,x s ,ω)  must reconstruct the 

specularly reflected wavefront. This implies that the specular ray direction is determined 

where the phase of the extrapolated wavefield is stationary, an observation that will prove 

useful in the next section. In addition, however, we desire that equation (3.26) correctly 

images the truncation of reflector surfaces from diffracted wavefields, and creates no 

image (i.e. destructive interference) where no reflector exists. 

Under ideal conditions (i.e. no noise), integrating equation (3.26) over all frequencies 

produces a reflectivity ‘map’ that estimates true-amplitude reflectivity: 

 ˆ R θ (xG ,x s ) ≡
1

2π
dω

−∞

∞

∫
PS

− (xG ,x s ,ω)
Pi

+ (xG ,x s ,ω)
. (3.27) 

Equation (3.27) is known as the deconvolution imaging condition [see Claerbout, 1971, 

equation (3); Esmersoy and Oristaglio, 1988, equation (15)]. As we shall discover below, 

the deconvolution imaging condition can be interpreted as a least squares estimate of a 

constant reflectivity coefficient  given estimates of frequency-variable 

reflectivity  (from equation 3.26). Least squares fitting is a maximum 

ˆ R θ (xG ,x s )

ˆ R θ (xG ,x s ,ω)
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likelihood estimation of  if the error in the estimates  are 

independent and normally distributed with constant standard deviation. Unfortunately, 

such well-behaved error distributions are unlikely. As an aside, the limits on the integral 

over frequency in will be assumed to range from -∞ to +∞ unless specified otherwise. 

ˆ R θ (xG ,x s ) ˆ R θ (xG ,x s ,ω)

G ,x s ) ≡
1

2π s ,ω ))∗

                   

Claerbout suggests that equation (3.27) be reformulated to account for noise and to avoid 

large errors introduced when dividing by small values of the incident wavefield 

Pi
+(xG ,x s ,ω) . The integrand in equation (3.27) is multiplied and divided by the complex 

conjugate of the incident wavefield, which preserves the phase of the original expression. 

The denominator is then the spectral density Pi
+(Pi

+ )∗  of the incident wavefield. The 

spectral density is real, has no phase information, and can be omitted14, yielding 

 ˆ R θ (x dω∫ PS
− (xG , x s ,ω ) Pi

+ (xG ,x( . (3.28) 

Equation (3.28) is known as the crosscorrelation imaging condition (Lumley, 1989). The 

reflectivity map given by equation (3.28) is robust, because the amplitude of the 

reflectivity map drops off rapidly in any region where either the downgoing incident 

wavefield is weak or the upgoing inverse-extrapolated wavefield is weak. However, the 

reflectivity coefficient is no longer true-amplitude, as it now contains a slowly varying 

component proportional to the geometric spreading squared. 

3.6.3 Towards an optimal chi-squared estimate of reflectivity 

Claerbout points out that other imaging conditions can be designed as a compromise 

between equations (3.27) and (3.28), and mentions in passing that optimization could 

clearly lead to an involved discussion. As stated previously, the imaging condition I 

                              

14 Replacing R = PS/Pi by R = PSPi
* is related to matched filtering (Claerbout, 1992, p. 86). 
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propose below is optimum in a chi-squared sense. The discussion that fully justifies the 

choice is involved, but the end result turns out to be similar to Claerbout’s deconvolution 

imaging condition (equation 3.27). I give the result first so that we know what we are 

aiming for: 

 
  
ˆ R θ (xG ,x s ) ≡

1
2π

dω∫ ˆ F (ω )
PS

− (xG ,x s ,ω)G 
G 0

+ (xG ,x s ,ω )
. (3.29) 

Equation (3.29) is equation (14) of Docherty (1991). Docherty states that  “is a 

filter which emphasizes the bandlimited nature” of the inverse extrapolated wavefield 

ˆ F (ω)

PS
−(xG ,x s ,ω) . In this section,  is shown to be the optimum weighting function 

given a reasonable assumed error model so that equation (3.29) provides a chi-squared 

estimate of the frequency-independent, angle-dependent reflection coefficient. The 

derivation of equation (3.29) appeals to physical and mathematical intuition. The end 

result, however, is designed to agree with results obtained from linearized inverse 

approaches (based on the Kirchhoff-approximate forward model—equation 3.10), which 

are known to give a ‘correct’ result. An intuitive discussion is presented because inverse 

approaches are much more difficult to understand. 

ˆ F (ω)

Essentially, we desire robust estimates15 of the absolute value of the angle-dependent 

reflectivity coefficient, i.e. the output should be ‘true-amplitude’16. However, given that 

                                                 

15 See Press et al. (1992, p. 699) for a definition of a robust estimator as “insensitive to small departures 

from the idealized assumptions for which the estimator is optimized”. The word “small” can have two 

different interpretations: either fractionally small departures for all data points, or else fractionally large 

departures for a small number of data points. The chi-squared estimator presented in this section is robust 

in the context of the former interpretation. An intuitive adjustment of the weighting function in the 

estimator provides qualitative protection from the later, but not the quantitative protection expected of truly 

‘robust’ estimators. 
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the input data arise from a band-limited source, the ‘true-amplitude’ value need only 

correspond to the peak value of a band-limited singular function of the surface (Bleistein, 

1987). The absolute location of the peak value in relation to the unknown true reflector is 

less of a concern, as this will depend on the accuracy of the macro wavespeed model. 

Good focusing and high resolution, although desirable, cannot be guaranteed by choice of 

imaging condition alone. I conclude that it is sufficient that the phase correspond to 

Claerbout’s ‘time-coincident’ principle.  

I begin with equation (3.26), which provides estimates of the angle-dependent reflectivity 

coefficient  at each frequency (the dependence on location is implied in the 

simplified notation). In the high-frequency limit (see Section 2.4), amplitude and 

traveltime are independent of frequency. Hence the desired reflectivity coefficient is 

assumed to be independent of frequency. The problem becomes one of estimating an 

optimum constant reflectivity coefficient , which is equivalent to estimating a constant 

gain of a linear, time invariant, single-input, single-output system with noise on output, 

otherwise known as the error-in-equations model (Geiger, 1989, p. 58-59). 

ˆ R θ (ω)

ˆ R θ

The optimization problem can be solved by minimizing the chi-squared merit function 

 χ 2 ˆ R θ( )=
1

2π
dω∫

ˆ R θ (ω ) − ˆ R θ
σ(ω)

 
 
 

 
 
 

2

, (3.30) 

where σ 2 (ω)

ˆ R θ (

 is the frequency-variable variance of the frequency-variable reflectivity 

estimates . At the minimum, , yielding ω) ∂χ 2 ( ˆ R θ ) / ∂ ˆ R θ = 0

                                                                                                                                                 

16 The word “true” is a bit misleading, because it is not possible to estimate the bias in the estimated 

reflection coefficient amplitude. The amplitude could be a very good fit to the data, but not true. 
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 ˆ R θ =

1
2π

dω
ˆ R θ (ω )

σ 2 (ω)∫
1

2π
dω∫ 1

σ 2 (ω)

. (3.31) 

Equation (3.31) gives the optimum estimate of a constant value for the angle-dependent 

reflectivity from frequency-variable estimates of the same. Note that σ 2 (ω)  are not the 

variances of the underlying noise process. Earlier in this section, it was pointed out that 

the error accommodates both noise and misfit. Instead, then, the variances σ 2 (ω)  can be 

thought of as one of the statistical parameters describing the error distributions of  

at each frequency (and should be thought of as estimates in their own right). 

ˆ R θ (ω)

3.6.4 Normalized variances estimated by the inverse of the signal-to-noise ratio 

Variance is a complete description of an error distribution only if the errors are normally 

distributed with zero mean. Fortunately, variance can be a sufficient description for many 

distributions that are not normal, although in many cases (including this one) the error 

distributions are known to be biased. Hence the resulting chi-squared estimate of  will 

be biased, independent of the goodness-of-fit. Our best hope is that the bias in the final 

estimate is small, suggesting either that biases in the underlying estimates  are 

small or that heavily biased estimates can be removed or downweighted in the 

optimization. Below, I suggest reasonable conditions under which  can be 

considered as normally distributed, and later suggest a more robust weighting function to 

accommodate frequency bands over which the error distributions might be heavily 

biased. 

ˆ R θ

ˆ R θ (ω)

ˆ R θ (ω)

Note that absolute values of the variances are not required. The denominator in equation 

(3.31) acts as a normalization function. To show this, replace the variances σ 2 (ω)  with a 

normalized variance σ N
2 (ω ) such that σ 2 (ω) =σ N

2 (ω) / N , where N is any constant. After 

the substitution, the constant appears in both the denominator and numerator, can be 
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taken outside the integrals, and cancels. Therefore, an equivalent expression to equation 

(3.31) is  

 ˆ R θ =

1
2π

dω
ˆ R θ (ω )

σ N
2 (ω)∫

1
2π

dω∫ 1
σ N

2 (ω)

. (3.32) 

Hence all that is required is a reasonable estimate of the normalized variances. 

There are two general methods for estimating variance, the misfit-error approach and the 

data-error approach (Geiger, 1989, p. 13). The first method lumps data error into the 

residual term that arises from the misfit between the measured quantities and the 

predicted quantities in the model fitting process (the estimation of ). The second 

method is to determine error sources in data acquisition and processing, measure or 

estimate their effect, and then calculate an assumed error level for the desired parameter 

estimates. Robust misfit-error approaches apply data-adaptive methods such as iterative 

re-weighting. These are outside the scope of the work presented in this dissertation, but 

might be considered if a more robust estimate of the reflectivity coefficient is required. 

The data-error approach is adopted here because it is more intuitive, and therefore in 

keeping with the original goals of this section. 

ˆ R θ

I make the assumption that the noise in the recorded seismic data can be described as 

independent, identically distributed (iid) Gaussian random errors. Even if the unknown 

true noise at the receivers differs from iid Gaussian, the output noise in the real and 

imaginary components of the Fourier coefficients after Fourier transformation and 

inverse wavefield propagation17 will tend to iid Gaussian by the central limit theorem 

                                                 

17 Obviously, there is an implied assumption that the inverse wavefield extrapolation is doing a “good” job. 

Poor focusing and low resolution will introduce substantial bias into the estimator, independent of noise. 
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(Press et al., 1992, p. 658). By expressing the inverse extrapolated wavefield 

PS
−(xG ,x s ,ω)  as amplitude and phase, the noise distribution is transformed into functions 

of squared Gaussian variables. The variance of the noise (the noise power) can still be 

considered constant with frequency, even if the distribution is no longer Gaussian. 

Effectively, the gain estimator  is a ratio of amplitudes. The frequency-variable 

gain estimators are distributed as doubly non-central F, a distribution that (fortunately) is 

well approximated by a Gaussian distribution when the non-centrality is large (Johnson 

and Kotz, 1970). However, the variance of the gain is now a function of the frequency-

variable signal-to-noise ratio [denoted as snr(ω)], with the variance small when the 

signal-to-noise ratio is large. In addition, the estimator bias will be small when the signal-

to noise ratio is large. Thus the assumed noise model suggests that the inverse of the 

signal-to-noise ratio is a reasonable estimate of normalized variances 

ˆ R θ (ω)

σ N
2 (ω ). 

By assuming that frequency-variable variance is proportional to the inverse of the signal-

to-noise ratio, i.e. σ N
2 (ω ) =1/ snr(ω) , equation (3.32) can be re-expressed as 

 ˆ R C =

1
2π

dωsnr(ω )∫ ˆ R (ω )

1
2π

dω∫ snr(ω )
 (3.33) 

The denominator of equation (3.33) can be thought of as a normalization function. For 

example, if the variance is constant with frequency, equation (3.33) reduces to 

Claerbout’s deconvolution imaging condition [equation (3.27)]. Thus, the deconvolution 

imaging condition is the optimum least-squares estimator of the reflectivity coefficient, 

with the assumption that the signal-to-noise ratio is constant with frequency. If the signal-

to-noise ratio is frequency-variable, equation (3.33) is the optimum weighted least 

squares estimator. The latter is a more likely scenario for band-limited seismic data. 
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3.6.5 An optimum weighting function for zero-phase deconvolved data 

I now assume that the noise level is constant with frequency. Hence, the signal-to-noise 

ratio is just the signal power as given by the source amplitude squared, and equation 

(3.33) yields 

 ˆ R C =

1
2π

dω∫ Sρ(ω )
2 ˆ R (ω )

1
2π

dω∫ Sρ (ω)
2

. (3.34) 

Unfortunately, the signal power is not a good estimator of the signal-to-noise ratio for 

seismic data that has been deconvolved prior to migration. The signal-to-noise ratio will 

be significantly reduced at frequencies where the spectrum has been whitened. To 

account for this, I propose introducing a function  such that ˆ F (ω) ˆ F (ω) Sρ (ω )  is a good 

estimator of the unknown signal-to-noise ratio prior to invoking the imaging condition. 

Thus, the estimated signal-to-noise ratio should account for all processing steps, 

including zero-phase deconvolution and inverse wavefield propagation18. The source 

amplitude Sρ (ω )  has been retained to effect a favorable cancellation, as we shall 

discover below. If, in addition,  is normalized such that ˆ F (ω)

 
1

2π
dω∫ ˆ F (ω) Sρ (ω ) = 1, (3.35) 

we can abandon equation (3.34), and re-express equation (3.33) as 

                                                 

18 One possibility is to use a data-derived model for the spatial- and frequency-dependent signal-to-noise 

ratio. A practical method could be based on seismic signal estimation using f-x spectra (Margrave and Yao, 

1999), where the seismic signal is the inverse propagated wavefield at the time-coincident imaging 

condition. This suggests that the optimum filter is a function of the spatial position of both the output point 

and the shot, i.e. F(xG,xs,ω). 
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 ˆ R θ =
1

2π
dω∫ ˆ F (ω) Sρ (ω ) ˆ R θ (ω) . (3.36) 

Equation (3.36) is the optimum weighted least squares estimate of the frequency-

independent reflection coefficient . Equation (3.35) ensures that the weighting 

function 

ˆ R θ
ˆ F (ω) Sρ (ω )  is normalized and suggests the correct physical units (given the 

number of spatial dimensions) such that the reflection coefficient is dimensionless. 

Docherty (1991) loosely specified that  be a filter which ‘emphasizes the 

bandlimited nature of (the inverse propagated wavefield)’. We now have a more 

quantitative criterion to interpret Docherty’s use of the word ‘emphasizes’, but still retain 

much flexibility in the choice of the weighting function. 

ˆ F (ω)

Now substitute for  in equation (3.36) using equation (3.26), and re-express the 

incident wavefield 

ˆ R θ (ω)

Pi
+(xΣ ,x s ,ω ) as   Sρ (ω)

G
G 0

+(xG ,x s ,ω) , yielding 

 
  
ˆ R θ (xG ,x s ) =

1
2π

dω∫ ˆ F (ω ) Sρ(ω)
PS

−(xG ,x s ,ω)
Sρ (ω )

G 
G 0

+ (xG ,x s ,ω)
. (3.37) 

Claerbout (1971) derives the deconvolution imaging condition with the requirement that 

the data be minimum phase. The derivation presented in this section does not require 

minimum phase deconvolution. Zero-phase deconvolution is preferred because it 

maximizes the resolution of the migrated output and produces the desired bandlimited 

reflectivity function. If we further assume that the recorded data have been deconvolved 

to zero-phase, the source signature Sρ (ω)  in the denominator can be replaced by its 

amplitude Sρ (ω ) . The source amplitudes in the numerator and denominator of equation 

(3.37) cancel, yielding 

 
  
ˆ R θ (xG ,x s ) =

1
2π

dω∫ ˆ F (ω )
PS

− (xG ,x s ,ω )G 
G 0

+ (xG ,x s ,ω )
, (3.38) 
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which is the same as equation (3.29), the estimator we set out to derive [see Docherty, 

1991, equation (14)]. In fact, the favorable cancellation is the sole reason for the choice 

of the signal-to-noise estimator ˆ F (ω) Sρ (ω ) . Note that, although equation (3.38) does not 

require an estimate of the source amplitude Sρ (ω ) , the correct normalization of the 

bandlimited filter  as defined by equation (3.35) does. Fortunately, an error in 

normalization will be a constant relative error in the estimated reflectivity , 

consistent with our goal for a ‘relative true-amplitude’ migration. 

ˆ F (ω)

ˆ R θ (xG ,x s )

3.7 RAY-THEORETICAL KIRCHHOFF-APPROXIMATE MIGRATION OF 
SHOT OR RECEIVER RECORDS 

The imaging condition given by equation (3.38) is a prescription for creating a reflector 

map. In essence, it is equivalent to a weighted least squares average of frequency-

dependent reflectivity estimates, where the estimates are given as a ratio of amplitudes of 

the upgoing inverse propagating wavefield PS
−(xG ,x s ,ω)  to the forward propagating 

Green’s function    at the imaging location x
G

G 0
+ (xG ,x s ,ω) G. By definition, the phase of 

these two terms will satisfy Claerbout’s time-coincident imaging condition. The objective 

in this section is to re-express equation (3.38) as a practical migration formula. The 

derivation of the ray-theoretical Kirchhoff-approximate migration formula presented here 

is based on Docherty (1991). 

3.7.1 Ray-theoretical approximations to the optimum imaging condition 

First, the forward propagating Green’s function   
G

G 0
+ (xG ,x s ,ω)

),(0), sGi
s e xxx ωτ

 in equation (3.38) is 

replaced by its ray-theoretical equivalent  [equation (2.34)], yielding 0 ( GA x

 ),(

0

0),,()(ˆ
),(2

1),(ˆ sGi
sGS

sG
sG ePFd

A
R xxxx

xx
xx ωτ

θ ωωω
π

−−∫= . (3.39) 
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Equation (3.39) is equation (15) of Docherty (1991). Note that the amplitude function 

 describing the divergence of the Green’s function is a constant when both the 

source location and imaging location are fixed. 

),(0 sGA xx

Next, we need a ray-theoretical approximation for the inverse-propagating Kirchhoff-

Helmholtz integral [equation (3.24)] to substitute for PS
−(xG ,x s ,ω)  in equation (3.39). 

Equation (3.24) is repeated here for reference: 

 
  
PS

−(xG ,x s ,ω) = dS
xg

∫
H

G 0
+(xg, xG ,ω )∇xg

PS
− (xg ,x ′ s ,ω){  

H
   −PS

− (xg ,x ′ s ,ω)∇ xg
G 0

+ (xg ,xG ,ω )}⋅n g
− . (3.24) 

Assuming that only one of either the acoustic pressure PS
−(xg ,x ′ s ,ω ) or its normal 

derivative ∇ xg
PS

− (xg ,x ′ s ,ω) ⋅ng
−  have been recorded on the arbitrary surface Sg, there is 

insufficient information to evaluate equation (3.24). This problem was discussed in great 

detail in Sections 2.6.3 and 2.9.2. To summarize, an exact reconstruction requires the 

Rayleigh I or II integrals [equations (2.63) or (2.64), respectively], but these are strictly 

valid only for wavefields recorded on a planar surface. A ray-theoretical approximation 

to the Rayleigh II integral will now be derived, and compared with the high-frequency 

approximation of Docherty [1991, equation (2.34)]. Both approximations assume that 

only the acoustic pressure PS
−(xg ,x ′ s ,ω ) is recorded. 

3.7.2 The far-field ray-theoretical Rayleigh II approximation 

The Rayleigh II integral [equation (2.64)] is re-expressed using the notation adopted in 

this chapter, as 

 
  
PS

−(xG ,x s ,ω) = 2 dxdy∫
−∞

∞

∫ JSxy PS
−(xg, x ′ s ,ω )∇xg

H 
G 0

+(xg ,xG ,ω) ⋅ ng
+{ }, (3.40) 
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where the Jacobian JSxy = dS dxdy  is unity for a planar surface with normal z. The ray-

theoretical approximation to the one-way inverse propagating Green’s function is given 

by 

 . (3.41) ),(
00

0),(),,( Ggi
GgGg eAG xxxxxx ωτω −+ =

H

The far-field19 ray-theoretical approximation to the normal derivative of equation (3.41) 

is 

 . (3.42) −−++ ⋅∇≅⋅∇ gGg
i

GggGg g

Gg

g
eAiG nxxxxnxx x

xx
x ),(),(),,( 0

),(
00

0 τωω ωτH

Note the change in direction of the normal, which changes the sign of the expression. 

Substituting equation (3.42) into equation (3.40) yields 

{ }
g

Gg

g SsgS
i

gGgGgSxysGS PeAJdxdyiP ),,(),(),(2),,( ),(
00

0 ωτωω ωτ
′

−−−
∞

∞−

− ⋅∇≈ ∫ ∫ xxnxxxxxx xx
x  

  (3.43) 

as the far-field ray-theoretical Rayleigh II approximation to the inverse extrapolated 

upgoing wavefield, as required to evaluate equation (3.39). 

3.7.3 Docherty’s ray-theoretical approximation by stationary phase 

Docherty [1991, equation (9)] assumes a ray-theoretical approximation to the upgoing 

wavefield PS
−(xg ,x ′ s ,ω ), re-expressed here in my notation as 

 . (3.44) ),(),(),,( sgi
sgsgS ePP ′

′′
− = xxxxxx ωτω

                                                 

19 Docherty (1991) uses the phrase ‘leading order in ω’ to describe what is essentially the far-field term. A 

more thorough discussion, in the context of free-space Green’s functions, can be found in Appendix B.3 of 

this dissertation. 
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A more extensive discussion of equation (3.44) can be found in Appendix B [see 

equation (B.12)]. Note that the phase and amplitude of the source function are not 

included in the RHS because Docherty assumes an impulsive source. As well, ),( sg ′xxτ  

represents a ‘generalized’ traveltime from the source to reflector to receiver. 

The far-field ray-theoretical approximation to the normal derivative of equation (3.44) is 

 . (3.45) −
′′

−
′

− ⋅∇=⋅∇ ′

gsg
i

sggsgS g

sg

g
ePiP nxxxxnxx x

xx
x ),(),(),,( ),( τωω ωτ

Substituting equations (3.41), (3.42), (3.44), and (3.45) into equation (3.24) yields 

 ({ −
′′

− ⋅∇= ∫ gsgGgsgsGS g

g

APidSP nxxxxxxxx x
x

),(),(),(),,( 0 τωω  

 ) ( )}),(),(
0 ),( Ggsg

g

i
gGg e xxxx

x nxx ττωτ −− ′⋅∇+ . (3.46) 

As discussed in Docherty, the main contributions to the integral occur where the phase 

function φτ = τ g ′ s −τ gG  is stationary with respect to the variables of integration. The 

conditions of stationarity are given by 

 
∂φτ

∂ξi

= (∇τ g ′ s − ∇τ gG ) ⋅
∂xg

∂ξi

= 0    i =1, 2  (3.47) 

where the parameter ),( 21 ξξ=ξ  identifies the point )(ξgx  on Sg . The same surface 

parameterization is used in Section 3.5 in the context of a simplified notation for ray-

theoretical Kirchhoff-approximate modeling. 

Docherty proceeds as follows: the vector ∂xg ξ i  is a tangent on the surface Sg ; hence, 

equation (3.47) states that the vectors ∇τ g ′ s  and ∇τ gG  have two equal projections on two 

linearly independent tangents to the surface; then, since ∇τ g ′ s = ∇τ gG = ))(1 ( ξgxc , the 

two vectors are identical at the stationary points; thus ∇τ g ′ s ⋅n g
− = ∇τ gG ⋅n g

−  on Sg ; 
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equation (3.44) can be re-substituted for PS
−(xg ,x ′ s ,ω )

),(0τ gGg
−⋅ nxx

; and equation (3.46) can be 

simplified to 

∇ GgG g
xxx ),() τ

− − ())(( SPi xωω

,ω )

′ s 

 . (3.48) ),,(),(2),,( ),(0 ωωω ωτ
sgS

i
GgsGS PeAdSiP Gg

g

g

′
−−− ∇≈ ∫ xxxxxx xx

x
x

Equation (3.48) is identical to equation (3.43), but seems to be applicable for an arbitrary 

surface as opposed to the restriction to a planar surface as required by the far-field 

Rayleigh II integral. In effect, the method of stationary phase equates the unknown 

derivative ∂PS
− ∂ng

−  with the known normal derivative   − ∂
H

G 0
+ ∂ng

− , and makes a far-field 

approximation as well. Does stationary phase make the assumptions more exact? The 

short answer is no. A more complete discussion, using free-space Green’s functions and a 

geometrical approach to stationary phase, can be found in Appendix B. 

3.7.4 Ray-theoretical Kirchhoff-approximate migration formula 

We now have two equivalent expressions for wavefield , given by equation 

(3.43) or equation (3.48). Substitution of either of these into equation (3.39) yields 

equation (16) of Docherty, re-expressed here as 

),,( ωsGSP xx−

 −⋅
−

= ∫ gg
sG

sG

g

AdS
A

R nxx
xx

xx
x

,(
),(

2),(ˆ
θ  

 (








× +−

∞

∫ ),(),(

0

),,ˆ
2
1Re2 sGGgi

sg eFd xxxxx ττωωω
π

, (3.49) )

where the recorded wavefield PS
−(xg ,x s  is now given as a function of the true source 

location x  instead of the image-source location x . s

Equation (3.49) is a 3-D prestack ray-theoretical Kirchhoff-approximate migration 

formula that satisfies the chi-squared optimal imaging condition developed in Section 

3.6. The term in the square brackets is expressed in the form of an inverse Fourier 
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transform [see equations (A-11) and (A-30)]. Notice that the limits of the integral over 

frequency are now from 0 to ∞, thereby avoiding awkward terms such as ω  and sgnω  

required to make the expression correct for negative frequencies. In Chapter 4, this term 

[or, more correctly, twice the real part, as indicated in equation (3.49)] will be re-

expressed in an equivalent time-domain form, yielding a convolution of the filter and the 

time derivative of the wavefield evaluated at time t =τ gG +τ Gs , i.e. 

[ ]
GsgGtsgS ttptf ττ∂∂ +=

−∗  ),,()(ˆ xx . 

The prestack migration equation given by equation (3.49) is valid for common shot 

gathers or, invoking reciprocity, common receiver gathers. The simplest expression for a 

migrated stack is obtained by averaging the reflectivities obtained by migrating shot or 

receiver gathers. For the optimal chi-squared imaging condition, the stacked reflectivity 

is given by the average of the reflectivities obtained using equation (3.49), i.e. 

 R sg (xG ) ≡
1

Ns

ˆ R θ (xG , x s )
s=1

Ns

∑ . (3.50) 

Even though equations (3.49) provide a measure of relative true-amplitude reflectivity, 

equation (3.50) does not. Indeed, the reflectivity map described by equation (3.49) is 

angle-dependent, so a simple ‘stack’ of these maps from individual migrated common 

shot gathers will produce some sort of average reflectivity map. In Chapter 4, I revisit 

this equation and show that 1) it is a poor estimate of average reflectivity, 2) that a better 

estimate can be obtained by dividing by the number of offsets (although it provides the 

same relative error), and 3) that migration/inversion weights based on the common-offset 

configuration, or a suitable approximation to these weights, produces a more optimal 

stacked image of the average of angle-dependent reflectivity. 
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3.8 RAY-THEORETICAL BORN-APPROXIMATE FORWARD MODELING 

We now return to the Kirchhoff-Helmholtz integral representation, given in summary 

form by equation (3.2), re-expressed here for measurement at receiver location xg as 

 Pt (xg ,x s ,ω ) = Pi (xg , x s ,ω ) + PS (xg ,x s ,ω) + PV (xg, x s ,ω ), (3.51) 

with xs the source location. Equation (3.51) states that the total wavefield can be 

expressed as a sum of incident, surface-scattered and volume-scattered wavefields. The 

purpose of this section is to derive a forward modeling formula using only the volume-

scattered wavefield. The single-scattering assumption (i.e. that only primary reflections 

are of interest) is known as the Born approximation. 

3.8.1 A configuration appropriate for the volume-scattered wavefield 

The Kirchhoff-approximate modeling and migration methods assume that the 

contribution from the volume-scattered wavefield is zero. This is achieved by a careful 

choice of configuration for the volume of interest such that the wavespeed perturbation 

α(x) is zero, i.e. that the reference wavespeed is assumed to be identical to the unknown 

true wavespeed [see equation (2.46)]. At worst, any remaining volume-scattered 

contribution can be considered as an unknown error term in the estimated total wavefield. 

Now we take the opposite approach, and select a configuration such that the surface-

scattered wavefield is zero and the volume-scattered wavefield is nonzero. The 

appropriate configuration is illustrated in Figure 3.4. The total volume V  is bounded by 

a spherical surface at infinity. Thus, the Sommerfeld radiation condition can be invoked 

(at least, for forward modeling), and the contribution from the surface-scattered 

wavefield can be ignored. Inside the volume is a bounded region V

∞

α where the wavespeed 

perturbation is non-zero. Elsewhere, the wavespeed perturbation is assumed to be zero. 

Hence, the only contribution to the volume-scattered wavefield will come from the 
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Figure 3.4. Configuration for Born-approximate forward modeling. 

interior volume, and the Kirchhoff-Helmholtz integral representation [equation (3.1)—

with new variables introduced above] simplifies to 

 ),,(),,(),,( ωωω sgVsgisgt PPP xxxxxx +=  

   = Sρ (ω )
G

G 0 (x s ,xg ,ω )
  
+ dV

x
∫ ω 2 α(x)

c0
2 (x)

 

 
 

 

 
 

G 
G 0 (x, xg,ω)Pt (x,x s ,ω ). 

  (3.52) 
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Note that the representation is expressed in terms of two-way acoustic wavefields and 

two-way forward-propagating Green’s functions. It is not a trivial exercise to derive a 

one-way volume-scattered representation. A detailed derivation can be found in a paper 

by Wapenaar (1993a) with a summary in a two paper series by Wapenaar and Berkhout 

(1993) and Wapenaar (1993b). Here, I proceed with a two-way derivation and then insert 

one-way wavefields when it seems intuitively safe to do so, but without the rigor of the 

Kirchhoff-approximate derivation presented previously. 

3.8.2 The Born approximation 

In equation (3.52), the total wavefield ),,( ωsgtP xx  appears on both the LHS and as part 

of the volume integral on the RHS. Weglein (1985) suggests that equation (3.52) can be 

recursively substituted back into itself, yielding 

  
Pt (xg ,x s ,ω ) = Sρ(ω)

G 
G 0 (x s , xg ,ω )+ dV

x
∫ ω 2 α (x)

c0
2 (x)

 

 
 

 

 
 

G 
G 0 (x,xg ,ω)Pi (x,x s ,ω)  

 
  
+ dV

x
∫ ω 2 α(x)

c0
2 (x)

 

 
 

 

 
 

G 
G 0 (x, xg,ω) dV

′ x 
∫ ω 2 α( ′ x )

c0
2 ( ′ x )

 

 
 

 

 
 

G 
G 0 ( ′ x ,x,ω)Pi ( ′ x ,x s ,ω) 

    "+  

   = Pi(xg ,x s ,ω ) + PV (xg ,x s ,ω) + PVV (xg ,x s ,ω) + "  (3.53) 

where ),,( ωsgVP xx  is the single-scattered response, ),,( ωsgVVP xx  is the double-

scattered response, etc.. The doubly-scattered and other higher-order responses 

demonstrate the nonlinear relationship between the wavefield and the wavespeed 

perturbation. If the series in equation (3.53) is truncated after the second term (the Born 

approximation) and the incident wavefield subtracted, we obtain a linear approximation 

to the volume-scattered wavefield, 
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PV (xg ,x s ,ω) = dV

x
∫ ω 2 α (x)

c0
2 (x)

 

 
 

 

 
 

G 
G 0 (x,xg ,ω )Pi(x,x s ,ω) . (3.54) 

Equation (3.54) is the Born-approximate modeling formula. Note that the Born 

approximation arises from a power series expansion in 2
0

2 cαω , which suggests that the 

series truncation is a low-frequency approximation that might be incompatible with the 

high-frequency WKBJ assumption. However, Bleistein et al. (2001, p. 99-103) argue that 

the product  provide the precise balance needed for the eikonal equation, which 

describes the traveltime behavior of waves under the condition of high frequency. 

αω 2

3.8.3 Ray-theoretical approximations 

Now substitute the ray-theoretical approximation for the forward-propagating Green’s 

function, 

   
G

G 0 (x,xg ,ω) = Ag (x, xg )eiωτg (x ,xg ) , (3.55) 

and the ray-theoretical approximation for the incident wavefield (forward propagating at 

the reference wavespeed), 

 , (3.56) ),(
0

0),()(),,( si
ssi eASP xxxxxx ωτ

ρ ωω =

into equation (3.54), yielding 

 PV (xg ,x s ,ω) =ω 2 Sρ (ω ) dV
x
∫

α (x)
c0

2 (x)
 

 
 

 

 
 Ag (x,xg )As (x,x s )eiω (τ g +τS ) . (3.57) 

Equation (3.57) is the ray-theoretical Born-approximate modeling formula, and is the 

same (with slight changes in notation) as equation (1) in Jaramillo and Bleistein (1999). 

The use of the linearized Born approximation and one-way ray-theoretical Green’s 

functions has, in effect, transformed the two-way Kirchhoff-Helmholtz representation 

into a one-way modeling formula. However, compared to the Kirchhoff-approximate 
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modeling formula [equations (3.17) or (3.20)], which is defined in terms of a surface 

integral over the reflector, the Born-approximate formula (a volume integral) is awkward 

to implement. Why, then, is it worth deriving? As nicely summarized by Bleistein et al. 

(2001, p. 161 and p. 221), equation (3.57) has the form of a Fourier transform. Thus the 

inversion formula can be written directly in the form of an inverse Fourier transform. In 

the next section, this approach will be taken to derive Born-approximate and Kirchhoff-

approximate depth imaging formulas. 

