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ABSTRACT 
 

In order to study and understand the complex Earth, exploration geophysicists make 

many assumptions. One of them is that the Earth is perfectly isotropic while in fact it is 

fundamentally anisotropic. This faulty assumption results in erroneous imaging of 

subsurface strata and thus faulty interpretations. To extend the seismic processing 

techniques to anisotropic media, it is required that we have a measure of the different 

anisotropy parameters.  

In this thesis I propose a method for estimation of Thomsen’s P-wave anisotropy 

parameters (ε and δ )   for Vertical Transverse Isotropic (VTI) media using Castle’s 

shifted-hyperbola Normal Moveout (NMO) equation. The method was first tested on a 

synthetic data and then applied to the field data. 

I have shown in this thesis that the shifted hyperbola NMO equation (SNMO) gives better 

estimate of NMO velocities than Dix’s NMO equation, as it is a fourth-order Taylor 

series approximation while Dix NMO equation is a second-order approximation. A 

Monte-Carlo Inversion technique was used for the inversion of traveltime data for both 

NMO velocity and the shift parameter S. I have applied this SNMO inversion technique 

to both Equivalent Offset (EO) and CMP (Common Midpoint) gathers. It was found that 

the velocity analysis on EO gathers gives comparatively more accurate velocity estimates 

due to their better signal- to- noise ratio.  

 

After the velocity analysis the NMO velocity and the shift parameter can be used to 

estimate the anisotropy parameters. I estimated the values of ε and δ on synthetic seismic 

data. The values of δ were estimated quite accurately while the estimation of the 



 iv

parameter ε was less accurate. The errors in the estimation of δ  varied from 5-10% while 

the error in estimation of ε  varied from 20-30%. I then applied this technique to the field 

dataset acquired over the Blackfoot Field in Alberta and the anisotropic parameters of 

formations of interest were estimated and were found compare reasonably with 

expectations based on known lithology. 
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Chapter 1: Introduction 

1.1. Introduction 
 
One of the basic assumptions of reflection seismology is that the Earth is perfectly 

isotropic while it is fundamentally anisotropic (Thomsen, 1986). Exploration 

seismologists have realized quite early that the assumption of isotropy is not valid in all 

the cases. Seismic anisotropy can be defined as the dependence of seismic velocity on the 

direction of [Wavefield] propagation (Sheriff, 2002). 

It was realized in several instances that the velocity of seismic waves in the Earth’s upper 

crust varied with the direction of propagation (McCollum and Snell, 1947). Some of the 

early and more important contributors in this field are Postma (1955), Backus (1962), 

Helbig (1964), and Berryman (1979).  

In recent decades there has been a renewed interest in this field of anisotropy after               

Thomsen published his paper “Weak elastic anisotropy” in 1986.  Some of the other 

significant contributors in this fields are Grechka et al. (1999, 2000), Alkhalifah (1995) 

and Tsvankin et al. (1994, 1995, 1996, 2001). 

In spite of the Earth being fundamentally anisotropic, most of the processing algorithms 

assume the ideal condition of isotropy (Toldi et al., 1999).This faulty assumption leads to 

erroneous imaging and thus faulty interpretations (Isaac et al., 1999). The following are 

the most commonly observed effects of P-wave anisotropy (seismic anisotropy 

encountered in P-waves): 

• Non-hyperbolic moveout is evident at moderate to large offset to depth ratios. 
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• DMO corrections fail to properly allow simultaneous imaging of flat and dipping 

reflectors. 

• Significant misties (10-15%) between seismically derived velocities and well-based 

checkshot velocities are routinely observed.  

• Significant errors in depth imaging are observed. 

One of the effects of anisotropy is the lateral and vertical mispositioning of the events 

on a seismic section. These effects are demonstrated in the following figures. Figure 

1.1 shows a seismic section migrated using an isotropic migration algorithm. On the 

other hand Figure 1.2 was migrated using an anisotropic migration algorithm. 

                                   Figure 1.1. Isotropic depth migration (Courtesy Don Lawton). 
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 Figure 1.2.Anisotropic depth migration (Courtesy Don Lawton). 

It is evident clearly from the Figures 1.1 and 1.2 that the pinchout pointed by two arrows 

(one arrow showing the position of pinchout before anisotropic migration is applied and 

the other arrow showing the position after the anisotropic migration was applied) is 

significantly mispositioned when migrated with an isotropic migration algorithm.  

For anisotropy to be taken into account and corrected for, it needs to be quantified and 

estimated. One of the earliest measures of the P-wave anisotropy is the ratio between the 

horizontal and vertical P-wave velocities, typically varying from 1.05 to 1.1 and often as 

large as 1.2 (Sheriff 2002).  

Thomsen (1986) introduced a more effective and scientific measure of anisotropy by 

introducing the constants ,  ,  and ε γ δ  as effective parameters for the measurement of 
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anisotropy, where ε and δ determine the P-wave anisotropy and the parameter γ controls 

the S- wave parameter of anisotropy.  

According to Thomsen, δ is the most critical measure of anisotropy in the case of Vertical 

Transverse Isotropy (VTI) and it doesn’t involve the horizontal velocity at all in its 

definition. Therefore measuring δ is very important for processes like depth imaging. 

Several authors (Section 1.3) proposed various methods to estimate the parameters of 

anisotropy.  

In this study, the Thomsen parameters ε and δ , are determined from seismic data (both 

modelled and real) using the shifted-hyperbola NMO equation. The Monte-Carlo 

inversion technique was used for the inversion of traveltime data for estimating both 

NMO velocity and the shift parameter. It is also discussed how the parameter estimation 

on Equivalent Offset (EO) gathers is more accurate than the estimation on CMP gathers.  

1.2. Motivation 
 
Determination of δ (the short offset effect) is easy but ε (the long offset effect) is 

relatively difficult to estimate and requires the knowledge of the horizontal velocity, 

which is difficult to measure from surface seismic data. In this study, the long offset 

moveout information is used for ε estimation. Usually Dix-type NMO correction at long 

offset is not very accurate and causes the hockey stick effect when the effect of 

anisotropy is strong. The shifted-hyperbola NMO (SNMO) equation is more accurate at 

longer offsets than the Dix NMO equation (Castle, 1994). Therefore by using the SNMO 

equation to correct long offset data we get a better estimation of NMO velocity (therefore 

a better estimate of interval velocity). Due to this accuracy in velocity estimation, we get 
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a better estimation of ε and δ.  It is shown in Chapter 3, that estimation of both the 

parameters (ε   and δ )  is heavily dependent on accurate determination of interval 

velocities.  

1.3. Literature review 
 
Theoretical work on seismic anisotropy in exploration seismology dates back to the 

1950s. Work done by researchers such as Postma (1955) made the geophysical 

community take seismic anisotropy seriously. Postma proved that an isotropic-layered 

Earth behaves as an anisotropic medium if the thickness of the individual layers is finer 

when compared the wavelength of the seismic waves (long-wave anisotropy). Postma 

(1955) considered only periodic layering of two types of rocks. Backus (1962) also 

worked on the same concept of the long wave anisotropy. He extended the work done by 

Postma (1955) to media containing three or more types of rocks. Berryman (1979) also 

dealt with long-wave anisotropy and concluded that “Anisotropic effects are greatest in 

areas where layering is quite thin, the wavelengths of seismic signal are greater than the 

layer thickness and the layers are alternative high and low velocity materials.”  

Backus (1962) showed that [vertical] transverse isotropy (where one distinct direction 

often vertical and the other horizontal directions are equal to each other) could be 

represented by five elastic elements 11 13 33 44 66,  ,  ,   and c c c c c  of the 6 x 6 stiffness matrix 

(Nye, 1960). To reduce the number of parameters, Helbig (1981) introduced a 

normalized, dimensionless set of four parameters, which he called λ, τ, h and k. Hake 

(1984) calculated these parameters by approximating 22 xt −  curves over a vertically 

inhomogeneous TI medium using a three-term Taylor series.   
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One of the significant papers on anisotropy in exploration seismology is that of Thomsen 

(1986). In this paper Thomsen shows that the common anisotropy present in nature is 

transversely isotropic with vertical symmetry axis. He also quantified this anisotropy by 

defining parameters, namely, ε, δ and γ which are more intuitive, and more easily 

measurable and implementable than earlier measures of anisotropy.  

Knowledge of the anisotropic velocity field is absolutely necessary for the application of 

processing algorithms that take anisotropy into account. Estimation of Thomsen 

anisotropic parameters ε, δ and γ, which are necessary for the reconstruction of the 

anisotropic velocity field have been addressed by various authors.  

Byun and Corrigan (1990) used slowness surfaces to calculate the anisotropic parameters 

over VTI media using VSP data.  

