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Abstract

AVO inversion is a well established seismic exploration methodology to predict

the earth�s elastic parameters and thus rock and �uid properties. This thesis in-

troduces a series of theoretical improvements to the AVO inverse problem. These

include, a practical methodology to perform three-term AVO inversion instead of the

industry standard of performing two-term AVO inversion. Two-term AVO inversion

constrains the inversion either implicitly by truncating a term, or explicitly through

some empirical relationship, thus introducing bias into the estimate. Using proba-

bilistic constraints based on local geologic information, the three-term inversion can

be constrained so as to give stable estimates, but with minimal bias. To help the

explorationist understand the reliability of these estimates, a series of quality controls

are developed and veri�ed.

In order to estimate reliable density re�ectivity, long o¤sets are required. NMO

stretch and o¤set-dependent tuning introduce problematic distortions at these o¤sets.

Two methods are investigated to address these issues. First, stretch-free NMO is

investigated as a way to precondition the data. Secondly, an AVO waveform inversion

which incorporates into the forward model NMO stretch and o¤set-dependent tuning

is considered.

Both the AVO inversion and AVO waveform inversion are developed using a

Bayesian framework. Gaussian and long-tailed distributions are explored for the

likelihood and a priori probability distributions. The optimization problem results

in non-linear solutions. The AVO inversion is solved using Newton-Raphson while

the AVO waveform inversion is solved using conjugate gradient. In each case, the

methodology is demonstrated on synthetic and real data examples.

The synthetic example shows that the AVO waveform inversion provides the most

accurate estimates in the presence of NMO stretch and tuning. Preconditioning

the data with stretch-free NMO improves the results of the AVO inversion, but not

as much as the AVO waveform inversion results. For real seismic data the AVO

waveform inversion also provided the best results of the methods tested. An example

is shown where both the AVO inversion and AVO waveform inversion are able to

estimate density re�ectivity that di¤erentiate commercial from noncommercial gas.

iii



Acknowledgements

I would like to thank Larry Lines, my dissertation supervisor, for his guidance and

many useful suggestions. Larry�s vast knowledge of the geophysical literature, specif-

ically about inverse theory and keen intuitive understanding of geophysics, helped me

throughout my graduate studies. Larry became the nucleus of a group interested

in AVO, inversion and the relationship between rock and seismic properties. He

attracted a talented group of individuals including fellow graduate students, Andrew

Royle, Brian Russell and Ian Watson. I learned much through our discussions and

interactions.

The CREWES environment provided a friendly atmosphere to learn about a wide

range of topics in geophysics and present ideas. From this group, I made a number

of good friendships including Chuck Ursenbach, Richard Bale and Hugh Geiger. I

would also like to thank a number of Professors that I learned so much from, Ed

Krebes from whom I learned a great deal about seismology, Gary Margrave from

whom I learned about mathematical geophysics and migration, and Doug Schmitt

from whom I learned about rock physics. In addition I would like to thank Rob

Stewart, John Bancroft, and Michael Slawinski for teaching interesting, accessible

courses that got me interested in taking further graduate courses in geophysics after

leaving university for ten years.

Before returning to university, to do my dissertation, I had been in the oil industry

for fourteen years. A number of key individuals shaped my ideas and interests.

Foremost among them were Shlomo Levy and Kerry Stinson. While working for

ITA, I was given the opportunity to investigate poststack impedance inversion, AVO,

and the relationship between rock and seismic properties. This is where my interest

in stratigraphic inversion was allowed to blossom. Later, upon forming our own

company, Integra, they provided excellent council and guidance.

Within Integra and later CoreLab RTD, I was privileged to work with a number of

talented individuals. We learned much from each other and grew together. Among

these were Yongyi Li, Jan Dewar, Bob Somerville, Jim Howell, Don Daub, Yong Xu

and Glen Brewer. In addition, I would like to acknowledge Huimin Guan for coding

up the Stretch-free NMO algorithm in Fortran and J.R. Hostetler for creating the

real Stretch-free NMO data example. I learned much from our clients and grew with

our collaborations. Foremost among these were Bill Goodway, and Dave Mackidd.

Others who have helped my understanding of stratigraphic inversion include Lee

iv



Hunt, Rainer Tonn, Holger Mandler and Weimin Zhang.

I would also like to thank Mark Klingbeil who was the President of Integra. I

learned much about running a company from him and personally grew through my

relationship with him. He also was responsible for setting up the �exible employment

agreement that allowed me the �nancial resources to pursue my graduate studies.

I am most indebted to Larry Lines, Pat Daley, Jan Dewar, and Chuck Ursenbach

for proof reading this thesis. I thank them for their suggestions and all the work this

entailed.

Finally, I am thankful to my family for persevering with me and supporting me as

I went down this path for the last �ve years. I thank my wife, Beatrix, who has put

up with the time pressures of me working and going to university for so long. My

daughters, Annika and Zoe, have grown up with me being in university for most of

their lives. I look forward to spending more time with my family upon the completion

of this thesis.

v



This work is dedicated to the memory of my father, William H. Downton.

vi



Contents

Approval page ii

Abstract iii

Acknowledgements iv

Dedication vi

Table of Contents xii

List of Tables xiii

List of Figures xxx

List of Symbols xxxi

1 Introduction 1
1.1 Amplitude variations with o¤set (AVO) . . . . . . . . . . . . . . . . . 1

1.2 AVO theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Zoeppritz equations . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Linear Approximation . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 AVO Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.4 Impedance inversion . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.5 Nonlinear inversion . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Seismic data preconditioning . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Factors that a¤ect AVO . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 Controlled amplitude processing . . . . . . . . . . . . . . . . . 19

1.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



1.4 Seismic to rock and �uid property mapping . . . . . . . . . . . . . . . 27

1.4.1 Mapping based on theoretical model . . . . . . . . . . . . . . 28

1.4.2 Mapping based on template data . . . . . . . . . . . . . . . . 33

1.5 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 AVO inversion and uncertainty analysis 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Amplitude variation with o¤set theory . . . . . . . . . . . . . . . . . 43

2.3 Rearrangements of the linearized Zoeppritz approximation . . . . . . 44

2.3.1 Shuey equation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Smith and Gidlow . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.3 Gidlow equation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.4 Other formulations . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Bayes�theorem and uncertainty . . . . . . . . . . . . . . . . . . . . . 51

2.4.1 Unconstrained AVO inversion . . . . . . . . . . . . . . . . . . 52

2.4.2 Constrained two-term AVO inversion . . . . . . . . . . . . . . 58

2.4.3 Two-term parameter uncertainty . . . . . . . . . . . . . . . . 63

2.5 Feasibility and Uncertainty analysis . . . . . . . . . . . . . . . . . . . 69

2.5.1 Modeling study . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.5.2 Modeling Results . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5.3 Colony data example . . . . . . . . . . . . . . . . . . . . . . . 74

2.5.4 Heavy oil seismic data example . . . . . . . . . . . . . . . . . 76

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Constrained three-term AVO inversion and uncertainty analysis 84
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.1 Amplitude variation with o¤set model . . . . . . . . . . . . . 86

3.2.2 Bayes�theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.3 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.4 A priori constraints . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.5 Nonlinear inversion . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2.6 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . 105

3.2.7 Transform matrix . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3.1 Blackfoot synthetic example . . . . . . . . . . . . . . . . . . . 107

3.3.2 Halfway synthetic example . . . . . . . . . . . . . . . . . . . . 112

3.3.3 Halfway seismic data example . . . . . . . . . . . . . . . . . . 112

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.4.1 VTI anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.4.2 Nonuniform noise . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Error in the AVO linear operator 126
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2 Modeling error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3 Ray tracing error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.1 Error due to uncertainty in interval P-wave velocity . . . . . . 136

4.3.2 Error in terms of S-wave impedance re�ectivity . . . . . . . . 137

4.3.3 Errors in background interval velocity and stacking velocity . 138

4.3.4 Modeling results . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4 �=� ratio error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4.1 Modeling results . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.5 Combined e¤ect of modeling errors . . . . . . . . . . . . . . . . . . . 149

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.6.1 Crossplotting . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.6.2 Bias in the two-term Shuey inversion estimates . . . . . . . . . 152

4.6.3 Quantifying data and theoretical uncertainty . . . . . . . . . . 153

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5 NMO stretch and tuning artifacts 156
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2 NMO stretch artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3 O¤set dependent tuning . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6 Two-term AVO waveform inversion 169
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

ix



6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.2.1 Convolutional model . . . . . . . . . . . . . . . . . . . . . . . 170

6.2.2 Prior model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2.3 Nonlinear inversion . . . . . . . . . . . . . . . . . . . . . . . . 182

6.3 Synthetic example demonstrating AVO waveform inversion in presence

of NMO stretch and o¤set dependent tuning . . . . . . . . . . . . . . 184

6.4 Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.5.1 Halfway synthetic model . . . . . . . . . . . . . . . . . . . . . 197

6.5.2 Halfway seismic data example . . . . . . . . . . . . . . . . . . 199

6.5.3 Colony seismic data example . . . . . . . . . . . . . . . . . . . 201

6.6 Impedance Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7 Stretch-free NMO 212
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.2.1 NMO inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.2.2 High-resolution NMO stack . . . . . . . . . . . . . . . . . . . 214

7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.3.1 Synthetic example . . . . . . . . . . . . . . . . . . . . . . . . 216

7.3.2 Seismic data example . . . . . . . . . . . . . . . . . . . . . . . 219

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8 Three-term AVO waveform inversion 222
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.2.1 Convolutional model . . . . . . . . . . . . . . . . . . . . . . . 225

8.2.2 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 228

8.2.3 Robust likelihood function . . . . . . . . . . . . . . . . . . . . 230

8.2.4 Prior model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.2.5 Nonlinear inversion . . . . . . . . . . . . . . . . . . . . . . . . 233

8.3 AVO waveform examples . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.3.1 Synthetic example . . . . . . . . . . . . . . . . . . . . . . . . 236

x



8.3.2 Halfway synthetic example . . . . . . . . . . . . . . . . . . . . 238

8.3.3 Comparison of di¤erent mis�t weighting functions on Halfway

synthetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

8.3.4 Real seismic data example . . . . . . . . . . . . . . . . . . . . 249

8.4 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9 Conclusions 270
9.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

9.2 Software developed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

References 278

Appendices 290

A Gain corrections 291
A.1 Geometrical spreading correction . . . . . . . . . . . . . . . . . . . . 291

A.2 Angle of emergence and free-surface correction . . . . . . . . . . . . . 292

A.3 Array correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

B Transform matrices between re�ectivity attributes 297
B.1 Relationship between Shuey and velocity re�ectivity . . . . . . . . . . 297

B.2 Relationship between Impedance and velocity re�ectivity . . . . . . . 297

B.3 Relationship between �=� ratio and velocity re�ectivity . . . . . . . . 299

B.4 Relationship between delta-Poisson ratio and velocity re�ectivity . . . 299

B.5 Relationship between Poisson ratio and velocity re�ectivity . . . . . 300

B.6 Relationship between Lamé re�ectivity and ��, �, ��, � re�ectivity . 301

B.7 Relationship between bulk modulus and velocity re�ectivity . . . . . 303

B.8 Summary of transforms . . . . . . . . . . . . . . . . . . . . . . . . . . 305

B.9 Two-term relationships . . . . . . . . . . . . . . . . . . . . . . . . . . 306

C Relationship between Parameter and Data covariance matrices 309
C.1 De�nition of a covariance matrix . . . . . . . . . . . . . . . . . . . . 309

C.2 Estimating the covariance matrix from sample statistics . . . . . . . . 310

C.3 Estimating the uncertainty in linear inverse problems . . . . . . . . . 311

xi



C.4 Data covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 312

C.5 Relationship between the mis�t covariance matrix and the parameter

covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

C.6 Simplifying assumptions: uniform noise . . . . . . . . . . . . . . . . . 314

D AVO least squares solution 316
D.1 Two-term Shuey equation . . . . . . . . . . . . . . . . . . . . . . . . 316

D.2 Two-term Gidlow equation . . . . . . . . . . . . . . . . . . . . . . . . 318

E Marginalization of noise 320

F Two-term covariance matrix parameterized in terms of impedance 323

G Norms based on long-tailed distributions 325
G.1 Derivative of `p norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

G.2 Cauchy Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

G.3 Huber Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

G.4 Long-tailed mis�t weights . . . . . . . . . . . . . . . . . . . . . . . . 330

H AVO waveform optimization problem 332

I Change of variables in standard form 335

xii



List of Tables

1.1 Gardner coe¢ cients for common lithologies . . . . . . . . . . . . . . 33

4.1 Modeling error due to using a two-term linearized approximation in-

stead of the Zoeppritz equation. . . . . . . . . . . . . . . . . . . . . 130

4.2 Systematic error (scalar) as a result of using a two-term linearized ap-

proximation and approximate P-wave velocity instead of the Zoeppritz

equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.3 Random error (correlation coe¢ cient) as a result of using a two-term

linearized approximation and approximate P-wave velocity instead of

the Zoeppritz equation. . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4 Systematic error (scalar) as a result of using a two-term linearized ap-

proximation and approximate S-wave to P-wave velocity ratio instead

of the Zoeppritz equation. . . . . . . . . . . . . . . . . . . . . . . . . 149

4.5 Random error (correlation coe¢ cient) as a result of using a two-term

linearized approximation and approximate S-wave to P-wave velocity

ratio instead of the Zoeppritz equation. . . . . . . . . . . . . . . . . 149

4.6 Systematic error (scalar) as a result of using a two-term linearized

approximation, approximate P-wave velocity, and S-wave to P-wave

velocity ratio instead of the Zoeppritz equation. . . . . . . . . . . . . 150

4.7 Random error (correlation coe¢ cient) as a result of using a two-term

linearized approximation, approximate P-wave velocity, and S-wave to

P-wave velocity ratio instead of the Zoeppritz equation. . . . . . . . 151

xiii



List of Figures

1.1 Re�ected and transmitted rays for an incident P-wave on an interface

between two elastic isotropic halfspaces. . . . . . . . . . . . . . . . . 5

1.2 Controlled amplitude land processing �ow. Steps in red are used to

prepare gathers for AVO. Steps in blue are used to create the optimal

migrated stack. Common processing steps are in black while optional

steps are shown with dashes. . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Synthetic CMP seismic gather with correct scaling a) and after trace

balancing b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 S-impedance re�ectivity estimate from AVO inversion of synthetic data

with correct scaling a) and trace balanced data b). . . . . . . . . . . 24

1.5 S-wave impedance re�ectivity estimate for Halfway line based on rela-

tive amplitude processing. . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 S-wave impedance re�ectivity estimate for Halfway line based on con-

trolled amplitude processing. . . . . . . . . . . . . . . . . . . . . . . . 26

1.7 Ostrander gathers generated from relative amplitude processing �ow

for Halfway line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Ostrander gathers generated from controlled amplitude processing �ow

for Halfway line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.9 Crossplot of P-wave and S-wave velocity measurements for clastic rocks

(Han, 1986) with e¤ective pressure as color overlay. . . . . . . . . . . 28

1.10 Crossplot of P-wave and S-wave velocity measurements for clastic rocks

(Han, 1986) with porosity as color overlay. . . . . . . . . . . . . . . . 29

1.11 Crossplot of P-wave and S-wave velocity measurements for clastic rocks

(Han, 1986) with volume of shale as color overlay. . . . . . . . . . . . 30

1.12 Crossplot of P-wave and S-wave velocity measurements for clastic rocks

(Han, 1986) for wet samples (blue) and dry samples (black). . . . . . 31

xiv



1.13 Crossplot of Blackfoot well log data showing separation between brine

and gas �lled Glauconite sands. . . . . . . . . . . . . . . . . . . . . . 34

1.14 Estimate of lambda*rho section for Blackfoot seismic line crossing

Glauconite gas well along with crossplotted seismic data. Note that

yellow polygon on crossplot is able to identify gas sand on section

(shown with yellow squares). . . . . . . . . . . . . . . . . . . . . . . 35

1.15 Synthetic gather showing wet sand response (a), gas sand response (b)

and actual seismic data from gas well (c). Note that this is a Class I

gas sand response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 The condition number plotted for a number of simulated AVO inver-

sions. The fold is held constant while the maximum angle used for the

inversion is varied. The legend indicates the AVO approximation used

in calculating the condition number. Note that the condition number

improves as the maximum angle used in the inversion increases. . . . 45

2.2 One dimension Gaussian distribution. The best estimate occurs where

the probability is maximum. The uncertainty is related to the width

of the distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Bivariate Gaussian distribution. Each ellipse represents an equiproba-

ble solution whose standard deviation is indicated by the legend. The

best estimate occurs on the smallest ellipse. . . . . . . . . . . . . . . 54

2.4 Uncertainty of P- and S-wave velocity re�ectivity. The uncertainty for

each variable is the marginalized one dimension distribution for that

variable. This is a Gaussian distribution whose width is characterized

by its standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Mis�t ellipsoid generated from likelihood function based on equation

(2.1) for the acquisition geometry used in the Blackfoot synthetic and

a noise variance of 1. Note that the ellipsoid is quite elongated espe-

cially along the density axis. The ellipsoid represents the equiprobable

solution surface for a particular noise level. . . . . . . . . . . . . . . 59

2.6 One face of the cube shown in Fig. 2.5. Note the large amount of

uncertainty in both the S-wave velocity and density re�ectivity. . . . 60

2.7 One face of the cube shown in Fig. 2.5 after variables transformed

to impedance. Note that because of the transform, the uncertainty of

variable along the x-axis is much less than in Fig. 2.5. . . . . . . . . . 61

xv



2.8 Comparison of mis�t ellipsoids for two alternative parameterizations.

The S-impedance re�ectivity (a) has greater uncertainty than the �uid

stack parameterization (b). . . . . . . . . . . . . . . . . . . . . . . . . 61

2.9 The blue surface is the mis�t ellipsoid generated from likelihood func-

tion based on equation (2.1) for the acquisition geometry used in the

Blackfoot synthetic. The red surface is the solution space de�ned by

the a prior constraints based on the Gardner equation. The probabil-

ity of this is a delta function. The optimal solution occurs where the

combined probability is maximum. . . . . . . . . . . . . . . . . . . . 62

2.10 The blue surface is the mis�t ellipsoid generated from likelihood func-

tion based on equation (2.1) for the acquisition geometry used in the

Blackfoot synthetic seismogram. Various constraints are shown. The

optimal solution in each case occurs where the combined probability is

maximum. Note that each constraint has a di¤erent optimal solution. 63

2.11 The blue surface is the mis�t ellipsoid generated from likelihood func-

tion based on equation (2.1) for the acquisition geometry used in the

Blackfoot synthetic. Various constraints are shown. The optimal solu-

tion in each case occurs where the combined probability is maximum.

Note that each constraint has a di¤erent optimal solution. . . . . . . 64

2.12 The estimated variance based on the two-term Fatti covariance matrix.

Figure (a) shows the e¤ect of varying the maximum angle while holding

the fold constant. Figure (b) shows the e¤ect of varying the minimum

angle while holding the fold and maximum angle constant. Figure (c)

shows the a¤ect of holding the range of angles used to do the inversion

constant. Figure (d) shows the e¤ect of varying fold while holding the

minimum and maximum angles constant. . . . . . . . . . . . . . . . . 67

2.13 The condition number of the AVO inversion problem as both the �=�

ratio and fold are varied, while the minimum and maximum angles

are held constant. Note that as �=� increases, the condition number

increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xvi



2.14 The mis�t function of the P- and S-wave impedance re�ectivity (red)

compared to the P-impedance, �uid stack parameterization (blue).

Note the uncertainty of the �uid stack is less than that of the S-wave

impedance re�ectivity. Note the axis correspond to dR = Rideal �
Restimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.15 Wireline logs displayed in time for the Blackfoot well log. The synthetic

gather was generated using re�ectivity generated from the Zoeppritz

equation. The re�ectivity is shown without moveout, �ltered and with

noise added to give a S/N=2. . . . . . . . . . . . . . . . . . . . . . . 71

2.16 Subplot (a) is the S-impedance re�ectivity generated from AVO mod-

eling experiment described in text. Fig. (b) shows the ideal re�ectivity

while (c) shows fractional uncertainty calculated from (a) and b). Fig.

(d) shows the predicted fractional uncertainty calculated from the co-

variance matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.17 Normalized error calculated as described in text. Fig. a) shows P-

impedance re�ectivity error when the maximum angle is varied while

b) shows the error while the fold is varied. Fig. c) shows S-impedance

re�ectivity error when the maximum angle is varied while d) shows the

error while the fold is varied. . . . . . . . . . . . . . . . . . . . . . . 75

2.18 Predicted noise versus actual noise variance. Fig (a) shows calculation

when fold held constant while (b) shows the calculation when angle

range is held constant. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.19 Fluid stack for colony example. Note Colony anomalies at 0.5 seconds. 77

2.20 Colony P-impedance re�ectivity (a), stability section for P-wave im-

pedance re�ectivity (b), and fractional uncertainty (c). . . . . . . . . 78

2.21 Colony S-wave impedance re�ectivity (a), stability section for S-impedance

re�ectivity (b), and fractional uncertainty (c). . . . . . . . . . . . . . 79

2.22 Fluid stack for A.O.S.T.R.A. example (a), and fractional uncertainty

display (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.1 Response of density, P-wave, and S-wave velocity to changing water

and gas saturation assuming a two phase �uid. The Gassmann equa-

tion is used to model the velocities. . . . . . . . . . . . . . . . . . . . 86

xvii



3.2 Cross-plot of the P- and S-wave velocities in m=s for the Halfway well

over the clastic interval. The red line indicates the best �t in a least

squares sense of � = 0:98� + 1683. . . . . . . . . . . . . . . . . . . . 98

3.3 Crossplot of the P- and S-wave re�ectivity for the Halfway well over the

clastic interval. (a) The red line shows the trend generated from Fig.

3.2. The blue line indicates the best �t in a least squares sense between

the re�ectivity giving a slope of m=1.01. Figure (b) is a crossplot

of the P-wave velocity and density re�ectivity. The red line shows

the parameters calculated using the Gardner equation while blue line

indicates the best �t in a least squares sense giving a slope of g=0.2559.

Figure (c) is a crossplot of the S-wave velocity and density re�ectivity.

The red line shows the parameters calculated using the Potter equation

while blue line indicates the best �t in a least squares sense giving a

slope of f=0. 0.1791. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.4 Blue surface is mis�t ellipsoid generated from likelihood function based

on equation (3.1) for the acquisition geometry used in the Blackfoot

synthetic. The black surface is equi-probable surface generated by

the constraints based on the multivariate Gaussian constraints. The

optimal solution occurs where the combined probability is maximum. 101

3.5 Cross-plots re�ectivity used to construct constraints for Blackfoot AVO

inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6 Results of AVO inversion from 0 to 45 degrees for P-impedance, S-

impedance and density re�ectivity attributes on a gather with a S/N=8.

The estimate of the uncertainty for each re�ectivity estimate along with

noise is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.7 Results of AVO inversion from 0 to 45 degrees for P-impedance, S-

impedance and density re�ectivity attributes on a gather with a S/N=1/4.

The estimate is in red and the actual re�ectivity in blue. The estimate

of the uncertainty for each re�ectivity estimate along with noise is also

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xviii



3.8 Results of AVO inversion from 0 to 28 degrees for P-impedance, S-

impedance and density re�ectivity attributes on a gather with a S/N=8.

The estimate is in red and the actual re�ectivity in blue. The estimate

of the uncertainty for each re�ectivity estimate along with noise is also

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.9 Wireline logs displayed in time for the Halfway well log. The synthetic

gather was generated using re�ectivity generated from the Zoeppritz

equation. The re�ectivity is shown without moveout, �ltered and with

noise added to give a S/N=4. . . . . . . . . . . . . . . . . . . . . . . 113

3.10 P-wave velocity and density of Halfway well log. Note that density

and velocity are uncorrelated at 0:32 and 0:68 seconds. Note the cor-

responding re�ectivity is as well. Density estimated using the Gardner

equation Rd = gR� poorly correlates with the actual density. . . . . . 114

3.11 Cross-plot of P-wave velocity and density re�ectivity. Note the large

amount of scatter and the poor correlation. . . . . . . . . . . . . . . . 115

3.12 Comparision of three-term AVO inversion for the P- and S-wave ve-

locity, density and �uid stack re�ectivity (shown in red) with the ideal

zero-o¤set re�ectivity (shown in blue). . . . . . . . . . . . . . . . . . 116

3.13 Comparision of three-term AVO inversion with another set of con-

straints for the P- and S-wave velocity, density and �uid stack re�ec-

tivity (shown in red) with the ideal zero-o¤set re�ectivity (shown in

blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.14 P-impedance, S-impedance and density re�ectivity attribute inversions

over producing and non-economic gas �elds. Note that it is possible

to di¤erentiate on the density section the low gas saturation gas well

(light blue at Well A at 0.72s) from the economic gas wells (dark blue

Well C and E at 0.72s). . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.15 The density re�ectivity and related quality control sections. The stan-

dard deviation of the density (middle panel) is considerably smaller

than the density re�ectivity at the zone of interest. The ratio of the

unconstrained to constrained uncertainty (bottom panel) shows the in-

�uence of the constraints on the solution. Where this ratio is high, the

constraints are dominating the solution. This occurs when the S/N is

poor or the range of angles available for the inversion is limited. . . . 120

xix



3.16 The scaled P-impedance and density re�ectivity attributes shown. The

P-impedance is scaled in a manner suggested by the Gardner constraint

to try and estimate density. The bottom panel is a di¤erence between

the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.17 The P-impedance inversion from the constrained three-term AVO in-

version (top) and from a least squares two-term AVO inversion (bot-

tom). Note how the constraints improve the solution on the three-term

inversion in the area with a poor signal-to-noise ratio around CMP 2000.122

4.1 Blackfoot well logs used to generate synthetic model. . . . . . . . . . 128

4.2 Comparison of ideal (red) and estimated (blue) re�ectivity for the two-

term Fatti inversion. The cross-plot shows the di¤erence between the

ideal and estimated S-impedance re�ectivity. . . . . . . . . . . . . . 129

4.3 Comparison of ideal (red) and estimated (blue) re�ectivity for two-term

Shuey inversion. The cross-plot (c) shows the di¤erence between the

ideal and estimated gradient re�ectivity. Note the bias in the gradient

estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4 Comparison of ideal (red) and estimated (blue) re�ectivity for two-term

Shuey inversion converted to impedance. The cross-plot (c) shows the

di¤erence between the ideal and estimated S-impedance re�ectivity. . 131

4.5 Angle of incidence generated by ray tracing Blackfoot model using

Classical ray theory approach (a) and the Walden approach (b). The

di¤erence between the two (c) is neglible. . . . . . . . . . . . . . . . 133

4.6 Well logs used to construct Blackfoot model. Blocky P-velocity (blue)

used for ray tracing in AVO inversion. . . . . . . . . . . . . . . . . . 139

4.7 Comparison of ideal (red) and estimated (blue) re�ectivities for two-

term Shuey inversion using blocky velocity model for ray tracing. The

cross-plot (c) shows the di¤erence between the ideal and estimated

gradient re�ectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.8 Comparison of ideal (red) and estimated (blue) re�ectivities for two-

term Shuey inversion transformed to impedance re�ectivity using blocky

velocity model for ray tracing. The cross-plot (c) shows the di¤erence

between the ideal and estimated S-impedance re�ectivity. . . . . . . 141

xx



4.9 Comparison of ideal (red) and estimated (blue) re�ectivities for two-

term Fatti inversion using blocky velocity model for ray tracing. The

cross-plot (c) shows the di¤erence between the ideal and estimated

S-impedance re�ectivity. . . . . . . . . . . . . . . . . . . . . . . . . 142

4.10 Comparison of ideal (red) and estimated (blue) re�ectivities for two-

term Shuey inversion using distorted blocky velocity model for ray

tracing. The cross-plot (c) shows the di¤erence between the ideal and

estimated gradient re�ectivity. . . . . . . . . . . . . . . . . . . . . . 144

4.11 Comparison of ideal (red) and estimated (blue) re�ectivities for two-

term Shuey inversion converted to impdedance using distorted blocky

velocity model for ray tracing. The cross-plot (c) shows the di¤erence

between the ideal and estimated S-impedance re�ectivity. . . . . . . 145

4.12 Comparison of ideal (red) and estimated (blue) re�ectivities for two-

term Fatti inversion using distorted blocky velocity model for ray trac-

ing. The cross-plot (c) shows the di¤erence between the ideal and

estimated S-impedance re�ectivity. . . . . . . . . . . . . . . . . . . 146

5.1 Amplitude spectrum before and after NMO correction (equation 5.1).

The NMO correction (NMO stretch) shifts the spectrum to lower fre-

quencies and ampli�es the values. . . . . . . . . . . . . . . . . . . . . 157

5.2 Synthetic gather of a single spike after NMO correction and 10/14-

60/70 Hz band-pass �lter for incident angles from 0 to 45 degrees.

Note how NMO stretch lowers the frequency on the far o¤sets and

changes the wavelet character. . . . . . . . . . . . . . . . . . . . . . . 158

5.3 Scaling � distortion on the gradient estimate as a function of �. Note

the distortion gets larger as � gets larger. . . . . . . . . . . . . . . . . 159

5.4 Cross-plot of ideal re�ectivity (a) used to generate the synthetic gather

generated without NMO using two term Shuey approximation (b) and

the synthetic gather generated without NMO using three term Shuey

approximation (c). Note the two-term model clearly shows the Class

I - IV behavior expected while the three term model behavior is more

complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xxi



5.5 The input model prior to NMO (a), after NMO correction (b) and

compared to the synthetic gather generated without NMO (c). Note

on the NMO corrected gather the introduction of low frequencies at

large o¤sets due to NMO stretch. . . . . . . . . . . . . . . . . . . . . 161

5.6 The estimate (red) of the AVO intercept A and gradient B compared

to the ideal (blue). Note the gradient estimate is distorted for both

the Class III and IV anomalies as predicted. . . . . . . . . . . . . . . 162

5.7 The input model prior to NMO with tuning (a), with NMO (b) and

compared to the synthetic gather generated without NMO (c). . . . 163

5.8 The estimate (red) of the AVO intercept A and gradient B compared

to the ideal (blue). Note the gradient estimate is distorted for both

the Class III and IV anomalies as predicted. . . . . . . . . . . . . . . 165

5.9 The estimate (red) of the AVO gradient B compared to the ideal (blue)

for various layer thicknesses. Note that distortion changes as function

of thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.10 Intercept A and Gradient B converted to �uid stack, P-wave and

S-wave impedance re�ectivity. Note that the �uid stack shows little

distortion due to NMO stretch and o¤set dependent tuning for all

classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.1 L2 (green), L1 (blue) and Huber (black) loss functions. . . . . . . . . 181

6.2 Synthetic seismic gather. The Class III and IV isolated re�ectors are

at 1.5 s and 1.7 s zero o¤set time respectively. The tuned Class III

and IV re�ectors are at 1.6 s and 1.8 s zero o¤set time respectively. . 185

6.3 The synthetic gather (a) generated without moveout is compared to

the NMO corrected gather (b) while (c) shows the di¤erence between

the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.4 The traditional AVO estimates (a) for intercept A and gradient B (red)

are compared to the ideal results (blue). Also, the ideal data (b) is

compared to the estimated data (c) in the cross-plot domain. Note

the estimated Class III and IV anomalies are scattered in cross-plot

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.5 Comparison of the model estimated from the two-term AVO waveform

inversion (b) and the input (a). Note the good match between the two

with only random noise evident in the scaled (5X) di¤erence (c). . . . 187

xxii



6.6 The estimated two-term AVO waveform results (a) for intercept A and

gradient B (red) are compared to the ideal results (blue). Also, the

ideal data (b) is compared to the estimated data (c) in the cross-plot

domain. Note the good agreement for the Class III and IV anomalies. 188

6.7 The estimated (red) Fluid factor, P- and S-wave impedance re�ectivi-

ties based on the AVOwaveform inversion compared to the ideal (blue).

Panel (b) shows the full spectrum estimate while (a) shows the result

�ltered by the estimated source wavelet. . . . . . . . . . . . . . . . . 189

6.8 Extracted wavelet (red) versus ideal wavelet (blue). Note only the

non-negative time samples are shown. . . . . . . . . . . . . . . . . . . 190

6.9 Comparison of estimated (red) versus ideal (blue) intercept and gradi-

ent using estimated wavelet for AVO waveform inversion. . . . . . . . 192

6.10 Zoom of comparison of estimated (red) versus ideal (blue) intercept

and gradient using estimated wavelet for AVO waveform inversion. . . 193

6.11 Comparison of estimated (red) versus ideal (blue) intercept and gradi-

ent. Estimate from AVO waveform inversion performed with wavelet

180 degrees out of phase. . . . . . . . . . . . . . . . . . . . . . . . . 193

6.12 Comparison of estimated (red) versus ideal (blue) intercept and gradi-

ent. Estimate from AVO waveform inversion performed with wavelet

90 degrees out of phase. . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.13 Zoom of comparison of estimated (red) versus ideal (blue) intercept

and gradient. Estimate from AVO waveform inversion performed with

wavelet 90 degrees out of phase. . . . . . . . . . . . . . . . . . . . . 194

6.14 Comparison of estimated (red) versus ideal (blue) intercept and gradi-

ent. Estimate from AVO waveform inversion performed with 10/20-

60/90 Hz wavelet instead of correct wavelet. Ideal re�ectivity shown

with 10/20-60/90 Hz �lter for comparison purposes. . . . . . . . . . 195

6.15 Zoom of comparison of estimated (red) versus ideal (blue) intercept

and gradient. Estimate from AVO waveform inversion performed with

10/20-60/90 Hz wavelet instead of correct wavelet. Ideal re�ectivity

shown with 10/20-60/90 Hz �lter for comparison purposes. . . . . . 196

6.16 Input P- and S-wave velocity, �=� ratio, density logs, and resultant

synthetic gather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xxiii



6.17 The estimated re�ectivity (red) of �uid factor, P- and S-wave im-

pedance re�ectivity based on the AVO waveform inversion compared

to the ideal (blue). Panel (b) shows the full spectrum estimate while

(a) shows the result �ltered by the estimated source wavelet. . . . . . 198

6.18 P-wave (a) and S-wave (b) impedance re�ectivity estimate from tradi-

tional two-term AVO inversion. . . . . . . . . . . . . . . . . . . . . . 199

6.19 P-wave (a) and S-wave (b) impedance re�ectivity estimate from two-

term AVO waveform inversion. . . . . . . . . . . . . . . . . . . . . . 200

6.20 P-wave impedance (a) and �uid (b) re�ectivity estimate from two-term

AVO waveform inversion. . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.21 P-wave impedance (a) and �uid (b) re�ectivity estimate from two-term

traditional AVO inversion. . . . . . . . . . . . . . . . . . . . . . . . . 203

6.22 The input (a) is compared to estimated two-term AVOwaveformmodel

(b). Note the good match between the two with the di¤erence (c)

showing mostly random noise. . . . . . . . . . . . . . . . . . . . . . . 204

6.23 Model (b) estimated from the prestack impedance inversion compared

to the input (a) and scaled (5X) di¤erence (c). . . . . . . . . . . . . . 207

6.24 The AVO waveform estimates (red) of the P-wave Impedance, S-wave

impedance and �uid stack re�ectivity (a) vs the ideal (blue). Also, the

ideal data (b) is compared to the estimated data (c) in the cross-plot

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.25 The estimate (red) of the full spectrum P-wave impedance, S-wave im-

pedance and �uid factor re�ectivity (a) compared to the ideal (blue).

After integrating, the P-wave and S-wave impedances (b) estimate

(red) are compared to the ideal impedance (blue). . . . . . . . . . . 209

7.1 Comparison of inverse NMO (b) with input (a) for full spectrum data.

The trace shown in (b) at o¤set= -500 is the stacked response. The

stacked response is equivalent to the input. . . . . . . . . . . . . . . 214

7.2 Comparison of inverse NMO (b) with input (a) for band-limited data.

The trace shown in (b) at o¤set= -500 is the stacked response. Notice

the waveform changes as a function of time. . . . . . . . . . . . . . . 215

7.3 Comparison of NMO corrected data (c) with stretch-free NMO (b).

For reference purposes gather (a) was generated without NMO. . . . 217

xxiv



7.4 Comparison of stretch-free NMO corrected data (b) versus ideal (a),

and the scaled (5X) di¤erence (c). . . . . . . . . . . . . . . . . . . . . 218

7.5 The AVO estimates (a) for intercept A and gradient B (red) are com-

pared to the ideal results (blue) for gathers preprocessed with stretch-

free NMO applied. The ideal data (b) is compared to the estimated

data (c) in the cross-plot domain. . . . . . . . . . . . . . . . . . . . 218

7.6 Comparison of AVO inversion results using traditional NMO as input

(a), stretch-free NMO as input (b) and AVO waveform inversion (c). . 219

7.7 NMO corrected CDP gather (b) and stretch-free NMO (c) compared

to input (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.8 Angle stack (40 - 50 degrees) based on traditionally NMO corrected

gathers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.9 Angle stack (40 - 50 degrees) based on stretch-free NMO corrected

gathers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.1 P- and S-wave impedance re�ectivity estimate versus ideal based on

L2 AVO inversion in the presence of non-Gaussian noise. Note that

the S-wave impedance re�ectivity estimate is biased (highlighted by

red ellipse) by the multiple. . . . . . . . . . . . . . . . . . . . . . . . 223

8.2 P- and S-wave impedance re�ectivity estimate versus ideal based on

L1 AVO inversion in the presence of non-Gaussian noise. Note the

improvement in the S-wave impedance re�ectivity estimate compared

to Fig. 8.1. (highlighted by red ellipse). . . . . . . . . . . . . . . . . . 223

8.3 Diagonal of Q matrix calculated for �nal iteration of Halfway synthetic

example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.4 Synthetic (a) input, (b) three-term AVO waveform model reconstruc-

tion, and (c) (5X) di¤erence between input and model reconstruction.

Note the anomaly due to the density perturbation at 1.9 seconds. . . 237

8.5 Comparison of �ltered three-term AVO waveform inversion for the P-

and S-wave impedance, density and �uid stack re�ectivity (shown in

red) with the ideal zero-o¤set re�ectivity (shown in blue) for synthetic

example 1b. Note the excellent match. . . . . . . . . . . . . . . . . . 239

xxv



8.6 Comparison of un�ltered three-term AVO waveform inversion for the

P- and S-wave impedance, density and �uid stack re�ectivity (shown in

red) with the ideal zero-o¤set re�ectivity (shown in blue) for synthetic

example 1b. Note the poor match. . . . . . . . . . . . . . . . . . . . 240

8.7 Cross-plot of �ltered (a) ideal P- and S- wave impedance re�ectivity,

(b) estimated P-and S-wave impedance re�ectivity, (c) ideal P-wave im-

pedance and density re�ectivity, and (d) estimated P-wave impedance

and density re�ectivity. Note scatter in the estimate due to error. . . 241

8.8 Wireline logs displayed in time for the Halfway well log. The synthetic

gather was generated using re�ectivity generated from the Zoeppritz

equation. The re�ectivity is shown without moveout, �ltered and with

noise added to give a S/N=4. . . . . . . . . . . . . . . . . . . . . . . 242

8.9 P-wave velocity and density of Halfway well log. Note that density

and velocity are uncorrelated at 0.32 and 0.68 seconds. Note the cor-

responding re�ectivity is as well. Density estimated using the Gardner

equation Rd=g*Rvp correlates poorly with the actual density. Note

that the NMO corrected synthetic gather (g) shows o¤set dependent

tuning on the event at 0.32 seconds as well. . . . . . . . . . . . . . . 243

8.10 Comparison of the estimated P- and S-wave velocity, density, and �uid

stack re�ectivity (shown in red) with the ideal zero-o¤set re�ectivity

(shown in blue) based on three-term AVO inversion of NMO corrected

Halfway synthetic. Note that the estimate is a poor due to the theo-

retical error introduced by NMO correction. . . . . . . . . . . . . . . 245

8.11 Halfway synthetic input (a), model reconstruction (b), and (5X) dif-

ference between input and model reconstruction (c) for the three-term

AVO waveform inversion. Note the good match and small di¤erence. 245

8.12 Comparison of the estimated P- and S-wave impedance, density, and

�uid stack re�ectivity (shown in red) with the ideal zero-o¤set re�ec-

tivity (shown in blue) based on three-term AVO inversion of NMO cor-

rected Halfway synthetic. Note there is little di¤erence between doing

the AVO waveform inversion with NMO (a) or after NMO correction

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

xxvi



8.13 Cross-plot of �ltered (a) ideal P- and S- wave impedance re�ectivity,

(b) estimated P-and S-wave impedance re�ectivity, (c) ideal P-wave im-

pedance and density re�ectivity, and (d) estimated P-wave impedance

and density re�ectivity. Note good correspondence between estimated

and ideal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.14 Halfway synthetic (a) input, (b) model reconstruction, and (c) dif-

ference between input and model reconstruction for three-term AVO

waveform inversion. Note the input is NMO corrected and that the

reconstruction models the NMO stretch and o¤set dependent tuning. 248

8.15 Halfway synthetic (a) input, (b) model reconstruction, and (c) di¤er-

ence between input and model reconstruction for interatively reweighted

least-squares three-term AVO waveform inversion (Cauchy weights). . 248

8.16 Comparison of the AVO waveform estimated (red) P- and S-wave im-

pedance, density, and �uid stack re�ectivity with the ideal (blue) zero-

o¤set re�ectivity for the Halfway model with non-Gaussian noise. Note

the poor estimate of the density re�ectivity over the interval from 0.5

to 0.76 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.17 Comparison of the reweighted AVO waveform estimated (red) P- and

S-wave impedance, density, and �uid stack re�ectivity with the ideal

(blue) zero-o¤set re�ectivity for the Halfway model with non-Gaussian

noise. Note the poor estimate of the density re�ectivity over the in-

terval from 0.5 to 0.76 seconds. Note the improvement in the estimate

of the density re�ectivity compared to Fig. 8.16. Huber weights with

� = 2 are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.18 Huber weights with � = 2 are used to generate Fig. 8.17. . . . . . . . 251

8.19 Comparison of the reweighted AVO waveform estimated (red) P- and

S-wave impedance, density, and �uid stack re�ectivity with the ideal

(blue) zero-o¤set re�ectivity for the Halfway model with non-Gaussian

noise. Note the poor estimate of the density re�ectivity over the in-

terval from 0.5 to 0.76 seconds. Note the improvement in the estimate

of the density re�ectivity compared to Fig. 8.17. Cauchy weights are

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

8.20 Cauchy weights that are used to generate Fig. 8.19. . . . . . . . . . . 252

xxvii



8.21 Comparison of the reweighted AVO waveform estimated (red) P- and

S-wave impedance, density, and �uid stack re�ectivity with the ideal

(blue) zero-o¤set re�ectivity for the Halfway model with non-Gaussian

noise. Note the poor estimate of the density re�ectivity over the in-

terval from 0.5 to 0.76 seconds. Note the improvement in the estimate

of the density re�ectivity compared to Fig. 8.18. Bube and Langan

(1997) weights are used. . . . . . . . . . . . . . . . . . . . . . . . . . 253

8.22 Bube and Langan (1997) weights are used to generate Fig. 8.21. . . 253

8.23 Comparison of the reweighted AVO waveform estimated (red) P- and

S-wave impedance, density, and �uid stack re�ectivity with the ideal

(blue) zero-o¤set re�ectivity for the Halfway model with non-Gaussian

noise. Note the poor estimate of the density re�ectivity over the inter-

val from 0.5 to 0.76 seconds. Note the improvement in the estimate of

the density re�ectivity compared to 8.16. L1 weights with epsilon=0.1

are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

8.24 L1 weights with epsilon=0.1 that were used to generate Fig. 8.23. . 254

8.25 P- and S-wave impedance, and density re�ectivity AVO inversions over

producing and non-economic gas �elds. Note that it is possible to

di¤erentiate on the density section the low gas saturation gas well

(light blue Well A at 0.72 s) from the economic gas wells (dark blue at

Well C and E at 0.72 s). . . . . . . . . . . . . . . . . . . . . . . . . . 256

8.26 P- and S-wave impedance, and density re�ectivity AVO waveform in-

versions. Note the improvement in the S-wave impedance re�ectivity

section compared to Fig. 8.25 though there are more noise artifacts. . 257

8.27 P- and S-wave impedance, and density re�ectivity AVO waveform in-

versions based on NMO corrected gathers. Note result is very similar

to that of Fig. 8.26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

8.28 P- and S-wave impedance, and density re�ectivity AVO waveform in-

versions using Huber mis�t weights (� = 2). Note the improvement in

the signal-to-noise ratio compared to Fig. 8.26. . . . . . . . . . . . . 259

8.29 P- and S-wave impedance, and density re�ectivity AVO waveform in-

versions using L1 mis�t weights. The results are much poorer than

Fig. 8.26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

xxviii



8.30 P- and S-wave impedance, and density re�ectivity AVO waveform in-

versions using Cauchy mis�t weights. Note the improvement in the

signal-to-noise ratio compared to Fig. 8.26 and Fig 8.28. . . . . . . . 261

8.31 P- and S-wave impedance, and density re�ectivity AVO waveform in-

versions using Bube and Langan (1997) mis�t weights. Note the im-

provement in the signal-to-noise ratio compared to Fig. 8.26 and Fig.

8.28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

8.32 CDP gather at 1500 showing the input (a), the three-term AVO wave-

form estimated model using Cauchy mis�t weights (b), and the (5X)

di¤erence between input and estimated reconstruction (c). . . . . . . 263

8.33 Halfway synthetic modi�ed to include statics . . . . . . . . . . . . . . 264

8.34 Comparison of the estimated P- and S-wave impedance, density, and

�uid stack re�ectivity (shown in red) with the ideal zero-o¤set re�ectiv-

ity (shown in blue) based on the three-term AVO waveform inversion

of Halfway model with statics. Statics left uncorrected degrades the

inversion results (a). Fig (b) shows one pass of trim statics while Fig.

(c) shows 3 passes. Note the improvement in the density re�ectivity

compared to (a) and how it compares favorably to Fig. 8.12a. . . . . 266

8.35 Comparison of the estimated (red) P- and S-wave impedance, density,

and �uid stack re�ectivity with the ideal (blue) zero-o¤set re�ectivity

based on the NMO corrected three-term AVO waveform inversion of

Halfway model with one pass of trim statics. The result compares

favorably with Fig. 8.34b. . . . . . . . . . . . . . . . . . . . . . . . . 267

8.36 P- and S-wave impedance, and density re�ectivity AVO waveform in-

versions with trim statics and Cauchy mis�t weights. . . . . . . . . . 268

A.1 Interval velocity model used for ray tracing and geometrical spreading

correction for Halfway seismic line. . . . . . . . . . . . . . . . . . . . 292

A.2 Angle of incidence displayed for speci�c CMP gathers for the Halfway

line. The data are �rst sorted by CMP and then by o¤set. Note the

angle of inidence is graphed overhead for the zone of interest. . . . . . 293

A.3 Geometrical spreading correction for speci�c CMP gathers for the Halfway

line. The data are �rst sorted by CMP and then by o¤set Note the

scaling is graphed overhead for the zone of interest and note the lateral

change in scaling due to lateral changes in velocity. . . . . . . . . . . 293

xxix



A.4 Gain correction based on t2 correction for speci�c CMP gathers for the

Halfway line. The data are �rst sorted by CMP and then by o¤set. 294

A.5 Angle of emergence correction (black) plus free surface correction for

di¤erent Vs/Vp ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . 295

xxx



List of Symbols

Throughout this thesis, I use the convention that upper case bold face lettering

designates a matrix, lower case bold face lettering designates a vector and a scalar is

italicized. Estimates are denoted with the symbol ^ over the variable and averages

with a bar over them. Summarized below, for the readers convenience are the symbols

used in this thesis.

A;B;C re�ectivity attributes generated by Shuey equation

b intercept used in mudrock relationship � = m� + b

bI intercept used in modi�ed mudrock relationship Ip = mIIs + bI

Cd parameter covariance matrix for the data d

Cx parameter covariance matrix for variable x
~Cx normalized parameter covariance matrix for variable x
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Chapter 1

Introduction

1.1 Amplitude variations with o¤set (AVO)

Compressional wave amplitude variations with o¤set (AVO) provides the explo-

rationist with additional information over conventional stacked seismic data. In the

1960�s, geophysicists discovered that gas deposits were often associated with ampli-

tude anomalies on stacked sections known as "bright spots". However, these bright

spots proved to be less than a perfect gas indicator, since other large impedance con-

trasts due to rapid changes in lithology can also cause them. Examples of this are

igneous intrusions, carbonates and coals in clastic sequences. AVO was introduced

as a methodology to provide additional information so as to more accurately predict

the rock and �uid properties of the earth. For example, Ostrander (1984), Fatti

et al. (1994), and Allen and Peddy (1993) published case histories showing AVO�s

usefulness in predicting and mapping hydrocarbons. Verm and Hilterman (1995),

Goodway et al. (1997), and Avseth (2000) used it to distinguish lithology and map

porosity in clastics. Further, Li et al. (2003) demonstrated its usefulness in explor-

ing for carbonates. AVO has also proven useful in planning drilling programs by

performing pore pressure prediction (Carcione and Gangi, 2000) and characterizing

the reservoir in time-lapse seismic monitoring studies (Tura and Lumley, 1999; and

Landro, 2001).

Compressional wave AVO provides additional information without extra acquisi-

tion costs unlike converted or shear wave acquisition. The extra cost associated with

AVO are (1) the cost of processing and inverting the prestack seismic data properly,

and (2) incorporating this extra information into the interpretation. In practice both

these considerations limit the use of AVO. The seismic data are noisy and the AVO
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problem ill-conditioned resulting in elastic parameter estimates with potentially large

and unknown errors. Further, rock and �uid properties estimated from the AVO

estimates are ambiguous due to the non-uniqueness of the elastic to rock property

transform. Thus, interpreting the signi�cance of the AVO inversion results can be

daunting. For these reasons AVO tends to get used on a subset of plays where it

has worked in the past or has the potential to clear up ambiguous poststack inter-

pretations. This means that for many plays, we are throwing away information that

might be useful in describing the reservoir and �nding hydrocarbons. This seems a

waste.

To address the �rst of these issues, namely the issue of reliably estimating AVO

attributes, this thesis proposes a series of improvements. Robust statistics and

probabilistic constraints based on geologic control are incorporated into the inversion

using Bayes theorem resulting in more reliable estimates in the presence of noise and

sub-optimal acquisition geometries. For isotropic elastic media the methodology es-

timates three independent attributes. Various quality controls are developed and

illustrated on both synthetic and real data. These quality controls help the explo-

rationist evaluate the reliability and the information content actually in the AVO

attributes. For noisy data, the constraints dominate the solution, particularly the

density estimate, providing little independent information.

In order to obtain reliable density results, large o¤sets are required. Incorpo-

rating these large o¤sets introduces its own problems, including NMO stretch and

o¤set-dependent tuning. These distortions and their e¤ects are described and then

several methods for dealing with them are developed and demonstrated, including

a method to do stretch-free NMO and AVO waveform inversion. The results of

the AVO waveform inversion may be output in terms of elastic parameters or their

perturbations.

Throughout this work it is assumed that the earth is composed of a series of �at,

homogenous, elastic, isotropic layers. The assumption of horizontal layers, and lat-

erally invariant velocities may be relaxed somewhat if the data are preconditioned by

prestack migration. Only compressional wave re�ectivity is considered. Transmis-

sion losses, converted waves, and multiples are not incorporated in this model and so

must be addressed through prior processing.

Both AVO and AVO waveform inversion are a subset and simple forms of elastic

inversion. In its most general form elastic inversion incorporates all multiples, modes
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of propagation including shear and converted waves, the re�ectivity model based on a

propagator matrix methods (Kennett, 1984) or equivalently the Zoeppritz equations,

and makes use of both the dynamic and kinematic information in the seismic data.

The model is nonlinear and the solution space non-unique. This non-uniqueness is

a result of the band-limited nature of the seismic data and the ill-conditioned nature

of AVO problem (Debski and Tarantola, 1995). Further complicating the analysis

is the fact that both the re�ectivity and traveltime inversion problems are largely

decoupled (Claerbout, 1986) and non-unique (Spagnolini, 1994). Elastic inversion is

typically solved using nonlinear inversion techniques. Examples of elastic inversion

include Tarantola (1986), Crase et al. (1990), Sen and Sto¤a (1995), and Gouveia

and Scales (1998). The latter two techniques solve the problem recursively in depth

and are based on propagator matrix theory that assumes the velocity structure of the

earth varies only in the vertical direction.

Despite the maturity of these papers (Tarantola, 1986; Sto¤a, 1995; Gouveia and

Scales, 1998), and advances in computing power over recent years, elastic inversion

is still not commercialized on a wide basis. This is partly due to the wide scope

of problems being addressed by these algorithms and the complications this entails.

Because of this, various authors have tried to simplify and solve the inversion as a

series of smaller, separate, and easier problems with more approximations. Often this

requires that the seismic data be preprocessed to satisfy the assumptions of the algo-

rithm. The results are easier to quality control, with the processor having a chance

to adjust parameters before going on to the next step. This approach is less of a

black box. For example, Carazzone and Srnka (1993) simplify the inversion problem

by ignoring converted waves, allowing them to ignore registration issues between the

P-wave and S-wave re�ectors. Grion et al. (1998) ignore multiples and converted

waves, but still perform a joint traveltime and re�ectivity inversion. Simmons and

Backus (1996) perform AVO waveform inversion using only the re�ectivity informa-

tion, having explicitly de�ned the traveltime relationships. Similarly, Buland and

Omre (2003) perform AVO waveform inversion on NMO corrected gathers using a

linearized approximation. AVO inversion (Wiggins et al., 1983; Smith and Gidlow,

1987; and Lortzer and Berkhout, 1993) ignores the band-limited nature of the seismic

data and is performed on NMO corrected or prestack migrated gathers. The result-

ing band-limited re�ectivity estimates may be inverted to obtain their related elastic

parameters using poststack impedance inversion (Lindseth, 1979; Oldenburg et al.,
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1983; and van Riel and Berkhout, 1985). AVO and poststack impedance inversion

are the most common methods for performing elastic inversion in the geophysical

industry today.

The ultimate objective of the explorationist is to determine rock and �uid prop-

erties. Elastic parameter and density estimates are an intermediate step towards

obtaining rock and �uid properties; a secondary inversion is required to get from

elastic and density to rock and �uid properties. Discussing this secondary inversion

in detail is beyond the scope of this thesis. Interested readers are referred to work

by Avseth (2000), Takahashi (2000), and Loures and Moraes (2002) to name but a

few. The major issues with this estimation problem are quite di¤erent than those

of the elastic inversion problem, hence it is best to treat this second inversion as a

separate problem. The models used to map the elastic parameters to rock and �uid

properties are based on a wide range of theoretical and empirical models (Mavko et

al., 1998) that must be used in their proper geological context. Since these rela-

tionships are empirical, or in the case of the theoretical models, highly idealized, the

role of theoretical error needs to considered in the accuracy of the estimates. There

is also a major issue with nonuniqueness since the number of rock and �uid proper-

ties that control a reservoir�s elastic parameters vastly exceed the number of elastic

parameters estimated by the AVO inversion. In order to make the problem better

posed, certain simplifying assumptions based on the geologic context must be made.

Further, complicating the analysis is the fact there are scale issues due to the di¤erent

frequency ranges used to measure the core, well, and seismic data and e¤ective media

concepts must be used. Despite the fact this thesis does not examine the rock prop-

erty inversion in any detail, certain basic relationships and interpretation strategies

are brie�y reviewed in this chapter, in order to give the reader the basic tools to be

able to judge how well the elastic estimates describe the reservoir and what addi-

tional information they provide over a conventional interpretation. Further, geologic

information, such as well logs, may be used to help constrain the elastic inversion.

With this in mind, this chapter reviews a number of basic relationships linking the

rock and seismic properties.

This chapter reviews and lays the theoretical foundation for the rest of the thesis.