3.8.4 Equivalence of Born-approximate and Kirchhoff-approximate modeling 
formulae 

The Born-approximate and Kirchhoff-approximate modeling formulas can be shown to 

be asymptotically identical by transforming either into time-domain isochron-stack 

operators (Jaramillo, 1999; Jaramillo and Bleistein, 1999). The Born-approximate 

isochron-stack operator is given as 

 )(
),(

),()(),(),(
),(0

0

ts
A

n
Rdtp

I
II

I

tI

Isg

R

I
sIBI ρ

φ

Σ φ∂
∂γΣ ∗

∇
≅

=

×
+

− ∫
ξ

ξ

ξ
ξ

xxx x
xxxx . (3.58) 

As introduced in Section 3.5, the acquisition configuration over the nonplanar recording 

surface is parameterized by the 2-D vector ξ , while the product of the ray-theoretical 

amplitudes is simplified as ),( ξIsgA x× and total traveltime is simplified as ‘phase’ 

=),(0 ξIxφ τ g(x I ,x g ) +τ s (x I ,x s ) . Integration is now over the isochron surface IΣ  with 

downward normal ττ φφ ∇∇=+
In . Points on the isochron surface are denoted as xI. The 

function )())(() xxx x RR ΣΣδ ∇=(γ  is the singular function of the reflecting surface, 

where the reflecting surface is described by the equation 0)( =xRΣ  (Jaramillo and 

Bleistein, 1999). Hence, equation (3.58) includes only those portions of a single 

reflecting surface that intersect with the isochron surface at time 0φ=t . The complete 
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response is found by evaluating the integral at different times and convolving the result 

with the source wavelet s . ρ (t)

(BR x

The integrand in equation (3.58) contains the linearized Born reflection coefficient 

 2

0
2
0

2
)(

)(
cos4

)(),
φ

α
θ

α

II

II
sI

c xx

xxx
∇

== , (3.59) 

which is known to be valid only over a small range of incident angles. Substituting this 

into equation (3.58) and comparing the result with equation (3.57) reveals that the most 

significant difference between the weighting functions of the two equations is a factor of 
3

0

−
∇ φ

Ix  in equation (3.58). A second derivative with respect to time [arising from theω 2  

in equation (3.57)] contributes a factor 
2

0

−
∇ φ

Ix , while the transformation from volume 

integral to isochron stack contributes the other 
1

0

−
∇ φ

Ix . 

A result almost identical to equation (3.58) can be derived from the Kirchhoff-

approximate modeling formula [equations (3.17) or (3.20)]. An alternate derivation to 

those found in Jaramillo (1999) and Jaramillo and Bleistein (1999) is presented in 

Appendix C. The only difference is that Rθ (x I ,x s )  is now the geometrical-optics 

reflection coefficient equation, which extends the accuracy of equation (3.58) up to and 

beyond the critical angle of reflection (Burridge et al., 1998). In the next section, a 

similar approach will be used to extend the Born-approximate inversion expression to a 

more generally valid Kirchhoff-approximate migration/inversion expression. 

3.9 RAY-THEORETICAL BORN-APPROXIMATE INVERSION 

A limitation of wave-theoretical methods such as the Kirchhoff-approximate depth 

imaging expression is that they are valid only for a single wave experiment such as a shot 

gather (or, invoking reciprocity, a receiver gather). Acquisition configurations other than 

common-shot or common-receiver (such as common-offset) cannot be imaged using 
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wave-theoretical methods because these configurations correspond to an ensemble of 

many wave experiments. However, ray-theoretical Born-approximate inversion can 

image data from these configurations. The original method, as described first by Beylkin 

(1982), attempts to reconstruct velocity perturbations as opposed to reflectivity. Miller et 

al. (1987) quote Beylkin (1985) in describing the approach as “migration by inversion of 

a generalized Radon transform”. Their paper also provides a good explanation of the 

geometry of the generalized Radon transform as related to seismic imaging. 

A key to the inversion process is to weight the reconstruction from every source-receiver 

combination as though it produced a specular reflection at the output point in the 

subsurface. In effect, the reflecting surfaces are assumed to be tangent to the isochrons of 

every source-receiver combination. This assumption ensures that we do not require a 

priori knowledge of the true orientation of the reflector in the subsurface. Using the 

method of stationary phase, it can be shown that the integration or sum of contributions 

from a restricted set of shot-receiver pairs will reconstruct an image of the reflector. 

Bleistein et al. (2001) show that, in the asymptotic evaluation of the inversion integral, 

the contribution from any source-receiver combinations that are not stationary (specular 

at the actual reflector) will be of lower order than the stationary combinations. The 

superposition of weighted contributions is asymptotically equivalent to a generalized 

Radon transform. 

It is well known that the inverse acoustic scattering problem is ill-posed (e.g. Bleistein et 

al., 2001, p. 3-4). Thus, appropriate simplifications must be incorporated in order to 

create a practical inverse expression. The fundamental approximation is one of high 

frequency. This allows the use of ray-theoretical Green’s functions, which, in the 

frequency domain, lead to a forward modeling formula in the guise of a band- and 

aperture-limited forward Fourier transform. Taking the inverse-Fourier transform yields 
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the desired migration expression for imaging the reflector as a band-limited singular 

function. The band-and aperture-limited aspects of real seismic data can be easily 

incorporated in the frequency domain. Following Bleistein et al. (2001), the frequency-

domain approach is used here to derive the Born-approximate imaging expressions. 

Alternately, the source can be considered as a Dirac delta function and the forward model 

developed almost entirely in the time domain. This approach has been nicely presented 

by Jaramillo and Bleistein (1999). By using a delta function source, the associated theory 

of distributions can be utilized to carry out asymptotic approximations including 

derivatives under the integral and to exploit results from generalized Radon transform 

theory. Once the full-bandwidth result is obtained, a filter can be introduced to produce 

the final band-limited output. Jaramillo and Bleistein’s results will not be presented here. 

3.9.1 Inversion for wavespeed perturbation 

The theory is first developed for imaging discontinuities in the wavespeed perturbation 

function α(x). The inverse problem for α(x) is formulated as follows: 1) determine a 

forward modeling formula as an integral equation for the “scattered” field, 2) linearize 

this integral equation using the Born approximation, 3) substitute the ray-theoretical 

expressions for the Green’s function and the incident wavefield to obtain an integral in 

the form of a Fourier transform, 4) write the inversion formula for α(x) as an inverse 

Fourier transform, 5) modify the inversion formula to yield a solution for β(x), the 

bandlimited singular function of the reflector surface scaled by the specular reflection 

coefficient RB (x,x s ). 

The first three steps are described in Section 3.8. The ray-theoretical Born-approximate 

modeling formula [equation (3.57)] is re-expressed in simplified notation as 

 ),(
2
0

2 0),(
)(
)()(),( ξξξ x

x

x
x
x ωφ

ρ
αωωω i

sgV eA
c

dVSP ×







= ∫ . (3.60) 
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Step 4 involves writing down an appropriate inversion formula using the structure of the 

1-D inversion formulas to serve as a guide in the construction of the more general 3-D 

and 2.5-D inversion formulas. Because the 2.5-D inversion formula is derived from 

stationary phase arguments applied to the 3-D inversion formula (Bleistein et al., 2001, 

Chapter 6), only the 3-D inversion formula will be presented. 

The kernel of the inversion formula contains a phase function that is opposite in sign to 

the phase function in the kernel of the forward modeling formula. The phase of the 

inversion formula is expected to be a function of the input variables (ξ,ω) and the output 

variables xG. Following the results of the 1-D inversion (Bleistein et al., 2001, Chapter 

2), the 3-D inversion operator should include a phase function of the form, -iωφ0(xG,ξ). 

There is no ω-dependence in the amplitude function of the inversion kernel for 

wavespeed perturbation α(x), and we will assume that the only ω-dependence of the 

inversion kernel for the reflectivity function β consists only of a multiplication by a 

factor of iω.  

Using B(xG,ξ) to denote the amplitude function of the inversion kernel, the inversion 

operator should have the form 

  (3.61) ),(),()( ),(0 ωωα ωφ ξξ ξ

ξ
V

i
GG PeBdSd Gxxx −∫∫=

Now substitute the data PV (ξ,ω)  as given by equation (3.60) into equation (3.61) to 

obtain the cascade of the forward modeling formula and the respective inversion formula 

 ∫∫∫ ×−=
x

xx

x
x

xxx ),(
2
0

),(2 00

)(
),(

)(),()()( ξξ

ξ

ξ
ξ ωφωφ

ρ αωωωα isgi
GG e

c
A

dVeBdSSd G . (3.62) 

Equation (3.62), which is a sixfold integral, can be thought of as a volume integral in x of 

the wavespeed perturbation α(x) times some kernel function, yielding the wavespeed 
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perturbation α(xG). Thus the kernel function must, in some asymptotic sense, have the 

same sifting property as the Dirac delta function, 

 α(xG ) = dVδ(x − xG )α (x)
x
∫ . (3.63) 

Jaramillo and Bleistein (1999) discuss how the correspondence with the delta function 

makes the resulting inversion formula a generalized Radon transform. An excellent 

discussion of the relationship between migration and the generalized Radon transform 

can be found in Miller et al. (1987). 

Using equation (3.63) as a guide, we extract the portion of equation (3.62) that must be 

the asymptotic approximation of δ(x − xG)  and from this portion determine B(xG,ξ). The 

procedure, outlined in Bleistein et al. (2001, p. 222-225) involves a Taylor series 

approximation, a change of variable of integration from frequency and surface parameter 

(ω,ξ) to wave vector k, and an asymptotic approximation under the condition that 

Sρ(ω) = 1. The value determined is 

 
),(

)(),(
8

1),(
2
0

3 ξ
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ξ
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ch
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x
×

=
π

, (3.64) 

where 
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 (3.65) 

is known as the Beylkin determinant. Substituting equation (3.64) into (3.62) gives the 

high-frequency inversion formula for wavespeed perturbation α(xG) as 
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×
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ξ ξ
ξ

 (3.66) 

3.9.2 Modifying the inversion formulae to estimate reflectivity 

However, we desire instead an inversion formula as a reflectivity function β(xG) in the 

form of a bandlimited singular function γB(xG) times the linearized Born reflection 

coefficient . To convert the wavespeed perturbation α(xRB (xG ,ξ) G) to a reflectivity 

function, we multiply by ),(0 ξGG
i xx φω ∇ . In addition, the conversion requires an 

appropriate proportionality function, 




 ∇

2

0
2 ),()( ξGG G

c xx x φ1 , which, as it turns out, 

accounts for obliquity effects in the nonzero offset inversion process (Bleistein et al., 

2001, p. 226). Inserting these two terms into equation (3.66) gives the inversion formula 

for the bandlimited reflectivity function β . Bleistein shows that a second reflectivity 

function β1 —the geometrical optics reflection coefficient multiplied by 1 2π  times the 

area under the filter  in the ω-domain—can be obtained by dividing the bandlimited 

reflectivity function by one additional power of 

ˆ F (ω)

),(0 ξGG
xx φ∇ , yielding 
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 
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
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
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−× −

∞

∫ ),(

0

0),,()(
2
1Re2 ξGi

sgV ePid xxx ωφωωω
π

. (3.67) 

The inversion formula is an aperture limited Fourier-transform-like integral. The 

integrand contains a determinant that is part of a Jacobian that depends both on the 

background propagation parameters and on the acquisition configuration. As a result, the 

problem of extending the inversion formula to new recording geometries is reduced to a 

problem of computing the value of the determinant associated with a specific geometry. 
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3.9.3 Common-shot inversion similar to Kirchhoff-approximate migration 

For the common-shot geometry, Hanitzsch [1995, equations (10) and (24)] shows that the 

inversion formula can be expressed as 

 −⋅∇
−

= ∫ gGgGg
sG

sGB g

g

AdS
A

R nxxxx
xx

xx x
x

),(),(
),(

2),( 00
0

τ  

 ( )

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
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
−× +−

∞

∫ ),(),(

0

00),,()(
2
1Re2 sGGgi

sgV ePid xxxxxx ττωωωω
π

. (3.68) 

Equation (3.68) is almost identical to equation (3.49), the Kirchhoff-approximate 

migration formula for common-shot geometry. There are two significant differences. The 

first is that the bandlimiting and normalizing function  is missing from equation 

(3.68). A convincing argument was presented in Section 3.6 justifying the use of the 

bandlimiting function and, as discussed above, it is required to convert the reflectivity 

function 

ˆ F (ω)

β1  into the reflection coefficient. Henceforth it will be adopted for all 

acquisition configurations. The second difference is that equation (3.68) determines the 

linearized Born reflection coefficient RB (xG ,x s )  [assuming  is included], while 

equation (3.49) estimates the geometrical-optics reflection coefficient . 

However, Jaramillo and Bleistein (1999) show that equation (3.68) can be derived from a 

Kirchhoff-approximate modeling formula, and therefore determines the geometrical-

optics reflection coefficient which is valid over a wider range of incidence angles. 

Henceforth (and in Appendix D), I assume that all migration/inversion formulae estimate 

the geometrical-optics reflection coefficient from the upward surface-scattered pressure 

ˆ F (ω)

ˆ R θ (xG ,x s )

PS
−(xg ,x s ,ω ) as recorded by an appropriate acquisition configuration. 
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3.10 2.5-D AND 3-D CONSTANT-WAVESPEED COMMON-SHOT AND 
COMMON-OFFSET MIGRATION/INVERSION FORMULAE 

The general inversion formula given by equation (3.67) is valid for 3-D seismic data sets 

obtained using any acquisition configuration. Bleistein et al. (2001, p. 248-249) show 

that, for constant wavespeed c0, the terms in the inversion formula [equation (3.67)] 

evaluate as follows: 

 , (3.69) gGGsGsg rrA 216),(/1 π=× ξx

 ( ) 00 /),( crr gGGsG +=ξxφ , (3.70) 

 
0

0
cos2),(
cGG

θφ =∇ ξxx , (3.71) 

where the angle θ  is determined using 

 cosθ =
ˆ r Gs + ˆ r gG

2
. (3.72) 

3.10.1 Common-shot migration/inversion formulae 

For a flat acquisition surface and common-shot geometry, the full Beylkin determinant is 

given by 

 h(xG ,ξ) = 2 cos2 θ
zG

c0
3rgG

3  (3.73) 

Substituting these into equation (3.67) gives the 3-D common-shot, constant-wavespeed 

migration/inversion formula as 

ˆ R θ
(3−D )

(xG ,x s ) =
−2
c0

dS
xg

∫
rGs

rgG

zG

rgG
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2Re
1
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∞

∫ ˆ F (ω)(−iω ) PS
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(3− D)
(xg ,x s ,ω )e −iω (rGs +rgG ) / c0

 

 
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 

 
 .(3.74) 
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Equation (3.74) is derived in Bleistein et al. (2001) as equation (5.2.23) and re-expressed 

in Appendix D as equation (D-46). 

The migration/inversion formula for 2.5-D common-shot constant-wavespeed, 

ˆ R θ
(2.5− D)

(xG ,x s ) =
4π
2πc0

dx
xg

∫ rGs + rgG

rGs

rgG

zG

rgG

 
 
 

  

 
 
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  
 

 ×2Re
1

2π
dω

0

∞

∫ ˆ F (ω) −iω PS
−

(2.5− D)
(xg ,x s ,ω)e− iω(rgG +rGs ) / c0

 

 
 

 

 
 , (3.75) 

is derived in Bleistein et al. (2001) as an unnumbered equation following equation 

(6.3.14). In Appendix D, equation (D-45) [the equivalent of equation (3.75)] is obtained 

by an alternate derivation that follows directly from the 2-D common-shot constant-

wavespeed formula [derived as equation (D-43)]. 

In 3-D, 2.5-D, or 2-D, a number of migrated shot gathers can be combined to give the 

stacked reflectivity as the average of reflectivities obtained using equations (3.74)/(D-

46), (3.75)/(D-45) or (D-43), respectively: 

 R s (xG) ≡
1

Ns

ˆ R θ (xG , x s )
s=1

Ns

∑ . (3.76) 

Equation (3.76) was introduced earlier as equation (3.50). A similar expression can be 

written for stacked reflectivity as an average of common-receiver gathers. 

3.10.2 Common-offset migration/inversion formulae 

The full Beylkin determinant for a flat acquisition surface and common-offset geometry 

is given by 

 h(xG ,ξ) = 2 cos2 θ
zG

c0
3

(rGs + rgG )(rGs
2 + rgG

2 )
rGs

3 rgG
3

 

 
 

 

 
  (3.77) 
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Thus the migration/inversion formula for 3-D common-offset, constant-wavespeed is 

 ˆ R θ
(3−D )
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−2
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 . (3.78) 

Equation (3.78) is derived in Bleistein et al. (2001) as equation (5.2.32), and re-expressed 

in Appendix D as equation (D-52). The only difference between equations (3.74)/(D-46) 

and (3.78)/(D-52) is the weighting function in the curly brackets. 

The migration/inversion formula for 2.5-D common-offset, constant-wavespeed from a 

flat recording surface, 

ˆ R θ
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 . (3.79) 

is derived in Bleistein et al. (2001) as equation (6.3.26). In Appendix D, the 2-D 

common-offset constant-wavespeed migration/inversion formula [equation (D-54)] is 

derived from the 2.5-D equation [equation (D-53)—the equivalent of equation (3.79)] by 

a simple substitution for the 3-D pressure. 

In 3-D, 2.5-D, or 2-D, a number of migrated common-offset gathers can be combined to 

give the stacked reflectivity as the average of reflectivities obtained using equations 

(3.78)/(D-52), (3.79)/(D-53) or (D-54), respectively: 

 R co (xG ) ≡
1

Nco

ˆ R θ (xG ,ξ co )
co=1

Nco

∑ . (3.80) 
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Comparing equation (3.80) to equation (3.76), the summation is now over the number of 

offsets instead of the number of shots. As we will discover in Chapter 4, the typical 

implementation of prestack time migration using the method of equivalent-offset does not 

distinguish between different common-shot or common-offset gathers—all traces lying 

within the migration aperture are included in the sum. Hence, one might think that the 

choice between the equation combinations (3.76) and (3.80) is a matter of preference. 

However, it will be shown that an average of common-shot records is a poor choice. The 

correct equation is (3.80), i.e. an average of common-offset weights. An unexpected 

result is that a better result than equation (3.76) (i.e. the sum of migrated shot gathers 

divided by the number of shots) is obtained by summing migrated shot gathers and 

dividing by the number of offsets; although there is no difference between the two 

normalization factors if the objective is relative-true amplitude reflectivity to within a 

constant factor. 

3.11 SUMMARY 

Two approaches to depth imaging were developed in this Chapter. The classical 

migration approach combines inverse wavefield extrapolation with Claerbout’s 

‘deconvolution’ imaging condition. The Born-approximate inversion approach inserts the 

forward modeling formula for the volume scattered wavefield into a Fourier transform-

like inversion formula for wavespeed perturbation, then re-expresses this result as a 

band-limited reflectivity function. For the common-shot configuration, both approaches 

give essentially identical results. 

The classical migration approach was developed from first principles. Ray-theoretical 

Kirchhoff-approximate expressions were derived for one-way forward modeling and one-

way inverse wavefield propagation with the assumption that the data are synthesized or 

recorded on one nonplanar interface. The prestack ‘deconvolution’ imaging condition 
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was shown to be an optimal chi-squared estimator if weighted by a bandlimited source 

function, and Docherty’s ray-theoretical Kirchhoff-approximate common-shot migration 

formula was shown to be equivalent to a simpler derivation based on the Rayleigh II 

integral. Hence, the Kirchhoff-approximate migration formula is strictly valid only for 

data recorded on a planar surface. Classical migration does not provide a theoretical basis 

for creating a stacked reflectivity section, other than a simple summation of migrated shot 

records. A more optimal approach is desired. 

In addition, classical migration is not applicable to non-physical wavefields such as 

common-offset configurations. The Born-approximate forward modeling formula was 

derived as a basis for more generalized depth imaging expressions, and shown to be 

asymptotically equivalent to the Kirchhoff-approximate modeling formula by expressing 

both in the form of isochron stacks. The similarity of the modeling formulas justifies 

substituting the geometrical-optics reflection coefficient for the more restricted linearized 

Born reflection coefficient in the final inversion formula. 

In Appendix D, relationships between 2-D, 2.5-D and 3-D constant-wavespeed modeling 

and migration/ inversion formulae are derived, and the formulae are re-expressed in a 

more physically intuitive form using out-of-plane spreading factors and source/receiver 

directivities. In Chapter 4, the equivalent formulae from Appendix D are re-expressed in 

the time-domain. The time-domain versions are then used as a starting point for deriving 

appropriate expressions for accurate prestack time migration using the method of 

equivalent offset. The optimum weight will turn out to be [equation (3.80)], the common 

offset weight. 
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CHAPTER 4: RELATIVE-AMPLITUDE PRESERVING PRESTACK 
TIME MIGRATION BY THE EQUIVALENT OFFSET 
METHOD (EOM) 

4.1 INTRODUCTION 

In this chapter, the migration/inversion formulae developed in Chapter 3 are used to 

determine an optimal weighting function for prestack time migration by the equivalent 

offset method (EOM). The optimal weighting function is then modified to give a 

practical weighting function. Here, ‘optimal’ is defined such that output at each 

subsurface point is bandlimited ‘stacked reflectivity’, i.e. a stack of migrated gathers 

where the peak amplitude is equivalent to an unbiased average of angle-dependent 

reflectivity. ‘Practical’ is defined such that the implementation is computationally 

efficient and suitably simple, given the approximations inherent in EOM prestack time 

migration. 

In Section 4.2, the 3-D and 2.5-D constant-wavespeed frequency-domain migration/ 

inversion formulae introduced in Section 3.10 are re-expressed as their time-domain 

equivalents. In Section 4.3, expressions for stacked reflectivity are developed as simple 

averages over migrated common-shot gathers [see equation (3.76)], migrated common-

receiver gathers, and migrated common-offset gathers [see equation (3.80)]. In Section 

4.4, a simple model consisting of an impulsive source, a single planar reflector, and a 

non-reflective planar acquisition surface is used to compare the various 2.5-D and 3-D 

migration/inversion weights over a complete range of reflector dips and depths. The 

common-offset formulae are shown to be the optimal weighting functions for both 2.5-D 

and 3-D stacked reflectivity, while the common-shot and common-receiver formulae 

result in dip- and depth-dependent bias errors. 
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In Section 4.5, the optimal time-domain common-offset constant-wavespeed ‘depth-

migration’ formulae are converted to practical ‘time-migration’ formulae. In fact, the 

conversion starts in the other direction, from two-way traveltime coordinates of the input 

data space to a ‘pseudo-depth’ coordinate of the output image space. For 2.5-D or 3-D, a 

constant-wavespeed reference model is defined with a vertical coordinate of two-way 

traveltime corresponding to the apex of a ‘best-fit’ prestack constant-wavespeed 

diffraction surface in the input data space. The pseudo-depth coordinate is half the 

wavespeed multiplied by the two-way traveltime. In a true constant-wavespeed medium, 

this conversion from time migration to depth migration is exact. The optimal common-

offset constant-wavespeed depth migration formula developed previously can be adapted 

to give output images of true-amplitude reflectivity with a vertical axis of time. The 

optimal common-offset weighting function is then simplified to yield a ‘practical’ 

weighting function, i.e. one that can be implemented efficiently as a time migration. 

However, efficiency is achieved with a loss of accuracy that manifests itself as a dip-and 

angle-dependent bias compared to the desired result. 

In Sections 4.6, a number of different practical weighting functions for 2.5-D and 3-D 

stacked migration are derived and compared, including functions suggested by Dellinger 

et al. (2000) and Zhang et al. (2000). In Section 4.7, the concept of double-downward 

continuation is shown to produce poor weights. The equations of Wiggins (1984) are 

presented for comparison, but the method has been suggested by a number of authors, 

including the recursive double-downward continuation scheme of Schultz and Sherwood 

(1980) and the f-k (frequency-wavenumber or Stolt) prestack migration scheme of Stolt 

(1978) and Stolt and Weglein (1985) (see also discussion of contribution 10 in Section 

1.7). Since the EWM scheme of Margrave et al. (1999)—the Fourier analogue of EOM—

is based on Stolt prestack theory, EWM does not produce true-amplitude estimates of the 
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reflectivity coefficient. Finally, the important equations and concepts are summarized in 

Section 4.11. 

4.2 TIME-DOMAIN FORMULAE FOR TRUE-AMPLITUDE CONSTANT-
WAVESPEED MIGRATION 

A ‘true-amplitude’ migration, as defined by Gray (1997), is “a migration method capable 

of undoing [all the amplitude distortions of wave propagation between the sources and 

the receivers] and thus producing [estimates of] angle-dependent reflection coefficients at 

analysis points in a lossless, isotropic, elastic earth”. This definition necessarily implies a 

prestack migration scheme1. A stack or average of angle-dependent reflection coefficients 

from a number of common-shot or common-offset gathers will combine estimates from a 

number of angles. The range of angles over which estimates are available will depend on 

the receiver aperture, survey aperture, depth and dip of the reflector, subsurface velocity 

above the reflector, and recording time. In extending the ‘true-amplitude migration’ 

definition to stacked reflectivity, then, the best that we can hope for is consistent 

averaging of angle-dependent reflectivities, i.e. that the same dip at the same depth is 

imaged with the same amplitude no matter what the orientation of the dip relative to the 

acquisition configuration. This is the criterion used in this chapter to evaluate the 

accuracy of the stacked reflectivity2. 

 

1 In Gray’s definition, accurate positioning of the analysis points is implied, but not necessary. 

2 Bleistein et al. (1987) and Bleistein (1987) show that weighting functions other than a simple stack or 

average can be designed for estimating particular subsurface properties and wavefield parameters, such as 

subsurface wavespeed or specular reflection angle. In some cases, the desired estimate is obtained as a ratio 

of two images created with different weighting functions, i.e. as a double diffraction stack (Tygel et al., 

1993; Hanitzsch, 1995). Further details can be found in Hanitzsch (1997) and Bleistein et al. (2000). 
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What is meant by angle-dependent reflectivity? Simply put, reflectivity is just a ratio of 

the scattered and incident wavefield amplitudes as measured at the reflector, with the 

angle measured between the ray direction and the interface normal (this definition 

assumes that the reflector has large curvature, i.e. the Kirchhoff aperture is large 

compared to the wavelength). In the general acoustic case (or the isotropic elastic P-P 

case), the incident and scattering angles will not be equal. However, by applying 

continuity conditions at a planar interface, it can be shown (e.g. Aki and Richards, 1980) 

that all of the scattered energy is reflected at the specular angle (angle of incidence equals 

the angle of reflection). Thus a ratio of the amplitude of the wavefield just prior to and 

just after scattering will give the angle-dependent reflection coefficient for the angle of 

incidence. 

The simplest conceptual model for a true-amplitude migration scheme is as follows: 

inverse propagate the recorded wavefield from the surface positions of the receivers, 

extract the amplitude at the subsurface position of the reflector, and divide that amplitude 

by the amplitude of a synthetic wavefield forward propagated from the source location 

(again, extracted at the reflector)3. With real seismic data, there are a number of practical 

problems that must be addressed if this procedure is to be even remotely accurate, not the 

least of which are limitations inherent in the simplified mathematical model that allows 

us to propagate the wavefield in a computer. Typical simplifications that strongly 

influence amplitudes include: ignoring mode conversion, ignoring anisotropy, failing to 

correct for attenuation, and failing to account for fine detail in the background wavespeed 

model (Gray, 1997). However, by using synthetic data generated from a greatly 

 

3 A second conceptual model—backprojection operators derived by inversion of a Fourier transform-like 

forward modeling integral (i.e. inverse GRT, see discussion in Section 4.2.2) —are more general but less 

intuitively related to reflectivity. 
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simplified model, these practical problems can be ignored; i.e. a true-amplitude migration 

scheme can be tested under ideal conditions. 

4.2.1 Simple synthetic model for testing true-amplitude migration schemes 

One of the simplest synthetic models is a single planar ‘reflecting’ surface of arbitrary 

dip lying in a constant velocity medium. The sources and receivers lie on a planar 

‘acquisition’ surface that does not act as a physical boundary; thus there are no free-

surface effects or multiples. Figure 4.1a shows a source at location x  that emits a 

bandlimited impulse of pressure at time t

s

= 0 , and a receiver at location x  that records 

pressure of the upgoing reflected wavefield. Other source-receiver pairs cover a limited 

area (i.e., ‘aperture’) over the acquisition surface S, where each line in Figure 4.1a 

represents the fixed offset and azimuth of a subset of possible shot-receiver pairs in a 

single 3-D common-offset configuration. For a 2.5-D survey, the shots and the receivers 

are assumed to lie along a line oriented in the dip direction of the 2-D subsurface 

structure, as shown by the shot-gather configurations illustrated in Figure 4.1b (one-sided 

spread on the left, split-spread on the right). The imaging point x  could be located 

anywhere in the subsurface for a 3-D survey, and anywhere directly beneath the 

acquisition line for a 2.5-D survey, as shown in Figures 4.1a and 4.1b. However, the 

migration aperture chosen for the synthetic tests is always large enough and positioned so 

as to record data without truncation. Also, the spatial sampling interval of shots and 

receivers is sufficient to eliminate spatial aliasing. If x  lies on the planar reflecting 

surface 

g

G

G

Σ , the migration/inversion formulae should give the reflectivity coefficient. 

Otherwise, the amplitude will correspond to the tail of a zero-phase bandlimited wavelet, 

which will be effectively zero except near the reflector. 
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Figure 4.1. a) Reference figure for 3-D common-offset common-azimuth acquisition configuration used in 

simple constant-wavespeed synthetic tests. Source is located at xs, receiver at xg, and imaging point on 

reflector surface at xG. Lines are subset of possible common-offset source-receiver pairs. b) Reference 

figure for 2.5-D common-offset acquisition configuration. Source is located at xs, receiver at xg, and 

imaging point on reflector surface at xG. 
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4.2.2 Conversion of 3-D common-shot migration/inversion formula for constant 
wavespeed from the frequency-domain to the time-domain 

Before proceeding with the derivation of time-migration formulae, the frequency-domain 

constant-wavespeed depth-migration formulae introduced in Chapter 3 need to be 

converted to the time domain. The 3-D common-shot migration/inversion formula for 

constant wavespeed is given by equation (3.74) or, equivalently, equation (D-46), either 

of which can be re-expressed as a time-domain weighted diffraction stack using the 

Fourier transform convention defined by equation (A.11) to give 

 ˆ R θ
(3−D )

(xG ,x s ) = − dS
xg

∫
rGs

rgG

2 cosθgG

c0

 
 
 

 
 
 

ˆ f (t) ∗
∂
∂t

pS
−

(3− D)
(xg ,x s , t)

 
  

 
  

t =(rGs +rgG ) / c0

. (4.1) 

Equation (4.1) says that the 3-D formula for angle-dependent reflectivity  at 

subsurface imaging point x  (given a shot located at x ) is an integral over receivers x  

located on the acquisition surface. The integrand consists of a weighting function (curly 

brackets) multiplied by the filtered time-derivative of the upgoing scattered pressure 

 recorded at time t

ˆ R θ

G s g

pS
− (xg ,x s ,t) = (rGs + rgG ) c0  (i.e. at the total travel time from shot to 

reflector to receiver calculated using straight ray paths in a medium with constant 

wavespeed c ). The filter  normalizes the recorded wavefield, bandlimits it, and 

converts it to zero-phase [see Chapter 3.6, especially equation (3.35)]. 

0
ˆ f (t)

The weighting function has two parts. The first part includes a ratio of distances rGs rgG  

that accounts for the spherical divergence of a synthetic wavefield forward propagated 

from the source and corrects for spherical divergence of the recorded wavefield backward 

propagated from the receivers. The second part is the normalized directivity factor 

2 cosθgG c0 . When combined with the time derivative operator, this part yields twice the 

normal derivative of the recorded wavefield at the acquisition surface as required by the 

far-field Rayleigh II approximation to the Kirchhoff integral equation [see Schneider 
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(Schneider, 1978), (Berkhout, 1985), and Section 2.9 of this dissertation—especially 

equation (2.66)]. 

4.2.3 Migration as inverse wavefield propagation and imaging or as inversion of a 
generalized Radon transform 

Equation (4.1) can be derived using either inverse wavefield propagation (far-field only) 

and a deconvolution imaging condition (Docherty, 1991), or by inversion of Fourier 

transform-like forward modeling integrals (Bleistein, 1987; Bleistein et al., 2001). The 

latter can be shown to be equivalent to the inversion of a generalized Radon transform 

(GRT) (Jaramillo and Bleistein, 1999)4. Migration by inverse GRT is more general than 

the combination of inverse wavefield propagation and imaging because the inverse GRT 

can be applied to a non-physical wavefield, such as a common-offset gather where each 

trace is a record of a separate wavefield. Inverse wavefield propagation requires a 

physical wavefield. Here, I define a physical wavefield as a collection of traces that could 

be recorded at the same time (no matter how impractical the field experiment) such as a 

shot gather or a plane-wave synthesized from a number of shot gathers; as well as those 

collections that could be created by invoking reciprocity, such as common-receiver 

gathers.  

The inverse GRT method can be explained as follows. At the desired output point [xG in 

equation (4.1)], the weighted summation of data values from different traces can be 

thought of as a weighted superposition of isochron surfaces or, in the far field, as a 

 

4 The inverse GRT method is valid in the high-frequency limit (i.e., also far-field) and can be shown to be 

equivalent to a plane-wave expansion of a δ function (Jaramillo and Bleistein, 1999). Miller et al. (1987) 

provide an excellent description of the principle of imaging by inverse GRT, although their goal is 

wavespeed perturbation, not reflectivity. 



 229 

 

                                                

weighted superposition of plane waves tangent to the isochron surfaces. The weighting 

factor for each trace accounts for the forward modeling of the data (the forward GRT) as 

well as a Jacobian that converts the original integration variables over the acquisition 

surface into an equi-angular distribution of plane-wave normals about the imaging point. 

A derivative normal to the plane of specular reflection and appropriate constants convert 

the weighted summation into a bandlimited reflectivity. 

