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Abstract

New techniques are described to enhance the accuracy and efficiency of finite-difference

modelling for the propagation of elastic waves.

The most important technique involves the active adjustment of the frequency

content of each finite modelling step. This contrasts with most current finite-

difference modelling practise, which uses frequency analysis only to evaluate the

utility of various other processes within a step. In order to adjust frequency content

with spatial operators of limited size, procedures combining Fourier analysis and

optimization are developed. This is done first for one spatial dimension, and then

for two. Tests show obvious improvements by use of this technique.

A second technique develops a mathematical definition of a transmitting edge for

finite-difference models, often called an absorbing boundary. Tests indicate that this

is a valid concept, and show some encouraging results.

Three case studies are also included where finite-difference modelling sheds some

light on elastic propagation problems. The first shows how Rayleigh (surface) waves

are transmitted and reflected at simple velocity boundaries. The second shows how

near surface conditions affect the character of body and surface waves. The third

shows where finite-difference modelling may add to the realism of AVO interpreta-

tions.
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Chapter 1

Introduction

This thesis is concerned with the techniques of finite-difference modelling as applied

to seismic waves that travel through regions with homogeneous properties. Most of

the waves studied are pressure and shear waves, known as body waves, that travel

inside the medium. Some work was also done on Rayleigh waves, which may travel

on the surface of a model. An essential part of these studies is the way these waves

interact with each other at boundaries within the models, and at the edges of the

models.

The work here was stimulated by the successful models of previous authors who

applied finite-difference methods in various areas, as shown in papers and presen-

tations. A particular revelation was its use to simulate surface waves, as well as

body waves. The debt owed these earlier investigators is acknowledged wherever it

is known.

The object of this thesis is to introduce and apply some novel techniques and

provide some new insights, so that even more of the subtle effects of seismic wave

propagation may be demonstrated. These novel ideas generally arise with analysis

of a problem from a slightly different viewpoint. The results are then sometimes

compared with other approaches to a solution for the same known problem. In all

cases, though, the novel techniques have been combined with known techniques for

the final product.

1



2

1.1 Thesis organization

1. Chapter 1 gives the introduction, the content of the chapters, and the claims

of novelty. It also gives a review of how frequency domain analysis is used in

finite-difference modelling. This is compared with the use of frequency domain

techniques in seismology, and suggests some approaches in the finite-difference

world.

2. In chapter 2, frequency dependant corrections to the wave equation in one

spatial dimension are investigated. The corrections are developed by comparing

the operation of a continuous second derivative on a single frequency wave to

the operation of the most simple finite-difference second derivative on the same

wave. The beneficial effects of the corrections on dispersion, group velocity and

phase are illustrated. Finally, stability is considered from the point of view of

aliasing in the frequency domain.

3. Chapter 3 applies the same methods to derive finite-difference corrections for

modelling in two spatial dimensions. Stability and frequency domain aliasing

are also considered for these conditions.

4. In chapter 4, correction filters are designed for optimized spectral response from

a two-dimensional spatial filter of limited size. Use of these filters is shown to

be superior to a higher order Levander scheme. Finally, the effect of these

filters on a model with two contrasting velocities is shown.

5. Chapter 5 explains the theory for a new transmitting boundary condition for

the acoustic wave equation. This method is then adapted to the elastic wave
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equation, and applied to two cases.

6. Chapter 6 consists of finite-difference case studies, most without corrections.

They do demonstrate some novel methods, and simulate some subtle features

on seismic records.

(a) Rayleigh wave reflection and transmission properties are shown in section

6.1.

(b) A realistic example of the relationship between first breaks and seismic

polarity is demonstrated for several cases in section 6.2.

(c) Models of several standard AVO reflections with realistic transmitted

waves are displayed in section 6.3.

1.2 Claims of novelty

The more significant claims of novelty are summarized here:

1. Unique body wave corrections are derived for each term of the two-dimensional

wave equation. This tends to eliminate effects which are dependant on the

orientation of the spatial grid, like frequency content and propagation velocity.

2. A correction for integration in time is combined with the corrections for spatial

derivatives before approximations are made. This is important because the two

corrections tend to oppose one another, and correcting for only the net effect

can be much more efficient.

3. Corrections in the form of a limited length spatial filter are optimized for their

spectral content. This can be important because a correction that is optimized
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is usually more effective than one that results from the truncation of an infinite

series. Frequency content is a measure that is widely used, and so seems a

logical target for optimization.

4. The Courant stability criterion is presented in terms of aliasing in the time

domain. The basic conclusions of this presentation are no different from present

knowledge. However, they show a different viewpoint that can be used in the

design of correction filters that avoid instability problems.

5. An effective transmitting (non-reflecting) boundary condition is developed us-

ing the eikonal equation. This has found some application in case studies. The

value is limited, probably because corrections have not yet been developed for

it.

6. A technique for generating isolated Rayleigh waves is developed. The sepa-

ration of these waves from the body waves that physically cause them allows

their inherent properties to be studied more easily.

7. A colour coded displacement direction display is developed. This display is

effective for body and surface waves in a two dimensional medium, and can

sometimes make clear how the separate waves are coupled.

8. A colour coded display of separated pressure and shear wave energy is devel-

oped. This is a display that interprets displacements in a two dimensional

medium as pressure or shear waves, or a combination of the two. It has proved

to be very effective at demonstrating how shear waves are generated, and how

prevalent they can be in a structured medium.
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These innovations all enhance the utility of finite-difference wave-equation mod-

elling. Some of the benefits are quite significant, while others may be considered

marginal. Many of these claims involve novel perspectives, but in practical terms

they just make the modelling process more efficient, or for the same amount of com-

putational effort, more accurate. Most finite-difference modelling problems may be

bypassed with more sample points over the same spatial and time ranges. However,

this can often be a very costly solution, increasing to the power of the number of

dimensions in the output space. Better results can often be attained with an im-

proved understanding of where the errors originate, and where new techniques will

lead to significant improvements. For these reasons, novel perspectives sometimes

have major impacts.

1.3 The use of frequency domain analysis in finite-difference

modelling

Many of the claims of novelty within this thesis involve the modification of the

basic finite-difference operators by comparatively minor operators designed in the

frequency domain. This has not been done in a theoretical or general way, but has

focused on the particular second derivative equations used for seismic wave propa-

gation.

A geophysicist accustomed to the methods of the seismic industry may take

some time to become aware of the different approaches taken for finite-difference

modelling. A common understanding would seem natural, since sampled data is the

basic working material for both groups.
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The variance seem to arise from the different position of sampling within the order

of operations. The seismologist samples his data at the beginning of his project, and

from there he must do as much as possible with it. A mathematician who uses finite-

difference techniques to solve differential equations first sets up his methods, and

then continues to refine the sampling of his curves until he can compute satisfactory

results.

It is interesting to note that many of the concerns of the seismologist, as he

acquires and processes his data, depend on its frequency content.

1. The rationale for acquiring new data is often to obtain higher frequencies,

enough to delineate uniquely a particular geologic target.

2. At acquisition, a primary concern is the time sample rate. This is chosen to

obtain a sufficiently high ‘Nyquist’ frequency, the highest frequency which can

be unambiguously preserved at a given sample rate. This is always chosen

with a generous margin of error. Data frequencies which exceed the Nyquist

frequency are suppressed by analogue means before sampling takes place.

3. An important part of post acquisition processing involves selection of frequency

content by filtering. High, or low, or particular frequencies are usually sup-

pressed to enhance those remaining, those which have been identified with

interesting targets.

4. A further part of seismic processing involves frequency balancing. This usually

means enhancing the amplitude of the higher frequencies in the data compared

with those at lower frequencies. This is one way of looking at the deconvolution

process.
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These processes are applied mainly in the time domain, but are designed for their

response in the frequency domain. The Nyquist frequency dictates time acquisition

sampling, and the time domain band-pass and deconvolution filters are designed for

manipulation of the frequency content of the data. These last two processes involve

some quite complex theory.

In contrast to the seismologist, the finite-difference mathematician will focus

entirely on ‘schemes’. A scheme amounts to the replacement of derivatives from

a differential equation with some form of finite-difference analogue, along with a

limited number of additional techniques (See Appendix A.4). These schemes, and

the sample rates used within them, are evaluated by analysis and comparison with

analytic results to arrive at an optimum scheme for the problem at hand.

It is interesting that, although no frequency domain processes are applied to the

data, most of the quantitative analysis of schemes is done in the frequency domain.

This is necessary because the effects being studied are often dependent on frequency

or wavenumber.

The most widely used frequency domain analysis of finite-difference schemes is

the von Neumann analysis. The result of this analysis is essentially the Fourier

transform of a single time step, and is called the amplification factor. A quote

from Strikwerda (2004) states “All the information about a scheme is contained in

its amplification factor”. He then goes on to say “.....and we show how to extract

important information from it.” (page 194). Conditions for stability are probably

the most important of these, but also available are measures of accuracy, dispersion,

and phase angle.

The proven validity and importance of Fourier domain concepts within finite-
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difference theory seems to point directly to the utilization of frequency domain de-

signed techniques to enhance the method, and some encouraging results have been

achieved. A large part of this thesis takes this approach to enhance the accuracy

and efficiency of wave equation modelling.



Chapter 2

Finite-difference modelling in one spatial

dimension

The study of finite-difference modelling of waves in one dimension is a valuable intro-

duction to the more physically meaningful problems in two or three dimensions. Aki

and Richards (1980) used this approach to find modelling styles and parameters that

provide stability, and to make estimates of numerical dispersion. Another example

of stability analysis can be found in Press et al. (1992), where the notation is similar

to that used in geophysics, and several different approaches are used. These prob-

lems of stability and numerical dispersion usually have solutions which are opposed

to each other, and therefore tend to receive the most attention in finite-difference

practise. Their definitions are given in Appendix C.2.

Ames (1992) investigates the one dimensional wave-equation in his book. He uses

the usual formulation, but then to improve general stability, discusses an implicit

scheme where the acceleration is approximated by ‘the divided second backward

difference’. After analysis he finds the results to be attenuated, and writes ‘This

improper attenuation renders the finite-difference approximation of little use in ap-

proximating the wave-equation’ (page 283). This seems to be a general comment on

finite-difference wave-equation solutions.

Finite-difference computations require a choice of spatial and temporal sample

rates. Lines et al. (1999) quote earlier authors that “... spatial sampling is generally

9
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chosen to avoid grid dispersion in solutions. Then, having chosen spatial sampling,

the temporal sampling is chosen to avoid numerical instability”. This direct approach

will work, but may require fine sampling rates that result in long computation times.

Here it will be shown that the temporal sample rate also affects the amount of

dispersion.

The oversampling required to limit numerical dispersion is necessary when the

derivatives of the analytic equation are replaced with their most simple finite-difference

equivalents. Alternatively, numerical dispersion can be limited by improving the ac-

curacy of finite-difference approximations, which usually amounts to extending their

length, and thus moving errors to terms of higher order in their Taylor series approx-

imations. An example is the finite-difference first derivative, which in the simplest

case has two terms, and which can be extended to higher orders containing 3 or more

terms by involving adjacent grid points. One example of how a higher order approxi-

mation is designed is given in Appendix A.6. Some of these methods were developed

for early automatic computers and have had a rich history since. Abramowitz and

Stegun (1965), for example, list a number of finite-difference formulae for partial

derivatives, some accurate to fourth order.

Another method of improving finite-difference accuracy is to make use of the

exact spatial differentiation possible in the wavenumber domain. This is known as

the pseudospectral method, and Kreiss and Oliger (1972) were the first to publish

it. Orszag (1972) and Fornberg (1975) also published early papers in mathematical

journals. Gazdag (1981) and Kosloff and Baysal (1982) used the technique for two

dimensional seismic modelling. There are two main difficulties with the pseudo-

spectral method. First, the operators which are so simple and compact in the Fourier
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domain, are effectively quite wide spread in the spatial domain, causing difficulties

at the edges and at internal boundaries. Second, the high accuracy derivatives in the

spatial domain do not have a natural integration equivalent in the time domain. This

is because each time step of the finite-difference method adds a new sample to the

end of a series, and a reliable Fourier transform of this time series cannot be made

with these conditions. For this reason, the calculated acceleration is transformed

back to the space domain, and usually finer time steps are used.

This thesis describes a new method for the time stepping of waves, and for analyz-

ing the error and stability of the finite-difference method, by developing and using an

exact relationship, valid for a single Fourier component, between the second-order,

central, second finite-difference and the analytical second derivative. The relation-

ship is exact because it is developed entirely in the Fourier transformed domain,

whereas other methods operate within a space/time domain or a wavenumber/time

(the pseudospectral) domain. In the classic finite-difference literature, this relation-

ship is closely related to the ‘amplification factor’. It is used there as a quality check

for a particular scheme (see section 1.3 and Strikwerda (2004) page 194 for the wave

equation).

The amplification factor allows the finite-difference error to be precisely charac-

terized and a correction filter to be developed. The correction filter can be applied to

second-order finite-difference results to remove grid dispersion and also to stabilize

an apparently unstable scheme.

The following six sections develop the theory and practice of multiplicative cor-

rections for the wave equation in one spatial dimension.
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• Section 2.1 begins the correction theory by comparing the results of analytic

second derivatives and their finite-difference analogues. It then shows how

the finite-difference results must be modified in order to produce the exact(±)

analytic results.

• Section 2.2 develops the results from section 2.1 into a practical time stepping

scheme. The scheme is demonstrated with some simple examples. Since the

corrections were developed in the wavenumber domain, the data were trans-

formed to the wavenumber domain for application of the corrections, and then

transformed back to the spatial domain.

• Section 2.3 shows how the corrections act to eliminate numerical dispersion.

This is not immediately obvious because the basic correction operations affect

amplitudes. The effects on dispersion are shown with some narrow band limited

wavelet examples.

• Section 2.4 shows a particular case where the corrections can eliminate finite-

difference time-stepping instability.

• Section 2.5 uses the results from the previous section to present the insta-

bility problem in a slightly different way. Some may find they have a better

understanding of stability requirements from this viewpoint.

• Section 2.6 develops the theory of correction filters for application in the spatial

domain. The filters are optimized for their effect within the lower frequency

part of the spectrum, with a constraint on the filter length. These filters save

computer time spent on Fourier transforms, and are easier to use on a model
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with more than one velocity. The filters are demonstrated on a model with

two velocities.