The chapter starts by reviewing the Zoeppritz equations and showing how these are

the basis of AVO. Further, it is shown that AVO inversion is a simpli�ed form of elastic

inversion. A linearized approximation of the Zoeppritz equations is then introduced
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Figure 1.1: Re�ected and transmitted rays for an incident P-wave on an interface
between two elastic isotropic halfspaces.

and justi�ed. The assumptions behind the Zoeppritz equations are idealizations and

as such preprocessing must be done to the seismic data to attempt to satisfy these

assumptions. These assumptions and processes are described in the next section.

Then several empirical rock property relationships and interpretation methodologies

are described, illustrated by several examples. The chapter closes by summarizing

the contributions of this thesis to AVO inversion.

1.2 AVO theory

1.2.1 Zoeppritz equations

For an isolated interface the Zoeppritz equations (Aki and Richards, 1980) pre-

dict that the re�ected amplitude changes as a function of angle of incidence. This

is the basis of AVO (Amplitude Variations with O¤set) or more properly AVA (Am-

plitude Variations with Angle). Based on how the amplitude changes as a function

of angle, various inferences about the elastic parameters may be made. The Zoep-

pritz equations are derived for the idealized situation of two half-spaces in welded

contact: In this thesis it is assumed that these half-spaces are elastic and in particu-

lar isotropic but this is not a necessary assumption. See for example, Daley and Hron
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(1977), Thomsen (1988), Ruger (2002) and Tsvankin (2001) for AVO relationships

for polar anisotropy and beyond. Isotropy is assumed in this thesis since it leads to

a linearized AVO inversion which is overdetermined, which is not the case for VTI

anisotropy. Section 1.3 discusses in greater detail some of the other assumptions

that must be made, and the preconditioning that must be done to the seismic data,

in order to apply the Zoeppritz equations for AVO analysis.

The upper and lower half-space are parameterized by their density, P-wave and

S-wave velocities �; �; and � respectively, with the subscript 1 referring to the upper

half-space and subscript 2 the lower half-space. For an incident downgoing plane

P- or SV-wave upon an interface, the Zoeppritz equations predict that there will be

two re�ected upgoing plane waves and two downgoing plane waves (Figure 1.1). For

P-SV waves, Aki and Richards (1980) write the Zoeppritz equations in matrix form

as 266664
�P1 �P1
�P1 �S1
�P1 �P2
�P1 �S2

�S1 �P1
�S1 �S1
�S1 �P2
�S1 �S2

�P2 �P1
�P2 �S1
�P2 �P2
�P2 �S2

�S2 �P1
�S2 �S1
�S2 �P2
�S2 �S2

377775 =M�1N; (1.1)

where

M =

266664
��1p �

p
1� p2�21 �2p

p
1� p2�22p

1� p2�21 ��1p
p
1� p2�22 ��2p

2�1�
2
1p
p
1� p2�21 �1�1

�
1� 2p2�21

�
2�2�

2
2p
p
1� p2�22 �2�2

�
1� 2p2�22

�
��1�1

�
1� 2�21p2

�
2�1�

2
1p
p
1� p2�21 �2�2

�
1� 2�22p2

�
�2�2�22p

p
1� p2�22

377775 ;
(1.2)

and

N =

266664
�1p

p
1� p2�21 ��2p �

p
1� p2�22p

1� p2�21 ��1p
p
1� p2�22 ��2p

2�1�
2
1p
p
1� p2�21 �1�1

�
1� 2�21p2

�
2�2�

2
2p
p
1� p2�22 �2�2

�
1� 2�22p2

�
�1�1

�
1� 2�21p2

�
�2�1�21p

p
1� p2�21 ��2�2

�
1� 2�22p2

�
2�2�

2
2p
p
1� p2�22

377775 :
(1.3)

The notation for the matrix in equation (1.1) is quite general allowing for both

upgoing and downgoing incident P- and SV- waves. The letter indicates whether it

is a P-wave or SV-wave, with the accent mark indicating whether it is an upgoing

wave (e.g. �P1) or a downgoing wave (e.g. �P1), while the subscript indicates which
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layer the wave is traveling in. So, for example, �P1 �P1 is the re�ected relative amplitude

of the upgoing P-wave from an incident downgoing P-wave in layer 1 while �S1 �S2 is

the transmitted downgoing SV-wave traveling in layer 2 from an incident downgoing

SV-wave in layer 1. The re�ection and transmission coe¢ cients are functions of the

horizontal slowness p, and the layer properties.

As indicated in the introduction, this thesis only considers �P �P re�ections. Both
�P �S and �S �S AVO inversion are conceptually similar to �P �P AVO inversion. The

interested reader is referred to Lortzer and Berkhout (1993), and Gray (2003) for case

histories demonstrating converted wave �P �S AVO. Larsen et al. (1999) demonstrate

a joint inversion for �P �P and �P �S data. Shear sources and �S �S AVO are generally not

considered due to the poor signal-to-noise ratio of the recorded shear wave data. The

AVO waveform inversion demonstrated in this thesis may be extended to perform �P �P

and �P �S joint inversion. In practice di¢ culties arise due to the problem of estimating

unique waveforms for both the �P �P and �P �S data, and event registration between the
�P �P and �P �S data.

If horizontal layering and lateral velocity invariance are assumed, it is possible

to generalize this analysis to many layers and interfaces using propagator matrices

(Claerbout, 1973; Ursin, 1983; and Kennett, 1984). The parameterization of these

layers is somewhat arbitrary in that the velocity is scale dependent. Due to the lim-

ited resolution of the seismic measurement, e¤ective media concepts (Backus, 1962)

must be used. These layers may be parameterized in terms of zero o¤set travel

time if it is assumed that each layer�s thickness has the constant two way travel time

(Goupillaud, 1961)

�t0 =
�zn
�effn

; (1.4)

where the thickness of the nth layer �zn is chosen appropriately to compensate for

changes in the e¤ective velocity �effn of the n
th layer. This may be done since �effn

changes slowly on a sample by sample basis.

Both Sen and Sto¤a (1995), and Gouveia and Scales (1998) use propagator ma-

trices as the starting point for their elastic inversions. This form includes the total

wave�eld response, including conversions, and all surface and intrabed multiples. In

addition, modi�cations are introduced to incorporate surface boundary conditions,

source, and receiver responses. The inversion problem is multi-modal and highly

nonlinear as a result. Kennett (1984) writes the propagator matrices in an inter-

esting form in which multiples be included or excluded. Using his formulation and
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neglecting multiples, conversions, and transmission losses the convolution model of

the earth may be derived as

d (h) =W �R (h) ; (1.5)

where W is the wavelet, h is o¤set, R (h) is the o¤set-dependent �P �P re�ectivity and

d (h) is the band-limited o¤set-dependent re�ectivity. Using the convolution model

and some other simplifying assumptions, the velocity and density may be solved using

linear inverse techniques (Buland and Omre, 2003).

It is important to note that throughout this discussion horizontal layering and

lateral velocity invariance has been assumed. Kennett actually performs the modeling

in the spatial frequency domain kx. To allow for lateral velocity variations, spatial

�nite di¤erences may be used. Crase et al. (1990) use this as the basis for their

elastic inversion. Further, Wapenaar and Berkhout (1989) use this as the basis for

their elastic migration discussed in Section 1.3.2. If multiples are ignored this leads

to the Kirchho¤ modeling integral (Bleistein et al., 2001, Appendix E).

1.2.2 Linear Approximation

Returning now to the discussion of a single interface, note that the solution of

the Zoeppritz equations (1.1) involves the inversion of a 4 � 4 matrix and a matrix
multiplication. The set of equations are nonlinear, and nonlinear inversion techniques

must be used to solve it. More importantly a null space exists because of the band-

limited nature of the seismic data making the estimate of the elastic parameters

underdetermined. This null space may be avoided by inverting for band-limited

elastic parameters or some derivative of them. A number of papers have simpli�ed

the Zoeppritz equations by linearizing them namely Bortfeld (1962), Richards and

Frasier (1976), Aki and Richards (1980). The linearization approximation requires

that the fractional perturbations in elastic parameters is small (for example ��
��
<< 1).

Aki and Richards published the linearized approximation for all the re�ection and

transmission coe¢ cients shown in matrix (1.1). The �P �P angle-dependent re�ectivity

R (�)

R(�) =
1

2

�
1� 4�2 sin2 ��

� ��
��
+
1

2
sec2 ��

��

��
� 4�2 sin2 ������

; (1.6)

is parameterized in terms of ��, ��,��,�; ��; the average P-wave velocity, S-wave velocity,

density, ��=�� ratio, and angle of incidence across the interface respectively. Simi-

larly, ��, ��, �� are the change in P-wave velocity, S-wave velocity and density
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across the interface. This thesis refers to these fractional changes in parameters as

re�ectivity attributes or sometimes re�ectivity for conciseness. These have the same

mathematical form as P-wave and S-wave impedance re�ectivity but not the same

physical signi�cance. For example, the P-wave velocity, S-wave velocity and density

re�ectivity are de�ned as

R� =
�2 � �1
�2 + �1

=
1

2

��

��
; (1.7)

R� =
�2 � �1
�2 + �1

=
1

2

��
��
; (1.8)

and

Rd =
�2 � �1
�2 + �1

=
1

2

��

��
; (1.9)

respectively. In the density re�ectivity symbol the subscript d is used rather than

� since it is easy to confuse � with p which will later be used to de�ne P-wave

impedance re�ectivity. Ruger (2002) shows a nice derivation for equation (1.6) for

the more complex case of VTI media where the isotropic case is a simpli�cation.

In order to linearize the problem it is assumed that � and the average angle-of-

incidence to o¤set mapping is known a priori. This information is not always known

with great certainty. This next two sections describe how this information may be

supplied to the inversion. Later, Chapter 4 analyzes the in�uence of error in these

parameters on the AVO inversion.

Angle-to-o¤set mapping

The linearized AVO approximation (1.6) is expressed in terms of average angle

of incidence �� rather than o¤set. The data are recorded as a function of o¤set so

a mapping must be found to relate o¤set to average angle of incidence. As will be

shown in Section 1.3.2, certain prestack migrations implicitly perform this mapping.

This is the preferred methodology for structurally complex geology. However, if the

data are not prestack migrated or if the output of migration is in the o¤set domain

then this mapping must be still be performed.

If it is assumed that the earth is composed of a series of �at, homogenous, isotropic

layers, then there are a number of numerically e¢ cient methods to calculate the

relationship between o¤set and the angle of incidence. Two approaches are discussed

in this section, one is based on ray tracing while the other is a data driven approach

following Walden (1991). Both these approaches require, at a minimum, that the
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P-wave velocity �n is known a priori. This velocity �eld may be constructed from

local well control or travel time inversions from the seismic data. Because of the

limited resolution of travel time inversion and the sparse nature of well control, a

smooth velocity background model is typically used for this mapping. It is shown

in Chapter 4 that it is su¢ cient to provide a smooth background velocity �back for

the ray tracing as long as it follows the running average of �n: Using a smooth

background has a certain theoretical appeal in that ray tracing is based upon a long

wave-length approximation (Bleistein et al. 2001). From a practical standpoint,

rapid variations in the velocity �eld �i can cause rays to be refracted at or beyond

the critical angle of refraction, making the ray tracing algorithm unstable.

Classical Ray Theory approach The �rst method used in this thesis follows the

classical ray theory approach (Aki and Richards, 2002). The approach makes use of

two relationships, the �rst of which calculates the two-way travel time �N ; the time

taken for a primary P-wave to travel from the surface to the N th layer and back again

along the ray path parameterized by the horizontal slowness, p; as

�N (p) = 2
NX
n=1

�zn
�n

1p
1� �2np

2
; (1.10)

where �zn is the layer thickness, and �n is the P-wave velocity of the nth layer. The

second relationship calculates the horizontal distance traveled (o¤set) hN for this ray

parameter p as

hN (p) = 2
NX
n=1

p�n�znp
1� �2np

2
: (1.11)

Note, the �rst relationship is not required to map the o¤sets to angle of incidence,

but is useful in generating the travel times for forward modeling. In deriving these

relationships CDP and �at layer geometry is assumed so that the o¤set is twice the

mid point and the two-way travel time is twice the traveltime to layer n.

If layers are parameterized so that they result in a constant time sample �t =

�zn=�n then the algorithm may be parameterized either with respect to layer number

n or two way zero o¤set travel time t0n = n�t: The output of the algorithm is

parameterized in terms of K regularly sampled o¤sets, with the user de�ning the

minimum o¤set h1 and maximum o¤set hK .

The algorithm then consists of calculating the o¤set and traveltime for a series of
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regularly sampled p values, so that if J is the number of o¤sets, then pj (1 � j � J)

,sampled from p1 = 0 to p = pJ where pJ = 1
�min

; and �min is the minimum layer

velocity. Choosing pmax =
1

�min
implies that some rays are refracted at or beyond

the critical angle of refraction. To address this, the ray is de�ned to be horizontal at

the interface for which p becomes imaginary. Equations (1.10) and (1.11) are used

to construct the two two-dimension arrays h (t0n ; pj) and � (t0n ; pj). Then, these

arrays are then interpolated and reordered so that functional dependence is changed

to p (t0n ; hk) and � (t0n ; hk). The angle of incidence may then be calculated using

Snell�s law

p =
sin �

�n
: (1.12)

This approach was used to generate the forward models in this thesis as well as

calculate the angle of incidence for the majority of AVO inversions shown. The major

weakness of this approach is that the results are dependent on overburden velocities.

If there are errors in the overburden velocity model or unaccounted static shifts exist,

perhaps due to elevations statics not being properly accounted for, signi�cant errors

may be introduced into the mapping.

Walden approach to ray tracing The second approach used in this thesis is

data driven. The horizontal slowness may be calculated from the stacking velocity

and then subsequently to angle of incidence using Snell�s law (Walden, 1991).

Two-term NMO parameterization The two-term NMO equation (Taner and

Koehler, 1969) calculates the two-way travel time �

� 2 = t20 +
h2

V 2
stak

; (1.13)

at o¤set h and is parameterized in terms of the stacking velocity Vstak and zero o¤set

two-way travel time t0. The horizontal slowness is the spatial derivative of equation

(1.13)

p =
d�

dh
=

h

V 2
s

r�
h2

V 2stak
+ t2o

� = h

V 2
stak�

: (1.14)



12

Once again Snell�s law (equation 1.12) may be used to convert to angle of incidence

sin � =
�h

V 2
stak�

: (1.15)

Three-term NMO parameterization In areas with signi�cant vertical velocity

heterogeneity higher order terms are signi�cant and the two term formulation is not

as accurate as the classical ray tracing approach. This is most problematic for large

o¤sets and angles. For large o¤sets, calculating the horizontal slowness based on a

higher order approximation (Taner and Koehler, 1969; de Bazelaire, 1990; Thore et

al. 1994; Castle, 1994; Alkhalifah and Tsvankin, 1995) is more appropriate. This

thesis uses the Castle (1994) shifted hyperbola approach

� � � s +

r
� 20 +

h2

v2
; (1.16)

because of its accuracy and the fact it only assumes isotropic layering. This simpli�es

future theoretical developments. The approach is parameterized in terms of the time

variant static shift

� s = t0

�
1� 1

S

�
; (1.17)

and the dimensionless shifting parameter

S � �4
�22
; (1.18)

where time weighted moments of velocity distribution are given by

�j =

PN
k=1�t0k�

j
kPN

k=1�t0k
: (1.19)

Note that �2 = V 2
rms: in addition, the parameters � 0 and v are de�ned as

� 0 =

�
t0
S

�
; (1.20)

and

v2 = S�2 = SV 2
rms: (1.21)
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The horizontal slowness calculated from the spatial derivative is

p =
d�

dh
=

h

(� � � s) v2
: (1.22)

Once again Snell�s law (equation 1.12) may be used to convert to angle of incidence

sin � =
�h

(� � � s) v2
: (1.23)

Note that if there is no vertical velocity heterogeneity (S = 1); then the two-term

and three-term results are equivalent.

The advantage of this approach is that it is data driven. Stacking velocities may

be picked with a high degree of accuracy. The background velocity is still required

to calculate the angle of incidence, but only errors associated with the analysis time

in�uence the o¤set-to-angle mapping error unlike the classical ray tracing approach.

Background �=� ratio

In addition to the o¤set-to-angle mapping, the ratio � must be de�ned in the linear

operator. This may be constructed from local well control or from some empirical

relationship such as the mudrock relationship. In order to map the o¤set to angle a

background P-wave velocity model was constructed. The mudrock relationship that

is introduced later in this chapter (equation 1.34) may be modi�ed to estimate 

 � 1

m

�
1� b

�

�
; (1.24)

from the P-wave velocity � and the slope m and intercept terms b: These last two

parameters are described in Section 1.4.1. Chapter 4 explores the impact of � errors

on the AVO inversion.
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1.2.3 AVO Inversion

Given �; the relationship between o¤set and angle-of-incidence, equation (1.6)

may be written in matrix notation for M o¤sets as2664
R(�� (h1))

...

R(�� (hM))

3775 =
2664
sec2 ��1 �82 sin21 ��

�
1� 4�2 sin2 ��1

�
...

...
...

sec2 ��M �82 sin2 ��M
�
1� 4�2 sin2 ��M

�
3775
264 R�

R�

Rd

375 : (1.25)

Including random noise n in the linear model, equation (1.25) may be written suc-

cinctly as

Gx = d+ n; (1.26)

where G is the linear operator, x the unknown parameter vector and d the input

data vector (o¤set-dependent re�ectivity). The parameter vector is composed of

the P-wave and S-wave velocity and density re�ectivity attributes. The matrix G

is completely determined by the acquisition geometry and the background velocity

�elds.

If there are more than three unique o¤sets and the noise is assumed to be uniform,

Gaussian, and uncorrelated, then equation (1.26) may be solved by least squares

(Menke, 1984)

x =
�
GTG

��1
GTd: (1.27)

Smith and Gidlow (1987) made the observation that this operation is equivalent

to applying a series of o¤set-dependent weights to the data and then summing the

weighted data. These weights are completely de�ned by the acquisition geometry

and the background velocity �elds so they may be precalculated. Since this weighted

summation is a linear process, the least squares inversion is also linear.

The re�ectivity solution provided by equation (1.27) is only for one interface.

For many interfaces, the inversion must be performed for each interface, thus for N

interfaces the inversion is performed N times. If the seismic data are full-spectrum

then the number of layers can be taken to be the number of time samples. Up to

now, it has been ignored that the seismic data are the result of a convolution with

some sort of source wavelet. Provided that the wavelet does not change as a function

of o¤set, the order of the operators does not matter, since both the convolution and

the inversion are themselves linear processes. The inversion may be thought of as
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being performed on full spectrum re�ectivity and then convolving the result with the

source wavelet. This results in three band-limited re�ectivity attribute time series.

1.2.4 Impedance inversion

The output of the AVO inversion is in terms of velocity and density re�ectiv-

ity. These may be written in terms of P-wave and S-wave impedance re�ectivities

(Appendix B)

Rp = R� +Rd; (1.28)

and

Rs = R� +Rd; (1.29)

respectively. Peterson et al. (1955) noted that for small re�ection coe¢ cients inte-

grating the P-wave impedance re�ectivity

IpN � Ip0 exp

(
2

NX
n=1

Rpn

)
; (1.30)

it is possible to calculate the P-wave impedance Ip: The calculation is actually more

complex since the seismic data and impedance re�ectivity estimate are both band-

limited. Typically, both the low and high frequencies are missing. The lack of high

frequencies limit the resolution of the inversion. The low frequencies are actually more

problematic since they de�ne the background trend of the inversion. Lindseth (1979),

Oldenburg et al. (1983), van Riel and Berkhout (1985), Debeye and van Riel (1990),

and Sacchi (1997) developed inversion algorithms that invert band-limited re�ectivity

data to impedance. The major di¤erence between the methods listed is how they

deal with the non-uniqueness in the problem either through the parameterization of

the problem, their constraints, or solution method. Note, other re�ectivity attributes

may calculate their elastic parameter counterparts in a similar fashion.

Having estimated the density, P-wave and S-wave impedances, other elastic pa-

rameters may be calculated using various transforms found in the literature. One

popular transform (Goodway et al. 1997) transforms the estimates to �� and ��

using

�� = I2p � 2I2s ; (1.31)
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and

�� = I2s : (1.32)

Upon inverting the re�ectivity to elastic parameters, the seismically derived results

may be compared to the well control for analysis and comparison.

Before leaving this section it is important to point out that both the AVO and

poststack impedance inversion problems may be posed as linear problems. The

two inversions have di¤erent issues, the AVO problem is overdetermined, though ill-

conditioned and its major issue is how to deal with noise. The poststack impedance

inversion problem is underdetermined with its major issue of how to deal with the

missing data. The two inversion problems are linear and may be combined; this is

done in Chapter 6. This means the combined problem is also underdetermined. Due

to the band-limited nature of the seismic data, all elastic inversions are underdeter-

mined and therefore their solutions will be non-unique.

1.2.5 Nonlinear inversion

The Zoeppritz equations may also be approximated by a nonlinear equation.

Ursenbach (2002) shows an approximation including all second order terms. In

this paper he also includes an error analysis related to ignoring these higher order

terms. It turns out that most of the error is related to ignoring the 2nd order S-wave

velocity re�ectivity term. In a subsequent paper, Ursenbach (2004) shows an e¢ cient

method to include this term while leaving the other terms linear.

In this thesis I choose not to use a higher order approximation. I felt that if higher

order terms were to be included, then �rst order multiples and converted waves should

also be included. They both introduce error of the same order. Simmons and Backus

(1994) show a modeling study where they compare how well various approximations

model the actual data. The modeling includes both the converted waves and intrabed

multiples. For the interface they analyzed they found that the Aki and Richards

approximation equation (1.6) better matched the observed data than the Zoeppritz

equations due to interference from an intrabed multiple and a converted wave.
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1.3 Seismic data preconditioning

1.3.1 Factors that a¤ect AVO

Sheri¤ (1975) lists several broad categories of factors which a¤ect amplitude vari-

ations with o¤set including data collection, wave propagation e¤ects, data processing

and geologic factors. The geologic factors and their corresponding elastic and den-

sity parameters are the ultimate objective of AVO inversion. In order to infer these

parameters through AVO, the seismic data must be properly preconditioned so that

the assumptions made in the previous section are met. Failure to do so introduces

both systematic and random error into the data. Systematic error is particularly

problematic since it is di¢ cult to detect and leads to biased estimates. In this sec-

tion, the various factors a¤ecting AVO unrelated to the geology are �rst summarized

and then a processing sequence is outlined to address these. This type of processing

is generally called controlled amplitude processing (Soroka et al., 2002). Finally,

an example is shown illustrating the importance of processing the data following a

controlled amplitude processing sequence.

As outlined above, the factors a¤ecting AVO unrelated to the geology include data

collection, wave propagation e¤ects, and data processing artifacts. In the data col-

lection category, instrumentation, noise, and acquisition geometry all in�uence AVO.

Further, source and receiver directionality, coupling, and array e¤ects also in�uence

the amplitude variations with o¤set and must be addressed prior to, or as part of

the AVO inversion. The amplitude variations with o¤set are also in�uenced due

to wave propagation factors such as focusing due to re�ector curvature or lateral

velocity heterogeneity, spreading losses, transmission losses, anelastic attenuation,

surface boundary e¤ects, interference from converted waves, intrabed, pegleg, and

surface-multiple re�ections. To address these factors the seismic data must properly

conditioned or processed to meet the assumptions inherent in the AVO model. Un-

fortunately, processing artifacts can also distort the AVO response. These include

NMO stretch, residual NMO, and artifacts introduced by spatial �lters used to sup-

press noise, In addition, trace to trace operations, such as scaling or deconvolution,

can modify the AVO response.
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1.3.2 Migration

Ideally, migration is performed on the seismic data to address wave propagation

issues. This is the approach of Berkhout (1997), and Wapenaar and Berkhout (1989),

where the elastic inversion is treated as a two-step inversion. The �rst step removes

the e¤ects of wave propagation to obtain the angle-dependent re�ectivity which the

second step uses to estimate the elastic parameters. Wave propagation e¤ects such

as surface boundary conditions, directivity, source and receiver ghosts, and wave

propagation between layers (including multiples) can be written as a series of linear

operators. These can then be removed either using the inverse or conjugate operator

as part of the migration. These corrections change the AVO behavior of the data.

Only after these corrections may AVO be used to infer the elastic properties of the

rock. For the case of horizontal layers, the corrections are outlined in Appendix A.

Note that these corrections are a function of � (x; y; z), so that the corrections vary as

a function of spatial position. Failure to account for this may introduce systematic

errors into the AVO estimates which vary spatially. For the more complex case of

arbitrary re�ector geometry these corrections become increasingly complex. The

issue of how to perform true-amplitude migration in complex media is an area of

active research (Bleistein et al., 2001).

Just as importantly, migration improves the lateral resolution of the seismic data,

for example, the lateral extent of a bright or dim spot and the positioning of the

faults. Prestack migration properly maps the energy originating from interfering

di¤ractions and collapses it. These interfering events would otherwise be treated

as noise by the AVO inversion. Migration helps with dip related issues of re�ector

point dispersal, dip-dependent NMO, and the calculation of the angle of incidence.

The output of the migration may be in terms of horizontal slowness p (Wapenaar

and Berkhout, 1989; Rickett and Sava, 2001; and Brandsberg-Dahl et al., 2003) thus

implicitly mapping the data from o¤set to angle as part of migration removing the

necessity of ray tracing as part of the AVO inversion.

Q-compensation and multiples can also be formulated as part of migration but

these are typically addressed prior to migration as preprocessing steps for simplic-

ity and quality control reasons. Q-compensation implicitly gains the data, alters

the wavelet in a time and frequency-dependent fashion and must be quality con-

trolled along with other wavelet processing procedures. This is discussed further in

the next section. Surface-multiple attenuation although formulated using linear mi-
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gration operators (Verschuur et al., 1992) is an adaptive process and so is also best

quality controlled as a separate processing step. Further, migration makes certain

assumptions about the seismic data requiring additional pre-conditioning. For AVO

inversion this e¤ectively means the seismic data are processed with migration being

one element in the processing sequence. This is the approach advocated by Mosher

et al. (1996).

This approach works well for uniform acquisition geometry, such as marine record-

ing. It works less well when the geometry changes in an irregular and sparse fashion

such as found in land seismic data acquisition. Both Brandsberg-Dahl et al. (2003),

and Ronen and Liner (2000) note that the acquisition footprint may create AVO dis-

tortions. In addition, seismic data are recorded with �nite o¤set leading to amplitude

distortions in the transform to horizontal slowness space p, which distorts the AVO.

These distortions may be addressed by performing least squares migration instead

(Kuehl and Sacchi, 2001). However this is extremely computationally expensive and

still an area of active research. So in practice, for land data with horizontal layers,

AVO is often performed on NMO corrected data (Mazzotti et al., 1990; Spratt et al.,

1993; Soroka et al., 2002; and Shen et al., 2002). Prestack migration is left out of

the land processing sequence as it causes more problems than it solves. In this case,

corrections for wave propagation must be done explicitly as part of the processing

sequence.

1.3.3 Controlled amplitude processing

The objectives of creating a good stacked section (relative amplitude processing)

and conditioning the gathers for AVO (controlled amplitude processing) are somewhat

at odds. The typical objective in creating poststack data is to maximize the frequency

bandwidth and signal-to-noise ratio for interpretation on a workstation. The prestack

data may be scaled without the concern of preserving the AVO so that trace balancing

or an AGC may be used. This is particularly useful since noisy traces may be scaled

down so they contribute less to the stack. Further, poststack deconvolution may be

applied to increase the bandwidth of the data. Poststack deconvolution implicitly

applies a trace to trace scalar since the operator is scaled arbitrarily. Finally, spatial

�lters may also be used to attenuate coherent and random noise, again potentially

introducing edge e¤ects that alter the AVO. To address these concerns, data that

might undergo AVO analysis may be dual streamed. This consists of processing the
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data up to a certain stage in a manner suitable for both AVO and poststack analysis.

At this point the data are dual streamed. In one �ow the data are scaled in manner

suitable for AVO. In the other, the prestack data may be scaled or spatially �ltered

so as to achieve the best looking stacked section. This dual streaming reduces the

costs of performing the AVO analysis so that reprocessing is not required. This is

the processing sequence described below and shown in Figure 1.2. Since most of the

examples shown in this thesis are land seismic data, the land processing sequence is

described in detail. Subsequent to this, the modi�cations necessary for marine data

are described.

Land processing sequence

The �rst step in this sequence is to remove the shots and traces that are contam-

inated with too much noise. Next, the data are prepared for wavelet processing and

scaling. To address source and receiver coupling issues, surface consistent scaling

is applied to the data (Taner and Koehler, 1981). Surface consistent deconvolution

(Cambois and Sto¤a, 1992; and Cary and Lorentz, 1993) may then be performed to

remove the source and receiver signatures and the earth �lter or intrabed multiples.

Prior to the design and application of the deconvolution, the seismic data must be

made stationary. This may be achieved by performing some type of removable gain

correction such as an exponential or tn correction. More complex gain functions

necessary for AVO analysis are performed later in the �ow if the interpreter chooses

to go to the expense of doing an AVO analysis. In addition, coherent noise such as

ground roll may be removed to improve the operator design. If the �lter introduces

AVO distortions, this may be done in an o¤-line fashion. That is, only the data going

into the deconvolution design is �ltered. The seismic data on which the operator is

applied is not �ltered.

If the earth is anelastic, the stationarity assumption is not justi�ed. In the as-

sumptions outlined in Section 1.1, the earth is assumed to be elastic. This is generally

not the case, so attenuation and dispersion must be addressed. This may be done

as part of migration, as a separate processing step or as part of the AVO inversion.

Generally, this is done as a separate processing step (Hargreaves and Calvert, 1991),

prior to the deconvolution since Q-compensation alters the source wavelet and scales

the data in a time and o¤set-dependent manner. The Q-compensation may be used

to address both the intrinsic and e¤ective attenuation. It is di¢ cult to separate
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Figure 1.2: Controlled amplitude land processing �ow. Steps in red are used to
prepare gathers for AVO. Steps in blue are used to create the optimal migrated
stack. Common processing steps are in black while optional steps are shown with
dashes.
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the in�uence of attenuation e¤ects and the transmission e¤ects of interbed multiples

(O�Doherty and Anstey, 1971). Intrinsic attenuation is due to mechanisms such

as squirt-�ow (Mavko and Jizba, 1991). E¤ective attenuation is due to scattering

or the combined e¤ects of multiples and transmission losses (O�Doherty and Anstey,

1971). Shapiro and Hubral (1999) use statistical models to correct for e¤ective atten-

uation. For hetrogeneous intrinsic Q models, the Zoeppritz equations are modi�ed,

necessitating the use of another linearized approximation (Ursin and Stovas, 2002).

After wavelet processing, the velocity and statics models must be created and

applied. This is typically done in a bootstrap fashion. For time processing, RMS

velocities are needed, however, interval velocities are required for the AVO inversion.

The interval velocity model may be constructed from geostatistical methods, RMS

velocities or some type of traveltime inversion such as traveltime tomography. This

velocity model is low resolution and susceptible to error. To help stabilize this

process, interval velocities from nearby well control may be used to constrain this

model. If anisotropy is also present, this process becomes more complex, necessitating

reviewing the AVO approximations.

If long o¤sets relative to the target depth are to be used, higher order terms

and corrections are required (de Bazelaire, 1988; Castle, 1994; and Alkhalifah and

Tsvankin, 1995). This requires the construction of additional velocity �elds. Ignor-

ing these corrections may introduce residual NMO, degrading the subsequent AVO

inversion. As explained in the Section 1.2.3, AVO inversion is typically performed

one time sample at a time, so the moveout needs to be removed. The gathers may

be �attened either by performing NMO or prestack migration.

Before or after NMO, additional spatial �lters may be applied to attenuate mul-

tiples, converted waves and other forms of coherent noise not included in the AVO

data model. Care must be taken not to introduce AVO artifacts with these �lters.

For example, Marfurt et al. (1996) show that multiple attenuation using a parabolic

Radon transform introduce AVO artifacts. The actual AVO inversion is quite robust

and can tolerate some forms of coherent noise as will be shown in Chapter 8. If

the coherent noise is not dominant, it is often better to leave this noise in and let

the AVO inversion deal with it rather than �lter it and introduce systematic errors

(Downton and Mackidd, 1997).

At this point, the �ow becomes dual streamed. One �ow leads to a stacked

section unconcerned with preserving AVO relationships. The other prepares gathers
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for AVO inversion. At this point the gathers must be processed to remove the e¤ects

of wave propagation. This may be done either prestack migration of the gathers

or NMO correcting the gathers followed by a series of wave propagation corrections

(Appendix A). For the reasons listed in Section 1.3.2, the data in this thesis are

NMO corrected thus necessitating the application of wave propagation corrections.

Prior to their application, the removable gain function used to make the time series

stationary prior to the deconvolution must be removed. The geometrical spreading

(Ursin, 1990), array, angle-of-emergence, and surface boundary corrections (Spratt

et al., 1993) may then be applied. If applicable the correction for o¤set-dependent

transmission losses may also be included at this stage. These corrections assume

the earth is composed of a series of �at, homogeneous, isotropic layers. These gain

corrections modify the data in a time-dependent and o¤set-dependent fashion and

are a function of �(x; y; z): Lateral velocity changes in the near surface, or changes

in the water depth can introduce signi�cant AVO across the seismic survey.

After the application of all these corrections, residual o¤set-dependent corrections

may remain in the data. The data may be calibrated against walk away VSPs

or synthetic prestack models generated from nearby well control. A simple o¤set-

dependent scalar may be used to correct for discrepancies. Ross and Beale (1994)

call this process o¤set balancing.

Marine processing sequence

There are several signi�cant di¤erences between processing marine seismic data

and processing land seismic data. Surface-multiples are generally more problematic.

Generally, some type of surface-multiple attenuation, such as presented by Verschuur

et al. (1992), is run prior to the wavelet processing. Surface consistent processes do

not make sense, since the receivers are constantly moving. The surface consistent

scaling is modi�ed to become channel consistent scaling. Instead of surface consis-

tent deconvolution, designature deconvolution is performed. In terms of the wave

propagation corrections, hydrophones are omnidirectional so no angle of emergence

correction is needed. The surface boundary correction is modi�ed to account for

the source and receiver ghost. Typically, marine data acquisition is quite regular,

and the geologic objectives have a strong structural component to them, so prestack

migration is usually performed.
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Figure 1.3: Synthetic CMP seismic gather with correct scaling a) and after trace
balancing b).

1.3.4 Examples

As noted above, one of the major di¤erences between controlled amplitude process-

ing and relative amplitude processing is that the former allows for trace dependent

scaling. Trace scaling normalizes the RMS energy of the trace over some design win-

dow. After trace scaling, the amplitude variation with o¤set relationship is distorted.

Figure 1.3 shows a model gather from Downton et al. (2000) before and after trace

balancing. The AVO relationship is changed. This results in a systematic error in

AVO inversion parameter estimates.

Figure 1.4b shows the AVO inversion for S-wave impedance re�ectivity based on

the scaled gathers while Figure 1.4a shows the same based on the correctly scaled

gathers. Figure 1.4a is identical to the ideal S-wave impedance re�ectivity. Figure

1.4b shows the e¤ect of the trace balance on the estimate S-wave impedance re�ec-

tivity. The anomalies are still evident, but the background re�ectivities are severely

distorted. Note that a simple poststack or time variant scalar cannot correct this

distortion. For example, the regional re�ector at 1.58 seconds on the properly scaled

result is absent on the result with relative amplitude scaling. Figure 1.4b cannot be
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Figure 1.4: S-impedance re�ectivity estimate from AVO inversion of synthetic data
with correct scaling a) and trace balanced data b).

scaled to look the same as the correct result (Figure 1.4a).

Another example from Downton et al. (2000) shows a comparison of AVO re-

sults from relative amplitude and controlled amplitude processing. The seismic data

are from northeast British Columbia, Canada with the exploration target being the

Halfway sand at 0.79 seconds. The two �ows were processed a year apart with both

results being best e¤orts at their respective times. Figure 1.5, shows the S-wave

impedance re�ectivity estimated from the relative amplitude processing while Figure

1.6 shows the S-wave impedance re�ectivity estimated from the controlled amplitude

processing. Note the better continuity of events and signal-to-noise ratio of the

controlled amplitude processing. Testing showed most of the improvement was due

to using surface consistent scaling rather trace dependent scaling. Coherent noise

related to surface conditions unduly biased the trace scaling, introducing spatially

variant systematic errors. Further, the overall AVO trend was biased by trace scal-

ing further degrading the result. The prestack gathers are shown in Figure 1.7 and

1.8.

These two examples show the importance of controlled amplitude processing. To

get good results from AVO inversion, the input seismic data must be properly condi-
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Figure 1.5: S-wave impedance re�ectivity estimate for Halfway line based on relative
amplitude processing.

Figure 1.6: S-wave impedance re�ectivity estimate for Halfway line based on con-
trolled amplitude processing.
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Figure 1.7: Ostrander gathers generated from relative amplitude processing �ow for
Halfway line.

Figure 1.8: Ostrander gathers generated from controlled amplitude processing �ow
for Halfway line.
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tioned.

1.4 Seismic to rock and �uid property mapping

Having estimated the elastic properties, the next question is "what do these

mean?" Two broad methodologies exist to answer this question. The �rst, similar

to AVO inversion, estimates the rock and �uid properties from the elastic parameters

based on some type of theoretical model based on rock physics relationships. The

second broad category of methodologies involves using local core or well log data with

known relationships between the elastic parameters and the rock and �uid properties,

acting as a template for the interpretation of the seismic data and the resultant elastic

parameters. This may be done using the estimated elastic parameters, the band-

limited AVO re�ectivity attributes and prestack gathers. These two approaches, plus

some empirical relationships that may be used to constrain the AVO inversion are

reviewed in this section.

1.4.1 Mapping based on theoretical model

Mudrock Relationship

From rock physics studies Castagna et al. (1985) observed, for clastic rocks, that

the P-wave velocity � may be estimated from S-wave velocity � (and vice versa) using

the empirical mudrock relationship

� � 1:16� + 1360m= s: (1.33)

Greenberg and Castagna (1992) extended this to other lithologies including carbon-

ates. Figure 1.9 shows a crossplot for the brine-saturated clastic core measurements

made by Han (1986). Note the strong linear trend apparent in Figure 1.9 supporting

equation (1.33). Figure 1.10 shows the same data but with porosity as the color

overlay. Note that within each porosity unit there is a strong linear relationship

suggesting equation (1.33) has a more complex functional relationship. Figure 1.11

shows a subset of the data, but now with the percentage shale as the color overlay.

Han et al. (1986) suggested that the P-wave and S-wave velocity of clastic rocks are a

function of porosity and shale content. Eberhart-Phillips et al. (1989) further re�ned

the analysis and suggested that there is also minor dependence on e¤ective pressure.
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Figure 1.9: Crossplot of P-wave and S-wave velocity measurements for clastic rocks
(Han, 1986) with e¤ective pressure as color overlay.
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Figure 1.10: Crossplot of P-wave and S-wave velocity measurements for clastic rocks
(Han, 1986) with porosity as color overlay.
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Figure 1.11: Crossplot of P-wave and S-wave velocity measurements for clastic rocks
(Han, 1986) with volume of shale as color overlay.
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Figure 1.12: Crossplot of P-wave and S-wave velocity measurements for clastic rocks
(Han, 1986) for wet samples (blue) and dry samples (black).
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This suggests that mudrock relation is a function of all these parameters suggesting

that equation (1.33) be generalized to

� � m� + b; (1.34)

where the mudrock slope m and intercept b are locally calibrated over the target

interval.

Figure 1.12 shows the P-wave and S-wave velocity crossplot of core samples with

di¤erent �uids. The blue data points are brine saturated while the black data points

are dry. Under many circumstances, gas sand should behave in a similar fashion

to the dry data points. Note that the wet data points are shifted upwards along

the P-wave velocity axis compared to the dry data points. This is due to the �uid

sti¤ening the rock, increasing the incompressibility and the P-wave velocity while

largely una¤ecting the rock�s rigidity and S-wave velocity. The gas �lled sandstone

is more compressible than the brine �lled sandstone. The e¤ect is more pronounced

as the porosity increases. This e¤ect is the basis of several �uid detection schemes

used in AVO analysis.

Gardner Velocity-Density Relationship

Another relationship used in this thesis is the Gardner et al. (1974) relationship.

It is an empirical relationship linking the density and P-wave velocity. If the velocity

is expressed in the metric units km=s then the relation is

� = 1:741�0:25; (1.35)

while in the imperial units ft=s for velocity the expression is

� = 0:23�0:25: (1.36)

If the lithology is known this relation may further re�ned by writing it with lithology

dependent coe¢ cients

� = e�g: (1.37)

such as shown in Table 1.1 (Castagna et al., 1993). In general these coe¢ cients are

dependent on other factors, in addition to lithology, such as the local burial history.

Thus, if given the opportunity, it is best to calibrate these coe¢ cients using local well
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control.

Lithology e f � range (km=s)
Shale 1:75 0:265 1:5� 5:0
Sandstone 1:66 0:261 1:5� 6:0
Limestone 1:50 0:225 3:5� 6:4
Dolomite 1:74 0:252 4:5� 7:1
Anhydrite 2:19 0:160 4:6� 7:4

Table 1.1: Gardner coe¢ cients for common lithologies

1.4.2 Mapping based on template data

The second broad category of methodologies used to estimate rock and �uid prop-

erties from elastic properties involves using local core and/or well log data with known

relationships between the elastic parameters and the rock and �uid properties, to act

as a template. For example, well logs from two wells - one with gas, and one with

a brine sand - may be used to establish a template for how the elastic parameters

respond to changes in �uid content. Additional wells and reservoir zones may be

used to understand the in�uence of lithology, porosity, e¤ective pressure and depth on

the elastic parameters. Often the well control is insu¢ cient to adequately describe

the full range of desired rock and �uid properties so theoretical relationships are used

to help �ll in the gaps. For example, the Gassmann (1951) equation may be used to

understand the in�uence of di¤erent �uid saturations. Avseth (2000) and Takahashi

(2000) describe rock and �uid inversions based on this approach. Often this approach

is not implemented formally as an inversion. The core and well log data are used

as a template to interpret the seismic data in a subjective manner. This may be

done using the estimated elastic parameters (Goodway et al., 1997), the band-limited

AVO re�ectivity attributes (Verm and Hilterman, 1995; Castagna and Swan, 1997)

and prestack gathers (Ostrander, 1984; Rutherford and Williams, 1989).

Interpretation of elastic parameters

Interpreting the seismically derived parameter estimates as elastic parameters is

quite natural since the well and core data may be easily manipulated to be displayed

in this domain. Figure 1.13 shows the elastic parameters ��, �� crossplotted for a

Glauconite gas sand from the Blackfoot area in Alberta, Canada. Note the ability to
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Figure 1.13: Crossplot of Blackfoot well log data showing separation between brine
and gas �lled Glauconite sands.

discriminate between gas sands, wet sands, coals and shales in the crossplot space.

This can be used as a template to interpret the elastic parameters derived from the

seismic.

Recall from Section 1.2.4 that these parameters may be estimated by �rst per-

forming an AVO inversion and then a poststack impedance inversion. Figure 1.14

shows the estimated �� section for a seismic line through the Glauconite gas well to-

gether with its ��, �� crossplot. Using the well control as a template (Figure 1.13), a

polygon was picked on the seismic crossplot to highlight the same area on the section

correctly identifying the Glauconite gas sand.

Interpretation of prestack gathers

Alternatively, the prestack gathers may be interpreted. Template well logs may

be forward modeled to understand the seismic response of the di¤erent rock and �uid

properties. Figure 1.15a, from Downton et al. (2000) shows the brine �lled Bluesky

sand�s AVO response while Figure 1.15b shows the gas �lled gas sand AVO response.

For this case, the gas sand�s amplitude decreases as a function of o¤set even reverses

polarity at the far o¤sets. In contrast the brine �lled sand has constant AVO. The
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Figure 1.14: Estimate of lambda*rho section for Blackfoot seismic line crossing Glau-
conite gas well along with crossplotted seismic data. Note that yellow polygon on
crossplot is able to identify gas sand on section (shown with yellow squares).
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Figure 1.15: Synthetic gather showing wet sand response (a), gas sand response (b)
and actual seismic data from gas well (c). Note that this is a Class I gas sand
response.
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actual seismic data (Figure 1.15c) is compared to the modeled templates.

Rutherford and Williams (1989) systematized these responses by classifying AVO

gas sand responses into three classes. A Class I response occurs when the gas sand has

a higher impedance relative to the overlying medium. The peak amplitude decreases

as a function of o¤set with the potential of a polarity change at far o¤sets. Figure

1.15b is an example of a Class I reservoir. For the Class II response, the zero o¤set

response is close to zero. This occurs when impedance of the gas sand is close to

that of the overlying material. The amplitude may increase or decrease with o¤set.

The Class III response is what is most often associated with AVO. It occurs when

the gas sand has a lower impedance than the overlying material. For this case, the

amplitude is a bright trough at near o¤sets which gets brighter as a function of o¤set.

This is the response typically seen in low velocity clastics typical of unconsolidated

sands. More recently, the concept of a Class IV gas sand has been introduced to

classify a certain type of response seen in deeper Gulf Coast wells. In this case, the

trough is bright at near o¤sets and dims with o¤set.

Interpretation of band-limited re�ectivity data

Both of the preceding interpretation strategies have their shortcomings. Inter-

preting gathers for a large 3D volume is too time consuming. Inverting for elastic

parameters typically involves introducing a low frequency background trend which

can introduce systematic error. Interpreting AVO re�ectivity attributes avoids both

these shortcomings. However, these re�ectivity attributes are band-limited making

comparison to the well control more di¢ cult. Further, the re�ectivity attributes are

local perturbations and the interpretation must be with respect to some other layer.

For example, the re�ectivity attributes for a particular horizon are crossplotted and

then compared to well templates for that horizon. Rutherford and William�s classi-

�cation provides a framework for this type of interpretation and will be used in parts

of this thesis.

Fluid stack

Smith and Gidlow (1987) and Fatti et al. (1994) provide another methodology to

interpret re�ectivity data. Their starting point is the mudrock relationship. They

look for local perturbations from the mudrock trend and attribute them to changes in

�uid saturation, hence they call this the �uid stack. They reformulate the mudrock
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relationship (equation 1.34) in terms of re�ectivity to derive this. In water saturated

sediments equation (1.34) written in terms of re�ectivity is

R� = m�R�; (1.38)

where m and � are the mudrock slope and average �=� ratio across the interface

respectively. This follows from taking the di¤erential of equation (1.34) and then

dividing by the P-wave velocity. Equation (1.38) suggests that in clastics the S-

wave velocity re�ectivity is a scaled version of the P-wave velocity re�ectivity. This

scaling factor changes as a function of . This relation holds for brine �lled clastics.

However, if the �uid of the clastic changes, for example from a gas to brine such as

shown in Figure 1.12, then equation (1.38) no longer holds. The P-wave velocity

re�ectivity responds to the change in compressibility as a result of the change of

�uids and rock matrix. The rigidity responds to changes in the rock matrix only.

By subtracting a scaled version of the S-wave velocity re�ectivity from the P-wave

velocity re�ectivity, changes in the rock matrix cancel out leaving the di¤erence due

to changes in �uid content. Smith and Gidlow de�ned the di¤erence of the left and

right hand sides of equation (1.38) as the �uid stack

�F = R� �
1

m�
R�: (1.39)

The �uid stack is approximately zero for brine �lled rocks since the equality (equation

1.38) is honored and the S-wave velocity re�ectivity is just a scaled version of the P-

wave velocity re�ectivity. When the �uid changes the di¤erence is non-zero. Going

from a wet sand to a gas sand results in a negative response, while going from a gas

sand to a wet sand results in a positive response.

1.5 Outline of thesis

This introductory chapter reviewed the objectives, theoretical basis, data precon-

ditioning, and interpretation of AVO. In addition, certain rock physics relationships

were reviewed which are useful to help constrain the AVO inversion problem. Chap-

ter 2 explores the stability of the AVO inversion in the presence of random noise.

Using a Bayesian formulation, I develop several quality controls that allow an inter-

preter to judge the validity of the AVO estimates. These quality controls are tested
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and veri�ed on synthetic and real data.

Using these quality control displays, I show that for noise levels typical of most

seismic acquisition, the linearized three-term AVO inversion problem is unstable.

Chapter 2 reviews various methodologies in the literature used to help constrain or

stabilize the problem. In Chapter 3, I introduce a new methodology to constrain the

three-term AVO inversion problem using probabilistic constraints following a Bayesian

framework. In this methodology, the constraints dominate the solution when the

data are noisy or ill-conditioned due to the acquisition geometry. Conversely, if the

seismic data are adequate, the AVO inversion estimates are obtained primarily from

the seismic data, providing additional information about the geology independent

from the constraints. Again, quality controls are introduced to help the interpreter

understand the validity and usefulness of the results. The algorithm is demonstrated

on both synthetic and real data.

The uncertainty estimates demonstrated in both Chapter 2 and 3 are both some-

what overly optimistic. They only show how uncertainty in the data will a¤ect the

estimates. However, uncertainty also exists in the linear model that is used for the

AVO inversion, namely the �=� ratio and the mapping from o¤set to angle of inci-

dence. Chapter 4 explores errors associated with both of these parameters. For

each of these, the error may be separated into a low frequency background trend and

a high frequency error component. I show, provided that the low frequency back-

ground trend is accurate, the error in the AVO parameter estimates are negligible.

However, if errors in the background trend exist, there will be systematic errors in

the AVO estimates.

Chapter 5 examines the theoretical error introduced by NMO stretch and o¤set

dependent tuning. Analytic relationships are developed, extending the work of Dong

(1999), to predict how the error of the di¤erent Rutherford and Williams (1989) AVO

classes will behave. These predictions are tested and veri�ed using synthetic data.

I show that errors due to NMO stretch and o¤set dependent tuning are signi�cant

for Class III and IV gas sand anomalies where large o¤sets are used. Re�ectors

following the mudrock trend, Class I, and II anomalies are not signi�cantly a¤ected

by these distortions. Further, these distortions are insigni�cant if the maximum

angle of incidence used in the AVO inversion is less than 30 �.

In Chapter 6, I introduce a two-term AVO waveform inversion that incorporates

NMO stretch and o¤set dependent tuning. The output of this inversion may be
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in terms of re�ectivity or impedance. Similarities exist with the AVO waveform

inversion developed by Simmons and Backus (1996) since both algorithms incorporate

o¤set dependent tuning and NMO stretch. The Simmons and Backus algorithm uses

the actual Zoeppritz equations, while I use a linearized approximation. I prefer the

linearized approximation, since it is parameterized in terms of relative perturbations

(re�ectivity) which is important for the constraints and optimization method I employ.

I incorporate probabilistic constraints similar to that of Chapter 3. Simmons and

Backus (1996) do not constrain the problem, but do a coordinate transform to try

and achieve the same thing. I believe my constraint methodology is more rigorous.

Further, I believe my algorithm is superior to that of Buland and Omre (2003) in

that they do not incorporate NMO stretch and tuning. Like mine, their algorithm is

based on a linearized AVO approximation. They have some interesting constraints

describing the inter-relationship between di¤erent time samples which I would like

to investigate in the future. This algorithm is tested on synthetic data constructed

to highlight problems due to NMO stretch and o¤set dependent tuning. Real data

results are also shown.

In Chapter 7, the algorithm of the previous chapter is modi�ed to create a stretch-

free NMO algorithm. By performing stretch-free NMO the seismic data may be

inverted using traditional AVO techniques. Rather than including the NMO stretch

and o¤set dependent tuning in the AVO waveform inversion, the stretch-free NMO

preconditions the data so these distortions are addressed. The algorithm is demon-

strated and tested on both synthetic and real data. The AVO inversion results of

this are better than using NMO corrected gathers, but not as good as that of the

AVO waveform inversion.

In Chapter 8 the two-term AVO waveform inversion is extended to three terms.

Originally, the algorithm was developed using only two terms for stability concerns.

Probabilistic constraints similar to Chapter 3 and 6 are incorporated to help stabilize

the problem. In addition, long-tailed mis�t distributions are explored to help make

the inversion more robust in the presence of coherent noise. An example is shown,

demonstrating that the long-tailed mis�t distributions improve the AVO estimates in

the presence of coherent noise such as multiples. Further, the in�uence of residual

statics is explored, along with a modi�ed formulation which solves for trim statics as

part of the AVO waveform inversion. Once again the algorithm is demonstrated on

both synthetic and real seismic data.



42

Chapter 2

AVO inversion and uncertainty analysis

2.1 Introduction

In this chapter the linearized AVO inversion problem is further investigated.

First, common parameterizations and approximations used in the literature (Aki and

Richards, 1980; Shuey, 1985; Smith and Gidlow, 1987; Gidlow et. al., 1992; Gray

et al., 1999) are reviewed with the goal of (1) developing the vocabulary needed for

future chapters and (2) showing the inter-relationships and commonality between the

di¤erent approaches. It is shown that given the background velocity trend, all the

re�ectivity attributes derived from AVO are just linear combinations of three basic

re�ectivity attributes. Having established the interrelatedness of the di¤erent AVO

approaches in the literature, the generalized linearized AVO inverse problem is inves-

tigated using Bayes�theorem. Bayes�theorem provides a framework within which the

probability of the variables of interest from uncertain data and a priori information

is obtained. This probabilistic prediction provides a natural way of understanding

the uncertainty of the problem. This chapter restricts itself to uncertainties in the

data and in particular the assumption that the noise is uniform, uncorrelated and

Gaussian. Under these assumptions the parameter covariance matrix may be used

to investigate the uncertainty in the problem (Tarantola, 1987). Theoretical error,

or error that arises due to error in the linear operator, is investigated in Chapter 4.

The basic approach follows Downton and Lines (2001b) where Bayes� theorem

is used to investigate the uncertainty in AVO parameter estimates in the linearized

AVO problem. The reader is referred to Riedel et al. (2003) for a Bayesian uncer-

tainty analysis of the nonlinear AVO inversion problem. In that paper, the analysis

is performed on a single interface assuming the parameters are known for the �rst
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interface, so this approach is di¢ cult to generalize for the typical problem found in

exploration seismology. The AVO uncertainty estimates in this chapter relate to the

uncertainty in the elastic parameters In contrast, Houck (2002) proposes a Bayesian

approach to estimate the uncertainty in �uid and lithology estimates using AVO. I

believe this is actually a two stage problem, as there are two distinct inversions, each

with their own data model, and each have their own issues of stability and unique-

ness. First there is the elastic parameter estimation problem and then the rock and

�uid property estimation problem. Loures and Moraes (2002) provides uncertainty

estimates of rock property values following this methodology.

This chapter provides an approach to generate uncertainty estimates for the �rst

part of this problem, that of the band-limited elastic parameters. Various uncertainty

displays are developed including an estimate of the prestack seismic noise level in the

data set and a stability section indicating how stable a particular AVO re�ectivity

estimate is for a particular acquisition geometry. From these displays the standard

deviation of the parameter estimate and the fractional uncertainty can be calculated.

These estimates of uncertainty are tested on synthetic and real data with results

consistent with expectations. The primary factors in�uencing the reliability due to

random noise are: the prestack signal-to-noise ratio, the fold, and the range of angles

available for the AVO inversion.

The three-parameter AVO inversion problem is ill-conditioned for most common

acquisition geometries and noise levels necessitate the use of constraints to help sta-

bilize the problem. In this chapter constraints which reduce the number of variables

from three to two are investigated. These "hard constraints" are de�ned to be some

linear relationship linking two or more variables so that one these variables can be

eliminated. By constraining the solution, the uncertainty in the parameter estimates

is reduced but at the expense of introducing theoretical error.

The basic outline for this chapter is as follows. First, the linearized three-term

AVO inversion problem is reviewed. It is noted that the problem is unstable in the

presence of noise. Various parameterizations and approximations of the linearized

AVO inversion problem from the literature are reviewed. For stability reasons these

approximations generally reduce the number of independent variables solved from

three to two. Bayes�theorem is then discussed as a way of studying the probability

and uncertainty of the elastic parameter estimates for the two-term linearized AVO

approximation in the presence of random noise. Note, the three parameter problem
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is investigated in Chapter 3, using probabilistic constraints. Under the assumption of

uniform, uncorrelated random noise the covariance matrix is introduced as a simple

means to estimate the uncertainty of the AVO parameter estimates. To validate this

approach, a modeling study is performed to compare the estimates of uncertainty

with the actual reliability. Lastly, several data examples are shown where the un-

certainty estimates are used to help identify reliability issues in the AVO parameter

estimates. Both the modeling study and the data examples show that the uncer-

tainty estimates reasonably predict the error in the inversion giving the interpreter

tools to help quantify the reliability of their AVO interpretation.