If the collection of plane waves associated with the input traces provide sufficient angular 

aperture, an accurate value of the reflectivity can be determined. The angular aperture 

must be wide enough to capture the stationary point—i.e. the specular reflection—plus 

enough to shift the tail of the finite-aperture artifact (assuming a bandlimited waveform) 

to somewhere in the image where it does not interfere with the output point5. Sun (1998; 

2000) calls this the “minimum” migration aperture, but recommends a larger “optimum” 

aperture where the complete bandlimited waveform at the output point is imaged without 

any interference from the artifact. The collection of traces required for accurate migration 

by inverse GRT need only satisfy the aperture requirements, and can therefore be taken 

from different physical experiments. However, the collection of traces that reconstruct 

reflectivity at the stationary point (i.e. those that have near-specular raypaths for a given 

reflector) should vary slowly in offset or, more correctly, vary slowly in the opening-

angle at the reflector. 

 

5 The finite-aperture artifact will interfere with peak amplitudes of other reflectivity estimates elsewhere in 

the image. The effect of the artifact can be minimized with adequate tapering of the aperture (Sun, 2000). 
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4.2.4 Conversion of 3-D common-offset migration/inversion formula for constant 
wavespeed from the frequency-domain to the time-domain 

The common-offset configuration satisfies the criterion that the opening-angle varies 

slowly, and provides the largest possible aperture of all acquisition configurations. The 3-

D common-offset migration/inversion formula for constant wavespeed is given by 

equation (3.78) or, equivalently, equation (D-52); either of which can be re-expressed as 

a time-domain weighted diffraction stack given by 

ˆ R θ
(3−D )

(xG ,ξ co ) = − dS
ξco

∫
(rGs + rgG )

rgG

2 cosθgG

c0

+
(rGs + rgG )
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2 cosθGs

c0

 
 
 

 
 
 

 

 × ˆ f (t)∗
∂
∂t

pS
−

(3−D )
(xg , x s , t)

 
  

 
  

t =(rGs+ rgG ) / c0

. (4.2) 

In equation (4.2), integration is now over a single common-offset configuration ξCO  of 

shots and receivers on the acquisition surface. In 3-D, the definition of common-offset is 

restricted to traces that share common-offset parameters of both distance and azimuth, i.e. 

common-offset incorporates common-azimuth. Thus, if the receiver layout is identical 

relative to every shot location, there will be as many common-offset configurations as 

receivers. The remaining parameters are the same as in equation (4.1). 

4.2.5 Conversion of 2.5-D common-shot migration/inversion formula for constant 
wavespeed from the frequency-domain to the time-domain 

In 2.5-D, the sources and receivers are restricted to a line on the planar acquisition 

surface. The acquisition line is assumed to be oriented in the in plane or ‘dip’ direction of 

the reflecting surface. The 2.5-D common-shot migration/inversion formula for constant 

wavespeed is given by equation (3.75) or, equivalently, equation (D-45); either of which 

can be re-expressed as a time-domain weighted diffraction stack given by 
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In equation (4.3), 2/1)( t∂∂  is the half-differential operator, H  denotes the Hilbert 

transform of the seismic trace (i.e. a π 2  phase shift), and pS
−

(2.5− D)
(xg ,x s ,t)  is the 3-D 

acoustic pressure recorded at a point receiver given a point source. The geometry of the 

subsurface reflectors is assumed to be 2-D (i.e. invariant in the strike or y direction), 

while integration is over a receiver configuration lying in the in-plane or dip direction. 

The relationship between 3-D and 2.5-D common-shot formulae [equation (4.1) and 

equation (4.3), respectively] is described in Appendix D by equation (D-51). In 2.5-D, 

the out-of-plane spreading correction, 2πc0 rGs +2πc0 rgG , and a half-integral operator 

convert the 3-D acoustic pressure to 2-D, in effect synthesizing the acoustic pressure that 

would have been recorded at a point on a line receiver given a line source, both infinite in 

the y-direction (see Deregowski and Brown, 1983; Bleistein, 1986). The half-integral 

operator [see equation (D-44)] has been absorbed into the full time derivative of equation 

(4.1), yielding the half time derivative of equation (4.3). There are two additional out-of-

plane spreading corrections required: the first to backward propagate the now 2-D 

acoustic pressure to a point on the imaging line in the subsurface [see equation (D.47)] 

and the second to forward propagate a synthetic 2-D wavefield from the source to the 

same point on the imaging line [see equation (D-44)]. The combined correction factor, 

−i rgG rGs , cancels the negative sign in equation (4.1), accounts for the Hilbert 

transform in equation (4.3), and changes the ratio of spherical divergences in equation 

(4.1) into the ratio of square roots found in equation (4.3). 



 232 

 

4.2.6 Conversion of 2.5-D common-offset migration/inversion formula for constant 
wavespeed from the frequency-domain to the time-domain 

The 2.5-D common-offset migration/inversion formula for constant wavespeed is given 

by equation (3.79) or, equivalently, equation (D-53), either of which can be re-expressed 

as a time-domain weighted diffraction stack given by 

ˆ R θ
(2.5− D)

(xG ,ξ co ) = dx
ξco

∫ 2πc0 rGs +2πc0 rgG

rGs

rgG

2cosθ gG

c0

+
rgG

rGs

2cosθ Gs

c0

 

 
  

 

 
  

 
 
 

  

 
 
 

  
 

 
0/)(

)5.2(

2/1

),,()(ˆ

crrt

sg
D

S

gGGs

tp
t

tf
+=

−

−































∗× xx

∂
∂

H . (4.4) 

The integration in equation (4.4) is over a single common-offset configuration ξ  of 

shot and receiver pairs lying along a line in the in-plane or dip direction. As with 

equation (4.3), the geometry of the subsurface reflectors is assumed to be 2-D.  

CO

4.3 WEIGHTING FUNCTIONS FOR STACKED REFLECTIVITY 
IN 3-D AND 2.5-D 

A common procedure for forming a composite image of the subsurface is to stack (i.e. 

average) prestack migrated gathers. If the prestack migrated gathers are obtained by non-

recursive summation, as in equations (4.1)-(4.4), the summation and stack operators are 

both linear and can be combined into a single operator. The output is a stacked migrated 

image of the subsurface, with peak amplitude equal to an average of angle-dependent 

reflectivities [see equations (3.76) and (3.80)]. The input data space is now the set of all 

recorded seismic traces (more correctly, the filtered time derivative of the traces for 3-D, 

and the filtered Hilbert transform of the half time derivative of the traces for 2.5-D). For a 

given output point in the subsurface and a given trace (i.e. fixed shot and receiver 

locations), the desired phase corresponds to the traveltime from shot to subsurface point 

to receiver. In the time-domain, the phase defines a “diffraction” surface in the data 



 233 

 

space. Thus, the combined operator can be thought of as a weighted summation over a 

diffraction surface. This is exactly the kind of operator required for EOM prestack time 

migration. 

4.3.1 Constant wavespeed stacked reflectivity in 3-D 

In 3-D, then, the stacked reflectivity can be thought of as the simple weighted sum over 

all recorded traces, i.e. 

 R 
(3−D )

(xG ) ≈ W 
(3− D)

(xG ,x s , xg )
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 
  
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  

t= (rGs +rgG ) / c0

. (4.5) 

The weighting function for the 3-D common-shot configuration [see equation (4.1)] is 
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, (4.6) 

where dSg  is the size of the area element for the receiver distribution (assumed to be 

uniform) and Ns  is the number of shots. The weighting function for the 3-D common-

receiver configuration is 

 W g
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dSs

Ng

rgG

rGs

2cosθGs
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. (4.7) 

where dS  is the size of the area element for the shot distribution (assumed to be 

uniform) and 

s

Ng  is the number of receivers. 

Equation (4.7) can be thought of as the reciprocal form of equation (4.6) (i.e. by 

switching source and receiver locations). In general, these common-shot and common-

receiver weighting functions do not produce equivalent values of stacked reflectivity for 

a given set of input data. The only acquisition configuration where they do is a symmetric 

split spread, occasionally encountered in land 3-D seismic but almost never in marine. 
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The weighting function for the 3-D common-offset configuration [see equation (4.2)] is 

 W co
(3−D )

(xG ,x s ,xg ) = −
dSs

Nco

(rGs + rgG )
rgG

2 cosθgG

c0

+
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, (4.8) 

where dS  is the size of the area element for the shot distribution (again, assumed to be 

uniform). Note that it is the area element for the shot distribution, not the area element for 

the receiver distribution (or some combination of the two), that determines the separation 

of adjacent common-offset traces. As mentioned previously, if the receiver layout is 

identical relative to every shot location, there will be as many common-offset 

configurations as receivers (

s

Nco = Ng ). 

The main difference between the common-shot weight [equation (4.6)] and the common-

offset weight [equation (4.8)] is contained in the curly brackets. Note that the common-

offset weight is not a simple multiple of the common-shot weight term. The common-

offset weight appears to be a linear combination of a common-shot migration weight 

given by (rGs rgG )2cosθgG c0 , a common-receiver migration weight given by 

(rgG rGs )2cosθGs c0 , and two hybrid migration weights: a common-shot migration 

weight (rgG rgG )2cosθgG c0  where the forward modeling is from the receiver to the 

subsurface location, and a common-receiver migration weight (rGs rGs )2cosθGs c0  

where the forward modeling is from the shot to the subsurface location. It is clear, then, 

that an average of Ns  common-shot gathers (or Ng  common-receiver gathers) will not 

equal an average of Nco  common-offset gathers. Other weighting functions could be 

designed to give equivalent estimates from the different acquisition configurations after 

averaging, but these would be not produce accurate estimates of angle-dependent 

reflectivity before averaging, and would not be considered standard weights given current 

practice. 
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4.3.2 Constant wavespeed stacked reflectivity in 2.5-D 

The situation is similar in 2.5-D, where the stacked reflectivity can be thought of as the 

simple weighted sum 
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The weighting function for the 2.5-D common-shot configuration [see equation (4.3)] is 

 W s
(2.5− D)

(xG ,x s ,xg ) =
dxg
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  
, (4.10) 

where dx  is the length of the line element for each receiver (assumed to be uniform). g

Invoking reciprocity, the weighting function for the 2.5-D common-receiver 

configuration is 

 W g
(2.5− D)

(xG ,x s ,xg ) =
dxs
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, (4.11) 

where dx  is the length of the line element for each shot (again, assumed to be uniform). s

The weighting function for the 2.5-D common-offset configuration [see equation (4.4)] is 
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. (4.12) 

As in the 3-D case, the 2.5-D common-offset weight [equation (4.12)] is not a simple 

multiple of the common-shot weight [equation (4.10)]. Now, the common-offset weight 

appears to be a linear combination of a common-shot migration and a common-receiver 

migration. 
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4.3.3 Stacked reflectivity-common-shot or common-offset weights? 

The above analysis of 3-D and 2.5-D constant-wavespeed migration/inversion formulae 

shows that the stacked reflectivity created by an average of Ns  common-shot gathers (or 

Ng  common-receiver gathers) will not be the same as the stacked reflectivity created by 

an average of Nco  common-offset gathers. This suggests two questions that can be 

addressed by synthetic studies: first, which weighting formula is more correct? and 

second (since I have already hinted that the common-offset formula is the correct one), 

what are the characteristics of the bias error that arises from a stack of common-shot or 

common-receiver gathers? 

A third question, which will not be addressed in this study, is: what weighting function 

could be applied in common shot migration to give the same result as in common-offset 

migration? The answer to this question is simple for a diffraction stack migration — use 

the common-offset weighting function. Unfortunately, this weighting function cannot be 

implemented easily in recursive applications such as downward continuation combined 

with an imaging condition. As shown in Section 3.7, the common-shot weighting 

function (for 2-D and 3-D) arises naturally from Claerbout’s deconvolution imaging 

condition. This topic is left for further research. 

4.4 SYNTHETIC TESTS TO DETERMINE OPTIMUM WEIGHTS FOR 
STACKED REFLECTIVITY 

The simple model described in Section 4.2 can be used to test the migration weighting 

functions developed in Section 4.3. As a quick review, the model consists of a single 

planar reflector of arbitrary dip with a reflectivity coefficient of unity lying in a constant 

wavespeed medium (Figure 4.1). Synthetic data are generated on a non-reflective planar 

surface at a sufficiently small sampling interval to eliminate aliasing, and over a 

sufficiently large survey size to guarantee accurate reconstruction of the reflectivity 
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coefficient. For simplicity dxs = dxg  for all 2.5-D tests, and dSs = dSg  for all 3-D tests. 

The effects of and remedies for insufficient or irregular sampling are not examined in this 

dissertation. 

Given linearity, the summation weights [curly brackets in equations (4.6)-(4.8) and 

(4.10)-(4.12)] and stack normalization factors ( Ns , Ng , or Nco ) can be applied in any 

order. It will be beneficial to compare the effect of the summation weights in a common 

domain prior to stacking. This is most easily done in the common-offset domain. The 

effect of stacking, then, will be to average the result over a range of common-offsets. In 

fact, it turns out that the optimum normalization factor for all domains is the number of 

common-offsets Nco . Otherwise, for an average of Ns  migrated common-shot gathers, 

the output reflectivity is biased by a factor of Ns Nco  (and similarly for an average of 

Ng  migrated common-receiver gathers). 

All imaging is assumed to occur in the far field (> 3 or π dominant wavelengths, see 

Bleistein et al., 2001, p. 6). Using a constant wavespeed of 4000 ms-1 and a zero-phase 

wavelet with a dominant frequency of 25 Hz, the dominant wavelength is 160 m and the 

far field is anything greater than ~500 m. Hence, with a fixed half-offset of 1000 m and 

minimum imaging depth of 500 m, the far-field assumption is justified and all results can 

then be plotted in terms of normalized spatial coordinates. Results from the 2.5-D tests 

will be presented first. 

4.4.1 Synthetic tests comparing 2.5-D common-shot and common-offset weights 

Figure 4.2 shows the reconstructed amplitudes of the reflectivity coefficient  for a 

complete range of both reflector dip-angles and depths using the 2.5-D common-offset 

migration/inversion formula [equation (4.4), or equations (4.9)/(4.12) with 

ˆ R θ
(2.5− D)

Nco = 1]. 

Figure 4.2a is a perspective view of Figure 4.2b. The horizontal (x) and vertical (z) axes 
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are normalized to source-receiver offset h. In Figure 4.2b dashed contours show the dip 

angles; the solid line is a portion of an ellipse showing a representative isochron. The 

desired reflectivity coefficient of 1.00 is recovered everywhere, except for dips 

approaching 90 degrees. The error is less than 5% in the upper left and right corners 

(dotted contours) where an infinite recording aperture is required, as expected for steep 

dips in constant velocity. The effect of stacking a limited receiver aperture is equivalent 

to averaging the reflectivities over a number of offsets, i.e. over a finite line-length at 

constant dip in the normalized coordinates (e.g., white line for 45° dip in Figures 4.2b, 

and 4.3b, black line for 45° dip in Figure 4.4b). 

Figure 4.3 shows the reconstructed amplitudes using the same common-offset acquisition 

configuration but with the common-shot weights (times a factor of 2)6 as given by 

equation (4.3) [or equations (4.9)/(4.10) with Ns =1]. Dips are the same as in Figure 4.2b 

and are not contoured. Instead, the reflectivity coefficient is contoured: solid contours are 

increments of 0.1, dashed contours are increments of 0.05 ranging from 0.55-1.45, and 

dotted contours are increments of 0.01 from 0.91-1.09, with dark indicating values larger 

than 1.0. The smallest values (less than 0.2) correspond to shooting down-dip (sailing up-

dip) while the largest values (greater than 1.9) correspond to shooting up-dip (sailing 

down-dip): thus, there is as much as an order of magnitude difference in amplitude. 

Stacking is equivalent to averaging over a finite line-length at constant dip (e.g., white 

line, as in Figure 4.2b). After stack, reflectors of the same dip but at different depths will 

be imaged with different reflectivities. 

                                                 

6 An extra factor of two is included to normalize the common-shot weight (and the common-receiver 

weight) to the common-offset configuration. To see that this might be required, note that in 2.5-D, for 

example, equation (4.12) is more like a sum of equations (4.10) and (4.11) instead of an average. 
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Figure 4.2. a) Perspective view of reflector amplitudes imaged in constant wavespeed subsurface using the 

exact 2.5-D common-offset weight [equation (4.5)/(4.8) with Nco = 1]. Expected reflectivity coefficient of 

1.0 is recovered exactly almost everywhere. Horizontal distance x(h) and depth z(h) are normalized to half-

offset h, and measured from the shot-receiver midpoint to the specular reflection point. b) A complete 

range of dips and depths are tested. The dashed lines are constant dip angle. Oval line is an isochron. 

Dotted lines (upper left and right corners) are contours of imaged amplitudes, interval 0.01. A stacked 

migrated section is an average over offset, e.g. average over white line for single reflector at 45° dip. 
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Figure 4.3. a) Perspective view of reflector amplitudes imaged in constant wavespeed subsurface using the 

2.5-D common-shot weight [equation (4.5)/(4.6) with Ns = 1]. Expected reflectivity coefficient of 1.0 is 

biased everywhere except at zero dip. Horizontal distance x(h) and depth z(h) are normalized to half-offset 

h, and measured from the shot-receiver midpoint to the specular reflection point. . b) Contours of imaged 

amplitude of reflector, intervals 0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines). A stacked 

migrated section is an average over offset, e.g. average over white line for single reflector at 45° dip. 
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Figure 4.4 shows the reconstructed amplitudes for the common-receiver weights (times a 

factor of 2), or equivalently, common-shot weights assuming the source location and 

receiver locations are switched (e.g. a one-sided marine spread towed in the opposite 

direction). The bias error is equal and opposite to that found in Figure 4.3 and, as expected 

from the formulae, summing the common-shot weights and common-receiver weights 

(with no factors of 2) yields the unbiased common-offset result (Figure 4.2). This 

relationship is explored in more detail in Figures 4.5-4.6. As before, Figures 4.5a and 4.6a 

are reference diagrams to indicate 2.5-D acquisition geometry, while Figures 4.5b and 4.6b 

show the range of dip angles (dashed contour) and a representative isochron (solid 

contour). Each offset in a symmetric split spread will have a corresponding negative offset. 

This pair can be represented in a common-offset configuration by orienting either the 

receiver-side or the shot-side towards the updip direction of the reflector. In Figure 4.5, 

the common-shot weight on the receiver-side (Figure 4.5c-d) and shot-side (Figure 4.5e-

f) are summed, yielding an unbiased result (Figure 4.5g-h). In Figure 4.6, the common-

receiver weight on the receiver-side (Figure 4.6c-d) and shot-side (Figure 4.6e-f) are 

summed, yielding an unbiased result (Figure 4.6g-h). As suggested previously, the bias 

errors cancel for a symmetric split spread. 

In Figure 4.7, the full bandlimited wavelet is imaged at horizontal and dipping (-45° and 

+45°) reflectors using both a one-sided and symmetric split spread. The peak amplitude is 

the ‘stacked reflectivity’ given by the common-shot weight, i.e. equations (4.9)/(4.10) 

except that the normalization factor is the number of offsets Nco  (equal to the number of 

receivers Ng ) instead of the number of shots Ns . Output is in two-way traveltime, which 

can be converted directly to depth (e.g. 1.5 s corresponds to a depth of 3000 m at 

4000 ms-1). Output traces are separated by an arbitrary horizontal spacing of 100 m. 
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Figure 4.4. a) Perspective view of reflector amplitudes imaged in constant wavespeed subsurface using the 

2.5-D common-receiver weight [equation (4.5)/(4.7) with Ng = 1]. Expected reflectivity coefficient of 1.0 is 

biased everywhere except at zero dip. Horizontal distance x(h) and depth z(h) are normalized to half-offset h, 

and measured from the shot-receiver midpoint to the specular reflection point. b) Contours of imaged 

amplitude of reflector, intervals 0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines). A stacked 

migrated section is an average over offset, e.g. average over black line for single reflector at 45° dip. 
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Figure 4.5. For the 2.5-D common-shot weight, the dip-and depth-dependent bias on the receiver side (c-d) 

and shot side (e-f) are equal and opposite. The average (g-h) equals the exact common-offset weighting 

function [compare equations (4.10) and (4.11) with (4.12)]. a) 2.5-D reference diagram. b) Reflector-dip 

reference diagram. c-h) Perspective view and contours of imaged amplitude of reflector with intervals of 

0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.6. For the 2.5-D common-receiver weight, the dip-and depth-dependent bias on the shot side (c-d) 

and receiver side (e-f) are equal and opposite. The average (g-h) equals the exact common-offset weighting 

function [compare equations (4.10) and (4.11) with (4.12)]. a) 2.5-D reference diagram. b) Reflector-dip 

reference diagram. c-h) Perspective view and contours of imaged amplitude of reflector with intervals of 

0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.7. One-sided spreads (e.g. towed streamers) accentuate the dip- and depth- dependent bias in 
2.5-D common-shot weighting function [equation (4.3) or equation (4.9)/(4.10)]. A symmetric split-spread 
averages equal and opposite receiver-side and shot-side bias, giving an unbiased result. a) 2.5-D reference 
diagram. b) Desired wavelet shape and reflectivity of 1. c) Symmetric split spread at zero dip. d) One-sided 
spread at zero dip – no bias. e-f) Symmetric split spread at +45° and –45° dips – bias averages out to zero. 
g) Receiver-side of one-sided spread – positive bias. h) Shot-side of one-sided spread – negative bias. 
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Figure 4.7a is a reference diagram to indicate 2.5-D acquisition geometry. For the one-

sided spread, offsets range from -2300 m to 0 m in intervals of 100 m. For the symmetric 

split-spread, offsets range from -2300 m to 2300 m in intervals of 100 m. Figure 4.7b 

shows the desired bandlimited reflectivity for a horizontal reflector. Figure 4.7c and 4.7d 

are the stacked bandlimited reflectivity for a horizontal reflector obtained by a symmetric 

split spread and one-sided spread, respectively. As shown previously, there is no bias 

error at zero dip, so the correct stacked reflectivity of unity is imaged by either spread 

layout. In Figure 4.7e and 4.7f, the symmetric split spread correctly images the stacked 

reflectivity for dips of -45° and +45°, respectively. Note that the bandlimited wavelet is 

plotted on a vertical axes and therefore stretched by a factor of ~ 2 , as expected for a 

dip of 45°. In Figures 4.7g and 4.7f, the one-sided spread fails to recover the correct 

value for dipping reflectors. Given that the shot is located on the positive side of the 

receivers, the direction of the bias agrees with the common-shot results plotted in Figure 

4.3 (or, assuming reciprocity, with the common-receiver results plotted in Figure 4.4). 

4.4.2 Synthetic tests comparing 3-D common-shot and common-offset weights 

The situation in 3-D is similar. Figure 4.8 shows the reconstructed amplitudes of the 

reflectivity coefficient  for a complete range of both reflector dip-angles and depths 

using the 3-D common-offset migration/ inversion formula [equation (4.2), or equations 

(4.5)/(4.8) with 

ˆ R θ
(3−D )

Nco = 1]. Figure 4.8a is a reference diagram to indicate 3-D acquisition 

geometry, in this case for a shot-receiver azimuth 45° from the dip-direction of the 

reflector. Figure 4.8b shows the range of dip angles and a representative isochron. 

Figures 4.8c-d, 4.8e-f, and 4.8g-h show that the correct reflectivity is recovered for shot-

receiver azimuths of 0°, 45°, and 90°, respectively. 
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Figure 4.8. 3-D common-offset weight: equation (4.2) or equations (4.5)/(4.8) with Nco = 1. a) 3-D 
reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) and 
depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective view 
of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 and 
90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.9 shows the reconstructed amplitudes for the 3-D common shot migration/ 

inversion formula [equation (4.1) or equations (4.5) and (4.6) with Ns =1]. Only the 

receiver-side is plotted. At 0° shot-receiver azimuth (Figures 4.9c-d), the bias error in the 

3-D result is less than the bias error in the comparable 2.5-D result (Figures 4.5c-d), 

although still significant. This is expected given that in 3-D, contributions from along-

strike shot-receiver pairs will, in effect, be equivalent to a 2.5-D contribution from 

greater depth. Note that there is no bias error at 90° azimuth (Figures 4.9g-h) because all 

dipping reflectors have a horizontal apparent dip in the strike direction. 

For both 2.5-D and 3-D, then, the optimum weighting function for stacked reflectivity is 

the common-offset weight. 

4.4.3 What ever happened to shot-gather migration? 

The synthetic tests presented in the previous section clearly show that an average of 

migrated shot-gathers does not produce an accurate estimate of stacked reflectivity. 

However, it is well known that a single migrated shot-gather can accurately image 

reflectivity at all dips (assuming a "true-amplitude" common-shot migration that uses an 

accurate model of both velocity and reflectivity above the subsurface imaging point—see 

Hanitzsch, 1997; Gray, 1997). How can an average of accurately migrated shot-gathers 

introduce significant bias error? The answer is simple: for a given reflector, the receiver 

apertures for many of the shot gathers record only a limited portion of the ‘minimum’ 

aperture required to accurately reconstruct reflectivity7. Thus many of the migrated shot-

gathers contain biased estimates of reflectivity, and a simple stack does not result in 

                                                 

7 But, as clearly shown by Wapenaar (1992), inverse wavefield extrapolation from an infinite aperture is 

not exact—the artifacts associated with a finite aperture do not vanish for the case of an infinite aperture. 
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Figure 4.9. 3-D common-shot (receiver side) or common-receiver (shot side) weight: equation (4.1) or 
equations (4.5)/(4.6) with Ns = 1. a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with 
normalized horizontal distance x(h) and depth z(h) measured from the shot-receiver midpoint to specular 
reflection point. c) e) g) Perspective view of imaged amplitude of reflector (input reflection coefficient 
unity) for shot-receiver azimuths at 0, 45 and 90 degrees from x-axis. d) f) g) Contours of imaged 
amplitude of reflector with intervals of 0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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fortuitous cancellation of the bias errors. The exception is a symmetric split spread—a 

common acquisition configuration for land surveys—but difficult to achieve in marine 

surveys. 

The bias error manifests itself in two ways. Reflector planes with the same dip but 

different normal orientations are imaged with different amplitudes, and reflector planes 

of different dips and depths are imaged with different amplitudes. As shown in Figure 

4.3, the relative error in amplitude for a dipping reflector imaged by end-shooting using 

an up-dip versus down-dip 2.5-D acquisition geometry can be as high as an order of 

magnitude; i.e., the reflectivity of a dipping reflector as determined by the peak trace 

amplitude from the resulting 2.5-D stacked section could change by a factor of 10 

depending on the shooting direction. This suggests that a significant dip-dependent 

“acquisition footprint” could be present in seismic images from 2-D (and 3-D) marine 

surveys. 

The results clearly show that the absolute magnitude of the bias error introduced by 

averaging migrated shot gathers is reduced if the number of offsets is used as the 

normalizing factor, rather than the number of shot gathers. For structural imaging, we are 

more concerned with the bias error in a relative sense (as in the example mentioned in the 

previous paragraph) rather than the actual magnitude of the reflectivity estimate 

compared to the true value. All estimates of reflectivity could be out by the same constant 

factor without changing the fundamental contrast in the structural image. Hence, the 

choice of normalization factor is not critical for practical implementation. 

Obviously, there is little hope in recovering accurate results from real data if our 

migration procedure cannot accurately recover known reflectivity from synthetic data. 

However, there are a number of additional effects not considered in the simplified 

formulae or in the synthetic tests. Two of the most significant are the influence of shot 
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and receiver arrays, and the free surface effect. Some of these may reduce the relative 

magnitude of the bias error; but if they do, it is more by good fortune than by design. The 

fact remains that a fundamental error is present in the basic premise of averaging 

migrated common-shot gathers, even for the simplest of models. 

Unfortunately, there does not appear to be a simple correction to the bias error introduced 

by averaging of common-shot gathers. In theory, at least, the bias can be eliminated by 

applying common-offset migration/inversion weights derived from the asymptotic 

formulae. Currently, however, the best prestack imaging algorithms employ inverse 

wavefield propagation in a wave-equation domain such as a shot gather. Inverse 

wavefield propagation can undo focusing and defocusing effects that may lead to 

multipathing of energy arrivals. In comparison, asymptotic migration/inversion operators 

(e.g., non-recursive diffraction-stack or Kirchhoff-type migration algorithms) are 

typically restricted to single arrivals and therefore tend to be less accurate in areas of 

complex velocity structure. The tradeoff, then, is between a demonstrably biased stacked 

amplitude obtained by averaging more accurate estimates obtained from wave-equation 

domain migrations, and an unbiased stacked amplitude obtained by averaging less 

accurate estimates obtained from asymptotic migration/inversions. A solution to this 

problem might be to incorporate additional weighting functions into the wave-equation 

domain migrations, either by a global scheme that synthesizes plane waves from a 

number of the shot gathers, or by a local scheme that takes advantage of the plane-wave 

decomposition inherent in, for example, stationary and nonstationary phase-shift 

algorithms. Possible solutions are not investigated further in this study. 

So, what ever happened to shot-gather migration? Shot-gather migration is still an 

accepted prestack imaging tool. But it is clear that the average of a number of migrated 

shot-gathers does not necessarily produce a consistent final image. 
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4.5 PRACTICAL FORMULAE FOR KIRCHHOFF TIME MIGRATION 

Recall from Section 2.5 the essence of the Kirchhoff-Helmholtz integral representation 

(KHIR). Two non-identical acoustic wavefields corresponding to two different sets of 

material properties propagate within the same volume. One of the acoustic wavefields is 

the recorded wavefield that has propagated in the unknown true subsurface media. The 

other wavefield is, in effect, defined by forward or backward propagating Green’s 

functions in the reference model. As discussed in Sections 3.2 and 3.3, we are free to 

choose the reference model and Green’s function both within and outside the volume, 

and to apply superposition as required. In fact, the choice of one-way Green’s functions 

allowed us to separate reflection from wavefield propagation, and thus simplify the 

reference model to a single parameter of acoustic wavespeed. These ‘practical’ choices 

led to the derivation of Kirchhoff-approximate and Born-approximate migration and 

inversion formulae that yield an estimate of reflectivity (or stacked) reflectivity at a 

single location in the subsurface. 

Given that each reflectivity estimate is determined independently, nothing prevents us 

from choosing a different reference model for each subsurface location. In effect, a single 

output ‘image’ can be created as a composite of many independent migrations. Thus, we 

can apply independence and superposition to choose any number of simple wavespeed 

models for the unknown (and possibly complex) properties of the subsurface8. Note that 

there is no requirement that these models be related in any physically meaningful way. 

However, it is often possible to achieve excellent focusing of subsurface reflectors and 

 

8 We can make multiple estimates of reflectivity at the same location using different wavespeed models, 

and then, using appropriate criteria, choose the ‘best’ estimate. This is the basic principle underlying most 

methods of wavespeed analysis. 
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even good relative positioning, typically at the expense of absolute positioning. This is 

the basic concept underlying non-recursive Kirchhoff time migrations such as EOM. 

4.5.1 Pseudo-depth and zero-offset two-way traveltime 

As discussed in Sections 1.2 and 1.3, the migration formulae can be thought of as a 

weighted summation over a “diffraction” surface in the input data space, where the 

diffraction surface is defined by the traveltimes from shot to imaging location to receiver. 

In a constant wavespeed medium, the diffraction surface can be described analytically 

using only two parameters, the wavespeed and the zero-offset two-way traveltime from 

the point on the surface vertically above the imaging location. If the unknown true 

medium is complicated, the shape of the diffraction surface may also be complicated. 

However, this complex surface might still be reasonably approximated by a ‘best-fit’ 

analytic constant-wavespeed diffraction surface, and therefore still be described by only 

two parameters9. For example, Schneider (1978) shows that RMS wavespeed is 

sufficiently accurate for non-recursive Kirchhoff imaging in media with vertical 

wavespeed gradients; and, in Section 1.5, I derived a generalized formula for a DSR 

diffraction surface in media with arbitrary wavespeed. 

Now consider a space-time image space with horizontal coordinates defined by the 

locations of the zero-offset shot-receiver pairs on a planar surface, and a vertical 

coordinate defined by two-way traveltime t   instead of depth . Each point in the 

image space corresponds to a ‘best-fit’ constant-wavespeed diffraction curve in the input 

data space. The composite constant-wavespeed model is defined in this new space-time 

2 z̃ zG

 

9 De Bazelaire (1988) and Castle (1988) extend the set of possible diffractions surfaces by introducing a 

third parameter τs  representing a static shift of the zero-offset traveltime [see equation (1.55) and 

discussion in Section 1.5.5, as well as Hockt et al. (1999)]. 
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coordinate space as c ˜ 0 = c0 (xG , yG , t2˜ z ). The reflectivity, as determined by the weighted 

summation over the diffraction curve, can be mapped directly to an image point defined 

in space-time [e.g. R 
(3−D )

(xG , yG , t2 ˜ z )

2 z̃ 

 for 3-D stacked reflectivity]. Thus, a basic 

unweighted migration can be implemented without requiring depth as a coordinate in the 

wavespeed model, and without specifying the depth of the image point. Unfortunately, 

the constant-wavespeed weighting function is defined in terms of i) distance from source 

to imaging point, ii) distance from receiver to imaging point, iii) directivity at the source, 

and iv) directivity at the receiver. All of these are simple functions of depth, a parameter 

we would prefer not needing to know. 

A reasonable approach is to define a ‘pseudo-depth’ coordinate  as half the two-way 

traveltime at the output point t   multiplied by the wavespeed, i.e. 

˜ z G

˜ z G = t2 ˜ z ˜ c 0 2 . In a 

constant-wavespeed medium, the pseudo-depth is the correct depth at the output point. In 

a medium with vertical and lateral variations in wavespeed, the pseudo-depth has no 

physical meaning other than in the context of the best-fit diffraction surface, as discussed 

in Section 1.5.3. Now all the terms in the weighting function can be determined, and we 

get a reasonable estimate of the true-amplitude stacked reflectivity—but still in an image 

space with a vertical coordinate of two-way traveltime. Unfortunately, the computation of 

all these terms in the weighting function is costly. We need the distance from each shot 

and receiver location to the ‘pseudo-location’ in the subsurface, which requires two 

square roots for each trace sample on each diffraction curve, or a very large lookup table. 