2.1 The analytic second derivative simulated by finite-difference

This section will show how the a finite-difference second-order second derivative

analogue may be modified to simulate an analytic second derivative. The general

procedure is shown graphically in Figure 2.1. The primary concern is to ensure that

a continuous operation is replicated as closely as possible by its discrete analogue.

If this can be done with sufficient accuracy, the legacy of analytic successes can

be claimed for their discrete equivalents. The comparison is made in the discrete

(sampled) domain because there are a finite number of measurements to make, and

because the conversion from the continuous to the discrete domain is well understood.

A similar philosophy is used by Mickens (2000) for his exact equations. In Mick-

ens’ book, the sampled points derived from the finite-difference equation must lie

exactly on the continuous curve of the analytic equation solution. He expresses this

condition in the form

uk = u(tk), (2.1)

where u is the continuous function, tk is a discrete time, and uk is the finite-difference

calculated value at that time. This appears on page 6 of his text.

The discrete operation which will be compared here to the continuous operation is

the second derivative, which appears many times within the various wave equations.

This would be a difficult task in general, but may be seen to be quite amenable in

the Fourier transformed domain. The procedure, then, is to compare the output of
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Figure 2.1: The means by which the continuous and discrete operations are com-
pared. The continuous operation is used as a model, and the discrete operation is
modified to obtain a result which is as similar as possible
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the continuous and discrete operations on a single frequency and wavenumber wave.

The results will then depend on the frequency and wavenumber of the wave chosen.

The solution of the analytic wave equation has been given many times, but is

repeated here to ensure a consistent notation. First note that the one-dimensional

(scalar) wave equation can be written in the form

∂2φ

∂x2
=

1

v2

∂2φ

∂t2
, (2.2)

where φ is the 1-D wavefield, x and t are the space and time coordinates, and v is

the velocity, or acoustic wavespeed.

If the wavefield is limited to a particular wavenumber k and frequency ω, it can

take the complex exponential form

φ(x, t, k, ω) = ei(kx−ωt), (2.3)

where the wave amplitude has been set to unity. The second partial derivatives of

equation 2.3 are

∂2φ(x, t, k, ω)

∂x2
= −k2ei(kx−ωt) (2.4)

∂2φ(x, t, k, ω)

∂t2
= −ω2ei(kx−ωt). (2.5)

Substitution of 2.4 and 2.5 into 2.2 shows that k and ω must be related as

k = ±1

v
ω. (2.6)

For comparison, the finite-difference equivalent operator may be applied to a

continuous wave field. The second order, central finite-difference of a function f(ξ)

is usually written as D2
ξf(ξ) = (∆ξ)−2[f(ξ + ∆ξ) − 2f(ξ) + f(ξ − ∆ξ)] and is taken
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as an approximation to the analytic second derivative. Applying this operator to the

wavefield of equation 2.3 in the spatial coordinates gives

D2
xφ(x, t, k, ω) =

1

(∆x)2
{ei(k(x+∆x)−ωt) − 2ei(kx−ωt) + ei(k(x−∆x)−ωt)} (2.7)

or

D2
xφ(x, t, k, ω) =

ei(kx−ωt)

(∆x)2
{eik∆x − 2 + e−ik∆x}. (2.8)

The terms in curly brackets may be written as

eik∆x − 2 + e−ik∆x = {eik∆x/2 − e−ik∆x/2}2 = −4sin2(k∆x/2) (2.9)

so that equation 2.8 becomes

D2
xφ(x, t, k, ω) = −k2(

2

k∆x
)2sin2(

k∆x

2
)]ei(kx−ωt), (2.10)

or

D2
xφ(x, t, k, ω) = −k2sinc2(

k∆x

2
)ei(kx−ωt), (2.11)

using sinc(ξ) = sinξ/ξ. Comparing equations 2.4 and 2.11 leads to the conclusion

that

D2
xφ(x, t, k, ω) = sinc2(

k∆x

2
)
∂2φ(x, t, k, ω)

∂x2
, (2.12)

or

∂2φ(x, t, k, ω)

∂x2
=

1

sinc2(k∆x
2

)
D2

xφ(x, t, k, ω). (2.13)

There are zeros of the sinc function in equation 2.13 but not for the normal range of

the argument. The first zeros occur at k0 = ±2π∆x−1, which is twice the Nyquist

wavenumber (see Figure 2.2).
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By a similar process it follows that

∂2φ(x, t, k, ω)

∂t2
=

1

sinc2(ω∆t
2

)
D2

t φ(x, t, k, ω). (2.14)

Substituting equations 2.13 and 2.14 into equation 2.2 provides an exact finite-

difference equivalent for the 1-D scalar wave equation, which is

1

sinc2(k∆x
2

)
D2

xφ(x, t, k, ω) =
1

sinc2(ω∆t
2

)

1

v2
D2

t φ(x, t, k, ω) (2.15)

where now finite-difference operators are used. It must now be emphasized that this

result is only valid for a single Fourier component.

This equation was also developed by Cole (1998), and appears in Mickens (2000),

the book on non-standard finite-differences.

If equation 2.15 is modified by replacing the sinc functions with unity and discard-

ing the wavenumber and frequency dependence of φ, the conventional second-order

finite-difference approximation results. This introduces frequency and wavenumber

dependent errors that are precisely characterized by the sinc functions. The form of

the sinc function is shown in Figure 2.2.

Division by zero is usually not a problem with these sinc functions. Consider,

for example, the sinc function associated with the x derivative, and assume that

the relevant wavenumbers are contained within ±Nyquist. Then the relevant values

of k are contained within [−π∆x−1, π∆x−1], and it follows that the sinc function

arguments fall within [−π/2, π/2] radians. Figure 2.2 shows that the sinc fuction is

not near zero for this range.

Neglecting the multiplicative, sinc-function factors in equation 2.15 leads to the

errors described in the Appendix C.2. The closer the factors are to 1 the smaller the
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errors, and the factors approach 1 as the sinc-function arguments approach 0. This

means that the errors are reduced when the relevant sample interval is reduced, or

the frequency and wavenumber are reduced.

The maximum error is usually at the highest wavenumber or frequency that is

sufficiently sampled, or the Nyquist wavenumber. For example, the positive Nyquist

wavenumber is π/∆x, so that sinc(k∆x/2) becomes sinc(π/2), or half way to the first

zero of the function. The sinc function factor in this range, then, is always greater

than zero. Equation 2.13 shows that the second-order finite-difference always under-

estimates the magnitude of the analytic derivative and the underestimate is given in

Figure 2.3. This curve is the square of the sinc function, and it must be divided

into the finite-difference derivative to get the exact derivative. The finite-difference

result is most accurate where the sample interval is small, or where wavenumber or

frequency are low. The curve does not go to zero within the usual range (within

the Nyquist frequencies), so this curve also shows it is valid to divide by the sinc

function and its square.

2.2 Finite-difference time stepping including a correction fil-

ter

This section will show how an extension of equation 2.15 can be developed for use in

a time-stepping scheme. First, equation 2.15 may be solved for the finite-difference

acceleration term to give

D2
t φ(x, t, k, ω) = v2 sinc2(ω∆t

2
)

sinc2(k∆x
2

)
D2

xφ(x, t, k, ω). (2.16)



20

     
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−Nyquist +Nyquist

  −π  −π/2    0    π/2   π  

F
ra

ct
io

n 
of

 a
na

ly
tic

 d
er

iv
at

iv
e

2nd order approximation (sinc function squared)

Argument (radians)

Figure 2.3: The finite-difference under estimate of a second derivative (a squared
sinc function).



21

As it stands, the sinc function in the numerator on the right side of equation 2.16 is

problematic because it requires knowledge of the temporal frequency ω, a quanity not

readily known in time-stepping. Frequencies are not available from the incomplete

time series being constructed, but the assumption of constant velocity makes the

translation into wavenumbers obvious. Thus, equation 2.6 is used to substitute for

ω, the explicit ω dependence is dropped from φ, and D2
t is expanded to obtain

φ(x, t + ∆t, k) − 2φ(x, t, k) + φ(x, t − ∆t, k)

(∆t)2
= v2sinc2(kv∆t

2
)

sinc2(k∆x
2

)
D2

xφ(x, t, k). (2.17)

The solution for time-stepping is then

φ(x, t + ∆t, k) =

[

2 + (∆t)2v2sinc2(kv∆t
2

)

sinc2(k∆x
2

)
D2

x

]

φ(x, t, k) − φ(x, t − ∆t, k). (2.18)

This finite-difference time-stepping equation has a form similar to the standard

second-order equation, but in addition has a correction multiplier in the form of

the squared sinc-function ratio. Since equation 2.18 is just a reformulation of equa-

tion 2.2, it is an exact prescription for a finite time step assuming a single Fourier

component. When the correction multiplier is set to unity, exactness is lost and the

standard time-stepping approximation results.

Equation 2.18 has been used by Cole (1998) to time step narrow band wavelets. In

the literature seen to date, this equation has not been used for broad band frequency

correction, or to design convolution operators to achieve similar results.

It is interesting to look at the correction filter from a frequency domain viewpoint.

The phase spectrum of the finite-difference operation is untouched. The operation is

fully corrected by a simple adjustment of the amplitude spectrum. Since most of the

information in a signal is carried by the phase spectrum, it is encouraging to note

that the correction operator is such a simple adjustment.
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Equation 2.18 can be implemented in a practical scheme by applying the second

spatial finite-difference followed by a wavenumber dependent correction filter before

calculating the time step advance. The sequence of operations is shown in Figure

2.4.

. .

 Start − line of displacements at time t 

 Calculate second order finite−difference 

 Fourier transform over space 

 Multiply each wavenumber by integration time sinc function 

 divided by derivative spatial sinc function, all squared 

 Inverse Fourier transform over wavenumber 

 Calculate time step 

 End − line of displacements at time t+1 

Figure 2.4: The flow chart for application of the correction multiplier to one dimen-
sional finite-difference time-stepping. Note that the integration step is corrected as
well as the spatial derivative.

An example of finite-difference modelling using the corrected equation is shown

in Figure 2.5. The wavelet has remained quite consistent through the duration of

the model. For comparison, the equivalent uncorrected equation 2.19 propagates an

identical initial wavelet through the successive steps shown in Figure 2.6. The most

obvious difference to be seen is the change in character of the propagated wavelet
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Figure 2.5: A zero phase wavelet that has started at t=0 and propagated to the right
with the algorithm from equation 2.18.
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Figure 2.6: The wavelet from Figure 2.5 was propagated uncorrected with equation
2.19.

caused by numerical dispersion.

2.3 The uncorrected equation and velocity dispersion

Some of the most convincing evidence for the accuracy of the corrected time-stepping

equation is its use for prediction of uncorrected propagation effects. As an example,

the second-order time stepping scheme may be analysed to develop an expression

for its grid dispersion velocity. This standard approximation arises by setting the

correction filter to unity in equation 2.18 to obtain

φ(x, t + ∆t) =
[

2 + (∆t)2v2D2
x

]

φ(x, t) − φ(x, t − ∆t). (2.19)

From this perspective, equation 2.19 is an approximate solution to the time-

stepping problem whose errors are characterized by the omitted correction filter.

However, it can also be viewed as the exact solution to a different problem, that of
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modelling in a particular wavenumber-dependent velocity medium. Notice that in

equation 2.15, there are no conditions on the velocity, and so it may be defined as

wavenumber dependent.

To show the wavenumber-dependent velocity medium which is exactly modelled

by equation 2.19, consider the quantity within the square brackets. This may be

written as
[

2 + (∆t)2v2 sinc2(k∆x
2

)

sinc2(ku(k)∆t
2

)

sinc2(ku(k)∆t
2

)

sinc2(k∆x
2

)
D2

x

]

, (2.20)

where the wavenumber dependent velocity u(k) at this point can be any completely

arbitrary number. Now define u(k) with the following implicit equation

u(k) = v
sinc(k∆x

2
)

sinc(ku(k)∆t
2

)
. (2.21)

Here u(k) appears in the equation twice. The equation may be manipulated to give

an expression for u(k), but this does not lead to a major increase in understanding

(see Appendix K). A squared version of this equation 2.21 may be used to substitute

u(k)2 for the left fraction in the square bracket 2.20. The remaining terms in the

square bracket are then in the exact form of equation 2.18, and so an event with

wavenumber k will propagate perfectly with a velocity given by equation 2.21. Note

that the velocity which is used for the time stepping procedure is distinct from the

velocity with which any wavenumber propagates. Also note that with some effort,

an explicit equation u(k) may be developed (see Appendix K), but a reasonable

approximation is

u(k) = v
sinc(k∆x

2
)

sinc(kv∆t
2

)
. (2.22)

The velocity dispersion in equation 2.21 is seen to arise from the finite-difference

approximations to both the space and time derivatives. The ratio of sinc functions
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means that the errors in these approximations tend to oppose one another, and even

completely cancel if v∆t = ∆x.

The wavenumber dependent velocity equation may be used to predict the action

of numerical models. Note that stable modelling requires that ∆t ≤ ∆x/v (see, for

example, Lines et al. (1999). Then v∆t ≤ ∆x, and if this inequality is inserted into

equation 2.22, it turns out that that u(k) ≤ v. Also, this inequality is increased with

higher wavenumbers k, so if k1 > k2 then u(k1) < u(k2). This effect may be seen in

Figure 2.6, where the wavelet has not propagated as far, and therefore not as fast,

as the corrected wavelet in Figure 2.5.

Another way to demonstrate the results of uncorrected finite-difference wave

propagation is to study its effects on wavelets with very limited bandwidth. Since

the propagation effects are frequency dependent, a limited bandwidth wave will show

more consistent effects. Figure 2.7 shows the use of equation 2.19 to propagate two

narrow bandwidth waves, constructed as single frequency waves modulated by a

Gaussian. The lower frequency wave has traveled farther, and therefore faster, than

the higher frequency wave.