2.2 Amplitude variation with o¤set theory

Recall from Chapter 1 (equation 1.25), that linearized AVO model for M o¤sets

may be written as2664
R(��1)
...

R(��M)

3775�
2664
sec2 ��1 �8�2 sin21 ��

�
1� 4�2 sin2 ��1

�
...

...
...

sec2 ��M �8�2 sin2 ��M
�
1� 4�2 sin2 ��M

�
3775
264 R�

R�

Rd

375 : (2.1)

where �� is the average angle of incidence, � is the S-wave to P-wave velocity ra-

tio across the interface. Equation (2.1) may be written more succinctly in matrix

notation as

d � Gx; (2.2)

whereG is the linear operator, d the input data vector (o¤set dependent re�ectivity),

and x the unknown parameter vector containing the P-wave and S-wave velocity,

and density re�ectivity. The matrix G is completely determined by the acquisition

geometry and the background velocity �elds. One of the advantages of dealing with

linear inverse problems is that the linear operator may be analyzed to determine the

stability of the problem. Stability in this context refers to how reliable the estimates

are in the presence of a small amount of noise. The problem is considered unstable

if a small amount of noise leads to large uncertainties in the estimates. One way to

understand this is to look at the condition number of the matrix G: The condition

number K is de�ned (Borse, 1997) as

K �
G�1 kGk ; (2.3)
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where jjGjj and jjG�1jj are the norm ofG and its inverse. For the Euclidean norm this
is equal to the ratio of largest eigenvalue �1 to the smallest eigenvalue �N . Depending

on the noise level, problems become ill-conditioned when the condition number gets

into the hundreds. Since the condition number is solely dependent on matrix G; the

condition number is only a function of the acquisition geometry and the background

velocity of the AVO problem. Through the condition number, the stability of the

AVO inverse problem can be investigated for certain ideal geometries and background

velocities. Figure 2.1 shows the condition number where the range of angles used in

the AVO inversion is varied, while fold is held constant. The horizontal axis shows

the maximum angle used in the inversion, assuming the minimum angle used is 0: In

Figure 2.1 when the maximum angle used in the inversion is under 20 �, the condition

number is over 106: This is extremely unstable. Only by including angles out to 45 �

does the condition number go below 1000:

2.3 Rearrangements of the linearized Zoeppritz approxima-

tion

Because of these stability concerns, di¤erent authors have rearranged the Aki and

Richards linearized approximation of the Zoeppritz equations to solve for di¤erent re-

�ectivity attributes. Generally, these rearrangements either incorporate constraints

or introduce approximations to make the problem more stable. As important, these

new re�ectivity attributes are designed to highlight geologic information and anom-

alies in a new manner, ideally identifying the objective more clearly.

2.3.1 Shuey equation

Shuey (1985) rearranged the Aki and Richards equation (1.6) in terms of the

polynomial series

R(�) = A+B sin2 � + C sin2 � tan2 � (2.4)

where

A =
1

2

�
��

��
+
��

��

�
; (2.5)

B =

�
B0A+

��

(1� ��2)

�
; (2.6)
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Figure 2.1: The condition number plotted for a number of simulated AVO inversions.
The fold is held constant while the maximum angle used for the inversion is varied.
The legend indicates the AVO approximation used in calculating the condition num-
ber. Note that the condition number improves as the maximum angle used in the
inversion increases.
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B0 = D � 2 (1 +D) 1� 2��
1� �� ; (2.7)

D =
��
��

��
��
+ ��

��

; (2.8)

and

C =
1

2

��

��
; (2.9)

where �� is the change and �� is the average Poisson ratio across the interface. The

advantage of this formulation is that each re�ectivity attribute is associated with

an angle term of di¤erent order. The background P-wave velocity must be known

in order to do the ray-tracing to calculate the angle of incidence. However, the

background S-wave velocity is not required to be known a priori, potentially reducing

the theoretical error in the problem. For this reason, many practitioners prefer using

this formulation over the Aki and Richards formulation.

However, the de�nition of the B parameter is awkward and theoretically suspect

since it includes nonlinear coe¢ cients after already having made a linear approxima-

tion. Swan (1993) rede�ned the B parameter as

B =
1

2

��

��
� 2�2

�
2
��
��
+
��

��

�
; (2.10)

which is the one most commonly used in the literature. This de�nition has the

additional advantage that under the assumption � = 1
2
there is a simple relationship

between the B term and P-wave and S-wave impedance re�ectivity Rp and Rs namely

B = Rp � 2Rs: (2.11)

Thus, under the assumption that � = 1
2
; the S-wave impedance re�ectivity can be

calculated from the A and B terms

Rs =
A�B

2
(2.12)

From these de�nitions a transform matrix (equation B.1) may be constructed which
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links the Aki and Richards parameterization and the "Shuey" parameterization264 A

B

C

375 =
264 1 0 1

1 �8�2 �4�2

1 0 0

375
264 R�

R�

Rd

375 : (2.13)

Often for stability reasons the last term in equation (2.4) is truncated

R(�) = A+B sin2 � (2.14)

so only the �rst two terms are solved for. The form of this approximation is equivalent

to that used by Wiggins et al. (1983) but the actual de�nitions of the parameters

are di¤erent. Figure 2.1 shows the condition number for both the two- and three-

term Shuey equations. The three-term condition number is the same as the Aki

and Richards formulation since it is simply a transform and the eigenvalues are the

same. The two-term Shuey equation shows a dramatic drop in the condition number.

Physically, the two-term Shuey equation (2.4) describes a line with intercept A and

slope or gradient B. Unfortunately truncating the 3rd term in the series (2.4)

introduces signi�cant theoretical error which biases the estimate of the gradient B:

2.3.2 Smith and Gidlow

Truncating the third term of the Shuey equation (2.4) is equivalent to constraining

the P-wave velocity re�ectivity to zero

C =
1

2

��

��
= 0; (2.15)

which is clearly not appropriate in a variable velocity earth. This is what leads

to the bias in the estimate of the gradient B: Smith and Gidlow (1987) suggested

using a more geologically realistic constraint to improve the stability of the inversion.

They suggested using the Gardner et al. (1974) empirical relationship linking den-

sity and P-wave velocity to establish a relationship linking the density and P-wave

velocity re�ectivity. By taking the derivative of equation (1.37) with respect to �

and then rearranging the result, the Gardner relationship can be expressed in terms

of re�ectivity

Rd = gR�; (2.16)
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This suggests that density re�ectivity should be a scaled version of the velocity re-

�ectivity where the scalar is a function of lithology. This thesis calls this relation

(equation 2.16) the Gardner re�ectivity relation or the Gardner constraint, depending

on the context. From this a transform matrix can be constructed264 R�

R�

Rd

375 =
264 1 0

0 1

g 0

375" R�

R�

#
; (2.17)

which when introduced into the Aki and Richards equation (2.1) generates the Smith

and Gidlow equation

�
R(��)

�
=
h
sec2 �� +

�
1� 4�2 sin2 ��

�
g �8�2 sin2 ��

i " R�

R�

#
: (2.18)

The unknown parameters solved for in this formulation are the P-wave and S-wave

velocity re�ectivity. In section (2.4.3) it is shown that the velocity re�ectivity has

a much greater uncertainty than the impedance re�ectivity. In this inversion for-

mulation, equation (2.16) is used to make the inversion more stable. Figure 2.1

shows that the Smith and Gidlow equation has a signi�cantly smaller condition num-

ber than the Aki and Richards equation, and even smaller than the two-term Shuey

equation. However, the accuracy of the estimate is dependent on how accurate the

empirical relationship equation (2.16) is. In cases where the density and P-wave

velocity re�ectivity are poorly correlated or the parameter g is inaccurately known,

there is the potential for large error. Note that the P-wave impedance re�ectivity

does not have this sensitivity built into it, and as a result often gives better estimates

when compared to the P-wave velocity re�ectivity.

In addition, this method and all the subsequent methods discussed, require more

a priori information than that of the Shuey equation, in that they require knowledge

of the background S-wave velocity. This too can lead to systematic errors in the

estimates and is explored further in Chapter 4.
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2.3.3 Gidlow equation

The Gidlow et al. (1992) equation follows from rearranging the Aki and Richards

equation (2.1) in terms of impedance re�ectivity

�
R(��)

�
=
h
sec2 �� �8�2 sin2 �� 4�2 sin2 �� � tan2 ��

i264 Rp

Rs

Rd

375 ; (2.19)

where Rp and Rs are the P-wave and S-wave impedance re�ectivity respectively.

This follows from multiplying the Aki and Richards equation (2.1) by the transform

matrix (B.10) found in Appendix A. Again, for stability reasons often only the �rst

two terms are solved for

�
R(��)

�
=
h
sec2 �� �8�2 sin2 ��

i " Rp

Rs

#
: (2.20)

Figure 2.1 shows the resulting improvement in condition number compared to the

three-term equation and other approximations.

Note that the original publication of this work was in a workshop abstract which

is not widely available. Fatti et al. (1994) published this equation in a much more

widely available journal and hence this equation is often know as the Fatti equation.

Fluid stack based on Gidlow equation

Following a similar derivation to the �uid stack based on the velocity �elds (Section

1.4.2), the �uid stack based on impedance re�ectivities is de�ned by Gidlow et al.

(1992) as

Rg = Rp �m�Rs: (2.21)

Equation (2.21) responds in a similar fashion as the �uid stack. This may also be

written as a transform matrix"
Rp

Rg

#
=

"
1 0

1 �m�

#"
Rp

Rs

#
: (2.22)
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2.3.4 Other formulations

Various other papers de�ne other linearized re�ectivity attributes. For example,

Gray et al. (1999) solve for � re�ectivity, � re�ectivity, and bulk modulus K re�ec-

tivity. Note only two of three of these attributes are independent, but all are shown

for completeness. Appendix B derives these, resulting in the transform matrix264 R�

R�

RK

375 =
264

2
1�2�2 � 4�2

1�2�2 1

0 2 1
6

3�4�2: � 8�2

3�4�2 1

375
264 R�

R�

Rd

375 : (2.23)

Any of these re�ectivity attributes may be calculated by �rst solving the Aki and

Richards equation (2.1), and then transforming to the desired re�ectivity attributes

using the suitable transform matrix. These may be modi�ed to �� and �� re�ectivity

with (Appendix B)

"
R��

R��

#
=

"
2

1�2�2 � 4�2

1�2�2 2

0 2 2

#264 R�

R�

Rd

375 : (2.24)

Re�ectivity attributes that include density, such as impedance, tend to be more sta-

ble than ones that don�t, such as velocity. Shuey de�ned the delta-Poisson ratio

re�ectivity R�

R� =
d�

(1� �)2
; (2.25)

which may be transformed to using (equation B.20)

R� = 8�
2 [R� �R�] ; (2.26)

Verm and Hilterman (1995) use the delta-Poisson re�ectivity attribute as a lithology

indicator in the Gulf coast with the assumption �=� = 2. The Poisson re�ectiv-

ity may also be de�ned in a manner more consistent with the previous re�ectivity

attributes (Appendix B, equation B.26).

R� =
1

3
2
� �2 � 1

2�2

[R� �R�] : (2.27)
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Summarizing these transform matrices results in

2666666666666666666666666666664

A

B

C

Rp

Rs

R

R�

R�

R��

R��

Rk

R�

R�

Rd

3777777777777777777777777777775

=

26666666666666666666666666666664
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1 0 1

1 0 1

0 1 1

�1 1 0

8�2 �8�2 0
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2
��2� 1

2�2

� �1�
3
2
��2� 1

2�2

� 0
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1�2�2 4 �2

2�2�1 2
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6

3�4�2: � 8�2

3�4�2 1
2

1�2�2 � 4�2

1�2�2 1

0 2 1

0 0 1

37777777777777777777777777777775

264 R�

R�

Rd

375 : (2.28)

This transform matrix allows one to work with any three independent re�ectivity

attributes one desires. Note the resulting re�ectivity attributes on the left hand side

of equation (2.28) are all just linear combinations of velocity and density re�ectivity.

Therefore there are only 3 independent re�ectivity attributes. Some re�ectivity

attributes listed here are just scalar multiples of each other such as R and R�: Note,

that in order to do the majority of these transforms � must be known. Further, note

that a linear approximation is made in the derivation of these re�ectivity attributes,

which is questionable for some of these attributes. For example, in unconsolidated

sands, the change in �; �� can almost be as large as the average �� resulting in

re�ectivity attribute values approaching 1.

2.4 Bayes�theorem and uncertainty

Having introduced various rearrangements of the three-term linearized AVO inver-

sion and two-term approximations we are now in a position to discuss the uncertainty

of these parameter estimates. Bayes�theorem is used to develop these uncertainty

estimates. It provides a theoretical framework to make probabilistic estimates of the

unknown re�ectivity attributes x from uncertain data and a priori information. The
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resulting probabilistic parameter estimates are called the Posterior Probability Dis-

tribution function (PPDF ). The PPDF written symbolically as P (xjd;I) indicates
the probability of the parameter vector x given the data vector d (o¤set dependent

re�ectivity) and information I. Bayes�theorem, which can be expressed as

P (xjd;I) = P (djx;I)P (xjI)
P (djI) ; (2.29)

calculates the PPDF from the likelihood function P (djx;I) and a priori probability
function P (xjI). The denominator P (djI) is a normalization function which may be
ignored if only the shape of the PPDF is of interest

P (xjd;I) / P (djx;I)P (xjI) : (2.30)

The most likely estimate occurs at the maximum of the PPDF. The uncertainty of

the parameter estimate is proportional to the width of the PPDF.

To simplify the analysis of equation (2.30) it is initially assumed that the prior

probability distributions are uniform. In this case, the Bayesian inversion is equivalent

to maximum likelihood inversion. To simplify the analysis further, it is assumed the

noise is independent and Gaussian. In this case, the likelihood function may be

written as (Sivia, 1996)

P (djx;I) / ��NN exp

264�
PM

m=1

�PN
n=1Gmnxn � dm

�2
2�2N

375 ; (2.31)

where �2N is the variance of the noise, M is the number of data, and N is the number

of parameters used in the inversion.

2.4.1 Unconstrained AVO inversion

If we include no a priori information this is equivalent to employing a uniform

distribution so that P (xjd;I) / P (djx;I) and

P (xjd;I) / ��NN exp

264�
PM

m=1

�PN
n=1Gmnxn � dm

�2
2�2N

375 : (2.32)
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Figure 2.2: One dimension Gaussian distribution. The best estimate occurs where the
probability is maximum. The uncertainty is related to the width of the distribution.
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Figure 2.3: Bivariate Gaussian distribution. Each ellipse represents an equiprobable
solution whose standard deviation is indicated by the legend. The best estimate
occurs on the smallest ellipse.

Under these assumptions the optimization problem is equivalent to least squares with

the most likely estimate occurring at

x̂ =
�
GTG

��1
GTd: (2.33)

where "b " indicates the variable x is an estimate. For AVO inversion, because of the
small number of parameters solved for, it is possible to visualize the PDF generated

by equation (2.32). If the parameter vector x has only one element, such as in the

case of the stack model, the PDF is a Gaussian function (Figure 2.2). The most likely

solution is located at the maximum of the probability distribution. The uncertainty

is proportional to the width of the distribution. Since this is a Gaussian distribution,

standard statistical parameterizations such as standard deviation or variance can be

used to characterize the uncertainty.

If the parameter vector x has two elements, the PDF is a bivariate Gaussian func-

tion and an equiprobable solution is an ellipse. This is the case for the two-term
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Gidlow et al. (1992), Shuey (1985), and the Smith and Gidlow (1987) approxima-

tions. Figure 2.3 shows the probability distribution solved for the Smith and Gidlow

approximation, for a hypothetical re�ector with a signal-to-noise ratio of 2:1. Each

contour represents an equiprobable solution. In this example, the most likely solution

occurs in the middle of the smallest contour ellipse at R� = 0:06 and R� = 0:13 which

is the maximum probability.

The bivariate Gaussian distribution

P (xjI) =
exp

h
�1
2
(x�hxi)T C�1x (x�hxi)

i
(2�)

3
2

p
det jCxj

3 ; (2.34)

is parameterized by the 2� 2 covariance matrix

Cx =

"
�2R� �R�R�
�R�R� �2R�

#
: (2.35)

The diagonal elements of the parameter covariance matrix are the variance of each

of the parameters estimates. The o¤ diagonal elements describe the amount of

correlation between the variables. The standard deviation, which is the square root

of the variance, is a measure of reliability of each variable.

Appendix C shows that for least squares inversion that the uncertainty of the

parameter estimates may be estimated by (Menke, 1994)

Ĉx̂ = G
�gCd

�
G�g�T ; (2.36)

whereG�g is the generalized inverse ofG; and Cd is the data covariance matrix. The

diagonal term contains the variance of noise for each datum while the o¤-diagonal

elements contain the degree of correlation between the data. Assuming uncorrelated

uniform noise this reduces to (equation C.34)

Ĉx̂ = �2N
�
GTG

��1
: (2.37)

Equation (2.37) suggests that the parameter covariance matrix for the estimated

variables is only a function of the prestack noise variance �2N ; and the linear operator
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G. The prestack noise variance may be estimated from the mis�t of the data

�̂2N =
"T"

(M � 1) ; (2.38)

where

" = Gx̂� d: (2.39)

For the two-term Gidlow equation this leads to the analytic relationship (equation

D.20)"
~�2Rp ~�RpRs

~�RpRs ~�2Rs

#
=
�̂2N
D

" PM
m=1 sin

4 ��m
�1
8�2

PM
m=1 tan

2 ��m
�1
8�2

PM
m=1 tan

2 ��m
1

64�4

PM
m=1

1
cos4 ��m

#
; (2.40)

where

D =

 
MX
j=1

sec4 ��j

!
MX
m=1

sin4 ��m �
 

MX
m=1

tan2 ��m

!2
: (2.41)

This equation is studied in greater detail in section (2.4.3).

If we are interested in the uncertainty of the R� estimate then we need to know

the one dimensional probability distribution for R�. In calculating this we have no

interest in the S-wave velocity re�ectivity. The S-wave velocity re�ectivity may be

eliminated by marginalizing the Bivariate Gaussian probability. Marginalization

consists of integrating over the range of all possible values for that particular variable

P (R�jI) =
Z
P (R�; R�jI)dR�: (2.42)

The result of marginalizing a bivariate Gaussian probability function is a Gaussian

probability distribution. The uncertainty is related to the total width of the ellipse

projected onto the appropriate axis. Figure 2.4 shows this projection for both the

P-wave and S-wave velocity re�ectivity. It is evident that S-wave velocity re�ectivity

has greater uncertainty than the P-wave velocity re�ectivity.

For the case of equation (2.1) there are 3 parameters so the PDF is a multivariate

Gaussian function where an equiprobable solution is an ellipsoid. Typically the ellip-

soid is quite elongated (Figure 2.5). This is a result of the small eigenvalue associated

with the introduction of the 3rd term. Non-physical solutions, such as those in which

the magnitude of the re�ectivity is greater than 1, are evident. Figure 2.6 shows a
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Figure 2.4: Uncertainty of P- and S-wave velocity re�ectivity. The uncertainty for
each variable is the marginalized one dimension distribution for that variable. This
is a Gaussian distribution whose width is characterized by its standard deviation.



59

view of Figure 2.5 in which only two of the three axes are evident. In this �gure

the ellipsoid lies along the diagonal and is quite elongated. This implies that the

uncertainty for both the S-wave velocity re�ectivity and density re�ectivity is large.

This is also true for the P-wave velocity re�ectivity. The re�ectivity attributes may

be transformed to other attributes, such as impedance re�ectivity, each with di¤erent

uncertainty. Figure 2.7 shows one face of the cube, for density and S-wave impedance

re�ectivity. Note that even though the mis�t ellipse is still elongated in the density

direction, there is little variance along the S-wave impedance re�ectivity axis. Thus,

the estimate of the S-wave impedance re�ectivity is more certain than the S-wave

velocity re�ectivity. It seems that re�ectivity attributes which combine density are

more reliable than those that do not. Two examples of this are impedance versus

velocity re�ectivity and �� versus � re�ectivity.

Figure 2.8 shows a comparison between the mis�t ellipsoid for the density and

S-wave impedance re�ectivity parameterization, and the density and �uid stack re-

�ectivity parameterization. Note that the �uid stack has less variance than the

S-wave impedance re�ectivity.

2.4.2 Constrained two-term AVO inversion

Up to this point it has been assumed that unknown re�ectivity attributes are

uniformly distributed. As seen in the last section, this allows for non-physical solu-

tions. Constraints can be used to eliminate these. One way of doing this is to place

bounds or limits on the a priori distributions so the re�ectivity magnitude must be

less than one. This reduces the solution space and uncertainty. However, for noise

levels typical in real data, the parameter estimates, even with constraints, are still

not accurate enough to make reliable predictions. Additional constraints must be

employed to reduce the re�ectivity attribute uncertainty to acceptable levels. This is

at the expense of potentially introducing into the inversion theoretical error arising

from incorrect assumptions.

For example, Smith and Gidlow (1987) used the Gardner constraint (equation

2.16) which de�nes a plane in the 3D solution space. Using Bayes� theorem, the

solution is the intersection of this plane and the 3D ellipsoid (Figure 2.9). This

constraint greatly reduces the uncertainty but at the expense of e¤ectively removing

one of the variables. The density re�ectivity is no longer an independent variable.

The inverse problem now has only two parameters with the PPDF of these variables
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Figure 2.5: Mis�t ellipsoid generated from likelihood function based on equation (2.1)
for the acquisition geometry used in the Blackfoot synthetic and a noise variance of
1. Note that the ellipsoid is quite elongated especially along the density axis. The
ellipsoid represents the equiprobable solution surface for a particular noise level.
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Figure 2.6: One face of the cube shown in Fig. 2.5. Note the large amount of
uncertainty in both the S-wave velocity and density re�ectivity.

a bivariate Gaussian distribution.

Both the Gidlow and Shuey reformulations of equation (2.1) are often solved using

only the �rst two terms. This is equivalent to setting the third term to zero. For

Shuey�s equation this sets the P-wave velocity re�ectivity to zero and for the Gidlow

equation this sets the density re�ectivity to zero. Figure 2.10 shows the application

of these di¤erent constraints in three parameter solution space. In each case the

optimal solution is the intersection of the plane de�ned by the constraint with the

mis�t ellipsoid. Each constraint results in a slightly di¤erent optimal solution (Figure

2.11). The solution is as good as the prior knowledge leading to the constraint.

Determining which solution is most realistic involves answering the question, �Is it

more realistic that the velocity re�ectivity is zero, that the density re�ectivity is zero

or that the Gardner equation holds?�By introducing the constraint, the uncertainty

has been reduced but at the expense of introducing error arising from the correctness

of the a priori information.

It has been suggested that to avoid the bias introduced by using the two-term

Shuey equation, all three terms should be used and then the third term thrown away.
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Figure 2.7: One face of the cube shown in Fig. 2.5 after variables transformed to
impedance. Note that because of the transform, the uncertainty of variable along the
x-axis is much less than in Fig. 2.5.

Figure 2.8: Comparison of mis�t ellipsoids for two alternative parameterizations. The
S-impedance re�ectivity (a) has greater uncertainty than the �uid stack parameteri-
zation (b).
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Figure 2.9: The blue surface is the mis�t ellipsoid generated from likelihood function
based on equation (2.1) for the acquisition geometry used in the Blackfoot synthetic.
The red surface is the solution space de�ned by the a prior constraints based on the
Gardner equation. The probability of this is a delta function. The optimal solution
occurs where the combined probability is maximum.
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Figure 2.10: The blue surface is the mis�t ellipsoid generated from likelihood function
based on equation (2.1) for the acquisition geometry used in the Blackfoot synthetic
seismogram. Various constraints are shown. The optimal solution in each case occurs
where the combined probability is maximum. Note that each constraint has a di¤erent
optimal solution.

This does remove the bias but adds a great deal of uncertainty to the parameter

estimates. The unconstrained estimate of the gradient term is much more sensitive

to noise.

2.4.3 Two-term parameter uncertainty

In practice, most AVO inversion being done in the industry today uses some form

of two-term constrained inversion. This being the case, the rest of this chapter con-

siders how to quantify the in�uence of noise for this particular inversion problem.

This analysis, however, ignores the theoretical error associated with the application

of inappropriate constraints and underestimates the total error. The estimation and

uncertainty analysis for the three-term problem is dealt with in the next chapter.

In the previous section, it was shown that the probability distribution for the two

term AVO inversion is described by a bivariate Gaussian distribution parameterized

using covariance matrix (2.37). In studying the covariance matrix (equation 2.37) it
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Figure 2.11: The blue surface is the mis�t ellipsoid generated from likelihood function
based on equation (2.1) for the acquisition geometry used in the Blackfoot synthetic.
Various constraints are shown. The optimal solution in each case occurs where the
combined probability is maximum. Note that each constraint has a di¤erent optimal
solution.
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is instructive to separate the in�uence of the prestack noise �̂2N and the inverse of the

normal equations, [GTG]�1 since both contain unique information. The prestack

noise acts as a scalar: the more noise the greater the uncertainty. The normal equa-

tions are solely determined by the acquisition geometry and the background velocity

�elds. For future reference, this thesis refers to the square root of the diagonal

terms of this matrix as stability sections. Displaying these diagonal elements gives

an indication of the stability of each variable due to the acquisition geometry and

background velocity which is separate from the estimate of the noise.

For the case of the two-term Gidlow equation, the inverse of the normal equations,

[GTG]�1 is described by the analytic function (equation D.13)

[GTG]�1 =
1

D

" PM
m=1 sin

4 ��m
1
8�2

PM
m=1 tan

2 ��m
1
8�2

PM
m=1 tan

2 ��m
1

64�4

PM
m=1 sec

4 ��m

#
; (2.43)

where D is de�ned by equation (2.41). The inverse is solely a function of the ratio

; �; and the acquisition geometry. The in�uence of di¤erent acquisition parameters

such as maximum and minimum o¤set can be studied using equation (2.43). Figure

2.12 shows the results of such a study. In the �rst set of examples (Figure 2.12a, b,

c) the fold is held constant, while the angles used in the AVO inversion are varied. In

Figure 2.12a the maximum angle included in the AVO inversion is varied while the

minimum angle is held constant at zero. The uncertainty in the S-wave impedance

re�ectivity decreases in a nonlinear fashion as the maximum angle used increases.

For small maximum angles, increasing the angle range by a small amount greatly

decreases the uncertainty. For large maximum angles, the e¤ect of increasing the

angle range by a small amount is less noticeable. Because of this, for typical prestack

signal-to-noise ratios, it is desirable to have a minimum maximum angle of 20 � and

preferably 30 �. The standard deviation of the P-wave impedance, unlike the standard

deviation of the S-wave impedance, seems to be insensitive to the maximum angle

used.

The in�uence of changing the minimum angle while holding the maximum angle

constant is shown in Figure 2.12b. Unlike Figure 2.12a both the uncertainty for the

P-wave and S-wave impedance re�ectivity increase as the minimum angle is increased.

Intuitively, this is easy to understand if one thinks of the AVO problem in terms of

the two-term Shuey relationship of �tting a line to data points. If there are many

points close to the intercept, the intercept can be estimated with great certainty.



67

If the data points are far from the intercept, greater uncertainty comes into the

estimate. This issue is important for marine data where it is di¢ cult to record

the near angles especially in the shallow section. This is also an issue with 3D

land acquisition where there is a predominance of far o¤sets relative to near o¤sets.

This can be partially compensated by including greater angles as shown in Figure

2.12c. Figure 2.12c shows the case of where the total range of angles used in the

AVO inversion is held constant but the minimum angle used is varied. Note that

the variance for the S-wave impedance re�ectivity remains relatively constant. The

P-wave impedance variance increases but is still an order of magnitude smaller than

the S-wave impedance variance. This suggests that what is really important for the

stability of the problem is the usable angle range or aperture.

Lastly the e¤ect of fold is considered. In this analysis the angle range is held

constant. In Figure 2.12d it is observed that if the fold increases, the reliability of

the estimates increases. This is due to the fold e¤ectively increasing the poststack

signal-to-noise ratio and thereby increasing the reliability of the estimates. This is

an interesting observation since this suggests that one way of increasing the S-wave

impedance re�ectivity reliability is to increase the fold acquired in data acquisition.

The ratio � also in�uences the stability of the inversion as Figure 2.13 shows. As �

is decreased from 3 to 1:7 the condition number decreases by a factor of 8. Typically

shallow unconsolidated clastics have higher �=� ratios while deeper consolidated sands

or carbonates have lower values. Since � often changes as a function of depth, this

implies the that the uncertainty of the parameter estimates also will change as a

function of depth.

Change of variables

In order to analyze two re�ectivity sections simultaneously, interpreters often look

at linear combinations of re�ectivity attributes. The �uid stack (Smith & Gidlow

1986, Gidlow et al., 1992) is an example of this. When crossplotted, the P-wave

and S-wave impedance re�ectivity should cluster along a line whose slope is de�ned

by the mudrock relationship (Castagna et al., 1985) and the background �=� ratio.

Signi�cant departure from the linear trend may indicate the presence of gas. Recall

that the �uid stack is calculated by using the transform matrix (equation 2.22). The
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Figure 2.12: The estimated variance based on the two-term Fatti covariance matrix.
Figure (a) shows the e¤ect of varying the maximum angle while holding the fold
constant. Figure (b) shows the e¤ect of varying the minimum angle while holding the
fold and maximum angle constant. Figure (c) shows the a¤ect of holding the range
of angles used to do the inversion constant. Figure (d) shows the e¤ect of varying
fold while holding the minimum and maximum angles constant.
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Figure 2.13: The condition number of the AVO inversion problem as both the �=�
ratio and fold are varied, while the minimum and maximum angles are held constant.
Note that as �=� increases, the condition number increases.
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variance of the transformed covariance matrix is

Ĉx0 = TĈxT
T ; (2.44)

where T is the transform matrix. Thus, the covariance matrix for the transformed

variables

Ĉx0 =

"
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and where upon the transformation
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and in particular the variance for the �uid stack is
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Figure 2.14 shows the variance before and after the transformation where the original

variables P-wave and S-wave impedance re�ectivity variance are transformed to the

P-wave impedance re�ectivity and �uid stack variance. It is interesting to note that

the �uid stack has a lower variance than the S-wave impedance re�ectivity. The �uid

stack is an interesting and useful re�ectivity attribute because of its low uncertainty

in the presence of noise and its ability to highlight �uid changes.

2.5 Feasibility and Uncertainty analysis

The reliability of the AVO attributes can be calculated using the above method-

ology prior to doing an AVO analysis, as a feasibility study, to investigate whether
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Figure 2.14: The mis�t function of the P- and S-wave impedance re�ectivity (red)
compared to the P-impedance, �uid stack parameterization (blue). Note the uncer-
tainty of the �uid stack is less than that of the S-wave impedance re�ectivity. Note
the axis correspond to dR = Rideal �Restimate.
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the proposed seismic survey has the required fold and aperture to get usable results.

Some sort of estimate of the prestack noise level is needed to do this analysis. This

analysis could also be performed as part of the AVO inversion to provide reliability

quality controls to help with the interpretation of the AVO re�ectivity attributes.

In this case, the prestack noise level can be estimated by calculating the mis�t of

the model to the data. To validate that this methodology gives reasonable estimates

of uncertainty a modeling study was performed testing the key variables identi�ed

above.

2.5.1 Modeling study

A suite of well logs from the Blackfoot �eld in western Canada including P-wave

velocity, S-wave velocity, and density information, was used to generate a series of pri-

mary only convolutional AVOmodels. These models were created using the Zoeppritz

equations and ray tracing with a 10/14-70/80 Hz zero phase wavelet. The models

were generated with a number of di¤erent folds, aperture, and prestack signal-to-noise

ratios so the sensitivity of each of these variables could be tested independently. The

models were created in such a manner that one variable was varied while the others

were held constant. Figure 2.15 is displayed with a signal-to-noise ratio of 2:1 and

o¤set out to 2000 m. The zone of interest is the upper and lower Glauconite gas sand

which corresponds to the low velocity and density interval from 0.98 to 1.01 seconds.

To allow for this testing, the low frequency P-wave velocity trend of the well was

modi�ed so that over the window from 0.88 to 1.1 seconds, the angle of incidence

is roughly constant for each o¤set. This allows the fold to be varied independently

of angle of incidence in the testing. The �=� ratio and density curves were retained

from the original log.

Two sets of gathers were created. The �rst set of gathers was designed so that 25

separate AVO inversions could be performed over di¤erent angle ranges while keeping

the fold constant at 64 and the minimum angle constant at zero. The maximum angle

was allowed to vary from 2 � to 50 � in 2 degree increments. Noise was added to these

gathers with the following signal-to-noise ratios: 64=1, 16=1, 4=1, 1=1, 1=4 and 1=16.

To understand how the extraction behaved at the end points, one set of gathers had

no noise and another set was all noise. This resulted in 200 permutations (25 di¤erent

angle records times 8 noise levels).

The second set of gathers was designed such that the angle range in the AVO
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Figure 2.15: Wireline logs displayed in time for the Blackfoot well log. The synthetic
gather was generated using re�ectivity generated from the Zoeppritz equation. The
re�ectivity is shown without moveout, �ltered and with noise added to give a S/N=2.

extraction could be held constant (0 � to 45 �) while the fold was allowed to vary over

the following range: 4; 8; 16; 32; 64; 128; 256 and 512. The same noise levels were

combined with this data resulting in 64 permutations (8 di¤erent fold records times

8 noise levels).

AVO extractions were then performed on both these sets of records to calculate

estimates of P-wave and S-wave impedance re�ectivity using the two- term Gidlow

equation. A simple low frequency velocity model was used to ray trace the data. The

�=� ratio was smoothly varying. These were constructed as one would normally do

in performing an AVO inversion on real data.

2.5.2 Modeling Results

The top panel of Figure 2.16 shows the estimates of S-wave impedance re�ectivity

R̂s when the angular range is varied for di¤erent signal-to-noise ratios. These are

compared to the ideal zero o¤set S-wave impedance re�ectivity displayed in terms of

P-wave travel time (Figure 2.16b). The fractional error (Figure 2.16c ) is calculated
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Figure 2.16: Subplot (a) is the S-impedance re�ectivity generated from AVOmodeling
experiment described in text. Fig. (b) shows the ideal re�ectivity while (c) shows
fractional uncertainty calculated from (a) and b). Fig. (d) shows the predicted
fractional uncertainty calculated from the covariance matrix.
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using

FE (Rs) =
Iamp

�
R̂s �Rs

�
Iamp (Rs) + "

; (2.50)

where " is a small stability factor and the functional Iamp () is the operation of taking

the instantaneous amplitude (Taner and Sheri¤, 1977). Figure 2.16d shows the esti-

mate of the fractional uncertainty of the S-wave impedance re�ectivity predicted by

the covariance matrix. This agrees well with the ideal fractional error (Figure 2.16c)

calculated using equation (2.50).

Figure 2.17 shows the uncertainty of the P-wave and S-wave impedance re�ectivity

attributes calculated based on the actual error over a 0.100 second window, centered

on 0.950 seconds. These measurements of the actual error are consistent with the

predictions made by the covariance matrix in the preceding section (Figure 2.12). The

P-wave impedance re�ectivity is insensitive to angle range while the S-wave impedance

re�ectivity is strongly sensitive to aperture in the same manner as suggested by Figure

2.12a. It is interesting to note that for high angles and fold the fractional error actually

increases. This is not a mis�t error, but is due to theoretical error introduced by the

a priori information used to constrain the problem.

The data mis�t is used to estimate the noise variance, which is plotted versus

signal-to-noise in Figure 2.17. This was done to see if the mis�t could be used to

predict the noise level and hence the uncertainty in the AVO extraction on noisy

data. The variance calculated using equation (2.38) shows a linear relationship versus

signal-to-noise (Figures 2.17a and 2.17b). There is little scatter when the aperture

is allowed to vary (Figure 2.17a). However, there is signi�cantly more scatter when

the fold is varied (Figure 2.17b). This means that the mis�t can be used to estimate

uncertainty, but the error in this estimate increases as the fold decreases.

2.5.3 Colony data example

Figure 2.20a shows the P-wave impedance re�ectivity extraction over a Colony gas

�eld. This Colony gas sand is a Class III AVO anomaly. It is the purple amplitude

around 0:5 seconds. The feature at CDP 4070 was drilled on the AVO analysis of

this line and resulted in a successful well. The background �=� ratio is quite high,

around 2:5. The estimated uncertainty in the AVO inversion for this line is expected

to be small since a successful gas well was drilled based on the AVO analysis. The

�uid stack (Figure 2.19) shows an anomaly at the Colony level over quite a wide area.
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Figure 2.17: Normalized error calculated as described in text. Fig. a) shows P-
impedance re�ectivity error when the maximum angle is varied while b) shows the
error while the fold is varied. Fig. c) shows S-impedance re�ectivity error when the
maximum angle is varied while d) shows the error while the fold is varied.
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Figure 2.18: Predicted noise versus actual noise variance. Fig (a) shows calculation
when fold held constant while (b) shows the calculation when angle range is held
constant.

Note that at the beginning and end of the line the �uid stack appears unstable.

The S-wave impedance stability section (Figure 2.21b) shows that this is indeed

the case. This is due to the lack of far o¤sets in the data acquisition at the ends

of the line. As well, local instabilities in the shallow section are evident. These

instabilities are due to missed source locations in the data acquisition, and disappear

with depth as the fold increases and the �=� ratio decreases. In comparison, the

P-wave impedance stability section (Figure 2.20b) is quite uniform and insensitive to

the variations in acquisition geometry.

The fractional uncertainty (equation 2.50) calculated for both the P-wave and

S-wave impedance sections is shown in Figure 2.20c and 2.21c respectively. The

fractional uncertainty for the P-wave impedance re�ectivity is less than the S-wave

impedance re�ectivity as expected. Both have uncertainty less than 0:2 in the zone

of interest. This is signi�cantly less than the expected change in zero-o¤set P-wave

impedance re�ectivity due to the introduction of gas.

2.5.4 Heavy oil seismic data example

To illustrate the use of reliability predictions on real data, a �uid stack (Figure

2.22) is shown for a 2D seismic line acquired over a heavy oil �eld undergoing steam

injection. Modeling studies (Downton and Lines, 2001c) suggest the �uid stack should
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Figure 2.19: Fluid stack for colony example. Note Colony anomalies at 0.5 seconds.
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Figure 2.20: Colony P-impedance re�ectivity (a), stability section for P-wave im-
pedance re�ectivity (b), and fractional uncertainty (c).
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Figure 2.21: Colony S-wave impedance re�ectivity (a), stability section for S-
impedance re�ectivity (b), and fractional uncertainty (c).
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Figure 2.22: Fluid stack for A.O.S.T.R.A. example (a), and fractional uncertainty
display (b).

show an anomaly where the reservoir is at elevated temperatures. The line was

acquired while production was ongoing. As a result there is considerable noise from

the pumps causing reliability issues with the re�ectivity attributes at several places

along the line. The �uid stack shows anomalies at the base of the Waseca sand

which corresponds well with most of the producing wells and injectors. However, the

injector at station 280 does not show an anomaly. It is interesting to note that the

standard deviation of the �uid stack at station 280 is several orders of magnitude

greater than the �uid stack estimate. This suggests that the �uid stack attribute is

unreliable at this point and the predicted �uid stack value should be ignored. With

the incorporation of the reliability information, the �uid stack is consistent with the

geologic control. Greater con�dence can be placed in the AVO interpretation by

knowing where the AVO estimates are reliable and just as importantly where they

are less reliable.
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2.6 Discussion

It is important to note that this chapter has not considered the impact of coherent

noise, theoretical error, and systematic data errors. Theoretical error and non-

Gaussian error are discussed in future chapters. Systematic data errors arise due

to incorrect preconditioning or processing of the seismic prior to the AVO inversion

(section 1.3.3). Having ignored theoretical and systematic errors, the uncertainty

estimates generated in this chapter are unduly optimistic. This being the case, the

reliability estimates are still valuable in that they identify problem areas in the survey

due to acquisition geometry and noise.

It is di¢ cult to identify systematic data errors. One approach is to crossplot

the re�ectivity estimates, to at least gain some indication whether the results are

geologically plausible. For example, the P-wave and S-wave impedance re�ectivity

may be crossplotted. The data should cluster around a line whose slope is de�ned

by the mudrock relationship (equation 1.38)

R� = m�R�: (2.51)

This is discussed further in Chapter 4. The gathers may also be compared to synthetic

models or walkaway VSPs (Ross and Beale, 1994). To avoid systematic data errors

it is best to process the data in as careful a fashion as possible following the key steps

outlined in Chapter 1 (section 1.3.3).

2.7 Conclusions

This chapter reviewed various three-term linearized approximations of the Zoep-

pritz equations. Provided � is known a priori these parameterizations are mathe-

matically equivalent. There is no point doing statistical regression or neural network

analysis on more than three of these attributes since there are only three independent

pieces of information available. The interpreter may wish to display the re�ectiv-

ity attributes which best highlight the geologic objective using the transform matrix

(2.28). However, these re�ectivity attributes have di¤erent uncertainty associated

with them. Given two parameterizations that discriminate the geology equally well,

it is desirable to use the parameterization with the lesser amount of uncertainty. For

example, impedance re�ectivity and velocity re�ectivity often convey similar geo-
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logic information, but the impedance re�ectivity has dramatically lower uncertainty.

Thus, it is preferable to use impedance re�ectivity over velocity re�ectivity. Better

yet, it is preferable to use the �uid stack based on impedance re�ectivity as the second

attribute over S-wave impedance re�ectivity.

It was shown that the three-term AVO inversion problem is ill-conditioned ne-

cessitating the use of constraints. In general the problem can be made more stable

by including a greater range of angles in the inversion. However, the theoretical

error also increases as maximum angle used in the inversion increases, so that in

practice there is an upper limit that may be used. In addition, the background �=�

ratio in�uences the parameter uncertainty with a larger �=� ratio implying greater

uncertainty.

To address the ill-conditioned nature of the linearized AVO inversion problem,

constraints are used to stabilize the problem. In this chapter, "hard constraints"

were used. In this case, they reduce the number of parameters to be solved for from

three to two, but at the expense of potentially introducing theoretical error into the

problem. The correctness of the di¤erent approximations of the Zoeppritz equations

published in the literature can be viewed in terms of how geologically plausible the

applied constraints are and what bias they introduce into the problem. The Gardner

constraint used in the Smith and Gidlow formulation is clearly more physical than the

two-term Shuey approximation where the P-wave velocity re�ectivity is set to zero.

However, both lead to errors when their respective equalities are not met. It would

be preferable to use a probabilistic expression rather than an equality to describe an

empirical relationship. In the next chapter, probabilistic constraints are developed.

The uncertainty of the AVO inversion problem was investigated with the aid of

Bayes�Theorem. In the case of independent uniform Gaussian noise equation (2.37)

may be used to estimate the uncertainty of each parameter. In this case, the reliability

is only a function of the prestack noise, the line geometry and the background �=�

ratio. Based on this, a series of quality control displays can be generated. The

standard deviation of the noise may be estimated from the mis�t function. This may

be accurately estimated as long as the fold is su¢ cient. The other key displays are

the stability sections generated from the diagonal of matrix (2.43). This shows the

stability of the inversion due to changes in the acquisition geometry and �=� ratio.

From this the standard deviation of each parameter may be calculated and with the

inclusion of the parameter, the fractional uncertainty calculated. The uncertainty
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may be transformed to any parameterization using equation (2.44). The ability of

this methodology to predict the uncertainty was tested on synthetic data with good

results. In addition, when applied to real data the predicted uncertainty was in

accordance with known sources of error. The calculated uncertainty was greatest

where the angle range was smallest and/or noise the greatest.

The covariance matrix can be created before or as part of the AVO inversion. If

it is done before as part of a feasibility study, it can help determine if the seismic

data set is a suitable input to AVO analysis. If it is run as part of the AVO inversion,

the quality controls can be used to help appropriately weight the value of the AVO

information relative to other forms of information in the overall interpretation.
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Chapter 3

Constrained three-term AVO inversion and

uncertainty analysis

3.1 Introduction

In the preceding chapter, it was shown that the three-term linearized AVO equa-

tion is typically too ill-conditioned to be reliably solved for. The problem was made

stable by solving for two parameters rather than three. This was done by introducing

hard constraints, either explicitly, through the use of rock physical relationships or

implicitly by truncating the third term in the various linearized approximations of

the Zoeppritz equations. In doing so, there is a trade-o¤between increased reliability

and a loss of information in the form of one of the parameters. In contrast, this chap-

ter incorporates probabilistic constraints and uses Bayes�theorem to �nd the optimal

solution. The degree to which the constraints in�uence the solution is dependent on

the signal-to-noise ratio, the fold and the range of angles available to the inversion.

When the signal-to-noise ratio and geometry are su¢ cient, the data dominates the

solution rather than the constraints and reliable predictions may be made for all three

terms. When the conditions are inadequate, the constraints dominate the solution

providing less information, yet the solution behaves in a geologically believable fash-

ion. Uncertainty displays provided by the method help the interpreter understand

the reliability of the estimates. The approach has some similarities to the approach

of Lortzer and Berkhout (1993) in that both implement statistical constraints using

Bayes�theorem. Lortzer and Berkhout use empirical relationships and implement

them as data constraints. In this approach the constraints are treated as a priori

information and much more detail is provided in the construction of them.

The advantage of three-term AVO inversion is that density re�ectivity may also
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be estimated. Density re�ectivity provides the potential to quantify �uid saturation

within the reservoir. The P-wave velocity reacts to gas saturation in a nonlinear

fashion (Figure 3.1) with gas saturations greater than 10% causing most of the re-

sponse (Domenico, 1976). Thus, the P-wave impedance stack reacts to trace amounts

of gas. Two-term AVO analysis (Gidlow et al., 1992; Shuey, 1985) can predict the

presence of gas within a reservoir, but not whether gas present, is in quantities large

enough to be commercial. In contrast, density reacts to gas in a linear fashion. By

comparing the velocity with the density response, more accurate estimates of gas

saturation may be made. Recently, there has been a series of papers demonstrating

three-term AVO inversion. Kelly and Skidmore (2001) developed a nonlinear approx-

imation to the Zoeppritz equations, but do not discuss how the solution is stabilized.

In a subsequent paper, Van Koughnet et al. (2003) publish a series of examples from

the Gulf Coast showing that density re�ectivity can be practically solved for and

used in an exploration environment. Downton and Chaveste (2004) show an exam-

ple demonstrating the use of three-term AVO inversion to predict �uid properties

in a reservoir where the sand quality varies complicating the density response and

analysis. The preceding paper and this chapter are based on the work and are an

extension of Downton and Lines (2001a).

This chapter describes how probabilistic constraints may be developed either from

local well control or empirical rock physical relationships and how these constraints

may be used to stabilize the solution. The algorithm incorporates constraints cal-

ibrated and suitable for local geologic conditions over some target interval. Bayes�

theorem is used to develop the theory, algorithm and uncertainty analysis result-

ing in a constrained three-term nonlinear AVO inversion algorithm with reliability

estimates. The inversion solves for P-wave and S-wave impedance, and density

re�ectivity but can be transformed to a variety of other attributes popular in the

literature in a simple manner. Both synthetic and real seismic data examples are

shown. The synthetic example demonstrates that even when the P-wave velocity and

density are uncorrelated, the density re�ectivity may be accurately predicted under

situations typical for real seismic. The real seismic data example shows the ability of

the density re�ectivity to di¤erentiate a non-commercial reservoir from a commercial

reservoir.
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Figure 3.1: Response of density, P-wave, and S-wave velocity to changing water and
gas saturation assuming a two phase �uid. The Gassmann equation is used to model
the velocities.

3.2 Theory

3.2.1 Amplitude variation with o¤set model

Following the approach outlined in Chapter 2, the elastic parameters may be

estimated, using a linearized approximation of the Zoeppritz equations, such as the

three-term Gidlow et al. (1992) (equation 2.19)2664
R(��1)
...

R(��M)

3775 =
2664
sec2 ��1 �8�2 sin21 �� 4�2 sin2 �� � tan2 ��
...

...
...

sec2 ��M �8�2 sin2 ��M 4�2 sin2 ��M � tan2 ��M

3775
264 Rp

Rs

Rd

375 ; (3.1)

where R
�
��
�
is the angle dependent re�ectivity and the parameters RP ; RS; Rd re-

spectively are the P-wave and S-wave impedance, and density re�ectivity as de�ned

in Chapter 2. The parameter � is the average ratio of the S- to P-wave velocity while

the variable �� is the average angle of incidence across the interface. If �� and � are

considered to be known a priori, equation (3.1) may be solved using linear inverse

techniques. Equation (3.1) assumes that there are M o¤sets and that ray tracing is

done to map the o¤sets to the average angle of incidence.
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This model assumes the earth is composed of a series of �at, homogeneous,

isotropic layers. Transmission losses, converted waves, and multiples are not in-

corporated in this model and so must be corrected for through prior processing. In

theory, gain corrections such as spherical divergence, absorption, directivity, and ar-

ray corrections can be incorporated into this model, but are not considered for brevity

and simplicity, so must be previously applied. The inversion is performed on NMO

corrected or prestack migrated gathers as the case may be. In this chapter the band-

limited nature of the seismic data are ignored along with NMO stretch and o¤set

dependent tuning which will be discussed in later chapters. By ignoring the band-

limited nature of the seismic data, each time sample can be considered an interface

which may be independently inverted for. This is the typical assumption made in

AVO inversion. The inversion is performed on each time sample for each CMP gather.

I choose to use a linearized approximation of the Zoeppritz equations, rather than

a higher order approximation, such as done by Kelly and Skidmore (2001), since the

latter includes squared re�ectivity terms. If these terms are included, then �rst order

intrabed multiples should be as well, since they are of the same order leading to a

much more complex model such as considered by Sen and Sto¤a (1995).

Equation (3.1) may be written more succinctly in matrix notation as

Gx = d; (3.2)

where G is the linear operator, x the unknown parameter vector and d the input

data vector (o¤set dependent re�ectivity). The parameter vector is composed of

the density, P-wave and S-wave impedance re�ectivity attributes. These are called

re�ectivity attributes since they share the same mathematical form as re�ectivity but

not the same physical signi�cance. For conciseness and brevity, in the rest of this

thesis I shall refer to x as re�ectivity.

3.2.2 Bayes�theorem

Bayes�theorem provides a theoretical framework to make probabilistic estimates

of the unknown re�ectivity attributes x from uncertain data and a priori informa-

tion. The resulting probabilistic parameter estimates are called the Posterior Proba-

bility Distribution Function (PPDF ). The PPDF written symbolically as P (xjd;I)
indicates the probability of the parameter vector x given the data vector d (o¤set
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dependent re�ectivity) and information I. Bayes�theorem

P (xjd;I) = P (djx;I)P (xjI)
P (djI) ; (3.3)

calculates the PPDF from the likelihood function P (djx;I) and an a priori proba-
bility function P (xjI). The denominator P (djI) is a normalization function which
may be ignored if only the shape of the PPDF is of interest so

P (xjd;I) / P (djx;I)P (xjI) : (3.4)

In this dissertation rather than characterizing each re�ectivity attribute by its com-

plete PPDF, parametric measures are used to characterize the PPDF. The maximum

of the PPDF or mode is used as the estimate of the re�ectivity attribute while some

measure of dispersion or width of the PPDF is used characterize the uncertainty of

the parameter estimate.

3.2.3 Likelihood function

If the noise associated with the mth experimental measure is assumed to be

Gaussian with variance �m then the probability of themth o¤set dependent re�ectivity

dm; given the parameter vector x is

P (dmjx;�m; I) =
1

�m
p
2�
exp

 
�(Fm � dm)

2

2�2m

!
; (3.5)

where Fm describes the functional relationship between the data and parameters x for

o¤set m as described by equation (3.1) Fm =
P3

p=1Gmpxp: If it is further assumed

that the noise in the data are independent then

P (djx; �m; I) = (2�)�
M
2

 
MY
m=1

��1m

!
exp

 
�

MX
m=1

(Fm � dm)
2

2�2m

!
: (3.6)

This follows from the repeated application of the product rule (Sivia 1996, equation

1.2) P (dm; dnjx; �m; I) = P (dmjdn;x; I)�P (dnj;x; I) and from the de�nition of inde-
pendent data P (dmjdn;x; I) = P (dmjx; I) so that P (dm; dnjx; �m; I) = P (dmjx; I) �
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P (dnj;x; I): Assuming uniform noise �m = �N then

P (djx; �N ; I) / (2�)�
M
2 ��MN exp

 
�

MX
m=1

�P3
n=1Gmnxn � dm

�2
2�2N

!
: (3.7)

In the case of uniform priors, Bayesian inversion is equivalent to maximum like-

lihood inversion. For AVO inversion, because of the small number of parameters

solved for, it is possible to visualize the PPDF. If the parameter vector x had only

one element, the PPDF is a Gaussian function. If the parameter vector x has two ele-

ments, the PPDF is a bivariate Gaussian function and an equiprobable solution is an

ellipse. For the case of AVO inversion, where there are three parameters, the PPDF

is a multivariate Gaussian function where the equiprobable solution is an ellipsoid

(Figure 2.5). Typically the ellipsoid is quite elongated along the density re�ectivity

axis. The solutions are nonphysical when the re�ectivity is greater than +1 or less

than �1.

3.2.4 A priori constraints

One way to reduce the uncertainty and to exclude nonphysical solutions is to im-

pose constraints on the solution. For example, nonphysical solutions (e.g. jrp; rs; rdj >
1) can be excluded from the solution space by assigning a uniform probability distrib-

ution where physical solutions are equiprobable and nonphysical solutions given zero

probability. However, it is not necessarily desirable to assign uniform probabilities

over the range of physically valid re�ectivity. The stratigraphic sequence is a result

of cyclic geologic processes that result in re�ectivity probability functions, which may

be reasonably described by common probability functions. It is desirable to select a

probability function which contains greater information content.

The Gaussian probability function is highly desirable from this point of view.

It is a good compromise between increased information content and computational

simplicity. Compared to the uniform distribution, it contains additional information

about the mean and dispersion of the re�ectivity. The mean describes the overall

background trend, which may be used to reconstruct the impedance trend, while the

dispersion describes the range of the expected re�ectivity values. This information is

obtainable from nearby well control. Todoeschuck et al. (1990) argue, based on well

control, that over a short enough window, the statistics of a well log are Gaussian.

However, Todoeschuck et al. (1990) point out that this is not true over the length of
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the entire well log where large velocity and density boundaries are crossed repeatedly.

This tends to increase the kurtosis or the degree of peakedness of the distribution

of the sequence. For our purposes over a small enough window, typical of a target

oriented inversion, the Gaussian probability function is applicable. In later chapters,

more computationally complex a priori probability distributions are explored.

In actuality, there are three re�ectivity series, thus a multi-variate Gaussian prob-

ability function

P (xjI) =
exp

h
�1
2
(x�hxi)T C�1x (x�hxi)

i
(2�)

3
2

p
det jCxj

3 ; (3.8)

must be used to describe the probability distribution where hxi is the mean re�ectivity
and Cx is the parameter covariance matrix. In this case, the band-limited re�ectivity

is estimated so the mean hxi = 0; thus the multi-variate Gaussian probability function
simpli�es to

P (xjI) =
exp

�
�1
2
xTC�1

x x
�

(2�)
3
2 (det jCxj)

3
2

; (3.9)

which is parameterized by the parameter covariance matrix

Cx =

264 �2Rp �RpRs �RpRd
�RpRs �2Rs �RsRd
�RpRd �RsRd �2Rd

375 : (3.10)

The diagonal elements of the parameter covariance matrix are the variances �2Rp ; �
2
Rs
; �2Rd

of the P-wave and S-wave impedance and density re�ectivity respectively. The o¤-

diagonal elements or covariances describe how correlated the P-wave and S-wave

impedance and density re�ectivity are. For a particular covariance, the subscripts

indicate for which two variables the covariance has been calculated. An alternative

parameterization is in terms of the correlation coe¢ cient. For example, the corre-

lation coe¢ cient rRpRs measures the how closely the P-wave and S-wave impedance

re�ectivities are correlated. The range of the correlation coe¢ cient is 0 � jrj � 1:

If the magnitude of the correlation coe¢ cient
��rRpRs�� approaches 0 then the S-wave

impedance re�ectivity does little to help predict the P-wave impedance re�ectivity.