Armstrong et al. (1995) estimated the anisotropy parameters ε and δ in uniform shale (50 

m thick) in the North Sea using walkaway VSP data. They estimated the values of ε and 

δ  as ε = 0.17 and δ =−0.03 over the interval of the VSP. Sena (1991) derived these 

parameters for azimuthally anisotropic media.  

Isaac et al. (1998) constructed a scaled physical model to investigate the magnitude of 

imaging errors incurred by the use of isotropic processing methods. They showed that 

prestack depth-migration velocity analysis based upon obtaining consistent depth images 

in the common-offset domain results in the base of the anisotropic section being imaged 

50 m (about 3%) too deep.  
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Grechka et al. (2001) discuss the results of the anisotropic parameter estimation on the 

same physical modelling data. They invert the P-wave NMO velocities and zero offset 

travel times for vertical velocity V0 and anisotropic parameters ε and δ. They show that 

the values of ε and δ match well with the model values 

Bozkurt et al. (1999) estimated the values of the parameters ε and δ by using vertical 

velocities from checkshots and horizontal velocities from crosswell tomography along 

with stacking velocities. 

The effect of anisotropy is most prominent on the NMO. As a result numerous authors 

have analyzed the effect of anisotropy on NMO and devised various techniques to invert 

the NMO data for estimating anisotropy parameters. 

Tsvankin (1995) gave a concise analytic expression for NMO velocities valid for a wide 

range of anisotropic models including TI media with tilted and in-plane symmetry planes 

in orthorhombic media. Alkahlifah and Tsvankin (1995) using this NMO expression 

showed that velocity analysis can be carried out on TI media by inverting the P wave 

moveout velocities on the ray parameter. They also demonstrate how the influence of 

stratigraphic anisotropic overburden on the moveout velocity can be stripped through the 

Dix type differentiation scheme. They study the feasibility of inversion of ε, γ and δ 

solely from surface seismic data. They came to the conclusion that it would be easier to 

estimate η (a combination of ε and δ) and ( )0nmoV , rather than estimating both ε and δ 

along with vertical velocity ( )0pV . Alkahlifah et al. (1995) state that η and ( )0nmoV  are 
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sufficient for reconstruction of the anisotropic velocity field. The drawback of their 

method is that it requires a layer with at least two different apparent dips.  

The NMO equation used throughout the industry was derived by Dix (1955). This is a 

short offset (2-term) approximation of the Taylor series expansion of traveltime as the 

function of offset, given by Taner and Koehler in 1969. Malvicichko (1978) found that 

Bolshix’s (1956) NMO equation constituted the first four terms of Gauss’s 

hypergeometric series, which has an analytic sum and wrote the equation as a compact 

analytical sum.  He rewrote this compact analytical sum in the form of the shifted-

hyperbola NMO equation. 

Castle (1994) analytically proved that the shifted-hyperbola NMO (SNMO) equation by 

Malovichko(1978) represents the exact moveout equation as it satisfies the three 

geophysical requirements of reciprocity, finite slowness and the correspondence with a 

constant-velocity Earth.  

Siliqi et al.(2000) used the shifted-hyperbola approach (Castle, 1994) to estimate the 

anelliptic parameter η (Alkalifah and Tsvankin, 1995).  

Velocity analysis is usually performed on CMP gathers (Mayne, 1962). Here the analysis 

is performed on the EO gathers after Bancroft et al. (1998). All the traces in the prestack 

migration aperture, regardless of the source or receiver position, may be used to form an 

EO gather. Traces within the EO gather are sorted by equivalent offset. Bancroft              

et al. (1998) also showed that the velocity analysis is more accurate when performed over 

an EO gather rather than on a CMP gather. The advantages of an EO gather over a CMP 

gather are discussed in detail in Chapter 3. 
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This thesis addresses the estimation of Thomsen’s anisotropy parameters ε and δ from 

seismic data. First the method was applied to model data where it is found that estimation 

of δ was quite accurate whereas estimation of ε was not that accurate. The method is then 

tested over real data acquired over the Blackfoot field in Alberta. 

1.4. Determination of δ  
 
The interval velocities are estimated over the gathers using a highly accurate velocity 

estimation technique. These are compared with velocities estimated from the sonic log or 

VSPs to estimate the value of δ.  Τhe determination of δ is illustrated in the Figure 

1.3.

 

Figure 1.3. The method for estimating δ using wellog/VSP and seismic data  

 

( )0 ,i i i
nmoV Vδ =
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1.5. Determination of ε 
 
The procedure consists of two steps. In the first step, the parameters for normal moveout 

correction, Vnmo and the shift parameter S, are determined using Monte-Carlo inversion 

over the gathers. In the next step, the anisotropic parameter ε is computed over the data. 

A relationship that describes the dependency of ε on S, VNMO and V0 (vertical velocity 

from well-logs/VSP surveys) is used. This method is illustrated in the Figure 1.4. 

The velocities from VSP data are used as the vertical velocities in the case of real data as 

it is relatively not affected by the effects of velocity dispersion (the dependence of the 

velocity of the wave on the frequency). On the other hand, well logs that operate at a 

higher frequency than the surface seismic experiment are affected by this phenomenon. 

 

 

Figure. 1.4. Estimation of ε using the shifted-hyperbola NMO equation. 
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1.6. Results and conclusions  
 
In this Chapter a method for estimation of Thomsen’s P-wave anisotropy parameters ( ε 

and δ )   for TI media using Castle’s shifted-hyperbola NMO equation has been proposed. 

The shifted-hyperbola equation gives better estimates of NMO velocities than Dix NMO 

equation, as it’s a fourth-order Taylor series approximation while Dix’s NMO equation is 

a third order approximation.  

The Monte-Carlo inversion technique was used for the inversion of traveltime data for 

the estimation of both NMO velocity and the shift parameter S. 

This technique was applied on both the equivalent-offset (EO) and CMP gathers. It was 

found that EO gathers, due to their better signal to noise ratio, gave a better estimation. 

The values of ε and δ were estimated on synthetic seismic data.  

The values of δ were estimated quite accurately while the estimation of ε was less 

accurate. The errors in the estimation of δ varied from 5-10% while the error in 

estimation of ε varied from 20-30%. 

The technique is then applied to field data acquired over the Blackfoot Field in Alberta 

and the anisotropic parameters of formations of interest are then estimated. 

1.7. Contributions 
 
The contributions of this thesis are as the following: 

1. A method for estimation of anisotropy parameters ε and δ is proposed.  
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2. The difficulty of estimation of ε  (which needs a measure of horizontal velocity) is 

solved by using the extra information (shift parameter S) gained by fitting a 

shifted-hyperbola NMO equation to the large offset traveltime moveouts. 

3. The shifted-hyperbola NMO equation is fitted to the traveltime moveouts using 

the Monte-Carlo inversion and the shift parameter S and the Vnmo are estimated. 

4. The technique is tested on model data and then applied to real data. 
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Chapter 2: Theory 

This Chapter discusses in detail the theoretical background of the concepts used in this 

study. The concepts discussed in detail are: 

1. Elastic anisotropy. 

2. Weak anisotropy. 

3. Equivalent offset (EO) gather. 

4. Dix Normal Moveout (NMO) equation. 

5. Shifted hyperbola NMO equation. 

2.1 Elastic Anisotropy 
 
Seismic anisotropy can be defined as the dependence of the seismic velocity on the 

direction or the angle of propagation (Sheriff, 2002). A linearly elastic material is defined 

as one that obeys Hooke’s law. According to this law each component of stress ijσ  is 

linearly dependent upon every component of strain klε  (Nye, 1957). Since stress and 

strain components are vectors they can be oriented along any of three axes (x, y and z) 

and indices may assume the value of 1, 2 or 3 respectively. Therefore there can be nine 

such relationships, each involving one component of stress and nine components of 

strain. These nine equations can be written compactly as 

    
3 3

1 1
,    , 1,2,3ij ijkl kl

k l
C i jσ ε

= =

= =∑∑       (Thomsen, 1986).    (2.1)                               
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Newton’s second law of motion can be written as : 

2

2
iji

j

u
t dx

σ
ρ

∂∂
=

∂
 ,     (2.2) 

where ui is the position vector  and ρ is the density. Combing Equations (2.2) and (2.1) 

the wave equation can be written as: 

       
2 2

2
i m

ijmn
n j

u uC
t x x

ρ ∂ ∂
=

∂ ∂ ∂
,                (2.3) 

where the 3×3×3×3 elastic tensor Cijkl characterizes the stiffness of the medium (Nye, 

1960) . The inherent symmetry of stress leaves only six independent equations. Giving 

physical meaning to Cijkl, they can be defined as the requisite stresses to produce the 

strains ε12 and ε21. This can be written as, 

( ) 12211221211212 εεεσ ijijijijij CCCC +=+= .    (2.4) 

These coefficients in general, always occur together and so are set equal to one another 

(Nye, 1960). Thus, 

ijlkijkl CC =      (2.5) 

and similarly, 

jiklijkl CC = .     (2.6) 

This leaves 36 independent coefficients out of the original 81 in the Cijkl stiffness tensor. 