The optimal common-offset weighting function requires an additional dozen (or so) 

floating-point operations in both 3-D and 2.5-D (and three additional square roots for the 

2.5-D weighting function). These computational costs could be greatly reduced if we 

approximate the weighting function with terms that can be applied directly in either the 

input data space or the output image space. Using this concept, Gray (1998b) and 

Dellinger et al. (2000) take the optimal 2.5-D constant-wavespeed common-offset 
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weighting function and approximate it by a more efficient form. I apply their basic 

methodology in the following derivations. 

4.5.2 Optimum 3-D common-offset weighting function in terms of traveltimes 

First, the optimum migration formula for reflectivity (stacked or angle-dependent) is 

converted from a depth migration to a time migration. As discussed above, both the 

reflectivity and the ‘best-fit’ wavespeed model will be determined in an output space 

with a vertical coordinate of two-way-traveltime t  . The distances required in the 

constant-wavespeed weighting functions can be calculated using this pseudo-depth , as 

follows: 

2 z̃ 

˜ z G

 rGs = dGs
2 + ˜ z G

2 , (4.13) 

 rgG = dgG
2 + ˜ z G

2 , (4.14) 

with dGs = (xG − xs )
2 + (yG − ys )2  (4.15) 

and dgG = (xg − xG )2 + (yg − yG )2 . (4.16) 

An alternate approach is to convert the distances directly to traveltimes, i.e. 

 ts = rGs ˜ c 0 , (4.17) 

 tg = rgG ˜ c 0 , (4.18) 

and  t  2 z̃ = 2 c ˜ z G ˜ 0 , (4.19) 

with t = ts + tg . (4.20) 

Note that equation (4.19) is just a rearrangement of the definition of pseudo-depth  

given a known two-way traveltime t   and best-fit wavespeed c . 

˜ z G

2 z̃ ˜ 0

The approximation by traveltime is not unreasonable. In fact, weighting functions based 

on the traveltime approximation to the constant-wavespeed migration/inversion formulae 
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have proven to be robust and reasonably accurate in more complicated depth imaging 

problems (Dellinger et al., 2000; Zhang et al., 2000). As mentioned in the introduction to 

this chapter, Jaramillo et al. (2000) call these ‘true-amplitude time-migration weights’. 

Since all weighting functions are fundamentally derived from a macro-wavespeed model 

that approximates the unknown true subsurface, the true-amplitude time-migration 

weights can be thought of as imposing a minimum model. 

Using the conversions to traveltime, then, the 3-D stacked reflectivity [equation (4.5)] is 

given by 

 R 
(3−D )

(xG , yG , t2 ˜ z ) ≈ W 
(3− D)

(xG ,yG , t2 ˜ z ,x s ,xg )
traces
∑ ˆ f (t)∗

∂
∂t

pS
−

(3−D )
(xg, x s , t)

 
  

 
  

t =ts +t g

, (4.21) 

with the common-offset weighting function [equation (4.8)] re-expressed here as 

 W co
(3−D )

(xG , yG , t2 ˜ z ,x s , xg ) = −
dSs

Nco

(ts + tg )
tg

2 cosθgG

˜ c g
+

(ts + tg )
ts

2cosθGs

˜ c s

 
 
 

 
 
 

. (4.22) 

Equation (4.22) includes the terms 2 cosθgG ˜ c g and 2 cosθGs ˜ c s , which arise from twice 

the normal derivative at the surface location of the receiver and source, respectively. The 

angles θ gG  and θGs  are emergent angles, and the wavespeeds c  and c  are defined at the 

surface. With the following approximations (exact for constant-wavespeed): 

˜ g ˜ s

 cosθ gG =
˜ z G
rgG

=
t2 ˜ z 

2tg

, (4.23) 

 cosθ Gs =
˜ z G
rGs

=
t2˜ z 

2ts

, (4.24) 

 ˜ c g ≈ ˜ c 0 , (4.25) 

and ˜ c s ≈ ˜ c 0 , (4.26) 

equation (4.22) can be simplified to 
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 W co
(3−D )

= −
dSs

Nco

1
˜ c 0

tt2 ˜ z 
1
ts

2 +
1
tg

2

 

 
 

 

 
 

 
 
 

  

 
 
 

  
. (4.27) 

4.5.3 Simplifying the traveltime terms in 3-D common-offset weighting function 

Dellinger et al. (2000), in examining the 2.5-D case, suggest that a reasonable 

approximation is to evenly divide the traveltime t between t  and t , so that s g

 
1
ts

2 +
1
tg

2

 

 
 

 

 
 ≈

8
t 2 . (4.28) 

Equation (4.28) becomes exact when ts = tg , which occurs at zero offset (regardless of 

reflector dip) and at the stationary point (i.e. at specular reflection) for zero-dip reflectors 

(regardless of source-receiver offset). Then the common-offset weighting function can be 

simplified to 

 W co
(3−D )

≈ −
8
˜ c 0

dSs

Nco

t2 ˜ z 
1
t

   
    (4.29) 

In equation (4.29), t is just the two-way travel-time on the recorded traces, t  is the two-

way traveltime coordinate of the output space. Hence the 1

z

t  term can be applied to the 

input traces prior to summation over the diffraction curve, and the t   term can be applied 

directly to the output stacked-reflectivity ‘trace’. The essence of the result given by 

equation (4.29) is discussed (but not derived) in Zhang et al. (2000). 

2 z̃ 

If the goal for output is the stacked reflectivity scaled to within a constant or to within a 

slowly varying constant (reasonable given the approximations discussed above), all the 

terms outside the curly brackets on the RHS of equation (4.29) can be ignored, and the 

weighting function reduces to 

 W co
(3−D )

≈ −
t2 ˜ z 

t
. (4.30) 
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This is a remarkable simplification after an involved derivation spanning two and one-

half chapters of this dissertation. In migration slang, a simple weighting function like this 

is often referred to as a ‘ t0 t ’ weight, where t0 = t2 z̃   refers to the two-way traveltime time 

at the apex of the best-fit diffraction curve. In acknowledging the previously mentioned 

work of Zhang et al. (2000), I call this weighting function the Zhang ‘ t0 t ’ weight. 

Figure 4.10 shows the reconstructed amplitudes of the reflectivity coefficient  for a 

complete range of both reflector dip-angles and depths using the Zhang ‘ t

ˆ R θ
(3−D )

0 t ’ weight 

[equation (4.30) or equations (4.21)/(4.29) with Nco = 1]. Figure 4.10a is a reference 

diagram to indicate 3-D acquisition geometry, in this case for a shot-receiver azimuth 45° 

from the dip-direction of the reflector. Figure 4.10b shows the range of dip angles and a 

representative isochron. Figures 4.10c-d, 4.10e-f, and 4.10g-h show that the correct 

reflectivity is recovered for shot-receiver azimuths of 0°, 45°, and 90°, respectively. The 

downweighting effect associated with the ‘ t0 t ’ approximation becomes less as azimuth 

angle increases, and is negligible at an azimuth of 90° (compare Figures 4.10h and 4.9h). 

In practical terms, use of the Zhang ‘ t0 t ’ weight will give different results for 3-D 

marine surveys shot in the strike and dip directions. 

Note that the data  in equation (4.21) have not been gained, but are assumed 

to be recorded with spherical divergence (in addition to assuming that only the upward 

traveling scattered wavefield is recorded on a non-reflecting surface). Practical methods 

for handling more realistic data recorded with geometrical spreading appropriate for 

variable wavespeed as well as with attenuation and other factors affecting amplitudes 

(see Sheriff, 1975) will be discussed in Chapter 5. 

pS
−

(3−D )
(xg ,x s , t)
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Figure 4.10. 3-D Zhang ‘t0/t’ weight: equation (4.30) [same as Figure 4.16, equation (4.30) with  
and a ]. a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal 
distance x(h) and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) 
Perspective view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver 
azimuths at 0, 45 and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with 
intervals of 0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines). 

03 =a
06 =
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4.5.4 Optimum 2.5-D common-offset weighting function in terms of traveltimes 

The 2.5-D stacked reflectivity [equation (4.9)] can also be re-expressed by converting the 

distances directly to traveltimes using equations (4.13)-(4.20), yielding 

 
gs ttt

sg
D

S
traces

gszGDzGD
tp

t
tftxWtxR

+=
−

−
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
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
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
∗≈ ∑ ),,()(ˆ),,,(),(

)5.2(

2/1

~2)5.2(
~2)5.2(

xxxx
∂
∂

H , (4.31) 

with the optimal common-offset weighting function [equation (4.12)] re-expressed here 
as 

 W co
(2.5− D)

(xG , t2 ˜ z ,x s ,x g ) =
dxs

Nco

˜ c 0 2π ts + tg

ts

tg

2cosθ gG

˜ c g
+

tg

ts

2cosθGs

˜ c s

 

 
  

 

 
  

 
 
 

  

 
 
 

  
. (4.32) 

As with the 3-D common-offset formula [equations (4.21)/(4.22)], the terms 2 cosθgG ˜ c g  

and 2 cosθGs ˜ c s  arise from twice the normal derivative at the surface location of the 

receiver and source, respectively. Thus the angles θ gG  and θGs  are emergent angles, and 

the wavespeeds c  and c  are defined at the surface. These surface wavespeeds are 

replaced by the ‘best-fit’ wavespeed c , which is also used to convert the out-of-plane 

spreading correction factor 

˜ g ˜ s

˜ 0

+2π ˜ c 0rGs 2π ˜ c 0rgG  to its equivalent c ˜ 0 2π ts + tg . 

Otherwise, the expression does not simplify easily10. 

Now insert the approximations given by equations (4.23)-(4.26) (exact for constant 

wavespeed) into equation (4.32) and rearrange to obtain 

 W co
(2.5− D)

(xG , t2 ˜ z ,x s ,x g ) = − 2π
dxs

Nco

t2 ˜ z t ts tg
1
ts

2 +
1
tg

2

 

 
 

 

 
 

 
 
 

  

 
 
 

  
. (4.33) 

                                                 

10 Zhang et al. (2000) provide 2.5-D results for c0(z) wavespeed profiles-see Snieder and Chapman (1998) 

for a discussion of 3-D geometrical spreading in variable wavespeed and variable density media. 
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To simplify equation (4.33), an obvious substitution (and one that will be made shortly) 

is the 8 t 2  approximation given by equation (4.28). However, the RHS of equation 

(4.33) still contains the term tstg , which entails a computationally expensive 

calculation for every input trace sample on every diffraction surface (there will be one 

diffraction surface for each output trace sample and many required for velocity analysis). 

It is difficult to assess the significance of this term in the weighting function and 

therefore difficult to determine an approximation that is computationally less expensive 

and reasonably accurate. Later in this chapter, the accuracy of the various choices is 

evaluated for all dips and depths using constant wavespeed synthetics. First, however, we 

need some reasonable approximations. 

4.5.5 Simplifying the traveltime terms in 2.5-D common-offset weighting function 

Dellinger et al. (2000) propose a clever approach to simplifying the 2.5-D common-offset 

weighting function [equation (4.33)] that can be supported by practical arguments. They 

note that Bleistein et al. (1987), in deriving an inversion formula for bandlimited 

reflectivity [see equation (3.67)], first define a ‘reflectivity function’ that differs from 

bandlimited reflectivity by an ‘obliquity’ factor 2 cosθG c(xG) , where θG  is half the 

opening angle between the source and receiver rays at subsurface location x . In 

Appendix C, the obliquity factor is shown to equal 

G

∇φτ , the magnitude of the traveltime 

gradient for a given source-receiver pair [equation (C.3)]. Applying the half-angle 

formula for cosine gives 

 
2 cosθG

c(xG )
=

2 1+ cos2θG

c(xG )
 (4.34) 

Dellinger et al. (2000) then take the constant wavespeed case where c , apply the 

law of cosines to the triangle x , x , and x , and rearrange the result to show that 

(xG ) = ˜ c 0

g s G
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 cosθ G =
1+ cos2θG

2
=

1
2

(ts + tg )
ts tg

1−
(2h)2

˜ c 0
2 (ts + tg )2 , (4.35) 

where 2  is the source-receiver offset of the input trace. Equation (4.35) is defined here 

as the ‘cosine obliquity’ normalization factor. It evaluates to unity for an opening angle 

of zero (i.e. 

h

θG = 0 ) and progressively downweights as the opening angle increases. 

Using t  [equation (4.20)], notice that all terms on the RHS of equation (4.35) 

need to be calculated only once for each input trace sample—except for that same pesky 

= ts + tg

tstg  term as found in the denominator of the 2.5-D weighting function [equation 

(4.33)]. However, here it is in the numerator, so we can eliminate tstg  in equation 

(4.33) if we multiply by equation (4.35). After some simplification, the result is 

 W co
(2.5− D)

≈ −
2π
2

dxs

Nco

t2˜ z t
3 2 1

ts
2 +

1
tg

2

 
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 

 

 
 1−

(2h)2

(˜ c 0t)
2

 
 
 

  

 
 
 

  
. (4.36) 

Now we can apply the 8 t 2  approximation, yielding 

 W co
(2.5− D)

≈ −4 2π
dxs

Nco

t2˜ z 1−
(2h)2

(˜ c 0t)
2

1
t1 2

 
 
 

 
 
 

. (4.37) 

Equation (4.37) is called here the ‘Gray t0 t  cosine obliquity weight’ (shortened to ‘2.5-

D Gray t0 t cos ’ or just ‘Gray weight’ in figure titles), where ‘Gray’ refers to an 

unpublished internal report by Gray (1998b) subsequently released in a CSEG 

compilation volume edited by Lines et al. (1999), ‘ t0 t ’ is a generalized reference to the 

ratio of output and input traveltimes ( t2˜ z t1 2  for 2.5-D), and ‘cos’ refers to the extra 

weighting by an obliquity factor. The weighting function differs from Gray (1998b), who 

ignores all constants including wavespeed terms, and Dellinger et al. (2000), who 

multiply their weighting function for bandlimited reflectivity by equation (4.34) instead 

of equation (4.35) and neglect a factor of 1 2π( ) in the Fourier transform they use to 



 263 

 

0

convert the frequency-domain result of Bleistein et al. (1987) to the time domain. 

Equation (4.37), on the other hand, estimates an absolute value of reflectivity that should 

be unity except for the downweighting introduced by the cosine obliquity term and the 

approximation. 8/ t 2

8 t 2

Figure 4.11 shows the effect of various parts of the 2.5-D Gray ‘ t t ’ cosine obliquity 

weight. Figure 4.11a is a reference diagram indicating the 2.5-D common-offset 

acquisition geometry, while Figure 4.11b shows the range of dip angles (dashed contour) 

and a representative isochron (solid contour). Horizontal distance x and depth z are 

normalized to half source-receiver half-offset h. Reflectivity is contoured in Figures 

4.11d, 4.11f and 4.11h with dotted contours every 0.01 between 0.9 and 1.1, dashed 

contours every 0.05 between 0.5 and 1.5, and solid contours every 0.1. Figures 4.11c, 

4.11e and 4.11g are perspective views with reflectivity on the vertical axis. 

Figures 4.11c-d show reflectivity associated with the full weight, as given by equation 

(4.37). The expected value is unity everywhere. The general effect of the approximation 

is to downweight reflectivity at shorter traveltimes, and more so for steeper dips than 

gentler dips. Figures 4.11e-f show the reflectivity associated with the weight without the 

 approximation (i.e., including only the cosine obliquity approximation), as given by 

equation (4.36). The general effect of this approximation is to downweight gentler dips, 

especially at shallow depths where the opening angle is large. Another possibility is to 

apply the 8 t 2  approximation to the exact constant-wavespeed common-offset formula 

[equation (4.33)], yielding 

 W co
(2.5− D)

(xG , t2 ˜ z ,x s ,x g ) = −8 2π
dxs

Nco

t2˜ z tstg
1

t3 2
   

 . (4.38)   
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Figure 4.11. 2.5-D Gray ‘t0/tcos’ weight is exact 2.5-D common-offset weight with two approximations: 
8/t2 for (1/ts

2 + 1/tg
2), and cosine of obliquity angle, which removes (tstg)1/2. a) 2.5-D reference diagram. 

b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) and depth z(h) measured 
from the shot-receiver midpoint to specular reflection point. c-h) Perspective view and contours of imaged 
amplitude of reflector with intervals of 0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines): c-d) 
2.5-D Gray ‘t0/tcos’ weight, e-f) without 8/t2 but with obliquity, g-h) with 8/t2 but without obliquity. 
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Figures 4.11g-h show the effect without the cosine obliquity approximation (i.e. 

including only the 8 t 2  approximation), as given by equation (4.38). The general effect 

is to downweight steeper dips at shorter traveltimes. 

4.6 CUSTOM WEIGHTING FUNCTIONS FOR EFFICIENT IMPLEMENTATION 
OF 2.5-D AND 3-D EOM PRESTACK TIME MIGRATION 

Consider again the Gray ‘ t0 t ’ cosine obliquity weight [equation (4.37)]. If we ignore the 

constants in equation (4.37), the basic elements of the 2.5-D weighting function can be 

reduced to 

 W co
(2.5− D)

≈
t2 ˜ z 

t1 2 1−
(2h)2

(˜ c 0 t)2 . (4.39) 

The RHS of equation (4.29) can be thought of as consisting of two terms: the quotient 

term t2˜ z t1 2  and the square root term 1 − (2h)2 ( ˜ c 0t)
2 . All parameters in these terms 

can be calculated and applied either to the input traces prior to migration or to the output 

traces after migration. Wavespeed c  is a bit tricky because we need an average estimate 

over the travelpaths to and from the subsurface reflector; hence the required average 

wavespeed is more a function of the subsurface reflector location, i.e. the output two-way 

traveltime t  , rather than the input two-way traveltime t. Dellinger et al. (2000 p. 950) 

point out that an average wavespeed is required, but that ‘it is not yet clear what kind of 

average to use’; and although they must have chosen some average wavespeed for their 

constant-wavespeed weight term [their equation (18)], they do not say what that choice 

was

˜ 0

2 z̃ 

11. However, c  can be thought of as a parameter that adjusts the amount of ˜ 0

                                                 

11 In addition, Dellinger et al. (2000) appear to err in applying a correction factor of cs (wavespeed at the 

source) when converting from the reflectivity function β to the bandlimited reflectivity R, rather than 

applying the expected correction factor c0(xG) [wavespeed at the image point—see equation (4.34)]. 
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downweighting as a function of obliquity (opening angle at reflector), so the choice of a 

‘realistic’ average wavespeed is not necessary. 

For migration of a zero-offset section, h = 0, the square root term is unity, and the 

weighting function reduces to 

 W zo
(2.5− D)

≈
t2˜ z 

t1 2 . (4.40) 

In fact, using equation (4.40) in equation (4.31) gives an exact expression for constant-

wavespeed zero-offset migration/inversion (ignoring constants), with the weighting 

function found by substituting ts = tg = t 2  and equations (4.23)-(4.26) into equation 

(4.22). At non-zero offsets, 1 − (2h)2 ( ˜ c 0t)
2  is less than unity, given that the total 

distance along the path from source to reflector to receiver (  is always greater than 

the offset (2  between source and receiver. In effect, then, the square root term 

downweights as a function of opening angle similar to the ‘cosine obliquity’ 

normalization factor [equation (4.35)], but without the factor of t

˜ c 0t)

h)

2 tstg( ). This suggests 

that any weighting term with an appropriate downweighting effect could be substituted 

for the square root term, and the resulting reflectivities quantified and displayed in the 

same common-offset normalized form as used previously. By choice, a convenient and 

simple value of unity is chosen for reflectivity at all dips and subsurface positions. The 

characteristics of the variation from unity can then be judged. Given that there are 

numerous other approximations inherent in the time-migration model, a smooth variation 

over a limited range may be acceptable. It may even be desirable to create an effect that 

varies from unity, for example, by downweighting large dip angles or large opening 

angles at the reflector. The process of selecting parameters to achieve a particular effect 

or combination of effects that can be implemented efficiently will be called ‘building a 

custom weighting function’. 
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4.6.1 Custom weighting function for efficient implementation of 2.5-D EOM 
prestack time migration 

For efficient implementation in EOM prestack time migration, the custom weighting 

function can act in any or all of the following three domains: input traces, binned EO 

gather traces, and output traces. The generalized formula considered here for the 2.5-D 

custom weighting function is 
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. (4.41) 

In each domain, there are a limited number of useful parameters available, as follows: 

input trace: 

  t - input two-way traveltime, 

  h - source-receiver offset, and 

   - estimate of average wavespeed ˜ c 0

2 z̃ 

0

2 z̃ 

i

binned EO gather trace: 

  t - input two-way traveltime,  

    - output two-way traveltime, t

  he - equivalent offset, and 

   - average estimate of wavespeed ˜ c 

and output trace: 

    - the output two-way traveltime. t

The various exponents a  can be any positive real number (including zero, which 

effectively eliminates the weight in a particular domain) or even a function of some other 

parameter in the domain, although this additional flexibility will not be investigated here. 

Typically, k1 and k2 are constant, with k1 = 2 and k2 = 1. As we shall see, changing the 

value of k2 will prove useful for modifying a dip-dependent downweighting effect. 
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Notice that input two-way traveltime can be applied in either the input or EO gather 

domains, while output two-way traveltime can be applied in either the EO gather or 

output domains. Different exponents could be applied in different domains, which could 

be useful if the desired exponent is a function of domain-dependent parameters (e.g. 

offset or output position). However, I examine only constant exponents in this study. 

Notice also that the estimates of average wavespeed c  for the input traces and the EO 

gather traces need not be the same, although the notation suggests that they are. 

However, only one value is required for the tests reported here, because the chosen 

weights act only on either input traces or EO gather traces (not both). In addition, the 

average wavespeeds do not need to be constants: for the input traces c  could be a 

function of input two-way traveltime and selected spatial parameters; while for the EO 

gather traces, c  could be a function of either the input or the output two-way traveltimes 

and selected spatial parameters. This can provide some additional flexibility for custom 

design of a desired weighting effect. 

˜ 0

˜ 0

˜ 0

There are three general effects that are desirable in a custom weighting function: 

downweighting as a function of obliquity (i.e. the opening angle at the reflector), 

downweighting as a function of dip angle, and 

downweighting or upweighting as a function of two-way traveltime (input or 

output). 

Downweighting as the opening angle increases can reduce the problem of contamination 

from reflections beyond the critical angle and from refracted reflections. In addition, 

Esmersoy and Miller (1989) show that the focusing of a point velocity anomaly is greatly 

improved if a cosine-squared obliquity weighting is included. Downweighting as dip 

angle increases can reduce or eliminate the necessity for accurate processor-designed 

image-gather muting functions, and act as a natural migration-operator aperture taper. 
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And finally, downweighting or upweighting as two-way traveltime increases can be 

thought of as a general fix for more complicated trace-amplitude effects beyond the 

assumed spherical spreading, such as geometrical spreading in a variable wavespeed 

subsurface, transmission loss, and attenuation due to absorption and small-scale 

scattering. 

Consider again the 2.5-D case and the Gray ‘ t0 t ’ cosine obliquity weight, but now in the 

same form as the generalized weighting function [equation (4.41)]. Comparing equation 

(4.39) to (4.41) gives a1 = 1 2 , a2 = 2, a3 =1 2, a8 =1, and k1 = 2, with the other 

exponents zero, i.e. 
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Although it is feasible to present each weighting function in this form, it does not provide 

additional insight. In this study, only a few of the many possible combinations of 

exponents are examined (and there are many other possible parameters and combinations 

of parameters not included in the generalized form). Once the concept of a generalized 

weighting function is grasped, it is more straightforward to express the equations in a 

compact form such as equation (4.39). 

Using only input and output trace weighting, the amount of downweighting with opening 

angle can be increased by choosing a larger value for the exponents a  and a . In this 

study, I investigate only the effect of changing a  with a

2 3

3 2 = 2 and k1 = 2. Equation (4.42) 

can be re-expressed as 
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Figures 4.12c-d show the reflectivity for a3 =1 (annotated as ‘2.5-D Gray t0 t cos2 ’ in 

figure title). The contours of equal reflectivity in Figure 4.12d are beginning to 

approximate the shape of the isochron (solid line in Figure 4.12b), suggesting progress 

towards a dip-independent weighting function. Higher powers are applied in Figures 

4.12e-f (a , annotated as ‘2.5-D Gray t3 = 2 0 t cos4 ’ in figure title) and Figures 4.12g-h 

( , annotated as ‘2.5-D Gray ta3 = 3 0 t cos6 ’ in figure title). The fact that the iso-

reflectivity contours begin to approximate the shape of the isochrons suggests that a more 

balanced reflectivity (i.e. closer to unity everywhere) could be achieved by fractionally 

adjusting the exponent in 1 t a1 . This adjustment was tested with moderate success—the 

resulting reflectivity plots (not shown here) indicate that the curvature of the reflectivity 

surface in Figures 4.12g-h is not described by a simple exponential of input two-way 

traveltime. 

In a constant wavespeed medium, the output two-way traveltime t   is related to the input 

two-way traveltime and the equivalent offset h  by the ‘Kirchhoff NMO’ equation: 

2 z̃ 

e
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(2he )2

˜ c 0
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. (4.44) 

In other words, for the fixed values of a4 = −1, a5 = 2 , a6 = 1 2 , and k2 = 2, this portion 

of the generalized weighting function is equal to output two-way traveltime t  . This 

suggests that the following two forms are equal: 

2 z̃ 
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Figure 4.12. Increasing obliquity effect in 2.5-D Gray ‘t0/tcos’ weight: equation (4.43) with variable . 3a
a) 2.5-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance 
x(h) and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c-h) Perspective 
view and contours of imaged amplitude of reflector with intervals of 0.1 (solid lines), 0.05 (dashed lines) 
and 0.01 (dotted lines): c-d) 2.5-D Gray ‘t /tcos0

2’ weight ( ), e-f) 2.5-D Gray ‘t13 =a 0/tcos4’ weight 
( 2 ), g-h) 2.5-D Gray ‘t3 =a 0/tcos6’ weight ( ). 33 =a



 272 

 

Reflectivity for the first form is shown in Figures 4.13c-d. This is just the common-offset 

t0 t  weight given previously by equation (4.40). Reflectivity for the second form is 

shown in Figures 4.13e-f. As expected, it is identical to the first form. For comparison, 

reflectivity for the 2.5-D Gray t0 t  cosine obliquity weight [in various forms as equations 

(4.37), (4.39), (4.42) and (4.43)] is shown in Figures 4.13g-h. The downweighting effects 

are similar everywhere except at zero-dip, where the Gray weight downweights as the 

opening angle increases, i.e. at shallower depths given a fixed source-receiver offset. 

Given the similarity, and the extra effort required to calculate the additional weighting 

term in the Gray weight, one can conclude that the common-offset t0 t  weight is 

sufficient. Note, however, that the synthetic tests are noise-free, and assume that 

reflectivity is angle-independent. Hence, the effect on field data (or more realistic 

synthetic data) may lead to a different conclusion. As well, the tests presented here focus 

on accurate recovery of an average of angle-dependent reflectivity. Equally important is 

the spatial resolution obtained by imaging. Tests by Esmersoy and Miller (1989), and 

discussions in Miller et al. (1987) and Bleistein et al. (2001, esp. Chapter 4), suggest that 

weighting by opening angle, or even the square of the opening angle, can produce an 

image with better resolution. 

With the decision to abandon weighting based on opening angle for 2.5-D imaging, all 

the remaining weights in the generalized weighting function can be applied in the binned 

EO trace domain, and equation (4.41) reduces to 
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Figure 4.13. Comparison of 2.5-D EO ‘t0/t’ weights [equation (4.43)] with 2.5-D Gray ‘t0/tcos’ weight. 
a) 2.5-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance 
x(h) and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c-h) Perspective 
view and contours of imaged amplitude of reflector with intervals of 0.1 (solid lines), 0.05 (dashed lines) 
and 0.01 (dotted lines): c-d) 2.5-D EO gather ‘t0/t’ weight ( 214 =a , a , 1 ), e-f) 2.5-D EO gather 
‘t

0 7 =a6 =

0/t’ weight ( 214 =a , ,25 =a 216 =a , 0 ), g-h) 2.5-D Gray ‘t7 =a 0/tcos’ weight ( 213 =a ). 
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An obvious starting point is the common-offset t0 t  weight with additional 

downweighting from the term 1− (2he )2 (c0t)
2( )1 2

, i.e. with fixed values of a4 = 1 2 , k2 

= 2, a , a5 = 2 6 = 1 2 , and a7 = 1. The resulting weighting function can be simplified 

using equation (4.44) as follows: 
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The effect of additional downweighting by a factor of t2˜ z t  is shown in Figures 4.14c-d 

(annotated as ‘modified t0he
t  weight A’ in the figure captions). At zero-dip, the effect is 

similar to the additional downweighting by opening angle in the Gray weight (Figures 

4.13g-h). As dip increases, however, the effect is quite different. The ‘modified t0he
t  

weight A’ produces a strong downweighting with increasing dip angle. Downweighting 

is reduced by changing the factor k2 in the weighting function [equation (4.46) with fixed 

values a4 = 1 2 , a , a5 = 2 6 = 1 2 , and a7 = 1]. The effect for a value of k2 = 2  is shown 

in Figures 4.14e-f (annotated as ‘modified t0he
t  weight B’ in the figure captions) and for 

a value of k  in Figures 4.14g-h (annotated as ‘modified t2 =1 0he
t  weight C’ in the 

figure captions). 

The modified t0 eh t  weight C is given as 

 W co
(2.5− D)

≈
t2˜ z 

t1 2 1−
he

2

(˜ c 0 t)2 , (4.48) 

and is the preferred 2.5-D weighting function as determined by this study. Comparing the 

contours of reflectivity amplitude in Figure 4.14h with contours of constant reflector dip 

angle in Figure 4.14b, we see that the modified t0he
t  weight C downweights reflectivity 

amplitude by only 10% at 50° dip. A second desirable characteristic is that steep dips at 
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Figure 4.14. Custom weighting function that downweights with dip angle obtained by varying k2 in equation 
(4.46) [fixed 214 =a , , 25 =a 216 =a , and ]. a) 2.5-D reference diagram. b) Reflector dip 
reference diagram. c-h) Perspective view and contours of imaged amplitude of reflector with intervals of 0.1 
(solid lines), 0.05 (dashed lines) and 0.01 (dotted lines): c-d) 2.5-D modified ‘t

17 =a

0he/t’ weight A ( k ), e-f) 
2.5-D modified ‘t

22 =

0/t’ weight B ( 22 =k ), g-h) 2.5-D modified ‘t0/t’ weight C ( ). The 2.5-D modified 
‘t

12 =k

0/t’ weight C is preferred, but rigorous testing has not been attempted for this dissertation. 
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shallow depths are downweighted for large source-receiver offsets (close to the 

normalized valued of h in Figure 4.14h), although this is more a function of the 8 t 2  

approximation introduced earlier [see equation (4.28) and the corresponding weighting 

effect in Figures 4.11h, 4.13d and 4.13f]. Finally, the weight can be applied in the binned 

EO trace domain prior to Kirchhoff NMO. This creates preweighted EO gathers suitable 

for conventional velocity analysis tools such as constant or percentage velocity stacks. In 

Chapter 5, weight C is used to for EOM prestack time migration of crustal seismic 

reflection data from SNORCLE line 1. 

A dip filter can be implemented by tapering the equivalent offset gathers as a function of 

the equivalent offset h . The same effect can be achieved by limiting the input migration 

aperture. Figure 4.15 shows the effect of tapering the equivalent offset gathers using a 

cosine-bell taper from h

e

e = 1.5z + h  to he = 3z +2h . Figures 4.15a/b are the 2.5-D 

reference and dip, while Figures 4.15c/d, 4.15e/f, and 4.15g/h show the effect of the taper 

on the 2.5-D optimum common-offset weight, the 2.5-D Gray ‘ t0 t cos ’ weight, and the 

2.5-D modified ‘ t0he
t ’ weight C, respectively. In all cases, the taper does not change the 

amplitude of reflectors with dips less than ~60°, and then gradually reduces the amplitude 

of reflectors to zero at dips of ~75°. 

The custom weighting functions presented above have been derived and tested for 2.5-D 

migration in constant wavespeed media, but can be applied with excellent results as 

weighting functions for depth migration in variable wavespeed media (Dellinger et al., 

2000). 
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Figure 4.15. A dip filter obtained by tapering in equivalent offset. a) 2.5-D reference diagram. b) Reflector-
dip reference diagram. c-h) Perspective view and contours of imaged amplitude of reflector with intervals of 
0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines): c-d) Exact 2.5-D common-offset weight with he 
taper. e-f) 2.5-D Gray ‘t0/tcos’ weight (downweights obliquity) with he taper, g-h) 2.5-D modified ‘t0/t’ 
weight C (downweights dip) with he taper. The taper does not change the amplitude of reflectors with dips 
less than ~60°, and gradually reduces the amplitude of reflectors to zero at dips of ~75°. 
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4.6.2 Custom weighting function for efficient implementation of 3-D EOM prestack 
time migration 

Much of the discussion presented in the previous section on custom weighting functions 

for efficient 2.5-D migration can be applied to 3-D migration. The basic approximate 

Zhang ‘ t0 t ’ weight derived for 3-D migration as equation (4.30) differs from the 2.5-D 

zero-offset migration formula [equation (4.40)] by a square root power of t in the 

denominator and a sign change. Thus, with a change in sign, the generalized formula 

given by equation (4.41) is valid for 3-D custom weighting functions, i.e.: 
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. (4.49) 

As discussed previously, the relevant parameters are as follows: 

input trace: 

  t - input two-way traveltime, 

  h - source-receiver offset, and 

   - estimate of average wavespeed ˜ c 0

2 z̃ 

0

2 z̃ 

binned EO gather trace: 

  t - input two-way traveltime,  

    - output two-way traveltime, t

  he - equivalent offset, and 

   - average estimate of wavespeed ˜ c 

and output trace: 

    - the output two-way traveltime. t



 279 

 

The three general effects desirable in a custom weighting function: 

downweighting as a function of obliquity (i.e. the opening angle at the reflector), 

downweighting as a function of dip angle, and 

downweighting or upweighting as a function of two-way traveltime (input or 

output), 

can be achieved with a reduced version of equation (4.49),  
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In Figures 4.16-4.27, the results of the 3-D tests are shown for values of a3 = 0, 1/2, and 

1; a6 = 0 and 1/2; each with and without an he taper. For example, with a3 = 1 and a6 = 0, 

the weighting function given by equation (4.50) is called the ‘3-D Zhang ‘ t0 t cos2’ 

weight’: 
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(see Figure 4.18). With a3 = 1/2 and a6 = 1/2, the weighting function given by equation 

(4.50) is called the ‘3-D modified ‘ t0he
t cos’ weight C’: 
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(see Figure 4.20). All of the permutations plotted in the Figures 4.16-4.27 appear to 

provide reasonable amplitudes over a wide range of dips and depths. Further testing is 

required to determine and compare the spatial resolution of the various weighting 

functions. This testing is left for future work. 