Conversely, if the magnitude of the correlation coe¢ cient
��rRpRs�� approaches 1 then

the two re�ectivity series are nearly identical. The relationship between the covari-
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ance and the correlation coe¢ cient is

rRpRs =
�RpRs
�Rp�Rs

: (3.11)

For future reference, the inverse covariance matrix or weighting matrix is de�ned

as

Wx = C
�1
x ; (3.12)

so equation (3.9) transforms to

P (xjI) =
exp

�
�1
2
xTWxx

�
(2�)

3
2

p
det jW�1

x j
3 : (3.13)

Calculation of the covariance matrix

Statistical calculation The simplest way to generate the covariance matrix in

equation (3.10) is to estimate the statistics from nearby well control. This is done

by transforming the appropriate logs from depth to time and then generating the

re�ectivity. The covariance matrix is calculated from the density, P-wave and S-

wave velocity re�ectivity series over a time interval similar to the window which is to

be inverted. Assuming this window has N time samples and that these re�ectivity

series are stationary, then the 3 � N replicate matrix X is constructed from the N

parameter vectors xi= [Rpi ; Rsi ; Rdi ]
T where the subscript represents the time sample.

For zero mean variables, the covariance matrix is estimated using

Ĉx =
XXT

N
; (3.14)

The a priori information should be indicative of the regional statistics of the geology.

Large re�ectivity anomalies, such as those due to Class III AVO anomalies, bias

these trends. To prevent outliers dominating the calculation, the re�ectivity may

be weighted to reduce the in�uence of outliers. For example, the weighting matrix

made up of the diagonal elements

Wnn =

8<:
1
�

���xn�p ��� < �

1���xn�p ���
���xn�p ��� > �

; (3.15)
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accomplishes this. The weighted covariance matrix is

Ĉx =
XWXT

N
: (3.16)

It is shown in Chapter 6 that these weights may be used to mimic distributions other

than Gaussian or `2 norm.

In reality the calculation is more complex than equation (3.14) or (3.16) suggests

since at least one of the re�ectivity series is nonstationary. The following section

shows that the S-wave velocity re�ectivity is nonstationary due to the fact that the

P-wave to S-wave velocity ratio changes as a function of depth. This implies that

the covariance matrix should change as a function of  and be calculated with this

nonstationarity taken into account. Further complicating the analysis is the fact that

the explorationist is often dealing with incomplete information. Often, one or more

of the sonic, density or dipole logs are not available. The following section describes

a methodology on how to construct a time variant covariance matrix when there is

missing information.

Covariance matrix parameterized in terms of rock physical relationships

Two-term formulation Recall from Chapter 1 that the mudrock relationship

(1.34) relates the P-wave velocity � to the S-wave velocity � for �uid �lled clastics

using the empirical mudrock relationship

� � m� + b: (3.17)

Further, Smith and Gidlow reformulated equation (3.17) in terms of re�ectivity to

derive the �uid stack. In water saturated sediments equation (3.17) written in terms

of re�ectivity is

R� � m�R�: (3.18)

Assuming the P-wave velocity re�ectivity R� is stationary and  changes as a function

of depth, equation (3.18) implies the S-wave velocity re�ectivity R� is nonstationary.

It is quite typical that the value of  changes as a function of depth. This is evident

when the mudrock equation (3.17) is rewritten in terms of ,

 = 0:862 � 1172
�

; (3.19)
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using the typical parameters m = 1:16 and b = 1360 m=s (Castagna et al., 1985).

Soft uncompacted formations have a low P-wave velocity whose lower limit approaches

that of water. Thus, for soft unconsolidated sediments the second term is almost

equal to the �rst resulting in the ratio being close to zero resembling an acoustic

material. For more compact sediments the P-wave velocity approaches that of the

dominant mineral. For example, if the upper limit of the P-wave velocity is 6500

m/s this implies a  ratio of around 0:68. Since the value of  changes as function of

depth, equation (3.18) implies that R� is nonstationary, even if R� is stationary. If

R� is stationary over the inversion window, then by performing a change of variables

R0� = �R� it is possible to write equation (3.18) in terms of stationary variables

R� = mR0�: (3.20)

where R0� is the scaled S-wave velocity re�ectivity. The slope may be calculated as a

least squares problem assuming that R� and R0� are stationary and that the mudrock

slope is constant over the inversion window. In this case, equation (3.20) written in

matrix notation is

r� = mr0�; (3.21)

for which the least squares solution is

m =
r0T� r�

r0T� r
0
�

=
�R�R0�
�2R0�

; (3.22)

where �R�R0� is the covariance between the P-wave and scaled S-wave impedance

re�ectivity and �2R0� is the variance of the scaled S-wave impedance re�ectivity. If m

is not constant over the whole inversion window then the analysis may be broken into

smaller windows for which m is constant, and then the constraints may be applied in

a time dependent fashion.

It is more intuitive to write equation (3.22) in terms of the correlation coe¢ cient

rR�R0� rather than the covariance �R�R0� : Rewriting equation (3.22) written in terms

of the correlation coe¢ cient (equation 3.11) results in a relationship between the P-

and S- wave velocity re�ectivity variance

�R0� =
rR�R0�
m

�R� : (3.23)
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After substituting equation (3.11) and (3.23) the covariance matrix for the trans-

formed variables Cx0 written in terms of the mudrock slope m and the correlation

coe¢ cient rR�R0� is

Cx0 =

"
�2R� �R�R0�
�R�R0� �2R0�

#
= �2R�

264 1
r2
R�R

0
�

m
r2
R�R

0
�

m

r2
R�R

0
�

m2

375 : (3.24)

As long as positive values for m and rR�R0� are chosen the parameter covariance

matrix Cx0 is positive semi-de�nite. This is important later, since the inverse of the

parameter covariance matrix is required to �nd the solution.

Change of variables Note that the parameter covariance matrix in equation

(3.24) is written in terms of scaled S-wave velocity re�ectivity R0� rather than the

S-wave velocity re�ectivity R�: In the next section, the parameter covariance matrix

must be written in terms of S-wave velocity re�ectivity R�; so a change of variables"
R�

R0�

#
=

"
1 0

0 �

#"
R�

R�

#
; (3.25)

must be performed. Equation (3.25) written more generally in matrix notation is

x0 = Tx; (3.26)

where x0 is the transformed variable and T is the transform matrix. The parameter

covariance matrix (equation 3.14) under the change of variables (equation 3.26) is

Cx = T
�1Cx0

�
T�1

�T
: (3.27)

Thus, the parameter covariance matrix equation (3.24) written in terms of the S-wave

velocity re�ectivity rather than the scaled S-wave velocity re�ectivity is

Cx =

"
�2R� �R�R�
�R�R� �2R�

#
= �2R�

"
1 0

0 1
�

#264 1
r2
R�R

0
�

m
r2
R�R

0
�

m

r2
R�R

0
�

m2

375" 1 0

0 1
�

#T
; (3.28)
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or

Cx =

"
�2R� �R�R�
�R�R� �2R�

#
= �2R�

264 1
r2
R�R

0
�

m�
r2
R�R

0
�

m�

r2
R�R

0
�

m2�2

375 : (3.29)

From this the useful relationships

�R�R� =
r2R�R0�
m�

�2R� ; (3.30)

and

�R� =
rR�R0�
m�

�R� ; (3.31)

follow.

Three-term formulation The three-term parameter covariance matrix may be

written in a similar fashion. Taking the derivative of the Gardner relationship (1.35)

� = e�g provides a relationship linking density to the P-wave velocity re�ectivity,

Rd = gR�: (3.32)

In a similar fashion to equation (3.22) the parameter g is found by least squares �tting

the well log re�ectivity

g =
�R�Rd
�2R�

: (3.33)

Substituting the de�nition of the correlation coe¢ cient between the density and P-

wave velocity re�ectivity

rR�Rd =
�R�Rd
�R��Rd

; (3.34)

into (3.33) results in a relation linking the density and P-wave velocity re�ectivity

�Rd =
g

rR�Rd
�R� : (3.35)

Potter et al. (1998) observed a similar relationship to equation (3.32) between

S-wave velocity and density. Thus, the re�ectivity relationship

Rd = fR�: (3.36)

may be derived. In a similar fashion to equation (3.22) the parameter f is found by
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least squares �tting the well log re�ectivity

f =
�R�Rd
�2R�

: (3.37)

These parameters and their correlation coe¢ cients can be calculated from the local

well control. Upon substitution of equation (3.11), (3.23), (3.33), (3.37) and (3.35)

into

Cx =

264 �2R� �R�R� �R�Rd
�R�R� �2R� �R�Rd
�R�Rd �R�Rd �2Rd

375 : (3.38)

results in the multi-variate parameter covariance matrix

264 �2R� �R�R� �R�Rd
�R�R� �2R� �R�Rd
�R�Rd �R�Rd �2Rd

375 = �2R�

266664
1

r2
R�R

0
�

m�
g

r2
R�R

0
�

m�

� rR�R0�
m�

�2
f
� rR�R0�

m�

�2
g f

� rR�R0�
m�

�2 �
g

rR�Rd

�2
377775 : (3.39)

The advantages of writing the parameter covariance matrix in these terms are:

(1) if there is missing information from one or more wells, geologically plausible

parameters may be chosen to construct the covariance matrix, (2) the calculations

of the statistics are all based on stationary re�ectivity series, (3) the nonstationary

nature of the covariance matrix is built into the analytic relationship through the 

dependence, and (4) if positive values of parameters are chosen this leads to a positive

de�nite matrix which can be inverted as required by equation (3.12).

Parameter covariance matrix expressed in terms of impedance re�ectivity

The likelihood model is expressed in terms of impedance re�ectivity (equation 3.1)

rather than velocity re�ectivity as the parameter covariance matrix (equation 3.39)

is. Using the transform matrix264 Rp

Rs

Rd

375 =
264 1 0 1

0 1 1

0 0 1

375
264 R�

R�

Rd

375 ; (3.40)

the covariance matrix (3.39) becomes
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Cx = �2R�

264 1 0 1

0 1 1

0 0 1

375
266664

1
r2
R�R

0
�

m�
g

r2
R�R

0
�

m�

� rR�R0�
m�

�2
f
� rR�R0�

m�

�2
g f

� rR�R0�
m�

�2 �
g

rR�Rd

�2
377775
264 1 0 1

0 1 1

0 0 1

375
T

; (3.41)

or

Cx = �2R�

26666664
1 + 2g + g2

r2R�Rd

r2
R�R

0
�

m�
+ g + f

r2
R�R

0
�

m2�2
+ g2

r2R�Rd
g + g2

r2R�Rd
r2
R�R

0
�

m�
+ g + f

r2
R�R

0
�

m2�2
+ g2

r2R�Rd

r2
R�R

0
�

m2�2
+ 2f

r2
R�R

0
�

m2�2
+ g2

r2R�Rd
f
r2
R�R

0
�

m2�2
+ g2

r2R�Rd

g + g2

r2R�Rd
f
r2
R�R

0
�

m2�2
+ g2

r2R�Rd

g2

r2R�Rd

37777775 :
(3.42)

Writing this with the matrix normalized with respect to the P-wave impedance re-

�ectivity variance �2Rp = �2R�

�
2g + g2

r2RdR�
+ 1

�
the covariance matrix (3.42) becomes

Cx = �2Rp
~Cx: (3.43)

where ~Cx is de�ned as the normalized parameter covariance matrix

~Cx =

266666666666666664

1

r2
R�R

0
�

m�
+g+f

r2
R�R

0
�

m2�2
+ g2

r2
R�Rd 

2g+ g2

r2
RdR�

+1

! g+ g2

r2
R�Rd 

2g+ g2

r2
RdR�

+1

!
r2
R�R

0
�

m�
+g+f

r2
R�R

0
�

m2�2
+ g2

r2
R�Rd 

2g+ g2

r2
RdR�

+1

!
r2
R�R

0
�

m2�2
+2f

r2
R�R

0
�

m2�2
+ g2

r2
R�Rd 

2g+ g2

r2
RdR�

+1

! f

r2
R�R

0
�

m2�2
+ g2

r2
R�Rd 

2g+ g2

r2
RdR�

+1

!

g+ g2

r2
R�Rd 

2g+ g2

r2
RdR�

+1

! f

r2
R�R

0
�

m2�2
+ g2

r2
R�Rd 

2g+ g2

r2
RdR�

+1

!
g2

r2
R�Rd 

2g+ g2

r2
RdR�

+1

!

377777777777777775
: (3.44)

Sample calculation

Figures 3.2 and 3.3 illustrate this approach based on logs from a well drilled from

northeastern British Columbia, for which the drilling target was the Halfway sand.

This well is used in a later section to create a synthetic model and to constrain the real
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Figure 3.2: Cross-plot of the P- and S-wave velocities in m=s for the Halfway well
over the clastic interval. The red line indicates the best �t in a least squares sense of
� = 0:98� + 1683.

seismic data example. Figure 3.2 shows a crossplot of the P- and S- wave velocities.

Excluding the carbonates, there is a strong linear relationship relating the velocities,

� = 0:98�+1683. Figure 3.3a shows the relationship between the P-wave and S-wave

velocity re�ectivity. The least squares �t found using equation (3.22) is R� = 1:01R0�
with a correlation coe¢ cient of rR�R�0 = 0:845: The close agreement between the two

slope estimates supports the relationship between equations (3.17) and (3.20). Thus,

for  = 0:5, m = 1:01 and r = 0:845 the two-term covariance matrix (3.29) is

Cx =

"
�2� ���

��� �2�

#
= �2R�

"
1 1: 413 9

1: 413 9 2: 799 8

#
: (3.45)

Note, in actuality the covariance matrix changes as a function of : Figure 3.3b shows

the crossplots for the density re�ectivity versus the P-wave velocity crossplot. The

least-squares relationship for this is Rd = 0:2559R� with a correlation coe¢ cient of

rR�Rd = 0:8483: This value of g = 0:2559 is close to that published by Gardner et al.

(1974) of g = 0:25. Similarly, Figure 3.3c shows the crossplot between the density

and S-wave velocity re�ectivity with the least squares �t Rd = 0:1791R�: From these

values the parameter covariance matrix (3.44) is calculated to be
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~Cx =

264 1:0 1: 411 4 0:216 43

1: 411 4 2: 429 3 0:369 63

0:216 43 0:369 63 5:677 6� 10�2

375 : (3.46)

for  = 0:5:

3.2.5 Nonlinear inversion

The likelihood function (equation 3.7) may be combined with the a priori prob-

ability function (equation 3.13) using Bayes�Theorem (equation 3.4). Figure 3.4

illustrates this. The estimate is taken to be the mode of the PPDF. On Figure 3.4,

this would be close to the intersection of the two ellipsoids. Contrast this to Figure

2.9 which shows the two-term Smith and Gidlow solution. The Gardner constraint

Rd = gR� de�nes a plane. The optimal solution is where the mis�t function (el-

lipsoid) intersects this plane. The constraint dramatically decreases the uncertainty

but at the expense of introducing theoretical error. For example, if there is no noise

in the solution, the estimate must still lie within the plane de�ned by Rd = gR�: In

contrast, the Bayesian solution would be dominated by the likelihood function. It

would be able to predict situations where the density behaves in a di¤erent fashion

than the P-wave velocity re�ectivity such as in a low saturation gas sand. Figures

2.10 and 2.11 compare the probabilistic constraint used in the Bayesian solution with

explicit and implicit constraints used to generate two-term solutions. The black sur-

face is the equi-probable surface generated by the multivariate Gaussian constraints.

It is evident that the di¤erent constraints greatly in�uence the mode of the PPDF

and therefore the estimate of the parameters with some choices clearly not being ap-

propriate. For example, the two-term Shuey approximation requires that the P-wave

velocity re�ectivity be set to zero, which is at odds with a variable velocity earth

model. This theoretical error introduced by the constraint is what leads to the bias

in the estimate of the gradient term in the Shuey equation.

Mathematically, combining the likelihood function (equation 3.7) with the a priori

probability function (equation 3.13) using Bayes�Theorem (equation 3.4) leads to

P (x; �N jd; I) / (2�)�
M
2 ��MN exp

 
�

MX
m=1

�P3
n=1Gmnxn � dm

�2
2�2N

!
exp

�
�1
2
xTWxx

�
:

(3.47)
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Figure 3.3: Crossplot of the P- and S-wave re�ectivity for the Halfway well over the
clastic interval. (a) The red line shows the trend generated from Fig. 3.2. The blue
line indicates the best �t in a least squares sense between the re�ectivity giving a slope
of m=1.01. Figure (b) is a crossplot of the P-wave velocity and density re�ectivity.
The red line shows the parameters calculated using the Gardner equation while blue
line indicates the best �t in a least squares sense giving a slope of g=0.2559. Figure
(c) is a crossplot of the S-wave velocity and density re�ectivity. The red line shows
the parameters calculated using the Potter equation while blue line indicates the best
�t in a least squares sense giving a slope of f=0. 0.1791.
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Figure 3.4: Blue surface is mis�t ellipsoid generated from likelihood function based on
equation (3.1) for the acquisition geometry used in the Blackfoot synthetic. The black
surface is equi-probable surface generated by the constraints based on the multivariate
Gaussian constraints. The optimal solution occurs where the combined probability is
maximum.
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Since there is no explicit interest in the variance �N ; it is marginalized (Appendix E)

P (xjd; I) / exp
"
�1
2

3X
i

3X
j

xiWxijxj

#0@ MX
m=1

 
3X
i=1

gmixi � dm

!21A� (M�1)
2

: (3.48)

The most likely solution is found by �nding where the probability function is station-

ary, @P
@xi

= 0; and convex. It is easier to determine this by taking the logarithm of

the probability distribution

L(xjd; I) / �1
2

3X
i

3X
j

xiWxijxj �
(M � 1)

2
log

0@ MX
m=1

 
3X
i=1

gmixi � dm

!21A : (3.49)

Taking the gradient of equation (3.49) results in

rL = �Wxx�
1

�̂2N

�
GTGx�GTd

�
; (3.50)

where the estimate of the noise variance estimate is

�̂2N =
"T"

(N � 1) ; (3.51)

and

" = Gx̂� d: (3.52)

Evaluating equation (3.50) at the stationary point rL = 0 and usingWx =
1
�2rp

~C�1x

results in the nonlinear equationh
GTG+�~C�1

x

i
x =GTd; (3.53)

where

� =
�̂2N
�2rp

: (3.54)

Equation (3.53) is of the form of a constrained least squares problem which is

weakly nonlinear. The nonlinearity arises since � is a function of the mis�t " which

must be estimated after one has an estimate of the parameters. The ratio � acts as

a weighting factor determining how much the prior constraints in�uence the solution.

The value of � is proportional to the noise-to-signal ratio. If the signal-to-noise is
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large, then the weighting factor is small and the constraints add little to the solution

and vice versa. In the extreme, when there is no noise, � is zero and the equation

(3.53) reduces to the least squares formulation.

The simplest case where constraints play a role is when ~C�1
x = I: This implies

that the variances of all three re�ectivity attributes are the same but uncorrelated.

This case is equivalent to damped least squares or Tikhonov regularization (Hansen,

1998). This is what is advocated by Jin et al. (2000). Based on the analysis in

the constraints section, it is expected at the very least that the variances of each

of the re�ectivity attributes are di¤erent. More importantly they are correlated.

Incorporating this extra information leads to more geologically plausible solutions

when the signal-to-noise ratio is poor.

Newton-Raphson solution

It was noted previously that equation (3.53) is weakly nonlinear due to the fact

that � is dependent on the �nal solution. The probability distribution (equation

3.49) is a multi-variate Gaussian function multiplied by a multi-variate Student dis-

tribution. As long as the number of observations is reasonably high, the Student

distribution is close to a Gaussian distribution and can be approximated well by a

two-term Taylor series. The Newton-Raphson approach is well suited to solve this

problem and converges to the optimal solution Q-quadratically (Nocedal and Wright,

1999) so that in this case the optimal solution is found in 2 or 3 iterations. The form

of this solution is

xN+1 = xN � [rrL (xN)]�1rL (xN) ; (3.55)

where the subscripts indicate the iteration number. The second derivative may be

derived from the �rst derivative (equation 3.50)

rrL (xN) = �Wx �
1

�̂2N
GTG: (3.56)

Combining equations (3.50), (3.52) and (3.56) in (3.55) results in

x̂N+1= x̂N�
h
GTG+�~C�1

x

i�1 h
GT"+�~C�1x x

i
: (3.57)
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If the incremental parameter step dx is de�ned by the equation

xi+1= xi�dx; (3.58)

then the incremental step is

dx =
h
GTG+�~C�1

x

i�1 h
GT"+�~C�1x x

i
: (3.59)

Equation (3.58) and (3.59) are iteratively applied to estimate the parameter vector

x:

Scaling There is one further complication that needs to be addressed in order to

have a working algorithm. This complication is that the processed seismic data are

scaled by an unknown global scalar. In recording and processing the seismic data,

even if great care is taken in processing the data in an amplitude friendly fashion, the

data are still scaled by some arbitrary global scalar. The calculation of � (equation

3.54)

� =
�̂2N
�2rp

; (3.60)

is biased by this scalar. The estimate of the variance of the noise contains this

scalar since it is estimated from the data. The denominator �2rp does not since it is

estimated from the well control. This scalar will either make � too large or small

a¤ecting the in�uence of the constraints. Other than the � term, the global scalar

just scales the solution in a manner consistent with the data.

The problem of �nding this global scalar is di¢ cult since the problem as posed

is underdetermined. The problem is multi-dimensional but reducing it to its most

basic form one arrives at an equation of the form rs =constant where r represents the

re�ectivity and s the scalar. If one increases the scalar s then the re�ectivity decreases

and vice versa. From the equation, one cannot tell if one solution is right. More

information must be brought into the problem, for example specifying the variance

of the re�ectivity. This requires considering multiple interfaces (time samples) and

treating the well information as data rather than a priori constraints complicating

the analysis tremendously.
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A pragmatic solution to this, is to rede�ne the de�nition of � so that

� =
�̂2N
�̂2rp

; (3.61)

where �̂2rp is estimated from the data. We have assumed the P-wave impedance re�ec-

tivity is stationary so that an estimate of the P-wave impedance re�ectivity variance

may be made based on N time samples of the P-wave impedance re�ectivity. The

P-wave impedance re�ectivity is chosen since it is the most reliable of the re�ectiv-

ity attributes (Chapter 2) and least likely to change due to variations in acquisition

geometry or signal-to-noise ratio. Since both the denominator and the numerator

contain the scale factor, it divides out becoming a non-issue in the calculation of �:

3.2.6 Uncertainty analysis

The uncertainty of the parameter estimate is related to the width of the distri-

bution. This may be estimated from the 2nd derivative evaluated at the parameter

estimate (Sivia 1996, equation 3.71)

Ĉx̂ = �
�
(rrL)�1

�
; (3.62)

where Cx̂ is the parameter covariance matrix of the estimate. With the assumption

of uncorrelated uniform Gaussian noise the uncertainty is described by the covariance

matrix

Ĉx̂ = �2N

h
GTG+�~C�1x

i�1
: (3.63)

The diagonal of the covariance matrix (equation 3.63) represents the variance of

each parameter estimate. The o¤-diagonal element represents the degree of correla-

tion between the errors (Menke, 1984). Later, in the example section, the standard

deviation, rather than the variance, is used to display the uncertainty so that the un-

certainty is displayed in same units as that of the re�ectivity for ease of comparison.

The case where � = 0 is equivalent to the unconstrained uncertainty

Ĉx̂ = �2N
�
GTG

��1
; (3.64)

as calculated in Chapter 2 (equation 2.36). Since the three-term AVO problem is

ill-conditioned the uncertainty of the unconstrained problem will be typically large.
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Adding the constraints (equation 3.63) helps stabilize the inverse thus reducing the

uncertainty. It is also important to understand how much the constraints in�uence

the solution. Following Wijngarrden and Berkhout (1996), the uncertainty of the

constrained solution is compared to the uncertainty of the estimate for the case where

constraints are not included. The ratio of these two uncertainty estimates give a

sense for how much the solution is being in�uenced from the data and how much by

prior knowledge. To make accurate predictions about the subsurface the parameter

estimate of interest should be largely coming from the data.

3.2.7 Transform matrix

In this thesis the P-wave and S-wave impedance, and density re�ectivity are esti-

mated. This is a rearrangement of the Aki and Richards (1980) formulation written

in terms of P-wave and S-wave velocity, and density re�ectivity. As reviewed in

Chapter 2, there are numerous other rearrangements of equation (3.1) in the litera-

ture including Lamé re�ectivity (Gray et al., 1999), and the Shuey parameters A;B;C

(Shuey, 1985). This being the case, it is possible to use the transform matrix (equa-

tion B.55) to transform from impedance re�ectivity to any of these other attributes.

Further, the uncertainty of the transformed variables may be estimated using

Ĉ0
x̂ = TĈx̂T

T : (3.65)

In this way di¤erent AVO attributes can be examined to see how they show o¤

some particular geologic feature or anomaly. An attribute can be selected which best

highlights the objective. Of equal importance, the reliability of each of these attributes

can also be examined to understand whether the anomaly under this variable is

reliable or an artifact due to the noise.

3.3 Examples

The three-term AVO inversion developed in this chapter is demonstrated on both

synthetic and real data. Both the synthetic data examples are generated based on

two wells from Western Canada. The �rst example demonstrates how the inversion

reacts to changes in angle range and signal-to-noise ratio. The second example

was constructed so that the density re�ectivity is poorly correlated with velocity

re�ectivity. The objective in this second synthetic example is to show that the
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density re�ectivity may be accurately estimated, even when not correlated with the

velocity re�ectivity, given signal-to-noise ratios and angle ranges found in typical

seismic data. The real seismic data are in close proximity to the second synthetic

example and demonstrates the technique on real data.

3.3.1 Blackfoot synthetic example

The �rst example is based on a well from the Blackfoot pool from Alberta, Canada

introduced in Chapter 2. Based on these wireline logs a synthetic model was gen-

erated (Figure 2.15) using the Zoeppritz equations to model the re�ectivity. The

re�ectivity was generated with no moveout so NMO stretch and tuning are not an

issue. The re�ectivity was convolved with a 10/14 - 70/80 Hz zero phase wavelet.

Random noise was added to give a signal-to-noise ratio of 2:1. The zone of interest is

the relatively low velocity Glauconitic sand from 0.98 to 1.01 seconds The model was

generated with a variety of di¤erent acquisition geometries with di¤erent angle ranges

and signal-to-noise ratios. The constraints were constructed based on a composite of

logs in the area. Figure 3.5 shows crossplots between the various re�ectivity sections

for one of the wells. The following empirical relationships were observed

R� = 1:5R
0
� with rR�R�0 = 0:79;

Rd = 0:4620R� with rR�Rd = 0:8633;

Rd = 0:420R�.

from which the the normalized covariance matrix was constructed.

The results of the constrained inversion were output in terms of impedance re�ec-

tivity and compared to the corresponding zero o¤set re�ectivity attributes. In order

to obtain a reliable estimate of the density re�ectivity we need to have seismic data

with good signal-to-noise and large range of incidence angles. Figure 3.6 shows the

case where the inversion was done with an adequate angle range from 0 � to 45 �, with

a good signal-to-noise ratio of 8:1. For this case the density is accurately estimated.

Displayed with the re�ectivity estimate is the uncertainty estimate calculated using

equation (3.63). The uncertainty in this case is small. The second inversion (Figure

3.7) is over the same angle range, but the input data have a much poorer signal-to-

ratio of 1=4: The estimated uncertainty is greater for all the re�ectivity estimates.

For this example the estimate of the density is poor above 0.85 seconds. This is



109

Figure 3.5: Cross-plots re�ectivity used to construct constraints for Blackfoot AVO
inversion.
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due to two reasons. First the signal-to-noise is poorer due to the fact the signal is

relatively smaller above 0:85 seconds. More importantly though, the constraints do

not provide helpful information since velocity and density are uncorrelated (Figure

2.15). Below 0.85 seconds the density re�ectivity estimate is more accurate due to

the higher signal-to-noise ratio and the better applicability of the constraints. The

last inversion shown (Figure 3.8) is for data with a good signal-to-noise ratio of 8:1,

but over a limited angle range of 0 ��28 �. For this limited angle range, the problem
is ill-conditioned and relies on the constraints to give a stable estimate. Note that

the estimated uncertainty for the P-wave and S-wave impedance re�ectivity is small

while the density is larger. This is consistent with the errors observed between the

ideal and the estimate. For times, t > 0:9 seconds, the density estimate is quite

accurate. However, the solution is dominated by the a priori information with little

information coming from the seismic data itself. For this case the density prediction

has little predictive value. When interpreting the density re�ectivity it is important

to also look at the parameter uncertainty.

3.3.2 Halfway synthetic example

The next synthetic example is constructed from a well drilled for the Halfway in

northeastern British Columbia, Canada. Once again, density, P-wave and S-wave

velocity logs were available from this well. For modeling purposes, the well logs were

converted to time based on the P-wave velocity log (Figure 3.9). In this well, the

density is uncorrelated with P-wave velocity log at a number of di¤erent times. The

Bluesky top is the velocity increase and density decrease at 0.67 seconds. The density

behaves dramatically di¤erent from the P-wave velocity at the Bluesky top and at

0.32 seconds. Additionally, both these events are poorly correlated when looking

at the corresponding re�ectivity. Figure 3.10 shows the Gardner density estimate

(equation 3.32) based on the P-wave velocity re�ectivity. This estimate is quite poor

as the di¤erence and crossplot (Figure 3.11) shows. This model provides a good test

of how well the density is estimated even when the Gardner relationship is violated.

The model is constructed using the Zoeppritz equations to generate the re�ectivity.

No moveout is applied so NMO stretch and tuning may be ignored. These will be

dealt with in a later chapter. The re�ectivity is convolved with a 10/14 - 90/110 Hz

wavelet and muted so no angles greater than 45 � are shown. Noise is added to give

a signal-to-noise ratio of 4:1.
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Figure 3.6: Results of AVO inversion from 0 to 45 degrees for P-impedance, S-
impedance and density re�ectivity attributes on a gather with a S/N=8. The estimate
of the uncertainty for each re�ectivity estimate along with noise is also shown.
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Figure 3.7: Results of AVO inversion from 0 to 45 degrees for P-impedance, S-
impedance and density re�ectivity attributes on a gather with a S/N=1/4. The
estimate is in red and the actual re�ectivity in blue. The estimate of the uncertainty
for each re�ectivity estimate along with noise is also shown.
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Figure 3.8: Results of AVO inversion from 0 to 28 degrees for P-impedance, S-
impedance and density re�ectivity attributes on a gather with a S/N=8. The es-
timate is in red and the actual re�ectivity in blue. The estimate of the uncertainty
for each re�ectivity estimate along with noise is also shown.
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Figure 3.9: Wireline logs displayed in time for the Halfway well log. The synthetic
gather was generated using re�ectivity generated from the Zoeppritz equation. The
re�ectivity is shown without moveout, �ltered and with noise added to give a S/N=4.

The synthetic model was inverted to estimate the P-wave and S-wave velocity,

and density re�ectivity. The parameters previously derived in Figure 3.3 were used

to constrain the solution. In Figure 3.12, the reference zero o¤set re�ectivity is shown

in blue while the estimate from the constrained three-term AVO inversion is shown

in red. There is little di¤erence between the ideal and estimate even at 0.32 and 0.68

seconds where the P-wave velocity and density re�ectivity are uncorrelated.

To test the in�uence of constraints, the inversion was redone with another set

of constraints based on the following parameters m = 1:14; g = 0:20; f = 0:10 with

the same correlation coe¢ cients used before. The results shown in Figure 3.13 are

almost identical to the previous results shown in Figure 3.12.
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Figure 3.10: P-wave velocity and density of Halfway well log. Note that density and
velocity are uncorrelated at 0:32 and 0:68 seconds. Note the corresponding re�ectivity
is as well. Density estimated using the Gardner equation Rd = gR� poorly correlates
with the actual density.
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Figure 3.11: Cross-plot of P-wave velocity and density re�ectivity. Note the large
amount of scatter and the poor correlation.
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Figure 3.12: Comparision of three-term AVO inversion for the P- and S-wave velocity,
density and �uid stack re�ectivity (shown in red) with the ideal zero-o¤set re�ectivity
(shown in blue).
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Figure 3.13: Comparision of three-term AVO inversion with another set of constraints
for the P- and S-wave velocity, density and �uid stack re�ectivity (shown in red) with
the ideal zero-o¤set re�ectivity (shown in blue).
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3.3.3 Halfway seismic data example

The inversion was run on a line which was part of a project acquired to explore

for Halfway sand potential (Downton and Tonn, 1997). In general, the seismic data

have a good signal-to-noise ratio. O¤sets are long enough so the AVO inversion

is performed on angles out to 45 �. Forward modeling indicates that within this

range supercritical re�ections are not encountered. Figure 3.14 shows the P-wave

and S-wave impedance, and density re�ectivity estimates for three-term constrained

inversion for the line. There are two bright spots on the line, evident on the P-

wave impedance re�ectivity section, at around 0.72 seconds The producing �eld

(wells C and E) should have both a relatively low velocity and density response,

hence large re�ectivity responses. The uneconomic gas sand at well A has low gas

saturation implying that density should not respond to the gas while still having a

large velocity response due to the gas. This is evident on the re�ectivity sections.

The P-wave impedance re�ectivity section shows bright spots at both locations. The

density re�ectivity section shows a weaker anomaly at the well with uneconomical

gas saturations (well A) than the producing �eld.

Figure 3.15 shows the standard deviation and the in�uence of the constraints on

the density re�ectivity estimated. The standard deviation is shown with the same

color scale as the re�ectivity section so the two can easily be compared, though note

the standard deviation is only positive. Around CMP 2000 the seismic line traversed

muskeg resulting in poorer quality records. The standard deviation is much larger in

this area. Because of the poorer signal-to-noise ratio, the constraints are weighted

more in the solution. This in�uence shows in the ratio of constrained to unconstrained

uncertainty (Figure 3.15, bottom panel). However, for most of the zone of interest the

solution is largely coming from the data. It is also evident that in areas with more

limited aperture, such as the end of the line or deeper in the section, the constraints

play a larger role, as expected.

Figure 3.16 shows a comparison between the scaled P-wave impedance and density

re�ectivity sections. The P-wave impedance re�ectivity section is scaled in a manner

similar to equation (3.32) so as to give a crude estimate of density. Recall this is

the assumption used in the Smith and Gidlow (1987) formulation to estimate density.

The lower panel shows a di¤erence between these two density estimates. It is evident

by the large di¤erence that the third term is contributing information independent

from equation (3.32). This is also true for the S-wave impedance re�ectivity. In
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summary, it appears that the third term predicting density is providing independent

information. From the uncertainty displays it appears that at the bright spots the

prediction is largely being driven by the seismic data, that the uncertainty is tolerable.

This combined with the good geologic correlation with the well control suggest the

density section is reasonable.

Figure 3.17 shows how the methodology helped even improve on a traditional

two-term inversion. This shows a comparison of the estimate of P-wave impedance

re�ectivity section generated by the constrained three-term AVO inversion and one

generated by a two-term Gidlow equation. The two-term least squares inversion was

performed using angles from 0 � to 33 �. The three-term inversion gives a smoother

more geologically plausible result in the area contaminated by noise around CMP

2000. This is due to the inclusion of the constraints. In this area where the signal-

to-noise ratio is weak, the a priori information dominates the solution.

3.4 Discussion

3.4.1 VTI anisotropy

In this chapter various wave propagation and processing complications have been

ignored in order to explore and solve the simpler problem of how to solve the ill-

conditioned problem of inverting for three re�ectivity attributes. For example, the

earth was assumed to be isotropic. If it is actually anisotropic, then the linearized

approximation of the Zoeppritz equations needs to be modi�ed to account for this.

The linearized approximation for VTI media (Ruger 2002, equation 4.34)

RV TIp (i) = Rp+

(
R� �

�
2
�VS0
�VP0

�2
R� +

��

2

)
sin2 ��+

�
R� +

��

2

�
sin2 �� tan2 �� (3.66)

is underdetermined with only three of the �ve parameters being uniquely solved for.

In equation (3.66) the re�ectivity attributes Rp and R� are modi�ed so that they

represent re�ectivity for vertical propagation. The parameter R� is the rigidity

re�ectivity attribute for vertical wave�eld propagation while �� = (�2 � �1) and

�� = (�2 � �1) represent the di¤erence in the Thomsen (1986) anisotropy parame-

ters delta and epsilon across the interface. If anisotropy is present, then ray tracing

and gain corrections also need to be modi�ed from those of the isotropic assump-



121

Figure 3.14: P-impedance, S-impedance and density re�ectivity attribute inversions
over producing and non-economic gas �elds. Note that it is possible to di¤erentiate
on the density section the low gas saturation gas well (light blue at Well A at 0.72s)
from the economic gas wells (dark blue Well C and E at 0.72s).
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Figure 3.15: The density re�ectivity and related quality control sections. The stan-
dard deviation of the density (middle panel) is considerably smaller than the density
re�ectivity at the zone of interest. The ratio of the unconstrained to constrained
uncertainty (bottom panel) shows the in�uence of the constraints on the solution.
Where this ratio is high, the constraints are dominating the solution. This occurs
when the S/N is poor or the range of angles available for the inversion is limited.
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Figure 3.16: The scaled P-impedance and density re�ectivity attributes shown. The
P-impedance is scaled in a manner suggested by the Gardner constraint to try and
estimate density. The bottom panel is a di¤erence between the two.
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Figure 3.17: The P-impedance inversion from the constrained three-term AVO inver-
sion (top) and from a least squares two-term AVO inversion (bottom). Note how the
constraints improve the solution on the three-term inversion in the area with a poor
signal-to-noise ratio around CMP 2000.
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tion. If anisotropy is present and equation (3.1) is used to invert for density or any

other re�ectivity attribute the estimates at best will be biased and at worst seriously

incorrect.

Even in an isotropic earth there are other complicating factors that can be sig-

ni�cant. O¤set dependent transmission losses are di¢ cult to correct for and bias

the amplitude as a function of o¤set leading to incorrect estimates. The linearized

Zoeppritz equations do not model supercritical re�ections well. The AVO inversion

code has logic to ignore any supercritical re�ections identi�ed by the ray tracing.

However, supercritical re�ections arising due to large changes in the micro-velocity

model are di¢ cult to predict leading to biased estimates due to the theoretical error.

Lastly, o¤set dependent tuning and NMO stretch will bias the AVO estimates.

Further, the band-limited nature of the seismic data are not considered in this in-

version. The inversion is performed on a sample by sample basis assuming that

each inversion is not coupled. In the following chapters the ideas in this chapter are

further developed incorporating these additional factors into the inversion.

3.4.2 Nonuniform noise

Further, this algorithm was developed assuming uniform Gaussian random noise.

Often for real data, the noise there will be not be uniform or Gaussian. The noise

will have outliers implying long tailed distributions. In Chapter 8 it is shown how

the likelihood function may be modi�ed to incorporate these long tailed distributions

so the inversion will behave in more robust fashion in the presence of this nonuniform

noise with outliers.

3.5 Conclusions

This chapter demonstrated a three parameter AVO inversion incorporating prob-

abilistic constraints from the available geologic control. The degree to which the

constraints in�uence the solution is a function of the signal-to-noise ratio of the data

and the acquisition geometry. The constraints preferably should be calculated from

local well control. If local well control is not available, values from the literature may

be used. The probabilistic constraints introduce less bias in the estimates than the

hard constraints implicitly implemented in the two-term AVO inversions. The results

of the three-term constrained AVO inversion are equivalent to the Smith and Gidlow
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AVO inversion if the a priori constraints de�ne the density re�ectivity as a linear

function of the P-wave velocity re�ectivity. Similarly, the results of the inversion

are equivalent to the two-term Gidlow equation if the a priori information speci�es

the density re�ectivity is zero. Lastly the three-term AVO inversion is equivalent to

the two-term Shuey equation with the a priori constraint that the P-wave velocity

re�ectivity is zero. By choosing constraints based on local well control, honoring

known rock physical relationships, and weighting the constraints based on the needs

of the data, the results of the constrained three parameter AVO inversion should be

more accurate than the aforementioned methods. Impedance and density re�ectiv-

ity are solved for, but can be transformed subsequently to virtually any other AVO

attribute. Thus, the methodology is more general than any two-term AVO inversion

and produces estimates having less bias.

Parameter uncertainty estimates are provided as part of the derivation and should

be examined to determine the signi�cance and reliability of a particular AVO at-

tribute. This is particularly true for the density re�ectivity since reliably estimating

this attribute requires large incidence angles and good signal-to-noise. The variance

of a particular parameter can be examined to determine its reliability while the ratio

of the unconstrained to constrained variance conveys information about whether the

seismic data or geologic control is dominating the solution. Although the constraints

will create re�ectivity sections that are geologically plausible, for an anomaly to be

believable, solutions should be driven by the seismic data and not dominated by the

constraints.



127

Chapter 4

Error in the AVO linear operator

4.1 Introduction

In Chapter 2 a method was developed to estimate uncertainty in the parameter

estimates due to uncertainty in the data. This uncertainty estimate is overly opti-

mistic for among other things it ignores uncertainties in the linear operator. Taran-

tola (1987) calls these types of errors theoretical errors, or errors arising from using

inexact theory. In Chapter 1 it was shown that it is possible to linearize the AVO

problem providing � (the average S-wave to P-wave velocity ratio) and the average

incidence o¤set-to-angle relationship is known. There is uncertainty associated with

both these assumptions. In addition, instead of solving the exact Zoeppritz equa-

tions, some linearized, constrained approximation is solved for, again introducing

error. This chapter examines and quanti�es these errors.

Analytic expressions are developed to quantify the uncertainty associated with

both � and the ray tracing. Two-term rather than three-term AVO approximations

are used since this simpli�es the analysis. This introduces some error into the calcu-

lation but results in relatively simple expressions which can be intuitively understood.

The two-term Gidlow equation (2.20) is used to quantify the uncertainty associated

with � while the two-term Shuey equation (2.14) is used to quantify the error associ-

ated with the ray tracing. In the ray tracing analysis, the Walden (1991) approach

to ray tracing is used since it is only a function of the P-wave interval velocity and

the stacking velocity at the time sample under consideration, again simplifying the

analysis. Ignoring the C term in the two-term Shuey approximation leads to bias in

the estimate of the gradient B: This bias is discussed in section 4.2. The two-term

Shuey parameter estimates may be compared with the two-term Gidlow parameter
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estimates using the two-term transform matrix developed in Appendix B.9 thus mak-

ing it is possible to study the in�uence of both � and the ray tracing uncertainty on

the P-wave and S-wave impedance re�ectivity estimates. It would have been prefer-

able to study the uncertainty in ray tracing on the two-term Gidlow equation to keep

things consistent and avoid biased estimates but this leads to intractable solutions.

For the two-term AVO inversions examined, the uncertainty lies in the second

parameter estimated (the second term being the gradient B for Shuey, or, for Gidlow

et al. (1992) the S-wave impedance re�ectivity Rs). The intercept or P-wave im-

pedance re�ectivity is una¤ected by these modeling errors. Each of these errors lead

to both systematic and random errors. The random errors are an order of magni-

tude less than the re�ectivity estimates themselves. For realistic noise found in real

seismic data the in�uence of these errors is negligible compared to that of the noise.

The systematic errors are more problematic. These tend to introduce a time variant

scaling error in the gradient B or S-wave impedance re�ectivity Rs:

Throughout this chapter the Blackfoot synthetic model, introduced in Chapter 2,

is used to illustrate the in�uence of errors associated with the linear operator. The

�rst section quanti�es the impact of using two-term AVO approximations instead of

the exact Zoeppritz equations for the inversion. Parameter estimates from the two-

term Shuey and Gidlow inversions are compared with the ideal re�ectivity attributes

(which are generated by convolving the particular re�ectivity series by the source

wavelet to get the zero o¤set re�ectivity attribute).

In the second section, analytic expressions predicting the uncertainty due to ray

tracing errors are developed. These predictions are then veri�ed by a series of

modeling experiments. These results are compared to biased estimates obtained in

the previous section, quantifying the error due to uncertainties in the ray tracing. In

Section 4.4 analytic expressions are developed to quantify the impact of uncertainties

in �: Once again these predictions are veri�ed by a series of modeling experiments.

Lastly the in�uence of errors in both �� and � are studied.

4.2 Modeling error

Even if three-term linearized AVO inversion is performed using the correct � and

angles of incidence there will be error in the re�ectivity attribute estimates. This is

a result of using a linearized approximation rather than the actual nonlinear Zoep-

pritz equations in the inversion. In this chapter, instead of using a three-parameter
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formulation, two-parameter formulations are used, further increasing the modeling

error. Section 2.4.2 demonstrated that truncating the third term is equivalent to im-

plementing a hard constraint. The solution must exist on a two-dimensional surface

de�ned by that constraint. The best estimate occurs where the mis�t probability

function reaches a maximum on that surface. If the actual solution is not on this

surface, the constraint has e¤ectively introduced bias into the solution. The amount

of bias is dependent on the geometry of the mis�t function, the constraint used, and

the location of the ideal solution. Figure 2.11 shows the bias introduced into the

P-wave velocity re�ectivity estimates by the di¤erent constraints. The geometry of

the mis�t function is relative to some parameterization. Thus, the amount of bias

may be reduced by choosing certain parameterizations over others. For example,

parameterizing the problem in terms of impedances results in the introduction of less

relative bias than parameterizing in terms of velocity re�ectivity (Section 2.4.1).

Figure 4.1: Blackfoot well logs used to generate synthetic model.

To quantify the error due to using a two-term AVO inversion, a synthetic mod-

eling study was performed using the Blackfoot well logs (Figure 4.1) �rst introduced

in Chapter 2. Synthetic gathers were generated using the Zoeppritz equations to

generate the re�ectivity. The angle of incidence was calculated using the classical

ray tracing approach. The synthetic gather was generated without normal moveout

so NMO stretch and o¤set dependent tuning would not introduce distortions. The

re�ectivity was band-pass �ltered using a 10/15-90/100 Hz �lter. Unlike Chapter 2,

no random noise was introduced since the primary interest is modeling error. The

AVO inversion was performed using angles from 00 to 300: The Walden approach
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Figure 4.2: Comparison of ideal (red) and estimated (blue) re�ectivity for the two-
term Fatti inversion. The cross-plot shows the di¤erence between the ideal and
estimated S-impedance re�ectivity.

(section 1.2.2) to ray tracing was used for the AVO inversion. In this case, the exact

high frequency P-wave interval and stacking velocities were used. Figure 4.2 shows

the results of the two-term Gidlow inversion. The estimated re�ectivity is in red

while the zero o¤set re�ectivity is in blue. Upon close inspection it is evident that

there is a small error between the estimated and ideal S-wave impedance re�ectivity.

To quantify this, the di¤erence between the estimated and ideal S-wave impedance

re�ectivity is crossplotted versus the ideal S-wave impedance re�ectivity. The line

that best �ts the estimated and ideal S-wave impedance re�ectivities is also calcu-

lated along with its correlation coe¢ cient. The slope of this line is identical to the

scalar needed to be applied to make the estimate best �t the ideal re�ectivity. The

greater the departure of the scalar from unity the greater the systematic bias. The

results of this section are tabulated in Table 4.1. In this case, the scalar is close to

unity suggesting that the two-term Gidlow inversion has little bias. The correlation

coe¢ cient indicates the amount of scatter and may be used as a measure of random

error in the solution.
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Figure 4.3: Comparison of ideal (red) and estimated (blue) re�ectivity for two-term
Shuey inversion. The cross-plot (c) shows the di¤erence between the ideal and
estimated gradient re�ectivity. Note the bias in the gradient estimate.

Shuey B Shuey Rs Gidlow Rs
scalar 0:9436 0:9300 1:0169
Correlation coe¢ cient 0:9530 0:9834 0:9846

Table 4.1: Modeling error due to using a two-term linearized approximation instead
of the Zoeppritz equation.

Figure 4.3 shows the results of the two-term Shuey inversion. It is evident that

the estimated gradient is scaled lower than the ideal. This is con�rmed by the least

squares scalar 0:93 being smaller than unity. The gradient B is biased since the

third term in C is ignored. If smaller angle ranges are used such as 00 to 220 the bias

decreases, but it is still signi�cant. For an inversion done with angles from 00 to 220

the scalar is 0:9653. In subsequent examples I felt it better to use parameter ranges

(00 to 300) that are used by AVO practitioners rather than trying to decrease the bias

by using arbitrarily small angle ranges. The two-term Shuey correlation coe¢ cient

0:9530 for the gradient B is signi�cantly worse than the correlation coe¢ cient for the

S-wave impedance re�ectivity from two-term Gidlow equation.
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Figure 4.4: Comparison of ideal (red) and estimated (blue) re�ectivity for two-term
Shuey inversion converted to impedance. The cross-plot (c) shows the di¤erence
between the ideal and estimated S-impedance re�ectivity.

However, this comparison is unfair since di¤erent re�ectivity attributes are being

compared. Equation (B.60)

Rs =
1

8�2

��
g

1 + g

�
4�2 � 1

�
+ 1

�
A�B

�
: (4.1)

may be used to convert the output of the two-term Shuey inversion to S-wave im-

pedance re�ectivity. Using g = 0:3305, which is calculated via least squares from the

well control, the estimates were transformed to impedance re�ectivities (Figure 4.4).

The correlation coe¢ cient of the transformed estimate Rs is 0:9834 virtually identi-

cal to the result from the two-term Gidlow inversion. The transform decreases the

random error. However, the systematic error in the transformed re�ectivity estimate

remains. The transformed S-wave impedance re�ectivity is a biased estimate since

the gradient B is biased. It has a scalar of 0:930. Thus, the transformed two-term

Shuey inversion gives results similar to the two-term Gidlow inversion, though the

S-wave impedance re�ectivity is slightly biased.
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4.3 Ray tracing error

In this section the modeling error due to mapping the o¤set to angle of incidence

is explored. An analytic expression describing the error is derived for the two-term

Shuey formulation

R
�
��m
�
= A+B sin2 ��m: (4.2)

where ��m is the average angle of incidence. The two-term Shuey formulation is chosen

as the starting point since it leads to a relatively simple and intuitively understandable

expression, the results of which may be transformed to S-wave impedance re�ectivity

using equation (4.1). In the modeling results section, the two-term Shuey and Gidlow

S-wave impedance re�ectivity are compared.

The Walden approach to ray tracing is used to map the o¤sets to angle-of-

incidence. Recall from Section 1.2.2 that using this approach, the angle of incidence

sin ��m =
�� (t0)hm

V 2
stak (t0) �m

; (4.3)

is a function of the o¤set hm; the two-way travel time �m to the interface at o¤set hm;

the average P-wave interval velocity across the interface �� (t0) ; and stacking velocity

at the interface Vstak (t0). In the majority of this thesis, the classical ray tracing

approach is used as it is slightly more accurate. This accuracy comes at a cost of

a much more complex error analysis, since the angle of incidence is a function of

all the overburden layers�P-wave interval velocities. Figure 4.5 shows that for the

Blackfoot synthetic example, the di¤erence between the two approaches is negligible.

Note the di¤erence is shown with an altered color scale to highlight discrepancies.

Otherwise they would appear to be identical. The reason the two approaches are

similar is that for this particular case the P-wave velocity is constant down to 0.7

seconds. Since there is no velocity gradient, higher order terms are not needed to

describe the kinematics, thus the stacking velocity describes the horizontal slowness

p with a high degree of accuracy.

Substituting equation (4.3) into (4.2) results in the two-term Shuey equation writ-

ten in terms of the P-wave interval and stacking velocity

R (hm) = A+B

�
��hm

V 2
stak�m

�2
: (4.4)
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Figure 4.5: Angle of incidence generated by ray tracing Blackfoot model using Clas-
sical ray theory approach (a) and the Walden approach (b). The di¤erence between
the two (c) is neglible.

The error analysis is performed in two ways. First, equation (4.4) is expanded as a

Taylor series expansion to linear order about ��back and Vback; where Vback and ��back
are the smoothed stacking velocity and smoothed background average P-wave interval

velocity used in the ray tracing respectively. The error due to uncertainty in �� and

Vstak then appears as an extra term similar to noise. The linear model is thus modi�ed

d = Gm+ nd + nT ; (4.5)

to include an extra noise term due to theoretical error nT . The vector nd represents

noise in the data. Equation (4.5) may be solved by least squares. The advantage of

this formulation is it leads to a convenient way to analyze errors coming from both the

data and the theory (Section 4.6.3). The second method expands the least squares

solution as a Taylor series expansion to linear order about ��back and Vback: This is

computationally simpler than the �rst method and is used to analyze errors in �:
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Both methods give equivalent results for the ray tracing error in this section.

Method 1

An error analysis may be performed by expanding equation (4.4) as a Taylor series

expansion about ��back and �Vstak to linear order

R = R0 +
@R

@��

����
R0

��+
@R

@Vstak

����
R0

�Vstak; (4.6)

where R0 (hm) is the solution at ��back and Vback; �� = �� � ��back, and �Vstak =

Vstak � Vback. Later in the section, it is shown that the ��back and Vback should be

running averages of � and Vstak to minimize systematic error.

For simplicity, only errors due to perturbations from the background interval ve-

locity are initially considered, noting that

@R

@��

����
R0

= 2
��backh

2
m

V 4
back�

2
m

; (4.7)

thus

R (hm) = A+B
��2backh

2
m

V 4
back

� 2m

�
1 + 2

��

��back

�
: (4.8)

For M o¤sets equation (4.8) is written in matrix form as26664
1

��2backh
2
1

V 4
back

�21

�
1 + 2 ��

��back

�
...

...

1
��2backh

2
M

V 4
back

�2M

�
1 + 2 ��

��back

�
37775
"
A

B

#
=

2664
d1
...

dM

3775 ; (4.9)

where dm is the re�ectivity at o¤set hm: To linear order in ��, the least squares

solution of this is (Similar to Appendix D.1)

"
A

B

#
=
1

D

24 �PM
m=1

h4m
�4m

��PM
j=1 dj

�
�
�PM

m=1
h2m
�2m

��PM
j=1 dj

h2j
�2j

�
V 4
back

��2back

�
1� 2 ��

�back

��
M
PM

m=1 dm
h2m
�2m
�
�PM

m=1
h2m
�2m

��PM
j=1 dj

�� 35 :
(4.10)

where

D =M

MX
m=1

h4m
� 4m

�
 

MX
m

h2m
� 2m

!2
: (4.11)
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Equation (4.10) may be written as the sum of two parts"
A

B

#
=

"
A0

B0

#
+

"
�A

�B

#
; (4.12)

the part evaluated at �� = ��back

"
A0

B0

#
=
1

D

24 �PM
m=1

h4m
�4m

��PM
j=1 dj

�
�
�PM

m=1
h2m
�2m

��PM
j=1 dj

h2j
�2j

�
V 4
back

��2back

�
M
PM

m=1 dm
h2m
�2m
�
�PM

m=1
h2m
�2m

��PM
j=1 dj

�� 35 ; (4.13)

and the deviation from this

"
�A

�B

#
=� 2 1

D

��

��back

24 0
V 4
back

��2back

�
M
PM

m=1 dm
h2m
�2m
�
�PM

m=1
h2m
�2m

��PM
j=1 dj

�� 35 ;
(4.14)

or "
�A

�B

#
=� 2 ��

��back

"
0

B0

#
: (4.15)

Method 2

A simpler way to derive this is to start with the least squares solution of the Shuey

equation (Appendix D.1) written in terms of stacking velocity and interval velocity

"
A

B

#
=
1

D

24 �PM
m=1

h4m
�4m

PM
m=1 dm �

�PM
m=1

h2m
�2m

��PM
j=1 dj

h2j
�2j

��
V 4stak
��2

�
M
PM

m=1 dm
h2m
�2m
�
�PM

m=1
h2m
�2m

�PM
j dj

� 35 : (4.16)

and perform a Taylor series expansion about the background P-wave velocity ��

B = B0 +
dB

d��

����
��=��back

��: (4.17)

again with �� = �� � ��back: Note the intercept A has no �� dependence while the

gradient B is a function of the interval P-wave velocity. Thus, de�ning the error as
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�B = B �B0,

�B =
dB

d��

����
��=��back

��; (4.18)

resulting in

�B = �2 ��
��back

B0; (4.19)

which is equivalent to equation (4.15).