The high frequency wave packet result can be quantified by crosscorrelating the

propagated wavelet with the original limited bandwidth wavelet and plotting the

position of the crosscorrelation maximum. The result is the jagged curve appearing

in Figure 2.8 (the jagged nature is explained in the paragraph following). The up-

permost curve indicates the real velocity of the material and the next curve indicates

the phase velocity (equation 2.22). The wavelet should move at the group velocity,

dω/dk, calculated from the phase velocity (see the Appendix K). This is the third

straight line on the plot, and it follows the trend of the crosscorrelations very well.
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Figure 2.7: Two different narrow-band wavelets propagating to the right using equa-
tion 2.19. Snapshots taken at the same time show the relative positions of the two
wavelets. The lower frequency wavelet has moved further because its effective veloc-
ity was higher.
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It is difficult to correlate the high frequency wavelet packages because while the

packet moves at the group velocity, the high frequency component of the packet

moves at its phase velocity. This means the high frequency component moves within

the packet, and the cross correlation tracks the high frequency for detail, even though

the general trend follows the packet.
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Figure 2.8: The jagged curve shows the position versus time of the high-frequency
wavelet (of Figure 2.7) as determined by crosscorrelating successive snapshots. Prop-
agation was accomplished with equation 2.19. Also shown are straight lines indicat-
ing the phase velocity (dashed, equation 2.22), group velocity (solid, derivative of
equation 2.22), and the material velocity (dotted).

When the band limited wavelets are propagated with the corrected finite-difference
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expression (equation 2.18), the results shown in Figure 2.9 are obtained. Both

0 500 1000 1500 2000 2500

Initial wavelets Propagated wavelets

Offset

Figure 2.9: The two narrow-band wavelets propagating to the right using equation
2.18. They have moved at a higher velocity which is independent of frequency.

wavelets propagate much further with the same number of time steps, and the two

go about the same distance. The cross correlation results are shown in Figure 2.10

and they have the same slope as the actual velocity of the model.

The final method used to evaluate the correction theory predictions is to investi-

gate the nature of wavelet character change when the uncorrected equation is used.

Figure 2.11 shows the lag of two frequency components from the material velocity

position for a particular set of parameters (v = 1000m/s, dx = 3m, dt = .0015s).

Also displayed is the distance the high wavenumber component must lag to reach
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Figure 2.10: The jagged curve shows the position versus time of the corrected high-
-frequency wavelet (of Figure 2.9). Propagation was accomplished with equation
2.18. The straight line indicates the material velocity, and it follows the trend of the
wavelet position.
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Figure 2.11: The total lag of the 25 and 55 Hz wavelet components after a given
number of steps.
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1/4 of its wavelength.

Figure 2.12 shows how a stack of several frequency components of uniform am-

plitude combine to make up a zero phase wavelet. The vertical line shows where the
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Figure 2.12: The zero phase wavelet plotted at the top is the sum of the frequency
components plotted below it.

common phases (peaks) line up.

Figure 2.13 shows how a stack of frequency components may combine to make

up a 90 degree phase shift wavelet. The vertical line here shows where the common

phases (zero crossings) line up. From Figure 2.11 it may be seen that a quarter

wavelet lag difference at 55 Hz will result after about 110 finite-difference steps.

Each component in this Figure ( 2.13) is lagged by using the velocity from 2.22

times the time interval of 110 steps, in this case 0.165 seconds.

In Figure 2.14 the zero phase wavelet at the center is shown after propagating

110 steps to the right. The phase shift of approximately 90 degrees is apparent. Also

the lagging high frequencies and leading low frequencies are beginning to show.

The wavelet has also been propagated a further 110 steps to 220, and the result
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Figure 2.13: The plotted frequency components (shifted) may be summed to form
the 90 degree phase wavelet plotted at the top.
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Figure 2.14: The wavelet propagated 110 steps. Note the apparent 90 degree phase
shift.
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is shown In Figure 2.15. The wavelet in this case has been wrapped around in the

0 50 100 150 200 250 300 350 400 450
Offset

Initial wavelet
Propagated wavelet

Figure 2.15: The wavelet propagated 220 steps, and wrapped around to the left.
Note the apparent 180 degree phase shift(reversal).

x-direction, and has come in from the left to appear at the left of the initial wavelet.

The further 90 degree phase shift gives a total shift of 180 degrees, or a polarity

reversal from the initial wavelet. The wavelet does appear to be reversed, although

more spread out.

A total of 440 propagation steps is shown in Figure 2.16, which has the ap-

pearance of a 360 degree phase shift. The growing separation of the high and low

frequencies is also becoming more apparent.
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Figure 2.16: The wavelet propagated 440 steps. The phase shift here is about 360
degrees. The spreading out of the lower and higher frequencies is more obvious here.
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2.4 Instability and dispersion when time-stepping

When finite-difference modelling, one of the primary concerns with a procedure is

its stability. Here it will be shown that instability is another symptom of the basic

mismatch between continuous and finite-difference derivatives, and that correction

factors may contribute to understanding this mismatch. It has been found that

spatial filters for unstable conditions must be designed with different methods from

filters designed for stable conditions. This special design technique is discussed in

Appendix J. However, one particularly favourable case will be shown here.

The omission of the correction multiplier, corr = sinc2(kv∆t/2)/sinc2(k∆x/2),

in equation 2.18 gives rise to instability for wavenumbers where the multiplier would

be less than 1, and dispersive but stable wave propagation where it would be greater

than 1. These relationships are sumarized in table 2.1.

Sampling choices corr magnitudes Uncorrected properties

∆t < ∆x/v corr > 1 stable/dispersive

∆t = ∆x/v corr = 1 stable

∆t > ∆x/v corr < 1 unstable

Table 2.1: Correction amplitudes related to the stability criterion.

Since equation 2.18 is an exact reformulation of the continuous wave equation,

it is necessarily stable and non dispersive. When the correction multiplier is greater

than unity, then setting it to 1 leaves the higher frequencies at progressively lower

amplitudes compared to the lower frequencies. The result is stable but with dis-

tortion (an exponential decay), and has a side effect of frequency-dependent wave

propagation as shown above. This choice of sampling (∆t ≤ ∆x/v) is the well-known
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time-stepping stability condition, e.g. Lines et al. (1999).

When the correction multiplier is less than unity, then setting it to 1 allows the

higher frequencies to reach progressively higher amplitudes compared to the lower

frequencies. The result is the exponential growth where the classical von Neumann

analysis in (e.g.) Aki and Richards (1980) and Press et al. (1992) predicts the

behavior.

A correction factor to prevent instability is given here for a particular case to

illustrate the principles involved. The case where ∆t = 2∆x/v is unstable for the

uncorrected equation, that is, the time sample rate is twice what it should be for

stability. A broadband wavelet was propagated only three steps with these conditions

in the uncorrected mode and the results are shown in Figure 2.17. It shows the
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Figure 2.17: A wavelet is shown after 3 propagation steps using equation 2.19 under
unstable conditions. The unstable zones appear at the ends of the defined wavelet.
These will grow rapidly with each step.

original and propagated wavelets at about 400 metres offset, and typical unstable
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artifacts (events which have their highest amplitudes at Nyquist and which grow

with each step). The corrected version is shown in Figure 2.18, and the corrections

have obviously worked very well after 100 steps.
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Figure 2.18: The initial conditions here were the same as in Figure 2.17, but 100
steps were taken using the corrected time-stepping equation 2.18.

It is instructive to follow the details of the correction for the ∆t = 2∆x/v case.

The squared sinc-function ratio, sinc2(kv∆t/2)/sinc2(k∆x/2), is shown in Figure

2.19, where its amplitude decreases from unity at zero wavenumber to zero at the

Nyquist wavenumber. The discrete inverse Fourier transform of this curve is shown

in Figure 2.20, and is the very simple spatial operator (1/4, 1/2, 1/4). Since this

is the autoconvolution of (1/2, 1/2), the correction is simply a two point running

average applied twice. This is a double-dose of the Lax running average which

always improves stability (Press et al., 1992). A two point running average and a

resample to every-other trace would solve the over-sampling problem, but apparently

sufficient averaging by itself can control the high wavenumbers.
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Figure 2.19: The wavenumber correction multiplier which must be used to stabilize
for a case where ∆t exceeds the stability condition by a factor of two.
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Figure 2.20: The correction filter is shown for the case where ∆t exceeds the stability
condition by a factor of two. This is the inverse Fourier transform of the spectrum
of Figure 2.19
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Figure 2.21 shows a suite of correction filters in space for various values of the

ratio v∆t/∆x.
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0.8

1
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Correction filters for ratios of v ∆t/∆x

Figure 2.21: Examples of correction filters for the labelled values of v∆t/∆x. The
upper two filters are for unstable cases while the lower two are for stable but dis-
persive cases. The centre filter is a spike for the case which is both stable and
nondispersive.

The case just discussed is the uppermost curve where the ratio is exactly 2. In

general the filters are infinite in length, although they tend to converge quite rapidly.

The filters for unstable cases have an averaging effect, and reduce the high frequency

components. The filters for stable but dispersive cases have a deconvolution effect,

and enhance the high frequency components. Between these cases is the perfect

sampling ratio where the filter is a unit spike.
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2.5 New insight into the finite-difference stability condition.

The assessment of requirements in the wavenumber frequency domain may provide

more insight into the necessity for the finite-difference time-stepping stability con-

dition. This assessment has not been seen in the literature reviewed to date. The

reasoning is suggested by the analysis in the previous section where the supression of

the higher wavenumbers makes modelling with larger time sample intervals stable.

The von Neumann stability condition (∆t ≤ ∆x/v) does not itself provide any

intuitive understanding as to why it should hold, and the reason for the asymmetry

between the spatial and time sampling is difficult to understand. Some insight is

provided by the Courant condition (Press et al. (1992), Figure 19.1.3), where a time

step computation is shown as the apex of a pyramid based on a range of spatial

values. Here it can be seen that a new displacement calculated for a specific point

must have, available for calculation, the whole spatial region from which an event

could arrive, given the time elapsed and the material velocity. The key concept

within the Courant condition is that, at successive times, displacements described in

space are constructed, and the resulting construction in the time or frequency sense

can then be validated.

The frequency-domain time-stepping analysis starts with the assumption that the

procedure translates wavenumbers (spatial domain) into frequencies (time domain)

and not the reverse. Then any procedure must ensure that there are no frequencies

generated which would be aliased within the specified time sample rate. The maxi-

mum circular frequency (in radians per second) that can be represented at a sample
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rate of ∆t is given by

ωmax = ωNyquist =
π

∆t
(2.23)

The maximum wavenumber which corresponds to this frequency is given by

kmax =
ωmax

v
=

π

v∆t
(2.24)

Since v∆t > ∆x (in the unstable region)

kmax =
π

v∆t
<

π

∆x
= kNyquist (2.25)

means that there is a range of possible spatial wavenumbers between kmax and kNyquist

which can not propagate because they lack a proper (unaliased) description in time.

This in turn means that these wavenumbers, if they exist at all, must be suppressed

before they are incorporated into subsequent steps. Note that time domain data is

never transformed into space when time-stepping, so under-sampling in the space

domain does not cause a stability problem.

Wavenumbers beyond kmax can be identified as the ‘noise’ mentioned in Aki

and Richards (1980), and the analysis presented there proved that, with the normal

second-order operations, these wavenumbers do not propagate, but rather grow with

each step. This corresponds to the von Neumann condition for stability.

A model that is fundamentally unstable (with ∆t > ∆x/v) can be used if the

high wavenumbers are attenuated sufficiently. The wavelet propagated in Figure

2.18 is an example, but the severe attenuation that must be performed with every

step is shown in Figure 2.19. Attenuation of this magnitude is practical in a one

dimensional model, but becomes much more difficult with a model in two or three

dimensions.



42

2.6 Correction filters

Correction filters are the space domain equivalent of the correction multipliers dis-

cussed in previous sections. These filters are the inverse Fourier transforms of the

correction multipliers, which were designed in the frequency/wavenumber domain.

The filters are convolved with the output of the finite-difference second derivative,

and are then followed by the time stepping process. An example of a correction filter

has already been developed, and is shown in Figure 2.20. It is the inverse transform

of the correction multiplier shown in Figure 2.19, used to control instability.

The advantages of a correction filter are:

1. The forward and inverse Fourier transforms (as in Figure 2.4) are eliminated,

saving book-keeping, and often saving computation time.

2. The spatial extent of the filter can be specified, as opposed to frequency domain

operators which have essentially infinite spatial requirements.

3. The filters may be designed for regions with unique velocities, and effects from

adjacent regions minimized.

The disadvantage of a correction filter is that it is not exact, and it must be designed

for optimal performance under certain conditions.

The design and application of correction filters is the subject of the rest of this

section. It is at this point where some of the fundamental finite-difference trade-

offs must be made: what fraction of the spectral range of zero to Nyquist will be

modelled, what filter length will be practical for computer time and at boundaries,

and what accuracy is required for the response at each frequency? The design method
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described here depends on the first two decisions, and a plot is then made showing

the resulting accuracy. Some experiments were done with a more complex spectral

selection (e.g. including the Nyquist frequency), but the results were found not to

be useful.

It has been found that even quite short correction operators can improve the

ordinary second order finite-difference by a large amount. They bring the wavenum-

ber responses much closer to ideal, and therefore give much better simulations of

the analytic results. The wavenumbers to be enhanced are chosen from zero to a

high value, usually about half the Nyquist wavenumber. It has also been found

practical to design these operators within an inherently stable choice of sample rates

(∆t ≤ ∆x/v). This means that generally the higher the wavenumber, the more the

amplitudes are enhanced, but wavenumbers above the design top are left attenuated,

and the modelling is therefore stable. An example of the ideal wavenumber domain

response, and the simulation of the response by a short spatial filter, is shown in

Figure 2.26.

The method begins with a one-dimensional discrete Fourier transform in matrix

form, shown in Figure 2.22. This is a discrete transform, but the rows are diplayed

in analogue form so their nature is more obvious. Only the lower frequency cosine

terms are shown. The schematic equation shows how these row samples represent-

ing a single frequency are multiplied by the data samples and summed to give the

amplitude at each frequency in the transformed vector.

Figure 2.23 shows the case where the data vector is all zeros past a given point.