(Chapter 4 continues on page 292, after Figure 4.26) 
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Figure 4.16. 3-D Zhang ‘t0/t’ weight: equation (4.50) with  and a  [repeat of Figure 4.10, see 
equation (4.30)]. a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized 
horizontal distance x(h) and depth z(h) measured from the shot-receiver midpoint to specular reflection 
point. c) e) g) Perspective view of imaged amplitude of reflector (input reflection coefficient unity) for 
shot-receiver azimuths at 0, 45 and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of 
reflector with intervals of 0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines). 

03 =a 06 =
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Figure 4.17. 3-D Zhang ‘t0/tcos’ weight: equation (4.50) with 213 =a  and . 06 =a
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.18. 3-D Zhang ‘t0/tcos2’ weight: equation (4.50) with a  and  [see equation (4.51)]. 13 = 06 =a
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.19. 3-D modified ‘t0he/t’ weight C: equation (4.50) with  and 03 =a 216 =a . 
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.20. 3-D modified ‘t0he/tcos’ weight C: equation (4.50) with 213 =a  and 216 =a  [equation 
(4.52)]. a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal 
distance x(h) and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) 
Perspective view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver 
azimuths at 0, 45 and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with 
intervals of 0.1 (solid lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.21. 3-D modified ‘t0he/tcos2’ weight C: equation (4.50) with  and 13 =a 216 =a . 
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.22. 3-D Zhang ‘t0/t’ weight, he taper: equation (4.50) with , , h03 =a 06 =a e taper. 
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.23. 3-D Zhang ‘t0/tcos’ weight, he taper: equation (4.50) with 213 =a , , h06 =a e taper. 
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 



 288 

 

 
Figure 4.24. 3-D Zhang ‘t0/tcos2’ weight, he taper: equation (4.50) with , , h13 =a 06 =a e taper. 
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.25. 3-D modified ‘t0he/t’ weight C, he taper: equation (4.50) with , 03 =a 216 =a , he taper. 
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.26. 3-D modified ‘t0he/tcos’ weight C, he taper: equation (4.50) with 213 =a , 216 =a , he taper. 
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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Figure 4.27. 3-D modified ‘t0he/tcos2’ weight C, he taper: equation (4.50) with , 13 =a 216 =a , he taper. 
a) 3-D reference diagram. b) Reflector dip (strike parallels y-axis) with normalized horizontal distance x(h) 
and depth z(h) measured from the shot-receiver midpoint to specular reflection point. c) e) g) Perspective 
view of imaged amplitude of reflector (input reflection coefficient unity) for shot-receiver azimuths at 0, 45 
and 90 degrees from x-axis. d) f) g) Contours of imaged amplitude of reflector with intervals of 0.1 (solid 
lines), 0.05 (dashed lines) and 0.01 (dotted lines). 
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4.7 COMPARISON WITH WIGGINS’ (1984) DOUBLE-DOWNWARD 
CONTINUATION KIRCHHOFF MIGRATION WEIGHTS 

In this section, I continue in the spirit of examining common practice by comparing 

Wiggins’ (1984) non-recursive constant-wavespeed Kirchhoff migration weights with the 

‘optimum’ formula given by equations (4.5)/(4.8). Wiggins derives his migration formula 

as a double-downward continuation followed by a t = 0  imaging condition. His method 

is closely related to the recursive double-downward continuation scheme of Schultz and 

Sherwood (1980) and the f-k (frequency-wavenumber or Stolt) prestack migration 

scheme of Stolt (1978) and Stolt and Weglein (1985) (see discussion of contribution 10 

in Section 1.7). Since the EWM scheme of Margrave et al. (1999)—the Fourier analogue 

of EOM—is based on Stolt prestack theory, EWM does not produce true-amplitude 

estimates of the reflectivity coefficient. 

In Section 4.3, I showed that the weighting function for a 2.5-D common-offset 

configuration [equation (4.12)] could be thought of as a linear combination of the 

common-shot weight [equation (4.10)] and the common-receiver weight [equation 

(4.11)], i.e. 

 W co
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(xG ,x s ,xg ) +
Ng

Nco

W g
(2.5−D )

(xG ,x s ,xg ). (4.53) 

That the correct result is a combination of common-shot and common-receiver weights 

might lead one to think (incorrectly) that alternating downward-continuation of shots and 

receivers is an accurate migration/inversion method. Although the kinematics of double-

downward continuation are correct, the dynamics are not. 

Before introducing Wiggins’ weights, I will describe the basic principle of double-

downward continuation and a t = 0  imaging condition that Wiggins uses to obtain a map 

of subsurface reflectors. First the wavefield recorded by receivers on the surface is 



 293 

 

                                                

downward continued into the subsurface. In effect, the downward continued wavefield 

can now be thought of as being recorded by receivers in the subsurface. Reciprocity is 

invoked to switch the surface sources and subsurface receivers. The downward continued 

wavefield is now equivalent to a reciprocal wavefield recorded by receivers on the 

surface but originating from shots in the subsurface (these reciprocal receivers are, of 

course, located at the original shot locations). Hence, the reciprocal wavefield can be 

downward continued into the subsurface—the second downward continuation. Finally, 

an appropriate imaging condition is required to extract the wavefield amplitudes, 

hopefully at the subsurface location of the reflectors.12 

The first downward continuation accounts for the traveltime from the receivers to the 

subsurface location, while the second downward continuation accounts for the traveltime 

from the shots to the subsurface location. With all the traveltime for a given reflection in 

the recorded trace accounted for, the desired image or map of the subsurface can be 

obtained by extracting the wavefield amplitudes from the double downward-continued 

wavefield at time t . Note that Wiggins implements his method as a Kirchhoff 

migration. Thus, both of the downward-continuations and the imaging condition can be 

achieved by a simple weighted summation over a time surface in the filtered data. 

Unfortunately, the resulting amplitude map is not directly related to the strength of the 

reflection coefficients—as can be seen by examining Wiggins’ 3-D and 2.5-D migration 

equations. 

= 0

Wiggins obtains the following equation for 3-D migration in a constant-wavespeed 

medium, re-expressed here in the notation of this dissertation as 

 

12 Inverse wavefield propagation uses the reference wavespeed, not the unknown true wavespeed. Hence 

both focusing and positioning of reflectors depend on the reference model. 
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 I 
(3−D )

(xG , yG , t2 z ) = W w
(3− D)

(xG , yG ,t2z ,x s , xg )
traces
∑ ∂ 2

∂t 2 pS
−

(3−D )
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 
  

 
  
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, (4.54) 

where 

 W w
(3−D )

(xG , yG , t2 z ,x s , xg ) =
−dSs dSg

˜ c 0
2

1
rGs rgG

cosθgG cosθGs

 
 
 

 
 
 

. (4.55) 

Equations (4.54)/(4.55) can be compared with the ‘optimum’ formula given by equations 

(4.5)/(4.8), re-expressed here as 

 R 
(3−D )

(xG , yg ,t2z ) = W co
(3− D)

(xG , yG , t2z , x s ,xg )
traces
∑ ˆ f (t)∗
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 
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t =ts +tg

 (4.56) 

and 

 W co
(3−D )

(xG , yG , t2 z ,x s , xg ) =
−2dSs

˜ c 0 Nco

(rGs + rgG )
rgG

cosθgG +
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cosθ Gs
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 
 

 
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 (4.57) 

Wiggins’ 3-D formula includes an extra time-derivative operator, neglects the 

bandlimiting filter , and applies an inaccurate weighting function. If we ignore 

constant terms including wavespeed, Wiggins’ weighting function is incorrect by a factor 

of order 1

ˆ f (t)

r 2 , where r is an approximate distance measure from shot or receiver to 

subsurface imaging point. This error introduces the largest effect—that reflectivity in the 

output image would be significantly reduced in amplitude at depth. 

Wiggins obtains the following equation for 2-D migration in a constant-wavespeed 

medium, re-expressed here in the notation of this dissertation as 

 I 
(2− D)

(xG ,t2z ) = W w
(2−D )

(xG , t2z ,x s ,xg )
traces
∑ ∂

∂t
pS

−

(2− D)
(xg ,x s ,t)

 
  

 
  

t=ts + tg

, (4.58) 

where 
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 W w
(2− D)

(xG ,t2z ,x s , xg ) =
−1

˜ c 0 rGs rgG

cosθ gG cosθGs . (4.59) 

In an appendix to his paper, Wiggins determines that the 2-D migration formula can be 

applied to 2.5-D data by multiplying the input data by t . In a constant-wavespeed 

medium, this is equivalent to multiplying by rGs + rgG c0 , suggesting that Wiggins’ 

2.5-D weighting function for point-source data is 

 W w
(2.5− D)

(xG , yG , t2z , x s ,xg ) =
−dxsdxg

˜ c 0
3 / 2

rGs + rgG
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cosθgG cosθGs

 
 
 

  
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 
 

  
. (4.60) 

Equations (4.58)/(4.60) can be compared with the ‘optimum’ formula given by equations 

(4.9)/(4.12), re-expressed here as 
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and 
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(xG , t2z ,x s , xg ) =
2 2πdxs
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. (4.62) 

Wiggins’ 2.5-D weighting function is incorrect by a factor of order 1 r . The bandlimiting 

filter  is neglected, and, in addition to the phase and amplitude errors introduced by 

the extra half-time-derivative operator, the incorrect sign and missing Hilbert transform 

result in a further phase error of 

ˆ f (t)

π 2 . 

Obviously, double-downward continuation does not create an image of the subsurface 

reflectivity with amplitude and phase corresponding to a zero-phase bandlimited singular 

function whose peak amplitude is an average of the angle-dependent reflectivity 

coefficients. Synthetic testing and comparison of the various migration weights could 

further enhance the argument, but this aspect has been left for future work. 
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4.8 SUMMARY—PRACTICAL 2.5-D AND 3-D EOM PRESTACK TIME 
MIGRATION 

In this chapter, the frequency-domain expressions for imaging reflectivity in constant 

wavespeed media from Chapter 3 were re-expressed in the time-domain. The common-

offset migration/inversion formula [equations (4.5)/(4.8)] was shown to be optimum for 

estimating stacked reflectivity, whereas both the common-shot and common-receiver 

formulae [equations (4.5)/(4.6) or (4.5)/(4.7)] yield biased results. However, the exact 

common-offset formula is not practical for EOM prestack time migration because 

calculation of the weighting function depends on distance measures that vary with each 

shot and receiver location relative to each subsurface imaging point. The exact weighting 

function is computationally expensive to evaluate, and not necessarily accurate given 

other approximations inherent in time migrations. 

In a time migration, the vertical coordinate of the output imaging point is approximated 

by the two-way traveltime corresponding to the apex of a best-fit diffraction-traveltime 

surface in the input data. The distance measures in the weighting function can be 

converted to corresponding traveltimes at a best-fitting wavespeed parameter. The 

resulting weighting function [equation (4.22)] is thus an approximation, suggesting that 

further approximations might reduce the computational cost without significant loss of 

accuracy. The goal was identified to be a weighting function that can be applied in some 

or all of three domains: input traces, equivalent-offset-gather traces and/or output traces. 

Following approximations introduced by Gray (1998b), Dellinger et al. (2000), and 

Zhang et al. (2000), generalized custom weighting functions were derived for imaging in 

2.5-D [equation (4.41)] and in 3-D [equation (4.49)]. For 2.5-D, the modified ‘ t0he
t ’ 

weight C [equation (4.48)] is preferred over the Gray ‘ t0 t ’ cosine obliquity weight 

[equation (4.39)]. For 3-D, the modified ‘ t0he
t ’ weight C [equation (4.52)] is preferred 

over the Zhang ‘ t0 t ’ weight [equation (4.51)]. 
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Note that the weighting functions have a broader application as approximate weights for 

Kirchhoff-type (ray-traced) depth migrations in media with variable wavespeed. 

Jaramillo et al. (2000) use the term ‘true-amplitude time-migration weights’ to describe 

constant-wavespeed expressions for the Beylkin Jacobian (Beylkin, 1982, 1985) and 

geometrical spreading, with distances from the source to output point and receiver to 

output point replaced by traveltimes. These simplified weights can produce a stacked 

migrated section without the brightening and dimming often associated with weights 

determined by dynamic ray-tracing (Dellinger et al., 2000). 

The practical time-domain constant-wavespeed time-migration formulae can be extended 

to variable wavespeed by assuming a different constant wavespeed model for each output 

point (see e.g. Schneider, 1978 for discussion of RMS c(z) wavespeed, and Section 1.5 

for a discussion of variable wavespeed). The resulting image is distorted, both in imaging 

position and amplitude, but peak amplitudes over a range of dips and depths will be 

approximately proportional to stacked reflectivity and therefore are preserved in a 

relative sense. This leads to the term ‘relative amplitude-preserving prestack time 

migration’, an adaptation of a term introduced by Eaton and Milkereit (1997). In Chapter 

5, practical weights are applied to EOM prestack time migration for improved imaging of 

crustal structure in northwestern Canada. 
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CHAPTER 5: PRESTACK TIME MIGRATION WITH RELATIVE 
AMPLITUDE PRESERVATION: RESULTS FROM LINE 1 OF 
THE LITHOPROBE SNORCLE TRANSECT 

5.1 INTRODUCTION 

In this chapter, I present a new processing flow for imaging crustal seismic reflection 

data, and test it on a portion of LITHOPROBE SNORCLE line 1. The objective is to 

preserve relative reflection strength over a wide range of dips and depths. Relative 

amplitude is preserved by careful preprocessing of input traces, followed by relative 

amplitude preserving EOM prestack time migration using amplitude factors based on the 

practical constant-wavespeed weighting functions developed in Chapter 4. The high fold 

of the prestack migrated output traces increases the signal to noise ratio, yielding results 

that are comparable to conventional poststack migrated and coherency-filtered sections. 

In addition, the new flow provides consistent imaging wavespeeds over a range of dips. 

These benefits should increase confidence in interpretations based on subtle concordant 

and discordant reflector relationships. 

The concept that prestack time migration might be an improvement over conventional 

normal moveout correction (NMO), stack and poststack migration is not new (see e.g. 

Claerbout, 1985 for an overview). It has also been long recognized that the conventional 

approach, when combined with dip-moveout (DMO), is the kinematic equivalent of 

prestack time migration (Yilmaz, 1980; Deregowski and Rocca, 1981). DMO is still 

widely used in industry, and has been included as part of the processing sequence in a 

number of previous LITHOPROBE studies (e.g. Clowes et al., 1996), but is typically 

restricted to data from the upper crust where the DMO effect is the greatest (Eaton and 

Hynes, 2000). With DMO, imaging still requires two separate steps of wavespeed 

analysis, first for the NMO and then for the poststack migration. This can be a benefit, as 
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it incorporates two parameters in the imaging instead of the one parameter in prestack 

time migration, but it can also be a detriment, because errors introduced in stacking carry 

through the poststack migration and hence to the final image. 

Prestack migration has been applied in a number of crustal seismic reflection studies in 

an effort to improve imaging, but most typically as depth migrations (e.g. Milkereit et al., 

1990; Buske, 1999). The problem with depth migrations, as discussed in Chapter 1, is 

that they require an accurate specification of the macro-wavespeed model in depth. This 

is not easy to do, although information from crustal-scale refraction seismic surveys is 

often incorporated at mid- and lower-crustal depths (Burianyk et al., 1997; White et al., 

2000). I was not able to find a reference that describes an application of prestack time 

migration to crustal-scale seismic reflection data. Here, I propose that EOM prestack time 

migration be considered as a replacement for the conventional steps of NMO, DMO, 

stack and poststack migration. 

A number of authors have proposed ‘true-amplitude’ approaches to the processing of 

crustal-scale seismic reflection data, including Milkereit et al. (1990), Sampson and West 

(1992), Eaton and Wu (1996), and Eaton and Milkereit (1997). Their efforts lean towards 

the estimation of true-amplitude reflectivity, with the general intent of estimating rock 

properties from the impedance contrasts. My intent is to preserve relative amplitudes as 

an aid to interpreting structural relationships in the image. Hence the approach is much 

less rigorous, and relies heavily on statistics. 

The basic results presented in this chapter have been reported previously by Geiger et al. 

(1998; 1999). The focusing of reflectors in the prestack migrated image is very sensitive 

to the imaging wavespeeds. Wavespeeds were picked from constant wavespeed stacks at 

discrete locations and times, and then interpolated by the processing software. This often 
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resulted in poor focusing in the interpolated regions between the pick points. In addition, 

there are problems imaging the very shallow section that have yet to be resolved. Careful 

reprocessing of a different portion of LITHOPROBE SNORCLE line 1 (van der Velden et 

al., 2001; van der Velden and Cook, 2001) has also produced good results. Although 

these authors apply an AGC instead of the statistical amplitude preservation steps 

discussed here, the EOM prestack time migration produces a better image of subsurface 

crustal structure than LITHOPROBE’s conventional imaging approach of NMO, stack, and 

poststack phase-shift migration. 

5.1.1 Overview of Chapter 5 

In Section 5.2, I briefly introduce the study area. In Section 5.3, I describe the main 

similarities and differences between the conventional processing approach adopted by 

LITHOPROBE, and the new approach proposed here. In Section 5.4, the results of the 

various migrations are displayed and compared. Section 5.5 is a brief summary. 

5.2 STUDY AREA 

The 70 km portion of LITHOPROBE SNORCLE (Slave NORthern Cordillera 

Lithospheric Evolution) line 1 selected for this study is outlined by the black rectangle in 

Figure 5.1, and shown in a variety of migrated images in Figures 5.4-5.7. The portion 

straddles part of the Fort Simpson terrain as well as the Fort Simpson Basin, which 

developed along a west-facing passive continental margin between ~1.84-0.6 Ga (Cook 

et al., 1998). The test portion includes a variety of shallow and deep structures, including 

some of the steepest dipping reflectors imaged in the SNORCLE Line 1 profile (the east 

or right side between 1-5 s, see Figures 5.4-5.7), a possible syncline structure (west side 
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between 5-7 s), a clear reflection Moho (west side at 11 s), and subduction plate 

geometries from an interpreted fossil subduction zone (east side, reflection packages at 

9 s and 12 s). 

 

 Figure 5.1. Location map for LITHOPROBE SNORCLE line 1 (bold black line) in northwestern 

Canada. The 70 km portion reprocessed in this study is outlined by the black box (figure courtesy of 

Arie van der Velden). 

 

5.2 COMPARISON BETWEEN THE CONVENTIONAL LITHOPROBE 
APPROACH AND THE NEW APPROACH OF THIS STUDY 

An example processing flow as applied to SNORCLE line 1 (Cook et al., 1999) is listed 

in Table 5.1. The new approach, using relative amplitude preserving EOM prestack time 

migration, is listed in Table 5.2. Some of the processing steps are common to both 

approaches. To assist in the comparison, all of the conventional steps are listed in Table 

5.2: retained steps in italics, eliminated steps in strikethrough, and new steps in bold. 
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Table 5.1. Conventional data processing steps 

_____________________________________________________________ 
Processing step Comment 
_____________________________________________________________ 
Diversity-type stack of  
   uncorrelated records 
Extended crosscorrelation 32 s record length 
Crooked line geometry 30 m x 1500 m bins 
Notch filter where necessary 60 Hz 
Trace edits, first break picks 
Refraction statics computation Two-layer GLI 
Velocity analysis Local constant velocity stacks 
Application of first break mutes 
Automatic gain control 800 ms window 
Gapped deconvolution on sediments 
Statics application 
Normal move-out correction on 
   common-midpoint gathers 
Residual statics computation 2.0-6.0 s window 
Stack Nominally 134 fold 
Trace energy balance 8-16 s window 
Frequency-space deconvolution Sliding window 
Coherency filter 
Poststack migration Constant wavespeed phase shift 
Coherency filter 
Plot Variable area with bias 
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Table 5.2. Relative amplitude preserving EOM data processing steps 
(new steps-bold; conventional steps: retained-italics, eliminated-strikethrough) 
_____________________________________________________________ 
Processing step Value 
_____________________________________________________________ 
Diversity-type stack of  
   uncorrelated records 
Extended crosscorrelation 32 s record length 
Crooked line geometry 30 m x 1500 m bins 
Notch filter where necessary 60 Hz 
Trace edits, first break picks 
Refraction statics computation Two-layer GLI 
Velocity analysis Local constant velocity stacks 
Application of first break mutes 
Automatic gain control 800 ms window 
Statistical data cleaning 
   and balancing t1.3 scaling factor applied 
Statics application Includes residual statics 
    from conventional processing 
Gapped deconvolution on sediments 
Normal move-out correction on 
   common-midpoint gathers 
Residual statics computation 2.0-6.0 s window 
Stack Nominally 134 fold 
Trace energy balance 8-16 s window 
Frequency-space deconvolution Sliding window 
Coherency filter 
Poststack migration Constant wavespeed phase shift 
Coherency filter 
Form equivalent offset gathers Amplitude weighting using 
    equation (4.48) times )( 0tt1  
Migration velocity analysis Constant velocity stacks of 
    equivalent-offset gathers 
Normal moveout correction on 
   equivalent-offset gathers 
Stack of EO gathers Stack normalization by )( 0tN1  

23Weighting of stacked migrated output Amplitude weighting by 0t  
Plot Variable area with bias 
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5.2.1 Important similarities between the two approaches 

There are four important similarities between the conventional approach and the new 

approach: deconvolution, refraction statics, reflection statics, and plotting. The main 

reason for these similarities is that the conventional processing had already been 

completed, and was then used as a platform for the new processing. For example, the 

time consuming steps of first break picking and careful calculation of a refraction-statics 

solution did not need to be duplicated. The same static picks were applied in both 

approaches. This has the added benefit that differences in the migrated images cannot be 

attributed to ancillary processing steps, although the conventional solutions may not be 

optimized for the new approach. Reflection statics, for example, are determined by 

maximizing the coherency in the unmigrated stack, a step that is omitted in the new 

approach. Fortunately, these statics are quite small, rarely exceeding 10 ms, so there was 

no discernable difference between the new approach with and without them. They were 

included in the conventional approach, and so, for consistency, they are included in the 

new approach. 

The deconvolution is a basic gapped deconvolution, with the operator derived trace-by-

trace. This does not preserve true-amplitude as well as a surface-consistent 

deconvolution, but was included for consistency. All migrated sections (see Figures 5.4-

5.8) are plotted in variable area with a trace bias. 

5.2.2 Important differences between the two approaches 

The conventional approach to crustal seismic reflection processing, as currently adopted 

by LITHOPROBE, includes an automatic gain control (AGC) applied to input traces, a stack 

of common midpoint (CMP) gathers after normal-moveout correction (NMO) but without 

dip moveout correction (DMO), a poststack time migration, and a dip-coherency filter 
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prior to display and interpretation. In a number of LITHOPROBE transects, the dip 

coherency filter is applied prior to poststack migration (Martignole and Calvert, 1996; 

Eaton et al., 1999). 

The conventional processing flow has proven to be effective for basic imaging of 

structural relationships as revealed by the continuity and patterns of the reflector 

elements in the migrated image. However, the image is first created as an unmigrated 

stack, where it is well known that dipping reflectors are mispositioned, imaging 

wavespeeds are dip dependent, and focusing of conflicting dips may well be 

compromised. Poststack time migration attempts to position dipping reflections more 

accurately in the migrated image, but it is often difficult to determine if key patterns 

required for interpretation (such as reflector terminations) are accurately imaged. 

Prestack time migration, on the other hand, can produce a migrated image with more 

accurate focusing and better relative positioning of reflectors. The most significant 

improvements are expected in areas with steep and/or conflicting dips. 

A second problem with the conventional approach lies in the treatment of amplitudes. 

Accurate relative amplitudes help to define the ‘character’ of individual reflectors and 

packages of reflectors, and are thus a valuable aid to interpretation. As well, the signal-

to-noise ratio in the final image can depend strongly on the choice of amplitude weights 

in the imaging process. 

In the conventional approach, the AGC is typically derived over a long window (e.g. 800 

ms) and applied on a trace-by-trace basis in the data space. This has proved to be a robust 

processing step, in that it tends to preserve relative differences in the peak amplitudes of 

reflection events over a time span of approximately half the window (e.g. 400ms), and is 

often effective in the presence of a variety of noise sources. Over longer time spans, 
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however, the amplitudes of adjacent reflection events tend to be normalized to similar 

levels. After stacking and poststack migration, then, the overall image has much less 

contrast than the underlying unknown true reflectivity (although some reduction in 

contrast can be beneficial for structural interpretations). The AGC also tends to distort 

the amplitude of packages of reflection events by normalizing them in concert with 

adjacent packages. Thus a relative difference in the amplitude can be introduced where 

there should be none, e.g. for two separated but otherwise identical packages of reflection 

events, or for unrelated packages of reflection events of similar underlying reflectivity. 

The end result is a loss of contrast in the final image, and an increase in the distortion of 

relative amplitudes.  

In the conventional approach, the problems of reduced contrast and increased distortion 

are addressed by applying a dip-coherency filter (implemented as a local slant stack over 

a limited aperture in both distance and dip) to the migrated image, and then plotting the 

image in variable area with a trace bias to accentuate packages of reflectors with greater 

coherency and higher amplitudes. This has proved effective in reducing noise, but does 

not address the general imbalances in amplitude already introduced by the AGC. 

Prestack time migration offers the possibility of a more consistent approach to 

amplitudes. A prestack diffraction surface in the data space contains many more input 

samples than does a moveout hyperbola in a given common offset gather. Thus noise is 

often reduced simply by the increased fold of the diffraction summation, and the image 

can be displayed without recourse to coherency filtering (although they are plotted here 

with the same bias parameters, in part because of the high density of traces, and in part to 

provide a similar image for comparison with the conventional images). Coherency filters, 

such as f-x deconvolution (e.g. Wang and West, 1991) or the local slant stack discussed 

above, can be applied to reduce noise levels in the prestack migrated image—often with 
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good success—but these have not been tested in this study. Poststack time migration can 

also be effective at enhancing the signal to noise ratio, but the improvements are typically 

not as dramatic as with prestack time migration.  

So far, I have proposed two basic changes to the conventional processing flow: first, 

replace the AGC by statistical preprocessing of the traces, with the intent of preserving 

relative amplitudes over a much wider range of time spans and distances; and second, 

replace the conventional NMO, stack and poststack migration with a prestack time 

migration. There is, however, a third option worth investigating. Because the AGC is 

such a robust process, input traces can be AGC’d prior to prestack time migration. This 

will also provide a standard for comparing the relative improvements of the two 

processes. 

5.2.3 Details of the new processing approach 

The following steps outline the new processing approach in detail: 

1. Refraction and residual statics determined by conventional means are applied to the 

input traces. A suitable replacement velocity and constant datum are chosen so that 

traveltimes are similar to those from the acquisition datum. 

2. All traces whose rms amplitude (in any one of 5 time windows) exceeds the median 

value by a chosen factor (4.5) are removed. 

3. All traces that show an amplitude decrease of less than 10 percent between the time 

windows of 4.5 - 6.5 s and 13 - 15 s respectively are removed. 

4. All very weak traces with amplitudes less than 1 percent of the average trace 

amplitudes in the gather are removed. 



 309 

 

5. Traces with RMS amplitudes deviating more than 3 standard deviations from the mean 

in the time window 6 to 10 s are removed. 

6. Trace amplitudes are balanced in the shot domain and then in the receiver domain. The 

median absolute amplitude of the time window from 13 - 16 s is used. Receivers 

producing less than 11 live traces are considered bad and their traces removed. 

7. Traces are scaled by a factor of t1.3 to compensate for geometrical spreading as 

wavespeed increases with depth, transmission losses, and other signal losses (e.g. 

attenuation, assumed to be independent of frequency). In an ideal constant wavespeed 

medium with uniform reflectivity, a factor of t1 would produce traces with uniform signal 

strength. The factor t1.3 was chosen such that gained traces have uniform signal strength. 

Traces are now assumed to have originated from a constant-wavespeed medium with no 

losses. 

8. A trace-by-trace gapped deconvolution is applied. 

9. EO gathers are formed using the detailed methodology described in Section 3.3 of Li 

(1999; see also Li and Bancroft, 1998). Input traces are binned without any scaling. The 

binned traces are then scaled using all terms in the weighting factor given by equation 

(4.48) except for the factor of t , which is applied after NMO and stacking, and an 

additional factor of t , which is applied to restore constant-wavespeed geometrical 

spreading. The EO gathers are created out to a maximum equivalent offset of 60 km, with 

an equivalent-offset bin width of 15m. The filter  [see equation (3.36) and discussion 

in Section 3.6.5], the half-time derivative, and the Hilbert transform, as required by 

equation (4.41), are not applied. Neglecting these factors has limited effect on relative 

amplitude. 

0

1−

)(ˆ tf
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10. Prestack time-migration imaging wavespeeds are determined from constant-

wavespeed stacks of the EO gathers. Wavespeeds are hand picked based on focusing and 

continuity, and entered into ASCII files. 

11. Normal moveout correction (NMO) is applied to the EO gathers using the picked 

wavespeeds and a 90% stretch mute. 

12. The NMO’d and muted EO gathers are stacked using a )( 0tN1  normalization 

factor, where  is the number of samples at time t  in the EO gather. After NMO and 

stretch mute, . Hence, a factor of 

N

(N

0

00 ) tt ∝ 21
0t is applied to compensate for this 

normalization. An additional factor of t  is applied to account for the portion of the 

weighting factor not included in the application of equation (4.48) (see Step 8). 

0

13. The output prestack time migrated traces are plotted in variable area with a small bias 

to remove the zero line and eliminate low-level noise. 

An example shot-gather is illustrated in Figures 5.2 and 5.3. Figure 5.2a is the original 

shot-gather with all traces, plotted without any gain correction or first break mute. Figure 

5.2b shows the traces remaining in the gather after statistical cleaning (Steps 2-6) and 

application of the first break mute. The mean relative amplitude of trace is plotted in the 

header at the top of the figure. The traces that have been removed are shown in Figure 

5.2c. The gaps introduced by removing traces might introduce serious aliasing noise, as 

well as migration operator noise that emanates from the reflection truncations in the 

common-offset gathers adjacent to the gaps. It would be desirable to interpolate lost 

traces, or to compensate for the missing amplitudes. As a simple method, consider 

compensating for missing traces by upweighting trace amplitudes in adjacent common-

offset gathers. Then the limited offset range could be thought of as input to one common-

offset migration. However, reweighting was not examined in this study. 



 311 

 

   a)     b)   c) 

  

Figure 5.2. A representative shot-gather. a) the original gather with all traces, plotted without scaling 

or first break mutes. b) the gather after statistical cleaning, plotted without scaling but with first break 

mutes. c) the traces removed by the statistical cleaning. 
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   a)     b) 

  

Figure 5.3. A representative shot gather a) after statistical cleaning and scaling and b) without 

statistical cleaning with a 400 ms AGC. 
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The traces remaining after statistical cleaning (Figure 5.2b) are redisplayed after 

application of the t1.3 scaling factor in Figure 5.3a. Figure 5.3b is a plot of all traces 

(Figure 5.2a) after application of a 400 ms AGC. 

5.4 COMPARISON OF MIGRATED SECTIONS 

At the chosen scale, the conventional poststack migrated result of AGC’d input traces 

without semblance filtering (Figure 5.4) is the better result for comparison with the EOM 

results (Figures 5.6 and 5.7). The coherency-filtered result (Figure 5.5) highlights textural 

changes in the image by enhancing event continuity and reducing background noise. The 

resulting image is preferable for interpretation of large-scale crustal geometries, but lacks 

the fine detail visible in the other migrated images. All figures are displayed using the 

identical plotting parameters optimally chosen for the conventional displays. Although 

this permits a comparison of relative levels of signal and noise within and amongst 

images, the large clip factor (trace excursion of 4) reduces the resolution of higher-

amplitude steeply dipping events in the EOM results. 

The AGC’d EOM result (Figure 5.7) shows better imaging of reflection events in the 

shallow section (1-6 s). The relative-amplitude EOM result (Figure 5.6) shows broad 

light and dark regions that suggest that signal-to-noise ratios are comparable to the 

conventional coherency-filtered result (Figure 5.5). 

Both EOM results appear to have produced a degraded image in the very near surface 

(upper 0.5 seconds). Conventional 2D processing incorporates a variable cross-line bin 

location. EOM, which honors a true 3D geometry for sources and receivers relative to the 

output location, produces a poor image in the shallow section when the output locations 

along the CDP bin line are not close to the source-receiver pairs on the acquisition line. 
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Figure 5.4 Conventional poststack migrated section without coherency filtering. 
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Figure 5.5 Conventional poststack migrated section with coherency filtering. 
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Figure 5.6 Relative amplitude preserving EOM prestack time migrated section. 
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Figure 5.7. EOM prestack time migrated section from AGC’d traces. 
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5.5 SUMMARY 

Prestack time migration with relative-amplitude preservation is a viable alternative to 

conventional processing methods. Image quality is similar to and in some cases better 

than conventional poststack migrated results. 

The main benefit of EOM is the sensitivity and accuracy of the velocity analysis in the 

CSP gather domain (Bancroft et al. 1998). Reflection events are imaged directly to their 

true time-migrated position independent of dip, without the intermediate step of event 

imaging in the CMP stack domain. Conventional processing, on the other hand, first 

images reflections in the CMP stack, then repositions the reflections during poststack 

migration. Using EOM, an interpreter can be more confident of concordant and 

discordant relationships between reflectors. Relative amplitude information provides an 

interpreter with additional information to differentiate reflections—information content 

that is diminished when data are AGC’d. 