4.3.1 Error due to uncertainty in interval P-wave velocity

Rewriting equation (4.15)"
�A

�B

#
=� 2 ��

��back

"
0

B0

#
: (4.20)

it is clear that the uncertainty in the interval P-wave velocity does not in�uence

the intercept A estimate; however, the gradient B is in�uenced. The magnitude

of the fractional error of the gradient is two times the velocity perturbation of the

background P-wave velocity
�B

B0
= �2 ��

��back
: (4.21)

This error may be either random and/or systematic. In Section 1.2.2 it was

pointed out that a smooth background P-wave velocity model is used in ray tracing

the model. A smooth model is used since high frequency a priori information about

the velocity is not available prior to the inversion. The interval P-wave velocity

model is constructed from either extrapolating velocity information from nearby well

control or generating it from some sort of travel time inversion. Because of the

scarcity of information, and the error associated with this information, signi�cant

error can exist in the background velocity �eld. This error will vary for each re�ector

or time sample. The error analysis is facilitated by breaking the error into a high and

low frequency component. Ignoring the high frequency perturbations in the velocity

�eld results in random errors. The low frequency error introduces systematic error.

The random error may be analyzed by noting that the random perturbations ��

from the average velocity ��back (equation 4.21) are to a �rst order equivalent to the

P-wave velocity re�ectivity (Walden and Hosken, 1988)

R� =
1

2

��

��
� ��

��back
;
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thus
�B

B0
= �4R�: (4.22)

In Chapter 3, it is argued that P-wave velocity re�ectivity is Gaussian, thus the

random fractional error introduced by ignoring the high frequency information in the

background velocity model in the ray tracing is Gaussian and much less than one.

More problematic are systematic errors. For the moment, we ignore high fre-

quency errors. In this analysis ��back is treated as a slowly varying perturbation from

the actual average. If this is not the case, then �� represents the systematic error.

The fractional perturbation ��=��back from the correct average acts as a time variant

scalar

B = B0 +�B = (1� 4R��)B; (4.23)

thus the gradient is either scaled too large or small. This may be intuitively under-

stood by noting that the ray tracing maps the o¤sets to angle of incidence. If this

mapping squeezes the x-axis too much, the slope (gradient B) will be too large. If

the mapping stretches the x-axis too much, the slope (gradient B) will be too small.

4.3.2 Error in terms of S-wave impedance re�ectivity

The output of the two-term Shuey inversion can be transformed to output S-wave

impedance re�ectivity using equation (4.1). The S-wave impedance re�ectivity is a

function of A;B; and � so the uncertainty associated with this is governed by

dRs (A;B; �) =
@Rs
@A

dA+
@Rs
@B

dB +
@Rs
@�

d�: (4.24)

The di¤erences dA and dB are calculated in equation (4.15). The partial derivatives
@Rs
@B

and @Rs
@�
may be calculated from equation (4.1) resulting in

@Rs
@B

= � 1

8�2
; (4.25)

@Rs
@�

=
1

4�3

�
B � A

1 + g

�
; (4.26)

thus

dRs =
1

4�2

�
d��

��
B +

�
B � A

1 + g

�
d�

�

�
: (4.27)
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This relation is discussed in greater detail in Section 4.4.

4.3.3 Errors in background interval velocity and stacking velocity

Previously, the analysis was restricted to understanding the uncertainty due to

errors in the average P-wave interval velocity. In this section uncertainty due to

errors in the stacking velocity is also considered. The least squares solution is given

by equation (4.16). In order to calculate the uncertainty, the solution is expanded as

a Taylor series about the average P-wave interval and stacking velocity. Once again,

the intercept A is not a function of the stacking velocity or background velocity so it

is not in�uenced by uncertainty in these parameters. The uncertainty is thus

B = B0 +
@B

@��

����
B0

��+
@B

@Vstak

����
B0

�Vstak: (4.28)

The partial derivative for @B
@��

��
B0
may be calculated from equation (4.21). The partial

derivative @B
@Vstak

���
B0
may be calculated from equation (4.16) and is

@B

@Vstak

����
B0

=
4

Vback
B0; (4.29)

so therefore

�B =

�
�2 ��
��back

+ 4
�Vstak
Vback

�
B0: (4.30)

Provided that the stacking velocity is not used to estimate the interval velocity, the

error due to the background interval velocity should be uncorrelated to that of the

stacking velocity. Similar to the preceding analysis there can be both random and

systematic error. Depending on the quality of the data, the stacking velocity should

be picked within an accuracy of 1% to 3% of the actual stacking velocity and the

error should be random. Systematic error might be introduced if the picks are

biased, for example by a multiple. Further, if the stacking velocity is poorly picked

or preliminary stacking velocities are used, the stacking velocity could also be biased.

Note, this analysis is only considering errors in the linear operator. If there are

stacking velocity errors there could also be residual moveout and systematic errors in

the data. This will lead to errors in the gradient (Spratt, 1987).
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Figure 4.6: Well logs used to construct Blackfoot model. Blocky P-velocity (blue)
used for ray tracing in AVO inversion.

4.3.4 Modeling results

To test the predictions made in this section a series of experiments were performed

on the Blackfoot synthetic model. The experiments were focused on understanding

how changing the background P-wave velocity used in the ray tracing would in�uence

the estimates. The Walden approach to ray tracing was used with exact stacking

velocities input. However, instead of the exact P-wave velocities a blocky velocity

model was used to perform the ray tracing (Figure 4.6). In the �rst set of tests

the blocky velocity model corresponded to the average velocity over speci�c geologic

intervals. This tested how the AVO inversion responds to random errors in P-

wave interval velocity. Secondly the blocky P-wave interval velocity model was

systematically distorted by multiplying it by 0:9: This test was designed to show

how the AVO inversion responds to systematic error in the P-wave interval velocity.

No tests were performed on perturbing the stacking velocity. It is expected that

the AVO inversion responds to errors in stacking velocity in a similar, but opposite

fashion as errors in the P-wave interval velocity as governed by equation (4.30).

For each of these experiments the AVO inversion was performed �rst using the

two-term Shuey inversion. The results are compared to the predictions in a quali-

tative fashion. Then the results are transformed to P-wave and S-wave impedance
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Figure 4.7: Comparison of ideal (red) and estimated (blue) re�ectivities for two-term
Shuey inversion using blocky velocity model for ray tracing. The cross-plot (c) shows
the di¤erence between the ideal and estimated gradient re�ectivity.

re�ectivity. These results are then compared to the results of the two-term Gidlow

inversion performed in a similar fashion. For each of these experiments the scalar and

correlation coe¢ cient are calculated for the least squares �t between the estimated

re�ectivity (B or Rs as the case may be) and the ideal and tabulated in Tables 4.2

and 4.3. The scalar is used to judge whether systematic error has been introduced

and the correlation coe¢ cient is used to judge the goodness of �t. In these series of

tests the background S-wave velocity used in the AVO inversion or transform (equa-

tion 4.1) was modi�ed so that � remained unchanged from the original model, even

though the P-wave velocity changed. This was done so that changes in � would not

in�uence the error as speci�ed by equation (4.27). Changes in � are tested in Section

4.4 and 4.5.

Figure 4.7 shows the results of performing the AVO inversion using the blocky

P-wave interval velocity model. There is slightly more scatter than when the exact

P-wave velocity model is used to do the ray tracing. The systematic error is slightly

greater, as evidenced by the scalar. This might be due to the fact that a blocky model
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Figure 4.8: Comparison of ideal (red) and estimated (blue) re�ectivities for two-term
Shuey inversion transformed to impedance re�ectivity using blocky velocity model for
ray tracing. The cross-plot (c) shows the di¤erence between the ideal and estimated
S-impedance re�ectivity.

was used rather than a running average creating local systematic errors. Figure 4.8

shows the results of the Shuey inversion transformed to impedance re�ectivity. The

mis�t of these results are similar to those of the two-term Gidlow inversion (Figure

4.9). This suggests that error predictions generated for the two-term Shuey inversion

may be transferable to the two-term Gidlow inversion, where I was not able to derive

an analytic expression to predict the error. It is preferable to use the two-term Gidlow

inversion over the Shuey inversion because of the larger systematic error evident in

the Shuey solution, as evidenced by their respective scalars. The scatter between the

estimate and the ideal in each one of these estimates is not signi�cantly greater than

that arising due to using a two-term linear approximation of the Zoeppritz equations.

The error seems to be no more and in fact less, than that predicted by equation

(4.30). Generalizing these results, suggests a smooth average velocity model may be

used to do the ray tracing without introducing signi�cant error.

More problematic are systematic distortions in the background velocity model
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Figure 4.9: Comparison of ideal (red) and estimated (blue) re�ectivities for two-term
Fatti inversion using blocky velocity model for ray tracing. The cross-plot (c) shows
the di¤erence between the ideal and estimated S-impedance re�ectivity.

used for the ray tracing. Figure 4.10 shows the results of the two-term Shuey in-

version performed with the background �� model systematically distorted. There is

no discernible error in the intercept A but there is a systematic error in the gradient

B: Table 4.2 shows the estimated gradient is now 1:1341 time greater than the ideal.

For the blocky velocity model the scalar was 0:9218; a change of 0:2123: This is close

Shuey B Shuey Rs Gidlow Rs
A two-term approximation 0:9436 0:9300 1:0169
B blocky background P-wave velocity 0:9218 0:9195 1:0355
C 0:9� blocky background P-wave velocity 1:1341 1:0331 1:1445

di¤erence between C&B 0:2123 0:1136 0:1090

Table 4.2: Systematic error (scalar) as a result of using a two-term linearized approx-
imation and approximate P-wave velocity instead of the Zoeppritz equation.
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Shuey B Shuey Rs Gidlow Rs
A two-term approximation 0:9530 0:9834 0:9846
B blocky background P-wave velocity 0:9519 0:9821 0:9815
C 0:9� blocky background P-wave velocity 0:9496 0:9776 0:9815

di¤erence between C&B �0:0023 �0:0045 0:0000

Table 4.3: Random error (correlation coe¢ cient) as a result of using a two-term
linearized approximation and approximate P-wave velocity instead of the Zoeppritz
equation.

to what equation (4.15) predicts

�B

B0
= �2

�
:9� 1
1

�
= 0:2: (4.31)

Note that equation (4.15) is a linear approximation. Higher order terms have be

ignored. Figure 4.11 shows these results transformed to impedance re�ectivity. This

may be compared to the two-term Gidlow inversion (Figure 4.12). The scalar error

between the estimated and ideal value is half that for the gradient. This is once

again due to the transform of variables. It is interesting to note that in Table 4.3

the two-term Shuey inversion shows slightly greater scatter in this case while the

two-term Gidlow inversion does not. The Shuey result is somewhat surprising as this

is not predicted from the preceding analysis, though the e¤ect is small.

4.4 �=� ratio error

In this section the impact of errors due to our limited a priori knowledge of

� (t) are considered. In this section errors associated with the P-wave velocity �eld

are ignored. One of the advantages of the Shuey formulation is that no explicit

knowledge of � is required for the inversion. This means it is insensitive to these

errors. Advocates of this equation point to this fact in championing its use. However,

transforming the intercept and gradient to other parameterizations such as impedance

requires knowledge of �: Equation (4.27) may be modi�ed

dRs =
1

4�2

�
B � A

1 + g

�
d�

�
; (4.32)

to predict the uncertainty associated with this transformation.
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Figure 4.10: Comparison of ideal (red) and estimated (blue) re�ectivities for two-term
Shuey inversion using distorted blocky velocity model for ray tracing. The cross-plot
(c) shows the di¤erence between the ideal and estimated gradient re�ectivity.

Unlike the previous section it is relatively easy to understand how the Gidlow

equation responds to errors in �: The least squares estimate for the Gidlow equation

are (Appendix D.2)

Rp =

�PM
m=1 sin

4 ��m

�PM
j=1 dj sec

2 ��j �
�PM

m=1 tan
2 ��m

�PM
j=1 dj sin

2 ��j�PM
j=1 sec

4 ��j

�PM
m=1 sin

4 ��m �
�PM

m=1 tan
2 ��m

�2 ; (4.33)

and

Rs =
1

8�2

�PM
m=1 sec

4 ��m

�PM
j=1 dj sin

2 ��j �
�PM

m=1 tan
2 ��m

�PM
j=1 dj sec

2 ��j�PM
j=1 sec

4 ��j

�PM
m=1 sin

4 ��m �
�PM

m=1 tan
2 ��m

�2 : (4.34)

Note that there is no dependence on the � ratio in Rp so this parameter is insensitive

to errors in �: The Rs re�ectivity is scaled proportionally to the inverse of square of

the � ratio. If the wrong � ratio is used in AVO inversion the Rs re�ectivity will be
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Figure 4.11: Comparison of ideal (red) and estimated (blue) re�ectivities for two-term
Shuey inversion converted to impdedance using distorted blocky velocity model for
ray tracing. The cross-plot (c) shows the di¤erence between the ideal and estimated
S-impedance re�ectivity.

either too large or small. This provides one means of performing an error analysis.

The S-wave impedance re�ectivity obtained by performing an AVO inversion with

the correct �cor is

Rcors =
1

8�2cor

�PM
m=1 sec

4 ��m

�PM
j=1 dj sin

2 ��j �
�PM

m=1 tan
2 ��m

�PM
j=1 dj sec

2 ��j�PM
j=1 sec

4 ��j

�PM
m=1 sin

4 ��m �
�PM

m=1 tan
2 ��m

�2 ;

(4.35)

while the S-wave impedance re�ectivity obtained by performing an AVO inversion

with a biased �biased is

Rbiaseds =
1

8�2biased

�PM
m=1 sec

4 ��m

�PM
j=1 dj sin

2 ��j �
�PM

m=1 tan
2 ��m

�PM
j=1 dj sec

2 ��j�PM
j=1 sec

4 ��j

�PM
m=1 sin

4 ��m �
�PM

m=1 tan
2 ��m

�2 :

(4.36)
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Figure 4.12: Comparison of ideal (red) and estimated (blue) re�ectivities for two-term
Fatti inversion using distorted blocky velocity model for ray tracing. The cross-plot
(c) shows the di¤erence between the ideal and estimated S-impedance re�ectivity.

Thus, the biased estimate is a scaled version of the correct one

Rbiaseds =
�2cor
�2biased

Rcors ; (4.37)

with the scalar proportional to �2cor=�
2
biased: This suggests that if the correct �cor =

1
4

and the biased gamma used in the AVO inversion is �biased =
1
2
then the estimated

S-wave impedance re�ectivity will be

Rbiaseds =
1

4
Rcors : (4.38)

This situation can easily happen for shallow unconsolidated sands. In the shallow

low velocity section the mudrock relationship suggests that the � should be small,

with � = 1
4
not being atypical. Often for convenience people use � = 1

2
leading to

errors similar to that predicted by equation (4.38).

Similar to the last section, the uncertainty in the S-wave impedance re�ectivity
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due to � can also be estimated by expanding the solution as a Taylor series expansion

about the average background S-wave to P-wave velocity ratio �back:

�Rs =
dRs
d�

����
�=�back

�: (4.39)

where � = � � �back: This leads to a linear approximation

�Rs = �
�

�back
2Rs; (4.40)

which is not as accurate as equation (4.37), but illustrative none the less. For small

perturbations equation (4.37) and (4.40) give approximately the same results. Fur-

ther, equation (4.40) is approximately equal to equation (4.32) derived in a completely

di¤erent fashion. To see this, note that for the simple case where the background

� = 1=2, Rs = A�B
2
and equation (4.40) becomes

�Rs = [B � A]
�

�back
: (4.41)

This compares favorably with equation (4.32) which under these circumstances be-

comes

dRs =

�
B � A

1 + g

�
d�

�
: (4.42)

The di¤erences may be explained by the di¤erent approximations used to derive these

results. The derivation from the Gidlow equation should be the more accurate of the

two. The derivation based on the Shuey equation makes use of the Gardner equation

to replace the C term and also ignores the bias introduced into the B term in the

two-term Shuey AVO inversion.

Returning to equation (4.40), the � error may once again be broken into two parts,

one due to random errors and the other due to systematic errors. The random errors

come from the high frequency perturbations from the background running average and

the systematic errors are a result of low frequency perturbations from the background

running average �: Rearranging equation (4.40) results in

�Rs
Rs

= �2 �
�back

; (4.43)

suggesting the fractional uncertainty in the S-wave impedance re�ectivity due to �
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uncertainty is proportional to the  ratio re�ectivity, R. Further, R may be written

in terms of the P-wave and S-wave velocity re�ectivity

R = R� �R�: (4.44)

Since R� and R� are positively correlated, their di¤erence is less than the individual

parts. Thus the error should be again an order of magnitude less than the S-wave

impedance re�ectivity and its e¤ect relatively minor.

Systematic errors occur if the � ratio used for the AVO inversion is not really the

average. For example, if the value used is 0:9 times the actual value then �
�
= �0:1

and by equation (4.43)

�Rs = 0:2Rs0 ; (4.45)

thus the estimated S-wave impedance re�ectivity

R̂s = Rs0 +�Rs = 1:2Rs: (4.46)

Alternatively, equation (4.37) may be used to calculate this error as well. In this

case, �biased = 0:9�cor implying �
2
biased = 0:81�

2
cor so equation (4.37) becomes

Rbiaseds =
1

0:81
Rcors = 1:234 6Rcors ; (4.47)

which is approximately equivalent to equation (4.46) within the error of the linear

approximation.

4.4.1 Modeling results

Once again the Blackfoot synthetic model was used to test how changing �back
used in the inversion would in�uence estimates. Similar to the preceding section the

Walden approach to ray tracing was used with exact interval and stacking velocities

so there would be no error due to these factors. The initial test was run using a

constant �back = 0:545 for all time samples. This was the average � for the interval

so the �rst test was designed to understand the in�uence of random errors from the

background trend. In the second test a biased version of �back = 0:490 5 was used to

test the e¤ect of systematic errors. This is 0:9 times �:

In a similar manner to the preceding section, a two-term Shuey inversion was con-

sidered. The least squares scalar and correlation coe¢ cient were calculated between
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the estimated and ideal re�ectivity. As expected, there was no variation in any of

the tests for the gradient B as it is not a function of �: The Shuey estimates were

then transformed to S-wave impedance re�ectivity and then compared to the esti-

mates from the two-term Gidlow inversion. This was done for both � = 0:545 and

�biased = 0:490 5: The least squares scalars and correlation coe¢ cients are tabulated

in Tables 4.4 and 4.5. The correlation coe¢ cient and the scalar virtually did not

change between the reference (row A in Table 4.4 and 4.5) and the random error

test (row D in Table 4.4 and 4.5). Interestingly, the correlation coe¢ cient for the

S-wave impedance re�ectivity predicted by the Shuey inversion increased, indicating

there is less error than the reference. This is probably due to the empirical nature

of equation (4.1). Perturbing the background velocity in a systematic fashion results

in a systematic distortion of the parameters as predicted by equation (4.47).

Shuey B Shuey Rs Gidlow Rs
A two-term approximation 0:9436 0:9300 1:0169
D � = 0:545 (average gamma) 0:9436 0:9337 1:0281
E � = 0:490 5 0:9436 1:1243 1:2692

di¤erence between E&D 0:0000 0:1906 0:2411

Table 4.4: Systematic error (scalar) as a result of using a two-term linearized approx-
imation and approximate S-wave to P-wave velocity ratio instead of the Zoeppritz
equation.

Shuey B Shuey Rs Gidlow Rs
A two-term approximation 0:9530 0:9834 0:9846
D � = 0:545 (average gamma) 0:9530 0:9836 0:9838
E � = 0:490 5 0:9530 0:9834 0:9838

di¤erence between E&D 0:0000 -0:0002 0:0000

Table 4.5: Random error (correlation coe¢ cient) as a result of using a two-term
linearized approximation and approximate S-wave to P-wave velocity ratio instead of
the Zoeppritz equation.

4.5 Combined e¤ect of modeling errors

In the previous two sections it was shown that the error due to high frequency

perturbations from the running average for both �� and � leads to random Gaussian
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error. The two e¤ects have been examined individually but not together. This needs

to be done since the two e¤ects are correlated through the mudrock relationship.

The Blackfoot synthetic was inverted using the two-term Shuey and Gidlow equa-

tions using average background P-wave velocities and �. These results are compared

to inversions where only one of the variables had random error. The least squares

scalar and correlation coe¢ cient were calculated between the estimated and ideal

re�ectivity and tabulated in Tables 4.6 and 4.7. The correlation coe¢ cient of the

gradient is the same as the test when only the P-wave velocity is averaged as input

into the AVO inversion. This is expected since the � error does not in�uence the

Shuey inversion. However, upon converting the estimates to S-wave impedance re-

�ectivity, the correlation coe¢ cient increases, indicating the error decreases. This

suggests that the two errors are negatively correlated. The S-wave impedance esti-

mate correlation coe¢ cient from the Gidlow inversion increases as well. Interestingly

the correlation coe¢ cient decreases from the case when only � is smoothed (row D)

indicating that there is greater error when there is random error in � and �� rather

than only �: This e¤ect is opposite to when there is only random error in ��: The

S-wave impedance has a higher correlation when there are random errors in � (row

D) than when there are random errors in �� (row B). To summarize the results of

this example, the errors due to random errors in �� seem to be greater than those due

to random errors in �: Also, the errors due to random errors in � and �� seem to be

negatively correlated so that the total error is less than the individual parts.

Shuey B Shuey Rs Gidlow Rs
A two-term approximation 0:9436 0:9300 1:0169
B blocky background P-wave velocity 0:9218 0:9195 1:0355
C 0:9� blocky background P-wave velocity 1:1341 1:0331 1:1445
D � = 0:545 (average gamma) 0:9436 0:9337 1:0281
E � = 0:490 5 0:9436 1:1243 1:2692
F blocky � and � = 0:545 (average gamma) 0:9218 0:9230 1:0198
G blocky 0:9� � and 1:053�gamma 1:1341 0:9474 1:1075

Table 4.6: Systematic error (scalar) as a result of using a two-term linearized approx-
imation, approximate P-wave velocity, and S-wave to P-wave velocity ratio instead of
the Zoeppritz equation.

The last experiment introduced systematic distortions in �� and �: These results

are tabulated in row G in Tables 4.6 and 4.7 The experiment was designed so that the

two systematic distortions would cancel out and that the correct estimate of S-wave
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Shuey B Shuey Rs Gidlow Rs
A two-term approximation 0:9530 0:9834 0:9846
B blocky background P-wave velocity 0:9519 0:9821 0:9815
C 0:9� blocky background P-wave velocity 0:9496 0:9776 0:9815
D � = 0:545 (average gamma) 0:9530 0:9836 0:9838
E � = 0:490 5 0:9530 0:9834 0:9838
F blocky � and � = 0:545 (average gamma) 0:9519 0:9837 0:9834
G blocky 0:9� � and � = 0:490 5 0:9496 0:9821 0:9840

Table 4.7: Random error (correlation coe¢ cient) as a result of using a two-term lin-
earized approximation, approximate P-wave velocity, and S-wave to P-wave velocity
ratio instead of the Zoeppritz equation.

impedance re�ectivity would be obtained.

4.6 Discussion

For lack of knowledge we supply a smooth � a priori model to the AVO inversion.

This leads to both random and systematic error. From a theoretical and experimental

point of view the random error seems not to be signi�cant. The systematic error is

more problematic as it leads to biased estimates of the S-wave impedance re�ectivity.

4.6.1 Crossplotting

Systematic error potentially might be identi�ed by crossplotting the secondary

re�ectivity attribute with the primary re�ectivity attribute. For brine �lled clastics

the mudrock relationship

Rp = mI�Rs; (4.48)

should be observed. Rearranging the mudrock relationship (section 1.4.1)

� =
1

mI

�
1� b

��

�
; (4.49)

results in the alternate relationship

Rp =

�
1� b

��

�
Rs: (4.50)
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If the P- and S- wave impedance re�ectivity are crossplotted, then the slope observed

should be
�
1� b

��

�
: If the observed slope does not match the predicted slope this

might indicate there is an issue with systematic error due to bias in the background

�� or �: Further complicating this analysis is the fact systematic error can also be

present in the data due to incorrect scaling or residual NMO. Swan (2001) corrects

for residual normal moveout by examining the slope in the crossplot domain. The

systematic modeling errors identi�ed in this chapter will have a negative impact on

this analysis and procedure.

The crossplot analysis may also be performed in the intercept-gradient domain by

transforming equation (4.48) using equation (4.1) and noting Rp = A: This results in

B =

��
g

1 + g

�
4�2 � 1

�
+ 1

�
� 8�

mI

�
A: (4.51)

The apparent advantage of having no � dependence using Shuey estimates is mitigated

by the fact both � and mI appear in the slope of equation (4.51).

4.6.2 Bias in the two-term Shuey inversion estimates

Throughout this chapter, the two-term Shuey inversion performed on the Black-

foot synthetic example has produced biased estimates of the gradient B. The third

term becomes more signi�cant as the range of angles used increases, though it is

still signi�cant at relatively small angle ranges such as 20�: Since the AVO inversion

problem becomes more ill-conditioned as the range of angles used decreases, it is not

possible to select a range of angles that produces no bias and yet gives stable esti-

mates in the presence of noise. One possible solution to address this bias is to invert

the three-term Shuey inversion, but retaining only the �rst two terms. However,

uncertainty analysis indicates this greatly increases the uncertainty in the gradient

over the two term solution. This again is due to the ill-conditioned nature of the

three-term AVO inversion.

Another approach is to change the constraint used to reduce the problem to two

terms. Instead of truncating the third term, which is e¤ectively de�ning the P-wave

velocity re�ectivity to be zero, the more geologically plausible Gardner constraint

(2.16) is used. This leads to the relationship

A

(1 + g)
= C; (4.52)
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which upon substitution into the three-term Shuey equation (2.4)

R(��) = A+B sin2 �� + C sin2 �� tan2 ��; (4.53)

leads to

R(��) = A

�
1 +

1

(1 + g)
sin2 �� tan2 ��

�
+B sin2 ��: (4.54)

The resulting equation (4.54) behaves in the same fashion as the Smith and Gidlow

equation though parameterized di¤erently. On the negative side, under this new

parameterization A and B no longer have the physical signi�cance of slope and in-

tercept. The parameters are more abstract and the equation loses some of its appeal

as a result. Thus, I believe if bias is a concern and one insists on using a two-term

inversion, one is better o¤ using the two-term Gidlow equation which is naturally

parameterized in terms of the physically signi�cant P-wave and S-wave impedance

re�ectivity.

4.6.3 Quantifying data and theoretical uncertainty

In Chapter 2, the parameter uncertainty was estimated by performing a linear

transform on the data uncertainty which was quanti�ed by the data covariance matrix.

Tarantola (1987) introduces random theoretical or modeling error by incorporating it

into a modi�ed data covariance matrix

CD = Cd +CT ; (4.55)

where CT is covariance matrix describing the uncertainty due to modeling error.

This modi�ed covariance matrix may be used to analyze the uncertainty in fashion

similar to Chapter 2. For typical noise levels the uncertainty due to the data will be

dominant over the uncertainty due to theoretical error. This is evidenced by Figure

2.17. In that �gure, only when the signal-to-noise ratio is greater than 16:1 does

the theoretical error become dominant. This is evidenced by the normalized error

increasing as the range of angles used in the inversion increases. In this case, the

theoretical error is a result of using a two-term approximation rather than the exact

Zoeppritz equations.
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4.7 Conclusions

In this chapter the uncertainty due to theoretical error arising from the linear

approximation of the Zoeppritz equations was studied. Through a synthetic modeling

experiment it was shown that this approximation introduces what appears to be

random error into the re�ectivity estimates, the size of which is a function of how

well the linear approximation is met.

Further, in order to linearize the problem it is assumed that � and the o¤set to

angle-of-incidence mapping is known a priori. This is never the case and leads to

random and systematic errors. The errors due to the angle-of-incidence to o¤set

mapping were studied, following the Walden approach to ray tracing. In this ap-

proach, deviations in �� from the ideal average velocity �� introduce random errors in

the gradient and S-wave impedance re�ectivity. These random errors are an order

of magnitude less than estimates themselves and in practice are not signi�cant when

compared to the uncertainty due to the random noise. The implication of this is

that the exact P-wave velocity is not required to do the ray tracing, only a smooth

background model which follows the average ��: Systematic errors in the estimate of

the gradient and S-wave impedance re�ectivity arise if the smooth background model

departs from the average ��: These manifest themselves as a time variant scalar that

appears to be applied to the gradient or the S-wave impedance re�ectivity.

As well, uncertainty in � leads to both random and systematic error in the S-

wave impedance re�ectivity. Since the two-term Shuey inversion is not a function

of �; it is not in�uenced by it. However, if the estimates of the Shuey inversion

are transformed to impedance re�ectivity, the transformed results behave in a similar

fashion to uncertainties in � as the Gidlow results. Once again, if deviations in �

exist from the ideal average, this introduces random error into the S-wave impedance

re�ectivity, which is an order of magnitude less than the estimate itself. In practice,

only a smooth background � model is needed for the inversion, provided it follows

the average �: If the background model departs from the average, systematic error

is introduced.

Thus far, the conclusions about errors due to �� and � are both supported by

analytic expressions and experimental results from a synthetic modeling study. When

combining the random errors due to �� and � they appear to be negatively correlated,

thus potentially reducing their additive e¤ect. This conclusion is only empirical

being based on the modeling study. I was unable to come up with an analytic
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expression to support this. The systematic errors due to these sources may reinforce

one another or negatively combine so as to eliminate one another. The e¤ect of the

systematic error might be seen in the crossplot space. Isolating these errors due to

these sources is di¢ cult since systematic errors in the data manifest themselves in a

similar fashion.

In a pragmatic sense, systematic errors manifest themselves as time variant scalars

on the gradient and S-wave impedance re�ectivity. For situations where these errors

are important, such as in creating the �uid stack, a post-AVO scalar may be applied

to the a¤ected attribute. This scalar may be based on information from local well

control or statistical relationships.

Lastly, the random errors due to �� and � are smaller than those due to the

linear approximation made in simplifying the Zoeppritz equations. If one wanted

to reduce the theoretical error in the problem, one might examine using nonlinear

approximations of the Zoeppritz equations. However, in this chapter we have only

looked at theoretical approximations associated with the linearization of the Zoeppritz

equations. Much larger errors exist that have been ignored, such as the in�uence of

multiples, the laterally heterogenous nature of the inverse problem, NMO stretch and

o¤set-dependent tuning. It is the last two issues that are examined next.
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Chapter 5

NMO stretch and tuning artifacts

5.1 Introduction

In Chapter 3 it was shown that to successfully estimate three independent re-

�ectivity attributes using AVO inversion large o¤sets and angles are needed. Large

o¤sets are also desirable in areas with strong random or coherent noise. The large an-

gles improve the condition number of the inverse problem. However, including these

large o¤sets brings on other problems. NMO stretch and o¤set dependent tuning

both become problematic. This chapter explores the nature and magnitude of these

distortions and their inter-relationships. In subsequent chapters these distortions are

addressed either through modi�ed ways of pre-conditioning the data prior to AVO

inversion or incorporating the corrections into the AVO inversion itself.

NMO stretch is described by Dunkin and Levin (1973) and its e¤ect on AVO

inversion is summarized in the �rst section of this Chapter. The removal of NMO

stretch is complicated by o¤set dependent tuning (Lin and Phair, 1993). The second

section describes o¤set dependent tuning and its inter-relationship to NMO stretch.

Dong, in a series of papers (Dong, 1996; Dong, 1998; Dong, 1999), quanti�ed these

errors and suggested a correction. This chapter builds on his results, rearranging his

equations to arrive at expressions for fractional error for the intercept A and gradient

B: The predictions from these relationships are then tested and veri�ed on several

synthetic seismic data sets.

The intercept is not in�uenced by these distortions, only the gradient is e¤ected.

Both the analytic expressions and the modeling studies show that the di¤erent classes

of gas sands (Rutherford and Williams, 1989) react to NMO stretch and o¤set de-

pendent tuning di¤erently. Class I and II anomalies hardly a¤ect the gradient at
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Figure 5.1: Amplitude spectrum before and after NMO correction (equation 5.1).
The NMO correction (NMO stretch) shifts the spectrum to lower frequencies and
ampli�es the values.

all. However, the gradient is signi�cantly distorted for Class III and IV gas sands.

Lastly, these distortions are only signi�cant when large angles are being used in the

AVO inversion (such as 45 �). If the maximum angle used in the AVO inversion is

less than 30 � these distortions are not signi�cant.

5.2 NMO stretch artifacts

NMO correction is a kinematic operation. It is more concerned with the position-

ing rather than the amplitudes of the events. Claerbout (1992) points out that NMO

correction is a conjugate operation, not an inverse operation. As such it introduces

amplitude and character distortions. NMO stretch is one of the most familiar forms

of this. For two isolated re�ectors, Dunkin and Levin (1973) describe NMO stretch

analytically with the expression

~Sx (f) =
1

�x
Sx

�
f

�x

�
; (5.1)
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Figure 5.2: Synthetic gather of a single spike after NMO correction and 10/14-60/70
Hz band-pass �lter for incident angles from 0 to 45 degrees. Note how NMO stretch
lowers the frequency on the far o¤sets and changes the wavelet character.

where Sx is the spectrum before NMO correction, ~Sx is the spectrum after NMO

correction, f is frequency and �x is the compression factor or the ratio of the time

di¤erence between the two events after and before NMO. The compression factor is

always less than one, so the frequency spectrum will be shifted to lower frequencies

and ampli�ed as shown in Figure 5.1.

The compression factor, �x, becomes smaller for larger o¤sets thus the shape of

the wavelet changes in an o¤set dependent fashion. For example, Figure 5.2 shows a

gather after NMO correction for incident angles from 0 � to 45 �. The model generating

this is a single re�ector or spike that is convolved with a 5/10-60/70 Hz band-pass

�lter. For this to match the assumptions of the traditional methodology, the re�ector

after NMO correction must have constant waveform and amplitude. It does not. The

band-width of the far o¤set data are noticeably lower frequency than the near o¤set

data and the overall character changes as a function of o¤set.

This biases the AVO inversion and introduces error. This can be understood

intuitively, for this example, by calculating the intercept and gradient. The intercept

of the zero crossing at 0.39 seconds is zero. The gradient at this same time is positive

since the wavelet broadens as a function of o¤set due to NMO stretch. However, if
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Figure 5.3: Scaling � distortion on the gradient estimate as a function of �. Note
the distortion gets larger as � gets larger.

there was no NMO stretch both the intercept and gradient would be zero.

For a Ricker wavelet, Dong (1996) equation (9), approximates the biases to the

AVO parameter estimates intercept A0 and gradient term B0 due to NMO stretch as

A0 = e�4�
2�2
�
1� 8�2�2

�
A; (5.2)

and

B0 = e�4�
2�2
��
1� 8�2�2

�
B + 4�2�2

�
3� 8�2�2

�
A
�
; (5.3)

where A and B are the true intercept and gradient. The parameter

� = f0dt; (5.4)

is de�ned in terms of the dominant frequency f0 and the time dt of how far the time

sample under investigation is from center of the wavelet. The Ricker wavelet written

in terms of � is

w (�) =
�
1� 8�2�2

�
e�4�

2�2 ; (5.5)

which upon comparison with equation (5.2) implies that there is no distortion intro-

duced to the intercept other than the wavelet itself. The biased gradient can be

written in terms of two parts B0 = B + dB, that due to the wavelet and that due

to an error term. Dividing the biased gradient (equation 5.3) by the Ricker wavelet
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(5.5)

B0 = B +
4�2�2 (3� 8�2�2)
(1� 8�2�2) A;

the error term is

dB =
4�2�2 (3� 8�2�2)
(1� 8�2�2) A;

or the fractional error is
dB

B
= �

A

B
; (5.6)

where

� =
4�2�2 (3� 8�2�2)
(1� 8�2�2) : (5.7)

Thus, the fractional error of the gradient is a function of � (�) and the ratio of

the intercept to the gradient is A=B. If the analysis is performed on the center of

the wavelet, then � = 0 and dB=B = 0: Figure 5.3 shows that as � increases, �

increases. Thus, the size of the gradient error increases. The other factor which

controls the size of the error is the ratio A=B: Thus, it is possible to predict the

size of the error for di¤erent classes of AVO anomalies (Section 1.4.2). For Class I

anomalies where A << B and Class II anomalies where A � 0 the expected error will
be small. This is also true for most re�ectors which fall along the mudrock trend,

since typically, A << B: However, for Class III and IV anomalies where A > B the

error is potentially large.

To test these predictions, a synthetic seismic data model was constructed. Four

isolated re�ectors were generated corresponding to the four classes outlined above.

The synthetic data was generated using a convolutional model with a Ricker wavelet

with a 32.5 Hz dominant frequency. Preliminary testing suggested that large o¤sets

and angles were needed to make the NMO stretch artifacts apparent. To avoid

theoretical error being introduced due to these large o¤sets the Aki and Richards

(1980) linearized approximation of the Zoeppritz equations was used to generate the

re�ectivity. The third parameter and term was de�ned using the Gardner density

approximation Rd = 0:25R�. Further, to keep the relationship between o¤set and

angle of incidence simple, and to avoid supercritical re�ections, a constant background

velocity was used to generate the model. With the maximum o¤set about four times

the target depth, angles out to 65 � were generated.

Figure 5.4 shows both the Shuey (1985) two term and three term response for

re�ectors generated with no moveout. Note the far o¤set re�ectivity behavior is
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Figure 5.4: Cross-plot of ideal re�ectivity (a) used to generate the synthetic gather
generated without NMO using two term Shuey approximation (b) and the synthetic
gather generated without NMO using three term Shuey approximation (c). Note the
two-term model clearly shows the Class I - IV behavior expected while the three term
model behavior is more complex.

Figure 5.5: The input model prior to NMO (a), after NMO correction (b) and com-
pared to the synthetic gather generated without NMO (c). Note on the NMO
corrected gather the introduction of low frequencies at large o¤sets due to NMO
stretch.
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Figure 5.6: The estimate (red) of the AVO intercept A and gradient B compared to
the ideal (blue). Note the gradient estimate is distorted for both the Class III and
IV anomalies as predicted.

dramatically di¤erent due to the inclusion of the 3rd term. Figure 5.5 shows the

synthetic gather before and after NMO correction. For comparison, the gather

generated without NMO (Figure 5.5c) is shown next to the NMO corrected gather

(Figure 5.5b). On the far o¤sets of the NMO corrected gather, it is possible to see

the character change and frequency shift of the wavelet. This character change with

o¤set due to NMO stretch will bias the AVO inversion.

The AVO inversion was performed using angles up to 45 �. The Smith and Gidlow

AVO inversion was done to avoid theoretical error due to the inclusion of the large

angles used in this model and inversion. The parameters were then transformed for

display purposes to intercept and gradient. These are shown in Figure 5.6 compared

to the ideal intercept and gradient re�ectivity. The estimated intercept is almost

a perfect match to the ideal. The estimate of the gradient is close to the ideal for

both the Class I and II anomalies. For the Class III and IV anomalies the estimate

of the gradient shows a large error for � > 0: For � = 0 the gradient error is zero

as expected. These results are consistent with the predictions based on equation

(5.6). One factor that equation (5.6) ignores is the aperture or range of angles used

for the AVO inversion. Originally, the AVO inversion was done only to 30 �. The
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Figure 5.7: The input model prior to NMO with tuning (a), with NMO (b) and
compared to the synthetic gather generated without NMO (c).

size of the gradient error was much smaller for that angle range suggesting that NMO

stretch error is only signi�cant if one wants to do AVO inversions including large

angle ranges.

5.3 O¤set dependent tuning

The fact NMO stretch introduces this error raises the question: "Why don�t we

use equation (5.1) to remove the e¤ects of NMO stretch?" However as equation (5.1)

is an approximation, the better question is: �Why don�t we avoid introducing NMO

stretch by using the exact NMO inverse operator (rather than the conjugate opera-

tor)?�Unfortunately, o¤set-dependent tuning introduces notches into the frequency

spectrum or unrecoverable information so that the inversion in both cases is under-

determined and ill-conditioned. Conceptually, this can be understood by noting that

the re�ectivity of the �far-o¤set trace� is time delayed and squeezed into a smaller

time window relative to that of the �zero-o¤set trace�. If both the zero-o¤set and the

far-o¤set re�ectivity data are high-cut �ltered, the far-o¤set data contains less infor-

mation after �ltering than the near-o¤set data. It is the combination of the high-cut

�lter and the NMO operator that introduces the null space.

In the time domain this e¤ect manifests itself as o¤set dependent tuning. Figure

5.7 illustrates o¤set dependent tuning for a model using the same acquisition geometry
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and wavelet as the previous example. At zero o¤set, the re�ectivity is described by a

dipole whose separation is one wavelength apart. Because of the moveout, the events

tune di¤erently as a function of o¤set. This tuning again biases the AVO estimates.

For a Ricker wavelet, Dong (1999) equation (18), approximates the AVO parame-

ter estimates intercept, A0;and gradient term; B0;in the presence of NMO stretch and

o¤set dependent tuning as

A0 = e��
2

2��
�
2�2 � 3

�
A; (5.8)

and

B0 = e��
2

2��
��
2�2 � 3

�
B +

�
2�2 � 1

� �
�2 � 3

�
A
�
: (5.9)

The parameter � is de�ned by

� =
2��z

�0
; (5.10)

where �z is the distance between the two interfaces and �0 is the dominant wave-

length. The tuned zero o¤set wavelet response is

w0 (t) = e��
2

2��
�
2�2 � 3

�
: (5.11)

Upon comparing equation (5.11) with equation (5.8) it is evident that there is no

distortion to the intercept. The biased gradient can be written in terms of two parts

B0 = B + dB, that due to the wavelet and that due to an error term. Dividing the

biased gradient (equation 5.9) by the Ricker wavelet (5.11)

B0 = B +
(2�2 � 1) (�2 � 3)

(2�2 � 3) A;

so the fractional error is
dB

B
= �

A

B
; (5.12)

where

� =
(2�2 � 1) (�2 � 3)

(2�2 � 3) : (5.13)

It has the same basic functional form as that for NMO stretch with the exception

that scalar � has a di¤erent functional relationship with respect to �: There was

zero error for NMO stretch for � = 0: Because of the tuning, this behavior occurs at
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Figure 5.8: The estimate (red) of the AVO intercept A and gradient B compared to
the ideal (blue). Note the gradient estimate is distorted for both the Class III and
IV anomalies as predicted.

� = �
p
3 and � = �

q
1
2
: Once again we might expect Class III and IV anomalies to

show large errors while Class I, II and regional re�ectivity show little error. To test

this prediction, the previous model was modi�ed so that instead of single re�ectors

at the zero o¤set, dipole re�ectors are modeled. Figure 5.8 shows the AVO inversion

results when the dipole was 1/2 the dominant wavelength of the source wavelet. As

expected the estimate of intercept is almost a perfect match to the ideal. The

estimate of the gradient shows signi�cant error particularly for the Class III and IV

anomalies. The error is several times larger than the gradient itself. To obtain a

rough understanding of how the tuning layer thickness in�uences the error the model

was run for a series of di¤erent tuning layer thicknesses. Figure 5.9 demonstrates

that the error changes as a function of layer thickness.

Other re�ectivity attributes behave di¤erently to the error. Figure 5.10 shows

how the S-wave impedance and �uid stack re�ectivity behave to the distortion. In-

terestingly the �uid stack shows little distortion other than a phase delay. It is quite

a robust AVO attribute even in the presence of NMO stretch and tuning.
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Figure 5.9: The estimate (red) of the AVO gradient B compared to the ideal (blue)
for various layer thicknesses. Note that distortion changes as function of thickness.

Figure 5.10: Intercept A and Gradient B converted to �uid stack, P-wave and S-wave
impedance re�ectivity. Note that the �uid stack shows little distortion due to NMO
stretch and o¤set dependent tuning for all classes.
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5.4 Discussion

The analytic expressions for fractional error derived in this chapter do not show a

dependence on aperture. This is due to the fact that the starting point of their deriva-

tion was equations from Dong (1996), (1999), which are empirical relations based on

least square �tting in which aperture was not considered. It would be interesting

to rederive these equations incorporating aperture e¤ects to better understand the

in�uence of aperture.

5.5 Conclusion

This chapter has demonstrated that NMO stretch and o¤set dependent tuning

potentially introduce large distortions into the AVO re�ectivity estimates. The two

distortions are interrelated since the o¤set dependent tuning introduces a null space

into the NMO inversion problem. It is di¢ cult to remove the NMO stretch without

addressing this null space.

Having said this, there are surprisingly few situations for which these distortions

introduce error into the AVO re�ectivity estimates. The error due to these distor-

tions primarily shows up on the secondary AVO re�ectivity attribute, such as the

gradient or S-wave impedance re�ectivity. The attribute associated with the �rst

term, the intercept or P-wave impedance re�ectivity, is una¤ected. Further, there

is a surprisingly large group of geologic interfaces for which NMO stretch and o¤set

dependent tuning do not distort the re�ectivity estimates. Regional re�ectors that

arise due to interfaces between clastics following the mudrock trend are not distorted.

Class I and II gas sands are not distorted. Only, re�ectivity estimates for Class III

and IV gas sand anomalies are distorted. Further, these distortions are only signi�-

cant when large angles are used. For the synthetic data sets shown in this chapter,

the AVO inversions, when done with angles less than 30 � re�ectivity estimates had

insigni�cant error. Only when larger angles were used (for example, greater than

45 �) were the errors signi�cant.

The fact that di¤erent classes have di¤erent sensitivities to NMO stretch is some-

what counterintuitive. The synthetic gathers shown in Figure 5.5 show that all the

classes experience NMO stretch at the far o¤sets. One might expect that all of them

should be showing distortions to the gradient. If a two-term Shuey AVO inversion

was done, this probably would be the case. However, the two-term Smith and Gid-
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low inversion used in this chapter is e¤ectively a three-term inversion, because of the

Gardner constraint. This makes for a more complex �tting than just intercept and

gradient. I believe this �tting is more appropriate since ultimately we are interested

in using these large o¤sets to do three-term AVO inversion. Further, Class I and

II far o¤set re�ection strength is less than that of the Class III and IV anomalies.

Using the viewpoint that least squares AVO inversion may be viewed as a weighted

stack (Smith and Gidlow, 1987), the resulting distortion in the gradient due to the

Class I and II anomalies is less because of these weaker far o¤set amplitudes.
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Chapter 6

Two-term AVO waveform inversion

6.1 Introduction

In Chapter 5 it was shown that NMO stretch and o¤set dependent tuning can

introduce distortions into the AVO inversion estimates, particularly for Class III and

IV gas sands. This chapter develops an AVO waveform inversion that addresses these

issues. It is necessary to incorporate the waveform and suitable constraints to address

the band-limited nature of the seismic data and the resultant tuning issues. The AVO

waveform inversion is performed on gathers that still have moveout. NMO corrections

are never applied, thus avoiding the associated distortions. This chapter develops the

AVO waveform inversion based on a two-term linear approximation of the Zoeppritz

equations. Later in Chapter 8, this is extended to three terms. The method produces

sparse spike re�ectivity series similar to that done by poststack sparse deconvolution.

(Levy and Fullagar, 1981; Sacchi, 1999; and Trad, 2002). Provided with suitable

additional constraints, the output of the AVO waveform inversion may be transformed

to P-wave and S-wave impedances, in a manner similar to Oldenburg et al. (1983).

Simmons and Backus (1996) also developed an AVO waveform inversion that in-

corporates traveltime information, so it also had the potential to address NMO stretch

and o¤set dependent tuning distortions. However, they addressed the underdeter-

mined nature of the problem by parameterizing the model with a �xed number of

equally spaced layers, for example, one every 8 milliseconds. This parameterization

is ill-suited to deal with the o¤set dependent tuning distortions. Buland and Omre

(2003) also perform AVO waveform inversion using a linearized approximation, but

on NMO corrected gathers, ignoring the distortions due to NMO stretch and o¤set

dependent tuning. Both of these methods assume Gaussian priors.
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The theory for this new algorithm is developed using a Bayesian formalism. In-

stead of the typical assumption of a Gaussian probability distribution, various long-

tailed distributions are used for the prior distribution. The implementation of these

constraints is analogous to the high-resolution Radon transform presented by Sacchi

and Ulrych (1995). The likelihood model is based on the AVO NMO formalism

(Downton and Lines, 2002) where the AVO and NMO inversions are performed si-

multaneously assuming some input wavelet. The inversion is nonlinear and must be

solved using a bootstrap procedure. The conjugate gradient method is used to solve

the inverse problem. Typically only a few iterations are needed to solve the problem

so the algorithm is relatively fast.

The algorithm is �rst demonstrated on a simple synthetic created to illustrate

how the new algorithm better estimates AVO re�ectivity on events undergoing NMO

stretch and tuning. This example is then used to demonstrate that the AVOwaveform

inversion is relatively insensitive to the wavelet used for the inversion. Subsequent to

this, the algorithm is demonstrated on a more realistic synthetic gather based on well

data. Several real data examples are shown, including one from the same area as the

well data. Lastly, it is shown how to transform the re�ectivity data to impedances

on synthetic data.

Compared to traditional AVO performed on a sample-by-sample basis on NMO

corrected gathers, the new approach is better able to estimate re�ectors undergoing

NMO stretch and di¤erential tuning. In addition, the resulting sparse spike re�ec-

tivity is better able to resolve thin layers. The approach is more reliable than the

estimates provided by the traditional AVO analysis performed on a sample-by-sample

basis on NMO corrected gathers. This greater reliability is due to the classic trade-

o¤ between resolution and stability. With the new method, a few sparse re�ectivity

values are estimated with greater certainty than the dense re�ectivity at every time

sample as in the traditional AVO analysis.

6.2 Theory

6.2.1 Convolutional model

The convolutional model is used as the basis for the likelihood model. This model

assumes the earth is composed of a series of �at, homogeneous, isotropic layers. Trans-

mission losses, converted waves, and multiples are not incorporated in this model and
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so must be addressed through prior processing. In theory, gain corrections such

as spherical divergence, absorption, directivity, and array corrections can be incorpo-

rated into this model, but are not considered in this chapter for brevity and simplicity.

Consequently they must be applied prior to the inversion. Any linear approximation

of the Zoeppritz equations may be used as the starting point for this derivation. This

chapter uses a modi�ed version of the two-term Gidlow et al. (1992).

In order to make all the variables stationary, the scaled S-wave impedance re-

�ectivity ~Rs = Rs is solved for rather than S-wave impedance re�ectivity (Section

3.2.4). Equation (2.20) parameterized in terms of the P-wave impedance re�ectivity

Rp and scaled S-wave impedance re�ectivity ~Rs is

y(��) =
h
sec2 �� �8� sin2 ��

i " Rp
~Rs

#
; (6.1)

where y(��) is the o¤set dependent re�ectivity, �� is the average angle of incidence

and, � the average S-wave to P-wave velocity across the interface. If it is assumed

that � and the relationship between the o¤set and angle of incidence is known, then

equation (6.1) is linear. As an example, for the case of two o¤sets, a near-o¤set y1
and a far-o¤set y2, written in matrix form is"

y1

y2

#
=

"
e1 f1

e2 f2

#"
Rp
~Rs

#
; (6.2)

where ej =
�
1 + tan2 ��j

�
, fj = 8� sin2 ��j and the subscript indicates the o¤set.

Typically equation (6.2) is solved on an interface-by-interface basis, where each

interface corresponds to a time sample. This ignores the band-limited nature of the

seismic data. To address this, equation (6.2) can be modi�ed to solve for multiple

time samples simultaneously. To illustrate this, consider the case with two interfaces:

equation (6.2) becomes266664
y
(1)
1

y
(1)
2

y
(2)
1

y
(2)
2

377775 =
266664
e
(1)
1 f

(1)
1 0 0

e
(1)
2 f

(1)
2 0 0

0 0 e
(2)
1 f

(2)
1

0 0 e
(2)
2 f

(2)
2

377775
266664
R
(1)
p

~R
(1)
s

R
(2)
p

~R
(2)
s

377775 ; (6.3)

where the superscript has been introduced to indicate the interface number. Rear-
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ranging equation (6.3) so that the vectors are ordered along common o¤sets rather

than common time samples results in266664
y
(1)
1

y
(2)
1

y
(1)
2

y
(2)
2

377775 =
266664
e
(1)
1 0 f

(1)
1 0

0 e
(2)
1 0 f

(2)
1

e
(1)
2 0 f

(1)
2 0

0 e
(2)
2 0 f

(2)
2

377775
266664
R
(1)
p

R
(2)
p

~R
(1)
s

~R
(2)
s

377775 ; (6.4)

which is further simpli�ed by writing equation (6.4) as the partitioned matrix"
y1

y2

#
=

"
E1 F1

E2 F2

#"
rp

~rs

#
: (6.5)

In equation (6.5) the vector yk is the data for o¤set k, rp the P-wave impedance

re�ectivity vector, ~rs the scaled S-wave impedance re�ectivity vector, and the block

matrices Ek and Fk are diagonal matrices.

AVO NMO model

NMO can be written as a linear operator (Claerbout, 1992). The re�ectivity

sequence yk referenced to zero-o¤set time can be transformed to o¤set-dependent

traveltime dk for the kth o¤set by the linear operator Nk so that

dk = Nkyk: (6.6)

The matrix Nk can be constructed using whatever o¤set-traveltime relationship one

desires. In order to invert data at large angles of incidence, it is important to correctly

position the event without introducing residual NMO. In this thesis, I use the higher

order correction (Section 1.2.2) following Castle (1994). This has the advantage of

introducing high-order terms without introducing the theoretical complications of

intrinsic anisotropy. Implicit in this derivation is that the NMO velocity is known a

priori and that static corrections have been applied.

Combining equations (6.5) and (6.6) results in the set of linear equations that may

be used to solve NMO and AVO simultaneously."
d1

d2

#
=

"
N1E1 N1F1

N2E2 N2F2

#"
rp

~rs

#
: (6.7)
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To adequately describe the band-limited nature of the data and the o¤set depen-

dent tuning the wavelet must be included as part of the formulation. This may be

done by pre-multiplying equation (6.7) by the convolution matrixW to obtain"
d1

d2

#
=

"
WN1E1 WN1F1

WN2E2 WN2F2

#"
rp

~rs

#
: (6.8)

This is the key equation describing the physics of the problem. This formulation can

be modi�ed to include more o¤sets by just adding additional rows. By incorporating

NMO into the inverse problem, the NMO correction is never done as a processing step

thus avoiding introducing NMO stretch distortions and biases. Di¤erential tuning is

incorporated as part of the forward model and so is also dealt with.

Data mutes and masks Equation (6.1) is a truncated polynomial of a linear

approximation of the Zoeppritz equations. It is only valid for subcritical angles.

Thus, the elements of the Ek and Fk operators must be zeroed for supercritical

angles. This is accomplished with the masking operator Mf
k ; where the superscript

f indicates it is designed on �at data (data without NMO). In addition, zeros may

have been introduced into the seismic data through the data processing, for example

�rst break muting. Further, because of noise and theoretical considerations one might

only want to only perform the AVO inversion over some prede�ned angle range, from
��min to ��max. Both these operations may be accounted for by the masking operator

Mn
k ; where the superscript n indicates it gets applied to data with NMO. In practice,

because of the band-limited nature of the seismic data, I applied the Mn
k operator

with a taper resulting in"
d1

d2

#
=

"
Mn

1WN1M
f
1E1 Mn

1WN1M
f
1F1

Mn
2WN2M

f
2E2 Mn

2WN2M
f
2F2

#"
rp

~rs

#
: (6.9)

Note the data must be suitably muted as well.

Linear operator For future reference and simplicity, this linear model (equation

6.9) is written as

d = Gx; (6.10)
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where G is the linear AVO waveform operator

G =

2664
Mn

1WN1M
f
1E1 Mn

1WN1M
f
1F1

...
...