It may also represent the case where, beyond a certain point, the data are unknown

and hopefully won’t contribute much to the spectrum. In this case a transform may
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Figure 2.22: First cosine terms of a discrete Fourier transform matrix equation. The
transform matrix is discrete but the rows are represented by analogue cosines.
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Figure 2.23: First cosine terms of an incomplete discrete Fourier transform matrix
equation. The shortened data vector presumably represents the most important
frequency components.
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still be found, but the cosine terms within the transform matrix may be cut off to

the data length, as shown in the figure. The equations represented in Figures 2.22

and 2.23 may be represented in algebraic form by the equation

Mp,jVj = Sp (2.26)

where Mp,j is the Fourier transform operator matrix, Vj is the data vector to be

transformed, and Sp is the transformed result. Here the Einstein summation con-

vention over repeated indices is assumed. j ranges from 1 to the data vector length,

and p ranges from 1 to the last point of the spectrum.

The case of interest here is shown in Figure 2.24. It is identical to Figure 2.23
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Figure 2.24: The matrix equation similar to Figure 2.23, where the frequency am-
plitudes are specified and the filter must be designed to approximate them.

except that the frequency response is given, and the data vector is now an unknown

filter that will be designed to make the equation work as closely as possible. The

matrix equation may be represented by

Mp,jFj ≈ Sp (2.27)

where Mp,j is the transform matrix, Fj is the unknown vector or filter, and Sp is the
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desired frequency response. A solution for Fj can then be found in a least squares

sense by applying standard inverse theory. The solution is given by

Fj = (MT
p,jMp,j)

−1MT
p,jSp (2.28)

where the superscript T indicates transpose and −1 indicates inverse. Note that if

the unknown filter is not truncated, the orthogonal rows and columns of the Mp,j

matrix ensure that the MT
p,jMp,j matrix is the identity matrix, the inverse is also the

identity matrix, and the solution is trivial. When the unknown filter is truncated

the Fourier components are not orthogonal, and the solution is not trivial.

As an example, the correction filter to accomplish the wavenumber adjustment

of equation 2.18 is shown. The desired spectral change is specified for Sp by

Sp =
sinc2(pv∆t

2
)

sinc2(p∆x
2

)
, (2.29)

and this is substituted into equation 2.28. The resulting correction filter Fj is then

used at each time step, by convolving with the complete line of finite-difference

derivatives D2
x. This is accomplished with the standard convolution formula

Ck = FjDk+1−j, (2.30)

where Ck is the complete line of corrected second derivatives and Dk+1−j is the line

of ordinary second-order derivatives D2
x. The rest of each time step is completed as

shown in equation 2.18.

In practice, the matrix equation 2.27 takes a form much closer to that in Figure

2.25. This simulates a short filter length, and a large fraction of the spectrum, usually

one-half or three-quarters of the whole spectrum.
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Figure 2.25: The matrix equation identical to Figure 2.24, but with more realistic
proportions.

The filter is usually designed to be zero phase, so adjustments must be made

to the structure shown in Figure 2.25. In one method, all the transform matrix

coefficients are doubled except for those in column 1, those which will be multiplied

by C0. This duplicates the results of convolving with a symmetric zero phase filter.

The coefficients obtained will then give the central value and the values from one

side. The other side of the filter contains the same coefficients, but in reversed order,

and must be added to the beginning of the filter. A more elegant way of designing

these filters is shown in Appendix I.

The effectiveness of an optimized spatial filter is most easily estimated in the

frequency domain. This is because in the frequency domain the corrections may be

specified exactly. A particular case of an optimized short spatial filter is shown in



48

Figure 2.26, where its frequency response may be compared with the ideal blue

curve. Also shown are the actual coefficients of the designed filter. The optimized
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Figure 2.26: The frequency response of an optimized spatial filter and the ideal
response in blue. The spatial coefficients appear at the top. Lines at the Nyquist
wavenumber (at right) and the top of the design wavenumbers (at half Nyquist) are
shown. The parameters are: v = 1000 m/sec, ∆x = 3m, and ∆t = .0015 secs.

filter can be seen to match the ideal throughout the design range, from DC to one-half

the Nyquist wavenumber.

A second filter was designed with the same parameters as above, except the

optimization range was extended up to three-quarters of the Nyquist wavenumber.

The quality check of this design is shown in Figure 2.27. The fit with this design

is in general not nearly as good, but at the higher wavenumbers the fit is a little

better.

The correction filter is most useful in cases where there are several velocities in

a model. The same model with two velocities is shown in Figures 2.28, 2.29, and
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Figure 2.27: The frequency response of a filter designed to fit to three-quarters
Nyquist. The other parameters are the same as in Figure 2.26.

2.30, but each figure has had a different treatment of the wave propagation in the

lower velocity material to the right.

The wavelet (shown) is initiated to the left of the vertical line, where the velocity

is 2000 m/sec., ∆x = 3m, and ∆t = .0015 secs. This constitutes the perfect sampling

condition, and in this area no correction is needed or applied. To the right of the

vertical line the sample rates are the same, but the velocity is 1000 m/sec., the same

parameters used to design the correction filter in Figure 2.26. To the right of the

vertical line the designed correction has been applied in Figure 2.29, but not in

Figure 2.28. Inspection of the transmitted wavelet in Figure 2.29 shows that its

zero phase shape is preserved by the applied correction. By contrast, the uncorrected

transmitted wavelet in Figure 2.28 has been severely distorted.

The direct way of improving the response of finite-difference modelling is to reduce
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Figure 2.28: The reflected and transmitted wavelets caused by an interface at the
vertical line - uncorrected. The right layer has a velocity of one-half that of the left
layer.

Initial wavelet
Propagated wavelets

Figure 2.29: The reflected and transmitted wavelets caused by an interface at the
vertical line - corrected. The velocities are the same as in Figure 2.28
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the spatial and time sampling rates in the same proportions. This method has

been applied in Figure 2.30, with the sample rates cut in half and the number of

spatial and time samples doubled. Comparison of the finely and coarsely sampled

Initial wavelet
Propagated wavelets

Figure 2.30: The model is the same as in Figure 2.28, but the time and space sample
rates have been cut in half.

transmitted waves (Figures 2.30 and 2.28) shows that the finer sampling reduces

but does not eliminate dispersion. The corrected version of the transmitted wave in

Figure 2.29 is still a much superior result to that in Figure 2.30.

The choice of a wavenumber design window for corrections is determined from

the spectrum of the wavelet in space. This in turn is determined from the wavelet

spectrum in time and the material velocity. The spatial spectrum of the wavelet

used above is plotted in Figure 2.31, which was derived from the zero phase wavelet

(20/30-50/60 Hz) and the velocity of 1000 m/sec. The top of the wavelet frequencies

may be seen at about .08 cycles/m., within the design window of one-half Nyquist

from Figure 2.26.

The operator designed above was applied at a point centered on its output point.

This means that near the boundary, the operator convolution used samples from

across the boundary, an area with a different velocity. Since the correction filters

were designed for a constant velocity environment, the corrections near the boundary

were not ideal. On the other hand, the filters were short, so very few convolution
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Figure 2.31: Spatial spectrum of the zero phase wavelet translated into wavenumbers
at 1000 m/sec. The top of the wavelet frequencies is about .08 cycles/m., within the
design window from Figure 2.26.
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points were affected by boundaries.

The correction filtering of derivatives was set up as a matrix multiplication for

the cases where more than one filter was required. This process is a huge waste of

memory and computation time at present, although those drawbacks can be removed

with some low level software enhancements. The advantage is that a complex set of

corrections can be completely defined for all steps of the model, and then applied as

one operation at each time step. The matrix equation is

Ck = FkjDj , (2.31)

where Ck is the line of corrected second derivatives and Dj is the line of ordinary

derivatives as with equation 2.30, but where Fkj is a huge square matrix with each

dimension equal to the length of Ck or Dj . The matrix is very sparse (being mostly

zeros) and very redundant, having the same filter coefficients repeated through large

sections of the matrix. The interesting parts of the matrix are those which operate

across the physical boundaries represented along the line. An example is shown in

Figure 2.32, where the filters operate across a boundary shown by the red line. The

Figure shows that a boundary is assumed to lie directly on a grid point. The f1j

filter applies to the left of the boundary, and f2j to the right, the correction being

applied at the centre, in this case the 3rd point. The A filter is an average of the

two, and applies where there is an equal weight from the two sides of the boundary.
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f f f f f1 1 1 1 15 4 3 2 1     o o o o o o

f f f f f1 1 1 1 15 4 3 2 1o      o o o o o

f f f f f1 1 1 1 15 4 3 2 1o o      o o o o

A A A A A5 4 3 2 1o o o      o o o

f f f f f2 2 2 2 25 4 3 2 1o o o o      o o

f f f f f2 2 2 2 25 4 3 2 1o o o o o      o

f f f f f2 2 2 2 25 4 3 2 1o o o o o o      

Figure 2.32: Part of a matrix filter at a boundary, indicated by the red line. The f1j

filter applies to the left of the boundary, f2j to the right. The correction is applied
at the centre, in this case the 3rd point. The A filter is the average of the two f
filters.



Chapter 3

Finite-difference elastic wave modelling in two

spatial dimensions

Finite-difference modelling in two dimensions has become a very useful tool for seis-

mic applications. It is used to forward model seismic data from a known or possible

geological model, usually one that is economically significant. The simulated seismic

data may then be used to test the effectiveness of specific acquisition, processing and

interpretation methods.

The methods developed here are for what is known as ‘elastic’ modelling, a more

complex and complete model for the solid earth than ‘acoustic’ modelling. Acoustic

models are limited to materials that may be considered to resist deformation by

compression only, or materials that are basically fluids. These models are very useful

because compressional waves are usually the most important waves transmitted in

solids. Elastic models are more truly representative of solid materials, because they

also resist shear deformation, and thus can propagate a completely separate type of

wave known as a shear wave. Shear waves are interesting for their own properties, but

they also interact with compressional waves, and the interchange of energy between

the two types of waves can be very significant.

All of the observations and ideas explored above for the one dimensional case also

apply, but with much increased complexity, in the two dimensional case. Most of

the references mentioned in section 2 are also relevant for two spatial dimensional

55
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modelling. These include Lines et al. (1999), Abramowitz and Stegun (1965), Kreiss

and Oliger (1972), Gazdag (1981) and Kosloff and Baysal (1982).

There are many additional references which precede some of the ideas and meth-

ods of this thesis. For instance Dablain (1986) used high order spatial operators, and

developed an effective method to obtain fourth order accuracy for the second differ-

ential in time. Also Holberg (1987) studied how finite-difference operators could be

optimized for group velocity and frequency performance in the direction of each axis

(for 3-dimensional modelling). This was instead of using the more significant terms

of the Taylor series expansion (the classical higher order approach), where “Opera-

tors (are) created without physical insight”, Holberg (1987) page 636. Later in the

thesis these optimizing ideas will be incorporated into the design of small spatial

correction filters.

The elastic wave-equation finite-difference solution in two dimensions requires

not just a combination of one-dimensional solutions along each axis, but also terms

involving combinations of partial derivatives in the two spatial directions. The stag-

gered grid (in space) is particularly suited to this part of the problem, introduced

by Madariaga (1976) for polar cordinates. This paper combined the staggered grid

with a split of the calculations into two time stages, called the stress step and the

velocity step. The staggered grid is even more natural with Cartesian coordinates,

and Virieux (1984, 1986) used this grid with stress/velocity splitting, and applied

it to interesting exploration cases. The staggered grid is essential to the success of

the corrected system given here, although without the stress/velocity or time split-

ting it is usually associated with. A diagram showing the staggered grid, and the

contributions of local x displacements to the z acceleration, will be shown in Figure
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3.2.

The following sections will describe a consistent method for analysing the error

and stability of finite-difference modelling by direct comparisons to the continuous

results. The error found by this method is in the form of a ratio of the calculated to

the continuous results, and so the inverse of this error has been called a ‘correction

multiplier’. This multiplier can be applied to correct second order results, and takes

an analytic form in the wavenumber domain.

The method also combines the corrections from the two sides of the wave equation

into one, instead of separate corrections for an inaccurate spatial derivative on one

side of the equation, and an inaccurate time derivative on the other. The advantage

to proceeding in this way is that the two sets of corrections have opposite signs, and

only the difference in their effects needs to be applied. Thus the attenuated high

frequencies resulting from a second-order spatial derivative can be partially recovered

by the inherent inaccuracies of the second-order temporal finite-differencing which

tends to enhance the high frequencies. The combined multiplier also takes a compact

analytic form in the frequency domain, which can then be transformed and optimized

for frequency response and operator length in the time/space domain.

The following six sections will show: the exact results of the two dimensional

continuous operators on plane waves, the corresponding finite-difference operators

acting on the same waves, the comparisons between the two in the form of ‘errors’,

and the consolidation of the errors to the spatial side of the equation to obtain

‘correction multipliers’.
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3.1 The continuous wave equation in two spatial dimensions

The two dimensional, continuous, elastic wave equation for a homogeneous, isotropic

medium is

(λ + 2µ)
∂2Uz

∂z2
+ (λ + µ)

∂2Ux

∂x∂z
+ µ

∂2Uz

∂x2
= ρ

∂2Uz

∂t2
, (3.1)

which must be paired with an identical equation in which x and z are switched, thus

(λ + 2µ)
∂2Ux

∂x2
+ (λ + µ)

∂2Uz

∂x∂z
+ µ

∂2Ux

∂z2
= ρ

∂2Ux

∂t2
. (3.2)

Here λ and µ are the Lame elastic constants for an isotropic medium, ρ is the

density, and Ux and Uz are the horizontal and vertical components of the particle

displacement.