Similarly, due to the symmetry in strain ε, only six terms are independent. This leads to 

the introduction of the Voigt recipe, which changes the 3×3×3×3 tensor into a more 

compact 6×6 matrix. The recipe is as follows: 
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11  1          (2.7) 
22  2 
33  3 
32=23  4 
31=13  5 
12=21  6 

 
This 6x6 matrix is symmetric so even in the worst case (triclinic) it has 21 different 

elements. I will discuss it for couple of symmetries – Isotropy and Vertical Transverse 

Isotropy (VTI). 

Isotropy 
 
Using the above compaction scheme the Cαβ matrix for an isotropic medium can be 

written as : 

   


























−
−−

=

44

44

44

11

441111

4411441111

)2(
)2()2(

C
C

C
C

CCC
CCCCC

Cαβ  .           (2.8)                                  

Only the non-zero components in the upper triangle are shown for convenience and 

simplicity, the lower triangle and the upper triangle are identical to each other.  The 

nonzero components are related to the Lamé parameters λ and µ and the bulk modulus, K 

as given by the equations (2.9) and (2.10). 

     11
42
3

C Kλ µ µ= + = +  and     (2.9) 

      44C µ= .      (2.10) 
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It is intuitively obvious at the equation (2.8) that isotropic symmetry is the simplest of all 

the symmetries. It has only two independent elements. But this symmetry is not usually 

found in nature. 

Vertical Transverse Isotropy 
 
On the other hand a simple, realistic, and frequently encountered case of anisotropy in 

exploration seismology is transverse isotropy or hexagonal symmetry. It is characterized 

by one distinct direction, usually vertical and other usually equal horizontal directions. 

Due to the vertical axis of symmetry, this symmetry is known as vertical transverse 

isotropy (VTI).  

The elastic modulus in the VTI matrix form can be written as   (2.11) 

    

























 −

=

66

44

44

33

1311

13661111 )2(

C
C

C
C
CC
CCCC

Cαβ    (2.11). 

It can be noted that the above matrix has five independent elements distributed among 

twelve nonzero components. In the VTI case the z-axis is the unique axis. The differences 

between the transversely isotropic and the purely isotropic elastic matrices consist of the 

inclusion of three more elastic parameters, C13, C44 and C66. It can be easily proved that 

isotropy is a special case of VTI when C11=C33 etc. 
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Thomsen anisotropy parameters 

The wave equation derived using the equation of motion (Daley and Hron, 1977) can be 

written as: 

     
2 2

2
i m

n j

Cu u
t dx dx

αβ

ρ
∂ ∂

=
∂

.      (2.12) 

Daley and Hron (1977) gave the following three independent solutions.  

( ) ( )2 2
P 33 44 11 33

1 sin
2

V C C C C Dρ θ θ = + + − +  ,   (2.13) 

( ) ( )2 2
SV 33 44 11 33 sinV C C C C Dρ θ θ = + + − −  , and   (2.14) 

2 2 2
SH 44 66cos sinV C Cρ θ θ = +  .    (2.15) 

 

 

where, 

( ) ( ) ( ) ( ) ( ){ 2 2 2
33 44 13 44 33 44 11 33 442 2 2 sinD C C C C C C C C Cθ θ = − + + − − + −   

( ) ( ) }
1

22 2 2
11 33 44 13 442 4 sinC C C C C θ + + − − +  ,     (2.16) 

and  θ is the polar angle between the symmetry axis and the direction of propagation. 

According to Thomsen not all these elastic moduli need to be determined. Only certain 

combinations of these affect the data. He defines these combinations as ‘anisotropic 

parameters’. Thomsen parameters are quite suitable in describing the amount of 

anisotropy present within the TI earth or in a TI model. These parameters are defined as:  
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33

3311

2C
CC −

≡ε  ,     (2.17) 

     66 44

442
C C

C
γ −
≡  ,     (2.18) 

    ( ) ( )( )[ ]4433114433
2

4413
33

* 22
2

1 CCCCCCC
C

−+−−+≡δ , (2.19)  

and the vertical velocities for the P and S waves defined respectively as 

     ρα 330 C=       (2.20) 

     ρβ 440 C=                           (2.21) 

(Thomsen, 1986). The P wave and S wave (horizontal and vertical polarized) velocities 

can be written in terms of Thomsen parameters as the following equations: 

     ( ) ( )2 2 2 *
p 0 1 sinV Dθ α ε θ θ = + +  ,     (2.22) 

    ( ) ( )
2 2

2 2 2 *
SV 0 2 21 sinV Dα αθ β ε θ θ

β β
 

= + − 
 

, and     (2.23) 

     ( )2 2 2
SH 0 1 2 sinV θ α γ θ = +  .       (2.24) 

where, 

( ) ( )
( )
( ) 











−







−

+−
+

−
+








−≡ 1sin

1
14

cossin
1

411
2
1 2

1

4
2
0

2
0

2
0

2
022

2
0

2
0

*

2
0

2
0* θ

αβ
εεαβ

θθ
αβ

δ
α
β

θD .  (2.25) 
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(Thomsen, 1986). 

2.2 Weak anisotropy 
 
Equations (2.22) - (2.25) are exact but are too complex to be practically useful. Thomsen 

(1986), states that these equations can be simplified by assuming that most rocks are 

weakly anisotropic even though the minerals constituting them may be highly 

anisotropic. This assumption is validated by the data compiled by Thomsen (1986) on 

anisotropy for a number of sedimentary rocks.  The original data consists of both 

ultrasonic and seismic-band velocity measurements on sedimentary rocks. This data 

confirms that most rocks are “weak to moderately” anisotropic.  

The equations (2.22) - (2.25) can be rewritten for weak anisotropy as the following 

equations. 

    ( )2 2 2 2 4
p 0 1 sin cos sinV θ α δ θ θ ε θ = + +  ,   (2.26) 

    ( ) ( )
2

2 2 2 2
SV 0 21 sin cosV αθ β ε δ θ θ

β
 

= + − 
 

,   (2.27) 

     ( )2 2 2
SH 0 1 sinV θ α γ θ = +  , and    (2.28) 

      
( ) ( )

( )

2 2
13 44 33 44

33 33 442
C C C C

C C C
δ

+ − −
≡

−
.   (2.29) 

The equations (2.26)- (2.29) thus simplified can be easily used to quantify the amount of 

anisotropy.  
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2.3 Equivalent Offset (EO) Gather 
 
 A scatter point is defined as the point in the subsurface that scatters energy in all 

directions. The subsurface is approximated by an infinite number of scatter points. The 

energy from all the sources is assumed to be scattered by the scatterpoint to all the 

receivers. Each trace contains energy from all the scatterpoints. 

According to Bancroft et al. (1998), “An EO gather is a collection of energy from all 

input traces into a 2D space of offset and time where scattered energy is optimally 

positioned for subsequent focusing operation.”  
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 Figure 2.1  Raypaths to scatterpoint  a) from a distant CMP, and b) the equivalent 
offset. (Bancroft, 2002). 

 

In Figure 2.1 the total traveltime  from the source to the receiver is given by: 

                                                  rs ttt += .      (2.30)                                 

Colocated
source and receiver 
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From Figure 2.1 assuming a constant velocity medium, Equation (2.30) can be written as  

   ( ) ( )
1/ 2 1/ 22 22 2

2 22 2
o o

rms rms

x h x ht tt
V V

   + −   = + + +      
         

,        (2.31)                                 

(Bancroft et  al., 1998). 

where 0t  is the two-way traveltime and rmsV  is the RMS velocity approximation of Taner 

and Koehler (1969).  

Equation (2.29) is known as a double-square-root (DSR) equation and represents the 

traveltime surface in which the energy from a scatterpoint lies (Bancroft et al., 1998). 