Careful reprocessing of a different portion of LITHOPROBE SNORCLE line 1 (van der 

Velden et al., 2001; van der Velden and Cook, 2001) has also produced good results. 

Although these authors apply an AGC instead of the statistical amplitude preservation 

steps discussed here, the EOM prestack time migration produces a better image of 

subsurface crustal structure than LITHOPROBE’s conventional imaging approach of NMO, 

stack, and poststack phase-shift migration. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

6.1 SUMMARY 

The main objective of this dissertation is to find accurate and practical expressions for the 

dynamic component of EOM prestack time migration. Previous attempts (Fowler, 1997b; 

Cary, 1998; Margrave et al., 1999) suggest that Jacobians are necessary for the 

transformations from the input data space to the intermediate data space of EO gathers 

and from the EO gathers to the output image space. However, given that the kinematics 

of EOM are well established as an exact re-expression of the DSR equation, and that the 

transformation to the EO gathers can be implemented as a simple unweighted summation, 

the only Jacobian that is required is the direct Jacobian from the data space to the image 

space. The direct Jacobian can be found as part of the dynamic component of many 

prestack-migration weighting functions published in the existing literature. The task, 

then, is to determine which one of the published weighting functions is the correct one (if 

any) and how it can be simplified for practical application. This is accomplished by a 

comprehensive analysis of the relevant theory combined with a validation process using 

both synthetic models and field data, as described in the following paragraph. 

A secondary objective is to find a more general justification for the DSR kinematics of 

non-recursive prestack time migration algorithms such as EOM. Conventional 

derivations of the DSR equation assume a constant wavespeed subsurface, but practical 

experience suggests that excellent images can be obtained from DSR prestack time 

migrations in areas with significant lateral and vertical variations in subsurface 

wavespeed. The justification, which consists of two main parts, has already been 

presented in the introduction. First, I redefine migration as a transformation from a data 

space to an image space, express the transformation in terms of geophysical inverse 
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theory, and from this determine qualitative criteria for evaluating the accuracy of the 

image space. Second, I derive the DSR equation for a generalized inhomogeneous media 

using a Taylor series expansion about the best-fit image-ray location. The smoothness 

assumption required for the Taylor series expansion can be related to the qualitative 

accuracy criteria established earlier. 

Chapter 2 began with a derivation of the acoustic wave equation and Green’s functions as 

necessary background for forward and inverse wavefield extrapolation. The Kirchhoff-

Helmholtz integral representation [KHIR, equation (2.44)] was derived as the basic 

equation describing the acoustic wavefield in terms of incident and scattered wavefields. 

The volume-scattered wavefield [second term of equation (2.47)] was shown to be a 

function of the wavespeed perturbation α(x) [defined by equation (2.46)]. The surface 

scattered wavefield was shown to be the Kirchhoff-Helmholtz integral in the space-

frequency domain [equation (2.48)—in free-space, equation (2.49)], also known as the 

Kirchhoff integral in the space-time domain [free-space version given by equations 

(2.50), (2.51) and (2.52)]. A number of configurations were examined in order to gain an 

intuitive understanding of the physical meaning of the integral in the context of Huygens’ 

principle and inverse wavefield extrapolation from an arbitrary surface. 

In the case of Huygens’ principle, reconstruction of the wavefront was shown to be 

equivalent to replacing the propagating wavefield with secondary sources distributed 

over the wavefront surface. The Kirchhoff-Helmholtz integral [equation (2.48)] is then 

interpreted as a superposition of weighted monopoles and dipoles that radiates wavefields 

in both directions. Assuming that the one-way wavefield we are interested in is 

propagating outward1, the inward propagating contributions must cancel. To do so they 

 

1 Recall from Section 2.4 that a wavefield can propagate outward either forward or backward in time 
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must be equal and of opposite sign. Thus the outward propagating contributions must 

also be equal. Intuitively, then, this suggests that the one-way outward propagating 

wavefield can be reconstructed from twice the wavefield of either the monopole or dipole 

portion of the Kirchhoff-Helmholtz integral. 

This intuitive idea was then applied to inverse wavefield extrapolation from an arbitrarily 

reflection-free surface. First, the theory was restricted to more realistic acquisition 

conditions, whereby data are available only over part of a closed surface, and only one of 

either the pressure or its normal derivative are measured. Given these restrictions, and the 

additional assumptions of one-way wavefields and a planar surface, an almost exact 

reconstruction (neglecting evanescent waves) is possible by a superposition of weighted 

monopoles (the Rayleigh I integral) or weighted dipoles (the Rayleigh II integral). The 

restriction of a planar surface was removed by considering the Rayleigh I and II integrals 

as composed of local image Green’s functions, one for each surface element. The theory 

developed in this chapter will be used in Chapter 3 to develop various formulas for 

migration and inversion. These, in turn, provide a basis for Chapter 4, where I determine 

robust and efficient weighting functions for prestack migration by the method of 

equivalent offset. 

Two approaches to depth imaging were developed in Chapter 3. The classical migration 

approach combines inverse wavefield extrapolation with Claerbout’s ‘deconvolution’ 

imaging condition. The Born-approximate inversion approach inserts the forward 

modeling formula for the volume scattered wavefield into a Fourier transform-like 

inversion formula for wavespeed perturbation, then re-expresses this result as a band-

limited reflectivity function. For the common-shot configuration, both approaches give 

essentially identical results. 
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The classical migration approach was developed from first principles. Ray-theoretical 

Kirchhoff-approximate expressions were derived for one-way forward modeling and one-

way inverse wavefield propagation with the assumption that the data are synthesized or 

recorded on one nonplanar interface. The prestack ‘deconvolution’ imaging condition 

was shown to be an optimal chi-squared estimator if weighted by a bandlimited source 

function, and Docherty’s ray-theoretical Kirchhoff-approximate common-shot migration 

formula was shown to be equivalent to a simpler derivation based on the Rayleigh II 

integral. Hence, the Kirchhoff-approximate migration formula is strictly valid only for 

data recorded on a planar surface. Classical migration does not provide a theoretical basis 

for creating a stacked reflectivity section, other than a simple summation of migrated shot 

records. A more optimal approach is desired. 

In addition, classical migration is not applicable to non-physical wavefields such as 

common-offset configurations. The Born-approximate forward modeling formula was 

derived as a basis for more generalized depth imaging expressions, and shown to be 

asymptotically equivalent to the Kirchhoff-approximate modeling formula by expressing 

both in the form of isochron stacks. The similarity of the modeling formulas justifies 

substituting the geometrical-optics reflection coefficient for the more restricted linearized 

Born reflection coefficient in the final inversion formula.  

In Chapter 4, the frequency-domain expressions for imaging reflectivity in a constant 

wavespeed medium from Chapter 3 were re-expressed in the time-domain. The common-

offset migration/inversion formula [equations (4.5)/(4.8)] was shown to be optimum for 

estimating stacked reflectivity, whereas both the common-shot and common-receiver 

formulae [equations (4.5)/(4.6) or (4.5)/(4.7)] yield biased results. However, the exact 

common-offset formula is not practical for EOM prestack time migration because 

calculation of the weighting function depends on distance measures that vary with each 
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shot and receiver location relative to each subsurface imaging point. The exact weighting 

function is computationally expensive to evaluate, and not necessarily accurate given 

other approximations inherent in time migrations. 

In a time migration, the vertical coordinate of the output imaging point is approximated 

by the two-way traveltime corresponding to the apex of a best-fit diffraction-traveltime 

surface in the input data. The distance measures in the weighting function can be 

converted to corresponding traveltimes at a best-fitting wavespeed parameter. The 

resulting weighting function [equation (4.22)] is thus an approximation, suggesting that 

further approximations might reduce the computational cost without significant loss of 

accuracy. The goal was identified to be a weighting function that can be applied in some 

or all of three domains: input traces, equivalent-offset-gather traces and/or output traces. 

Following approximations introduced by Gray (1998b), Dellinger et al. (2000), and 

Zhang et al. (2000), generalized custom weighting functions were derived for imaging in 

2.5-D [equation (4.41)] and in 3-D [equation (4.49)]. For 2.5-D, the modified ‘ t0he
t ’ 

weight C [equation (4.48)] is preferred over the Gray ‘ t0 t ’ cosine obliquity weight 

[equation (4.39)]. For 3-D, the modified ‘ t0he
t ’ weight C [equation (4.52)] is preferred 

over the Zhang ‘ t0 t ’ weight [equation (4.51)]. 

Note that the weighting functions have a broader application as approximate weights for 

Kirchhoff-type (ray-traced) depth migrations in media with variable wavespeed. 

Jaramillo et al. (2000) use the term ‘true-amplitude time-migration weights’ to describe 

constant-wavespeed expressions for the Beylkin Jacobian (Beylkin, 1982, 1985) and 

geometrical spreading, with distances from the source to output point and receiver to 

output point replaced by traveltimes. These simplified weights can produce a stacked 

migrated section without the brightening and dimming often associated with weights 

determined by dynamic ray-tracing (Dellinger et al., 2000). 
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6.2 CONCLUSIONS 

Prestack time migration with relative-amplitude preservation is a viable alternative to 

conventional processing methods. Image quality is similar to and in some cases better 

than conventional poststack migrated results. 

The main benefit of EOM is the sensitivity and accuracy of the velocity analysis in the 

CSP gather domain (Bancroft et al. 1998). Reflection events are imaged directly to their 

true time-migrated position independent of dip, without the intermediate step of event 

imaging in the CMP stack domain. Conventional processing, on the other hand, first 

images reflections in the CMP stack, then repositions the reflections during poststack 

migration.  Using EOM, an interpreter can be more confident of concordant and 

discordant relationships between reflectors. Relative amplitude information provides an 

interpreter with additional information to differentiate reflections—information content 

that is diminished when data are AGC’d. 
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APPENDIX A: DELTA FUNCTIONS, FOURIER TRANSFORMS, 
LINEAR SYSTEMS, AND MONOCHROMATIC TIME 
FUNCTIONS 

A.1 Introduction 

The purpose of this appendix is twofold: first, to establish notation and sign conventions 

for delta functions, Fourier transforms, and their respective derivatives; and second, to 

establish the powerful concepts of linear systems and monochromatic time functions. 

Monochromatic time functions allow us to utilize the many simplifications associated 

with Fourier transforms (e.g. the Helmholtz equation instead of the scalar wave equation 

and convolution as multiplication), but retain the intuitive physical concept of a 

wavefront as a delta function propagating in space and time (e.g. the impulse response of 

a point source). Linear systems allow us to use superposition to create complicated 

functions in space-time (or space-frequency) from much simpler functions. The notation, 

sign conventions and concepts discussed here provide a foundation for free-space and 

ray-theoretical Green’s functions introduced in Section 2.4, and used throughout this 

dissertation. 

A.2 Delta functions 

Let V be a linear space of functions. A functional, with domain V, is a mapping (or rule) 

that assigns a unique number to every function in the domain. A distribution is a 

continuous linear functional with domain V . The functional that evaluates the 

test function  at t = 0 is called the δ-distribution, and we write 

)(0 RC ∞=

)(0 RC ∞∈ϕ δ ,ϕ = ϕ(0)  to 

indicate the δ-distribution acting on ϕ. A more useful notation (Lancaster and 

Salkauskas, 1996) is to write the δ-distribution in function notation as δ(t −τ ) using the 

definition 
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 aδ t ,ϕ = a ϕ(τ )δ (t −τ )dτ = aϕ(t)
−∞

∞

∫ , (A-1) 

which illustrates the ‘sifting’ property and the effect of a constant multiplier a. In 

equation (A-1), the integral is more correctly interpreted as the limit of a regular 

distribution given by a delta sequence (such as a pulse of unit area) acting on the test 

function. The δ-distribution is not a function in the traditional sense, although for 

historical reasons it is often referred to as the delta function, a convention that will be 

followed here. 

A.3 Linear systems and filters 

Delta functions play an important role in the theory of continuous linear systems and 

filters. A linear system L is a linear transformation from one linear space of functions 

with domain D to another with domain R. Thus, for any f , g ∈D , we have Rgf ∈LL ,  

and for any real α, β, the property of linearity is defined as 

 ( ) ( ) ( )gfgf LLL βαβα +=+ . (A-2) 

Often, the domain and range spaces are the same. 

A time-invariant (or space-invariant) linear system is a filter. The output h(t) of a 

continuous linear filter L can be expressed as the input g(t) convolved with the filter 

response f(t), 

  (A-3) ( ) ( ) ∫
∞

∞−

−=∗== τττ dtgftgftgth )()()()()( L

If the filter is causal, the lower limit of integration is zero, or equivalently, the filter can 

be defined as f(t) = 0, t < 0. Using a delta function as input g(t) to the non-causal filter L 

of equation (A-3), we can apply the sifting property [equation (A-1)] to yield 
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 h(t) = f (τ )δ(t −τ )dτ
−∞

∞

∫ = f (t). (A-4) 

Hence the output h(t) is the filter response f(t). This shows that the delta function is the 

unit for convolution, just as the number 1 is the unit for multiplication of real or complex 

numbers. As a linear system, the function f does not have to be a test function in 

; and, although equation (A-4) is an improper integral unless considered in the 

context of the δ-distribution as discussed above, it will now be used as the defining 

equation for the delta function. 

)(0 RC ∞∈ϕ

A.4 Acoustic scalar wave equation as a linear filter or linear system 

The properties of linear systems and filters make them ideal mathematical tools for 

studying the propagation of waves. We now expand the concept of linear systems and 

linear filters to incorporate the spatial dimensions (Cartesian position x) in addition to the 

time dimension. For example, the nonhomogeneous acoustic scalar wave equation 

(equation (2.6), for constant material wavespeed c(x) = c), 

 ∇2 p(x, t) −
1
c2

∂ 2 p(x,t)
∂t2 = −ρ(x)s(x,t) , (A-5) 

can be represented as the linear filter 

 ( ) ),()(),( tstp xxx ρ−=L , (A-6) 

where 

 2

2

2
2 1

tc ∂
∂

−∇=L . (A-7) 
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The property of linearity [equation (A-2)] can be applied to decompose the input function 

p(r,t) and the output1 function -ρ(r)s(r,t) into a superposition of more favorable 

functions. The obvious candidates are monochromatic functions of time, which can be 

combined using the Fourier transform. By expressing the linear filter L [filter operator 

f(t) in the generalized convolution of equation (A-3)] as its Fourier transform, the 

awkward time derivative in equation (A-7) can be simplified [see equations (A-31) and 

(A-32)] and the convolution in equation (A-3) can be represented as multiplication in the 

frequency domain. Forward and inverse Fourier transforms will be investigated in detail 

below. 

On the other hand, if the material wavespeed is a function of space [i.e. c(x)], then L is no 

longer space-invariant. In this case, L would be the linear system, 

 2

2

2
2

)(
1

tc ∂
∂

x
−∇=L , (A-8) 

instead of a linear filter. The property of linearity still holds. For linear systems, the 

favorable functions for superposition are Green’s functions, defined as the input function 

that produces a delta function output. For a delta function output at source position xG at 

time tG, the Green’s function for the nonhomogeneous acoustic wave equation [equation 

(2.11)] is given by 

 ( ) )()(),(),,,( GGGGGG ttttttg −−−=−−−= δδδ xxxxxxL . (A-9) 

                                                 

1 For the wave equation, the source function -ρ(x)s(x,t) is more intuitively thought of as the ‘input’ to the 

physical system. Here, the definitions of input and output for a linear system follow equation (A-3). 
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Hence, a complicated source function [e.g. the RHS of equation (A-6)] can be considered 

as a superposition of delta functions, and the corresponding acoustic pressure p(x,t) as a 

superposition of Green’s functions. 

A.5 Fourier transform convention and delta functions 

We now return to Fourier transforms and the superposition of monochromatic time 

functions. A time function f(t) and its spectrum F(ω) are related by the forward and 

inverse Fourier transform. The convention adopted here uses the positive exponential for 

the forward transform from the time domain to the circular frequency domain, 

 F(ω) = f (t)eiωt dt
−∞

∞

∫ , (A-10) 

and the negative exponential for the inverse transform from the circular frequency 

domain back to the time domain, 

 f (t) =
1

2π
F(ω )e−iωtdω

−∞

∞

∫ . (A-11) 

F(ω) is a complex number representing the spectral density (i.e. spectrum per unit ω). 

The product F(ω)dω is an average amplitude for the packet of continuous frequencies in 

an interval dω containing ω. Hence the physical dimensions should be considered as 

average amplitudes (an interpretation that agrees with practical implementation using 

finite discrete Fourier transform) and the product F(ω)dω will have the same physical 

dimensions as the time domain equivalent f(t). 

The choice of circular frequency ω instead of frequency f (where ω = 2πf) indicates a 

preference for terms in 2π as constants instead of as parts of the complex exponent (and 

associated constants arising from differentiation). For circular frequency, terms in 2π 
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arise in two basic ways: first, given that df = dω/2π, we should expect a 1/2π term 

whenever ω is the integration variable; and second, given the delta function identity 

 δ(ω − ′ ω ) = δ 2π ( f − ′ f )( )=
1

2π
δ( f − ′ f ), (A-12) 

it follows that 

 δ( f − ′ f ) = 2πδ(ω − ′ ω ), (A-13) 

and thus we should expect a 2π term whenever the delta function δ(ω − ′ ω )  is present. 

Two Fourier transform pairs will prove useful in the study of wave propagation, 

 δ(ω − ′ ω ) ↔
1

2π
e−i ′ ω t , (A-14) 

and 

 δ(t −τ ) ↔ eiωτ . (A-15) 

The second is the well-known result that a time shift, as given by the delta function, is 

equivalent to a complex phase shift in the circular frequency domain. It can be derived in 

a nonrigorous fashion by substituting equation (A-10) into equation (A-11), yielding 

 f (t) =
1

2π
f (τ )eiωτ dτ

−∞

∞

∫
 

  
 

  e
−iωtdω

−∞

∞

∫ . (A-16) 

The term e− iωt  is a constant for the τ integration, and can be moved inside. The order of 

integration is switched. Now f(τ) is constant for the ω integration, and can be moved 

outside. Moving the constant 1/2π inside the τ integration yields 

 f (t) = f (τ )
1

2π
eiωτ e−iωtdω

−∞

∞

∫
 

  
 

  dτ
−∞

∞

∫ , (A-17) 
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which can be recognized as the same form as equation (A-4), the convolution equation 

for a delta function. Thus the delta function in time is given by 

 δ(t −τ ) =
1

2π
eiωτ e−iωtdω

−∞

∞

∫ . (A-18) 

Comparing equation (A-18) with equation (A-11) gives equation (A-15), the Fourier 

transform pair δ(t −τ ) ↔ eiωτ . Similarly, it can be shown that δ(t +τ ) ↔ e−iωτ .  

A.6 Amplitude and phase of monochromatic time functions 

Suppose we take the inverse Fourier transform of a sum of two shifted delta functions 

multiplied by appropriate constants, 

 F(ω) = π ˜ F ( ′ ω )e− iφ( ′ ω )δ(ω + ′ ω ) + π ˜ F ( ′ ω ) eiφ( ′ ω )δ(ω − ′ ω ) . (A-19) 

Inserting equation (A-19) into equation (A-11), 

 ∫
∞

∞−

−′− ′+′= ωωωδωπ
π

ωωφ deeFtf tii )()(~
2
1)(~ )(   

 ∫
∞

∞−

−′ ′−′+ ωωωδωπ
π

ωωφ deeF tii )()(~
2
1 )( , (A-20) 

and applying the sifting property of the delta function yields 

 ˜ f (t) = ˜ F ( ′ ω )
(ei ′ ω t −φ( ′ ω )[ ] + e−i ′ ω t−φ ( ′ ω )[ ]) )

2
 

  = ˜ F ( ′ ω ) cos ′ ω t −φ( ′ ω )[ ] 

  = ˜ F ( ′ ω ) cos ′ ω (t −τ 0 )[ ]. (A-21) 

Thus  [as given by equation (A-21)] is a monochromatic time function with 

amplitude 

˜ f (t)

˜ F ( ′ ω ) , frequency ′ ω , and phase lag φ( ′ ω ) . That φ( ′ ω ) = ′ ω τ 0  is the phase 
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lag follows from the observation that (t - τ0) causes a delay or lag in the signal for 

positive τ0 and hence for positive φ( ′ ω ) . 

′ ω ) = π

(ω −ω 

The spectrum F(ω)  of  [as given by equation (A-19)] consists of delta functions at ˜ f (t)

± ′ ω  multiplied by complex coefficients. The complex coefficient for δ(ω + ′ ω )  [i.e. 

when circular frequency ω = ′ ω  is negative] is 

 π ˜ F ( ′ ω ) e− iφ( ˜ F ( ′ ω ) , (A-22) cosφ( ′ ω ) − isinφ( ′ ω )[ ]

and the complex coefficient for δ ′ )  [i.e. when circular frequency ω = ′ ω  is 

positive] is 

 π ˜ F ( ′ ω ) eiφ( ′ ω ) = π ˜ F ( ′ ω ) cosφ( ′ ω )+ i sinφ( ′ ω )[ ]. (A-23) 

A.7 Complex (analytic) monochromatic time functions 

Equations (A-22) and (A-23) show that the real (cosine) component of the spectrum is 

symmetric about zero frequency (ω = 0), while the imaginary (sine) component is 

antisymmetric. If we can remember that these symmetries exist, it is often simpler to 

ignore the negative frequencies in the spectrum given by equation (A-19) and consider 

the spectrum to be composed only of positive frequencies with twice the amplitude, i.e. 

 F(ω) = 2π ˜ F ( ′ ω ) eiφ ( ′ ω )δ(ω − ′ ω ) . (A-24) 

Using equation (A-11), the inverse Fourier transform of equation (A-24) is 

 ˜ f C (t) =
1

2π
2π ˜ F ( ′ ω )eiφ( ′ ω )δ (ω − ′ ω )e−iωtdω

−∞

∞

∫ . (A-25) 

Applying the sifting property of the delta function [equation (A-1)] yields 

 ˜ f C (t) = ˜ F ( ′ ω )e− i ′ ω t −φ( ′ ω )[ ]  (A-26) 
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or equivalently, 

 ˜ f C (t) = ˜ F ( ′ ω ) cos ′ ω t −φ( ′ ω )[ ]− i sin ′ ω t −φ( ′ ω )[ ]{ }. (A-27) 

Comparing equations (A-21) and (A-27), we see that  is a complex (analytic) 

monochromatic time function and is related to  by 

˜ f C (t)

˜ f (t)

 ˜ f (t) = Re ˜ f C (t)[ ]. (A-28) 

Equation (A-26) can be re-expressed using the complex amplitude ˜ F ( ′ ω ) = ˜ F ( ′ ω )eiφ ( ′ ω )  

as 

 ˜ f C (t) = ˜ F ( ′ ω )e− i ′ ω t . (A-29) 

Equation (A-29) represents a single complex harmonic signal at circular frequency ′ ω  

with a phase lag φ( ′ ω )  that corresponds to a time delay τ0 . 

Two important concepts introduced above—using twice the amplitude of the positive 

frequencies [equation (A-24)] and taking the real part of the analytic time series 

[equation (A-28)]—can be used to create a practical definition of the inverse Fourier 

transform, 

 f (t) = Re
1

2π
2F(ω)e− iωtdω

0

∞

∫
 

  
 

  . (A-30) 

In equation (A-30), f(t) is a real function, while F(ω) is its forward Fourier transform as 

given by equation (A-10). This definition (a variation of which can be found in a footnote 

in Section 2.4) encapsulates the material presented above. In equation (A-29), the 

complex amplitude  has the same physical dimensions as the complex 

monochromatic function . The Fourier transform F(ω), on the other hand, is a 

spectral density, but will be considered to have the same physical dimensions as its time 

˜ F ( ′ ω )

˜ f C (t)
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domain inverse f(t) because the product F(ω)dω is the average amplitude over the 

frequency range dω. 

A.8 Time derivatives of monochromatic functions, and delta functions 

The time derivative of equation (A-11) can be found as follows: 

 
df (t)

dt
=

−iω
2π

F(ω )e−iωtdω
−∞

∞

∫ = −iωf (t), (A-31) 

and the time derivative of equation (A-29) as 

 
d˜ f C (t)

dt
= −iω ˜ F ( ′ ω )e− i ′ ω t = −iω˜ f C (t). (A-32) 

Hence the sign associated with a time derivative depends on the sign convention chosen 

for the Fourier transform. 

The time derivative of a delta function has a sifting property similar to equations (A-1), 

expressed here in the form of equation (A-4), 

 (−1) n f n (τ ) = f (t)δ n (t −τ )dt
−∞

∞

∫ . (A-33) 

Other useful formulae can be found in standard migrations texts (e.g. Berkhout, 1985; 

Bleistein et al., 2001). 

A.9 Summary 

In this Appendix, I established notation and sign conventions for delta functions, Fourier 

transforms, and their respective derivatives. I introduced linear filters and systems, and 

showed how they apply to the constant- and variable-wavespeed nonhomogeneous 

acoustic scalar wave equations. Monochromatic time functions were shown to be useful 

representations for the Fourier transforms of time-domain functions. In particular, they 
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allow us to combine the physical intuition of the space-time domain with the 

mathematical simplicity of the space-frequency domain. These concepts provide the 

foundation for the free-space and ray-theoretical Green’s functions in the space-

frequency domain introduced in Section 2.4, and used throughout the dissertation. 
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APPENDIX B: INVERSE WAVEFIELD EXTRAPOLATION USING 
FREE-SPACE GREEN’S FUNCTIONS AND A GEOMETRIC 
APPROACH TO STATIONARY PHASE 

B.1 Introduction 

The Kirchhoff-Helmholtz integral equation for inverse wavefield extrapolation from a 

non-planar interface Sg with upward directed normal n g
−  is given by 

 { ),,(),,(),,( 0 ωωω sgSGg
S

sGS PGdSP
g

g

′
−+− ∇= ∫ xxxxxx x

H
 

H
 } −+

′
− ⋅∇− gGgsgS GP

g
nxxxx x ),,(),,( 0 ωω , (B-1) 

where xs is the location of the source and x  denotes the generalized location of the 

image sources. Equation (B-1) reconstructs the upgoing acoustic wavefield 

 at subsurface imaging point x  given the upgoing wavefield 

 and its normal derivative  recorded at surface 

locations x

′ s 

∇
gx

),,( ωsGSP xx−

),,( ωsgSP ′
− xx

G

−
SP −

′ ⋅ gsg nxx ),,( ω

g. The one-way backward propagating Green’s function  and its 

normal derivative ∇  have Green’s source locations at the 

reconstruction point x ; or, invoking reciprocity (see Section 2.7), they can be thought of 

as monopole and dipole secondary sources, respectively, at locations x

),,(0 ωGgG xx+
H

−+ ⋅ gGgG
g

nxxx ),,(0 ω
H

G

g on the non-planar 

interface Sg. 

The objective of this appendix is to determine an approximate expression for inverse 

wavefield extrapolation from a nonplanar interface that requires only one of either the 

pressure or its normal derivative. The classical approach assumes a constant wavespeed 

medium and a planar interface, uses an image of the free-space Green’s function across 

the planar interface to eliminate one of the terms, and ignores the near-field contribution. 

The result is the free-space far-field Rayleigh II integral. In this appendix, I assume a 

constant wavespeed medium and a nonplanar interface, and expand the full Kirchhoff-
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Helmholtz integral [equation (B-1)] using (one-way) free-space Green’s functions. The 

key to the derivation is to equate the unknown normal derivative of the wavefield with 

the known normal derivative of the Green’s function using a geometric approach to 

stationary phase. In this case, the effects of the near-field terms tend to cancel. 

B.2 Image Green’s functions and one-way Rayleigh II integrals for inverse 
wavefield extrapolation 

The classical approach (Schneider, 1978) eliminates the term containing the normal 

derivative of the pressure by defining a Rayleigh II Green’s function that is zero on the 

surface Sg (see Section 2.8). Thus the normal derivative of the wavefield is not required. 

The Rayleigh II Green’s function for each surface element consists of the sum of a 

positive free-space Green’s function with source at the reconstruction point and a 

negative free-space Green’s function with source at the image point, where the image 

point is the mirror of the reconstruction point across the surface element (see Figure 2.6). 

Thus the normal derivative of the Rayleigh II Green’s function is twice the normal 

derivative of a positive free-space Green’s function   
H

G 0
+ (xg ,xG ,ω ) located at the 

reconstruction point, and the Kirchhoff-Helmholtz integral equation [equation (B-1)] 

becomes 

 
gSg

Gg
sgSSxysGS n

G
PJdxdyP













= +

+

′
−

+∞

∞−

− ∫ ∫ ∂
ω∂

ωω
),,(

),,(2),,( 0 xx
xxxx

H
. (B-2) 

Equation (B-2) is known as the one-way Rayleigh II integral for inverse wavefield 

extrapolation. Note that the generic surface normal n g
+  is now directed downward 

(positive z-direction for a planar interface), resulting in a sign change in both the normal 

direction and the integrand in equation (B-2) compared with the second term in equation 

(B-1). The Jacobian JSxy = dS dxdy  is unity for a planar interface with normal z. 
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The one-way Rayleigh II integral [equation (B-2)] is valid for reconstruction using 

pressure  recorded on a planar surface, but is presented as a good 

approximation for a nonplanar surface in Wiggins (1984). However, the approximation 

can be poor, even in the far field, given sufficient undulation (topography) in the surface. 

),,( ωsgSP ′
− xx

B.3 Far-field Rayleigh II integral for inverse wavefield extrapolation 

For inverse wavefield extrapolation, the backward propagating free-space Green's 

function is given by 

 
  

H 
G 0

+ (xg ,xG ,ω) =
e −iωτ gG (xg,xG )

4π xg − xG

=
e −iωrgG / c0

4πrgG

. (B-3) 

The normal derivative of equation (B-3) is 

 
  

d
H

G 0
+(xg ,xG ,ω)

dng
+ = −

iω
c0

e−iωrgG / c 0

4πrgG

∂rgG

∂ng
+ −

1
rgG

e−iωrgG / c0

4πrgG

∂rgG

∂ng
+

 

 
 

 

 
 . (B-4) 

Substitution of equation (B-4) into equation (B-2) yields 

 
g
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SgG

cri

sgS
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SxysGS r
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
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
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



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∞+

∞−

− ∫ ∫ π
ω

∂
∂

∂
∂ωω

ω

4
),,(12),,(

0/

0

xxxx .(B-5) 

At the surface, rgG  is the ray direction (upward pointing). Hence∂rgG ∂ng
+ = −cosθgG , 

where θ gG  is the acute angle between the ray direction and the normal to the surface 

element. Substituting for the normal derivative and rearranging yields 

 
g

gG

SgG

cri

sgS
gG

gG
SxysGS r

eP
r
ci

c
JdxdyP




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

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






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
+=
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′
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∞−

− ∫ ∫ π
ωω

θ
ω

ω

4
),,(

cos
2),,(

0/
0

0

xxxx . (B-6) 

Equation (B-6) [and equation (B-5)] can be divided into two parts based on the terms in 

the round brackets. The first part is known as the far-field response, while the second is 
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known as the near field response. Using the Joe Keller rule of asymptotic expansions: 

“Three is as close to infinity as one-third is to zero” (Bleistein, 1999), the far-field 

dominates when )2(3 00 fccr ≈> ω . For example, at a frequency of f = 5 Hz in a 

media with a wavespeed c0 = 1500 ms-1, the far field dominates at distances greater than 

~150 m. For non-recursive extrapolation, then, the near-field response can be ignored, 

and equation (B-6) can be approximated by 

 
g

gG

SgG

cri

sgS
gG

SxysGS r
ePi

c
JdxdyP













≅
−

′
−

+∞

∞−

− ∫ ∫ π
ωω

θ
ω

ω

4
),,(

cos
2),,(

0/

0

xxxx , (B-7) 

otherwise known as the free-space far-field Rayleigh II integral. 

Equation (B-7) states that the wavefield in the subsurface can be reconstructed by a 

weighted integral over the surface Sg of the time derivative of the recorded wavefield 

. The weighting function includes the Green’s function, which modifies 

the phase and amplitude of the recorded wavefield [see equation (B-3)], and a factor 

),,( ωω sgSPi ′
− xx

cosθ gG c0 that transforms the surface element density from the recording surface to a 

unit sphere surrounding the reconstruction point. 

The free-space far-field Rayleigh II integral [equation (B-7)] is an approximation for a 

planar or nonplanar surface, even in a constant velocity media. The complete Rayleigh II 

integral [equations (B-2)] and the complete free-space Rayleigh II integral [equations 

(B-5) and (B-6)] are also approximations for a non-planar surface. Can a better inverse 

wavefield extrapolator be determined—one that is more accurate for a non-planar surface 

but does not require two recorded wavefields?  
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B.4 Docherty’s simplification of the Kirchhoff-Helmholtz integral using stationary 
phase 

Docherty (1991) attempts to circumvent the apparent requirement of the Kirchhoff-

Helmholtz integral [equation (B-1)] that two wavefields be recorded over the surface. He 

substitutes ray-theoretical approximations for  and   ),,( ωsgSP ′
− xx

H
G 0

+ (xg ,xG ,ω ) into 

equation (B-1), evaluates the leading-order approximation to the normal derivatives, uses 

stationary phase to equate the unknown normal derivative nP∂ S ∂−  with the known 

normal derivative   ∂
H

G 0
+ ∂n , and then substitutes  back in for its ray-

theoretical approximation. The result is a leading-order ray-theoretical stationary-phase 

approximation to the Kirchhoff-Helmholtz integral [equation (B-1)] that, although 

approximate, should be better than the Rayleigh II integral and more correct for a 

nonplanar surface. The following discussion uses Docherty’s derivation as a template, 

but is limited to free-space Green’s functions. 