U
z

U
x

x

z

θ

Figure 3.1: A monochromatic pressure plane wave is shown propagating at an angle
θ
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3.2 The pressure wave continuous solution

A monochromatic compressional plane wave propagating at an angle θ to the z axis

is shown in Figure 3.1, and can be represented by the formula

U = ei((zcosθ+xsinθ)k−ωt)k̂, k̂ = sinθx̂ + cosθẑ, (3.3)

where the ‘hats’ denote unit vectors. This is a compressional wave because the

displacement k̂ coincides with the propagation direction given in the complex expo-

nential. This is a characteristic property of compressional waves in a homogeneous,

isotropic medium. In component notation

Uz = cosθei((zcosθ+xsinθ)k−ωt) (3.4)

Ux = sinθei((zcosθ+xsinθ)k−ωt). (3.5)

For the continuous case, the following partial derivatives of the compressional wave

can be calculated

∂2Uz

∂z2
= −cosθcos2θk2ei((zcosθ+xsinθ)k−ωt), (3.6)

∂2Uz

∂x2
= −cosθsin2θk2ei((zcosθ+xsinθ)k−ωt), (3.7)

∂2Ux

∂x∂z
= −sinθsinθcosθk2ei((zcosθ+xsinθ)k−ωt), (3.8)

∂2Uz

∂t2
= −cosθω2ei((zcosθ+xsinθ)k−ωt). (3.9)

To check that the pair of equations 3.4 and 3.5 are a solution of 3.1, equations 3.6,

3.7, 3.8 and 3.9 can be substituted into 3.1 giving

−cosθk2ei((zcosθ+xsinθ)k−ωt)
[

(λ + 2µ)cos2θ + (λ + µ)sin2θ + µsin2θ
]

= −cosθω2ρei((zcosθ+xsinθ)k−ωt). (3.10)
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This equation holds if

k2
[

(λ + 2µ)cos2θ + (λ + µ)sin2θ + µsin2θ
]

= ω2ρ, (3.11)

which rearranges to

k2
[

(λ(cos2θ + sin2θ) + 2µ(cos2θ + sin2θ)
]

= ω2ρ, (3.12)

and further simplifies to

λ + 2µ

ρ
=

ω2

k2
= v2

α, (3.13)

where vα is the compressional wave velocity.

3.3 The pressure wave finite-difference solution and compar-

ison

In this section, the two dimensional finite-difference operators will be applied to the

continuous waveforms, just as the one dimensional finite-difference operators were in

section 2.1. These finite-difference operators will use the same notation as the one

dimensional operators, with the addition of a subscript to indicate the axis direction

in which the derivative is being taken. Thus

∂2Uz

∂z2
→ D2

zUz , (3.14)

etc. The formulae will be very similar to the one dimensional formulae, except for

the second term of equation 3.1, which has no analogue there. This second term will

depend on the form of the grid.

The most obvious approach for the design of a two dimensional finite-difference

grid, and the historical one, is to use a single network of positions in a rectangular
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array. Displacements are then vectors positioned at each point of the grid, which may

be decomposed into vector pairs oriented in the two perpendicular grid directions,

here in the x and z directions. This grid is discussed in appendix D, and shown in

Figure D.1. Section D explains how a model using this grid is impossible to ‘correct’

at Nyquist wavenumbers, and much more difficult to correct at smaller wavenumbers.

It has been found by many modellers, beginning with Madariaga (1976), that

more satisfactory results may be obtained by using the staggered grid. This grid is

shown in appendix G, Figure G.1. It may also be seen in Figure 3.2, below in this

section, where it will be used to set up the correction equations. The displacements,

in this case in the directions x and z, are set up on separate grids, displaced one-half a

sample spacing from each other in both the x and z directions. This is a satisfactory

way to represent a continuous material, and as will be seen, makes the interaction

between the two displacement systems (via the cross term) more simple.

When the two equations 3.1 and 3.2 are coded for finite differences, the indexing

has subtle changes, but this is just a bookkeeping problem.

To investigate the results of a two-dimensional finite-difference operator, the

finite-difference formulae can be applied to the continuous waveforms of equations

3.4 and 3.5. The second derivatives in the direction of the two axes are the same as

the one-dimensional form (equation 2.7) so that

D2
zUz =

cosθ

(∆z)2
{eiε(z+∆z,x,t) − 2eiε(z,x,t) + eiε(z−∆z,x,t)}, (3.15)

where ε here is defined by

ε(Z, X, T ) = (Zcosθ + Xsinθ)k − ωT. (3.16)
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The property that

eε(Z1+Z2,X1+X2,T1+T2) = eε(Z1,X1,T1)eε(Z2,X2,T2) (3.17)

can be used to convert equation 3.15 into

D2
zUz =

cosθ

(∆z)2
eiε(z,x,t){eiε(∆z,0,0) − 2 + eiε(−∆z,0,0)}. (3.18)

Further algebraic manipulations give

D2
zUz =

cosθ

(∆z)2
eiε(z,x,t)

(

eiε(∆z
2

,0,0) − e−iε(∆z
2

,0,0)
)2

, (3.19)

D2
zUz = cosθ

(

2isin
(

k∆z
2

cosθ
))2

(∆z)2
eiε(z,x,t), (3.20)

D2
zUz = −k2cos3θ

sin2
(

k∆z
2

cosθ
)

(

k∆z
2

cosθ
)2 eiε(z,x,t), (3.21)

D2
zUz = −k2cos3θsinc2

(

kz∆z

2

)

ei((zcosθ+xsinθ)k−ωt), (3.22)

which uses the form

kz = kcosθ. (3.23)

or the vertical wavenumber.

Equation 3.22 takes the same form as the continuous differential 3.6 but with the

extra sinc squared factor, that is

D2
zUz = sinc2

(

kz∆z

2

)

∂2Uz

∂z2
. (3.24)

Similarly it can be shown that

D2
xUz = −k2cosθsin2θ

sin2
(

k∆x
2

sinθ
)

(

k∆x
2

sinθ
)2 eiε(z,x,t), (3.25)
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D2
xUz = −k2cosθsin2θsinc2

(

kx∆x

2

)

ei((zcosθ+xsinθ)k−ωt), (3.26)

and

D2
xUz = sinc2

(

kx∆x

2

)

∂2Uz

∂x2
. (3.27)

It should be emphasized that equations 3.24 and 3.27 are true only for a monochro-

matic plane wave characterized by the wavenumbers kz and kx.

Equations 3.24 and 3.27 give the contributions of displacement in the z direction

to acceleration in the z direction. The contribution from Ux has no equivalent from

the one-dimensional case and so must be developed from first principles. It has

single derivatives in both x and z. The staggered-grid representation displaces this x

displacement one half of a grid spacing in both x and z, so the output point coincides

with the output points for equations 3.24 and 3.27, as shown in Figure 3.2.

x−∆x/2 x+∆x/2

z+∆z/2

z−∆z/2

Figure 3.2: The dark arrows show the relative positions of the input and output dis-
placements for the second term of equation 3.1 using the staggered grid. The output
z acceleration point is in the centre. The four contributing input x displacements
surround it evenly.
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The Ux term contribution then takes the following form

DxzUx =
sinθ

(∆x∆z)

(

eiε(z+∆z
2

,x+∆x
2

,t) − eiε(z+∆z
2

,x−∆x
2

,t) − eiε(z−∆z
2

,x+∆x
2

,t) + eiε(z−∆z
2

,x−∆x
2

,t)
)

.

(3.28)

Algebraic manipulation leads through the following steps

DxzUx =
sinθ

(∆x∆z)
eiε(z,x,t)

(

eiε(∆z
2

,∆x
2

,t) − eiε(∆z
2

,−∆x
2

,t) − eiε(−∆z
2

,∆x
2

,t) + eiε(−∆z
2

,−∆x
2

,t)
)

,

(3.29)

DxzUx =
sinθ

(∆x∆z)
eiε(z,x,t)

(

eiε(∆z
2

,0,0) − eiε(−∆z
2

,0,0)
)(

eiε(0,∆x
2

,0) − eiε(0,−∆x
2

,0)
)

,

(3.30)

DxzUx = sinθk2sinθcosθ
isin

(

k∆x
2

sinθ
)

(

k∆x
2

sinθ
)

isin
(

k∆z
2

cosθ
)

(

k∆z
2

cosθ
) eiε(z,x,t), (3.31)

DxzUx = −k2sin2θcosθsinc

(

kx∆x

2

)

sinc

(

kz∆z

2

)

ei((zcosθ+xsinθ)k−ωt). (3.32)

Again, this is similar to the continuous derivative (3.8) with the two sinc functions

as extra terms, so

DxzUz = sinc

(

kx∆x

2

)

sinc

(

kz∆z

2

)

∂2Ux

∂x∂z
. (3.33)

The time derivative is identical to the one-dimensional case, where

D2
t Uz = −ω2cosθ

sin2
(

ω∆t
2

)

(

ω∆t
2

)2 ei((zcosθ+xsinθ)k−ωt), (3.34)

D2
t Uz = −ω2cosθsinc2

(

ω∆t

2

)

ei((zcosθ+xsinθ)k−ωt), (3.35)

and

D2
t Uz = sinc2

(

ω∆t

2

)

∂2Uz

∂t2
. (3.36)
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3.4 The shear wave continuous solution

A two-dimensional elastic grid can also be expected to propagate a shear wave, and

a monochromatic shear plane wave propagating at an angle θ to the z axis is shown

in Figure 3.3, and can be represented by the formula

U = ei((zcosθ+xsinθ)k−ωt)k̂, k̂ = −cosθx̂ + sinθẑ, (3.37)

where the ‘hats’ denote unit vectors. The z and x components of a possible shear

wave (similar to expressions 3.4 and 3.5) are

Uz = sinθei((zcosθ+xsinθ)k−ωt), (3.38)

Ux = −cosθei((zcosθ+xsinθ)k−ωt). (3.39)

The characteristic property of shear waves in a homogeneous, isotropic medium is

what defines these equations. Here the displacement k̂ is perpendicular to the prop-

agation direction given in the complex exponential. The negative sign in 3.39 is

required to give this displacement, see Figure 3.3. Equally valid would be a dis-

placement in the opposite direction, so care must be taken to keep a consistent

relationship between the propagation direction and the displacement. Again, for the

continuous case, similar to equations 3.6, 3.7, 3.8 and 3.9, the derivatives are

∂2Uz

∂z2
= −sinθcos2θk2ei((zcosθ+xsinθ)k−ωt), (3.40)

∂2Uz

∂x2
= −sinθsin2θk2ei((zcosθ+xsinθ)k−ωt), (3.41)

∂2Ux

∂x∂z
= cosθsinθcosθk2ei((zcosθ+xsinθ)k−ωt), (3.42)

∂2Uz

∂t2
= −sinθω2ei((zcosθ+xsinθ)k−ωt). (3.43)
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U
z

U
x

x

z

θ

Figure 3.3: A monochromatic shear plane wave is shown propagating at an angle θ.
This may be considered a right hand convention, with the displacement to the right
when facing in the propagation direction.

These four equations are substituted into 3.1 to get

−sinθk2ei((zcosθ+xsinθ)k−ωt)
[

(λ + 2µ)cos2θ − (λ + µ)cos2θ + µsin2θ
]

= −sinθω2ρei((zcosθ+xsinθ)k−ωt). (3.44)

This equation holds if

k2
[

(λ + 2µ)cos2θ − (λ + µ)cos2θ + µsin2θ
]

= ω2ρ, (3.45)

which manipulates into

k2
[

(λ − λ)cos2θ + (2µ − µ)cos2θ + µsin2θ
]

= ω2ρ, (3.46)

and then simplifies to

µ

ρ
=

ω2

k2
= v2

β , (3.47)

where vβ is the shear wave velocity.
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3.5 The shear wave finite-difference solution and comparison

Substitution of the shear wave z displacement (equation 3.38) into the finite-difference

second derivative formula gives a result almost identical to equation 3.15. It is

D2
zUz =

sinθ

(∆z)2
{eiε(z+∆z,x,t) − 2eiε(z,x,t) + eiε(z−∆z,x,t)}, (3.48)

and further development results in an expression that is similar to 3.22

D2
zUz = −k2sinθcos2θsinc2

(

kz∆z

2

)

ei((zcosθ+xsinθ)k−ωt). (3.49)

Note that comparison of this finite-difference result and the continuous result (equa-

tion 3.40) gives

D2
zUz = sinc2

(

kz∆z

2

)

∂2Uz

∂z2
, (3.50)

which is exactly the same as equation 3.24. Similarly

D2
xUz = −k2sin3θsinc2

(

kx∆x

2

)

ei((zcosθ+xsinθ)k−ωt), (3.51)

DxzUx = −k2sinθcos2θsinc

(

kx∆x

2

)

sinc

(

kz∆z

2

)

ei((zcosθ+xsinθ)k−ωt), (3.52)

D2
t Uz = −ω2sinθsinc2

(

ω∆t

2

)

ei((zcosθ+xsinθ)k−ωt) (3.53)

may be derived. Note that equations 3.24, 3.27 and 3.33 relating the finite-difference

and continuous derivatives still apply.

It appears that for pressure and shear waves the continuous equation 3.1 can be

represented by the following finite-difference equation

(λ + 2µ)
D2

zUz

sinc2
(

kz∆z
2

) + (λ + µ)
DxzUx

sinc
(

kx∆x
2

)

sinc
(

kz∆z
2

) + µ
D2

xUz

sinc2
(

kx∆x
2

)

= ρ
D2

t Uz

sinc2
(

ω∆t
2

) (3.54)
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If spatial derivatives were calculated using the formulae on the left side of this equa-

tion, the result would be the same as those calculated by the pseudo spectral ap-

proach (as in Kosloff and Baysal (1982)). This is because for the monochromatic

case, as here, calculation of derivatives in the frequency domain is exact.

3.6 Inclusion of the acceleration correction term

Note that the left side of equation 3.54 can be fully determined because the complete

wavefield in space is available to calculate the spatial wavenumbers in x and z. The

sinc correction on the right side of the equation can not be made in a straightforward

way because the temporal frequencies are not yet available.

In the one-dimensional case the ω can be determined from the formula ω = vk,

as is used in the derivation of equation 2.17 from equation 2.16. This works because

there is only one velocity and it can be used to relate the spatial and time frequencies.

In the two-dimensional case it can also be expected to work in the case where only

one type of wave can propagate.