This surface is known as Cheops Pyramid (Ottaloni et al., 1984). The Figure 2.2 shows a 

Cheops Pyramid for a scatterpoint at (x = 0, 0t ). 
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Figure 2.2  Cheops pyramid for continuous range of midpoints and offsets from one 
scatterpoint is referred to a Cheops pyramid with a) showing a grid in x and h, and b) 

showing contours at equal times. (Bancroft, 2002) 
 

A CMP gather that is located at the scatterpoint (x=0) intersects Cheops pyramid on a 

hyperbolic path and allows conventional NMO correction as shown in the Figure 2.2 
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2.4 The Equivalent Offset 
 
The equivalent offset is defined by converting the DSR equation (2.31) into a single- 

square- root equation or a hyperbolic form. This is accomplished by defining a new 

source colocated at the equivalent-offset position E as shown in Figure 2.1. The 

equivalent offset position, eh , is chosen to maintain the same traveltime, 2 et  as the 

original path, t as shown in Figure 2.1. 

Thus the travel time equation becomes  

                                    rse tttt +== 2  .           (2.32)                               

Similarly the DSR equation can be written as  

 ( ) ( )
1/ 2 1/ 21/ 2 2 22 2 22

0 0 0
2 2 22

2 2 2
e

mig mig mig

x h x ht h t t
v v v

     + −     + = + + +         
              

 .                 (2.33)    

Equation (2.33) can be simplified into a single square-root-equation by maintaining the 

same travel time (Bancroft et al., 1998): 

                 2 2 2 2
e

rms

xhh x h
tV

 
= + −  

 
  .                                               (2.34) 

 According to Bancroft et al. (1998) an input sample can be mapped into an EO gather 

using the following technique: “When the equivalent offset eh in the equation (2.32) is 

considered as a function of x, one input sample at t and h will map to the neighboring EO 

gathers at constant time and along a hyperbola as shown in the prestack volume of the 
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Figure 2.2.(as in Bancroft et al., 1998) This equivalent hyperbola represents the path of 

the input sample as it is mapped to all possible EO gathers”.  

2.5 Normal Moveout (NMO) 
 
NMO can be defined as: “The additional time required for energy to travel from source to 

a flat reflecting bed and back to the geophone at some distance from the source point 

compared with the time it takes to return to the geophone at the source point” (Sheriff, 

2002). 

The normal moveout equation commonly used to shift events at non-zero offsets to their 

equivalent zero-offset time is given by 

     
2

2 2
0 2

NMO

xt t
V

= +  ,    (2.35) 

where t is the traveltime at offset x, t0 is the zero-offset (normal incidence) traveltime, 

and VNMO is the moveout velocity (Dix, 1955). This is a short offset (2 term) 

approximation of the Taylor series expansion of traveltime as a function of offset as 

given by Taner and Koehler (1969) over an isotropic horizontally layered medium. VNMO, 

which is essentially a parameter that yields the best stack, is commonly used as an 

approximation for the root mean square (rms) velocity when the media is horizontally 

layered. For a layered earth model, Vrms is given as: 

     

2

1

1

N

k k
k

rms N

k
k

V
V

τ

τ

=

=

∆
=

∆

∑

∑
,     (2.36) 
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where Vk is the interval velocity and τk is the vertical traveltime of the kth layer . 

The NMO equation of Dix (1955) is a hyperbola, that is symmetric about the t-axis and 

has asymptotes that intersect at the origin (x =0, t =0). However, for a layered Earth 

model, Dix’s NMO equation is only a small offset approximation. 

Castle (1994) proposed the shifted hyperbola NMO (SNMO) equation, which is a better 

approximation at longer offsets to the moveout than Dix’s NMO equation.  

2.6 Shifted hyperbola NMO (SNMO) equation 
 
Castle in 1994, published a new approximation to the NMO equation using the three 

basic principles of geophysics namely reciprocity, finite slowness and exact constant 

velocity limit. For “reasonable” offsets, his approximation, termed as the shifted 

hyperbola NMO equation, is given as:  

2
2

2     s x
NMO

xt
SV

τ τ= + +  ,    (2.37)                      

where 0
11s t
S

τ  = − 
 

 and 0
x

t
S

τ  =  
 

. 

In the above equation, the “shift parameter”, S, is a constant and is described as: 

2
2

4

µ
µ

=S ,     (2.38)                               

where 2µ and 4µ  are the second and fourth order moments in Taner and Koehler’s 

traveltime expansion. Figure 2.3 shows a comparison between shifted hyperbola and a 

Dix hyperbola. 
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                 Dix’s Hyperbola      Shifted Hyperbola 

Figure 2.3. Comparison between Dix’s hyperbola and a shifted hyperbola. 

Although the SNMO with a constant S fits the larger offsets better than Dix NMO 

formula, Castle (1994) showed that by varying the S with offset, one could obtain a 

superior fit to the traveltime with a SNMO curve. The most general form of the shifted 

hyperbola equation is written as: 

2
2

0 2
( ) ( )

( )s

x
t h h

v h
τ τ= + +   ,   (2.39) 

where the parameters τS, τ0 and v are functions of the source-receiver offset (h) as 

follows:  

0
0 ( )

( )
th

S h
τ = ,     (2.40) 

0

1
( ) 1

( )S h t
S h

τ = −
 
  

 , and    (2.41) 

( ) ( ) nmov h S h V=  .               (2.42) 
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The offset-dependent shift parameter, S ( h ), is defined as  

2

0 02

2
0

2 ( )
( )

( )
NMO

h t t t
VS h

t t

− −
=

−
.    (2.43) 

Castle showed that the general form of an NMO hyperbola is an SNMO through 

rigourous mathematical proof. SNMO is exact through the fourth order in offset while 

Dix’s NMO equation is only a second order approximation (Castle, 1994). Castle also 

showed that RMS velocities estimated using the SNMO equation are much more accurate 

than those estimated using Dix NMO equation.  

The earliest formulation of this SNMO is by Bolshix (1956) who derived an NMO 

equation as a series for the layered earth. Malovichko (1978) unaware of a mistake in 

Bolshix’s equation found out that the first four terms in that equation constituted a 

hypogeometric series which has an analytic sum. The shifted hyperbola equation as given 

by Malovichko can be written as:  

     2

22
0

0
11

NMOSV
x

S
t

S
tt +






+






 −=                                              (2.44)              

(Castle 1994). 

When the Bolsihix traveltime series is compared with the Taner and Koehler’s Taylor 

traveltime series (1969), we see that they differ in their sixth order terms. de Bazelaire 

(1988) showed that the SNMO is more accurate than Dix’s NMO equation by using 

arguments from geometrical optics. Castle realized that the constants in the equation of 

de Bazeleaire don’t relate to the geology therefore he derived the shifted hyperbola NMO 

equation in 1994 from ‘first principles’ and showed that this equation is exact through the 
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fourth order in offset, while the Dix NMO equation is exact only through second order in 

offset.  

2.7 Comparison of Dix NMO and Shifted-Hyperbola NMO Equations 
 
The first four terms of ‘exact’ NMO equation for horizontally layered earth as given by 

Castle (1994) can be written as: 

  ( )
2

2 4 664 4
0 3 4 5 7 5 6

0 2 0 2 0 2 0 2

1 1 1 1 .....
2 8 8 16

t x t x x x
t t t t

µµ µ
µ µ µ µ

 
= + − + − 

 
  (2.45) 

The time series expansion for a shifted hyperbola as given by Castle can be written as 

   ( )
2

2 4 64 4
0 3 4 5 7

0 2 0 2 0 2

1 1 1 .....
2 8 16

t x t x x x
t t t

µ µ
µ µ µ

= + − +    (2.46) 

Comparing equation (2.44) with the SNMO equation (2.43) shows that the SNMO is 

exact through the fourth order and the error in the sixth order is given by the following 

equation: 

     
6

2
4 2 6 5 7

0 216
x
t

ξ µ µ µ
µ

 = − −  .                 (2.47) 

According to Castle (1994) the 2
4 2 6µ µ µ −   term in the error expression (2.47) vanishes 

for a constant-velocity medium and is negligibly small for media with small acceleration, 

which is true for most geologies; hence the shifted hyperbola gives a very good 

approximation to sixth order term. 
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By analyzing the equation, it’s trivial to realize that when the shift factor S equals 1 the 

SNMO reduces to Dix’s NMO equation. The smaller the shift factor S the more deviation 

there is from Dix’s hyperbola. 

The Figure 2.4 shows a shifted hyperbola with velocity 3000 m/s and shift parameter S 

varying from 0.1 to 0.9. It is worth noting that when S equals to ‘1’, SNMO reduces to a 

Dix NMO equation.                    

 

Figure 2.4. The various shifted hyperbolas with varying shift parameter. 
 

The SNMO can be used in exactly the same way as Dix’s NMO equation for velocity 

analysis. Castle (1994) states that the SNMO with a constant shift can be used for the 

velocity analysis of shorter offset data with a greater accuracy than the Dix NMO 

equation. In the case of very long offsets, it may be necessary to vary the shift with offset 
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to obtain a better fit. But the SNMO equation with a constant shift is better than a Dix 

hyperbola NMO equation.  