),,( ωsgSP ′
− xx

B.5 The recorded trace as a superposition of time- and frequency-domain 
expressions for Kirchhoff-approximate prestack modeling 

The upgoing scattered wavefield  is obtained from the Fourier transform of 

the trace  recorded at location x

),,( ωsgSP ′
− xx

),,( tp sgS ′
− xx g on the nonplanar non-reflecting2 surface Sg 

given a source at location x (not necessarily on the surface), i.e. ′ s 

 . (B-8) dtetpP ti
sgSsgS

ωω ∫
∞

∞−
′

−
′

− = ),,(),,( xxxx

Equation (B-8) follows the Fourier transform convention presented in Appendix A [see 

equation (A-10)]. The LHS can be expressed as an amplitude and phase lag, i.e. as 

                                                 

2 Recall from Section 3.5 that the acoustic pressure recorded on a free surface is zero. Therefore, it is 

assumed that preprocessing converts the free-surface into a non-reflecting surface (see Hanitzsch, 1995). 
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 ),,(),,(),,( ωφωω sgi
sgSsgS ePP ′

′
−

′
− = xxxxxx . (B-9) 

The recorded trace in the time domain,  can be considered as a superposition 

of reflected energy from all subsurface reflector segments. Assume that a given reflecting 

surface is described by the equation 

),,( tp sgS ′
− xx

Σ R (x ij ) = 0 . Given a source function , the trace 

at time t can be represented as 

sρ (t)

 , ( ) )(),,(),,(),(),,(
1 1

tstAtp sijgsg
i j

sijgsgsijsgS ρθχ τδβ ′∗−= ′′

∞

=

∞

=
′′′

− ∑∑ xxxxxxxxxx

  (B-10) 

where the subsurface position xij representing a reflecting segment (subscript j) on a 

particular isochron surface (subscript i). The amplitude  is the product of 

the divergences along the raypaths from source to reflector and reflector to receiver, 

Ag ′ s (xg ,x ij ,x ′ s )

τ g ′ s (xg ,x ij ,x ′ s ) is the corresponding traveltime that defines the isochron, and 

βθχ (x ij , x s ) = Rθ (x ij ,x s )γ R(x ij )cos χ  is the weighted reflectivity function, which may 

well be zero at xij’s where there is no reflector. The angle χ is the acute angle between the 

isochron normal and the reflector normal [see Appendix C, in particular discussions 

following equation (C-12) and prior to equation (C-17)]. The size of each segment must 

agree with the isochron-stack operator derived in Appendix C [see discussion following 

equation (C-16)]. Then, equation (B-10) is the time domain equivalent of the ray-

theoretical Kirchhoff-approximate prestack modeling formula presented in Sections 3.4 

and 3.5 [equations (3.17) and (3.20)]. The time derivative of the source function, as 

indicated by s , is required for exact equivalence with the modeling formula. ′ ρ (t)

Using equations (A.10) and (A.15) and (A.32), the Fourier transform of equation (B-10) 

is 

 [ ]),,(

1 1
)()(),,(),(),,( sijgsgi

i j
sijgsgsijsgS eSiAP ′′−= ∑∑

∞

=

∞

=
′′′

− xxxxxxxxxx ωτ
ρθχ ωωβω . (B-11) 
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Thus the wavefield in the frequency domain preserves the traveltime delays of all the 

reflected wavefields3, as might be expected for a linear operator such as the Fourier 

transform (for further discussion, see Appendix A). It is often useful to imagine the 

wavefield in the frequency domain as a single propagating impulse for a reflector 

segment of interest, with the phase representing the traveltime. Then the response from 

reflector segments can be superposed in whatever manner is appropriate for the problem 

at hand. 

B.6 The Kirchhoff-Helmholtz equation in terms of free-space generalized Green’s 
functions 

Equations (B-9) and (B-11) can be compared to equation (9) of Docherty (1991), re-

expressed here as 

  (B-12) ),(),(),,( sgsgi
sgsgsgS ePP ′′

′′′
− = xxxxxx ωτω

Docherty assumes an impulsive source [see his equations (2) and (5)]. Thus the phase and 

amplitude of the source function are not included in the RHS of equation (B-12). Hence, 

Docherty’s amplitude Pgs ′  is independent of frequency. Instead, I assume a bandlimited 

source and data that are deconvolved to zero-phase. Thus equation (B-12) can be 

expressed in the form of equation (B-11) as follows: 

 ),(),(),()()(),,( sgsgi
sgsgsRsgS eASiP ′′

′′′
− −= xxxxxxxx ωτ

θχρ βωωω , (B-13) 

where (−iω) Sρ(ω )  is the time derivative of a source amplitude, βθχ (xR ,x ′ s ) is the 

weighted reflectivity function, and Ag ′ s (xg ,x ′ s )eiωτg ′ s (xg,x ′ s )  represents a ‘generalized’ 

forward propagating ray-theoretical Green's function. 

                                                 

3 This is the fundamental principal underlying f-xy decon and trace interpolation (e.g. Porsani, 1999). 
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The ‘generalized’ Green’s function in equation (B-13) is similar in form to the one-way 

ray-theoretical Green’s function given by equation (2.34). More correctly, the RHS of 

equation (B-13) can be thought of as an infinite weighted sum of generalized Green’s 

functions [see equation (B-11)], each arising from an image source at the generalized 

location x , then propagating through a reflector segment at unknown location x′ s R to the 

receiver location xg. Thus the phase φ(xg ,x ′ s ,ω) = ωτ g ′ s (xg ,x ′ s ,ω)  of the wavefield 

contains information from all reflector segments and hence from all directions. It stands 

to reason, then, that the normal derivative of the wavefield on the surface cannot be 

determined from recordings of the wavefield alone. 

Equation (B-13) can be restricted to constant wavespeed media by inserting a 

‘generalized’ one-way free-space Greens’ function [see equation (2.17)] for 

Ag ′ s (xg ,x ′ s )eiωτg ′ s (xg,x ′ s ) , yielding 
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By inserting the ‘generalized’ distancerg ′ s = xg − x ′ s , equation (B-14) can be re-

expressed as 
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Even though equation (B-15) is expressed in terms of a ‘generalized’ free-space Green’s 

function, we can take its the normal derivative, yielding 

 
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Of course, the doubly infinite summation is implied in equations (B-15) and (B-16) so 

care must be taken to correctly interpret the ‘generalized’ normal derivative ∂rg ′ s ∂ng
− . 
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The backward propagating free-space Green's function is given by equation (B-3), 

repeated here as 

 
  

H 
G 0

+ (xg ,xG ,ω ) =
e− iωrgG / c0

4πrgG

. (B-17) 

The normal derivative of equation (B-17) is 
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In keeping with equation (B-1), the normal n g
−  in equations (B-16) and (B-18) is directed 

upwards. 

Inserting equations (B-15)-(B-18) into equation (B-1) yields 
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  (B-19) 

B.7 Simplifying the generalized free-space Kirchhoff-Helmholtz equation 

Rearranging equation (B-19), collecting like terms, and substituting  for 

terms equivalent to the RHS of equation (B-15) yields 
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The first and second terms in the curly brackets on the RHS of equation (B-20) are 

similar to the far- and near-field terms of the Rayleigh II integral [equation (B-5)], 

respectively. As discussed previously, the near-field term can be ignored in most seismic 

applications (note that the two near-field terms are opposite in sign, which reduces the 

near-field effect). Then, the unknown true wavespeed c is assumed to be identical to the 

reference wavespeed c0. If they are not, phase and amplitude errors will be introduced. 

As explained in Section 3.2, these errors could (in theory) be compensated for by the 

volume scattering integral and will not be discussed further here. Next, I apply the 

concept of stationary-phase to simplify the far-field term, extracted from equation (B-20) 

as 
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Similar to the derivation for the Rayleigh II integral, the normal derivatives can be 

expressed as cosines between the surface normal and the ray direction, i.e. 

∂rgG ∂ng
− = cosθ gG  and ∂rg ′ s ∂ng

− = cosθg ′ . A 2D geometric argument suggests that the 

concept of stationary phase can be applied so that 

s 

∂rg ′ s ∂ng
− ≈ ∂rgG ∂ng

− = cosθgG . Then 

equation (B-21) simplifies to equation (B-7)—the far-field version of the Rayleigh II 

integral. 

The geometric argument is as follows. The receivers are distributed over an arbitrary 

nonplanar surface Sg at locations xg, as shown in Figure B-1. The wavefield at a given 

receiver is a superposition of upgoing wavefields from numerous image sources, as 

indicated by the upward rays converging on receiver g3. In fact, the surface location of 

the source and corresponding subsurface locations of image sources are not relevant—the 

recorded wavefield can be inverse extrapolated given any number of unknown sources. 

At the reconstruction position xG, however, we are interested only in the part of the 
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wavefield that propagates upward through xG to the surface, as indicated by the upward 

rays converging at xG and arriving at the surface. This is the wavefield that would be 

recorded by a receiver in the subsurface at xG. In Figure B-2, the same reconstruction 

point is shown along with the ray representation of the Green’s function. At the surface, 

the angle between the ray and the surface normal can be used to define the normal 

derivative ∂rgG ∂ng
− = cosθ gG . 

Comparing Figures B-1 and B-2, it is obvious that the raypaths above xG are identical. 

Over each raypath, the phase of the Green’s function will equal the difference in the  

 

Figure B.1: Selected rays from upward propagating wavefield . ),,( ωsgSP ′
− xx

 

Figure B.2. Selected rays from backward propagating Green’s function G . ),,(0 ωGg xx+
H



 358 

 

phase of the wavefield. At the reconstruction point, the main contribution to the 

reconstructed wavefield will come from those portions of the wavefield that are in phase. 

At the surface, the corresponding portions will be defined where the change in phase of 

the wavefield equals the negative of the change in phase of the Green’s function, i.e. 

where the phase function (  is stationary. For this to be true, the 

wavefield must be propagating exactly in the opposite direction as the Green’s 

function—at least for the portions that will reconstruct. Hence, the normal derivative of 

the wavefield can be approximated by the normal derivative of the Green’s function, i.e. 

iωrg ′ s / c0 −iωrgG / c0)

∂rg ′ s ∂ng
− ≈ ∂rgG ∂ng

− . Both normal derivatives are now equal to cosθ gG  (evaluated for a 

nonplanar surface) and equation (B-21) simplifies to 
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which is identical to the free-space far-field Rayleigh II integral for a planar interface 

[equation (B-7)].  

At the stationary point (i.e. close to specular reflection) ∂rg ′ s ∂ng
− ≈ ∂rgG ∂ng

−  and 

. A slightly more accurate approach includes these approximations instead of 

ignoring the near field term. Then, equation (B-20) reduces to 

gGsg rr 2≈′
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Equation (B-23) may improve accuracy in the near field, but fails to address the larger 

approximation introduced by equating the normal derivatives ∂rg ′ s ∂ng
− ≈ ∂rgG ∂ng

− . One 

avenue of investigation, yet to be pursued, is to look for an approximation to the 

unknown normal derivative −
′ gsg nr ∂∂ using a combination of time derivatives and spatial 

derivatives over the nonplanar interface. 
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B.8 Summary 

By neglecting the near-field terms and using a geometric approach to stationary phase, I 

have shown that the free-space Kirchhoff-Helmholtz integral for a non-planar surface 

[equation (B-20)] simplifies to the far-field Rayleigh II integral [equation (B-22)]—the 

same integral obtained using free-space Green’s functions and the method of images for a 

planar surface [equation (B-7)]. Tests on synthetic data (not presented in this dissertation) 

clearly show that the simplified equations yield approximate results, as expected. At 

present, there appears to be no better solution, supporting the conclusion reached in 

Section 2.9. 
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APPENDIX C: ISOCHRON STACK FROM KIRCHHOFF-
APPROXIMATE MODELING: AN ALTERNATE DERIVATION 

C.1 Introduction 

Jaramillo (1999) and Jaramillo and Bleistein (1999) derive the isochron stack from the 

simplified form of the Kirchhoff-approximate modeling formula [equation (3.20)], as 

given by 

 ( ) ),(),(),(),()(),( ξξξξ R

R

R

R

i
RRRsgsRR eARdSiP x

x nxxxx τωφ
τθ

Σ
ρΣ φΣωωω −− ⋅∇≅ ∫ . (C-1) 

  (3.0.34) 

The purpose of this appendix is to present a derivation that does not require the stationary 

phase approximations used in the cited derivations. However, it still requires a leading 

order approximation to integration by parts. As an aid to cross-referencing the 

derivations, the second equation number is the corresponding equation in Jaramillo 

(1999). Slight differences in notation are, in general, self-explanatory. The notation 

adopted here will not be described in detail, as it follows the notation introduced in the 

dissertation. 

C.2 Meaning of the phase (traveltime) function and its normal derivative 

First, the meaning of ),( ξRxτφ  and ∇  need to be examined. From the 

expanded form of the Kirchhoff-approximate modeling formula [equation (3.17)], 

−⋅ RRR
nxx ),( ξτφ

PsΣ R

− (xg, x s ,ω ) ≅ iωSρ (ω ) dΣR
Σ R

∫ As (xR ,x s )Rθ (xR, x s )Ag (x R,xg ) 

 ( ) ( )),(),(),(),( gRRgsRRs

RR

i
RgRRgRsRRs e xxxx

xx nxxnxx ττωττ +−− ⋅∇+⋅∇× , (C-2) 

it is straightforward to see that ),( ξRxτφ  is a scalar function in space equal to the total 

traveltime τ Rs(xR ,x s ) +τ Rg (x R,xg ) and that ∇  is a shorthand for the −⋅ RRR
nxx ),( ξτφ
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obliquity factor (cosθ s + cosθg) c0 (xR ) , where θ s  and θ g  are the obtuse angles between 

the upward reflector normal n  and ray direction from source and receiver, respectively. 

The geometry is illustrated in Figure C.1. 

−
R

+
In

IΣ )ξ τφ
Ι

 

Figure C.1. Geometry for equation (C-2). Angles are referenced to upward reflector normal . −
Rn

 

 

Figure C.2. Geometry for equation (C-1) and equations (C-3)-(C-13). Angles are referenced to 

downward isochron normal . 

If the total traveltime is kept constant, the scalar function ),( ξIxτφ  defines a set of points 

x I  on the isochron surface . Thus +
II nx ),( ξ , where n  is the 

downward (outward) pointing normal to the isochron. The magnitude of the traveltime 

gradient is defined as follows: 

+
I∇=∇ x xx ,( Ιτφ

Ι
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 ∇x I
φτ

2
= ∇x I

τ Is + ∇x I
τ Ig

2
 

 = ∇ xI
τ Is

2
+ ∇ x I

τ Ig

2
+2∇ x I

τ Is ⋅∇ x I
τ Ig  

 =
2

c0
2 (x I )

+
2cos2θ
c0

2 (x I )
 

  =
4cos2 θ
c0

2 (x I )
, (C-3) 

where θ  (no subscript) is half the angle between the downward pointing slowness vectors 

∇ xΙ
τ Ιg  and ∇ x Ι

τ Ιs , as illustrated in Figure C.2. Where the reflecting and isochron 

surfaces intersect, x R = x I . Hence 

  −+ ⋅∇=⋅∇ RIRR IR
nxnx xx ˆ),(ˆ),( ξξ ττ φφ

 ( )−+ ⋅∇= RIII
nnxx ),( ξτφ  

 ( )−+ ⋅= RI
Ic

nn
x )(

cos2

0

θ  

 =
2cosθ
c0 (x I )

cos χ , (C-4) 

where χ  is the acute angle between the downward reflector normal and downward 

isochron normal. The stationary point for either of equations (C-1) or (C-2) occurs at the 

ordinary ray (see Docherty, 1991), which can best be defined as the case where  and 

 point in exactly opposite directions. At a stationary point, then, the reflecting and 

isochron surfaces are tangent to each other. 

+
In

−
Rn

In deriving equation (C-4), we seem to have lost the original meaning of the shorthand 

notation ∇  as the obliquity factor −⋅ RRR
nxx ),( ξφ cosθ s + cosθg( ) c0 (xR ) , replaced 

instead by 2 cosθ cos χ c0 (x I ) . An intuitive explanation is provided by adapting a 

method proposed by Kuhn and Alhilali (1977) for deriving a modified obliquity factor. 
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The elementary aperture of the reflecting surface is reoriented in such a way that it is 

aligned with the isochron normal φφ
III xxn ∇∇=+ . The obliquity factor 

cosθ s + cosθg( ) c0 (xΣ ) can now be replaced with −2cosθ c0 (xΣ ), but the effective area 

of the aperture4 has been changed from dS to dScosχ, where ( ) =⋅−= −+
Rnn Ιχcos  

),(),( ξξ ΙΙ φφ
ΙΙ

xnx xx ∇⋅∇− −
R . Since )(0 Ιθ xccos2),( Ιφ

Ι
xx =∇ ξ , the modified 

obliquity factor can be simply expressed as )(coscos2 0 Ic xχθ , or one of the other 

expressions given in equation (C-4). 

C.3 From reflector surface integral to volume integral to isochron surface integral 

By assuming that a given reflecting surface is described by the equation Σ R (x) = 0, the 

singular function γ R(x) = δ(Σ R (x))Σ R (x)  can be used to recast the surface integral 

given by equation (C-1) as a volume integral, yielding 

 ( ) ),(),(),()(),()(),( ξξξξ x
x nxxxxx τωφ

τθρΣ φγωωω i
RsgRs

V
s eARdVSiP

R

−− ⋅∇≅ ∫ . (C-5) 

  (3.0.35) 

In keeping with equation (C-1), the upward normal n  is perpendicular to the reflecting 

surface defined by the singular function. 

−
R

The inverse Fourier transform from frequency (ω) to time (t) of equation (C-5) is 

 ( ) ( ) )(),(),(),()(),(),( tstARdVtp RsgRs
V

s R ρττθΣ φδφγ ∗−′⋅∇−≅ −− ∫ ξξξξ xnxxxxx x , (C-6) 

  (3.0.36) 

                                                 

4 Kuhn and Alhilali (1977) use the angle χ to represent 2θ , as used here, and β to represent χ. 
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where s  is the source wavelet. In equation (C-6), the change of sign and the 

derivative with respect to time of the delta function comes from the term i

ρ (t)

ωeiωφ (x ,ξ)  in 

equation (C-5). 

The objective is to turn the volume integral in equation (C-6) into an integral over the 

isochron surface Σ I . Similar to the reflecting surface, the isochron surface can be thought 

of as a singular function in space δ t −φτ (x,ξ)( ). Hence the first derivative of the delta 

function can be thought of as a derivative with respect to the scalar function φτ (x,ξ) , i.e. 

′ δ t −φτ( )= ∂δ t −φτ( ) ∂φτ . 

In equation (C-6), the only contribution to the volume integral comes from those points 

that lie at the intersection between the isochron surface and the reflecting surface. 

Following Jaramillo and Bleistein (1999), the volume integral can be re-expressed using 

the change of coordinates 

 dV = dΣ IdnI
+ = dΣ I dφτ ∇ xφτ . (C-7) 

With the change of coordinates, the delta function derivative, and the result from 

equation (C-4) that ( )−+− ⋅∇=⋅ RIR nnxnx xx ),(),( ξξ ττ φφ∇ , equation (C-6) becomes 

 ( ) ( ) )(),(),()(),(),( tstARddtp RIsgRs
V

Is R ρ
τ

τ
θτΣ ∂φ

φ∂δγφΣ ∗
−

⋅−≅ −+− ∫
ξ

ξξ
xnnxxxx . (C-8) 

Integrating equation (C-8) by parts once in φτ  and keeping only the most singular term 

yields 

 ( ) ( ) )(),(),()(),(),( tstARddtp RIsg
R

s
V

Is R ρτ
τ

θτΣ φδ
∂φ

∂γφΣ ∗−⋅≅ −+− ∫ ξξξ xnnxxxx . (C-9) 

The derivative of the singular function of the reflecting surface can be re-expressed as 
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  (modified 3.0.12) 

With this substitution, the dot products of the normals cancel, and equation (C-9) 

becomes 

 psΣ R

− (ξ,t) ≅ dΣ I dφτ
V
∫ Rθ (x, x s )

∂γ R(x)
∂nR

−

Asg(x,ξ)
∇xφτ (x, ξ)

δ t −φτ (x,ξ)( )∗ sρ (t) . (C-11) 

Integration with respect to φτ  reduces to a simple integration over the isochron through 

the application of the explicit delta function, yielding 

 psΣ R

− (ξ,t) ≅ dΣ I
Σ I

∫ Rθ (x I , x s )
∂γ R(x I )

∂nR
−

Asg (x I ,ξ)

∇x I
φτ (x I ,ξ)

t =φτ

∗sρ (t), (C-12) 

  (modified 3.0.39) 

or, by substituting the reflectivity function βθ I s(x ,x )  for Rθ I s(x ,x )γ R I(x ) (Bleistein, 

1987), 

 psΣ R

− (ξ,t) ≅ dΣ I
Σ I

∫
Asg(x I ,ξ)

∇ x I
φτ (x I, ξ)

∂βθ (x I )
∂nR

−

t=φτ

∗ sρ (t) . (C-13) 

  (modified 3.0.40) 

Equation (C-13) is essentially equation (3.0.40) of Jaramillo (1999) and equation (38) of 

Jaramillo and Bleistein (1999), but has been derived without the stationary phase 

approximations. However, the leading order approximation to the integration by parts is 

still required. The angle-dependent reflectivity function Rθ (x, x s )  in equation (C-2) is the 

geometrical-optics reflection coefficient, which provides an accurate representation of the 
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reflected wavefield, up to and beyond the critical angle of reflection (Burridge et al., 

1998)5. 

Equation (C-9) above can be compared to equation (36) of Jaramillo and Bleistein 

(1999), suggesting that there are two typographic errors in the latter: first, the derivative 

∂γ (x) ∂nR  should be ∂γ (x) ∂φ ; and second, the equation should be negative (from the 

integration by parts). Equation (C-10) then gives the term 1 ∇xφ  and the sign change 

(from n , assuming stationarity) as required by Jaramillo and Bleistein’s 

equations (37) and (38), both of which are correct. 

1−=⋅ RI n

C.4 An exact equivalent to the Kirchhoff-approximate modeling formula 

The derivation leading to equation (C-13) still requires a leading order approximation to 

the integration by parts [equation (C-8) to (C-9)]. Therefore, it is not the exact equivalent 

of the Kirchhoff-approximate modeling formula [either of equations (C-1) or (C-2); i.e. 

equations (3.20) or (3.17), respectively]. However, it is trivial to find an exact equivalent. 

In taking the inverse Fourier transform of equation (C-5), the time derivative is 

transferred to the source wavelet instead of the delta function, resulting in 

 ( ) ( ) )(),(),(),()(),(),( tstARdVtp RsgRs
V

s R ρττθΣ φδφγ ′∗−⋅∇−≅ −− ∫ ξξξξ xnxxxxx x . (C-14) 

Then, application of the change of variables given by equation (C-7) cancels the 

∇xφ(x,ξ)  in the numerator, yielding 

 ( ) )(),(),())((),(),( tstARddtp sgRIRsIs

I

R ρτθ
Σ

τΣ φδγφΣ ′∗−⋅−≅ −+− ∫ ξξξ xxnnxxx . (C-15) 

                                                 

5 Note that accurate representation of reflection beyond critical angle requires a phase change that is not 

incorporated in equations (C-12) or (C-13), but can be found in Jaramillo and Bleistein (1999). 
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Integration with respect to φτ  reduces to a simple integration over the isochron through 

the application of the explicit delta function, yielding 

 )(),())((),(),( tsARdtp
tsgRIIRsIIs

I

R ρφθ
Σ

Σ
τ

γΣ ′∗⋅−≅
=

−+− ∫ ξξ xnnxxx . (C-16) 

Equations (C-15) and (C-16) are integrals over the line of intersection between the 

isochron surface and the reflecting surface. Effectively, the line can be thought of as a 

‘ring’ of area on the reflecting surface, where the differential width of the ring is 

proportional—using wavespeed c —to the differential change in time of the 

isochron. The factor (  downweights the contribution from reflecting elements 

that are not tangent to the isochron surface. The complete obliquity factor as found in the 

Kirchhoff-approximate modeling formula [equation (C-1) or (C-2)] includes the factor 

0 (x I )

)−+ ⋅ RI nn

∇xφ(x,ξ) = 2 cosθ c0 (x I ). This portion is missing from equations (C-15) and (C-16). 

Recall that the Kirchhoff-approximate obliquity factor can be thought of as compensation 

for the change in area of the source and receiver ray-tubes intersecting a unit area on the 

reflecting surface. However, in transforming from an integral over the reflecting surface 

to an integral over the isochron surface, the effective area becomes a function of time. 

Thus the change in area of the ring with constant time increments exactly compensates 

for the missing portion of the obliquity factor. The resulting isochron-stack operators are 

independent of the angular separation of the source and receiver. 

Equations (C-15) and (C-16) can be expressed in a simplified notation by incorporating 

the factor  into a weighted reflectivity function denoted here 

as

)(cos −+ ⋅−= RI nnχ

βθχ (x,x s ), yielding 

 psΣ R

− (ξ, t) ≅ dΣ I dφτ
Σ I

∫ βθχ (x, x s )Asg (x,ξ)δ t − φτ (x,ξ)( )∗ ′ s ρ (t)  (C-17) 

and 
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 psΣ R

− (ξ, t) ≅ dΣ I
Σ I

∫ Asg(x,ξ)βθχ (x I ,x s )
t=φτ

∗ ′ s ρ (t) (C-18) 

as simplified isochron-stack operators. Equations (C-17) and (C-18) are exact equivalents 

to the Kirchhoff-approximate modeling formula, and can be compared to equations 

(C-11) and (C-13), which require a leading order approximation to the integration by 

parts. 

C.5 Summary 

A derivation of the isochron stack from the simplified form of the Kirchhoff-approximate 

modeling formula is presented that does not require the stationary phase approximations 

used in the original derivations by Jaramillo (1999) and Jaramillo and Bleistein (1999). 

However, the new derivation still requires a leading order approximation to integration 

by parts and is therefore not an exact equivalent to the Kirchhoff-approximate modeling 

formula. An exact formula is possible, and is also presented. 
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APPENDIX D: RELATIONSHIPS BETWEEN 2-D, 2.5-D, AND 3-D 
MODELING AND MIGRATION/INVERSION FORMULAE 
FOR CONSTANT WAVESPEED 

D.1 Introduction 

Seismic data are often acquired along a line on the surface. For historic reasons, such 

data are typically called 2-D (two-dimensional) seismic data, where the two dimensions 

can be considered as the acquisition line x (or x1) and the depth z (or x3). The inherent 

assumption is that the earth parameters vary only in the in-plane coordinates x and z, and 

are independent of the out-of-plane coordinate y (or x2). Hence the reflector elements in 

the subsurface can be considered as portions of infinite cylindrical surfaces with normals 

lying in the x-z plane. These will subsequently be referred to as “line” reflector elements. 

Given these assumptions of acquisition and subsurface geometry, only the in-plane 

values of earth parameters are of interest for either modeling or migration/inversion. The 

wavefield, however, originates from a point source and propagates in 3-D. For example, 

an impulsive point source generates an expanding spherical wavefront in a constant 

wavespeed medium. Bleistein (1986) introduced the term 2.5-D to describe the 

combination of 2-D subsurface structure and 3-D wavefield propagation. 

The 3-D equivalent of a 2-D seismic experiment consists of line sources, line reflector 

elements, and line receivers. Obviously, 2.5-D is a more realistic representation of 2-D 

seismic data as both the sources and receivers are best approximated as points rather than 

lines. However, many 2-D modeling algorithms produce the equivalent of true 2-D 

seismic data, i.e. cylindrical wavefield propagation originating from line sources (e.g. see 

Kelly and Marfurt, 1990). These synthetic datasets can be used to test and compare 

migration/inversion algorithms. Thus formulations are required for both modeling and 
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migration/inversion of 2-D data, and to convert 2-D results to 2.5-D for comparison with 

seismic data acquired using point sources and receivers. 

Several authors have proposed operators for correcting amplitudes and adjusting phases 

of 2-D solutions to obtain approximate 2.5-D solutions. Comprehensive reviews can be 

found in Bleistein (1986) and Williamson and Pratt (1995). A derivation for the high-

frequency (asymptotic) time-domain operator can be found in Deregowski and Brown 

[1983, equation (17)]. A derivation for its frequency-domain equivalent can be found in 

Bleistein [1986, equation (21)]. Either of these asymptotic operators can be applied to a 

variable wavespeed medium by identifying and raytracing each reflection event. 

However, raytracing is not practical if the 2-D seismic data is synthesized using a 2-D 

finite-difference modeling package; and, the asymptotic operator cannot be applied to 

incremental steps of finite differencing because it is only valid in the far field. Esmersoy 

and Oristaglio (1988) propose a cascade of operators valid for the near field in a constant 

wavespeed medium. These could be applied at each incremental step of finite difference 

modeling, but not as a pre- or post-conditioning filter. 

Liner (1991), Liner and Stockwell (1993), Bording and Liner (1993) and Stockwell 

(1995) propose various forms of a damped 2.5-D wave equation that can be explicitly 

modeled using finite differences. Williamson and Pratt (1995) provide a concise review 

and propose their own variant of a damped 2.5-D wave equation. However, they 

conclude that “(no) operator exists that can be simply applied to recorded or modeled 

traces in arbitrary velocity fields to give an exact conversion without event identification 
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and ray-tracing because σ(x, t)6 is potentially multivalued”, and that “an exact 2.5-D 

wave equation cannot be written solely in terms of 2-D space- and time-dependent 

variables and derivatives”. They suggest two solutions. The method of Song and 

Williamson (1992) guarantees accuracy and is less computationally intensive than full 3-

D modeling, but is much more demanding than 2-D modeling. A practical but less 

accurate solution is to adjust amplitude and phase using the 2-D to 2.5-D constant 

wavespeed operator [see equation (D-35) of this Appendix] but replacing the constantσ  

with a space- and time-dependent variable σ(x, t). 

In this Appendix, constant-wavespeed far-field Green’s functions for 2-D forward and 

backward propagating wavefields are derived, and then used as a basis for derivations of 

2-D modeling and 2-D common-shot migration/inversion formulae. These formulae, and 

the migration/inversion formulae for common-offset and zero-offset configurations, can 

be compared to their 2.5-D and 3-D equivalents. Relationships between the various 

formulae can be expressed in terms of out-of-plane spreading factors and half-differential 

and/or half-integral operators. These relationships may be of practical use to: 1) convert 

the output from a 2-D finite-difference modeling package into 2.5-D synthetic seismic 

data, and 2) migrate 2.5-D seismic data using 2-D migration/inversion algorithms. 

D.2 Far-field Hankel functions 

Before continuing with the 2-D forward modeling derivations, a few formulae will prove 

useful. The Euler formula 

                                                 

6 From Williamson and Pratt (1995): “σ is the ray parameter such that along a ray (dx/dσ)2 = 1/c2(x),i.e., 

dσ = cds = c2dτ, where s and τ are the distance and traveltime along the ray, respectively”. As we shall see, 

in a constant wavespeed medium, σ = cr, where r is the distance along the straight ray. 
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 eiθ = cosθ + i sinθ  (D-1) 

reduces to (in the special case when θ = π ) 

 eiπ = −1. (D-2) 

From de Moivre’s identity, 

 ei (nθ ) = (eiθ ) n  (D-3) 

we get (with n =1 2 and θ = π ) 

 eiπ 2 = −1 = i . (D-4) 

Now apply de Moivre’s identity to take the positive and negative square roots of equation 

(D-4), where the square root sign will now be used to indicate the principle (i.e. positive) 

square root. Thus 

 eiπ 4 = i  (D-5) 

or, equivalently 

 eiπ 4 = i =
i −i

−i
=

1
−i

; (D-6) 

and 

 e− iπ 4 =
1
i

=
−i

i −i
= −i , (D-7) 

or, equivalently 

 e− iπ 4 =
1
i

=
i −i( )

i i( ) −i
=

1
i −i

. (D-8) 

Next, we need Hankel functions of the first and second kind: 
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 Hn
(1) (θ) = Jn(θ) + iYn (θ ) (D-9) 

and 

 Hn
(2)(θ) = Jn (θ) − iYn (θ ), (D-10) 

where n is the order, and Jn (θ ) and Yn (θ ) are Bessel functions of the first and second 

kind with asymptotic approximations given by 

 Jn (θ ) ≈
2

πθ
cos θ −

nπ
2

−
π
4

 
 
  

 
  ,    θ >>1 (D-11) 

and 

 Yn (θ ) ≈
2

πθ
sin θ −

nπ
2

−
π
4

 
 
  

 
  ,    θ >>1. (D-12) 

Inserting these asymptotic approximations into the zero-order Hankel functions of the 

first and second kind and applying the Euler formula [equation (D-1)] yields 

 H0
(1) (θ) ≈

2
πθ

ei (θ −π 4)  (D-13) 

and 

 H0
(2)(θ) ≈

2
πθ

e− i(θ−π 4) . (D-14) 

Equations (D-13) and (D-14) can be re-expressed using the exponential relationships 

determined using de Moivre’s identity [equations (D-8) and (D-6)] to yield 

 H0
(1)(θ) ≈

2
πθ

eiθ e −iπ 4 =
1

i −i
2
π

1
θ

eiθ  (D-15) 

and 

 H0
(2)(θ) ≈

2
πθ

e−iθ e+ iπ 4 =
1
−i

2
π

1
θ

e −iθ . (D-16) 
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Note that by using the one-sided inverse Fourier transform valid for real signals, as given 

by equation (A-30), the sign complexities associated with negative frequencies are 

greatly reduced. 