In the case of a compressional wave travelling in the z direction, the displacement

in the x direction is zero, and the variation of the z displacement in the x direction

is also zero. The only non-zero terms from equation 3.1 are then the first and last

so that

(λ + 2µ)
∂2Uz

∂z2
= ρ

∂2Uz

∂t2
. (3.55)

Substitution for the continuous derivatives (using equations 3.24 and 3.36) gives

(λ + 2µ)
D2

zUz

sinc2
(

kz∆z
2

) = ρ
D2

t Uz

sinc2
(

ω∆t
2

) = ρ
D2

t Uz

sinc2
(

vαk∆t
2

) . (3.56)
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So the contribution of the first term of 3.54 must be corrected by the sinc function

on the right above, yielding

(λ + 2µ)
sinc2

(

vαk∆t
2

)

sinc2
(

kz∆z
2

) D2
zUz = ρD2

t Uz. (3.57)

Similarly, only the third term on the left of equation 3.1 is relevant to a shear

wave propagating in the x direction, with the result

µ
sinc2

(

vβk∆t

2

)

sinc2
(

kx∆x
2

) D2
xUz = ρD2

t Uz. (3.58)

The factor for the central term on the left side of equation 3.1 was found by

inspection, and will be shown to be correct in section 3.7. With this term included,

the fully corrected finite-difference version of equation 3.1 is

(λ + 2µ)
sinc2

(

vαk∆t
2

)

sinc2
(

kz∆z
2

) D2
zUz +

(λ + 2µ)sinc2
(

vαk∆t
2

)

− µsinc2
(

vβk∆t

2

)

sinc
(

kx∆x
2

)

sinc
(

kz∆z
2

) DxzUx

+ µ
sinc2

(

vβk∆t

2

)

sinc2
(

kx∆x
2

) D2
xUz = ρD2

t Uz. (3.59)

The finite-difference version of equation 3.2 may be obtained by replacing each

appearance of x in equation 3.59 with z, and replacing each appearance of z in that

equation with x. This second equation follows from applying the same replacements

used above. The second term on the equation’s left hand side remains the same, but

the other two terms are unique. The values of each term may be seen in table 3.1.

The result of the calculations in equation 3.59 is the acceleration D2
t Uz. Time

stepping is done by decomposing the second-order operator D2
t using

Uz(t + ∆t, ....) − 2Uz(t, ....) + Uz(t − ∆t, ....)

(∆t)2
= D2

t Uz(t, ....), (3.60)
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Term 1 Term 2a (pressure) Term 2b (shear) Term 3

D2
zUz DxzUx DxzUx D2

xUz

sinc2( vαk∆t
2 )

sinc2(kz∆z

2 )
sinc2( vαk∆t

2 )
sinc(kx∆x

2 )sinc(kz∆z

2 )

sinc2
“

vβk∆t

2

”

sinc(kx∆x

2 )sinc(kz∆z

2 )

sinc2
“

vβk∆t

2

”

sinc2( kx∆x

2 )

Table 3.1: The complete suite of correction multipliers which must be applied for
the finite-difference Uz acceleration.

Term 4 Term 5a (pressure) Term 5b (shear) Term 6

D2
xUx DxzUz DxzUz D2

zUx

sinc2( vαk∆t

2 )
sinc2( kx∆x

2 )
sinc2( vαk∆t

2 )
sinc(kx∆x

2 )sinc(kz∆z
2 )

sinc2
“

vβk∆t

2

”

sinc(kx∆x
2 )sinc(kz∆z

2 )

sinc2
“

vβk∆t

2

”

sinc2( kz∆z
2 )

Table 3.2: The complete suite of correction multipliers which must be applied for
the finite-difference Ux acceleration.

as with equation 2.17. This equation is then solved for the advanced time displace-

ment, so that

Uz(t + ∆t, ....) = 2Uz(t, ....) − Uz(t − ∆t, ....) + (∆t)2D2
t Uz(t, ....). (3.61)

This is the solution for the corrected advanced time step of the Z displacement

where, again, D2
t Uz(t, ....) is given in equation 3.59. A similar equation for the Ux

displacement is also required.

Note that these equations have the wavenumber k in the numerator of the cor-

rection terms, and the wavenumbers kz and kx in the denominator of the correction

terms. The relationships between these terms may be illustrated by the use of wave

lengths, as illustrated in Figure 3.4. The Figure shows that

λz =
λ

cosθ
and λx =

λ

sinθ
. (3.62)

Since the wavenumber k = 1/λ, it follows that

kz = kcosθ and kx = ksinθ, (3.63)
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Figure 3.4: Wave length components within a monochromatic plane wave propagat-
ing at an angle θ

which is consistent with the definition in formula 3.23

In principle, equation 3.59 is an exact reformulation of the elastic wave equation,

but with the restriction that it is valid for a single wavenumber and frequency.

No approximations have been made to accommodate finite-differencing. Each term

consists of a product of elastic constants, a finite-difference operator, and a ratio

of sinc functions. In this document these various sinc function ratios are refered

to as ‘correction multipliers’. If all the sinc functions are set to unity, then the

conventional, second-order, finite-difference elastic wave equation results. If the sinc

functions are directly evaluated, they ‘correct’ the finite-difference calculations for

their dispersion and instability. However, the correction multipliers are frequency

dependent and so must be applied on Fourier transformed data, or as correction

filters in the space domain. These correction factor sinc functions do have zeros,

but for a broad range of practical modelling problems it has been found that the

effective domain of the correction multipliers lie well within the zeros on each side

of the x and z axes. This is supported by the one-dimensional conclusion found in
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section 2.1, where Figure 2.2 shows the significant separation between the Nyquist

wavenumbers and the zeros.

3.7 Verification of the finite-difference equivalent equation

theory

To show that equation 3.59 propagates an analytical pressure wave properly, a wave

described by equations 3.4 and 3.5 can be used. Equations 3.22, 3.26, 3.32 and 3.35

describe how the finite-difference operators apply to this wave. The right hand side

of these equations may be substituted into equation 3.59. The spatial sinc functions

obviously cancel out, and when the factor cos θei((zcosθ+xsinθ)k−ωt) is divided from both

sides, the remaining terms are

− (λ + 2µ)sinc2

(

vαk∆t

2

)

cos2θk2 − (λ + 2µ)sinc2

(

vαk∆t

2

)

sin2θk2

+ µ sinc2

(

vβk∆t

2

)

sin2θk2 − µ sinc2

(

vβk∆t

2

)

sin2θk2

= −ρω2sinc2

(

ω∆t

2

)

. (3.64)

The solution will be correct if this equation holds, and it will hold if

(λ + 2µ)k2sinc2

(

vαk∆t

2

)

= ρω2sinc2

(

ω∆t

2

)

, (3.65)

and hold if vα = ω/k and (λ + 2µ)/ρ = v2
α = ω2/k2, consistent with the definition of

pressure wave velocity. Note that this result is independent of θ, and so it is valid

for a pressure wave propagating in any direction.

In a similar fashion, equations 3.38 and 3.39 describe an arbitrary shear wave, and

equations 3.49, 3.51, 3.52 and 3.53 describe the results of applying the finite-difference



73

operators to this wave. This set of consistent equations may also be substituted into

equation 3.59. The spatial sinc functions obviously cancel out, and when the factor

sin θei((zcosθ+xsinθ)k−ωt) is divided from both sides, the remaining terms are

− (λ + 2µ)sinc2

(

vαk∆t

2

)

cos2θk2 + (λ + 2µ)sinc2

(

vαk∆t

2

)

cos2θk2

− µ sinc2

(

vβk∆t

2

)

cos2θk2 − µ sinc2

(

vβk∆t

2

)

sin2θk2

= −ρω2sinc2

(

ω∆t

2

)

. (3.66)

The solution will be correct if this equation holds, and it will hold if

µk2sinc2

(

vβk∆t

2

)

= ρω2sinc2

(

ω∆t

2

)

, (3.67)

and hold if vβ = ω/k and µ/ρ = v2
β = ω2/k2, consistent with the definition of shear

wave velocity.

This shows that the same pair of finite-difference equations will propagate both

pressure and shear waves accurately. Also note that this result is independent of θ,

and so is equally accurate in propagation along the grid directions, or at angles in

between.

3.8 Further insight into the finite-difference stability condi-

tion.

The analysis of the stability criterion in section 2.5 applied to the one-dimensional

case. Some may find that the ideas developed here provide further insight into the

stability condition for finite-difference modelling in two dimensions. In particular,

equation 3.63 may be used to show that a waveform of arbitrary wavenumber k must
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obey the formula

k2 = k2
x + k2

z . (3.68)

This shows that the maximum wavenumber that can be represented in a one-dimensional

sense (k = π/∆t) is no longer the maximum if the wave is not aligned with an axis.

The maximum wavenumber in a two-dimensional sense is given by a wave charac-

terized as having the Nyquist wavenumber in both x and z, so that

k2
max = k2

xNyq + k2
zNyq. (3.69)

If the sample rates in x and z are the same, the maximum is given by

k2
max = 2k2

Nyq, (3.70)

and

kmax =
√

2kNyq. (3.71)

Then stability requires that

ωmax > v kmax = v
√

2kNyq, (3.72)

and the one-dimensional stability condition (∆t < ∆x/v) must be modified to

∆t < ∆x/(v
√

2). (3.73)

This is consistent with the criterion specified for second order modelling in (for

example) Lines et al. (1999).

3.9 Application of corrections in the frequency domain

It has been found that the most practical way to use frequency domain corrections

in modelling is to start with inherently stable parameters, as given by equation 3.73.
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The corrections have been found to be very useful to reduce the amount of numerical

dispersion, especially in the direction of the axes, and in lower velocity areas.

The method described here has been tested by a straightforward Fourier domain

approach. For each acceleration component (for Uz and Ux), the result of each of the

three finite-difference terms were transformed into the Fourier domain and multiplied

by the appropriate wavenumber surface. The components were then added together

and inverse transformed for use in time stepping. Thus the correction factors were

applied after each time step. The processing flow is illustrated in Figure 3.5.

An example of a wavenumber correction surface for the first term in equation

3.59 is shown in Figure 3.6. This is the D2
zUz term. The Figure shows that a model

with the specified parameters must have the amplitudes of the higher wavenumbers

in z increased, and of the higher wavenumbers in x decreased.

The correction surface for the third term (D2
xUz), for a model with the same

parameters, is shown in Figure 3.7. Here it is the high x wavenumbers that must

be amplified, and the z wavenumbers slightly attenuated.

The value of applying correction multipliers may be seen in the comparison of

uncorrected and corrected models. One of the best tests of a modelling method

consists of waves in the form of a ring propagating outwards. These rings show

propagation at all angles and have no edge effects. Figure 3.8 shows a 30 Hz zero

phase P-wave initiated as a ring in the centre of the model and propagated through

120 time steps. It would be considered undersampled for conventional modelling,

although all frequencies in the wavelet are well below the Nyquist frequency. Figure

3.9 shows a P-wave initiated in the same manner as in Figure 3.8, but propagated

with a correction multiplier at each time step. The propagated wave, with its circular
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Figure 3.5: The flow chart for application of the correction multipliers in the fre-
quency domain. The correction numbers are defined in Tables 3.1 and 3.2. The
fourth and fifth processing sequences were abbreviated to save space.
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Figure 3.6: An example of a correction multiplier for the first (D2
zUz) term in the

wavenumber domain. A model with this particular set of parameters (for velocity,
∆x and ∆t) requires the amplitudes of the higher wavenumbers in z to be increased,
and the higher wavenumbers in x to be attenuated.

Figure 3.7: An example of a correction multiplier for the third (D2
xUz) term in the

wavenumber domain. Here, the higher wavenumbers in x must have their amplitudes
increased, and the higher wavenumbers in z slightly decreased.
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Figure 3.8: An uncorrected P-wave is shown after propagation through 120 time
steps. Note the ‘square’ shape to the dispersion pattern within the wavefront. The
legend showing how displacement direction is represented by colour is described in
section F, and Figure F.1.

shape and preserved zero phase character, is much closer to what would be expected

from an analytic solution. The square like shape of uncorrected propagation is a flaw

which has been directly addressed in Cole (1994).

A second example is a combination of two cylindrical waves, one a pressure wave

and the other a shear wave. The shear wave ring is necessary to complete the testing

of the elastic wave equation. The waves are initiated by defining them at two times

separated by an interval equal to the time sample rate. The wave as defined at time

zero is plotted in Figure 3.10 as vector displacements, and in Figure 3.11 with

colour coding.

The uncorrected model is shown after propagation through 120 steps in Figure

3.12. The P-wave ring may be compared to that in Figure 3.8. Here the propagation
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Corrected P wave, Dt=0.004 Dx=12
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Figure 3.9: A P-wave is shown after propagation with higher frequencies enhanced
by correction multipliers at each time step. The circular form of the wavefront, and
the zero phase character of the wavelet, are both preserved.
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Figure 3.10: The initial P and S wave rings about to be propagated outward are
shown in detail as displacement vectors. The centre of the S-wave ring is marked
at upper left. The displacements of the P-wave ring at lower right are added to the
S-wave displacements.
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Initial P and S waves, Dt=0.001 Dx=3
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Figure 3.11: The initial P and S wave rings in detail in colour format. This is
identical to Figure 3.10.

has preserved the wave much more successfully, as a result of the halved sample rate

in space and time, and because the distance propagated has been halved. The S-wave

here is distorted, even at these finer sample rates, showing that S-wave propagation

is a more rigorous test for a modelling system.

The corrected model in Figure 3.13 shows a most notable improvement in the

S-wave, and also preserves the zero phase character of the P-wave.

The improvement to be gained by the straightforward technique of finer sampling

is employed with the model in Figure 3.14. It has almost perfect P-wave propagation,

but leaves the S-wave with an unbalanced appearance.

Another method of evaluating these results is by comparing individual traces from

the models. Figure 3.15 and Figure 3.16 are traces extracted from the raw and

corrected models in Figures 3.12 and 3.13. The preserved zero phase nature of the
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Uncorrected P and S waves, V=2000 Dt=0.002 Dx=6
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Figure 3.12: The uncorrected model propagated 120 steps from Figure 3.11 is shown.
Note that the scale has changed. The finer sample rate in space and time compared
with Figure 3.8 has allowed the P-wave to propagate quite evenly, but the S-wave
remains distorted.
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Figure 3.13: This shows the model propagated from Figure 3.11, but with correc-
tions. The S-wave has retained its circular shape, and both waves have retained their
zero phase character.
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Uncorrected P and S waves, V=2000 Dt=0.001 Dx=3
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Figure 3.14: The uncorrected model propagated 240 steps with the spatial and time
sample rates halved. The scale here is the same as in Figure 3.12. The finer sample
rates have corrected the phase of the P-wave, but the S-wave phase is incorrect.
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Figure 3.15: The uncorrected S-wave (left) and P-wave (right) are shown in a trace
from Figure 3.12. The S-wave has been badly distorted and the P-wave has been
phase shifted.
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Figure 3.16: The corrected S-wave (left) and P-wave (right) are shown in a trace
from Figure 3.13. Both S and P waves are zero phase.
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Figure 3.17: The finer sampling has corrected the phase of the P-wave (right) but
the S-wave (left) is still not zero phase.
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pressure and shear waves is very obvious in the extracted trace (Figure 3.16) from

the corrected model from Figure 3.13. The straightforward method of improving

modelling results, halving the sample rates and doubling the number of spatial and

time samples, has essentially fixed the P-wave, and has improved but not completely

corrected the S-wave. For this example, the corrected model required 50 percent

more computer time, and the finely sampled model more than 400 percent more

computer time. In all experiments, the ‘correction’ route has been found to be more

effective than halving the sample rates in x, z and t. This difference shows up earlier

for S-waves, but must appear eventually with P-waves if they are propagated far

enough. The doubling of the number of samples required has also been found to

require more computer time.