Castle (1994) applied velocity analysis over a two-layered model using the SNMO with 

shift varying with offset, the SNMO with constant shift and a Dix NMO equation. He 

showed that the SNMO with its shift varying with offsets gives the best estimation of 

RMS velocities followed by constant shifted SNMO and Dix NMO equation.  

2.8 Shift parameter S and the anisotropy parameters 
 
The shift parameter S can be used to estimate the anisotropy parameters as given by:  









−= 1

2
1

2
0

2

n

NMOn
n V

Vδ      (2.48) 

 

( )
( )

2

4 2
0

1

8 1 2
N

n n
n

H k

V k
ε δ

δ

−
= +

− +

 
  
 

    (2.49) 

 

The derivations of Equations (2.48) and  (2.49) and the definitions of the symbols used 

are discussed in detail in Appendix 1. 

In this study, the constant shift parameter, S, and VNMO are computed using Monte-Carlo 

inversion, a non-linear technique. I have derived the relationship between the S and 

Thomsen parameters (ε and δ) and it is then used to determine the anisotropy parameters. 
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Chapter 3: Synthetic Modelling 
 
In this chapter the method proposed in Chapter 2 will be applied over a synthetic seismic 

data set. The theory of seismic modelling will be discussed in brief. The methodology 

adopted for the anisotropic seismic modelling will also be discussed.  

3.1 Approaches to Seismic Modelling  
 
 The generation of synthetic seismograms over a known geological ‘mathematical’ model 

is known as mathematical seismic modelling. The data is generated by solving the wave 

equation in the model. Data thus generated by numerical modelling of wave propagation 

is very important in exploration seismology. Seismic modelling has many applications; 

one of them is for the testing and quality control of data processing algorithms. The finite 

difference and raytracing techniques are the two most frequently used modelling 

techniques. Raytracing is used in this study to generate anisotropic synthetic 

seismograms.   

3.2 Finite difference Techniques 
 
Finite difference is a numerical technique used to solve the partial differential equations 

at a point. Starting at the sources energy is propagated on many grid points through the 

structure to the receivers. Finite-difference techniques can be computationally intensive 

compared to other techniques such as raytracing. 

3.3 Raytracing Techniques 
 
Raytracing techniques are primarily due to the Prague school of Ray Theory (Cerveny, 

1985). These techniques trace the path of the seismic rays from the source to an interface 
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and then on to the receivers. They are used to calculate traveltime and amplitudes tied to 

the first arrival, the maximum energy arrival or a combination of the seismic wave 

propagation in the layered medium. 

Types of Rays 
 
Raytracing theory uses two families of rays. They are geometrical rays and diffracted 

rays. 

The rays following Snell’s law of reflection and transmission at all interfaces are known 

as geometrical rays, the rays following Keller’s law (Norsar 2D Manual) of edge 

diffraction at a diffraction point are known as diffracted rays. More information on 

raytracing theory can be found in Cerveny (1985).  

Raytracing is a very useful technique for modelling seismograms. It has many advantages 

such as being easy to implement, it is faster than the finite-difference techniques and can 

be very accurate. Raytracing theory, however, has some limitations. Care has to be taken 

before applying this theory so that these pitfalls can be avoided. These limitations will be 

discussed in detail. 

The Norsar 2D modelling package was used to model the seismic data. Norsar 2D is 

raytracing program that works on the ray theory proposed by Cerveny (1985). 

3.4 Limitations of Raytracing techniques  
 
Two important limitations of ray theory, the assumption of high frequency and smooth 

interfaces and will now be discussed in more detail.  
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1. Raytracing is only valid for high frequencies 
 
Raytracing techniques are based on high frequency approximations to the wave theory 

(Cerveny, 1985). Mathematically this means that this theory is valid only for infinite high 

frequencies.  This means that it assumes that the properties of the medium which is being 

imaged vary smoothly when compared with the ray for transmission proposes, but except 

at a reflector interface where we assume a sudden change. This same restriction applies to 

finite difference methods also, to prevent grid dispersion. In practice, this imposes a 

restriction on the geological model on which the raytracing should be performed. 

According to the Norsar 2D manual this means that “the seismic wavelength should be 

shorter than the length of smallest details in the model.” In practical terms it must be 

considerably smaller than quantities such as 

• radius of curvature 

• the length of the interface 

• the layer thickness 

• measures of inhomogeneity of material property in the layer.  

The values of the quantities depend on the frequency of the probing wavelet                         

(~5—125 KHz) and the velocities of the medium (~500-8000m/s). 

2. The Interfaces should be ‘smooth’ 
 
The interfaces should be smoothed for the ray theory to be valid when the interface which 

is being imaged is not smooth, or when the interface normal and the interface curvature 

are fluctuating significantly (within few seismic wavelengths).  
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3.5 Seismic Modelling Procedure 
 
Synthetic seismograms are generated by the ‘Norsar 2D’ software package in the 

following sequence 

1. building up a geologic model 

2. specifying the geometry of the survey 

3. ‘shooting’ the seismic rays from the source and generating an event file. 

4. generating the synthetic seismogram by filtering this event file with a wavelet. 

1 Geologic Model 
 
A layered geological model was built consisting of 9 horizontal interfaces. The model 

was built in the depth domain and is 6 km deep. The thinnest layer is of thickness 0.5 km 

with a velocity of 1000 m/s. A 40 Hz zero phase Ricker wavelet was used for the 

generation of seismograms. The wavelength of the seismic wavelet in this interval is 25m 

and is much less than the thickness of the particular layer (500 m). It can be therefore be 

concluded that one of the main conditions of ray theory is valid for this model. 

Anisotropy is introduced into the model by assigning Thomsen’s anisotropy parameters ε 

and δ for each layer.  
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Figure 3.1 shows the layered model with Table 3.1 showing the values of the material 
properties of this model. 

1. P-wave velocity 

2. S-wave velocity 

3. Density 

4. ε and 

5. δ 

 

 

Figure 3.1. The geological model. 
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Table 3.1. Material properties of the model used. 

Interface 
P-velocity

m/s 

S –velocity

m/s 
Density ε δ 

1 1000 500 1.1 0 0.2 

2 1200 600 1.2 0.05 0.25 

3 1500 750 1.3 0.1 0.3 

4 2000 1000 1.5 0.15 0.1 

5 2500 1250 1.7 0.2 0.15 

6 3000 1500 1.9 0.25 0.2 

7 4000 2000 2.2 0.3 0.25 

8 5000 2500 2.4 0.2 0.3 

 

2 Geometry of the Survey 
 
 The geometry of the survey of the seismic modelling experiment is shown in the Figure 

3.2. The spread was from -10 km to +10 km. There are 75 shots in total with a shot 

spacing of 40m. There are 301 receivers for each shot with a receiver spacing of 20m. 

The circles in Figure 3.2 indicate the position of shots and the triangles indicate the 

position of the receivers. The type of shooting is with receivers both left and right of the 

shot. 
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Figure 3.2. The geometry of 2Dthe survey. The different lines indicate the progression of 

shot and active receivers down a 2D line. 

3  Shooting the seismic survey 
 
In practice the rays were traced from the shot to all the receivers. An event file was then 

generated. This event file has the amplitude and the traveltime information. Figure 3.3 

shows the raytracing in progress. The rays are traced from the shot point to all 

corresponding receivers.  

Shot

Receiver 



 39

 

Figure 3.3. Raytracing through the model. (The Norsar 2D Manual). 

4 Generation of Synthetics 
The event file generated by raytracing through the model was convolved with a 40 Hz 

zero phase ‘Ricker’ wavelet to generate the synthetic seismogram. Figure 3.4 shows the 

shot gather from the surface location at -1.0 km. 

 

Figure. 3.4. Shot gather at surface location -1.0 km. 
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The method for anisotropy parameter estimation as discussed in Chapter 2 is then applied 

to this data. This procedure is discussed in detail below. 

3.6 Anisotropy Parameter Estimation 
 
The model data generated above was used to test the estimation method described in 

Chapter 2. A basic processing flow was applied to the data which is as follows:  

1. geometry allocation 

2. AGC (Automatic Gain Correction) 

3. bandpass filtering  

4. sorting into CMP and EO gathers. 

 

EO gathers    CMP Gathers  

Figure 3.5. Comparison between CMP and EO gathers. 

Offset (m) Offset (m)



 41

Using the Monte-Carlo method, the travel time data for each reflectors moveout was 

inverted for nmoV  and S. 