D.3 Forward and backward 2-D free-space Green’s functions 

The asymptotic Hankel functions [equations (D-15) and (D-16)] will prove extremely 

useful for 2-D free-space Green’s functions, which assume a line source instead of a 

point source. Assuming the line source is parallel to the y-axis, the 2-D forward-

propagating free-space Green’s function can be derived by integrating the 3-D forward-

propagating free-space Green’s functions [equation (2.16)], as follows 

 
  

G 
G 0

(2− D)
(x,xG ,ω) = dyG

G 
G 0

(3− D)
(x,xG ,ω)

−∞

∞

∫  

  = dy
e

G

iω r2 + Υ2 / c0

4π r 2 + Υ2
−∞

∞

∫  

 =
i
4

H0
(1)(ω r c0 ) , (D-17) 

with r = (x − xG )2 + (z − zG )2  and Υ = y − yG . Inserting the asymptotic expression for 

the Hankel function [equation (D-15)] yields 

 
  

G 
G 0

(2− D)
(x,xG ,ω) ≈

2πσ
−iω

eiω r c0

4πr
. (D-18) 

Thus the 2-D forward-propagating free-space Green’s function is the half-integral 

operator 1 −iω  applied to the corresponding 3-D Green’s function (evaluated in the 

plane y = constant), multiplied by the out-of-plane spreading correction 2πσ , where 

σ = c0r . The half-integral operator in the 2-D Green’s function creates a tail that extends 

for infinite time after the arrival of the initial wavefront. This is to be expected, given that 

the 2-D impulse source is equivalent to an impulse line source in 3-D. The first arrival at 
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the observation location x at time r c0  comes from the in-plane point on the line source. 

Subsequent arrivals come from points further and further out along the line, at times 

r 2 + Υ 2 c0  (see equation D-17). Thus, wave diffusion takes place and Huygens’ 

principle does not hold in 2-D (see Robinson and Silvia, 1981 p. 313). 

Derivation of the 2-D backward-propagating free-space Green’s function is similar, 

yielding 

 
  

H 
G 0

(2− D)
(x,xG ,ω) = −

i
4

H0
(2) (ω r c0 ) ≈

2πσ
i −iω

e−iω r c0

4πr
. (D-19) 

The 2-D forward-propagating free-space Green’s function [equation (D-18)] can be 

applied to the forward modeling problem. The derivation is similar to that found in Kuhn 

and Alhilali (1977) but uses the opposite sign convention for the Fourier transform. 

Hence exponentials in the forward and backward propagating Green’s functions are 

opposite in sign, leading to Hankel functions of the second and first kind, respectively. 

D.4 Derivation of 2-D forward modeling formula for constant wavespeed 

We start with the Kirchhoff-Helmholtz integral for the surface scattered wavefield 

[equation (3.9)], expressed in 2-D as 

 
  
PΛ

−

(2− D)
(xg ,x s ,ω ) = dΛ

xΛ

∫
G 

G 0
+

(2− D)
(xΛ , xg ,ω)∇ xΛ

PΛ
−

(2−D )
(x Λ ,x ′ s ,ω) ⋅ nΛ

+ 
 
 

 

 
  
− PΛ

−

(2− D)
(xΛ , x ′ s ,ω )∇xΛ

G 
G 0

+

(2− D)
(xΛ ,xg ,ω) ⋅ nΛ

+  
 
 

, (D-20) 

where the Green’s function source is at the measurement location on the surface, as 

indicated by the subscript (g), and the line reflector element is indicated by the subscript 

(Λ), with downward pointing normal n Λ
+ . 
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The appropriate Green’s function is given by equation (D-18). I adopt a simplified 

notation for the 2-D Green’s function based on the subscripts described in the previous 

paragraph, i.e. 

 
  

G 
G 0

+

(2− D)
(xΛ ,xg ,ω) =

G 
G 

Λg

+ =
2πσ Λg

−iω
eiω rΛg c0

4πrΛg

. (D-21) 

Next we need the normal derivative of the Green’s function given by equation (D-21), as 

follows: 

 
  

∂
G

G Λg
+

∂nΛ
+ =

∂
G

G Λg
+

∂rΛg

∂rΛg

∂nΛ
+ =

∂
∂rΛg

2πco

4π −iω
rΛg

−1 2eiω rΛg c0
 

 
 

 

 
 

∂rΛg

∂nΛ
+  

 =
− 2πco

8π −iω
rΛg

−3 2eiω RΛg c0
∂rΛg

∂nΛ
+ −

2πco

4π
rΛg

−1 2 −iω
c0 −iω

 

 
 

 

 
 e

iωrΛg c0
∂rΛg

∂nΛ
+ . (D-22) 

In the far field, the term containing rΛg
−3 2  can be neglected, leaving 

 
  

∂
G

G Λg
+

∂nΛ
+ ≈ − −iω 2πc0 rΛg

eiωrΛg c 0

4πc0rΛg

∂rΛg

∂nΛ
+ , (D-23) 

which can be re-expressed as 

 
  

∂
G

G Λg
+

∂nΛ
+ ≈

2πσ Λg

−iω
−(−iω )

eiωrΛg c 0

4πσΛg

∂rΛg

∂nΛ
+

 
 
 

 
 
 

. (D-24) 

Thus the normal derivative of the 2-D forward-propagating free-space Green’s function is 

the half-integral operator 1 −iω  applied to the normal derivative of the corresponding 

3-D Green’s function (evaluated in the plane y = constant) multiplied by the out-of-plane 

spreading correction 2πσ Λg . Note that the normal derivative of the 3-D Green’s 

function (in the curly brackets) is itself a full derivative (−iω) of the free-space Green’s 

function divided by the wavespeed c  and multiplied by the obliquity 0 ∂rΛg ∂nΛ
+ = cosθ Λg , 

where θ Λg  is the acute angle between the ray direction and surface normal. The combined 
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effect of the full-derivative and half-integral operators is the half-derivative operator 

−iω , as shown in equation (D-23). 

Following the line of reasoning presented in Section 3.3 [equations (3.11)-(3.13)], the 

upgoing reflected wavefield on the reflector surface is given by the density-dependent 

source function Sρ (ω) times the angle-dependent geometrical-optics reflection 

coefficient Rθ (x Λ ,x s ) (simplified as Rθ ) multiplied by the 2-D forward-propagating free-

space Green’s function from image source to reflector, i.e. 

 
  
PΛ

−

(2− D)
(xΛ ,x ′ s ,ω ) = P

Λ ′ s 

− = Sρ (ω )Rθ

G 
G Λ ′ s 

− = Sρ (ω )Rθ

2πσ Λ ′ s 

−iω
eiω rΛ ′ s c0

4πrΛ ′ s 

. (D-25) 

The far-field normal derivative is 

 
∂PΛ ′ s 

−

∂nΛ ′ s 
+ ≈ Sρ (ω )Rθ

2πσ Λ ′ s 

−iω
−(−iω)

eiω rΛ ′ s c0

4πσΛ ′ s 

∂rΛ ′ s 

∂nΛ
+

 

 
 

 

 
 . (D-26) 

The obliquity ∂rΛ ′ s ∂nΛ
+ = −cosθΛs , where θ Λs  is the acute angle between the ray 

direction and the surface normal. 

Substituting equations (D-21), (D-23), (D-25) and (D-26) into equation (D-20) yields 

PΛ
−

(2− D)
(xg ,x ′ s ,ω ) = dΛ

xΛ

∫ −
2πσ Λg

−iω
eiω rΛg c0

4πrΛg

Sρ (ω )Rθ −iω 2πσ Λ ′ s 
eiωrΛ s' c0

4πσ Λ ′ s 

∂rΛ ′ s 

∂nΛ
+

 
 
 

  
 

 +Sρ(ω)Rθ

2πσ Λ ′ s 

−iω
eiω rΛ ′ s c0

4πrΛ ′ s 

−iω 2πσ Λg
eiω rΛg c0

4πσ Λg

∂rΛg

∂nΛ
+

 
 
 

, (D-27) 

which simplifies to 

 PΛ
−

(2− D)
(xg ,x ′ s ,ω ) =

c0

4
dΣ

xΛ

∫ Sρ (ω)Rθ
eiω (rΛ ′ s +rΛg ) c0

2πσ Λ ′ s 2πσΛg

∂rΛg

∂nΛ
+ −

∂rΛ ′ s 

∂nΛ
+

 

 
 

 

 
 . (D-28) 
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Equation (D-28) agrees with equation (16a) of Kuhn and Alhilali (1977)7. Substituting 

for the normal derivatives using the obliquity angles described previously and 

rearranging yields 

[ ]0)(0

)2(
)(

2
coscos

22
1

2
),,( crrigs

gs
sg

D

gseSRdcP ΛΛ

Λ

+ΛΛ

ΛΛ−

−
Λ




















 +
Λ= ∫ ω

ρθ ω
θθ

πσπσ
ω

x

xx . 

  (D-29) 

Equation (D-29) is the 2-D modeling formula, now expressed in terms of a source at the 

surface location instead of at the image location. The term in the square brackets is the 

Fourier transform of the source wavelet [Sρ (ω)] multiplied by a phase shift eiω (rΛs +rΛg ) c0  

determined by the traveltime from source-to-reflector-to-receiver. 

Deregowski and Brown (1983) propose a variant of the 2-D modeling formula given by 

equation (D-29). They use a source that produces an impulsive wavefront in the far field. 

This is achieved with an extra half-differential operator −iω , yielding the 2-D variant 

modeling formula 

 PΛ
−

(2− Dv)
(xg ,x s ,ω) =

c0

2
dΛ

xΛ

∫ Rθ
1

2πσ Λs 2πσ Λg

cosθΛs + cosθ Λg

2
 
 
 

 
 
 

 
 
 

  

 
 
 

  
 

 × −iω Sρ (ω )eiω(rΛ s +rΛg ) c0[ ]. (D-30) 

D.5 3-D and 2.5-D modeling formulae for constant wavespeed 

The 3-D modeling formula [equation (3.17)] determines the wavefield at a point receiver 

originating from a point source and reflected from an arbitrary 3-D subsurface structure 

. The constant wavespeed version of the 3-D modeling formula is Σ

                                                 

7 Note that equation (16a) of Kuhn and Alhilali (1977) contains an extra factor of 4π , arising from an extra 

factor of 4π in their equation (14a) as compared to equation (D-25) above. 
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 PΣ
−

(3−D )
(xg ,x s ,ω ) =

c0

2
dΣ

x Σ

∫ Rθ
1

2πσ Σs 2πσ Σg

cosθ Σs + cosθΣg

2
 
 
 

 
 
 

 
 
 

 
 
 

 

 × (−iω )Sρ(ω )eiω (rΣs +rΣg ) c0[ ]. (D-31) 

To obtain a 2.5-D modeling formula for constant wavespeed, all that remains is to 

integrate equation (D-31) over the y-coordinate of the reflector surface. The integration 

for constant wavespeed is presented in Deregowski and Brown (1983, Appendix B) or, 

for a generalized 2-D wavespeed function using the method of stationary phase, in 

Bleistein (1986). The integrations are not trivial and will not be repeated here. The result 

is: 

PΛ
−

(2.5− D)
(xg ,x s ,ω ) =

c0

2
dΛ

xΛ

∫ Rθ
1

2πσ Λs 2πσ Λg 2π σ Λs +σ Λs( )
cosθ Λs + cosθΛg

2
 
 
 

 
 
 

 
 
 

  

 
 
 

  
 

 × −iω Sρeiω(rΛ s +rΛg) c0[ ]. (D-32) 

The 2.5-D modeling formula assumes 2-D subsurface structure and 3-D wave 

propagation. 

D.6 Relationships between 2-D, 2.5-D and 3-D modeling formulae for constant 
wavespeed 

Some interesting and simple relationships exist between the 2-D, 2.5-D and 3-D 

modeling formulas. First, note the relationship between the 2-D and 3-D forward 

propagating Green’s functions as given by equation (D-18), re-expressed here as 

 
  

G 
G 0

(3−D )
(x, xG ,ω ) ≈

−iω
2πσ

 

 
 

 

 
 

G 
G 0

(2− D)
(x,xG ,ω) . (D-33) 

Comparing equation (D-31) with equation (D-29), we see that the 3-D modeling formula 

is related to the 2-D modeling formula by 
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 PΣ
−

(3−D )
(xg ,x s ,ω ) =

−iω
2πσ Λg

 

 
 
 

 

 
 
 

−iω
2πσ Λs

 

 
 

 

 
 PΛ

−

(2−D )
(x g, x s ,ω ). 

  (D-34) 

i.e. the forward out-of-plane spreading and half-differential operators for both the source-

to-reflector and reflector-to-receiver paths. Equation (D-34) is of limited utility. Although 

it appears to shows how one can convert synthetic data generated using a 2-D modeling 

program into 3-D synthetic data, the result will not include the contribution from the out-

of-plane component of the integration over the reflector surface. 

Comparing equation (D-32) with equation (D-29), we see that the 2.5-D modeling 

formula is related to the 2-D modeling formula by 

 PΛ
−

(2.5− D)
(xg ,x s ,ω ) =

−iω
2π (σ Λs +σ Λg )

 

 
 
 

 

 
 
 

PΛ
−

(2− D)
(xg ,x s ,ω) . (D-35) 

i.e. the forward out-of-plane spreading and half-differential operator for the source-to-

reflector-to-receiver path. Equation (D-35) can be used to convert 2-D synthetic data into 

more realistic 2.5-D synthetic data. In a constant velocity medium, the out-of-plane 

spreading 1 2π (σ Λs +σ Λg )  is proportional to 1 t , where t is the total traveltime on the 

synthetic trace. Both the out-of-plane spreading and the half-differential operator can be 

implemented after the synthetic data have been generated. 

Finally, comparing equation (D-31) with equation (D-32), we see that the 3-D modeling 

formula is related to the 2.5-D modeling formula by 

 PΣ
−

(3−D )
(xg ,x s ,ω ) =

−iω
2πσ Λs

 

 
 

 

 
 

−iω
2πσ Λg

 

 
 
 

 

 
 
 

2π (σ Λs + σ Λg )

−iω

 

 
 
 

 

 
 
 

PΛ
−

(2.5− D)
(xg ,x s ,ω) . (D-37) 

The fact that the 2.5-D and 3-D modeling formulae are not identical is easily explained. 

The 2.5-D modeling formula includes the out-of-plane integration over the line reflector 
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elements, while the 3-D modeling formula does not. Thus equation (D-37) is also of 

limited utility. As we shall see shortly, similar relationships exist between the 2-D, 2.5-D 

and 3-D migration/inversion formulae. 

D.7 Derivation of 2-D common-shot migration/inversion formula for constant 
wavespeed 

Derivation of the 2-D Kirchhoff-approximate migration/inversion formula for shot or 

receiver records starts with the chi-squared optimum deconvolution imaging condition 

[equation (3.38)] 

 
  

ˆ R θ
(2− D)

(xG ,x s ) =
1

2π
dω ˆ F (ω)

PS
− (xG ,x s ,ω )G 

G 0
+ (xG ,x s ,ω)∫ , (D-38) 

where PS
−(xG ,x s ,ω)  is the wavefield recorded on the line xg inverse propagated to the 

imaging location xG, and    is the forward-propagating free-space Green’s 

function originating at the source location x

G
G 0

+ (xG ,x s ,ω)

s, adapted from equation (D-18) as 

 
  

G 
G 0

(2− D)
(xG ,x s ,ω) =

G 
G Gs ≈

2πσ Gs

−iω
eiω rGs c0

4πrGs

. (D-39) 

Following the line of reasoning presented in section 3.7, the wavefield PS
−

(2− D)
(xG ,x s ,ω)  is 

reconstructed using the Rayleigh II integral 

 
  
PS

−

(2− D)
(xG ,x s ,ω) = 2 dx

xg

∫ PS
−

(2−D )
(x g, x s ,ω )

∂
∂ng

+

H 
G 0

+

(2−D )
(x g, xG ,ω ). (D-40) 

The 2-D backward-propagating free-space Green’s function is adapted from equation 

(D-19) as 

 
  

H 
G gG

+ ≈
2πσ gG

i −iω
e−iω rgG c0

4πrgG

, (D-41) 

with normal derivative 
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∂
H

G gG
+

∂ng
+ ≈

2πσ gG

i −iω
(−iω)

c0

e− iωrgG c0

4πrgG

∂rgG

∂ng
+

 

 
 

 

 
  (D-42) 

Now substitute equation (D-42) into equation (D-40), then equations (D-40) and (D-39) 

into equation (D-38), and take equation (A-30) to give 

 ˆ R θ
(2− D)

(xG , x s ) =
2
c0

dx
2πσ Gs

2πσ gG

cosθ gG

 
 
 

  

 
 
 

  
xg

∫  

 ×2 Re
1

2π
dω

0

∞

∫ ˆ F (ω )(ω ) PS
−

(2−D )
(x g, x s ,ω)e− iω(rGs +rgG ) c0

 

 
 

 

 
 . (D-43) 

Equation (D-43) is the 2-D constant wavespeed migration formula for reflectivity, valid 

for the common-shot (or common-receiver) domain. Note the weighting by frequency ω 

in the inverse Fourier transform of the recorded wavefield (square brackets), which can 

be thought of as the effect of the out-of-plane component of the Fresnel zone not 

collapsed by the migration. In addition, the normal direction has been changed between 

equations (D-42) and (D-43) so that the receiver directivity ∂rgG ∂ng
− = cosθ gG , with θgG 

the acute angle between the ray direction and the surface normal. 

D.8 2.5-D and 3-D common-shot migration/inversion formulae for constant 
wavespeed 

The 2.5-D common-shot migration/inversion formula can be derived in two ways, 

starting from either the 2-D formula [equation (D-43)] or the 3-D formula (given below). 

The 2-D method is trivial, as it utilizes a simple relationship between 2-D and 3-D free-

space Green’s functions. In keeping with the discussion presented in Appendix B [see 

equation (B-15)], the 2.5-D pressure recorded on the surface (i.e. 3-D pressure recorded 

along a single line of receivers) can be considered proportional to a ‘generalized’ free-

space Green’s function. Hence the 2.5-D pressure can be related to the 2-D pressure 
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using the relationship between respective forward-propagating Green’s functions as 

given by equation (D-33), re-expressed for the source-to-reflector-to-receiver path as 

 PS
−

(2− D)
(xg ,x s ,ω ) =

2π (σ Gs +σ gG )

−iω
PS

−

(2.5−D )
(xg ,x s ,ω ). (D-44) 

Substituting equation (D-44) for PS
−

(2− D)
(xg ,x s ,ω ) in equation (D-43) and rearranging yields 

 ˆ R θ
(2.5− D)

(xG , x s ) =
2
c0

dx
xg

∫ 2π (σ Gs +σ gG )
2πσ Gs

2πσ gG

cosθgG

 
 
 

  

 
 
 

  
 

 ×2Re
1

2π
dω

0

∞

∫ F(ω) iω PS
−

(2.5− D)
(xg ,x s ,ω )e−iω (rGs+ rgG ) c0

 

 
 

 

 
 . (D-45) 

It is interesting to note that the operator iω  in the square brackets is not the half-

differential operator, but instead is equivalent to i −iω , the half-differential operator 

combined with a phase shift of π / 2 (see equation D-4). 

Derivation of the 2.5-D migration/inversion formula from the 3-D formula is not trivial 

and hence will not be presented. The derivation was first presented by Bleistein et al. 

(1987), who start with the 3-D Born inversion formula for wavespeed perturbation 

α(xG)  [equation (3.66) of this dissertation] and uses the method of stationary phase to 

collapse the out-of-plane contributions. The general derivation is also presented in 

Bleistein et al. (2001, Sections 6.2 and 6.3.1). In Chapter 3, equation (D-45) is presented 

in a reduced form as equation (3.78). 

The 3-D common-shot migration/inversion formula for constant wavespeed is given by 

equation (3.74), re-expressed here as 

 ˆ R θ
(3−D )

(xG ,x s ) =
−2
c0

dS
xg

∫
2πσ Gs

2πσ gG

cosθgG

 
 
 

 
 
 

.  

 ×2Re
1

2π
dω

0

∞

∫ ˆ F (ω)(−iω) PS
−

(3−D )
(xg, x s ,ω )e−iω (rGs+ rgG ) c0

 

 
 

 

 
 . (D-46) 
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D.9 Relationships between 2-D, 2.5-D, and 3-D common-shot migration/inversion 
formulae for constant wavespeed 

Before we examine the relationships between the various migration formulae, note the 

relationship between the 3-D and 2-D backwards propagating Green’s functions as given 

by equation (D-19), re-expressed here as 

 
  

H 
G 0

(3−D )
(x, xG ,ω ) ≈

i −iω
2πσ

 

 
 

 

 
 

H 
G 0

(2− D)
(x,xG ,ω ). (D-47) 

For a given output point xG, the 3-D common-shot migration/inversion formula [equation 

(D-46)] is related to the 2-D common-shot migration/inversion formula [equation (D-43)] 

by 

 ˆ R θ
(3−D )

(xG ,x s ) = i
2πσ Gs

2πσ gG

ˆ R θ
(2−D )

(xG ,x s ). (D-48) 

This relationship can be explained by examining the generalized migration formula 

[equation (D-38)], with the backward out-of-plane spreading and half-differential 

operator applied to the numerator using equation (D-41) [or its equivalent, equation 

(D-47)] and the forward out-of-plane spreading correction and half-integral operator 

applied to the denominator using equation (D-39) [or its equivalent, equation (D-33)], 

yielding 

 ˆ R θ
(3−D )

(xG ,x s ) =
2πσ Gs

−iω

 

 
 

 

 
 

i −iω
2πσ gG

 

 
 
 

 

 
 
 

ˆ R θ
(2− D)

(xG ,x s ). (D-49) 

Simplifying equation (D-49) yields equation (D-47). However, these equations are of 

limited utility because the out-of-plane spreading factor for the backward propagating 

path (receiver to subsurface point) would have to be implemented inside the integration, 

effectively producing a new migration formula. 
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Comparing equation (D-45) with equation (D-43), we see that the 2.5-D common-shot 

migration/ inversion formula is related to the 2-D common-shot migration/inversion 

formula by 

 ˆ R θ
(2.5− D)

(xG , x s ) =
2π(σ Gs +σ gG )

−iω

 

 
 
 

 

 
 
 

ˆ R θ
(2− D)

(xG ,x s ), (D-50) 

i.e. the forward out-of-plane spreading correction and half-integral operator for the 

source-to-reflector-to-receiver path. Equation (D-50) could be used to create a 2.5-D 

reflectivity map given a 2-D migration algorithm applied to 2.5-D data. The out-of-plane 

spreading correction 2π (σGs +σ gG )  is proportional to the square root of traveltime t  

on the input trace. Similar to the 2.5-D/2D modeling relationship discussed previously 

[equation (D-35)], both the out-of-plane spreading correction and half-integral operator 

can be applied outside the migration integral. 

Equations (D-49) and (D-50) can be combined to give the relationship between the 3-D 

and 2.5-D common-shot migration/inversion formulae: 

 ˆ R θ
(3−D )

(xG ,x s ) =
2πσ Gs

−iω
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−iω
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 
 
 

ˆ R θ
(2.5− D)

(xG , x s ) . (D-51) 

Applying the terms in square brackets in equation (D-51) from right to left suggests that 

the correction factors first transform the 2.5-D equation to 2-D, then from 2-D to 3-D. 

Equation (D-51) is of limited utility for the same reason that befell equation (D-49)—the 

out-of-plane spreading factor for the backward propagating path (receiver to subsurface 

point) would have to be implemented inside the integration, effectively producing a new 

migration formula. 
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D.10 Common-offset migration/inversion formulae for constant wavespeed 

The common-offset experiment produces a recorded wavefield that is non-physical in the 

sense that it cannot be obtained from a single physical experiment. Thus the concept of a 

reflectivity obtained from a deconvolution imaging condition that ratios the inverse and 

forward propagated wavefield at the reflector is not applicable. Instead, the reflectivity is 

determined in a manner analogous to a generalized Radon transform, with the weighting 

factors in the migration/inversion formulae related to the distribution of isochron-normals 

at the reflector. Still, the relationships between the 2-D, 2.5-D and 3-D common-offset 

migration/ inversion formulae can be presented in terms of out-of-plane spreading factors 

and half-integral or half-differential operators. Physical interpretations can then be 

attached to each of these terms, although they may not be of much practical use. 

The 3-D common-offset migration/inversion formula [equation (3.76)] is derived in 

section 5.2.3 of Bleistein et al. [2001, constant wavespeed version is equation (5.2.32)]. It 

can be re-expressed as 

ˆ R θ
(3−D )

(xG ,ξ co ) =
−2
c0

dS
ξco

∫
2π (σ Gs +σ gG )

2πσ gG

cosθ gG +
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cosθGs
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 ×2 Re
1

2π
dω

0

∞

∫ ˆ F (ω )(−iω ) PS
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(3− D)
(xg ,x s ,ω )e−iω (rGs+ rgG ) c0

 

 
 

 

 
 . (D-52) 

The 2.5-D common-offset migration/inversion formula [equation (3.79)] is derived in 

sections 6.2 and 6.3.5 of Bleistein et al. [2001, constant wavespeed version is 

unnumbered equation after equation (6.3.14)]. It can be re-expressed as 

ˆ R θ
(2.5− D)

(xG ,ξ co ) =
2
c0

dx
ξco

∫ 2π (σGs +σ gG )
2πσ Gs

2πσ gG
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2πσGs

cosθGs
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 . (D-53) 
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Equation (D-53) is effectively equation (7) of Dillon (1990), who introduces it as the 2-D 

(but probably means 2.5-D) generalized Kirchhoff migration formula. Equation (D-53) 

can also be thought of as a sum of common-shot and common-receiver weighting terms 

as given by the first and second terms in the curly brackets. Using only the common-shot 

term yields an expression identical to the common-shot migration/inversion formula as 

given by equation (D-45). 

The 2-D common-offset migration/inversion formula can be obtained by substituting the 

3-D pressure recorded on the surface using equation (D-44) into equation (D-53), 

yielding 

ˆ R θ
(2− D)

(xG ,ξ) =
2
c0

dx
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 
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 

 

 
 . (D-54) 

D.11 Relationships between 2-D, 2.5-D, and 3-D common-offset migration/inversion 
formulae for constant wavespeed 

The simplest relationship is between the 2-D and 2.5-D common-offset 

migration/inversion formulae [equations (D-52) and (D-53), respectively], as this 

relationship was used to derive one from the other, and is the same as the relationship 

between the corresponding common-shot migration/inversion formulae [equation 

(D-50)], i.e. 

 ˆ R θ
(2.5− D)

(xG ,ξ co ) =
2π (σGs +σ gG )

−iω

 

 
 
 

 

 
 
 

ˆ R θ
(2− D)

(xG ,ξ co ) . (D-55) 

The 3-D common-offset migration/inversion formula [equation (D-54)] is not related to 

the 2-D and 2.5-D formulae in the same way as in the common-shot case. However, there 

is only one shot in the 3-D common-shot experiment and hence only one raypath from 
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the shot to the reflector location xG (assuming constant wavespeed). In the 3-D common-

offset experiment, on the other hand, there are many shot-receiver pairs and hence many 

raypaths from the shots to the reflector location. Thus we might expect the relationships 

between the 3-D and the 2-D and 2.5-D formulae need term(s) that collapse these out-of-

plane shots in addition to terms that collapse the out-of-plane contribution from each shot 

and from each receiver. 

Equations (D-52), (D-53), and (D-54) are symmetric in common-shot and common-

receiver terms, as given by the first and second terms in the curly brackets, respectively. 

Given the symmetry, I assume that the common-shot terms of the 3-D and 2-D common-

offset migration/inversion formulae are related by 
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  (D-56) 

while the common-receiver terms are related by 
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  (D-57) 

Equations (D-56) and (D-57) are identical, and do equate the two migration/inversion 

formulae. However, it is not immediately obvious how either of these equations can be 

reconciled with the 3-D/2-D common-shot relationship given by equation (D-49). A more 

intuitive approach is to look at the relationship between the 2-D and 3-D common-offset 

wavefields, in a manner similar to the relationship between the 2-D and 3-D common-

shot wavefields described by equation (D-44). One possible interpretation is as follows. 

Reading equation (D-56) from right to left: the first term takes the 2-D common-offset 

wavefield and converts it into a 3-D wavefield—entirely analogous to the 2.5-D/2-D 
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relationship given by equation (D-55)—resulting in a single line of source-receiver pairs 

oriented, say, in the x direction; the next two terms expand the receivers for every shot 

and shots for every receiver in a direction perpendicular to the single line (i.e. in the y 

direction) with the shots in a forward propagating sense and the receivers in a backward 

propagating sense; while the final term corrects the resulting configuration to single shot-

receiver pairs oriented in the x direction. The coordinate system can be changed to 

accommodate any desired azimuth. The physical explanation for the common-receiver 

terms is identical except for the sense of propagation, now forward from the receivers and 

backward from the shots. 

Similarly, the common-shot terms in the 3-D and 2.5-D common-offset formulae are 

related by 
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while the common-receiver terms are related by 
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The explanation for equations (D-58) and (D-59) follows directly from the one above. 

An interesting result is obtained by applying the 2-D/3-D common-shot relationship 

[equation (D-49)] to the common-shot term of the 2-D common-offset 

migration/inversion formula [equation (D-54], along with a suitably symmetric 

relationship for the common-receiver term. This produces the following 3-D 

migration/inversion formula: 
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where  is some sort of average of (incorrectly) estimated angle-dependent 

reflection coefficients. 

ˆ R ∠ (xG , ξsg )

Equation (D-60) is within a constant of proportionality to equation (A-5) of Dillon 

(1990), although Dillon derives his equation using a completely different method. 

Numerical tests presented in Section 4.3 show that equation (D-60) does not produce an 

accurate estimate of reflectivity, although the error is of similar magnitude to that 

introduced by incorporating the obliquity factor at the reflector. 

D.12 Zero-offset migration/inversion formulae and relationships 

Zero-offset migration/inversion formulae are of particular interest because they 

approximate poststack migration/inversion of stacked data. For constant wavespeed, the 

zero-offset migration/inversion formulae are just the common-offset formulae with the 

shot and receiver at the same location x . Defining m rmG ≡ rGs = rgG , equations (D-52), 

(D-53) and (D-54) can be simplified to yield 

ˆ R ⊥
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∫ 4 cosθmG{ } 
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 , (D-61) 
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and 

ˆ R ⊥
(2− D)

(xG ,xm ) =
2
c0

dx
xm

∫ 2cosθ mG{ } 

 ×2Re
1
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0
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respectively, where  is the normal-incidence reflection coefficient. ˆ R ⊥ (xG ,xm )

The terms in the curly brackets in each of the above equations are the weight functions 

for the migration/inversion. These are not the desired weights for conventional post-stack 

migration because the input traces to post-stack migration are assumed to be corrected for 

spherical divergence, whereas the zero-offset pressure PS
−(xm ,x m ,ω ) in the above 

equations is the (zero-phase) recorded data with no correction applied. Assuming the 

zero-offset (i.e. stacked) data have been corrected for spherical divergence, the weight 

functions for the poststack 2.5-D and 3-D migration/inversion formulae [equations 

(D-61) and (D-62)] need an additional factor of 1 (2rmG ) ∝1 t , and the weight function 

for the 2-D migration/ inversion formula needs an additional factor of 1 2rmG ∝1 t . 

Other constants may be required to normalized the reflectivity, depending on the 

constants incorporated in the correction for spherical divergence. 

Equation (D-61) is the far-field portion of the 3-D migration formula given by Schneider 

(1978, step 4 of Figure 4), to within a factor of 1 rmG  and a constant. Common-shot 

migration/inversion [equation (D-48)] also simplifies to this formula. Schneider obtains 

the ‘correct’ migration formula (i.e. inversion for normal reflection coefficient) using 

inverse wavefield extrapolation and an excitation time (t = 0) imaging condition, not the 

deconvolution imaging condition given by equation (D-38) [equation (3.38) for 3-D]. 

Schneider’s migration formula is based on the non-physical exploding reflector model of 

(Loewenthal et al., 1976), which forms the basis for poststack ‘wave-equation’ migration 
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techniques [e.g. Stolt f-k, Gazdag phase-shift, and finite-difference—see Gardner 

(1985)]. Note, however, that the zero-offset formulae given by equations (D-61), (D-62) 

and (D-63) assume that the stacked seismic data have not been corrected for spherical 

divergence, whereas poststack migration routines are typically applied on divergence-

corrected data. 

I have not succeeded in equating either of equations (D-62) or (D-63) with the 2-D 

migration formula given by Schneider [1978, equation (12)]. However, equation (D-63) 

is c0 2  times equation (3.6.36) of Bleistein et al. (2001). Bleistein et al.’s equation 

appears to be an inversion for the reflectivity function β , whereas equation (D-63) is the 

migration/inversion formula for reflectivity . Bleistein et al. (2001, Section 5.1.6) 

shows that 

ˆ R = β1

β1 = βc0 (2 cosθ) , where θ  is the half-opening angle at the reflector. For 

zero-offset, the half-opening angle is zero, suggesting that Bleistein et al.’s formula is 

identical to equation (D-63). 

The relationships between the various migration/inversion formulae [equations (D-55), 

(D-56)/(D-57) and (D-58)/(D-59)] can be similarly simplified, yielding 
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(xG , xm ), (D-66) 

respectively. As with the migration/inversion formulae, these equations may require 

additional factors if the input data (i.e. stacked data) are corrected for spherical 

divergence. 
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D.13 Summary 

In this appendix, simple relationships between 2-D, 2.5-D, and 3-D constant-wavespeed 

modeling and migration/inversion formulae have been derived and presented. Two of the 

results may be of some practical use: equation (D-35), which converts 2-D modeling 

results into 2.5-D synthetic data; and equations (D-50) and (D-55), which can be used to 

migrate 2.5-D data using a 2-D migration algorithm. However, all the relationships are of 

interest given the intuitive link between the various Green’s functions, out-of-plane 

spreading factors and fractional differential and integral operators. 

The common-offset migration/inversion formulae can be simplified to zero-offset. 

Assuming spherical divergence is accounted for, the zero-offset expressions are 

appropriate for post-stack migration/inversion. The 3-D migration/inversion formula 

[equation (D-61)] is essentially equivalent to the 3-D migration formula of Schneider 

(1978), which is based on the exploding-reflector model (inverse wavefield extrapolation 

at half the wavespeed and excitation-time imaging condition). The exploding reflector 

model is the foundation for the ‘wave-equation’ migration techniques of the 1970’s and 

early 1980’s. As discussed in Schneider, the 2-D and 3-D zero-offset migration formulae 

based on the integral solution have strong historic ties to the “conventional” diffraction 

summation approach of the late 1960s. 
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