Chapter 4

Optimised correction filters for modelling in two

dimensions

Correction filters are the space domain equivalent of the correction multipliers dis-

cussed in previous sections. This section extends the design principles from the

one-dimensional case in section 2.6 to two dimensions. The same reasons, advan-

tages, disadvantages, and design philosophy apply. Again, just as in section 2.6,

choices must be made among some of the fundamental finite-difference alternatives:

what fraction of the spectral range of zero to Nyquist will be modelled, what filter

sizes will be practical for computer time and at boundaries, and what accuracy is

required for the response at each frequency? The same type of matrix equations will

be used, and will be compared to the corresponding equations in the one-dimensional

case.

There will also be comparisons made to a particular style of corrections, fourth

order in space with a finer (than usual) time sample rate (Levander, 1988).

4.1 Optimum spatial design in two dimensions

The two-dimensional Fourier transform operates, in this case, on a function with the

independent variables x and z, and transforms it into a function with the indepen-

dent variables specified as the kx and kz wavenumbers. For sampled data, a four

85
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dimensional matrix may be set up to do this transform as

Mkx,kz,x,zAx,z = Skx,kz
, (4.1)

where M is the Fourier transform operator matrix, A is the two dimensional function

to be transformed, and S is the spectrum, or transformed result. At this point, kx

and kz can be assumed to be arbitrary wavenumbers in x and z. The analagous

relationship in one dimension is equation 2.26.

Figure 4.1 shows a matrix diagram which emphasizes the discrete Fourier trans-

form nature of equation 4.1, here used to obtain a few of the lower frequency Fourier

coefficients. The four dimensional transform matrix has been specified here as the
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Figure 4.1: First cosine terms of a 4D transform matrix in an equation to do 2D
Fourier transforms. Each sub matrix is characterized by the frequencies along its
edges. The transform matrix is discrete but the edge frequencies are represented by
analogue cosines.
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matrix of matrices shown on the left. Next to it is the input 2 dimensional spatial

data set, and to the right of the equal sign is the output spectrum. The transform

is done by overlaying each elementary Fourier component matrix (within the super

matrix on the left) on the data matrix and multiplying (element by element) and

summing to obtain a single output cosine term within the matrix on the right side

of the equation. Each elementary matrix is labelled by the frequency (in cycles per

data length) in the x and z directions, and may also be identified by the analogue

(cosine) traces along the top and left side. This might be called a pseudo matrix

equation because each sub matrix acts like a row in the equation in Figure 2.22.

The equivalent 2D Fourier transform for the cosine amplitude Cl,m is given by

El,m,p,qAp,q = Cl,m, (4.2)

where

El,m,p,q = [cos(2πlp/nx)cos(2πmq/nz)] , (4.3)

the two-dimensional function of the cosines multiplied together, where p = 1 : nx

and q = 1 : nz. Assuming that the maximum wavenumber required in the x and z

directions are the same kmax, then l and m each range independently from 1 to kmax.

These are constructed and then multiplied against the sampled function in space A,

and all these results summed.

The above transform expressions have described only cosines, but the same prin-

ciples apply to general transforms. Only cosines were displayed for the following

reasons:

• Restricting the display to cosines reduces ‘complexity’, so the principles are

more obvious.
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• Zero phase processes or filters may be naturally described using only cosines.

• Use of zero phase symmetry saves memory and computation time.

Figure 4.2 shows the partial 2D Fourier transform, analogous to Figure 2.23.

This demonstrates the case where the function (or filter) is limited in size. In practice

these elementary matrices will be small, in the symmetric case perhaps as small as

3x3, which represents a final filter size of 5x5. The number of these small matrices

may be large, perhaps containing wavenumbers up to half of Nyquist, although each

wavenumber is represented by only its leading samples (in the case mentioned, only

the leading 3 samples).
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Figure 4.2: Two dimensional Fourier transform of a partial (length and width re-
duced) function.

Figures 4.3 and 4.4 show the steps taken to reform the 4D matrices into standard
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2D matrices. Figure 4.3 shows the stage where the elementary Fourier matrices

have been resized into long row vectors, and the function has been resized into a

long column vector. This reshaping is legitimate as long as it is done consistently,

forcing the same pairs of numbers to be multiplied together, and adding to the same

sum.
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Partial 2D Fourier transform, intermediate stage

Figure 4.3: an equivalent version of the equation shown in Figure 2.23, with the
elementary matrices reformed into rows, and the function into a column.

Figure 4.4 shows how the matrices have been resized into a standard matrix

equation format. At the same time, analogous to the difference between equations in

Figures 2.23 and 2.24, the equal sign has been changed into an approximation sign

to indicate that the column vector on the right is the known (desired) response, and

the column vector which is part of the matrix multiplication is the unknown filter.

This fits the format of equation 2.27, which has a solution for Fj given by equation

2.28. This solution is a vector which may be resized in reverse fashion into a 2D

filter with a least squares optimal frequency response.

In practice, the elementary matrices shown in analogue form are modified slightly
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Partial 2D Fourier transform as a standard matrix equation

Figure 4.4: Here the equation from Figure 4.3 has the elementary matrices reformed
into separate rows, and the output amplitudes reformed into one column. It is in the
form of equation 2.27 and therefore the unknown F has a solution given by equation
2.28.
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to represent the analysis of a two dimensional filter that is zero phase in both the

x and z directions. The Fourier components may be obtained from little more than

one quarter of the coefficients in a filter of this type, and they are guaranteed to all

be cosines because of the symmetry of the correction filters. However, the coefficient

matrices must be modified to allow for the duplicated samples in the other three

quadrants.

The modifications are of the same nature as those given for the one dimensional

case in section 2.6. Most of the transform matrix coefficients are multiplied by 4

except for those on the inside edges, which are multiplied by 2 except for the central

value, which is multiplied by 1. The complete filter is then reconstructed by flipping

and adding the one calculated quadrant into the other three quadrants.

4.2 Examples of optimized correction filters in two dimen-

sions

Correction filters are applied within the second-order finite-difference calculations in

the places marked in the flow chart of Figure 4.5. This flow chart is similar to the

one for correction multipliers in Figure 3.5, the differences being that here there

are no Fourier transforms, and the correction operations are convolutions instead of

multiplications.

The examples shown here will have the same parameters as were used for some

of the frequency domain corrections in section 3.9. The pressure and shear wave

velocities are 2000 and 1000 m/sec respectively, the spatial sample rate is 6 m and

the time sample rate is .002 seconds. The initial wave forms are the combination of
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Figure 4.5: The flow chart for convolution of the correction filters. The correction
filter numbers are defined in Tables 3.1 and 3.2. The fourth and fifth processing
sequences were abbreviated to save space.
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pressure and shear energy shown in Figures 3.10 and 3.11.

The correction multiplier plots in wavenumber will be shown as contours for easier

comparison between the different methods. The 3D plots in Figures 3.6 and 3.7 are

useful for showing the relative amplitudes within a correction, but are not as useful

for comparing corrections.

The ideal wavenumber domain response of the correction multipliers for 3 terms

of a model with the chosen example parameters are given in Figures 4.6, 4.8 and

4.10. The corresponding wavenumber domain responses of a practical set of small
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Figure 4.6: The Fourier domain response of the ideal correction multiplier for term
number 1.

correction filters is shown in Figures 4.7, 4.9 and 4.11. They are all 5 points by 5

points in size, designed on the wavenumbers ranging from zero to one-half Nyquist.

This zone is marked roughly by a quarter circle centered on wavenumbers (0,0), with

a radius extending to one-half of the Nyquist wavenumber. A similar quarter circle

is also marked on the ideal plots, for comparison.
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Figure 4.7: The Fourier domain contour plot of the 5 by 5 correction filter (in
wavenumbers) for term number 1. Compare with the ideal corrections in Figure 4.6

x1 x2 x3 x4 x5

z1 -0.0000 0.0006 0.0082 0.0006 -0.0000

z2 0.0004 -0.0048 -0.0714 -0.0048 0.0004

z3 -0.0046 0.0602 1.0310 0.0602 -0.0046

z4 -0.0004 -0.0048 -0.0714 -0.0048 0.0004

z5 -0.0000 0.0006 0.0082 0.0006 -0.0000

Table 4.1: Correction filter coefficients for term 1. A deconvolution effect may be
seen in the z direction, and a smoothing effect in the x direction.
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Figure 4.8: The Fourier domain contour plot of the ideal correction multiplier for
the combination of terms 2a and 2b.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Wavenumber in X

W
av

en
um

be
r 

in
 Z

Correction multiplier term 2 or 5, Svel=1000 Pvel=2000 Dz=6 Dt=0.002
Operator size 5 by 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.9: The Fourier domain contour plot of the 5 by 5 correction filter (in
wavenumbers) for term number 2. Compare with the ideal corrections in Figure 4.8
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Figure 4.10: The Fourier domain contour plot of the ideal correction multiplier for
term number 3.
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Figure 4.11: The Fourier domain contour plot of the 5 by 5 correction filter (in
wavenumbers) for term number 3. Compare with the ideal corrections in Figure
4.10
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The ideal corrections and the correction filter responses may be seen as good

matches within the design window range.

A correction filter was added to the process used to generate the model in Figure

3.8, and the result is in Figure 4.12. This almost matches the wavenumber domain

Corrected P wave, V=2000 Dt=0.004 Dx=12

Offset

D
ep

th
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Figure 4.12: This shows the filter correction model corresponding to Figure 3.9, and
the results are almost as good.

results in Figure 3.9, being only slightly less precise.

The correction filter was applied to the P/S ring model and the result in Figure

4.13 was obtained. This is very good propagation for both the P and S waves, almost

as good as the correction multiplier result in Figure 3.13. The modelling time was 40

percent more than with the uncorrected version, and a little less than the correction

multiplier version. The filter design time is very minimal. A more definitive test of

wavelet quality preservation is shown in Figure 4.14. The quality of the P-wave is

almost identical to that obtained using the ideal correction (in Figure 3.16), and

the S-wave quality is also similar except for the additional hash following (to the left
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Filter corrected P and S waves, V=2000 Dt=0.002 Dx=6
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Figure 4.13: This shows the model propagated from Figure 3.11, but with filter
corrections. Both the P and S waves have retained their circular shapes, and zero
phase character.
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Figure 4.14: A trace extracted from the filter corrected model (Figure 4.13). Even
the S-wave (left) compares quite favorably with the ideal operation result from Figure
3.16.
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of) the wavelet.

4.3 Correction filters compared to the Levander scheme

As discussed earlier, the whole wavenumber range available within a sampled data set

can not be utilized for modelling. Instead of using the theoretical range from zero to

the Nyquist wavenumber, the practical range is often limited to a high wavenumber of

Nyquist/4 or lower. One of the better known schemes to improve on this is described

by Levander (1988).

The Levander scheme uses a split time step system, where the second-order wave

equation is split into two first-order equations, and each of these equations is stepped

through a time interval of one-half of the time sample rate. It also uses a higher order

approximation for the continuous spatial derivatives. Instead of using the first-order

operator of [1,−1] for a derivative, the operator [−1
24

, 9
8
, −9

8
, 1

24
] is used for each of the

two steps. For comparison purposes, this may be considered to be the first-order

operator convolved with a correction filter of [−1
24

, 13
12

, −1
24

], although Levander does

not use the correction filter concept.

In Levander’s scheme, the correction filters are effectively applied to both stages

of the split-step process, and so the complete second-derivative corrections are a

combination of the two stages of the first-order corrections. The equivalent correction

in the direction of the axes (either x or z) is [ 1
576

, −13
144

, 113
96

, −13
144

, 1
576

]. The equivalent
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correction for the cross-term calculation is a symmetric square function,


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.

The first type of operator is the longest at 5 points, requiring two extra points in

each direction for the correction to be effective. This must be considered near any

boundaries because the extra points are required in both the x and z directions.

Figure 4.15: All the displacements which contribute to the Levander Uz acceleration
at the centre.

Figure 4.15 shows all of the displacements used as input points for the Levander

acceleration in z. The ∂2Uz

∂z2 term has input from the column of z displacements. The

∂2Uz

∂x2 term has input from the row of z displacements, and the ∂2Ux

∂x∂z
term has input
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from all of the x displacements shown. In contrast, the second order derivatives plus

optimum corrections developed in this paper uses a square array of input points for

each of the three terms mentioned.

4.4 An example of correction filters compared to the Levan-

der scheme

This example has velocities of 2000 m/sec. and 1000 m/sec. for the P and S waves,

a spatial sample rate of 6 metres and a time sample rate of .0018 seconds. The

time sample rate was chosen for stability with the Levander method, as specified in

Lines et al. (1999) for a fourth-order spatial derivative. The correction filter method

actually works better with a time sample rate of .002 seconds, but this would be

unstable with the Levander method. A common time sample rate was chosen to

allow the ‘corrections’ to be compared in detail.

The first set of comparisons are in the spatial wavenumber domain. The correc-

tion filters in this case have been designed for the spatial region from zero to one-half

Nyquist, in both the x and z directions. A cyan coloured arc has been drawn on the

plots in this corner so they may be compared more easily.

The first case presented is for the second derivative in the z direction of the z

displacement. The ideal correction is shown in Figure 4.16. The Levander fourth-

order correction multiplier term is shown in Figure 4.17. This operator is one column

of five rows, and appears to be a rough match to the ideal case.

The optimised operator for this term, developed from the theory presented in

this thesis, is shown in Figure 4.18. This design matches the ideal quite closely in
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Figure 4.16: The ideal correction multiplier for the ∂2Uz

∂z2 term.
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Figure 4.17: The Levander correction multiplier for the ∂2Uz

∂z2 term.
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Figure 4.18: The optimum 5 by 5 correction filter for the ∂2Uz

∂z2 term.

the zone within the marked quarter circle.