3.7 Monte-Carlo Inversion 
 
The shifted-hyperbola equation constitutes a non-linear problem so the linear inversion 

techniques (e.g. least-square inversion) fail. A random-walk technique like the Monte-

Carlo inversion, would serve the purpose of inverting the moveout equation (2.25) for 

both S and Vnmo. The theory of Monte-Carlo inversion is discussed in detail in Appendix 

2.  

The offset-traveltime moveout information of each significant reflector is used for this 

inversion.  

The model space to be inverted for in this case can be written as m(S, Vnmo). One of the 

advantages of this inversion technique is that it gives good control on both the range of 

solutions in the model space and the acceptable error range. 

Monte-Carlo inversion needs an initial guess for the range of model parameters in which 

the solution falls. Initially, a very broad range of model values is specified as the search 

window along with a very large acceptable error. This range is refined at each run and the 

acceptable error range is also trimmed. This operation is repeated until the error 

converges at minima acceptable to the user and then the final model is accepted.  

• Equation (A1.10) is used to estimate the ‘interval velocities’  

• The value of V0, the vertical velocity is determined from the VSP data/sonic 

logs. 
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• Equation (2.48) is used to calculate δn. 

• Equation (2.49) is used to calculate εn. 

The values of ε and δ were calculated on both CMP and EO gathers . 

CMP gathers 
Table 3.2 shows the nmoV  and S estimated over the CMP gathers. The values of δ and 

ε were calculated using the NMO velocities. The values are tabulated in Tables 3.3 and 

Table 3.4 respectively.  The estimated values of δ are compared with the model values 

and the values estimated on the EO gathers are shown in Figure 3.7. 

EO gathers 
Table 3.2 shows the nmoV  and S estimated over the EO gathers. The values of δ and ε 

were calculated by using the NMO velocities and the shift parameter S estimated on these 

gathers using the method described above.  

The values of ε and δ estimated from both EO and CMP gathers are tabulated in Tables 

3.3 and 3.4 respectively. 

The significance of these results is that they demonstrate the superiority of the inversion 

of velocities over EO gathers when compared to the CMP gathers and is essentially the 

main objective of this thesis. 
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Table. 3.2. The VNMO and S values estimated from the CMP and EO gathers 

 

 

 

 

 

 

 

In the EO gather the moveout in each layer is fitted with both the Dix hyperbolic equation 

and a Castle’s shifted- hyperbola equation and corrected for the NMO. The time residual 

in both the cases is plotted in Figure 3.6. It can be easily verified that the residuals after 

correction with the shifted-hyperbola NMO equation are much less than those  of Dix’s 

equation. 

layer Vnmo (m/.s) 

CMP 

Shift S 

CMP 

Vnmo (m/s) 

EO 

Shift ‘S’ 

EO 

1 968 0.8134 1237 0.5784 

2 1118 0.7999 1336 0.3456 

3 1319 0.7868 1828 0.6734 

4 1504 0.6942 2290 0.6234 

5 1702 0.7198 2908 0.7345 

6 1814 0.8517 3655 0.9234 

7 2432 0.6863 5059 0.5647 

8 2868 0.7107 6259 0.8768 
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Figure 3.6. The time residuals in each interface after NMO correction.  

The estimated values of δ are compared with the model values and the values estimated 

on the CMP gathers in Figure 3.7. The estimated values of ε are compared with the model 

values are shown in Figure 3.8. 
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3.8 CMP vs. EO Gathers 
 
The values of δ were estimated for this model using both CMP and EO gathers. Figure 

3.7 shows a plot of the estimated values of δ . It is evident from the plot that the values 

estimated from the EO gather match very well with the model values while the CMP 

values show considerable mismatch. The reason for this mismatch is that the estimation 

of both δ and ε depend heavily on the accuracy of the RMS velocities. EO gathers give us 

a better control over velocity estimation than the CMP gathers. The same logic was used 

for the estimation of ε (Figure 3.8).  

The need for the accurate velocities is illustrated with equation (3.1) which shows that the 

estimation of ε depends on the fourth power of the velocity. 

      
( )

( )
2

4 2
0

1

8 1 2
N

n n
n

H k

V k
ε δ

δ

−
= +

− +

 
  
 

                              (3.1) 

Table 3.3. The values of δ estimated from both CMP and EO gathers are compared with 
model values. 

layer δ  
Model 

δ 
CMP 

δ  
EO 

1 0.2 0.26 0.19 
2 0.25 0.11 0.22 
3 0.3 0.24 0.28 
4 0.1 0.15 0.09 
5 0.15 0.17 0.17 
6 0.2 0.24 0.2 
7 0.25 0.29 0.24 
8 0.3 0.28 0.31 

 



 46

Delta Estimation

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1 2 3 4 5 6 7 8
Reflector Intervals

D
el

ta
 V

al
ue

 e
st

im
at

ed

Model 
Values

From EO 
gathers

From 
CMP

  

 Figure. 3.7. The δ values estimated from CMP and EO gathers compared to model 
values. 

 

Table 3.4. The values of ε estimated over both CMP and EO gathers are compared with 
model values.   

Layer ε  
Model 

ε  
EO 

ε  
CMP 

1 0.25 0.18 0.10 
2 0.3 0.29 0.22 
3 0.15 0.13 0.08 
4 0.2 0.20 0.34 
5 0.2 0.84 0.67 
6 0.25 0.64 0.00 
7 0.3 1.34 0.48 
8 0.2 1.56 0.597 

 

The values in layers 5-8 (in italics) are non reasonable values as they fall out of the 
expected range. 
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Figure. 3.8. The ε values estimated over CMP and EO gathers are compared to model 
values.  

To evaluate the dependency of accuracy of RMS velocity estimation on the accuracy of 

the anisotropic parameter estimation, the following error analysis was done. 

3.9 Error analysis 
 
The values of the estimated parameters are heavily dependent on the velocities estimated 

from the Monte-Carlo velocity analysis. A simple error analysis was done by introducing 

an error into the RMS velocities estimated from the EO gather, and then the values of δ 

were calculated at each error level using equation (3.2).   

     







−= 1

2
1

2
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2

n

NMOn
n V

Vδ      (3.2)  

The results are shown in the Figure 3.9. , where it can be seen in that Figure that for a 

range of 0-10% error in estimated RMS velocities, a range of 10-120% error was 

encountered in the values of δ estimated. Bancroft (1998) showed that the velocities 

From CMP 
gathers 

Model 
Values 

From EO 
gathers 
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estimated from the CMP gathers may have an error of at least 10%. It is evident from 

Figure 3.9 that with the 10% error in velocity the anisotropic parameters estimated may 

have errors which are not acceptable. As the velocities estimated from an EO gather are 

more accurate, δ and ε values may be estimated with better acuracy using the EO 

velocities. 
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Figure 3.9.  Errors in δ encountered due to errors in the estimated velocities. 

3.10 Conclusion 
 
The technique for the estimation of anisotropy parameter as discussed in Chapter 2 has 

been applied to a synthetic seismic dataset generated for an anisotropic model. The 

anisotropic data has been acquired over a smooth horizontally layered model. Both the 

CMP and EO gathers were formed at a CMP which has maximum fold coverage. The 

estimation technique was tested on both CMP and EO gathers. It was shown that δ values 

estimated over EO gathers were more accurate than those estimated from CMP gathers. 

The error analysis performed showed the dependence of parameter estimation error on 

the inverted NMO velocities. The values of ε estimated on the EO gathers were found to 
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match the model values quite well. Due to the accuracy of velocity estimation from EO 

gathers, these gathers are better suited for the parameter inversion. In the next Chapter, 

this method will be used for parameter estimation on real dataset. 
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Chapter 4: Field Data 

4.1 Field data 
 
The method proposed in this paper, is will next be applied on to the seismic data 

collected over the Blackfoot Field near Strathmore, Alberta and is located in Township 

23, Range 23, West of 4th meridian, in South Central Alberta and  is operated by EnCana 

Energy. A 3C-3D dataset was acquired at Blackfoot by the CREWES consortium in 

1997.  

4.2 Geology  
 
The geology of the Blackfoot Field has been discussed in detail by Miller et al. (1995). 

The following is a very brief review of the lithology of the formations that are of interest 

to this work. The reservoir rocks in this field are Glauconitic incised valleys in the Lower 

Manville Group of the Lower Cretaceous. Coals, Viking Formation and base of fish 

scales shales overlie these reservoir rocks. Figures 4.1 and 4.2 show the stratigraphy in 

the Blackfoot region. 
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Figure. 4.1. Blackfoot Stratigraphy (Miller et al., 1995). 

 
Figure 4.2. Stratigraphic sequence in the Blackfoot field (Miller et al., 1995). 
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4.3 Seismic Survey  
 
A line numbered ‘20M vertical’ is chosen to test this method.  The anisotropic analysis 

will be performed on both CMP and EO gathers. EO and CMP gathers are formed for this 

purpose at CMP 149. 