Mn
KWNKM

f
KEK Mn

KWNKM
f
KFK

3775 ; (6.11)

d is the data vector

d =

2664
d1
...

dK

3775 ; (6.12)

and x is the unknown parameter vector describing the re�ectivity

x =

"
rp

~rs

#
: (6.13)

The data vector contains L time samples byK o¤sets resulting in a total ofM = L�K
data. There is a total of N = 2L unknown parameters in equation (6.13)

Transform of variables In the next section it is necessary to work with inde-

pendent variables. However, Chapter 3 demonstrated that the P-wave and S-wave

velocity re�ectivity are statistically correlated. Likewise the P-wave and S-wave im-

pedance are statistically correlated. In a similar fashion to Chapter 3 a covariance

matrix may be constructed that describes the statistical relationship between the

P-wave and the scaled S-wave impedance re�ectivity (Appendix F, equation F.8)

C~x =

"
�2Rp �Rp ~Rs
�Rp ~Rs �2~Rs

#
= �2Rp

24 1
r2
Rp ~Rs

mI
r2
Rp ~Rs

mI

r2
Rp ~Rs

m2
I

35 ; (6.14)

where �2Rp is the variance of the P-wave impedance re�ectivity, mI is the mudrock

slope, and rRp ~Rs is the correlation coe¢ cient between Rp and
~Rs: If the two variables

to be solved are independent, then the o¤-diagonal terms of the correlation matrix

should be zero. This may be accomplished by performing a change of variables. This

change of variables is facilitated by determining the eigenvectors V and eigenvalues

� of the covariance matrix

Cx = V�V
T : (6.15)
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The eigenvectors of this simple 2� 2 symmetric matrix are

V =
h
v1 v2

i
; (6.16)

where

v1 =

24 m2
I�r2Rp ~Rs+

q
r4
Rp ~Rs

�2m2
Ir
2
Rp ~Rs

+m4
I+4m

2
Ir
4
Rp ~Rs

2mIr
2
Rp ~Rs

1

35 ; (6.17)

and

v2=

24 m2
I�r2Rp ~Rs�

q
r4
Rp ~Rs

�2m2
Ir
2
Rp ~Rs

+m4
I+4m

2
Ir
4
Rp ~Rs

2mIr
2
Rp ~Rs

1

35 ; (6.18)

while the eigenvalues are

� =

"
�21 0

0 �22

#
= �2rp

"
~�21 0

0 ~�22

#
; (6.19)

where

~�21 =
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Rp ~Rs

+m2
I +

q
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Rp ~Rs
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2
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; (6.20)

and

~�22 =
r2
Rp ~Rs

+m2
I �

q
r4
Rp ~Rs

� 2m2
Ir
2
Rp ~Rs

+m4
I + 4m

2
Ir
4
Rp ~Rs

2m2
I

: (6.21)

Using the eigenvectors as the transform matrix

x = Vx0; (6.22)

the transformed covariance matrix becomes (Appendix I)

Cx0 = �; (6.23)

which is the desired result in that all the o¤-diagonal elements are now zero. Recall,

that the diagonal of the covariance corresponds to the variance of each of the vari-

ables so the �rst eigenvalue corresponds to the variance of variable 1 and the second
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eigenvalue corresponds to the variance of variable 2, thus for a single interface

Cx0 = � = �2rp

"
~�21 0

0 ~�22

#
: (6.24)

The covariance matrix shown in equation (6.24) is for a single interface. If it is

assumed, as is typically done in deconvolution, that the re�ectivity is stationary and

independent then it is straightforward to extend the covariance matrix (6.24) to L

time samples resulting in the N �N sparse covariance matrix Cx. The eigenvector

analysis can also be easily extended to the N variable case.

This transformation is similar to doing a principal component analysis on the

well control. The major di¤erence is that the covariance matrix is constructed from

parameters rather than the actual well log re�ectivity statistics These parameters,

however, are determined from the statistics of the well log re�ectivity series. The

transformed variables can be thought of as an average of the P-wave and S-wave

impedance re�ectivities and the �uid stack. This parameterization is similar to

Simmons and Backus (1996).

Transforming the linear operator (equation 6.9) using the transform matrix (6.22)

results in

d = G0x0 (6.25)

where G0 is the transformed linear AVO NMO operator

G0=

2664
Mn

1WN1M
f
1E1 Mn

1WN1M
f
1F1

...
...

Mn
KWNKM

f
KEK Mn

KWNKM
f
KFK

3775V: (6.26)

6.2.2 Prior model

Both the matricesW andN are typically underdetermined or ill-conditioned. This

is due to the fact the data are band-limited and the di¤erential tuning introduces

null spaces into the NMO operator N. Because of this, the problem needs to be

regularized. This can be done by choosing a weighting function that treats certain

re�ection coe¢ cients as being more reliable than others. Choosing a long tailed a

priori distribution leads to such a weighting function.

A long tailed distribution or sparse re�ectivity may be justi�ed on the basis of
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experimental evidence (Walden and Hosken, 1986) and physical arguments. The

�uid factor re�ectivity is sparse by its nature since it only responds to anomalous

�uids or large changes in lithology. The P-wave impedance re�ectivity may also be

modeled as a long tailed distribution, such as the exponential distribution (Levy and

Fullagar, 1981; Shapiro and Hubral, 1999). Thus, the two re�ectivity series can be

modeled by a variety of distributions including the Huber, Cauchy or `p norm. In

this section, these three distributions are introduced. In addition, the gradient of

these distributions are calculated for future use in the optimization problem. These

derivations follow Sacchi (1999) with modi�cations made to account for the fact that

although the variables are independent, they have di¤erent variances.

`p Norm

The `p norm metric Jp is de�ned as

Jp =
1

p

X
i

jx0ij
p
; (6.27)

where p is de�ned as the norm. Both the `1 and `2 norms are members of this. The

`1 norm comes from the exponential distribution while the `2 norm comes from the

Gaussian distribution. The derivative of this function with respect to the unknown

variable x0 is required in the Bayesian formulation. For p = 1 the derivative is

discontinuous so the limit as p �! 1 must be used to approximate the `1 norm.

There are several advantages in using the `p norm, namely that the norm can be

adjusted to better �t the statistics of the known geology and that large problems can

be e¢ ciently solved using methods such as conjugate gradient.

In order that no one large variable dominates the calculation of the norm, the

de�nition (equation 6.27) is modi�ed

Jp =
1

p

X
i

���� x0i�xi
����p ; (6.28)

so that each variable is normalized by its standard deviation �xi. Taking the gradient

of Jp results in (equation G.5)

@Jp
@xn

=
1

�2xn

���� x0n�xn
����p�2 x0n: (6.29)
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This simpli�es somewhat since each variable is stationary. Upon substitution of

�21 = �2rp~�
2
1 and �

2
2 = �2rp~�

2
2 equation (6.29) becomes

@Jp
@xn

=
x0n
�2rp

8<:
1
~�21

��� x0n
�rp ~�1

���p�2 n � L

1
�22

��� x0n
�rp ~�2

���p�2 n > L
; (6.30)

where L is the number of time samples in the analysis window. For p < 2 a singularity

exists if xn = 0: To avoid this, a lower threshold � is implemented

@Jp
@xn

=
x0n
�2rp

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1
~�21

8>><>>:
�p�2

��� x0n
�rp ~�1

��� < ���� x0n
�rp ~�1

���p�2 ��� x0n
�rp ~�1

��� > �

n � L

1
~�22

8>>>>><>>>>>:
�p�2 ��� x0n

�rp ~�2

��� < ���� x0n
�rp ~�2

���p�2 ��� x0n
�rp ~�2

��� > �

n > L

; (6.31)

where � > 0 and typically � << 1: Speci�cally for p = 1

@J1
@xn

=
x0n
�2rp

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
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��� < �

1���� x0n
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��� > �
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1
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8>>>>><>>>>>:
1
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�rp ~�2

��� < �

1���� x0n
�rp ~�2

����
��� x0n
�rp ~�2

��� > �

n > L

: (6.32)

Equation (6.32) may be written in matrix form

@J1
@xn

=
1

�2rp
Q1x

0; (6.33)
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where the diagonal elements of the matrix Q1 are de�ned as

Qnn =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1
~�21

8>><>>:
1
�

��� x0n
�rp ~�1

��� < �

1���� x0n
�rp ~�1

����
��� x0n
�rp ~�1

��� > �

n � L

1
~�22

8>>>>><>>>>>:
1
�

��� x0n
�rp ~�2

��� < �

1���� x0n
�rp ~�2

����
��� x0n
�rp ~�2

��� > �

n > L

: (6.34)

The hyperparameter � must be set prior to the inversion, while the parameters ~�21 and

~�22 may be calculated using equations (6.20) and (6.21). The parameter � controls

the spareness of the solution. Good results were obtained by setting � quite small,

for example � = 0:001: This results in re�ectivities lower than � being weighted by a

large weights (1=�), while large re�ectivities are weighted by small weights.

Cauchy distribution

The Cauchy distribution is another long tailed distribution which leads to a sparse

re�ectivity series. Appendix G.2 describes the physical basis for using such a distrib-

ution and the derivation of the following results. Similar to the preceding derivation

the prior distribution results in a in�uence function of the form

@JCauchy
@xn

=
�1
�2rp
Qcx

0 (6.35)

with a diagonal matrix Qc whose elements are de�ned by

Qnn =

8>><>>:
1
~�21

1�
x2
i

2�2rp ~�
2
1
+1

� n � L

1
~�22

1�
x2
i

2�2rp ~�
2
2
+1

� n > L
: (6.36)

In this case, the hyperparameter �1 controls the sparseness of the model. Large values

lead to sharp distributions while very small values lead to uniform distributions. In

Section 6.2.3 it is shown that �1 controls the relative weighting of the prior term

relative to the mis�t term. The overall weights generated by equation (6.36) are
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similar in a qualitative sense to that of the `1 case. Once again, large re�ectivities

results in small weights and small re�ectivities results in large weights. The relative

weighting of variable 1 and 2 are controlled by ~�1 and ~�2:

Huber norm

Another possibility is to use the Huber Norm (Huber, 1977). The normal distrib-

ution may be modi�ed so that at large deviations it becomes Laplacian. This leads

to the Huber loss function which is a mixture of the Gaussian and Laplacian loss

functions. The following probability function

Pr(x0j�1; I) /
NY
n=1

exp (�` (un)) ; (6.37)

where ` (�) is the loss function and

un =

(
x0n
�1

n � L
x0n
�2

n > L
; (6.38)

leads to the Huber norm. The Huber loss function is de�ned as

` (un) =

(
1
2
u2n junj � �

� junj � �2

2
junj > �

(6.39)

where � > 0: For example, Figure (6.1) shows the `2, `1 and Huber loss functions for

� = 3. For standard deviations greater than � = 3 the loss function grows linearly

rather than quadratically as in the case of the `2 loss function.

In Appendix G.3 the a priori constraints for the Huber norm are developed. In

matrix form this is expressed as

@Jq
@xn

=
1

�2rp
Qhx

0 (6.40)
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Figure 6.1: L2 (green), L1 (blue) and Huber (black) loss functions.

where Qh is a diagonal matrix whose elements are

Qnn=

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
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��� � �
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1
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8>>>>><>>>>>:
1 ��� xn

�rp ~�2

��� � �

� 1
jxnj
�rp ~�2

��� xn
�rp ~�2

��� > �

n > L

: (6.41)

For this norm � is the number of standard deviations at which the function becomes

Laplacian rather than Gaussian so it has a di¤erent meaning than in `p norm case.

Once again, for large re�ectivity small weights are calculated. For small re�ectivity

the weight of 1 is applied. Note, that if equation (6.41) is rewritten in terms of the
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common scalar �

Qnn=
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��� > �

n > L

; (6.42)

the weights are identical to the `1 norm (equation 6.34) with the exception of the

scalar.

6.2.3 Nonlinear inversion

The optimal solution for the AVO waveform inversion problem is found with the

aid of Bayes�theorem. Assuming uniform uncorrelated Gaussian noise, the likeli-

hood function is Gaussian with the mis�t de�ned by equation (6.10). In Chapter 8

alternative mis�t functions are explored.

The previous section developed a variety of a priori probability functions with long

tailed distributions that lead to sparse re�ectivity. The choice of one of these over the

others should be guided by geologic concerns. The a priori probability function is

combined with the likelihood function using Bayes�theorem (equation 3.4) following

a derivation similar to Chapter 3. The case of the Cauchy a priori probability

distribution, which is derived in Appendix H, leads to the nonlinear equation

�
G0TG0 +�Q

�
x0 = G0Td (6.43)

where

� = �1
�̂2N
�2rp

; (6.44)

�̂2N =
"T"

(M � 1) ; (6.45)

" = G0x0�d and Q is de�ned by equation (6.36).

There are two sources of nonlinearity in equation (6.43), the estimate of the reg-
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ularization parameter � and the calculation of Q: The matrix Q (equation 6.36)

requires a previous estimates of x0 to construct the diagonal weighting terms. This

must be done in a bootstrap fashion. Since the actual inverse problem being solved

is quite large, it is most e¢ ciently solved using iterative techniques such as conju-

gate gradient (Shewchuck, 1994). Solving the inverse problem requires two nested

loops. In the inner loop the conjugate gradient algorithm is used to solve equation

(6.43) using the previously calculated values of x0 and Q. The maximum number

of conjugate gradient iterations is used as a parameter to help stabilize the solution.

By limiting the number of conjugate gradient iterations, the smaller eigenvalues are

excluded from the solution (Shewchuck, 1994). After solving the re�ectivity estimate

x0; the constraining matrix Q and the penalty term � are updated. Iteratively up-

dating these parameters and re-estimating the re�ectivity parameters constitute the

outer loop. Generally, a satisfactory sparse solution is obtained after 3 to 5 iterations

of the outer loops. For the �rst outer loop iteration, the inversion is run as an uncon-

strained inversion by setting x0 = 0. Care must be taken in the �rst outer loop not to

put too much detail into the solution or the problem will not converge. This can be

controlled by carefully setting the maximum number of conjugate gradient iterations

(inner loop) to a value that limits resolution. After the �nal iteration, the parameters

can be transformed to a more natural parameterization using equation (6.22). In

fact, the parameters may be transformed to any convenient parameterization using

the two-term transform matrix (equation B.57).

The penalty term� (equation 6.44) is the inverse ratio of the signal-to-noise multi-

plied by the hyperparameter �1: It controls the relative weighting of the constraints

(de�ned by Q) versus the data constraints. If � is zero, then equation (6.45) is

equivalent to least squares. If � is large, then the Q matrix dominates the solution.

In this case, it biases the solution so as to create a sparse re�ectivity series. The

nonuniqueness introduced by the band-limited nature of the seismic data is addressed

by the weighting function. Re�ectivities are preferentially located where the weights

are small.

In the calculation of equation (6.44) there is a scaling problem. The seismic data

are often arbitrarily scaled, while �2rp is de�ned from the well control. Similar to

Chapter 3, �2rp may be alternatively estimated from the initial estimate of rp. Thus,

both the denominator and numerator have the same unknown scalar, which cancels

out.
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Even after addressing the scaling issue, there is some subjectivity about the value

�: For the Cauchy distribution, there is the question about what value to use for the

hyperparameter �1: Strictly speaking, �1 = 1 for the Cauchy distribution, but other

choices may be made. Note that the di¤erence between the `1 and Huber weights

is a scaling factor similar to �1: To optimize its value, I experimented with di¤erent

values of �1 constructing an L-curve (Hansen, 1998).

The analysis is complicated by the fact that the number of conjugate gradient

iterations also acts as a penalty term. This necessitated constructing a grid of values

to construct the L curve. Lower maximum iteration values lead to faster solutions,

but the re�ectivity estimates tend to be band-limited. More iterations provide more

eigenvalues from which to construct a full spectrum re�ectivity series. Too many

iterations lead to the solution oscillating rapidly and not converging.

Two methods were experimented with to numerically solve the inverse problem.

The �rst method required that the linear operator be symmetric. The matrix�
G0TG0 +�Q

�
was explicitly calculated using sparse matrices. For less than 1000

time samples and 50 o¤sets this lead to a computationally e¢ cient algorithm. For

larger problems, I ran into memory problems. I was running on a machine with one

gigabyte of memory. The second method solved equation (6.43) in standard form"
G0

p
�Q1=2

#
x0�

"
d

0

#
: (6.46)

The conjugate gradient algorithm for this form is not as e¢ cient, but the symmetric

matrix
�
G0TG0 +�Q

�
is not required. There is a substantial savings in time and

memory by avoiding the calculation of this matrix. Further, the linear operator

G0x0 need never be explicitly calculated. It may be calculated on the �y, in stages

(Claerbout, 1992). Ultimately, I was able to construct an algorithm which was as

fast as the �rst, but more memory e¢ cient.

6.3 Synthetic example demonstrating AVO waveform inver-

sion in presence of NMO stretch and o¤set dependent

tuning

Recall from Chapter 5, that in the presence of NMO stretch and o¤set dependent

tuning, the AVO inversion estimates of Class III and IV gas sands are distorted.
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Figure 6.2: Synthetic seismic gather. The Class III and IV isolated re�ectors are at
1.5 s and 1.7 s zero o¤set time respectively. The tuned Class III and IV re�ectors
are at 1.6 s and 1.8 s zero o¤set time respectively.

In contrast, Class I and II gas sands, along with regional re�ectors that follow the

mudrock trend are not distorted. To demonstrate that the new approach performs

better in the presence of NMO stretch and o¤set dependent tuning a simple synthetic

model (Figure 6.2) with sparse re�ectivity was generated. The AVO behavior of most

of the re�ectors in the synthetic gather follow the mudrock trend, but several Class III

and IV anomalies are also present. Both isolated and tuned anomalies were created.

The synthetic data was generated using a convolutional model with a Ricker wavelet

with a dominant frequency of 32.5 Hz. In order to isolate the e¤ects of NMO stretch

and di¤erential tuning on the AVO inversion, the re�ectivity was generated using the

three-term Shuey equation (1985) using the Gardner relationship Rd = 0:25R� to

calculate the density re�ectivity. Random noise was added to give a signal-to-noise

ratio of 4:1. A constant background velocity was used so there would be a simple

angle-to-o¤set mapping. The synthetic gather was generated with the maximum

o¤set equal to four times the target depth, so angles out to 65 � were available for

the inversion, though only angles to 45 � were actually used. These large angles were

included to highlight the distortions. Figure 6.3 shows the prestack synthetic gather
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Figure 6.3: The synthetic gather (a) generated without moveout is compared to the
NMO corrected gather (b) while (c) shows the di¤erence between the two.

after NMO correction. This is compared to the same gather but generated without

NMO. The di¤erence (Figure 6.3c) highlights the theoretical error introduced by the

NMO correction.

The AVO inversion was performed using the Smith and Gidlow formulation using

angles from 0 � to 45 �. The Smith and Gidlow formulation was used rather than

the two-term Shuey approximation since the former is exact under the assumptions

made in the model design, while the latter is not. The re�ectivity estimates were then

transformed to intercept and gradient for display purposes as shown in Figure 6.4. As

expected, there is no error in the intercept term while the gradient term only shows

error for both the Class III and Class IV anomalies. Re�ectivity of the interfaces

whose �=� relationship fall along the mudrock trend are predicted well even though

the events have undergone NMO stretch. Figure 6.4 also shows the re�ectivity in the

crossplot domain. The Class III and IV anomalies show signi�cant scatter.

The same data was used to perform the AVO waveform inversion. The results of

this are shown in Figure 6.5 and 6.6. Figure 6.5 shows the input to the inversion, the

estimated model reconstructed from the parameter estimates and the di¤erence. The

model matches the data closely with the di¤erence showing only random noise. The

estimated re�ectivity is shown in Figure 6.6. The estimate is excellent for all re�ectors

including the Class III and IV anomalies that were undergoing NMO stretch and had
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Figure 6.4: The traditional AVO estimates (a) for intercept A and gradient B (red)
are compared to the ideal results (blue). Also, the ideal data (b) is compared to the
estimated data (c) in the cross-plot domain. Note the estimated Class III and IV
anomalies are scattered in cross-plot space.
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Figure 6.5: Comparison of the model estimated from the two-term AVO waveform
inversion (b) and the input (a). Note the good match between the two with only
random noise evident in the scaled (5X) di¤erence (c).

di¤erential tuning. This is con�rmed by crossplotting the re�ectivity attributes.

The AVO inversion estimates shown in Figure 6.6 are �ltered with the source

wavelet. Figure 6.7 shows the un�ltered re�ectivity estimates shown in terms of

the �uid factor, P-wave and S-wave impedance re�ectivity. The match for the large

re�ectivity is excellent. With suitable modi�cations to the constraints to account

for the background trend, these sparse spike re�ectivity estimates may be used to

estimate the P-wave and S-wave impedances as shown later in the chapter.

6.4 Wavelet

A practical implementation issue is that of obtaining the wavelet for the inversion.

Referring to Chapter 1, the data have been processed through deconvolution so that

ideally the seismic wavelet should have a uniform amplitude spectrum and a consistent

phase across the data set. To correct for residual amplitude and phase distortions,

a seismic wavelet may be designed using the well control (White, 1980; Lines and

Treitel, 1985 ). Generally, each well tie will have a slightly di¤erent wavelet for a

variety of reasons such as spatially changing noise and well log quality issues.
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Figure 6.6: The estimated two-term AVO waveform results (a) for intercept A and
gradient B (red) are compared to the ideal results (blue). Also, the ideal data (b)
is compared to the estimated data (c) in the cross-plot domain. Note the good
agreement for the Class III and IV anomalies.
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Figure 6.7: The estimated (red) Fluid factor, P- and S-wave impedance re�ectivities
based on the AVO waveform inversion compared to the ideal (blue). Panel (b) shows
the full spectrum estimate while (a) shows the result �ltered by the estimated source
wavelet.
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Figure 6.8: Extracted wavelet (red) versus ideal wavelet (blue). Note only the non-
negative time samples are shown.
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For this reason, often a constant phase correction is applied to the seismic data

rather than applying the frequency dependent phase correction as suggested above.

In order to allow for spatial variations in the wavelet, the amplitude spectrum is

estimated based on an ensemble average of the autocorrelations within each CDP

gather. If it is assumed that the re�ectivity has a white amplitude spectrum, then the

wavelet spectrum is equivalent to the estimated spectrum. Further, if it is assumed

that the wavelet is zero phase, then the wavelet may simply be calculated from the

estimated amplitude spectrum. Figure 6.8 shows the estimate of the wavelet following

this method for the previous synthetic example compared with the ideal wavelet used

to generate the synthetic. Only the non-negative time samples are shown for the

wavelet. There are some discrepancies between the estimate and the ideal, partly

due to the limited number of samples used to estimate the wavelet. Figure 6.9 shows

the estimate of the AVO waveform inversion using the estimated wavelet. At this

scale it is di¢ cult to discern any error. However, upon closer inspection there are

small errors with the estimate. The four re�ectors undergoing NMO stretch and o¤set

dependent tuning (Figure 6.10) display di¤erences between the estimate and ideal.

However, when the result of the AVO waveform inversion using the estimated wavelet

(Figure 6.9) is compared to that done with the ideal wavelet (Figure 6.6) over the

whole interval there is only a small degradation.

In actual practice there will also be residual phase errors in the seismic data.

Phase errors were introduced into the synthetic data to understand the impact of

these errors. First, a 180 � rotation was applied to the seismic data. The wavelet

was estimated and then the AVO waveform inversion was performed on the distorted

seismic data. For display purposes the reference (ideal) re�ectivity is shown with

a 180 � rotation as well. For this case the estimate is almost identical to the ideal

(Figure 6.11). This is due to the fact that a 180 � rotation is just a scalar, and as

such does not in�uence the inversion.

Things become more complicated with a 90 � phase rotation. For zero o¤set re-

�ectivity, there is an inherent ambiguity between two tuned re�ectors (dipole) and a

single re�ector that has been rotated 90 �: For non-zero o¤set data, the o¤set depen-

dent tuning should allow one to potentially distinguish between the two situations.

Winslow (2000) uses this as the basis of a wavelet estimation technique. Thus, hav-
ing an uncorrected 90 � rotation should introduce theoretical error into the model.

Figure 6.12 and 6.13 show the results of the inversion based on the seismic data with
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Figure 6.9: Comparison of estimated (red) versus ideal (blue) intercept and gradient
using estimated wavelet for AVO waveform inversion.

the input rotated 90 �: For comparison, the reference re�ectivity is rotated 90 � as

well. The error is somewhat worse than using the ideal wavelet but substantially

better than following the traditional AVO methodology.

The last two models have explored the impact of phase error on the problem.

The last model in this section explores the impact of using a wavelet with the wrong

spectrum. The synthetic data was created using a Ricker wavelet with a 35 Hz

dominant frequency. Instead of using this wavelet an Ormsby �lter with 10=20�60=90
Hz corner frequencies was used in the inversion. Figures 6.14 and 6.15 show the results

of this inversion. The results of this inversion are similar to those of doing the AVO

inversion in a traditional fashion (Figure 6.4). This is a worst case scenario, provided

some e¤ort is put into estimating the wavelet, the results of the AVO waveform

inversion are better than the traditional AVO methodology.
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Figure 6.10: Zoom of comparison of estimated (red) versus ideal (blue) intercept and
gradient using estimated wavelet for AVO waveform inversion.

Figure 6.11: Comparison of estimated (red) versus ideal (blue) intercept and gradient.
Estimate from AVO waveform inversion performed with wavelet 180 degrees out of
phase.
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Figure 6.12: Comparison of estimated (red) versus ideal (blue) intercept and gradient.
Estimate from AVO waveform inversion performed with wavelet 90 degrees out of
phase.

Figure 6.13: Zoom of comparison of estimated (red) versus ideal (blue) intercept and
gradient. Estimate from AVO waveform inversion performed with wavelet 90 degrees
out of phase.
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Figure 6.14: Comparison of estimated (red) versus ideal (blue) intercept and gradient.
Estimate from AVO waveform inversion performed with 10/20-60/90 Hz wavelet in-
stead of correct wavelet. Ideal re�ectivity shown with 10/20-60/90 Hz �lter for
comparison purposes.
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Figure 6.15: Zoom of comparison of estimated (red) versus ideal (blue) intercept and
gradient. Estimate from AVO waveform inversion performed with 10/20-60/90 Hz
wavelet instead of correct wavelet. Ideal re�ectivity shown with 10/20-60/90 Hz �lter
for comparison purposes.
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Figure 6.16: Input P- and S-wave velocity, �=� ratio, density logs, and resultant
synthetic gather.

6.5 Examples

6.5.1 Halfway synthetic model

The preceding examples input synthetic model�s re�ectivity was sparse so the a

priori assumptions were perfectly met. The next model tests what happens if the re-

�ectivity does not match the a priori assumptions perfectly. For this second example,

the re�ectivity is based on a well log data from northeastern British Columbia. The

input well logs are shown in Figure 6.16 together with the synthetic seismic gather

that was generated. In this case, the re�ectivity was generated with the Zoeppritz

equations and convolved with a 10/14-90/110 Hz zero phase wavelet. Once again

noise was added to give a signal-to-noise ratio of 4:1. The AVO inversion was done

over angles from 0 � to 35 �. The �ltered estimate is an excellent match (Figure 6.17).

The sparse spike re�ectivity shows some errors particularly around 0.34 seconds on

the S-wave impedance re�ectivity.
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Figure 6.17: The estimated re�ectivity (red) of �uid factor, P- and S-wave impedance
re�ectivity based on the AVO waveform inversion compared to the ideal (blue). Panel
(b) shows the full spectrum estimate while (a) shows the result �ltered by the esti-
mated source wavelet.
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Figure 6.18: P-wave (a) and S-wave (b) impedance re�ectivity estimate from tradi-
tional two-term AVO inversion.

6.5.2 Halfway seismic data example

The Halfway data example was inverted using the two-term AVO waveform inver-

sion. The results are shown in Figure 6.19. These can be compared to the results

following the traditional AVO methodology (Figure 6.18). Note that the AVO wave-

form S-wave impedance re�ectivity has higher frequency on the Charlie Lake re�ector

at 0.67 seconds. The Peace River marker (0.52 seconds) should be an isolated re�ec-

tor. The AVO waveform inversion S-wave impedance re�ectivity shows an isolated

re�ector for the Peace river where as the traditional AVO results displays ringing over

this time interval. Both these re�ections are due to a rapid increase in the S-wave

impedance and as such should be ideally re�ectivity spikes. In addition, the AVO

waveform inversion seems to have a better signal-to-noise ratio.
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Figure 6.19: P-wave (a) and S-wave (b) impedance re�ectivity estimate from two-term
AVO waveform inversion.
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6.5.3 Colony seismic data example

This seismic data example is from northeast Saskatchewan. The well at CDP

3030 encountered two gas sands, an upper blanket sand and a channel sand. Both of

these gas sands should show �uid factor anomalies. The data have a good signal-to-

noise ratio with signal extending from 10 to 130 Hz. The range of angles used in the

inversion was 0 � to 36 �. The wavelet was calculated following Walden and White

(1984).

Figure 6.20 shows the results of the AVO waveform inversion. The bottom panel

shows the �uid factor. The anomaly at 0.3 seconds is the top blanket sand and the

anomaly at 0.4 seconds is the channel sand. The anomaly at 0.65 seconds with the

peak over the trough represents a carbonate re�ector, the �uid factor is responding

to a change in lithology, which is o¤ the mudrock trend. For comparison, Figure 6.21

shows the results from performing a traditional AVO inversion on NMO corrected

gathers. Notice the signi�cant improvement in signal-to-noise and continuity in the

AVO waveform inversion. This is probably due to two factors. The fact the waveform

is included in the formulation of the problem limits how quickly the �ltered re�ectivity

can change temporally. Secondly, and probably more importantly, the regularization

of the problem improves the condition number of the problem, decreasing how the

noise gets ampli�ed as part of the inversion. Figure 6.22 shows the prestack seismic

data and the AVO waveform inversion model.

6.6 Impedance Inversion

Rather than solving for re�ectivity it is sometimes desirable to output impedances

as this simpli�es the interpretation (Section 1.4.2). However, the seismic data typ-

ically are missing low frequencies implying some sort of constraints must be used

to obtain a unique solution for impedance. This low frequency trend may be sup-

plied using regional well control and information from an interval velocity travel time

inversion from the seismic data.

In the case of small re�ection coe¢ cients, the P-wave impedance Ip may be calcu-

lated by integrating and taking the exponential of the P-wave re�ectivity rp (Peterson,

1955)

Ipj � Ip0 exp

(
2

LX
j=1

rpj

)
: (6.47)
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Figure 6.20: P-wave impedance (a) and �uid (b) re�ectivity estimate from two-term
AVO waveform inversion.
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Figure 6.21: P-wave impedance (a) and �uid (b) re�ectivity estimate from two-term
traditional AVO inversion.
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Figure 6.22: The input (a) is compared to estimated two-term AVO waveform model
(b). Note the good match between the two with the di¤erence (c) showing mostly
random noise.
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In order to make equation (6.47) more convenient to work with, the logarithm of the

P-wave impedance �k is calculated

�j = �0 + 2

LX
j=1

rpj ; (6.48)

or alternatively its deviation ��j = �j � �0

��j = 2

LX
j=1

rpj : (6.49)

Equation (6.49) provides a framework to constrain the low frequency impedance

trend. Ideally the low frequency impedance trend is known from well control or

travel time inversion or some combination of the two. Using equation (6.49) the

low frequency impedance trend may be speci�ed, by de�ning ��j at regular intervals

(for example, every 0.1 seconds). The number of constraints, J; imposed should be

inversely proportional to the lowest frequency available in the seismic data. These

constraints are inexact and have error. This size of this error may be estimated from

the well control if the impedances are assumed to be locally stationary around the

point constraint.

Written in matrix notation, the point constraints are

d�p = Prp; (6.50)

where d�p is a vector specifying the P-wave point constraints, andP is the appropriate

linear summation operator. A variation of this is that the average impedance over

some interval must equal some value within a certain error. Note, that the S-wave

impedance may be related to the S-wave impedance re�ectivity in a similar fashion.

Augmenting the simultaneous equations (6.9) with the P-wave and S-wave im-

pedance point constraints results in266666664

d1
...

dK

d�p
d�s

377777775
=

266664
Mn

1WN1M
f
1E1 Mn

1WN1M
f
1F1

Mn
2WN2M

f
2E2 Mn

2WN2M
f
2F2

P�p 0

0 P�s

377775
"
rp

~rs

#
; (6.51)
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where  is a diagonal matrix whose elements consist of the S-wave to P-wave velocity

ratio. This may be written in the more compact notation

d = Gx; (6.52)

where G is the linear operator

G =

266666664

Mn
1WN1M

f
1E1 Mn

1WN1M
f
1F1

...
...

Mn
KWNKM

f
KEK Mn

KWNKM
f
KFK

P�p 0

0 P�s

377777775
; (6.53)

d is the data vector

d =

266666664

d1
...

dK

d�p
d�s

377777775
; (6.54)

and x is the unknown parameter vector. The data vector contains a total of M =

L� (K + 2J) elements and the parameter vector N = 2L elements.

To solve this, equation (6.52) must be �rst transformed so the variables are inde-

pendent (equation 6.22). The result is similar to matrix (6.26) and may be solved

in a similar fashion as in Section 6.2.3. However, the elements of the mis�t vector

" = G0x0�d must be suitably weighted. The mis�t is no longer uniform. The mis-
�t due to �tting the seismic data and that due to �tting the point constraints have

di¤erent variances. The diagonal weighting matrixWe is introduced to compensate

for the di¤erence in relative sizes between the two mis�ts. This matrix We has

ones for the data mis�t elements, and some scalar for the point constraint mis�t

elements. The choice of this scalar controls the how well the point constraints are

honored relative to the data constraints.

Having introduced this weighting matrix, this leads to the solution

�
G0TWeG

0 +�Q
�
x0 = G0TWed (6.55)
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Figure 6.23: Model (b) estimated from the prestack impedance inversion compared
to the input (a) and scaled (5X) di¤erence (c).

where

� = �1
�2N
�2rp

; (6.56)

and

�2N =
"TWe"

(M � 1) : (6.57)

Once again " = G0x0�d and Q is de�ned by equation (6.36). Numerically, this is

solved as in Section 6.2.3. Upon solving for x0; the solution is transformed to x

and then the P-wave and S-wave impedance re�ectivity are integrated using equation

(6.47) to estimate the impedances. This solution technique is similar to the poststack

impedance inversion described by Oldenburg et al. (1983). However, they used linear

programming to implement the `1 solution. This solution technique is too expensive

for prestack data, necessitating the use of conjugate gradient and suitable weighting

functions.

To test this, a simple blocky model was constructed where most re�ections fol-

low the mudrock trend. A Class III anomaly undergoing o¤set dependent tuning

was introduced at 1.5 seconds. The re�ectivity was generated using the Zoeppritz



210

Figure 6.24: The AVO waveform estimates (red) of the P-wave Impedance, S-wave
impedance and �uid stack re�ectivity (a) vs the ideal (blue). Also, the ideal data
(b) is compared to the estimated data (c) in the cross-plot domain.

equations and was convolved with 5/10-40/50 Hz wavelet. Noise was added to give

a signal-to-noise ratio of 4:1. Figure 6.23 shows the input synthetic gather and the

model gather generated by the inversion. Note the excellent match between the two

with only random noise showing up in the di¤erence display (Figure 6.23c).

The band-limited re�ectivity is shown in Figure 6.24a. To quantify the match,

estimated (Figure 6.24c) and ideal (Figure 6.24b) re�ectivity are crossplotted. The

estimated data shows the same trends. The tuned Class III anomaly is correctly

identi�ed. The estimated full spectrum re�ectivity is also a good match with the

ideal re�ectivity (Figure 6.25a). The P-wave and S-wave impedances are estimated

by integrating their respective re�ectivities (equation 6.47) again matching the ideal

accurately (6.25b). Once again the tuned Class III anomaly is correctly predicted.
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Figure 6.25: The estimate (red) of the full spectrum P-wave impedance, S-wave
impedance and �uid factor re�ectivity (a) compared to the ideal (blue). After inte-
grating, the P-wave and S-wave impedances (b) estimate (red) are compared to the
ideal impedance (blue).
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6.7 Discussion

I was unable to obtain acceptable impedance inversion results on real seismic

data. The spike series estimated by the inversion were laterally discontinuous and

geologically implausible. In order to apply this algorithm to real data, I believe that

lateral constraints need to be incorporated. I originally developed this algorithm

using sparse matrices, and when implementing the lateral constraints ran into memory

issues. In the future I plan to implement the lateral constraints following the second

conjugate gradient methodology discussed in Section 6.2.3.

Three di¤erent a priori distributions were developed to constrain the problem. I

preferred the Cauchy distribution since the results seemed to be less sensitive to its

parameterization. The `1 and Huber norm results seemed to be quite sensitive to

the choice of the threshold parameter �:

Buland and Omre (2003) use an interesting constraint that I plan to implement in

the future. They assume that the elastic parameters for di¤erent layers are correlated

using a covariance function to describe their inter-relationship. This assumption, is

probably more realistic than the assumption made in this chapter, that the variables

from di¤erent interfaces are independent. This would help address the null space

introduced by the band-limited nature of the source wavelet. However, this would

also make the eigenvector analysis in Section 6.2.1 much more expensive.

In the preceding analysis it was assumed that statics and stacking velocities are

known exactly a priori. Residual velocity errors cause distortions in the AVO para-

meter estimates particularly the gradient. Swan (2001) makes use of the fact that the

ratio between the gradient and the intercept is distorted to identify and correct for

residual moveout. In a similar fashion, this algorithm could be modi�ed to identify

velocity errors and correct for them. A less costly approach would be to run Swan�s

residual velocity analysis and correction prior to the AVO waveform inversion.

Residual statics also cause distortions in estimates of the AVO parameters. To

help address this issue, treat the data generated by each outer loop of the inverse

solution as a pilot model for trim statics. The data traces can then be trimmed

into this model improving the overall �t. The advantage of using this model over

some pilot generated from the stack is that o¤set dependent changes are included.

In addition, this approach to could be applied to seismic data prior to NMO. These

ideas are developed in Chapter 8.

An uncertainty analysis can be performed in a manner similar to Chapters 2 and
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3. The cost of doing this is quite expensive in that it requires the explicit calculation

of the inverse of the matrix
�
G0TG0+�Q

�
: Further, this calculation will be overly

pessimistic since the truncated conjugate gradient solution excludes some of the small

eigenvalues.

6.8 Conclusions

The AVO waveform inversion developed in this chapter generates better AVO

re�ectivity attribute estimates on events undergoing NMO stretch and di¤erential

tuning than traditional AVO inversion performed on NMO corrected gathers. This

is clearly demonstrated by the �rst synthetic example. The inversion is relatively

insensitive to the waveform used, provided it is reasonably close. Further, the esti-

mates are more reliable than the estimates provided by the traditional AVO analysis

performed on a sample-by-sample basis. This increased reliability is due to the classic

trade-o¤ between resolution and stability. A few sparse re�ectivity values are esti-

mated with greater certainty than the dense re�ectivity at every time sample as in

the traditional AVO analysis.

The algorithm is reasonably fast. Even though the size of the problem is much

larger than the traditional AVO problem, only a few iterations of conjugate gradi-

ent are required to come to a satisfactory solution. For the real data example, the

algorithm took eight times as long as the traditional way of solving the problem.

In this chapter, the AVO model used was based on a two-term approximation.

This is not particularly satisfactory in that the original motivation was to be able to

invert large o¤sets in order to do three-term AVO analysis. Limiting the solution

to two terms was done initially for stability reasons. In Chapter 8 the theory is

extended to estimate three independent variables.
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Chapter 7

Stretch-free NMO

7.1 Introduction

An alternative approach to deal with NMO stretch is to perform stretch-free NMO

(Hicks, 2001, Trickett, 2003, Downton et al., 2003) on the data prior to AVO. There

are a number of advantages to stretch-free NMO including the ability to include more

o¤sets and obtain higher frequency content in the resulting stack (Hicks, 2001). For

marine data, because of the size of the prestack data, it is a common practise to

perform AVO analysis on limited o¤set stacks rather than prestack gathers. Connolly

(1999) provides a framework to interpret these stacks. Smith and Gidlow (2003)

point out that a far o¤set stack created with a suitable range of o¤sets is similar to

a �uid stack. However, the far o¤set stack has signi�cantly lower frequency content,

compared to the near o¤set stack, making the analysis more complicated. It is

thought that by doing stretch-free NMO that this issue can be addressed.

There have been a number of papers in the literature suggesting how to implement

stretch-free NMO. Trickett (2003) proposes doing stretch-free NMO by combining the

ideas of inverse NMO stack (Claerbout, 1992) with block NMO (Rupert and Chun,

1975). In actuality the output of this approach is a stretch-free stack. Prestack

gathers can be mimicked by creating a series of limited o¤set stacks. Trickett (2003)

never proves or shows that his approach is amplitude preserving However, Hunt et

al. (2003) show an AVO case study in which this approach was used to do the AVO

inversions. Di¤erences are noted between the stretch-free result and the traditional

NMO processed AVO inversion, but no conclusions are made as to which is superior.

Rupert and Chun (1975) suggested performing block NMO. Instead of applying

NMO, the basic idea is to apply time shifts to isolated re�ectors thus avoiding NMO
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stretch. The issue with this approach is that the method cannot handle di¤erential

tuning as a function of o¤set or con�icting events. To get around this, Hicks (2001)

suggested doing the block NMO in the Radon domain. He pointed out that con�ict-

ing, constant amplitude hyperbolic events are cleanly separated by the Hyperbolic

Radon transform. However, due to the limited aperture and the band-limited na-

ture of the seismic data, the constant amplitude hyperbolic events have an impulse

response rather than a point response. The impulse responses from adjacent events

interfere with each other complicating the analysis. Hicks (2001) solves this problem

by identifying key events prior to the transform. Further, in order to allow for AVO

and e¢ ciently implement the algorithm, Hicks implemented the stretch-free NMO

using the Parabolic Fourier Radon Transform (PFRT). Because isolated events have

to be identi�ed prior to the transform, the method is cumbersome. Moreover, if a

re�ector lies in between two of these identi�ed events, it is distorted by the transform.

All these methods su¤er from the fact that the data are band-limited. In the

previous chapter, constraints and a solution method were developed to address this

issue. In this chapter the AVO waveform inversion, derived in the previous chapter, is

modi�ed slightly to create a stretch-free NMO stack (Downton et al., 2003). The the-

ory for this is �rst developed and then demonstrated on both synthetic and real data

examples. The results of AVO inversions using traditional NMO, stretch-free NMO,

and the AVO waveform inversion are then compared for synthetic data. Provided

with suitable constraints, data preprocessed with stretch-free NMO can yield more

accurate AVO inversion estimates than data preprocessed in the traditional manner.

However, the results of this modeling study show that the estimates are not as good

as that achieved by doing the AVO waveform inversion.

7.2 Theory

7.2.1 NMO inversion

Claerbout (1992) points out that NMO correction is a conjugate operation rather

than an inverse operation. By using the conjugate instead of the inverse operator,

amplitude and character distortions arise, namely NMO stretch. The conjugate

operator is used as an easy way to deal with the ill-conditioned or underdetermined

nature of the problem. Claerbout (1992) illustrates that for full bandwidth data, it is

possible to perform inverse NMO using conjugate gradient (Figure 7.1). He uses the
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Figure 7.1: Comparison of inverse NMO (b) with input (a) for full spectrum data.
The trace shown in (b) at o¤set= -500 is the stacked response. The stacked response
is equivalent to the input.

number of iterations as the trade-o¤ parameter to address the ill-conditioned nature

of the problem. However, this solution technique does not work on band-limited data

(Figure 7.2) since the problem is underdetermined, and as a consequence, additional

constraints are required.

7.2.2 High-resolution NMO stack

Smith and Gidlow (1987) showed that AVO inversion is a weighted stacked. The

result of this stacking process is two or three re�ectivity estimates depending on the

approximation used. The traditional stack can be considered a subset of this. In

this case, the AVO model is a constant amplitude model which can be described

by one re�ectivity parameter, the stacked response r0. Under these assumptions

the AVO waveform formulation (equation 6.8) may modi�ed to form the NMO stack

formulation 2664
d1
...

dm

3775 �
2664
WN1S1

...

WNmSm

3775 r0; (7.1)

where Sk is the spray operator (Claerbout, 1992), Nk is the NMO operator (Claer-

bout, 1992),W is a convolution matrix representing the source wavelet and dk is the

data at o¤set k: The spray operator acts in a similar fashion to diagonal matrices

Ek and Fk in Chapter 6, but are constant amplitude since AVO is not considered in

this chapter. Because of the band-limited nature of the seismic data the inversion
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Figure 7.2: Comparison of inverse NMO (b) with input (a) for band-limited data.
The trace shown in (b) at o¤set= -500 is the stacked response. Notice the waveform
changes as a function of time.

of equation (7.1) is underdetermined. Constraints may be added in a similar fashion

as previously done in the AVO waveform inversion, leading once again to an inverse

problem of the form �
GTG+

�2n
�20
Q

�
ro = G

Td; (7.2)

where G in this case represents the linear operator speci�ed by equation (7.1), �2n is

the variance of the noise andQ is a diagonal matrix specifying the weights. Assuming

the re�ectivity follows a Cauchy distribution the diagonal elements of Q are

Q
i;i
=

2�
r2i
2�20
+ 1
� ; (7.3)

where �20 is the variance of the re�ectivity. Similar to Chapter 6 other long-tailed

distributions may be used to create the weighting function. The matrix Q is con-

structed in a bootstrap fashion. Essentially large re�ectivities get weighted with

small weights and small re�ectivities with large weights. Once again the inverse

problem is solved in two loops. In the inner loop equation (7.2) is solved using con-

jugate gradient getting a new estimate of ro: The number of iterations is used as a

regularization parameter. The outer loop consists of updating the Q matrix from

the new estimate of r0 and then rerunning the inner loop. This leads to a sparse

spike re�ectivity solution.
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Stretch-free NMO

To perform AVO analysis, prestack data are required. Equation (7.1) may be

performed on a subset of o¤sets thus creating partial o¤set stacks. In the extreme,

one o¤set may be used. In this case, equation (7.1) becomes

dk =WNkrk; (7.4)

where rk represents the NMO corrected data for o¤set k: Similar to the above, the

inverse problem is �
NT
kW

TWNk+
�2n
�20
Q

�
rk = N

T
kW

Td; (7.5)

where Q is de�ned in a similar fashion as equation (7.3). The matrix Q may be

calculated for each o¤set or for all o¤sets using the Q matrix formed for the high-

resolution NMO stack. In practice, it was found that the latter gave better results.

In solving the inverse of equation (7.4), deconvolution is �rst performed, resulting

in a sparse spike re�ectivity series. Removing the in�uence of the wavelet addresses

the fundamental underdetermined nature of the problem by making the data broad-

band. The inverse NMO operator can then be successfully applied in a similar fashion

as section 7.2.1. The reliability of the results are dependent on the applicability of

the constraints or weights used to make the problem unique. For display purposes

the NMO corrected data shown in the following examples is �ltered with the source

wavelet so it is band-limited.

7.3 Examples

7.3.1 Synthetic example

The synthetic example from Section 6.3 is used illustrate the stretch-free NMO

algorithm. Recall that the AVO behavior of most of the re�ectors in the synthetic

gather followed the mudrock trend, but several Class III and IV anomalies were

present. Both isolated and tuned anomalies were included. These anomalies should

introduce distortions into the AVO inversion. Figure 7.3 shows the synthetic data

after the application of stretch-free NMO compared to NMO corrected data and a

synthetic created without NMO. The stretch-free NMO is higher frequency on the

far o¤sets compared to the NMO corrected data, though it is also noisier as a result
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Figure 7.3: Comparison of NMO corrected data (c) with stretch-free NMO (b). For
reference purposes gather (a) was generated without NMO.

of the deconvolution process. The two tuned re�ectors at 1.6 and 1.8 seconds show

greater detail and more information than the NMO corrected gathers but not as much

information as the ideal synthetic gather. Figure 7.4 shows the di¤erence between

the ideal and stretch-free NMO gather. Note that all the di¤erences occur for angles

larger than 40 �. The stretch-free NMO di¤erence is better than the NMO corrected

gather di¤erence (Figure 6.3).

The stretch-free NMO corrected data was then inverted for intercept A and gradi-

ent B in a manner similar as in Section 6.3, the results of which are shown in Figure

7.5. The estimated intercept once again accurately matches the ideal intercept re-

�ectivity. The estimated gradient is now a better match to the ideal than that done

on the NMO corrected data (Figure 6.4). However, there is still signi�cant scatter in

the crossplot domain (Figure 7.5c) compared to the results from the AVO waveform

inversion (Figure 6.6c). The re�ectivity results are summarized in Figure 7.6. All

techniques give good estimates of the intercepts. However, in the zone with Class III

and IV re�ectors, the NMO corrected gathers show signi�cant error on the gradient

estimate. The data which has been preprocessed with the stretch-free NMO shows

less error, while the re�ectivity estimate from the AVO waveform inversion shows

practically no error.
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Figure 7.4: Comparison of stretch-free NMO corrected data (b) versus ideal (a), and
the scaled (5X) di¤erence (c).

Figure 7.5: The AVO estimates (a) for intercept A and gradient B (red) are compared
to the ideal results (blue) for gathers preprocessed with stretch-free NMO applied.
The ideal data (b) is compared to the estimated data (c) in the cross-plot domain.
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Figure 7.6: Comparison of AVO inversion results using traditional NMO as input (a),
stretch-free NMO as input (b) and AVO waveform inversion (c).

7.3.2 Seismic data example

The stretch-free NMO algorithm was applied to marine data acquired o¤ the East

Coast of Canada. Figure 7.7 shows a representative prestack CDP gather. Note

that the stretch-free NMO shows greater frequency content in the far o¤sets. For

example, the event at 5.5 seconds shows higher frequency content and slightly di¤erent

kinematics. If stretch-free NMO is to be applied, the velocity analysis needs to be

modi�ed as well. Also, note that along with the higher frequency content comes more

random noise. The far angle stack (40 � - 50 �) generated using the stretch-free NMO

gathers is shown in Figure 7.9. For comparison, the angle stack was also generated

using NMO corrected gathers (Figure 7.8). Note the improvement in frequency as a

result of using the stretch-free NMO corrected gathers.

7.4 Conclusions

Stretch-free NMO may be derived from the more general AVO waveform formu-

lation presented in Chapter 6. The output of this is either a stacked section or

prestack gathers. The algorithm is much more computationally intensive than tra-

ditional NMO, with the cost being a order of magnitude less than that of running

a hyperbolic Radon transform. High-resolution constraints are used to stabilize the
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Figure 7.7: NMO corrected CDP gather (b) and stretch-free NMO (c) compared to
input (a).

Figure 7.8: Angle stack (40 - 50 degrees) based on traditionally NMO corrected
gathers
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Figure 7.9: Angle stack (40 - 50 degrees) based on stretch-free NMO corrected gathers

inversion. If stretch-free NMO is to be applied, the stacking velocities must be picked

with this approach for consistency.

On synthetic data, the AVO inversion results with stretch-free NMO input are

superior to that processed with traditional NMO. However, the results were not

as good as those obtained for the AVO waveform inversion. One might consider

performing stretch-free NMO if limited o¤set stacks are desired as an output. This

should lead to greater waveform consistency as a function of o¤set.
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Chapter 8

Three-term AVO waveform inversion

8.1 Introduction

Density re�ectivity is a useful AVO attribute to infer �uid saturation. In Chap-

ter 3, a three-term nonlinear AVO inversion was developed to estimate the density

re�ectivity. It was shown that to obtain reliable results, large o¤sets and angles are

needed. This being the case, NMO stretch and tuning become an issue. In Chapter

6, a two-term AVO waveform inversion was developed that addressed the issues of

NMO stretch and tuning as part of the inversion. For stability reasons, the algorithm

was developed using only two terms. This chapter extends the previously developed

two-term AVO waveform inversion to three terms, incorporating the constraints de-

veloped in Chapter 3. By including the waveform and the NMO operator, NMO

stretch and o¤set dependent tuning can be modeled as part of the inverse problem

leading to more accurate estimates of the re�ectivity.

In addition, several other theoretical innovations are introduced in this chapter.

In Chapter 6, the input to the inversion needed to have NMO. In this chapter,

modi�cations are introduced that allow the input seismic data to be either NMO

corrected or uncorrected. Further, to allow for better estimates in the presence of

non-Gaussian noise, long tailed likelihood probability distributions are investigated.

Finally, a method for correcting residual statics as part of the AVOwaveform inversion

is developed.

In previous chapters, the noise was assumed to be uniform, independent and

Gaussian. Real seismic data often has noise outliers that violate the Gaussian as-

sumption leading to errors in the estimates. For example, Downton and Mackidd

(1997) show that in the presence of spurious noise, such as multiples, the `1 mis-
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Figure 8.1: P- and S-wave impedance re�ectivity estimate versus ideal based on L2
AVO inversion in the presence of non-Gaussian noise. Note that the S-wave impedance
re�ectivity estimate is biased (highlighted by red ellipse) by the multiple.

Figure 8.2: P- and S-wave impedance re�ectivity estimate versus ideal based on L1
AVO inversion in the presence of non-Gaussian noise. Note the improvement in the
S-wave impedance re�ectivity estimate compared to Fig. 8.1. (highlighted by red
ellipse).
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�t function gives better estimates than the `2 mis�t function (Figure 8.1 and 8.2).

Downton and Mackidd (1997) use linear programming (Dantzig, 1963) to implement

`1 mis�t function. This is too cost prohibitive for the AVO waveform inversion

problem. Gersztenkorn el al. (1986) showed that the `1 mis�t function could be im-

plemented using iteratively reweighted least-squares. Scales and Gersztenkorn (1988)

showed that combining this mis�t function along with conjugate gradient, leads to a

computationally e¢ cient implementation. This is the approach taken in this chap-

ter. Various other mis�t functions (Crase, 1990: Bube and Langan, 1997) are also

investigated.

In the �rst part of this chapter, the relevant theory is developed using a Bayesian

formalism. The likelihood function is developed assuming long-tailed statistics and

extends the AVO waveform inversion of Downton and Lines (2003) to three terms.

A modi�cation is introduced allowing NMO corrected seismic data to be used as the

input to the inversion. Because of the band-limited nature of the seismic data, the

inverse problem is underdetermined necessitating the use of constraints. Well log in-

formation is introduced to establish the relationship between the di¤erent parameters.

Based on this information, a change of variables is performed so that the transformed

parameters are statistically independent. After the change of variables, the problem

is still underdetermined requiring regularization. Similar to Section 6.2.2, this is ad-

dressed by creating a weighting function that treats certain re�ection coe¢ cients as

being more probable than others. Theoretically, this is accomplished by choosing a

long tailed a priori distribution. This leads to a nonlinear inversion which I solve

using conjugate gradient. The problem is also regularized by only allowing the con-

jugate gradient solution to perform a limited number of iterations. This excludes the

smallest eigenvalues from the solution.

The algorithm is demonstrated on both synthetic and real seismic data. The

synthetic example is constructed so as to include NMO stretch and o¤set dependent

tuning, e¤ects that are known to bias the AVO inversion estimates. The three-term

AVO waveform inversion produces good estimates of all the re�ectivity attributes,

including the density. The algorithm accurately estimates the re�ectivity even on

events exhibiting NMO stretch and di¤erential tuning. The algorithm is then demon-

strated on a more realistic synthetic based on a well log from western Canada. Non-

Gaussian noise is added to the synthetic, to demonstrate the enhanced ability of the

alternative mis�t functions to estimate the re�ectivity. Various mis�t functions are
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demonstrated on this example. The AVO waveform inversion is also demonstrated

on seismic data from this area. Various mis�t weights are examined, comparing

their relative performance. Good results were obtained by all, but the Cauchy mis�t

function seems superior, since it gave good results while being relatively insensitive

to its parameterization. The seismic data example demonstrates how the algorithm

successfully di¤erentiates a known density anomaly between two well locations and

shows superior results to those of Chapter 3.