The vertical velocities derived from VSP data acquired in the same area were used for the 

inversion for anisotropy parameters.  

 Monte-Carlo velocity analysis is then performed on the EO gather. The velocities 

estimated were used in the algorithm discussed above to estimate the values of ε and δ.   

 
Figure 4.3. The seismic section with important horizons marked after Miller et al. (1995). 

4.4 Anisotropy in this area 
 
Haase (1998) studied the anisotropy in the seismic data from the western Canadian basin. 

He tested all the possible mechanisms and found that VTI anisotropy accounted for the 

observed nonhyperbolic moveout. He then carried out an anisotropic velocity analysis. 
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Then, using additional well log information, he computed the Thomsen anisotropy 

parameters by least-squares fitting with Tsvankin’s (1995) anisotropic NMO equation. I 

made an effort to compare the values estimated by Hasse with my estimations but 

unfortunately in his paper he doesn’t name the formations on which he estimated them 

on. Therefore I couldn’t make an conclusive comparison.  

4.5 Outline of the method 
 
In order to apply this method to the data, basic processing flow is applied to the data 

which is as follows:  

1. geometry allocation 

2. AGC 

3. band-pass filtering  

4. sorting into CMP and EO gathers. 

The analysis is performed on both CMP and EO gathers. The estimation can be concisely 

described using the following steps: 

• Using the Monte Carlo inversion shifted-hyperbola is fitted to the moveout 

curves and nmoV  and S are obtained at each interval. 

• Equation (4.1) is used to estimate the ‘interval velocities’  

  ( ) ( ) ( ) ( )
( ) ( )

2 2
0 02

int
0 0

1 1
1

NMO NMOV N t N V N t N
V

t N t N
− − −
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− −

                       (4.1)    

• The value of V0, the vertical velocity is determined from the VSP data. 

• Equation (4.2) is used to calculate δn. 
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• Equation (4.3) is used to calculate εn 
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Figure 4.4. Comparison between a CMP gather and an EO gather 

4.6 VSP data 
 
A 3C-3D vertical seismic profile (VSP) is conducted in November 1995 over the 

Blackfoot Field. The survey is acquired in the PCP 12-16-23-23W4 well. Acquisition of 

the survey is performed simultaneously with the Blackfoot 3C-3D surface seismic 

program. A total of 431 surface shots were received by a five-level tool, set at various 

depths. This data is analyzed in detail by Zhang et al. (1996). 

The interval velocities obtained from this VSP are used in the inversion. The interval 

velocities derived from of the VSP are of the same order as the velocities from surface 

seismic data as both experiments operate in the same frequency range and thus are not 
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dispersed.  In comparison, the interval velocities estimated from well logs are slightly 

higher as they are measured at higher frequencies and will have more dispersion (Marion 

et al., 1994). 

Dispersion can be defined as any phenomenon in which the velocity of propagation is 

frequency dependent. Dispersion distorts the shape of a wavetrain: peaks and troughs 

advance toward (or recede from) the beginning of the wave as it travels (Sheriff, 2002). 

In geophysical data, the well logs operate at a frequency which is an order of magnitude 

higher than frequencies used in surface seismic exploration. Therefore tying the velocities 

from the two surveys would require additional processing. 

VSPs on the other hand, operate at the same frequency as that of a surface seismic 

survey. Using the velocities from the VSP for the estimation of anisotropy parameters 

will solve the problem of velocity dispersion which one encounters with the velocities 

from the well logs. The interval velocities derived from this VSP survey are tabulated in 

the Table 4.2. 

In the case where VSP data is not available, the velocities from the well logs can be used 

after applying a sufficient dispersion correction. 

The dispersion relation can be written as: 

     
22 2 2

2x y V
ωκ κ κ= + = ,     (4.4) 

where k is the angular wavenumber, and ω  the angular frequency.  
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4.6 Estimation of Vnmo and S 
 
The inversion technique based on the Monte-Carlo technique discussed above is applied 

to the moveout curves.  

The important formations of interest are identified. These formations are marked on the 

There are tabulated in Table 4.1.  

Table 4.1. Formation naming conventions 

Abbreviation Unit Name 

BFS Base of Fish Scales Zone 

MANN Blairmore-Upper Mannville 

COAL Coal Layer 

GLCTOP Glauconitic Channel porous Sandstone unit 

MISS Shunda Mississippian 

 

The values of the shift and Vnmo estimated from CMP gathers and V0 estimated from the 

VSP data is tabulated in Table 4.2. The same values calculated for an EO gather and VSP 

are tabulated in Table 4.3. 
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Table. 4.2.  VNMO , Shift, and V0 calculated from CMP gathers 

 

Formation N M OV  

Shift (S)

iV ,0  

BFS 3880 0.4687 3300 

MANN 4042 0.5388 3990 

COAL 4653 0.6745 3900 

GLCTOP 4250 0.6764 3860 

MISS 5675 0.6786 6000 

 

 

Table. 4.3.  VNMO , Shift and V0 calculated from EO gathers 

 

Formation N M OV  

Shift (S)

iV ,0  

BFS 4002 0.6987 3300 

MANN 4148 0.9388 3990 

COAL 4755 0.6145 3900 

GLCTOP 4460 0.8604 3860 

MISS 5998 0.7256 6000 

 

These values are the used in the parameter estimation procedure discussed in earlier 

chapters to estimate the anisotropy parameters. The anisotropy values calculated from the 

CMP gather are tabulated in Table 4.4. The values estimated from the EO gather are 

tabulated in Table 4.5. 
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Note the difference between these two tables. It is assumed from the modelling studies 

(Chapter 3) that estimation over EO gathers is more accurate. 

Table 4.4. δ and ε values calculated using CMP gathers. 

 

Formation

δ 

(estimated)

ε 

(estimated)

BFS 0.15 0.14 

MANN 0.04 0.012 

COAL 0.21 0.23 

GLCTOP 0.08 0.015 

MISS 0.00 0.01 

 

Table 4.5. δ and ε values calculated using EO gathers. 

 

Formation

δ 

(estimated)

ε 

(estimated)

BFS 0.23 0.06 

MANN 0.04 0.008 

COAL 0.24 0.12 

GLCTOP 0.06 0.006 

MISS 0.00 0.001 
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4.8 Conclusions and Discussions 
 
The method for the estimation of anisotropy discussed in Chapter 2 and tested on the 

model data in Chapter 3 is applied to the real data acquired over Blackfoot Field in 

Alberta, Canada. 

The data is sorted into EO gathers, as I had shown earlier that EO gathers give a better 

control over velocity estimation. The moveout gathers at some formations of interest 

were inverted using the Monte-Carlo inversion technique. This data is then used to 

estimate both ε and δ. 

The interval velocities from VSP data were used for the inversion of anisotropy 

parameters. A VSP experiment is conducted in the same frequency range as that of 

seismic experiment and therefore these values are not affected by velocity dispersion. On 

the other hand, well logs which operate at a higher frequency than the surface seismic 

experiment are affected by this phenomenon. 

After estimating the anisotropy parameters, we found that the shales and coals show 

significant anisotropy which is consistent with the published values (Thomsen, 1986). 

The sands show very little anisotropy which is also consistent with the values published 

in the literature (Thomsen ,1986). The values estimated here in this thesis are compared 

with the values estimated by Thomsen in table 4.6. 
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Table 4.6: Comparison between measurements presented in this thesis with those of 
Thomsen(1986) 

Lithology ε (estimated) ε (Thomsen) δ (estimated) δ (Thomsen) 

Sands 0.00 0.002-0.01 0.00 0.002-0.01 

coal 0.24 0.3-0.1 0.12 0.2-0.05 
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Chapter 5: Conclusion and Discussion 

5.1 Thesis summary 
 
The estimation of anisotropy parameters is very important in extending the isotropic 

processing system and to take care of the intrinsic anisotropy of subsurface earth. There 

are many measures of anisotropy proposed by many authors in literature. However, the 

parameters (ε, δ , γ) proposed by Thomsen in 1986, are widely used as for quantifying 

anisotropy. The parameters ε and δ quantify P-wave anisotropy and γ quantifies the S-

wave anisotropy. 

 

Several methods for the Thomsen anisotropy parameters’ estimation have been proposed 

by various authors. Tsvankin, Grerchka and Alkhalifah have worked extensively in this 

area of anisotropic seismic processing techniques. Tsvankin in 1995, proposed a rigorous 

derivation for the anisotropic NMO equation, which is widely used for anisotropic NMO 

correction as well as for inversion for these parameters.  