8.2 Theory

8.2.1 Convolutional model

The convolutional model is used as the basis for the likelihood model. This model

assumes the earth is composed of a series of �at, homogeneous, isotropic layers. Ray

tracing is performed to map the o¤set to angle of incidence. Transmission losses,

converted waves, and multiples are not incorporated in this model and so must be

addressed through prior processing. In theory, gain corrections such as divergence,

absorption, directivity, and array corrections can be incorporated into this model, but

are not considered for brevity and simplicity, so must be previously applied in the

processing. Any linear approximation of the Zoeppritz equations may be used as the

starting point for this derivation.

Following the same line of reasoning as in Chapter 6, a three-term AVO waveform

model is 2664
d1
...

dK

3775 =
2664
WN1E1 WN1F1 WN1H1

...
...

...

WNKEK WNKFK WNKHK

3775
264 r�r0�
rd

375 ; (8.1)

where r�, r0�, rd are the P- wave velocity re�ectivity, S-wave velocity re�ectivity

scaled by , and density re�ectivity respectively. These are all vectors whose ele-

ments correspond to di¤erent time samples. Likewise the elements of the data vector

dk represent the processed seismic data for the kth o¤set for the corresponding time

samples. There are a total of K o¤sets and L time samples. The block matrices

describe the physics of the problem. The matrices Ek, Fk, and Hk are diagonal and

contain weights that describe how the amplitude changes as a function of o¤set. These

weights follow from equation (1.6). Following Claerbout (1992), the block matrix Nk

performs NMO. This operator can be constructed using whatever o¤set traveltime
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relationship one desires. In this chapter, the three-term correction following Castle

(1994) is employed. Implicit in this model is that the kinematics are previously

de�ned. Lastly, W is a convolution matrix that contains the source wavelet. Ap-

plying these three operators in series, the block matrices Ek, Fk, and Hk model the

o¤set dependent re�ectivity from the zero o¤set re�ectivity, Nk applies NMO and

W convolves the o¤set dependent re�ectivity with the source wavelet modeling the

band-limited seismic data with NMO. The inversion of equation (8.1) can be thought

of as three separate inversion problems in series, deconvolution, inverse NMO and

AVO inversion.

NMO corrected data

Data that have been previously NMO corrected may be input to this algorithm

with a slight modi�cation. As discussed in Section 5.2, the NMO correction is typically

applied with the conjugate operator. Thus, NMO processing may be simulated by

applying the conjugate NMO operator to both the left and right hand sides of equation

(8.1) resulting in2664
d01
...

d0K

3775 =
2664
NT
1WN1E1 NT

1WN1F1 NT
1WN1H1

...
...

...

NT
KWNKEK NT

KWNKFK NT
KWNKHK

3775
264 r�r0�
rd

375 ; (8.2)

where d0k is the NMO corrected data for the k
th o¤set.2664

d01
...

d0K

3775 =
2664
NT
1 d1
...

NT
KdK

3775 : (8.3)

Note that NT
kWNk is not an identity matrix. This operator is responsible for NMO

stretch and o¤set dependent tuning. By applying the inverse of this operator these

artifacts can be removed.

Mask operator

Equation (8.1) is the three-term equivalent to the two-term equation (6.8). In

Section 6.2.1 various masking or muting operators are applied both to the model and



229

to the seismic data, so as to limit the range of angles used in the AVO inversion, and

to exclude supercritical angles and �rst breaks from the calculation. This resulted

in equation (6.9). In a similar fashion, equation (8.1) is modi�ed2664
d1
...

dK

3775 =
2664

Mn
1WN1M

f
1E1 Mn

1WN1M
f
1F1 Mn

1WN1M
f
1H1

...
...

...

Mn
KWNKM

f
KEK Mn

KWNKM
f
KFK Mn

KWNKM
f
KHK

3775
264 r�r0�
rd

375 ;
(8.4)

where Mf
k masks supercritical angles. This mask is calculated on data without

moveout. The other mask Mn
k is calculated on data with NMO. The matrix Mn

k

masks hard zeros in the data so as to exclude data that has previously been muted

in the processing. In addition, Mn
k masks data that falls outside some user de�ned

range of angles. This allows the user to exclude certain data, maybe on the basis of

noise, from the solution.

In a similar fashion the NMO corrected equation (8.2) is modi�ed to include masks

resulting in2664
d01
...

d0K

3775 =
2664

Mn
1N

T
1WN1M

f
1E1 Mn

1N
T
1WN1M

f
1F1 Mn

1N
T
1WN1M

f
1H1

...
...

...

Mn
KN

T
KWNKM

f
KEK Mn

KN
T
KWNKM

f
KFK Mn

KN
T
KWNKM

f
KHK

3775
264 r�r0�
rd

375 :
(8.5)

In this case, the masking operatorMn
k is designed on NMO corrected data.

Depending on the processing performed to the seismic data, either equation (8.4)

or (8.5) may be inverted with similar results. For future reference and simplicity, the

linear model (equation 8.4 or 8.5 as appropriate) is written as

d = Gx; (8.6)

where G is the linear operator

G =

2664
Mn

1WN1M
f
1E1 Mn

1WN1M
f
1F1 Mn

1WN1M
f
1H1

...
...

...

Mn
KWNKM

f
KEK Mn

KWNKM
f
KFK Mn

KWNKM
f
KHK

3775 ; (8.7)
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in the case of equation (8.4) or

G =

2664
Mn

1N
T
1WN1M

f
1E1 Mn

1N
T
1WN1M

f
1F1 Mn

1N
T
1WN1M

f
1H1

...
...

...

Mn
KN

T
KWNKM

f
KEK Mn

KN
T
KWNKM

f
KFK Mn

KN
T
KWNKM

f
KHK

3775 ;
(8.8)

in the case of equation (8.5). The parameter x is the unknown re�ectivity vector

x =

264 r�r0�
rd

375 ; (8.9)

and d is the muted seismic data before or after NMO correction as appropriate. The

data vector d contains M = L �K samples while the parameter vector x contains

N = 3L elements.

8.2.2 Parameterization

The regularization that is employed requires that the elements of x are statisti-

cally independent. However, this is clearly not the case since the mudrock relationship

(Castagna et al. 1985) can be used to predict P-wave velocity re�ectivity from the

scaled S-wave re�ectivity (equation 3.20). Further, the Gardner relationship (equa-

tion 3.32) may be used to predict the density re�ectivity from the P-wave velocity

re�ectivity. In Chapter 3, it was shown, assuming Gaussian statistics, that these cor-

relations can be described by the 3 � 3 covariance matrix (equation 3.39). Writing

this covariance matrix in terms of the scaled S-wave re�ectivity r0� rather than the

S-wave re�ectivity results in

Cx =

2664
�2R� �R�R0� �R�Rd

�R�R0� �2R0�
�R0�Rd

�R�Rd �R0�Rd �2Rd

3775 = �2R�

266664
1

r2
R�R

0
�

m
g

r2
R�R

0
�

m

� rR�R0�
m

�2
f
� rR�R0�

m

�2
g f

� rR�R0�
m

�2 �
g

rR�Rd

�2
377775 ;
(8.10)

where m is the mudrock slope with correlation coe¢ cient rR�R� , g is the Gardner

coe¢ cient with correlation coe¢ cient rR�R� and f is the Gardner coe¢ cient between

the S-wave velocity and density. If it is assumed, as is typically done in deconvo-
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lution, that the re�ectivity attributes are independent and that P-wave impedance

re�ectivity is stationary then it is simple to extend this covariance matrix to L time

samples resulting in a 3L � 3L sparse covariance matrix Cx. This matrix describes
the correlations between the di¤erent variables.

Similar to Chapter 6, the eigenvectors V and eigenvalues � can be calculated for

the covariance matrix

Cx = V�V
T : (8.11)

The eigenvectors are used to transform the parameters

x0= V�1x; (8.12)

so that the resulting parameter variables x0 are independent. Under the change of

variables, the covariance matrix for the transformed variables is

� =

264 �21 0 0

0 �22 0

0 0 �23

375 : (8.13)

For each time sample there are three distinct eigenvalues �21n, �
2
2n, and �

2
3n corre-

sponding to the variance of the three transformed variables. After the transform the

new variables can be approximately thought of as (1) the average of the P-wave and

S-wave impedance re�ectivity (the variable associated with the largest eigenvalue),

(2) similar to the �uid stack (variable associated with the second largest eigenvalue)

and (3) the deviation between the density predicted by the Gardner equation and the

actual density re�ectivity (variable associated with the smallest eigenvalue). Once

again, it is convenient for future use to rewrite equation (8.13) removing the P-wave

impedance re�ectivity variance �2rp264 �21 0 0

0 �22 0

0 0 �23

375 = �2rp

264 ~�
2
1 0 0

0 ~�22 0

0 0 ~�23

375 : (8.14)

Under the change of variables equation (8.6) becomes

d = G0x0; (8.15)
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where

G0= GV: (8.16)

8.2.3 Robust likelihood function

Following Gersztenkorn et al. (1986) the probability function

P (dmjx0; �; p; I) =
p

2��
�
1
p

� exp��jFm (x0)� dmj
�

�p
; (8.17)

is used to describe the likelihood function for the `p norm. In equation (8.17) Fm (x)

describes the functional relationship between the mth experimental data measure dm
and parameters x; � () is the gamma function, � (> 0) is a scaling parameter and

p (> 0) is a shaping parameter. This function leads to the `p mis�t function that

includes both the exponential and Gaussian functions. Choosing 1 � p < 2 leads

to a robust estimator. The parameters p = 2 and �2 = 2�2 results in the Gaussian

probability function

P`2 (dmjx; �; I) =
1

�
p
2�
e
�
�
jFm(x0)�dmj2

2�2

�
; (8.18)

that leads to the `2 mis�t function, while the parameters p = 1 and � = � results in

exponential distribution

P`1 (dmjx; �; I) =
1

2�
e
�
�
jFm(x0)�dmj

�

�
; (8.19)

that leads to the `1 mis�t function. Multiplying the probability distributions of M

independent measurements, each with scaling parameter �; results in the Likelihood

function

P (djx; �; p; I) = pM�
2�
�
1
p

��M
�M

exp

 
�

MX
m=1

jFm (x0)� dmjp

�p

!
: (8.20)

8.2.4 Prior model

In the linear model (equation 8.7 or 8.8) both, the matricesW andN are typically

underdetermined or ill-conditioned. This is due to the fact the data are band-limited



233

Figure 8.3: Diagonal of Q matrix calculated for �nal iteration of Halfway synthetic
example.
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and the di¤erential tuning introduces null spaces into the NMO operator N. Because

of this, the problem needs to be regularized. Similar to Chapter 6, this is done by

choosing a weighting function that treats certain re�ection coe¢ cients as being more

probable than others. Choosing a long tailed a priori distribution leads to such a

weighting function.

A long tailed distribution or sparse re�ectivity may be argued for based on physical

arguments. The P-wave impedance re�ectivity may be modeled as a long tailed

distribution, such as the `1distribution (Levy and Fullagar, 1981; Shapiro and Hubral,

1999). Under the change of variables the second variable is similar to the �uid factor.

The �uid factor re�ectivity is sparse by its nature since it only responds to anomalous

�uids or large changes in lithology. The third variable is similar to a di¤erence between

the scaled density and the velocity reacting to places where the density is uncorrelated

to the velocity. The re�ectivity of this third variable is sparse as well. After the change

of variables in the proceeding section, the variables are independent so the resulting

parameter covariance matrix is diagonal. Similar to Chapter 6, the three re�ectivity

series can be modeled by a variety of distributions including the Huber, Cauchy or `p

norm. For illustration purposes, the Cauchy distribution (equation G.11)

P (x0) =
NY
i

exp (��0)�
jx0ij

2 + b
��1 ; (8.21)

is used to derive the three-term nonlinear AVO waveform inversion. In deriving the

maximum a posterior (MAP) solution the derivative of the negative natural loga-

rithm of the prior probability distribution (8.21) JCauchy is required. For the three-

parameter problem this is
@JCauchy
@xm

=
�1
�21m

Qcx
0; (8.22)

where Q is a diagonal weighting matrix whose elements are de�ned by

Qnn =

8>>>>>><>>>>>>:

1�
x02n
2�21

+1

� n � L

�21
�22

1�
x02n
2�22

+1

� L < n � 2L

�21
�23

1�
x02n
2�23

+1

� 2L < n � 3L

: (8.23)

These weights rely on parameter estimates themselves and so must be calculated
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in a bootstrap fashion. The methodology is similar to that of Sacchi and Ulrych

(1995) and that used in Chapter 6. Figure 8.3 shows weights that were calculated

for synthetic example in Section 8.3.2. In general large re�ectivity results in small

weights and small re�ectivity in large weights. It is also possible to see the in�uence

of the di¤erent eigenvalues associated with the di¤erent variables in Figure 8.3. The

weights associated with the third eigenvalue (1001 < n � 1500) are much larger than
that for the �rst eigenvalue (1 < n � 500) as equation (8.23) implies. This means

that information will preferentially be put into the �rst eigenvector rather than the

last eigenvector.

8.2.5 Nonlinear inversion

The likelihood function (equation 8.20) may be combined with the a priori prob-

ability function (equation 8.21) using Bayes�Theorem

P (x0jd;I) / P
�
djx0;I

�
P (x0jI) ; (8.24)

resulting in

P (xjd;p; �; I) / exp
 
�

MX
m=1

jFm (x0)� dmjp

�p

!
NY
n

exp (��0)�
jx0nj

2 + b
��1 : (8.25)

The MAP solution occurs where the function is stationary and convex. It is easier

to take the partial derivatives of the logarithm of the function

L (xjd;p; �; I) / �
MX
m=1

jFm (x0)� dmjp

�p
+

NX
n

exp (��0)�
jx0nj

2 + b
��1 : (8.26)

Thus, the partial derivative of the objective function

@J

@xj
= 0 = �@Jp

@xn
� @JCauchy

@xn
; (8.27)

is the sum of two parts, the `p mis�t function

Jp =
MX
m=1

jFm (x0)� dmjp

�p
; (8.28)
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and the a priori function, in this case JCauchy: Substituting the partial derivative of

JCauchy (equation 8.22) and Jp (Appendix G.4)

rJp =
G0TW`pG

0x0�G0TW`pd

�2
; (8.29)

results in �
G0TWeG

0x0 +�Qc

�
x0 = G0TWed; (8.30)

where

� =
�1�

2

�21
; (8.31)

We=diag

8<: �p�2
��� "m� ��� � ���� "m� ���p�2 ��� "m� ��� > �

9=;
M

m=1

; (8.32)

and � is a small number. The inequality
��� "m� ��� � � is introduced to protect against

the singularity that arises for 1 � p < 2:

There are three sources of nonlinearity in equation (8.30), the estimate of the

penalty term �; and the calculation of the diagonal weighting matrices Q and We

(equation 8.23 and 8.32). Depending on the weights used, there are unknown hyper-

parameters in the calculation of �: The optimal choice of � may be found by doing

a parameter search as outlined in Chapter 6. I also found that one could compare,

at the well control, the amount of dispersion in the estimated Rp; Rd crossplot versus

the ideal. If the constraints are applied too harshly, then the crossplotted re�ectivity

appears as a line. If the constraints are applied too loosely, there is too much scatter

in the crossplot space. Thus, the amount of dispersion may be use to adjust the

value of � so it appears similar to that of the well control.

The other source of nonlinearity is the construction of the weights Q and We:

These require previous estimates of x0 and " so must be calculated in a bootstrap

fashion. Similar to Chapter 6, the inverse problem is solved by performing two

nested loops. The outer loop consists of calculating the penalty function �, and

the two diagonal weighting matrices Q and We based on the previous estimates

of x0 and " The inner loop calculates x0 and " by solving equation (8.30) with

conjugate gradient (Shewchuck, 1994), using the maximum number of iterations as a

regularization parameter (Hansen, 1998). For the initial loop the weighting matrix

We is set to the identity matrix while the penalty term � is set to zero. Generally,
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a satisfactory sparse solution was obtained after two to three outer loops. The

three-term inversion is more ill-conditioned than the two-term inversion. I was never

able to achieve a sparse spike solution. The estimate of x0 always appeared band-

limited. To avoid the solution becoming unstable, I had to more severely restrict

the maximum number of conjugate gradient solution iterations run, compared to

the two term solution. This excluded small eigenvalues that made the solution

more unstable, but were also important in creating the spiky appearance of the two

term solution. After the �nal iteration, the parameters can be transformed to a

more natural parameterization using equation (8.12). In fact, the parameters may

be transformed to any convenient parameterization using the three-term transform

(equation B.54).

Mis�t weights

A number of di¤erent mis�t weighting functions may be used. They can be

derived from long-tailed distributions in a similar fashion as done in Chapter 6 for

the a priori distributions. The `1 and `2 weights may be derived from the general

`p norm (equation 8.32). The `1 norm may be simulated by this, for in the limit as

p! 1 the weights become

W`1=diag

8<:
1
�

�� "m
�

�� � �
1

j "m� j
�� "m
�

�� > �

9=; where � << 1; (8.33)

The Gaussian weights also follow from equation (8.32), for p = 2 the weights are the

identity matrix

W = I: (8.34)

which is consistent with the results derived for Gaussian mis�t functions in Chapter

6. Bube and Langan (1997) introduced a mis�t function that behaves like a `2 mis�t

function for small mis�t and a `1 mis�t function for large mis�t. This `1=`2 hybrid

weighting function is

WBL = diag

8<: 1q
"2m
�2
+ 1

9=; ; (8.35)

where �2 � 0:63
M

PM
m=1 "

2
m: They claim this mis�t function has better convergence

properties than equation (8.32) since the behavior for small mis�t is continuous rather
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than discontinuous as for `1weights. The Bube and Langan (1997) weights are very

similar in form to the Cauchy mis�t weights

WCauchy = diag

8<: 1�
"2m
2�2
+ 1
�
9=; ; (8.36)

where � is a hyper-parameters. The derivation of the Cauchy mis�t weights is similar

to that done for priors in Chapter 6.

Lastly the Huber norm produces the weighting function

WHuber = diag

8<: 1 j"mj � ��
1

j"mj
��

j"mj > ��

9=; ; (8.37)

where � is some scalar greater than zero. The derivation again is similar to that in

Chapter 6. Like the Bube and Langan (1997) weights, the Huber weights behave

like a `2 mis�t function for small mis�t and a `1 mis�t function for large mis�t, but

is discontinuous. Essentially the Huber mis�t weighting function underweights data

with mis�t greater than � standard deviations.

8.3 AVO waveform examples

8.3.1 Synthetic example

The synthetic example from Section 6.3 was modi�ed to illustrate the three-term

AVO waveform inversion. An additional re�ector due to a density perturbation,

uncorrelated with the P-wave or S-wave impedance re�ectivity, was introduced at

1.9 seconds. Figure 8.4a shows the NMO corrected synthetic gather. Recall from

section 6.3, that the AVO behavior of most of the re�ectors in the synthetic gather

followed the mudrock trend, but several Class III and IV anomalies were also present.

The events at 1.5 and 1.7 seconds are Class III and IV anomalies undergoing NMO

stretch while the events at 1.6 and 1.8 seconds are Class III and IV AVO anomalies

undergoing o¤set dependent tuning and NMO stretch. These anomalies should

introduce distortions into the AVO inversion.

The synthetic data was generated using a convolutional model with a Ricker

wavelet with a dominant frequency of 32.5 Hz. Noise was added to give a signal-to-
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Figure 8.4: Synthetic (a) input, (b) three-term AVO waveform model reconstruction,
and (c) (5X) di¤erence between input and model reconstruction. Note the anomaly
due to the density perturbation at 1.9 seconds.
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noise ratio of 10:1. A constant background velocity is used so that there is a simple

angle to o¤set relationship. The maximum o¤set was chosen to be four times the

target depth so that angles out to 65 � are available for the inversion. These large

angles are included to highlight any distortions. The NMO corrected gathers were

input into the three-term AVO waveform inversion, inverting angles up to 55 �. The

estimated model (Figure 8.4b) accurately models all the events, including those un-

dergoing NMO stretch and o¤set dependent tuning, as evidenced by the small amount

of noise in the di¤erence display (Figure 8.4c).

Figure 8.5 shows the estimate of the band-limited re�ectivity versus the ideal zero

o¤set re�ectivity. To the eye, the estimate appears to be almost a direct match to

the ideal for all the re�ectivity attributes, including the density. The density re�ec-

tivity anomaly at 1.9 seconds is accurately estimated even though it is completely

uncorrelated with the P-wave and S-wave impedance re�ectivity. However, cross-

plots (Figure 8.7) of the P-wave and S-wave impedance re�ectivity, and the P-wave

impedance and density re�ectivity reveal that the estimates are not as accurate as the

crossplots for the two term inversions (Figure 6.6). Further, the estimate of the full

spectrum re�ectivity is not as sparse and high frequency as that of the ideal (Figure

8.6), due to the reasons outlined in Section 8.2.5.

8.3.2 Halfway synthetic example

A more realistic example based on an actual well log is examined next. This is

the Halfway synthetic model previously discussed in Chapters 3 and 5, based on a

well log from northeastern British Columbia, Canada. Figure 8.8 shows the well logs

and the synthetic gather. The synthetic gather was generated by a convolutional

modeling scheme using re�ectivity generated by the Zoeppritz equations and ray

tracing. The re�ectivity is convolved with a 10/14 - 90/100 Hz zero phase wavelet

and muted so only angles less than 45 � are shown. Gaussian noise was added

to give a 4:1 signal-to-noise ratio. Figure 8.9 shows the same model after NMO

correction. Note the apparent tuning and NMO stretch artifacts, for example, the

event at 0.32 seconds. Figure 8.9 also shows the input P-wave velocity and density

re�ectivity. Note that the density re�ectivity behaves di¤erently than the P-wave

velocity re�ectivity, particularly at 0.32 and 0.67 seconds.

In Chapter 3, this same model was generated, but without NMO. The constrained

three-term AVO inversion was able to accurately estimate all the re�ectivity attributes
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Figure 8.5: Comparison of �ltered three-term AVO waveform inversion for the P- and
S-wave impedance, density and �uid stack re�ectivity (shown in red) with the ideal
zero-o¤set re�ectivity (shown in blue) for synthetic example 1b. Note the excellent
match.
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Figure 8.6: Comparison of un�ltered three-term AVO waveform inversion for the P-
and S-wave impedance, density and �uid stack re�ectivity (shown in red) with the
ideal zero-o¤set re�ectivity (shown in blue) for synthetic example 1b. Note the poor
match.
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Figure 8.7: Cross-plot of �ltered (a) ideal P- and S- wave impedance re�ectivity,
(b) estimated P-and S-wave impedance re�ectivity, (c) ideal P-wave impedance and
density re�ectivity, and (d) estimated P-wave impedance and density re�ectivity.
Note scatter in the estimate due to error.
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Figure 8.8: Wireline logs displayed in time for the Halfway well log. The synthetic
gather was generated using re�ectivity generated from the Zoeppritz equation. The
re�ectivity is shown without moveout, �ltered and with noise added to give a S/N=4.
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Figure 8.9: P-wave velocity and density of Halfway well log. Note that density and
velocity are uncorrelated at 0.32 and 0.68 seconds. Note the corresponding re�ectivity
is as well. Density estimated using the Gardner equation Rd=g*Rvp correlates poorly
with the actual density. Note that the NMO corrected synthetic gather (g) shows
o¤set dependent tuning on the event at 0.32 seconds as well.
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including density. However, if the NMO corrected gathers are input into the inversion

instead, the results are not as good (Figure 8.10). This is due to the error introduced

by the NMO stretch and tuning.

The three-term AVO waveform inversion incorporates NMO stretch and o¤set de-

pendent tuning into its forward model, so should be una¤ected by these issues. The

same synthetic model, this time with NMO, was inverted using the three-term AVO

waveform inversion, using uniform mis�t weights and the same constraint parameters

as used in Chapter 3. Figure 8.11 shows the input, the estimated model and the

di¤erence between the two. The inversion is able to accurately model all the features

in the data set. Figure 8.12a shows the estimated versus ideal zero o¤set re�ectivity.

Once again the match is excellent with only small errors. All the major features are

accurately predicted. The density is estimated accurately even where it is uncor-

related with either the P- or S-wave impedance re�ectivity. Figure 8.13 shows the

crossplots for the ideal and estimated re�ectivity. The crossplots show essentially

the same trends and features.

The three-term AVO waveform inversion was also done using NMO corrected

gathers as the input. The ideal and estimated zero o¤set re�ectivity (Figure 8.12b)

are essentially identical with those based on the gathers with NMO with some subtle

di¤erences (Figure 8.12a). For example, the NMO corrected input inversion results

shows slightly greater error on the Halfway re�ector (trough at 0.74 seconds). Figure

8.14 shows the NMO corrected input, the estimated model and the di¤erence. The

estimated model once again accurately models the events even with NMO stretch and

tuning.

8.3.3 Comparison of di¤erent mis�t weighting functions on Halfway syn-
thetic

The previous results were obtained using uniform mis�t weights (We = I). If

there is non-Gaussian noise in the data, it might be more appropriate to use a di¤erent

weighting scheme. To test this, non-uniform and non-Gaussian noise was added to the

synthetic model (Figure 8.15a). Speci�cally, non-uniform Gaussian noise 10� times
greater than that of the other traces was introduced to the �rst trace. In addition,

an event with hyperbolic moveout was introduced to simulate interference from a

multiple re�ection. Based on the Downton and Mackidd (1997) results, the multiple

should bias the estimate around 0:51 seconds where the near o¤sets are interfered



247

Figure 8.10: Comparison of the estimated P- and S-wave velocity, density, and �uid
stack re�ectivity (shown in red) with the ideal zero-o¤set re�ectivity (shown in blue)
based on three-term AVO inversion of NMO corrected Halfway synthetic. Note that
the estimate is a poor due to the theoretical error introduced by NMO correction.

Figure 8.11: Halfway synthetic input (a), model reconstruction (b), and (5X) di¤er-
ence between input and model reconstruction (c) for the three-term AVO waveform
inversion. Note the good match and small di¤erence.
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Figure 8.12: Comparison of the estimated P- and S-wave impedance, density, and
�uid stack re�ectivity (shown in red) with the ideal zero-o¤set re�ectivity (shown in
blue) based on three-term AVO inversion of NMO corrected Halfway synthetic. Note
there is little di¤erence between doing the AVO waveform inversion with NMO (a) or
after NMO correction (b).



249

Figure 8.13: Cross-plot of �ltered (a) ideal P- and S- wave impedance re�ectivity,
(b) estimated P-and S-wave impedance re�ectivity, (c) ideal P-wave impedance and
density re�ectivity, and (d) estimated P-wave impedance and density re�ectivity.
Note good correspondence between estimated and ideal data.
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Figure 8.14: Halfway synthetic (a) input, (b) model reconstruction, and (c) di¤erence
between input and model reconstruction for three-term AVO waveform inversion.
Note the input is NMO corrected and that the reconstruction models the NMO stretch
and o¤set dependent tuning.

Figure 8.15: Halfway synthetic (a) input, (b) model reconstruction, and (c) di¤er-
ence between input and model reconstruction for interatively reweighted least-squares
three-term AVO waveform inversion (Cauchy weights).
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with. The three-term inversion is quite sensitive to noise so the expectation is that

there should also be error in the estimate due to interference on the far o¤sets. The

AVO waveform inversion was performed on this modi�ed synthetic model testing all

the weights outlined in Section 8.2.5.

Figure 8.16 shows the three-term AVOwaveform inversion performed with uniform

weights. The density re�ectivity displays signi�cant error over the interval coinciding

with the multiple. It does not appear that the noisy trace in�uences the solution.

Figure 8.17 displays the result using the Huber weights. The threshold � was set

to be two standard deviations, so that data with mis�t greater than two standard

deviations were weighted down. Figure 8.18 shows the mis�t weights that were

applied to the solution. The solution is now signi�cantly better but there is still

error. The density estimate is poor over the interval from 0:67 to 0:75 seconds.

Figure 8.19 shows the re�ectivity estimates based on the Cauchy mis�t weights

(Figure 8.20) while Figure 8.21 shows the results using the Bube and Langan weights

(Figure 8.22). The Bube and Langan weights are the square root of the Cauchy

weights: The Bube and Langan weights lead to a solution that seems to be slightly

better than the Cauchy weight solution. Various values were tried for the hyper-

parameter � in equations (8.35) and (8.36) trying values from 1=2 to 3 times �̂N .

The overall solution varied somewhat, but was quite insensitive to the choice of this

parameter. In the end one standard deviation was chosen. Figure 8.15 shows the

model reconstruction and di¤erence based on the Cauchy weights. The spurious

noise on trace 1 and multiple are well estimated and removed.

The best solution is that provided by the `1 weights (Figure 8.23 and 8.24). This

solution approaches that of the AVO waveform inversion done on the synthetic with

only Gaussian noise. The S-wave impedance re�ectivity with `1 mis�t weights shows

greater error at 0:51 seconds compared to the Figure 8.12a). The threshold was set

to � = 0:1 for this solution. Originally smaller thresholds (e.g. � = 0:01 and 0:001)

were tried but with poor results.

8.3.4 Real seismic data example

The three-term AVO waveform inversion was also run on the Halfway seismic line

shown in Chapter 3 and Chapter 5. This seismic line was acquired to explore for

Halfway sand potential (Downton and Tonn, 1997). The data have a relatively good

signal-to-noise ratio with the exception of some areas acquired through muskeg. In
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Figure 8.16: Comparison of the AVO waveform estimated (red) P- and S-wave im-
pedance, density, and �uid stack re�ectivity with the ideal (blue) zero-o¤set re�ec-
tivity for the Halfway model with non-Gaussian noise. Note the poor estimate of the
density re�ectivity over the interval from 0.5 to 0.76 seconds.

these areas there is quite a bit of shot generated noise. O¤sets are long enough

to perform the three-term AVO inversion on angles out to 45 �. Forward modeling

indicates that within this range supercritical re�ections are not encountered. Figure

8.25 shows the three-term P-wave impedance re�ectivity, S-wave impedance re�ectiv-

ity, and density re�ectivity estimates generated in Chapter 3. There are two bright

spots on the line, evident on the P-wave impedance re�ectivity section, at around

0.72 seconds The producing �eld (wells C and E) should have both a low velocity

and density response, hence large re�ectivity responses. The uneconomic gas sand,

at well A, should have a large velocity but poor density response. This is evident

on the re�ectivity sections. The P-wave impedance re�ectivity shows bright spots at

both the wells. The density re�ectivity section shows a poorer anomaly at the well

with uneconomic gas saturations (well A) than the producing �eld.

Figure 8.26 shows the three-term AVO waveform inversion based on gathers with

NMO. The results are a signi�cant improvement over those from Chapter 3. Notice

that the AVO waveform inversion estimate of the S-wave impedance re�ectivity is

much better correlated with the P-wave impedance than result from Chapter 3. This

seems to be more geologically plausible. The density re�ectivity shows the same sort
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Figure 8.17: Comparison of the reweighted AVO waveform estimated (red) P- and
S-wave impedance, density, and �uid stack re�ectivity with the ideal (blue) zero-
o¤set re�ectivity for the Halfway model with non-Gaussian noise. Note the poor
estimate of the density re�ectivity over the interval from 0.5 to 0.76 seconds. Note
the improvement in the estimate of the density re�ectivity compared to Fig. 8.16.
Huber weights with � = 2 are used.

Figure 8.18: Huber weights with � = 2 are used to generate Fig. 8.17.
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Figure 8.19: Comparison of the reweighted AVO waveform estimated (red) P- and
S-wave impedance, density, and �uid stack re�ectivity with the ideal (blue) zero-
o¤set re�ectivity for the Halfway model with non-Gaussian noise. Note the poor
estimate of the density re�ectivity over the interval from 0.5 to 0.76 seconds. Note
the improvement in the estimate of the density re�ectivity compared to Fig. 8.17.
Cauchy weights are used.

Figure 8.20: Cauchy weights that are used to generate Fig. 8.19.
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Figure 8.21: Comparison of the reweighted AVO waveform estimated (red) P- and
S-wave impedance, density, and �uid stack re�ectivity with the ideal (blue) zero-
o¤set re�ectivity for the Halfway model with non-Gaussian noise. Note the poor
estimate of the density re�ectivity over the interval from 0.5 to 0.76 seconds. Note
the improvement in the estimate of the density re�ectivity compared to Fig. 8.18.
Bube and Langan (1997) weights are used.

Figure 8.22: Bube and Langan (1997) weights are used to generate Fig. 8.21.
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Figure 8.23: Comparison of the reweighted AVO waveform estimated (red) P- and
S-wave impedance, density, and �uid stack re�ectivity with the ideal (blue) zero-
o¤set re�ectivity for the Halfway model with non-Gaussian noise. Note the poor
estimate of the density re�ectivity over the interval from 0.5 to 0.76 seconds. Note
the improvement in the estimate of the density re�ectivity compared to 8.16. L1
weights with epsilon=0.1 are used.

Figure 8.24: L1 weights with epsilon=0.1 that were used to generate Fig. 8.23.
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of response at the zone of interest for both inversions. The AVO waveform inversion

seems to su¤er more from the noise associated with shots acquired in the muskeg

around CDP 2000.

The AVO waveform inversion was also run with NMO corrected gathers (Figure

8.27). The results of this are comparable to the previous results. Around CDP 2100

the result seems to be much better, however there are noise spikes on the density

re�ectivity between CDP 3000 to 3500. Overall, the results are quite similar in

quality.

To address these noise issues, the AVO waveform inversion was rerun but using

iteratively reweighted least squares. The input to all of these inversions is NMO

corrected. Figure 8.28 shows the results with the Huber mis�t weighting function

(equation 8.37) with � = 3. This results in estimates that are more continuous in

the noisy area, with less spiky noise on them. Figure 8.29 shows the results of the

`1 norm inversion, which are signi�cantly worse than than the others. Potentially

better results might be obtainable with a di¤erent choice of �: I found the `1 norm

solution to be quite sensitive to parameter selection. Figure 8.30 shows the result

using Cauchy weights. The re�ectivity estimate is now quite continuous in the noisy

areas. Figure 8.31 shows the results using the Bube and Langan weights. Both

the Cauchy and the Bube and Langan weights give good results with only subtle

di¤erences between them. I slightly prefer the Cauchy weights since they result in

higher frequency estimates, with better lateral continuity of re�ections.

Figure 8.32a shows the input seismic data at CDP 1500, while Figure 8.32b shows

the estimated data from the AVO waveform inversion. The di¤erence between the

two only shows minor di¤erences (Figure 8.32c). Note the AVO waveform inversion

was able to identify and ignore the coherent noise starting at 0:5 seconds on the near

o¤set.

8.4 Statics

Residual statics present in the AVO inversion input degrade the resulting para-

meter estimates. To understand the impact of this, residual statics were introduced

to the Halfway synthetic gather (Figure 8.33). The AVO waveform inversion, with

this input, results in poorer estimates of the density and S-wave impedance re�ec-

tivity (Figure 8.34a) than previously (Figure 8.12a). Typically, trim statics are run

to remove small residual statics that surface consistent statics have left uncorrected.
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Figure 8.25: P- and S-wave impedance, and density re�ectivity AVO inversions over
producing and non-economic gas �elds. Note that it is possible to di¤erentiate on the
density section the low gas saturation gas well (light blue Well A at 0.72 s) from the
economic gas wells (dark blue at Well C and E at 0.72 s).
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Figure 8.26: P- and S-wave impedance, and density re�ectivity AVO waveform inver-
sions. Note the improvement in the S-wave impedance re�ectivity section compared
to Fig. 8.25 though there are more noise artifacts.
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Figure 8.27: P- and S-wave impedance, and density re�ectivity AVO waveform in-
versions based on NMO corrected gathers. Note result is very similar to that of Fig.
8.26.
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Figure 8.28: P- and S-wave impedance, and density re�ectivity AVO waveform inver-
sions using Huber mis�t weights (� = 2). Note the improvement in the signal-to-noise
ratio compared to Fig. 8.26.
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Figure 8.29: P- and S-wave impedance, and density re�ectivity AVO waveform inver-
sions using L1 mis�t weights. The results are much poorer than Fig. 8.26.
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Figure 8.30: P- and S-wave impedance, and density re�ectivity AVO waveform inver-
sions using Cauchy mis�t weights. Note the improvement in the signal-to-noise ratio
compared to Fig. 8.26 and Fig 8.28.
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Figure 8.31: P- and S-wave impedance, and density re�ectivity AVO waveform in-
versions using Bube and Langan (1997) mis�t weights. Note the improvement in the
signal-to-noise ratio compared to Fig. 8.26 and Fig. 8.28.
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Figure 8.32: CDP gather at 1500 showing the input (a), the three-term AVOwaveform
estimated model using Cauchy mis�t weights (b), and the (5X) di¤erence between
input and estimated reconstruction (c).
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Figure 8.33: Halfway synthetic modi�ed to include statics

Essentially this consists of creating a pilot trace (which is a usually stacked trace) and

cross-correlating each prestack trace with this pilot. From these cross-correlations,

time shifts may be calculated to apply to each trace within the CDP gather. The

problem with this methodology is that the pilot does not take into account changes

in character and amplitude as a function of o¤set. Instead of using a single pilot

trace, the model estimated from the AVO inversion may be used as a pilot to trim

into. The estimated data�s amplitude and phase vary smoothly as a function of o¤set

providing a stable pilot to trim into.

To implement this, the AVO waveform inversion was modi�ed to have an extra

outer loop. After the �rst outer loop, the data are estimated (modeled) based on a

previous parameter estimate, and then this model is used as a pilot to trim into. This

can be done before or after the application of NMO correction unlike traditional trim

statics. The data are static corrected and then the AVO waveform inversion continues

as before. This can be done one or more times. Figure 8.34b shows the re�ectivity

estimate after performing this with one additional loop. The result is signi�cantly

better than Figure 8.34a, and is close to the result achieved when there were no statics

to contend with (Figure 8.12a). Figure 8.34c shows the result after three iterations
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of trim statics. The results are marginally better than one iteration (Figure 8.34b).

The Halfway (trough at 0.74 seconds) amplitude is better estimated on the version

with three iterations of trim statics. These results suggest fast convergence.

The results shown in Figure 8.34b and 8.34c are done on gathers without NMO

correction. Figure 8.35 shows the results when the input is NMO corrected with one

pass of trim statics. The results are similar to those done on the data before NMO

correction with one pass of trim statics (Figure 8.34b).

This methodology was also applied to the Halfway seismic data (Figure 8.36) using

a Cauchy mis�t weighting function. With the exception of subtle di¤erences, the

results are quite similar to the previous results (Figure 8.27) in many respects. This

is probably due to the initial statics solution being su¢ cient.

8.5 Discussion

In Chapter 3 it was shown that in order to obtain reliable estimates of density

re�ectivity, large incidence angles and o¤sets were required. Unfortunately these

long o¤sets introduce additional issues in terms of the processing and gain correction.

In this chapter, some of the issues of using long o¤set data, notably NMO stretch and

o¤set dependent tuning, have been addressed However, it is important to remember

that there are other factors that can bias or distort the three-term AVO inversion such

as o¤set dependent transmission losses and residual NMO. There are solutions for

these factors (Section 1.3), but it is important to remember that the results are sen-

sitive to processing errors. In addition, it is important to remember that errors may

be introduced by using an isotropic elastic model, if the media is actually anelastic

or anisotropic.

The wavelet is assumed to be known as part of the AVO waveform inversion, but

as shown in Chapter 6, some error is acceptable in its estimation. By including

the wavelet, the band-limited re�ectivity estimates are always smooth. This is not

the case for traditional AVO inversion done on a sample-by-sample basis. Due to

the ill-conditioned nature of the problem, the solution may oscillate quickly in time,

introducing high frequency noise into the solution.

The approach taken in Chapter 3 was able to predict the uncertainty of the various

re�ectivity estimates. Predicting the uncertainty for the three-term AVO waveform

inversion is more complex and expensive. Instead of inverting a 3 � 3 matrix a
3L � 3L matrix must be inverted which is prohibitively expensive. In addition,
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Figure 8.34: Comparison of the estimated P- and S-wave impedance, density, and
�uid stack re�ectivity (shown in red) with the ideal zero-o¤set re�ectivity (shown in
blue) based on the three-term AVO waveform inversion of Halfway model with statics.
Statics left uncorrected degrades the inversion results (a). Fig (b) shows one pass of
trim statics while Fig. (c) shows 3 passes. Note the improvement in the density
re�ectivity compared to (a) and how it compares favorably to Fig. 8.12a.
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Figure 8.35: Comparison of the estimated (red) P- and S-wave impedance, density,
and �uid stack re�ectivity with the ideal (blue) zero-o¤set re�ectivity based on the
NMO corrected three-term AVO waveform inversion of Halfway model with one pass
of trim statics. The result compares favorably with Fig. 8.34b.
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Figure 8.36: P- and S-wave impedance, and density re�ectivity AVO waveform inver-
sions with trim statics and Cauchy mis�t weights.
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the problem is being regularized by controlling the number of iterations used in the

conjugate gradient solution. This has the e¤ect of excluding the smallest eigenvalues,

thus changing the condition number and uncertainty of the problem. Currently, my

thought is to run the three-term inversion of Chapter 3 producing an uncertainty

analysis that could be used to identify problem areas on the line. This uncertainty

would only provide a rough guide to where potential problems might be, but it would

identify problem areas particular to the AVO inversion itself.

Various mis�ts weights were tested on both the synthetic are real data. The

`1 mis�t function gave the best results on the model data set, but the results were

sensitive to its parameterization. On the real data, the results from `1 mis�t function

were quite poor, perhaps suggesting a parameterization problem. However, both the

the Bube and Langan weights, and Cauchy weights gave good results for both the

synthetic and real data. Each of these weights seemed to be relatively insensitive

to their parameterization. The Huber weights gave good results, were relatively

insensitive to parameterization, but did not provide as good as results as the Bube

and Langan weights, and Cauchy weights.

8.6 Conclusions

This chapter developed and demonstrated a three-term AVO waveform inversion

that works on data with NMO stretch and o¤set dependent tuning. By including these

factors, longer o¤sets may be used to help make the AVO problem better conditioned.

Both mis�t weights and constraints are used to regularize the problem helping to

address the underdetermined nature of the problem and to stabilize the inversion in

the presence of non-Gaussian noise. Incorporating the mis�t weights improve the

re�ectivity estimates in the presence of non-Gaussian noise for both the synthetic

and real seismic data. A methodology has been shown to allow for the identi�cation

and application of residual statics as part of the AVO waveform inversion. The

input gathers can either be NMO corrected or left uncorrected. This �rst option

allows prestack migrated gathers to be input into the algorithm. The algorithm

is successfully demonstrated on synthetic data exhibiting NMO stretch and o¤set

dependent tuning that would bias a traditional three term AVO inversion. Density

re�ectivity is successfully estimated on both synthetic and real seismic data even

when density is uncorrelated with the velocity re�ectivity for signal-to-noise ratios

typical of real seismic data.
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Chapter 9

Conclusions

This thesis demonstrates a number of methods to improve the estimates of AVO

inversion. This is accomplished by implementing a series of theoretical improve-

ments to the formulation of the inverse problem and including a priori probabilistic

constraints based on local geologic knowledge. As importantly, a number of quality

controls were also developed to help the explorationist understand the reliability and

information content of the predictions.

In the �rst part of this thesis, a constrained three-term AVO inversion was devel-

oped following a Bayesian methodology. The three-term linear approximation used

in this inversion introduces less bias than the two-term approximations typically prac-

tised by the exploration industry today. Two-term AVO inversions implicitly impose

hard constraints either through the truncation of the third term, or the use of some

external relationship such as the Gardner relationship. These hard constraints lead

to biases. Instead of incorporating hard constraints, the three-term AVO inversion

is made better conditioned by using probabilistic constraints, based on local geologic

knowledge. By comparing the probabilistic a priori information (local geologic con-

trol) and the probabilistic data mis�t function, Bayes�theorem estimates the optimal

solution, with the least amount of bias and error

The degree to which these constraints in�uence the solution is dependent on the

signal-to-noise ratio. The lower the ratio, the greater the in�uence of the constraints.

Secondly, the acquisition geometry in�uence the relative contribution of the data and

the a priori information. If the data are poorly conditioned, for example, if the all

the far angle information is missing, then the a priori information contributes more

to the solution.

The three-term AVO inversion bears some similarities to Lortzer and Berkhout
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(1993) though there are signi�cant di¤erences in the derivation. Lortzer and Berk-

hout treat the geologic control as data constraints while I treat the information as a

priori information. Further, Lortzer and Berkhout never discuss how the parame-

ter covariance matrix is constructed. I show in detail how this is done and discuss

some of the implications of the underlying relationships. For example, if the back-

ground �=� ratio changes as a function of depth, this implies the S-wave impedance

re�ectivity is non-stationary.

The Bayesian framework, used to develop the AVO inversion, is probabilistic in

nature providing a convenient framework for the uncertainty analysis. The most

likely estimate corresponds to the largest probability while the uncertainty is related

to the probability distribution�s dispersion. The standard deviation measures the

dispersion for Gaussian mis�t functions and can be calculated analytically. Estimates

of uncertainty based on these analytic relationships were tested and veri�ed by a

modeling study, performed in Chapter 2. Further, it is possible to see whether

the re�ectivity estimates provide information independent from the constraints by

observing the ratio of the unconstrained to constrained uncertainty. If the ratio is

large, then most of the information for that re�ectivity attribute is coming from the

constraints.

This is particularly important for the density re�ectivity, perhaps the most di¢ -

cult re�ectivity attribute to estimate reliably. Provided su¢ cient angles and signal-

to-noise ratio, it is possible to estimate density re�ectivity accurately. This was

demonstrated with both synthetic and real data examples in Chapter 3. Accurate

estimates of density re�ectivity are quite prized by the explorationist for their abil-

ity help discriminate noncommercial gas from commercial gas. Estimating density

re�ectivity, along with the corresponding reliability displays is one of the major ac-

complishments of this thesis. The approach di¤ers from Kelly and Skidmore (2001)

in three respects. First, I use a linear rather than a nonlinear approximation. I

do this based on philosophical grounds. Since higher order re�ectivity terms, such

as interbed multiples, are ignored in AVO inversion, it does not seem appropriate

to include higher order re�ectivity terms in the Zoeppritz equations approximation.

Secondly, Kelly and Skidmore (2001) do not discuss how they constrain the problem,

if they do so at all. Finally, they provide no mechanisms to quality control the

estimates.

The three-term AVO inversion can be output in terms of a number of di¤erent
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re�ectivity attributes. The three-term AVO inversion is parameterized in terms of

P-wave velocity re�ectivity, S-wave velocity re�ectivity, and density re�ectivity, but

through the use of transform matrix (equation B.54) the re�ectivity attributes may

be output in terms of any of the attributes common in the literature. In addition,

the uncertainty associated with the re�ectivity may also be transformed. In this way,

the re�ectivity attributes which best highlight the desired anomaly may be chosen,

while still maintaining acceptable error. For example, impedance re�ectivity might

be chosen over velocity re�ectivity, since it shows similar geologic information, but

with less error.

The uncertainty estimates performed in this thesis are based on the assumption

that the noise is Gaussian. If there are systematic data errors or theoretical errors the

uncertainty estimates will be too optimistic. This necessitates that (1) the seismic

data are properly conditioned prior to the AVO inversion, (2) the assumptions made

are honored, and (3) theoretical error associated with the linear operator is random.

In Chapter 1, it was assumed that the earth was elastic and isotropic. If either of

these assumptions are incorrect, then the Zoeppritz equations need to be modi�ed to

re�ect that reality. For VTI media, the linearized approximation of the Zoeppritz

equations lead to an underdetermined set of equations.

Theoretical error associated with the linear operator was investigated in Chapter

4. Analytic relationships and modeling studies showed that random errors in the

�=� ratio and o¤set-to-angle mapping lead to second order random error, which is

typically negligible in comparison to the error arising from random noise. On the

other hand, systematic error within the data leads to systematic error in the estimated

re�ectivity attributes. The size of this error is dependent upon the parameterization.

The error usually shows up in the variable associated with the second or third term,

for example the gradient or S-wave impedance re�ectivity. Generally there is little or

no error in the variable associated with the �rst term (P-wave impedance re�ectivity).

Systematic errors in the macro P-wave velocity �eld lead to systematic errors in the

gradient and associated variables. Systematic errors in the �=� ratio lead to errors

in the S-wave impedance re�ectivity and associated variables.

Errors arising from the preconditioning of the seismic data and their solutions

was investigated in the last part of this thesis, speci�cally, the e¤ect of NMO stretch

and o¤set dependent tuning on the AVO inversion. These two e¤ects lead to dis-

tortions, although AVO inversion on NMO-corrected (and NMO-stretched) gathers
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is actually surprisingly robust. The distortion primarily shows up on the secondary

AVO re�ectivity attribute, such as the gradient or S-wave impedance re�ectivity. The

attribute associated with the �rst term, the intercept or P-wave impedance re�ectiv-

ity is una¤ected. Further, there is a surprisingly large group of geologic interfaces

for which NMO stretch and o¤set dependent tuning do not distort the re�ectivity

estimates. Regional re�ectors from interfaces between clastics following the mudrock

trend are not distorted. Class I and II gas sands are not distorted. Only Class III and

IV gas sand anomalies are distorted. Further, these distortions are only signi�cant

when large angles are used. When done with angles less than 300, the AVO inversion

estimates performed on the synthetics shown here had insigni�cant error. Only when

larger angles were used (for example, 450) were the errors signi�cant.

These distortions may be avoided by performing stretch-free NMO prior to the

AVO inversion or by incorporating the NMO inversion into the AVO inversion. The

best results were obtained by AVO waveform inversion but at a signi�cant extra cost.

Stretch-free NMO shows some promise for helping precondition the data prior to

AVO. The advantages of using these algorithms have to be weighed against the cost

of performing them.

A new stretch-free NMO algorithm was developed and tested in Chapter 7. Mod-

eling studies performed on synthetic seismic data showed that the new approach

reduced the amount of error in the AVO inversion estimates. The approach is an

extension of the approach outlined by Claerbout (1992) with the addition of high-

resolution constraints (Sacchi and Ulrych, 1995). The high-resolution constraints

improve the results for band-limited data. The approach is also a variation of the

theory developed for AVO waveform inversion. The cost of performing this is an

order of magnitude faster than performing a hyperbolic Radon transform.

The best results were obtained with AVO waveform inversion. By incorporating

the waveform, the NMO operator, the AVO operator and suitable constraints, the

non-uniqueness due to the band-limited nature of the seismic data and NMO operator

may be addressed. The o¤set dependent tuning and NMO stretch are built into the

forward operators and so are addressed as part of the inversion.

The problem was regularized in two ways, explicitly with the a priori constraints

and secondly by the numerical solution excluding small eigenvalues. In order to im-

plement the high-resolution constraints, �rst the problem had to be transformed to

an independent set of variables. The parameter covariance matrix developed for the
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three-term AVO inversion in Chapter 3 was used for this purpose. The covariance

matrix describes the inter-relationships between the variables. The eigenvectors of

this covariance matrix were then used to transform the parameters to an independent

set of variables. This transformation is similar to the transformation Simmons and

Backus (1996) performed. They solved for P-wave impedance re�ectivity, �uid stack

re�ectivity and a third re�ectivity variable. This third variable is the di¤erence be-

tween the density predicted by the Gardner relationship and the actual density. This

last variable they found to be unstable and did not trust the estimates. Simmons

and Backus make the problem better posed by reducing the number of layers esti-

mated. For example instead of estimating elastic parameters for each time sample,

they might do this for every two or three time samples. This leads to layers with

�xed isochrons.

In contrast, I use a bootstrap approach to identify the major interfaces. The

number of interfaces and thickness of layers is variable and depend on the bootstrap

procedure and its parameterization. The use of long-tailed distributions lead to

weighting functions which create small weights for large re�ectivity and large weights

for small re�ectivity. The solution is biased towards re�ectivity with small weights.

The eigenvalues of the variables also in�uence the size of weights where the eigenvec-

tors are similar to the Simmons and Backus parameterization. Variables associated

with the third eigenvalue (density re�ectivity) have in general much larger weights

than variables associated with the �rst eigenvalue (P-wave impedance re�ectivity),

thus there is a bias against large density re�ectivity. The bootstrapping proce-

dure produces a sparse spike re�ectivity series. This is similar to the poststack

impedance inversion algorithms of Sacchi (1997) and Trad (2002) extending the post-

stack impedance inversion to prestack data. However, I was only able to perform the

impedance parameterization on synthetic data. This is an area for future work.

The approach of Buland and Omre (2003) also perform AVO waveform inversion

using a linearized approximation, and constraints similar to what I used in Chapter 3.

Buland and Omre (2003) assume Gaussian statistics, however, they assume that the

re�ectivity from di¤erent time samples are correlated. I assumed the opposite. This

leads to an easier calculation of the eigenvectors, but their assumption has some merit

and I would like to explore it further in the future. They treat every time sample as

a layer whose elastic properties are estimated as part of the solution. The correlation

between di¤erent layers is used as additional information to make the problem better
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posed. The Buland and Omre (2003) approach, however, does not consider NMO

stretch and o¤set dependent tuning.

Like Sacchi (1997) and Trad (2002), I solved the inverse problem using conjugate

gradient, calculating the linear operator on the �y. The algorithm consisted of

two nested loops. The outer loop estimates the constraint weights and the penalty

term. The penalty term controls the relative weighting of the constraints versus the

seismic data. The inner loop solves the inverse problem using conjugate gradient,

for which the maximum number of iterations can be used as regularization parameter

excluding small eigenvalues from the problem. I created both two- and three-term

implementations of the AVO waveform inversion. The two-term inversion is a better

conditioned problem and the results of the algorithm are more stable. The three-term

parameterization requires that the maximum number of conjugate gradient iterations

be quite restricted in order to get a stable result. Restricting the number of conjugate

gradient iterations leads to solutions which are substantially faster than solving the

full inverse problem.

Both the two- and three-term versions were tested on synthetic and real data ex-

amples. On synthetic data, the AVO waveform inversion made the best estimates

of events undergoing NMO stretch and tuning of all the methods discussed here.

On real seismic data, the three-term AVO waveform inversion was able to distin-

guish commercial from noncommercial gas. The AVO waveform inversion�s S-wave

impedance re�ectivity was signi�cantly better than the three-term AVO inversion�s.

The continuity of events for the three-term AVO waveform inversion was signi�cantly

better than two-term AVO inversion. I believe this improvement was due to the

classic trade-o¤ between resolution and variance. With the AVO waveform inversion

a few isolated re�ectors are imaged with less variance than estimating re�ectors on

every time sample as is the case with conventional AVO inversion.

The AVO waveform inversion was also implemented with long-tailed mis�t distri-

butions. On synthetic data, with a simulated multiple, this formulation was found

to give superior results compared to a Gaussian mis�t function. Of the long-tailed

distributions tested, on real and synthetic data, the Cauchy distribution seemed to

give the best results while being relatively insensitive to its parameterization.

Lastly, the e¤ect of uncorrected statics was investigated. These degraded the AVO

estimates. A method was shown were the estimated model from the AVO inversion

could be used as a model for trim statics. This provided for a model that kinematics,
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character, and amplitude could change as a function of o¤set. The approach worked

well on synthetic data, but showed little improvement on real data.

9.1 Future work

Throughout this thesis, it was assumed that the kinematics were known prior to

the AVO inversion. However, if residual NMO is present, this will distort the AVO

estimates (Spratt, 1987). Further, Spagnolini (1994) pointed out that, correcting the

residual NMO on the basis of the AVO estimates is di¢ cult because of interrelatedness

of the parameters. He showed that Radon parameterization (� ; p) is mathematically

equivalent to the two-term Shuey parameterization (A;B) : Swan (2001) seems to

have gotten around the underdetermined nature of the problem by introducing extra

information. Namely, he made the AVO re�ectivity estimates follow the mudrock

trend over some time window. I would like to pursue this general idea for the AVO

waveform inversion.

Secondly, throughout this thesis, it was assumed that the geologic structure was

relatively simple, so that e¤ects normally dealt with by the migration could be ig-

nored. To address this shortcoming the Kirchho¤operator rather than NMO operator

could be used to formulate the problem. This makes the problem much larger and

more expensive to solve, but more theoretically rigorous. Feng and Sacchi (2004)

have done some preliminary work trying to develop this approach. I would like to

pursue this.

The AVO inversion could also be modi�ed to perform joint PP and PS AVO

inversion. One of the big issues of joint AVO inversion is that the PP and PS data

have di¤erent wavelets. This needs to be dealt with by the AVO inversion. AVO

waveform inversion provides a convenient framework to do this.

Lastly I would like to continue to work on the problem of estimating impedances

from the re�ectivity on real seismic data. I was able to do this on synthetic data, but

had problems with real data due to the lack of lateral continuity of the sparse spike

estimates. To address this, I would like to implement spatial constraints. Again,

this would increase the size and cost of the problem.
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9.2 Software developed

In performing the research for this thesis, I wrote a series of algorithms in MAT-

LAB, including algorithms for:

� Three-term AVO inversion

� Stretch-free NMO

� Two and three-term AVO waveform inversion

� Various utilities (for example, to help construct 3 term covariance matrix)

� Modeling software

Some of the algorithms that I used frequently, I subsequently coded in FOR-

TRAN 95.
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Appendix A

Gain corrections

A.1 Geometrical spreading correction

Ursin (1990), following µCerveny (1987), shows for horizontally layered media,

where the source and receiver are at the same level, that the geometrical spread-

ing factor L is

L (� ; p) =
cos �0
�0

vuut h

p
���d�dp ��� ; (A.1)

where �0 is the angle of emergence, �0 is the interval P-wave velocity of the 1st layer,

h is the o¤set, � is the o¤set-dependent travel time and p is the horizontal slowness.

Note that this correction is a function of two way travel time and the ray parameter

p: Implicitly, then, it is a function of the interval velocity �eld. This can be more

easily seen if equation (1.14) is used to generate the ray parameter from the stacking

velocity Vstak: In this case, the geometric spreading factor is

L =
� 2V 2

stak

t0�0

s
1� �20h

2

� 2V 4
stak

; (A.2)

where t0 is the zero o¤set travel time. Note that in similar fashion to section 1.2.2

higher order approximations can also be calculated. Both equation (A.1) and (A.2)

are a function of � (x; z) : To illustrate the in�uence of this, Figure A.4 shows the

geometric spreading correction based on equation A.1 at various CMP locations for

the Halfway example in section 1.3.4. The interval velocity �eld used in the ray

tracing is shown in Figure A.1. Figure A.2 shows the angle of incidence generated

by the ray tracing for the same CMP gathers shown in Figure A.4. Figure A.3 shows
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Figure A.1: Interval velocity model used for ray tracing and geometrical spreading
correction for Halfway seismic line.

the geometrical divergence correction based on a t20 correction after NMO correction.

The (o¤set-variant) amplitude correction for a speci�c time sample is graphed at

the top of both Figure A.4 and A.3. Note that the correction based on equation

(A.1) scales the far o¤set signi�cantly more than the one based on the t20 correction.

Further, the correction based on equation (A.1) includes the e¤ects of refraction due

to the interval velocity�s variation with depth. Due to subtle changes in the velocity

�eld the gain correction based on equation (A.1) changes spatially.

The line shown in Figure A.1 roughly honors the assumption of horizontal layering.

For more complex cases, µCerveny (2001) describes more complex corrections, but

these really should be applied as part of a prestack migration.

A.2 Angle of emergence and free-surface correction

For land data, P-wave single component geophones measure only the vertical

component of plane waves, but the plane waves usually arrive at the surface at some

oblique angle. This can be corrected by an angle of emergence correction, which is

simply a cosine correction. In actuality the correction is more complex since the
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Figure A.2: Angle of incidence displayed for speci�c CMP gathers for the Halfway
line. The data are �rst sorted by CMP and then by o¤set. Note the angle of inidence
is graphed overhead for the zone of interest.

Figure A.3: Geometrical spreading correction for speci�c CMP gathers for the
Halfway line. The data are �rst sorted by CMP and then by o¤set Note the scaling
is graphed overhead for the zone of interest and note the lateral change in scaling due
to lateral changes in velocity.
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Figure A.4: Gain correction based on t2 correction for speci�c CMP gathers for the
Halfway line. The data are �rst sorted by CMP and then by o¤set.

motion is measured at a free surface. At the free surface the vertical motion Z that

the geophone measures is the vector sum of the upgoing P-wave at incidence angle

� with unit amplitude, the downgoing re�ected P-wave at angle � with amplitude

�Rp and the downgoing re�ected S-wave at angle � with amplitude Rsv. In the case
where the positive direction of the z-axis is chosen positive upwards

Z = cos � �Rp cos � +Rsv sin�: (A.3)

Using Snell�s law, sin �
�0
= sin�

�0
; equation (A.3) becomes

Z = (1�Rp) cos � +
�0
�0
Rsv sin �: (A.4)

Using the P-wave re�ection coe¢ cient on the free surface (Aki and Richards (1980),

equation 5.27)

Rp =
�
�
1
�20
� 2p2

�2
+ 4p2 cos �

�0

cos�
�0�

1
�20
� 2p2

�2
+ 4p2 cos �

�0

cos�
�0

; (A.5)
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Figure A.5: Angle of emergence correction (black) plus free surface correction for
di¤erent Vs/Vp ratios.

and the converted wave re�ectivity Rsv at the free surface (Aki and Richards (1980),

equation 5.28)

RSV =
4
�
�0
�0

�
p cos �
�0

�
1
�20
� 2p2

�
�
1
�20
� 2p2

�2
+ 4p2 cos �

�0

cos�
�0

; (A.6)

equation (A.3) becomes

Z =
2
�
1� 22 sin2 �

�
cos ��

1� 22 sin2 �
�2
+ 43 sin2 � cos � cos�

: (A.7)

Upon the substitution of several trigonometric identities this simpli�es to

Z =
2 cos (2�) cos �

(cos 2�)2 + 4 sin2 � cos � cos�
: (A.8)

Equation (A.8) is a function of  and the angle of emergence. Figure 41 shows

that in practice  has little in�uence on the correction. Further, Figure A.5 shows

that including the free-surface e¤ect makes little di¤erence when compared to just

compensating for a P-wave incident at an angle � at the free surface.
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A.3 Array correction

From Sheri¤ and Geldart (1982), equation 5.1 the 2D array response A is

A (f; p) =
sin (N�f�xp)

N sin (�f�xp)
(A.9)

where N is the number of geophones, f is the frequency, �x is the geophone spacing

and p is the horizontal slowness. Using the ray parameter generated from the ray

tracing a frequency-dependent inverse operator can be design to apply to the seismic

data as a processing step. This may be used to model both source and receiver

arrays.
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Appendix B

Transform matrices between re�ectivity attributes

This Appendix summarizes the linearized approximations connecting various re-

�ectivity attributes

B.1 Relationship between Shuey and velocity re�ectivity

The transform matrix linking the "Shuey" parameters and the Aki and Richards

parameters follow from the de�nitions (2.5), (2.10) and (2.9) resulting in264 A

B

C

375 =
264 1 0 1

1 �8�2 �4�2

1 0 0

375
264 R�

R�

Rd

375 : (B.1)

The inverse transform of this is264 R�

R�

Rd

375 =
264 0 0 1

�1
2
� 1
8�2

1
8
4�2+1
�2

1 0 �1

375
264 A

B

C

375 : (B.2)

B.2 Relationship between Impedance and velocity re�ectiv-

ity

P-wave impedance is a function of P-wave velocity and density

�Ip = ����: (B.3)
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If the total di¤erential

d�Ip =
d�Ip
@��

d��+
@ �Ip
@��

d��; (B.4)

is taken

d�Ip = ��d��+ ��d��; (B.5)

and then divided by the average impedance the relationship between velocity and

impedance re�ectivity attributes is established as

�Ip
�Ip
=
��

��
+
��

��
: (B.6)

De�ning the P-wave velocity re�ectivity as Ra = 1
2
��
��
and the density re�ectivity as

Rd =
1
2
��
��
then the P-wave impedance re�ectivity Rp = 1

2

�Ip
�Ip
is

Rp = R� +Rd: (B.7)

Likewise the relationship between S-wave impedance re�ectivity Rs = 1
2
�Is
�Is
and S-

wave velocity re�ectivity R� = 1
2
��
��
is

Rs = R� +Rd: (B.8)

The forward transform linking the velocity re�ectivity to impedance re�ectivity is264 Rp

Rs

Rd

375 =
264 1 0 1

0 1 1

0 0 1

375
264 R�

R�

Rd

375 ; (B.9)

while the inverse transform is264 R�

R�

Rd

375 =
264 1 0 �1
0 1 �1
0 0 1

375
264 Rp

Rs

Rd

375 : (B.10)
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B.3 Relationship between �=� ratio and velocity re�ectivity

In a similar fashion to the P-wave impedance, taking the di¤erential of � =
��
��
and

then dividing by � results in the relationship

d�

�
=
d��
��
� d��

��
; (B.11)

De�ning the  re�ectivity attribute in a similar fashion to the impedance re�ectivity

R =
1
2
�
�
then

R = R� �R�: (B.12)

B.4 Relationship between delta-Poisson ratio and velocity

re�ectivity

The Pseudo-Poisson ratio re�ectivity is de�ned by Shuey (1985) as

R� =
��

(1� ��)2
; (B.13)

and is used by Verm and Hilterman (1995) as a lithology indicator. I call this delta-

Poisson ratio re�ectivity to distinguish this from the Poisson ratio re�ectivity (Section

B.5) since the denominator is not the Poisson ratio as the other re�ectivity attributes

discussed so far. It may be derived from the relationship between the  ratio and the

Poisson ratio

�q = �2 =
1
2
� ��
1� �� : (B.14)

Take the di¤erential of �q with respect to �v

d�q =
@�q

@��
d��: (B.15)

On the left hand side write d�q in terms of � and on the right hand side expand �q in

terms of ��

2�d� =
@

@��

��
1

2
� ��
�
(1� ��)�1

�
d��: (B.16)

Simplifying

2�d� =

" �
�1
2

�
(1� ��)2

#
d��; (B.17)
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and rearranging, results in

�4�2d�
�
=

d��

(1� ��)2
: (B.18)

This combined with equation (B.11) results in a relationship between the pseudo-

Poisson re�ectivity and the velocity re�ectivity

��

(1� ��)2
= 4�2

�
d��

��
� d��
��

�
; (B.19)

or

R� = 8�
2 [R� �R�] : (B.20)

B.5 Relationship between Poisson ratio and velocity re�ec-

tivity

The Poisson re�ectivity attribute may be derived for a de�nition more consistent

with the other de�nitions in this appendix

R� =
1

2

��

��
: (B.21)

To do this, note that equation (B.14) may be rearranged as

�� =
1
2
� �2

1� �2 : (B.22)

Then if equation (B.17) is divided by ��

�d�

��
= �1

4

�
1

(1� ��)2
�
d��

��
; (B.23)

and the de�nition (equation B.22) is substituted into the result

�4 �d�1
2
��2

(1��2)

=

264 1�
1�

1
2
��2

(1��2)

�2
375 d��
��
: (B.24)

Upon simplifying
d��

��
=

1
3
2
� �2 � 1

2�2

�
d�

�
� d�

�

�
; (B.25)
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this results in the Poisson re�ectivity attribute

R� =
1

3
2
� �2 � 1

2�2

[R� �R�] : (B.26)

B.6 Relationship between Lamé re�ectivity and ��, �, ��, �

re�ectivity

Both �� and �� can be calculated as linearized re�ectivity attributes. De�ning

the variable �M such that
�M = ���� = �I2s ; (B.27)

then the derivative of this with respect to �Is is

d �M

d�Is
=

d

d�Is
�I2s = 2

�Is = 2
�I2s
�Is
= 2

�M
�Is
; (B.28)

or
d �M
�M
= 2

d�Is
�Is
: (B.29)

Following the convention of re�ectivity attributes, the �� re�ectivity is

R�� =
1

2

�M
�M
; (B.30)

so that

R�� = 2Rs: (B.31)

De�ning L = ��; then

�L = ���� = �I2p � 2�I2s ; (B.32)

and the total di¤erential of this is

d�L =
d�I2p
d�Ip

d�Ip � 2
d�I2s
d�Is

d�Is = 2�Ipd�Ip � 4�Isd�Is = 2�I2p
d�Ip
�Ip
� 4�I2s

d�Is
�Is
; (B.33)
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or after dividing equation (B.33) by L

d�L
�L
=

2�I2p
�I2p � 2�I2s

d�Ip
�Ip
� 4�I2s
�I2p � 2�I2s

d�Is
�Is
=

1
�I2p�2�I2s
2�I2p

d�Ip
�Ip
� 1

�I2p�2�I2s
4�I2s

d�Is
�Is
=

1
1
2
� �2

d�Ip
�Ip
� 1

1
4�2
� 1

2

d�Is
�Is
:

(B.34)

Following the convention of re�ectivity attributes, the �� re�ectivity is

R�� =
1

2

�L
�L
;

or

R�� =
1

1
2
� �2

Rp �
1

1
4�2
� 1

2

Rs: (B.35)

Writing this in matrix notation264 R��

R��

Rd

375 =
264 �

2
�1+2�2

4�2

�1+2�2 0

0 2 0

0 0 1

375
264 Rp

Rs

Rd

375 ; (B.36)

and transforming to velocity re�ectivity using equation (B.9) results in264 R��

R��

Rd

375 =
264 �

2
�1+2�2

4�2

�1+2�2 2

0 2 2

0 0 1

375
264 R�

R�

Rd

375 : (B.37)

The transformation from �� and �� re�ectivity to � and � re�ectivity is264 R��

R��

Rd

375 =
264 1 0 1

0 1 1

0 0 1

375
264 R�

R�

Rd

375 : (B.38)

Transforming equation (B.37) to that of � and � re�ectivity

264 R�

R�

Rd

375 =
264 1 0 1

0 1 1

0 0 1

375
�1 264 �

2
�1+2�2

4�2

�1+2�2 2

0 2 2

0 0 1

375
264 R�

R�

Rd

375 ; (B.39)
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results in 264 R�

R�

Rd

375 =
264

2
1�2�2 � 4�2

1�2�2 1

0 2 1

0 0 1

375
264 R�

R�

Rd

375 : (B.40)

The inverse of this transform matrix is264 R�

R�

Rd

375 =
264

1
2
� �2 �2 �1

2

0 1
2
�1
2

0 0 1

375
264 R�

R�

Rd

375 : (B.41)

Substituting equation (B.41) into the Aki and Richards equation (1.6)

h
R(��m)

i
=
h
sec2 ��m �8�2 sin2 ��m

�
1� 4�2 sin2 ��m

� i264
1
2
� �2 �2 �1

2

0 1
2
�1
2

0 0 1

375
264 R�

R�

Rd

375 ;
(B.42)

results in

h
R(��m)

i
=
h �

1
2
� �2

�
sec2 ��m �2

�
sec2 ��m � 4 sin2 ��m

�
1� 1

2
sec2 ��m

i264 R�

R�

Rd

375 :
(B.43)

which is equivalent to Gray et al. (1999) equation (2).

B.7 Relationship between bulk modulus and velocity re�ec-

tivity

The bulk modulus expressed in terms of velocity and density is

�K = ��2��� 4
3
��
2
��: (B.44)

Substituting the di¤erentials of

d
�
��2��
�
=
d (��2��)

d��
d��+

d (��2��)

d��
d�� = 2����d��+ ��2d��; (B.45)
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and

d
�
��
2
��
�
=
d
�
��
2
��
�

d��
d�� +

d
�
��
2
��
�

d��
d�� = 2����d�� + ��

2
d��; (B.46)

into the di¤erential of equation (B.44) results in

d �K = 2����d��+ ��2d��� 8
3
����d�� � 4

3
��
2
d��: (B.47)

Rearranging and dividing by the bulk modulus as de�ned in equation (B.44) results

in

d �K
�K
=

2��2��

��2��� 4
3
��
2
��

d��

��
� 8
3

��
2
��

��2��� 4
3
��
2
��

d��
��
+

�
��2��� 4

3
��
2
��
�

��2��� 4
3
��
2
��

d��

��
: (B.48)

Writing this in terms of � and de�ning the Bulk modulus re�ectivity attribute as

RK =
1

2

�K
�K
;

results in

RK =
6

3� 4�2R� �
8�2

3� 4�2R� +Rd: (B.49)

The relation between Bulk modulus, � re�ectivity and velocity re�ectivity is264 RK

R�

Rd

375 =
264

6
3�4�2: � 8�2

3�4�2 1

0 2 1

0 0 1

375
264 R�

R�

Rd

375 : (B.50)

The inverse of this transform matrix is264 R�

R�

Rd

375 =
264

1
2
� 2

3
�2 2

3
�2 �1

2

0 1
2

�1
2

0 0 1

375
264 RK

R�

Rd

375 : (B.51)

Substituting equation (B.51) into the Aki and Richards equation (1.6)

h
R(��m)

i
=
h
sec2 ��m �8�2 sin2 ��m

�
1� 4�2 sin2 ��m

� i264
1
2
� 2

3
�2 2

3
�2 �1

2

0 1
2

�1
2

0 0 1

375
264 RK

R�

Rd

375 ;
(B.52)
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results in

h
R(��m)

i
=
h �

1
2
� 2

3
�2
�
sec2 ��m �2

�
2
3
sec2 ��m � 4 sin2 ��m

�
1� 1

2
sec2 ��m

i264 RK

R�

Rd

375 ;
(B.53)

which is equivalent to Gray et al. (1999) equation (1).

B.8 Summary of transforms

Summarizing these relationships results in

2666666666666666666666666666664

A

B

C

Rp

Rs

R

R�

R�

R��

R��

Rk

R�

R�

Rd

3777777777777777777777777777775

=

26666666666666666666666666666664

1 0 1

1 �8�2 �4�2

1 0 1

1 0 1

0 1 1

�1 1 0

8�2 �8�2 0
1�

3
2
��2� 1

2�2

� �1�
3
2
��2� 1

2�2

� 0

2
1�2�2 4 �2

2�2�1 2

0 2 2
6

3�4�2: � 8�2

3�4�2 1
2

1�2�2 � 4�2

1�2�2 1

0 2 1

0 0 1

37777777777777777777777777777775

264 R�

R�

Rd

375 : (B.54)
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Transform matrix (B.54) is written in terms of velocity and density re�ectivity. Writ-

ing this in terms of impedance and density re�ectivity the transform matrix is2666666666666666666666666666664

A

B

C

R�

R�

R

R�

R�

R��

R��

Rk

R�

R�

Rd

3777777777777777777777777777775

=

26666666666666666666666666666664

1 0 0

1 �8�2 4�2 � 1
1 0 0

1 0 �1
0 1 �1
�1 1 0

8�2 �8�2 0
1

� 1
2�2

��2+ 3
2

� 1
� 1
2�2

��2+ 3
2

0

2
�2�2+1 4 �2

2�2�1 � 2
�2�2+1 �

4�2

2�2�1 + 2

0 2 0
6

�4�2+3 �8 �2

�4�2+3 � 6
�4�2+3 +

8�2

�4�2+3 + 1
2

�2�2+1 �4 �2

�2�2+1 � 2
�2�2+1 +

4�2

�2�2+1 + 1

0 2 �1
0 0 1

37777777777777777777777777777775

264 Rp

Rs

Rd

375 : (B.55)

B.9 Two-term relationships

Often, for stability reasons, only two parameters are inverted for, such as the P-

wave and S-wave impedance re�ectivity as is done in the two-term Gidlow equation.

If one assumes the Gardner relationship (equation 2.16) holds then264 Rp

Rs

Rd

375 =
264 1 0

0 1
g
1+g

0

375" Rp

Rs

#
; (B.56)
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and upon substitution equation (B.55) becomes

2666666666666666666666666666664

A

B

C

R�

R�

R

R�

R�

R��

R��

Rk

R�

R�

Rd

3777777777777777777777777777775

=

26666666666666666666666666666664

1 0
g
1+g

(4�2 � 1) + 1 �8�2

1 0

� g
1+g

+ 1 0

� g
1+g

1

�1 1

8�2 �8�2
1

� 1
2�2

��2+ 3
2

2�2

�3�2+2�4+1

� 2
2�2�1

4�2

2�2�1

0 2

� g
1+g

� 6
4�2�3

8�2

4�2�3

� g
1+g

� 2
2�2�1

4�2

2�2�1

� g
1+g

2
g
1+g

0

37777777777777777777777777777775

"
Rp

Rs

#
: (B.57)

Note that for the case that � = 1
2

B = Rp � 2Rs; (B.58)

which is equivalent to equation (2.11) in the text. The more general relationship for

arbitrary � and g is

B =

�
g

1 + g

�
4�2 � 1

�
+ 1

�
Rp � 8�2Rs; (B.59)

or written in terms of S-wave impedance re�ectivity

Rs =
1

8�2

��
g

1 + g

�
4�2 � 1

�
+ 1

�
A�B

�
: (B.60)

The transform matrix (equation B.57) is only approximate since the empirical

Gardner relationship is used to reduce the number of parameters from three to two. If

another AVO inversion such as the two-term Shuey equation along with the constraint

C = 0 is used to estimate the parameters the use of di¤erent constraints introduces

di¤erent biases into the parameter estimates. For example, if the two term Shuey
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equation is used to estimate the intercept A and gradient B using angles out to 36 �,

one would obtain a biased estimate of the gradient since the third term in the Shuey

equation is ignored. Thus, transforming A and B to S-wave impedance re�ectivity

using equation (B.60) results in a biased estimate di¤erent than the estimate from the

Gidlow equation. Using a large range of angles, the two-term Gidlow equation gives

better estimates of the S-wave impedance re�ectivity since it is a better approximation

to the Zoeppritz equations at these angles than the two-term Shuey equation.
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Appendix C

Relationship between Parameter and Data

covariance matrices

C.1 De�nition of a covariance matrix

Let there be N random variables xn whose joint distribution is a multivariate

Gaussian distribution. A particular realization is written succinctly in vector form

denoted as x: The mean of each variable is written as the vector xo: The probability

of any particular realization of x is

Pr (x) _ exp
�
�1
2
(x� xo)T C�1

x (x� xo)
�
; (C.1)

where the covariance matrix

Cx=

266664
�211 �12 � � � �1N

�12 �222 � � � �2N
...

...
. . .

...

�1N �2N � � � �2NN

377775 ; (C.2)

describes the distribution. The covariance matrix is symmetric and positive de�nite

implying real eigenvalues. The diagonal elements of the covariance matrix represent

the variance of each random variable. The variance is a measure of the dispersion or

spread of the distribution. The o¤-diagonal terms are the covariances which measure

the degree of correlation between variables.
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C.2 Estimating the covariance matrix from sample statistics

The elements of the covariance matrix (equation C.2) represent idealized quan-

tities. Sample statistics can be used to estimate the covariance matrix. Let uik
represent the kth sample of the ith variable. The notation u is used instead of x to

indicate that the variable is now a sampled quantity rather than an idealized variable.

Assuming that there are K samples of each random variable, then these realizations

can be summarized in matrix form

U =

266664
u11 u12 � � � u1K

u21 u22 � � � u2K
...

...
. . .

...

uN1 uN2 � � � uNK

377775 ; (C.3)

where each row represents a di¤erent variable and each column a di¤erent sample.

The matrix U can also be written as a series of column vectors uk

U = [u1;u2; ::::;uK ] ; (C.4)

where each vector represents a di¤erent realization. Note bold face variables are

vectors while italicized variables are elements. The elements of each of the column

vectors uk represent the di¤erent variables for that sample. The sample mean is the

column vector

hui= [hu1i ; hu2i ; ::::; huKi]T : (C.5)

The deviation from the mean for each sample vector is

�uk = uk � hui ; (C.6)

or in matrix form

�U = [�u1; �u2; ::::; �uK ] : (C.7)

The sample covariance matrix is de�ned as the outer product of �U with itself

Ĉu =
1

K
�U�UT=

1

K
[U�hUi] [U�hUi]T ; (C.8)
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which in matrix form is

Ĉu =
1

(K � 1)

266664
�u11 �u12 � � � �u1K

�u21 �u22 � � � �u2K
...

...
. . .

...

�uN1 �uN2 � � � �uNK

377775
2666664
�u11 �u21

... �u1N

�u12 �u22
... �u2N

� � � � � � . . . � � �
�u1K �u2K

... �uNK

3777775 : (C.9)

Note the symbol ^ is used to denote an estimate, so Ĉu is an estimate of Cu:

C.3 Estimating the uncertainty in linear inverse problems

If the noise is Gaussian, the parameter uncertainty of a linear inverse problem is

described by the covariance matrix (C.2). It is estimated by calculating the mis�t

covariance matrix using sample statistics. The parameter covariance matrix is then

estimated from the mis�t covariance matrix using the linear relationship between the

data and the model space.

The linear equations are written as

Gx = d; (C.10)

where G is the linear operator, x the unknown model parameter vector and d; the

data vector. This can be solved in a least squares fashion

x = Fd; (C.11)

where for an overdetermined set of equations the least squares operator F is

F = [GTG]�1GT : (C.12)

The exact solution for x is obtained in the case of noise free data d. However, only

an estimate of the model parameters x̂ may be obtained when data have noise n. If

the data have noise, then the observed data ~d is the sum of the actual data and the

noise n so

~d = d+ n; (C.13)
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Thus, only an estimate of the model parameters x̂ may be obtained since

x̂ = F~d: (C.14)

C.4 Data covariance matrix

Assuming that for each data variable dm there are K independent observations of

it, each with noise, then following equation (C.13), the kth sample of themth observed

data variable is

~dmk = dm + nmk; m = 1; 2; :::;M; k = 1; 2; :::; K: (C.15)

Having assumed the noise is Gaussian, the best estimate of each data variable is its

mean
�dm =

D
~dmk

E
: (C.16)

Substituting this estimate (equation C.16) for the ideal in equation (C.15) each sam-

ples noise is estimated as

"̂mk = ~dmk � �dm; (C.17)

which is the deviation around the data variable similar to equation (C.7) which written

as a matrix is

Ê =

266664
~d11 � �d1 ~d12 � �d1 � � � ~d1K � �d1
~d21 � �d2 ~d22 � �d2 � � � ~d2K � �d2
...

...
. . .

...
~dM1 � �dM ~dM2 � �dM � � � ~dMK � �dM

377775 ; (C.18)

or

E =
h
~d1 � �d; ~d2 � �d; ::::; ~dK � �d

i
= ["̂1; "̂2; ::::; "̂K ] : (C.19)

From the de�nition of the sample covariance matrix (equation C.8), the sample data

covariance matrix is

Ĉd =
1

K
ÊÊ

T
; (C.20)
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which is an estimate of the mis�t covariance matrix

Cd =

266664
�2d11 �2d12 � � � �2d1M
�2d12 �2d22 � � � �2d2M
...

...
. . .

...

�2d1M �2d2M � � � �2dMM

377775 : (C.21)

As the number of samples get larger (K !1) the sample covariance matrix (C.20)
becomes closer to covariance matrix (C.21).

C.5 Relationship between the mis�t covariance matrix and

the parameter covariance matrix

From the linear relationship (equation C.14) and the de�nition of data error (equa-

tion C.13)

x̂ = Fd+ Fn = x+ Fn; (C.22)

the parameter uncertainty �x = x� x̂ may be estimated using

�x = Fn: (C.23)

If the noise n is known then it would be possible to estimate the parameter uncer-

tainty. Since the actual noise is unknown, its estimate " is used (equation C.17),

thus

�x̂ = F"̂: (C.24)

For K sample error vectors

[�x̂1; �x̂2; : : : ; �x̂k] = F ["̂1; "̂2; : : : ; "̂k] ; (C.25)

or

�X̂ = FÊ; (C.26)
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where

�X̂ =

266664
�x̂11 �x̂12 � � � �x̂1K

�x̂21 �x̂22 � � � �x̂2K
...

...
. . .

...

�x̂N1 �x̂N2 � � � �x̂NK

377775 : (C.27)

Again, from the de�nition of the sample covariance matrix, the sample parameter

covariance matrix is

Ĉx̂ =
1

K

�
�X̂
��

�X̂
�T

; (C.28)

which is equivalent to

Ĉx̂ =
1

K

�
FÊ
��
FÊ
�T

: (C.29)

Upon the substitution of equation (C.20) KĈd = ÊÊ
T
the sample parameter covari-

ance matrix becomes

Ĉx̂ = FĈdF
T ; (C.30)

where Ĉd may be calculated using equation (C.20).

C.6 Simplifying assumptions: uniform noise

Often there are not multiple samples for each data variable. In fact, there is often

only one sample. In such cases the data sample covariance matrix is

Ĉd =

266664
"11

"12
...

"1M

377775
h
"11 "12 � � � "1M

i
; (C.31)

which is rank 1. All the rows or columns of the sample covariance matrix are scalar

multiples of each other. Thus, there is only enough information to estimate one

parameter in the mis�t covariance matrix

Ĉd =

266664
�̂2d11 �̂2d12 � � � �̂2d1M
�̂2d12 �̂2d22 � � � �̂2d2M
...

...
. . .

...

�̂2d1M �̂2d2M � � � �̂2dMM

377775 : (C.32)
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How then to proceed? Typically it is assumed that each variable�s mis�t is inde-

pendent. That means that (1) the covariance cross terms disappear, and (2) that

each variable�s mis�t has the same variance �̂2N : Under these assumptions the mis�t

covariance matrix becomes

Ĉd =

266664
�̂2N 0 � � � 0

0 �̂2N � � � 0
...

...
. . .

...

0 0 � � � �̂2N

377775 = �̂2NI (C.33)

so the parameter covariance matrix (C.30) reduces to

Ĉx̂ = �̂2N [G
TG]�1: (C.34)
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Appendix D

AVO least squares solution

D.1 Two-term Shuey equation

In this appendix the least squares inverse of the two-term Shuey equation is de-

veloped. For M data points the linear equation is266664
d1

d2
...

dM

377775 =
266664
1 sin2 ��1

1 sin2 ��2
...
...

1 sin2 ��M

377775
"
A

B

#
; (D.1)

which written in matrix form is d = Gx: The least squares solution of this is x̂ =�
GTG

��1
GTd: To calculate this, �rst

�
GTG

��1
is calculated. Note

GTG =

"
1 1 � � � 1

sin2 ��1 sin2 ��2 � � � sin2 ��M

#266664
1 sin2 ��1

1 sin2 ��2
...
...

1 sin2 ��M

377775 ; (D.2)

and

GTG =

"
M

PM
m=1 sin

2 ��mPM
m=1 sin

2 ��m
PM

m=1 sin
4 ��m

#
: (D.3)

Since the inverse of a generic symmetric 2� 2 matrix is"
A B

B C

#�1
=

1

AC �B2

"
C �B
�B A

#
; (D.4)
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then the inverse of equation (D.3) is

�
GTG

��1
=
1

D

" PM
m=1 sin

4 ��m �
PM

m=1 sin
2 ��m

�
PM

m=1 sin
2 ��m M

#
; (D.5)

where

D =M

MX
m=1

sin4 ��m �
 

MX
m=1

sin2 ��m

!2
: (D.6)

To complete the solution, note that

GTd =

"
1 1 � � � 1

sin2 ��1 sin2 ��2 � � � sin2 ��M

#266664
d1

d2
...

dM

377775 ; (D.7)

is

GTd =

" PM
j=1 djPM

j=1 dj sin
2 ��j

#
: (D.8)

Therefore x =
�
GTG

��1
GTd

"
Â

B̂

#
=

24 (
PM
m=1 sin

4 ��m)(
PM
j=1 dj)�(

PM
m=1 sin

2 ��m)(
PM
j=1 dj sin

2 ��j)
D

M(
PM
j=1 dj sin

2 ��j)�(
PM
m=1 sin

4 ��m)(
PM
j=1 dj)

D

35 : (D.9)

The covariance matrix as de�ned by equation (C.34) for the two term Gidlow equation

is "
�̂2Rp �̂RpRs

�̂RpRs �̂2Rs

#
=
�̂2N
D

" PM
m=1 sin

4 ��m �
PM

m=1 sin
2 ��m

�
PM

m=1 sin
2 ��m M

#
; (D.10)

where D is de�ned by equation (D.6).
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D.2 Two-term Gidlow equation

In this appendix the least squares inverse of the two-term Gidlow et al. (1992)

equation is developed. For M data points equation (2.20) is266664
d1

d2
...

dM

377775 =
266664
sec2 ��1 �8�2 sin2 ��1
sec2 ��2 �8�2 sin2 ��2
...

...

sec2 ��M �8�2 sin2 ��M

377775
"
Rp

Rs

#
; (D.11)

which written is matrix form is d = Gx: The least squares solution of this is x̂ =�
GTG

��1
GTd: In order to solve this �rst

�
GTG

��1
is calculated. Note that

GTG =

" PM
m=1 sec

4 ��m �8�2
PM

m=1 tan
2 ��m

�8�2
PM

m=1 tan
2 ��m 64�4

PM
m=1 sin

4 ��m

#
; (D.12)

whose inverse is

�
GTG

��1
=
1

D

" PM
m=1 sin

4 ��m
1
8�2

PM
m=1 tan

2 ��m
1
8�2

PM
m=1 tan

2 ��m
1

64�4

PM
m=1 sec

4 ��m

#
; (D.13)

where

D =

 
MX
j=1

sec4 ��j

!
MX
m=1

sin4 ��m �
 

MX
m=1

tan2 ��m

!2
: (D.14)

Next

GTd =

"
sec2 ��1 sec2 ��2 � � � sec2 ��M

�8�2 sin2 ��1 �8�2 sin2 ��2 � � � �8�2 sin2 ��M

#266664
d1

d2
...

dM

377775 ; (D.15)

is

GTd =

" PM
j=1 dj sec

2 ��j

�8�2
PM

j=1 dj sin
2 ��j

#
: (D.16)

Therefore the least squares solution x̂ =
�
GTG

��1
GTd is
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"
R̂p

R̂s

#
=

24 (
PM
m=1 sin

4 ��m)
PM
j=1 dj sec

2 ��j�(
PM
m=1 tan

2 ��m)
PM
j=1 dj sin

2 ��j

D

(
PM
m=1 tan

2 ��m)
PM
j=1 dj sec

2 ��j�(
PM
m=1 sec

4 ��m)
PM
j=1 dj sin

2 ��j

8�2D

35 : (D.17)

Written separately

R̂p =

�PM
m=1 tan

2 ��m

�PM
j=1 dj sin

2 ��j �
�PM

m=1 sin
4 ��m

�PM
j=1 dj sec

2 ��j

D
; (D.18)

and

R̂s =

�PM
m=1 sec

4 ��m

�PM
j=1 dj sin

2 ��j �
�PM

m=1 tan
2 ��m

�PM
j=1 dj sec

2 ��j

8�2D
: (D.19)

The covariance matrix as de�ned by equation (C.34) for the two term Gidlow equation

is "
�̂2Rp �̂RpRs

�̂RpRs �̂2Rs

#
=
�̂2N
D

" PM
m=1 sin

4 ��m
1
8�2

PM
m=1 tan

2 ��m
1
8�2

PM
m=1 tan

2 ��m
1

64�4

PM
m=1 sec

4 ��m

#
: (D.20)
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Appendix E

Marginalization of noise

Since there is no explicit interest in the variance �N in equation (3.47)

P (x; �N jd; I) / (2�)�
M
2 ��MN exp

0@� 1

2�2N

MX
m=1

 
3X
n=1

Gmnxn � dm

!21A exp ��1
2
xTWxx

�
;

(E.1)

it is marginalized (Sivia, 1996). Marginalization

P (XjI) =
Z
P (X;Y jI)dY; (E.2)

is useful in the removal of a variable. This is done by integrating over the range of

possible values for that particular variable so equation (E.1) becomes

P (xjd; I) /
Z 1

0

��MN exp

0@� 1

2�2N

MX
m=1

 
3X
n=1

Gmnxn � dm

!2
� 1
2

3X
i

3X
j

xiWxijxj

1A d�N :

(E.3)

After substituting �N = 1
t
and d�N = �dt

t2
equation (E.3) becomes

P (xjd; I) /
Z 1

0

tM�2 exp

0@�t2
2

MX
m=1

 
3X
n=1

Gmnxn � dm

!2
� 1
2

3X
i

3X
j

xiWxijxj

1A dt:

(E.4)
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Moving the prior outside the integral since it has no in�uence on t results in

P (xjd; I) / exp
"
�1
2

3X
i

3X
j

xiWxijxj

#Z 1

0

tM�2 exp

0@�t2
2

MX
m=1

 
3X
n=1

Gmnxn � dm

!21A dt;

(E.5)

which when integrated by parts iteratively reduces to

P (xjd; I) / exp
"
�1
2

3X
i

3X
j

xiWxijxj

#
(
MX
m=1

 
3X
n=1

Gmnxn � dm

!2
)�

(M�1)
2 : (E.6)

This follows by noting that if �m =
P3

n=1Gmnxn � dm then the integral I1

I1 =

Z 1

0

tM�2 exp

 
�t

2

2

MX
m=1

�2m

!
dt: (E.7)

may be solved by integrating by partsZ 1

0

f (t) g0 (t) dt = f (t) g (t)]10 �
Z 1

0

f 0 (t) g (t) dt; (E.8)

where g(t) has been de�ned as

g(t) = �
 

MX
m=1

�2m

!�1
exp

 
�t

2

2

MX
m=1

�2m

!
; (E.9)

implying

g0(t) = t exp(�t
2

2

MX
m=1

�2m); (E.10)

and

f(t) = tM�3 ) f 0(t) = (M � 3) tM�4: (E.11)

Substituting these values into the left hand side of of (E.8)

Z 1

0

f (t) g0 (t) dt =

Z 1

0

tM�3t exp(�t
2

2

MX
m=1

�2m) =

Z 1

0

tM�2 exp(�t
2

2

MX
m=1

�2m)dt;

(E.12)
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and the right hand side of (E.8) results in

r:h:s = �tM�3

 
MX
m=1

�2m

!�1
exp(�t

2

2

MX
m=1

�2m)

351
t=0

+(M � 3)
Z 1

0

tM�4

 
MX
m=1

�2m

!�1
exp(�t

2

2

MX
m=1

�2m)dt: (E.13)

The �rst term on the right hand side is zero where the sketch of argument is that the

exponent goes to zero faster than tM (Sivia, 1996) so

Z 1

0

tM�2 exp

 
�t

2

2

MX
m=1

�2m

!
dt = (M � 3)

 
MX
m=1

�2m

!�1 Z 1

0

tM�4 exp(�t
2

2

MX
m=1

�2m)dt:

(E.14)

Repeat this process, this time integrating the right hand side by inspection, results

in

r:h:s = (M � 3) (M � 5)
 

MX
m=1

�2m

!�2 Z 1

0

tM�6 exp(�t
2

2

MX
m=1

�2m)dt; (E.15)

or

r:h:s = (M � 3) (M � 5) � � � (M � (M � 1))
 

MX
m=1

�2m

!�M�1
2 Z 1

0

exp(�t
2

2

MX
m=1

�2m)dt;

(E.16)

where
R1
0
exp(� t2

2

PM
m=1 �

2
m)dt = c so

Z 1

0

tM�2 exp

 
�t

2

2

MX
m=1

�2m

!
dt /

 
MX
m=1

�2m

!�M�1
2

; (E.17)

which is the student distribution and so upon substitution of �m =
P3

n=1Gmnxn�dm
and the inclusion of the a priori constraints the desired result

P (xjd; I) / exp
"
�1
2

3X
i

3X
j

xiWxijxj

#0@ MX
m=1

 
3X
n=1

Gmnxn � dm

!21A�M�1
2

; (E.18)

is arrived at.
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Appendix F

Two-term covariance matrix parameterized in

terms of impedance

Gidlow et al. (1992) use a similar relationship to the mudrock line, but parame-

terized in terms of impedance

Ip � mIIs + b: (F.1)

to develop the �uid stack based on impedance re�ectivity. In water saturated sedi-

ments equation (F.1) written in terms of re�ectivity is

Rp � mI�Rs; (F.2)

where  = �=�. Note that even if Rp is stationary, Rs is most likely non-stationary

since � usually changes as a function of depth. The variables are transformed"
Rp
~Rs

#
=

"
1 0

0 �

#"
Rp

Rs

#
; (F.3)

so as to make the transformed variables stationary. Under this transformation equa-

tion (F.2) becomes

Rp = mI
~Rs: (F.4)

where ~Rs is the scaled S-wave impedance re�ectivity. The slope may be calculated

as a least squares problem assuming that Rp and R0s are stationary and that the

mudrock slope is constant over the inversion window. In this case, equation (F.4)

written in matrix notation is

rp = mI~rs; (F.5)
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for which the least squares solutions is

mI =
~rTs rp
~rTs ~rs

=
�Rp ~Rs
�2~Rs

: (F.6)

Here �RpR0s is the covariance between the P-wave and S-wave impedance re�ectivity

and �2R0s is the variance of the scaled S-wave impedance re�ectivity. If mI is not

constant over the whole inversion window then analysis may be broken into smaller

windows for which mI is constant and then apply the constraints in a time dependent

fashion. Rewriting equation (F.6), written in terms of the correlation coe¢ cient

(equation 3.11), results in a relationship between the P- and S- wave velocity re�ec-

tivity variance

� ~Rs =
rRp ~Rs
mI

�Rp : (F.7)

After substituting equation (3.11) and (F.7) the covariance matrix for the trans-

formed variables Cx0 written in terms of the mudrock slope mI and the correlation

of coe¢ cient rRpR0s is

C~x =

"
�2Rp �Rp ~Rs
�Rp ~Rs �2~Rs

#
= �2Rp

24 1
r2
Rp ~Rs

mI
r2
Rp ~Rs

mI

r2
Rp ~Rs

m2
I

35 : (F.8)

Writing this in terms of the original variables using equation (Chapter 3, equation

3.27) Cx = T
�1C~x (T

�1)
T results in

Cx =

"
�2Rp �RpRs

�RpRs �2Rs

#
= �2Rp

24 1
r2
Rp ~Rs

mI�
r2
Rp ~Rs

mI�

r2
Rp ~Rs

m2
I�

2

35 : (F.9)
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Appendix G

Norms based on long-tailed distributions

G.1 Derivative of `p norm

To facilitate calculating the derivative, equation (6.28) is rewritten as

Jp =
X
i

�p (ui) ; (G.1)

where �p =
1
p
juijp andui = xi=�xi : Taking the derivative of Jp results in

@Jp
@xn

= 0 =
X
i

@�p (ui)

@xn
=
X
i

@�p (ui)

@ui

@ui
@xn

=
1

�xn

X
i

@�p (ui)

@ui
�in =

1

�xn

X
i

 p (ui) �in;

(G.2)

where

 p (ui) =
@�p (ui)

@ui
=

@

@ui

1

p
juijp = juijp�1 sgn (ui) =

ui
juij

juijp�1 = ui juijp�2 (G.3)

so with ui = xi=�xi

@Jp
@xn

=
1

�xn

X
i

xi
�xi

���� xi�xi
����p�2 �in = 1

�xn

xn
�xn

���� xn�xn
����p�2 (G.4)

thus
@Jp
@xn

=
1

�2xn

���� xn�xn
����p�2 xn (G.5)
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G.2 Cauchy Norm

This derivation largely follows Sacchi and Ulrych (1995) making modi�cations

needed to handle variables with two distinct variances. The entropy is given by

h = �
Z
p (x0) log [p (x0)] dx0; (G.6)

where

p (x0) = exp (��0 � �1S (x
0)) ; (G.7)

and where �0; �1 are Lagrange multipliers. The parameter �0 is a normalization

factor such that Z
p (x) dx = 1: (G.8)

The function S (x0) contains prior information about the model. A function with

minimum structure

S (x0) =
NX
i=1

ln (xix
�
i + b) ; (G.9)

ful�lls this objective. The parameter b is a small additive perturbation that repre-

sents default power in absence of events. This insures that the gradient of S (x0) is

continuous. The prior probability according to equation (G.7) and (G.9) is

P (x0) = exp

 
��0 � �1

NX
i=1

ln (xix
�
i + b)

!
; (G.10)

or using the fact that the random variables in this case are real

P (x0) =
NY
i

exp (��0)�
jxij2 + b

��1 : (G.11)

For a single element and �1 = 1 this distribution (G.11) becomes

P (xi) =
e��0�
jxj2 + b

� ; (G.12)

which has the same functional form as the Cauchy distribution (Westergren, 1998)

f (x) =
a

� (x2 + a2)
: (G.13)
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In equation (G.11) �1 controls the sparseness in the model with large values leading

to sharp distributions. At the other extreme, very small values lead to a uniform

distribution. Further, when b is large the distribution tends to a normal distribution.

Equation (G.9) is rearranged so that re�ectivity is normalized by the coe¢ cient b

S (x0) =
NX
i=1

ln
�
x2i + b

�
=

NX
i=1

ln

�
b

�
x2i
b
+ 1

��
=

NX
i=1

ln b+

NX
i=1

�
x2i
b
+ 1

�
: (G.14)

The coe¢ cient b acts in a similar fashion to variance in that it controls the width

or dispersion of the distribution, though strictly speaking the variance is not de�ned

for the Cauchy distribution. The value of b is di¤erent for the two variables. For

comparison with other methods the dispersion term b is rewritten as � =
q

b
2
and in

a similar fashion to the `1 derivation the following substitution is performed

ui =

(
xi
�1

i � L
xi
�2

i > L
; (G.15)

to get

S (x0) = C +
NX
i=1

ln

�
u2i
2
+ 1

�
; (G.16)

using the fact that the term C =
PN

i=1 ln (b) is a constant. Analogous to the `
p norm

derivation, this is rewritten as

S (x0) = C +
nsX
i=1

�2 (u) (G.17)

where

�2 (u) = ln

�
u2i
2
+ 1

�
: (G.18)

In deriving the MAP solution the derivative of the natural logarithm of the prior

probability distribution (G.7) is required.

@JCauchy
@xn

=
@

@xn
(�0 + �1S (x

0)) : (G.19)
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Upon substitution of equation (G.17) this results in

@JCauchy
@xn

=
@

@xn

"
�1

 
C +

NX
i=1

�2 (ui)

!#
= �1

NX
i=1

@�2 (ui)

@xn
; (G.20)

where

@�2 (ui)

@xn
=
@�2 (ui)

@ui

@ui
@xn

=
@�2 (ui)

@ui

@

@xn

�
xi
�i

�
=
@�2 (ui)

@u

1

�i
�in =  c (ui)

1

�i
�in;

(G.21)

and

 c (ui) =
@

@ui

�
ln

�
u2i
2
+ 1

��
=

ui�
u2i
2
+ 1
� : (G.22)

Combining these last three results gives

@JCauchy
@xn

= �1

NX
i=1

ui�
u2i
2
+ 1
� 1
�i
�in: (G.23)

The substitution of u, (equation G.15) and equation (6.19) results in

@JCauchy
@xn

=
�1
�2rp

8>><>>:
1
~�21

1�
x2
i

2�2rp ~�
2
1
+1

�xn n � L

1
~�22

1�
x2
i

2�2rp ~�
2
2
+1

�xn n > L
(G.24)

The substitution for �21 = �2rp~�
2
1 and �

2
2 = �2rp~�

2
2 is not strictly valid since in the

Cauchy derivation �2 is not variance. However, �2 does describe dispersion of the

distribution. This is accomplished through the substitution. Further, the relative

spread of the two variables is conveyed. Since the scaling factor �1 is present only

the relative dispersions between the two variables is required which is accomplished

through the substitution.

In matrix form equation (G.24) becomes

@JCauchy
@xn

=
�1
�2rp
Qcx (G.25)
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where the diagonal elements of matrix Qc are de�ned by

Qnn =

8>><>>:
1
~�21

1�
x2
i

2�2rp ~�
2
1
+1

� n � L

1
~�22

1�
x2
i

2�2rp ~�
2
2
+1

� n > L
: (G.26)

G.3 Huber Norm

In deriving the MAP solution (Appendix H) the gradient of the natural logarithm

of the prior probability distribution (equation 6.37)

@JH
@xn

=
@

@xj

NX
i=1

` (ui) ; (G.27)

where ui = xi
�xi
; and

` (ui) =

(
1
2
u2i juij � �

� juij � �2

2
juij > �

; (G.28)

is required. Using the chain rule

@JH
@xn

=
@un
@xn

@

@un

 
NX
i=1

` (ui)

!
=
�in
�i

@

@un

NX
i=1

` (ui) ; (G.29)

where
@

@un

NX
i=1

` (ui) =

(
un junj � �

� sgn (un) junj > �
; (G.30)

so

@JH
@xn

=

8>>>>>><>>>>>>:
1
�1

8<:
xn
�1

���xn�1 ��� � �

� sgn
�
xn
�1

� ���xn�1 ��� > �
n � L

1
�2

8<:
xn
�2

���xn�2 ��� � �

� sgn
�
xn
�2

� ���xn�2 ��� > �
n > L

: (G.31)
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Since sgn
�
xn
�L

�
= xn

jxnj

@JH
@xn

=

8>>>>>>><>>>>>>>:

1
�21

8<: xn

���xn�1 ��� � �

� 1
jxnj
�1

xn

���xn�1 ��� > �
n � L

1
�22

8<: xn

���xn�2 ��� � �

� 1
jxnj
�2

xn

���xn�2 ��� > �
n > L

: (G.32)

In matrix form
@Jq
@xn

=
1

�2rp
Qhx

0 (G.33)

where Qh is a diagonal matrix whose elements are

Qnn=

8>>>>>>>><>>>>>>>>:

1
~�21

8><>:
1

��� xn
�rp ~�1

��� � �

� 1
jxnj
�rp ~�1

��� xn
�rp ~�1

��� > �
n � L

1
~�22

8><>:
1

��� xn
�rp ~�2

��� � �

� 1
jxnj
�rp ~�2

��� xn
�rp ~�2

��� > �
n > L

; (G.34)

having made use of the substitution of equation (6.19), �21 = �2rp~�
2
1 and �

2
2 = �2rp~�

2
2.

G.4 Long-tailed mis�t weights

To facilitate calculating the derivative, equation (8.28) is rewritten as

Jp =
MX
m=1

�p (�m) ; (G.35)

where

�p (�m) =
1

p
j�mj

p ; (G.36)

and

�m =

PN
n=1Gmnxn � dm

�
=
"m
�
; (G.37)
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where "m =
PN

n=1Gmnxn � dm.Taking the derivative of Jp results in

@Jp
@xj

= 0 =

MX
m=1

@�p (�m)

@xj
=

MX
m=1

@�p (�m)

@�m

@�m
@xj

=
Gmj
�

MX
m=1

@�p (�m)

@�m
=
Gmj
�

MX
m=1

 2 (�m) ;

(G.38)

where

 2 (�m) =
@�p (�m)

@�m
=

@

@�m

1

p
j�mj

p = j�mj
p�1 sgn (�m) =

�m
j�mj

j�mj
p�1 =

�m
j�mj

2�p ;

(G.39)

so
@Jp
@xj

=
Gmj
�

MX
m=1

�m
j�mj

2�p ; (G.40)

or
@Jp
@xj

=
Gmj

�2

X
m=1

PN
n=1Gmnxn � dm��� "m� ���2�p : (G.41)

In matrix notation equation (G.41) is

rJp =
G0TW`pG

0x�G0TW`pd

�2
; (G.42)

where

W`p=diag

8<: �p�2
��� "m� ��� � ���� "m� ���p�2 ��� "m� ��� > �

9=; ; (G.43)

and � is a small number. The inequality
��� "m� ��� � � is introduced to protect against

the singularity that arises as � = 0 for 1 � p < 2:
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Appendix H

AVO waveform optimization problem

Bayes�theorem provides a theoretical framework to make probabilistic estimates

of the unknown re�ectivity attributes x from uncertain data and a priori informa-

tion. The resulting probabilistic parameter estimates are called the Posterior Proba-

bility Distribution Function (PPDF ). The PPDF written symbolically as P (xjd;I)
indicates the probability of the parameter vector x given the data vector d (o¤set

dependent re�ectivity) and information I. Bayes�theorem

P (xjd;I) = P (djx;I)P (xjI)
P (djI) ; (H.1)

calculates the PPDF from the likelihood function P (djx;I) and an a priori proba-
bility function P (xjI). The denominator P (djI) is a normalization function which
may be ignored if only the shape of the PPDF is of interest so

P (xjd;I) / P (djx;I)P (xjI) : (H.2)

The most likely estimate occurs at the maximum of the PPDF. The uncertainty of

the parameter estimate is proportional to the width of the PPDF.

Assuming uniform uncorrelated Gaussian noise (for simplicity), the likelihood

function may be derived in a similar fashion as in Chapter 3 resulting in

P (djx0; �N ; I) / (2�)�
N
2 ��NN exp

0B@� MX
m=1

�PN
n=1Gmnxn � dm

�2
2�2N

1CA ; (H.3)

where the total number of data points is equal to the number of o¤sets times the
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number of time samples (interfaces) M = K � L and the number of unknown

parameters is two times the number of time samples N = 2L:

Section 6.2.2 developed constraints from three long-tailed a priori probability

distributions. This derivation uses the Cauchy distribution, but the other derivations

follow in a similar fashion. Following Sacchi and Ulrych (1995), the a priori Cauchy

distribution (equation G.7)

p (x0) = exp (��0 � �1S (x
0)) : (H.4)

combined with the likelihood function (H.3) into Bayes�theorem (H.2) results in

p (x0jd) / (2�)�
Nd
2 ��NdN exp (��0 � �1S (x

0)) exp

 
�1
2

(G0x0�d)H (G0x0�d)
�2N

!
:

(H.5)

Upon marginalizing the variance �N in a similar fashion to Chapter 3, (Appendix E)

leads to

p (x0jd) / exp (��0 � �1S (x
0))
�
(G0x0�d)H (G0x0�d)

��M�1
2
: (H.6)

The maximum of the objective function is found when the function is stationary
@P
@xi

= 0 and convex. It is easier to determine this by taking the logarithm of the

probability distribution. Taking the logarithm of equation (H.6) J results in

J / (��0 � �1S (x
0))� M � 1

2
log
�
(G0x0�d)H (G0x0�d)

�
; (H.7)

which can be written as the sum of two parts

0 =
@J

@xj
= �@Jcauch

@xj
� (M � 1)

2

@Jmisfit
@xj

; (H.8)

where
@Jcauch
@xj

=
@

@xj
(�0 + �1S (x

0)) ; (H.9)

and
@Jmisfit
@xj

=
@

@xj
log
�
(G0x0�d)H (G0x0�d)

�
: (H.10)
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The partial derivative @Jcauch
@xj

is (equation G.25)

@JCauchy
@xn

=
�1
�21
Qcx

0; (H.11)

where the diagonal elements of matrixQc are de�ned by equation (G.26). The partial

derivative @Jmisfit
@xj

is

@Jmisfit
@xj

=
2
�
G0TG0x0�G0Td

�
"T"

; (H.12)

where " = G0x�d: Thus, upon substitution of equation (H.11) and (H.12) into (H.8)
results in

0 = ��1
�21
Qcx

0 � (M � 1)
2

2
�
G0TG0x0�G0Td

�
"T"

; (H.13)

or �
G0TG0+�Qc

�
x0= G0Td; (H.14)

where

� = �1
�2N
�21
; (H.15)

and

�2N =
"T"

(M � 1) : (H.16)
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Appendix I

Change of variables in standard form

The eigenvector decomposition of the covariance matrix is

Cx = V�V
�1 = V�VT : (I.1)

assuming the eigenvectors are orthonormal. Thus, the inverse of the covariance ma-

trix,Wx eigenvector decomposition is

Wx = C
�1
x = V�V�1 = V��1=2

�
��1=2V�1� = ���1=2V�1�T ���1=2V�1� : (I.2)

The constrained inverse problem"
G0

p
�W

1=2
x

#
x =

"
d

0

#
; (I.3)

may thus be written as "
G0

p
���1=2V�1

#
x =

"
d

0

#
: (I.4)

Using the change of variables

x = Vx0; (I.5)

and

x0= V�1x; (I.6)

equation (I.4) becomes "
G0

p
���1=2

#
x0=

"
d

0

#
; (I.7)
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so the weighting matrix is diagonal.

Note that the covariance matrix

Cx =
XXT

N � 1 ; (I.8)

where X = [x1;x2; ::::;xN ] and xn= [rp; rs; rd]
T ; after the change of variables is diag-

onal

Cx0 =
X0X0T

N � 1 =
V�1XXT (V�1)

T

N � 1 = �; (I.9)

since Cx =
XXT

N�1 = V�V
T .