 

Tsvankin and Alkahalifah (1995) proved that the three parameters ε, δ and V0 (the 

vertical velocity) cannot be estimated from the surface seismic data without any extra 

information. They proposed a new parameter η which is combination of ε and δ,  which 

they proved is easily invertible along with V0 without any extra information. 

 

Castle (1994) proposed a shifted-hyperbola NMO (SNMO) equation, which is a better 

approximation to the moveout than the Dix NMO (Dix, 1955) equation. These two 

equations are used for the parameter estimation in this study. SNMO is exact through the 
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fourth order in offset while Dix’s NMO equation is only a second order approximation 

(Castle, 1994). He also showed that the RMS velocities estimated using the SNMO, are 

considerably more accurate than those estimated from Dix equation. Castle’s SNMO 

equation was used here to find a better NMO velocity and the shift parameter S, which 

was later used to find the anisotropic parameters. 

 

The estimation procedure consists of two steps. In the first step, the parameters for 

normal moveout correction, VNMO and the “shift parameter” are determined using Monte-

Carlo inversion from both EO and CMP gathers. In the next step, the anisotropic 

parameters are computed from the data. A relationship that describes their dependency on 

the S, VNMO and V0 (vertical velocity) is used.  

 

The vertical velocity is derived, in an ideal case, from VSP data as it is least affected by 

velocity dispersion. In the case where VSP data is not available, well log data can be used 

provided  adequate dispersion correction is applied. 

 

In this study, velocity analysis is performed on both the EO gathers (formally referred to 

as common scatter point (CSP) gathers) and CMP gather. An EO gather is a pre-stack 

ordering of input data that contains energy from vertical array of scatter points (Bancroft 

et al., 1998). 

 

This method was first tested on model data generated from a model with eight flat 

reflectors. ‘NORSAR anisotropic ray mapper’ was used for the generation of 
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seismograms. The parameters estimated matched closely with the model parameters as 

shown in Figures 3.7 and Figure 3.8. The errors in the estimation of δ varied from 5-10% 

while the error in estimation of ε varied from 20-30%. 

 

The δ estimation is highly dependent on the estimation of NMO velocity as shown in 

Figure 3.9. The error analysis of δ estimates proves how important the estimation of 

accurate NMO velocities is. It was shown that δ estimated using EO gathers was more 

accurate than when estimated using CMP gathers as illustrated in Figure 3.7. 

 

When extending this analysis to real field data, we found that the shales and coals show 

significant anisotropy while the sands show very little or negligible anisotropy. Both 

results are consistent with the laboratory observations tabulated in Thomsen (1986). 

In conclusion, a simple and robust method for the estimation of anisotropy parameters is 

proposed in this thesis. This method was tested and evaluated on a numerical anisotropic 

model. This scheme was then used over field data for the estimation of anisotropy 

parameters.  
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Appendix 1: Derivation of the equations to determine anisotropy 
parameters 

 

Methodology used in the current study 
 
Taner and Koehler (1969) gave the following generalized equation for NMO:  

2 2 4
0 2 4 ...t c c x c x= + + +     (A1.1) 

Conventional NMO of Dix truncates the above series to the second power of x (source-

receiver offset) whereas Castle’s algorithm extends to the fourth power in x. Castles’s 

NMO equation, i.e. equation (2.33), can be re-written in the form of Taner and Koehler’s. 

Coefficients in the Taylor’s series are given as (denoted with superscript S):  

      
S 2
0 0c t= ,     (A1.2) 

      S
2 2

NMO

1c
V

= ,     (A1.3)  

 and                      s
4 2 2

0 NMO

1 (1 )
4

Sc
t V
−

=      (A1.4) 

Tsvankin and Thomsen (1994) described a NMO equation for TI media in terms of the 

Thomsen’s parameters. Their equation can be re-written in the form of Taner and 

Koehler’s Taylor series of equation(A1.1), to yield the following Taylor series 

coefficients (denoted with a superscript T): 

T 2
0 0c t= ,     (A1.5) 

T
2 2

0

1
(1 2 )

c
V δ

=
+

,     (A1.6) 
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and                             
( )

2
2 4

2 0 2
T
4

2
24

i i i i i
i i

i i
i

V t t H V t
c

V t

 ∆ − + ∆ 
 =

 ∆ 
 

∑ ∑

∑
,   (A1.7) 

where H is given by  









−

+−=
)1(

21)(8 2
4

0 k
VH δδε   ,   (A1.8) 

V0 is the vertical velocity and k is ratio 
s

p

V
V

.  

Equating the co-efficient c2
S (A1.3)  with c2

T (A1.6), we get the following relationship for 

δ: 

2
int

2
0

1 1
2

n
n

n

V
V

δ
 

= − 
 

.    (A1.9)                                

Where int nV is the interval NMO velocity for a particular layer and 2
0nV is the vertical 

velocity obtained from the check shots. 

Using Dix-type differentiation interval properties can be determined. According to  

Alkhalifah and Tsvankin, (1995), “Dix’s (1955) formula makes it possible to recover the 

interval velocity for any particular layer from short spread moveout velocity, in flat 

layered isotropic media”  

The interval NMO velocity int nV for the Nth layer may be recovered using the following 

equation: 

   ( ) ( ) ( ) ( )
( ) ( )

2 2
0 02

int
0 0

1 1
1

NMO NMO
n

V N t N V N t N
V

t N t N
− − −

=
− −

.                    (A1.10)   

Equation (A1.7) can be written in the layer stripping form as   
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( ) ( ) ( ) ( ) ( ) ( )4 4 2 4

2 2 4 0 2
10

1 1 4
N

t
i i i

i

V H t V N C N t N V N
t N −

 + ∆ = − ∑             (A1.11) 

(Alkhalifah and Tsvankin, 1995). 

The equation (A1.11) can be written as 

   ( ) ( ) ( ) ( ) ( )4 2 4
2 4 0 21 4 sF N V N C N t N V N = −               (A1.12)  

(Alkhalifah and Tsvankin, 1995). 

Note that 4 ( )tC N  has been replaced by 4 ( )sC N .  

Where ( )NF  is thus a known function of the Taylor series coefficients for the reflection 

from the Nth boundary. 3 ( )sC N can be calculated using the following equation: 

    4 2 2
0

1 (1 )( )
4

s

NMO

SC N
t V
−

= .               (A1.13)                               

Now, using the values of ( )NF  and ( )1−NF , ( )H N  can be calculated as follows 

   
( ) ( ) ( ) ( )

( ) )1(
11

00

00

−−
−−−

=
NtNt

NtNFNtNF
H N              (A1.14) 

(Alkhalifah and Tsvankin, 1995). 

But we know that NH  is given by the equation (A1.8)  

The equation (A1.8) can be rewritten as the equation  

( )
( )

2

4 2
0

1

8 1 2
N

n n
n

H k

V k
ε δ

δ

−
= +

− +

 
  
 

.              (A1.15)               

Using equations (A1.9) and (A1.15) ε and δ can be estimated at each of the layers.   
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Appendix 2: Monte-Carlo inversion 

The shifted hyperbola equation is a non-linear problem so linear inversion techniques 

(e.g. least-squares inversion) usually fail. A random walk technique like Monte-Carlo 

inversion would serve the purpose of inverting the moveout equation (2.37) for both S 

and Vnmo. 

Monte-Carlo Inversion 
 
Monte-Carlo methods are random search methods in which the models are drawn 

randomly from the whole model space and tested against the data. The best model 

depending on the acceptance criteria is then considered as the solution to the inversion 

problem. 

In this inversion procedure each model parameter in the model-parameter set m is 

allowed to vary within a predefined search interval (determined a priori or by trial and 

error). Therefore for each model parameter mi, we define  

      min max
i iim m m≤ ≥     (A2.1) 

The method can be described by equation (A2.2) for a model parameter set  

m (S, VNMO ), 

    new min max min
i i n i i( )m m r m m = + −  .   (A2.2) 
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Where new
im  is the new model parameter min

im  , max
im are the minimum and maximum 

values of the model parameter specified and ‘rn’ is a random number drawn from a 

uniform distribution [0,1]. 

The generated models new
im  are tested iteratively. The generated model that best fits the 

data with a minimum misfit is accepted. The algorithm may be represented as the 

following series of operations. 

1. Generate a new model set m using equation (A2.2). 

2. Calculate t(xm)  (the model traveltime) at every offset using equation (2.33) 

3. Calculate the difference ‘ξ’ between the model travel time t(xm)  and  data travel 

time t(xd) at each offset. 

4. Count the number of offsets N whose ξ values fall under acceptable limits. 

5. If  N is acceptable the model set m is accepted; if not steps 1-4 are repeated. 

 