The second case presented is for the second derivative of either the x or z com-

ponent with respect to both x and z. The ideal correction multiplier term is shown

in Figure 4.19, and in this case shows that very little correction is necessary. This is
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Figure 4.19: The ideal correction multiplier for the ∂2Uz

∂x∂z
term.

consistent with the uncorrected propagation of the ring model, where at 45 degrees
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the wavelet is comparatively undistorted (see Figure 4.24). The Levander correction

for this term is shown in Figure 4.20, and in this case is over corrected. This can

happen because the correction is designed mainly for use in the direction of the axes,

and not for the cross terms. The 5 by 5 correction filter designed for the same case
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Figure 4.20: The Levander correction multiplier for the ∂2Uz

∂x∂z
term.

is shown in Figure 4.21. The term was designed specifically, and therefore matches

quite well.

The last case presented is for the second derivative of the x component in the z

direction. This is for term 6, the last term of the second operator (see table 3.2).

The ideal correction multiplier for this sixth term is shown in Figure 4.22, where

the relevant shear velocity is 1000 m/sec. The Levander correction in Figure 4.17

applies to this case too, because it is determined only by the value of the second

derivative. The ideal correction is distinct for this case because it allows for the

inaccurate second derivative in time, and is affected by the shear velocity and time

sample rate. The optimised correction filter response is shown in Figure 4.23, and
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Figure 4.21: The optimum 5 by 5 correction filter for the ∂2Uz

∂x∂z
term.
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Figure 4.22: The ideal correction multiplier for the ∂2Ux

∂z2 term.
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it matches quite well in the lower wavenumbers region.
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Figure 4.23: The optimum 5 by 5 correction filter for the ∂2Ux

∂z2 term.

The second set of comparisons are in the space domain, and parallel the frequency

domain type of modelling done in section 3.9. The P/S ring model here was also

started from the initial position given in Figure 3.11, and the model was propagated

through 134 steps of .0018 seconds each. This time step was chosen because it is close

to the largest possible while still providing stability. With the Levander method, as

with other models, small time sample rates cause more dispersion.

The result is shown in Figure 4.24, where the numerical dispersion and non-

circular shape of the smaller shear ring is quite obvious, and the larger pressure ring

can be seen to deviate from its original zero phase (symmetrical) shape.

The second display in Figure 4.25 shows the result of the simulated Levander-

style wave propagation. The pressure wave has been propagated more accurately

as shown by the wavefront shape being almost zero phase (symmetric). The shear

wave wavelet has been improved in quality but the wave front has an even stronger
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Figure 4.24: The uncorrected P and S wave model with ∆t = .0018secs. This is
close to the maximum time sample rate which still ensures stability with 4th order
methods.
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Figure 4.25: The model of Figure 4.24, but with the Levander style corrections.
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deviation from circular. That the shear wave propagation is less than ideal is not

surprising, since the system was not designed for shear waves.

The next display in Figure 4.26 shows propagation by the optimised correction

filter of size 5 by 5. Both the pressure and shear rings here are circular, and the

Filter corrected P and S waves, V=2000 Dt=0.0018 Dx=6
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Figure 4.26: The model of Figure 4.24, but with correction filters applied.

wavelets are compact and zero phase.

4.5 Correction filters in a model with two velocities

The theory of correction multipliers and correction filters was developed within mod-

els with a constant velocity, but the designed filters are still effective in more complex

models. At a boundary between high and low velocity regions a filter designed for

one region will have to have some of its coefficients operate on samples from the other

region. The corrections at these points will not be accurate, but will still usually

have a beneficial effect, even where the velocity contrasts are quite severe. Also,
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the area near strong velocity contrasts is usually small compared to the size of the

model, so the corrections may be considered to be accurate over most of the model.

An example of a model with two velocity regions is given here. In Figure 4.27, a

30 Hz. P-wave ring was initiated in a 2000 m/sec. region, just above a second region

with a velocity of 1400 m/sec. There is obvious numerical dispersion on the primary
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Offset

D
ep

th

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

Figure 4.27: Uncorrected two velocity P-wave model.

P-wave, as well as the reflected and transmitted P-waves.

Figure 4.28 shows the same model, but with two separate suites of corrections

applied, one for each of the two velocity regions. The three wavefronts of P-wave

energy here show major improvements. Also, reflected shear wave energy is apparent,

and there is a slight indication of a transmitted shear wave. Dispersion is very

apparent.

Numerical dispersion may be reduced by the application of correction filters, but

is ultimately limited by sample rates that are too coarse. Figure 4.29 shows the
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Figure 4.28: Corrected two velocity P-wave model of Figure 4.27.

same model, uncorrected, but with much finer sample rates. The refinement of the

sample rates has improved the quality of the P-wave events, almost to the point

where the filter corrections are not required. Considerable numerical dispersion still

appears on the S-wave events.

Figure 4.30 is the corrected version of the finely sampled model. Even the weak

reflected and transmitted shear wave events have very little dispersion. The change

in polarity of these events is obvious at the point where the P-wave intersected with

the velocity boundary at right angles.

The High Velocity Wedge model is shown in Figures 4.31 and 4.32 as another

uncorrected and corrected modelling pair.

The model has 4000 m/sec (P-wave) zones in the top left, and in the bottom

layer. Between the two high velocity zones is a medium of 2000 m/sec. The S-wave

velocities were set to one-half the P-wave velocities. The correction matrices here
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Figure 4.29: Uncorrected two velocity P-wave model.
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Figure 4.30: Corrected two velocity P-wave model of Figure 4.29.
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Figure 4.31: An uncorrected shot in the High Velocity Wedge model.
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Figure 4.32: A corrected shot in the High Velocity Wedge model.
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are of size 5 by 5, which may be seen to reduce some of the shear wave dispersion in

Figure 4.31.

The same model pair is shown in Figures 4.33 and 4.34 in the interpreted P/T

(Pressure/Twist) colour format (see appendix F).
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Figure 4.33: An uncorrected shot in the High Velocity Wedge model, interpreted
with the PT format.

This format tends to separate the pressure and shear wave energy. Figure 4.34

shows that the corrections do not have a major effect on the P-wave events, but tend

to concentrate the S-wave events.
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Figure 4.34: A corrected shot in the High Velocity Wedge model, interpreted with
the PT format.



Chapter 5

Transmitting boundaries

An important part of many finite-difference models is to have minimal reflections

from most of the external boundaries, and simulate the infinite real earth. This

is important for economic reasons, so that a model size can remain small and yet

simulate the effects of specified internal and external boundaries without getting

interference from the other model edges.

In the finite-difference literature, these boundaries can be known as ‘numerical

boundaries’ (Strikwerda, 2004). They are called ‘numerical boundaries’ to distin-

guish them from real boundaries, where physical conditions apply (for example, zero

stress). In Strikwerda, the emphasis is on boundaries which will not cause instability,

as these can affect the whole model.

The basic technique is to provide extra rows and columns of points around the

edges of a model. Reasonable displacement amplitudes at these points are needed

to allow the finite-difference operations to be executed within the model, but cannot

themselves be generated by the same techniques because of their edge positions.

Unique algorithms, or in some cases unique conditions, must be used to calculate

these displacement amplitudes.

The earlier techniques used to reduce boundary effects were called absorbing

boundaries, and simulated the effects of having a highly attenuating material around

the model. This technique is very practical where the modelling already accounts for

viscous effects on the particle motion, see Kelly and Marfurt (1999) page 423. The

115
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viscosity is simply made very high for several rows and columns around the model’s

area of interest.

Another absorbing technique that can be used is to taper, at each time step, the

amplitudes toward the model edge by a minimal amount. Cerjan et al. (1985) got

very successful results by tapering to a maximum of 0.92 across a boundary zone

of 20 points in width. With these absorbing boundaries, the edge point amplitudes

are calculated by an approximate algorithm, but any error that this introduces is

shielded by the attenuating zone. The increased overhead caused by providing the

attenuating zone is usually not a major barrier with modern computers.

An alternative to absorbing boundary conditions can be called transmitting

boundary conditions. Reynolds (1978) called his boundaries transmitting, and al-

though Clayton and Engquist (1977) called their boundaries absorbing, they used

algorithms similar to Reynolds. These algorithms project amplitudes into the bound-

ary zones from the values already calculated for the zone of interest. Clayton and

Engquist adapted a migration algorithm to project boundary values. Reynolds fac-

tored the wave-equation and then used approximations for finite-differencing. A

requirement of these techniques is to select only those solutions that advance into

the boundary, and suppress solutions that advance out of the boundary (the reflec-

tions). They are found to work very well with waves moving directly toward the

boundary, but not so well with waves approaching the boundary at an acute angle.

The most general method found to date is given in Randall (1988), using a

method developed by Lindman (1975). Lindman called the problem the ‘free-space’

boundary condition. They determine a spectrum of wavenumbers and frequencies in

the vicinity of the boundary to design an operator which projects a scalar potential
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across it. They claim very high accuracy to within 1 degree of the boundary direction

for an analytic solution, and limited only by the sampling for the finite-difference

solution.

This section of the thesis experiments with the eikonal equation as a means of

describing the conditions of a transmitting boundary. This is an analytic equation,

and so the finite-difference version suffers from accuracy problems of the same type

as those treated in the main sections of this thesis. In fact the eikonal equation has

first derivatives of first order accuracy, compared with the wave equation with second

derivatives, having second order accuracy. These inaccuracies were not specifically

addressed, yet some encouraging results were found.

In the space of values at the transmitting boundary edge of a digital model, two

unknowns must be found. The first unknown is the extra (beyond the) boundary

value displacement amplitude, and the second unknown is the advanced time-step

amplitude that is calculated using the extra boundary value. The first of the two

equations that is required for a solution is, of course, the time-stepping equation.

A second equation that may be used is the one that relates all the first derivatives

of an unimpeded advancing wave (the appropriate eikonal equation). Any solution

that does not satisfy this equation must involve some reflected energy.

The above simultaneous solution takes the form of a quadratic. The root of

the quadratic must be chosen so that the slope of the wave toward the boundary

is consistent with the slope in time of an advancing wave. In particular, a slope

down toward the boundary must accompany more positive amplitudes with time,

and vice-versa.
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5.1 Transparent boundaries in the one dimensional case

Before developing the theory of two dimensional transmitting boundaries, it is useful

to show the nature of the solution for a one dimensional case. The one-dimensional

wave equation is given in equation 2.2 from section 2, and the time stepped solution

is given later in that section. In general terms, the un-corrected solution for the

advanced time step (φ(x, t + ∆t)) is given in terms of the current and adjacent

displacements at x, and also the previous displacement at x, with a function F , so

that

φ(x, t + ∆t) = F (φ(x − ∆x, t), φ(x, t), φ(x + ∆x, t), φ(x, t − ∆t)). (5.1)

Figure 5.1 shows a model of a one-dimensional material displaced vertically, for

example a string. The string extends from upper right an indefinite distance toward

the lower left. It is represented by the limited lines of the model which are oriented

in the same direction. The succession of strings toward the lower right represent

the same string at later times. The wave in the string can be seen approaching the

supposedly non-existent boundary to the left.

The black cross in Figure 5.1 shows the five points where the displacements

must satisfy the relationship specified in equation 5.1. The red cross shows one of

the locations where equation 5.1 will be used for construction of a new representation

of the line at the next time step.

Figure 5.2 shows an additional cross at the last directly modelled point for the

newly built string, with one of the required input points dangling in space. This is

the point mentioned above, where a second equation is required to solve for the two

unknown displacements. The eikonal equation is a possibility to fulfill this.
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Figure 5.1: The string (one-dimensional) model displayed at successive points in
time. The time stepping equation relates the displacements at the two crosses shown,
and could be duplicated at most other parts of the grid. The black cross represents
each point on the space/time grid where the equation must hold. The red cross shows
an example of where a string displacement at an advanced time may be calculated
from the displacements at the other four positions covered by the cross.
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Figure 5.2: The red cross shows a boundary point for the string model. The two
unknowns are represented by the two ends of the cross which are not part of the grid
of known displacements.
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The one-dimensional eikonal equivalent equation is given by

∂φ

∂x
= −1

v

∂φ

∂t
, (5.2)

where the negative sign requires that the wave advance to larger x. This may be

translated into a finite-difference equation of the form

φ(x, t + ∆t) = G(φ(x − ∆x, t), φ(x + ∆x, t), φ(x, t − ∆t)). (5.3)

This second equation gives enough information to solve for both of the unknown

points in Figure 5.2. The details of the simultaneous solution is completed for the

two-dimensional equation below.

5.2 Theory

The development of the theory starts with the definition of a scalar plane-wave,

which may be chosen to advance with time

P = F ((zcosθ + xsinθ)k − ωt) . (5.4)

Then an equation relating the first derivatives of the function may be shown to

be
(

∂P

∂x

)2

+

(

∂P

∂z

)2

=
k2

ω2

(

∂P

∂t

)2

=
1

v2

(

∂P

∂t

)2

. (5.5)

This is the well known eikonal equation. Note that the squaring of the derivatives

destroys the sign of the inward or outward wave, so that the selection of an outward

advancing wave must be made by choosing the correct root.

This equation of the scalar function P may be translated into a finite-difference

version using central differences. If m, n, and k represent the function at x, z, and
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t respectively, then

(

P (m + 1) − P (m − 1)

2∆x

)2

+

(

P (n + 1) − P (n − 1)

2∆z

)2

=

1

v2

(

P (k + 1) − P (k − 1)

2∆t

)2

, (5.6)

where P (m, n, k) has the independent variables omitted unless they have been incre-

mented or decremented. At the right x border, where m now represents the x edge,

the decremented variables can be assumed to represent the interior spaces and older

times, and are therefore known. Also all the n’s are known in the z direction (n+1)

and (n − 1). The two unknown amplitudes are P (m + 1) and P (k + 1).

If R is defined by

R2 = (P (n + 1) − P (n − 1))2 , (5.7)

and

C = ∆x/v∆t, (5.8)

where ∆x = ∆z and generally C ≥ 1 for stability, then

(P (m + 1) − P (m − 1))2 + R2 = C2 (P (k + 1) − P (k − 1))2 . (5.9)

The scalar wave equation

∂2P

∂x2
+

∂2P

∂z2
=

1

v2

∂2P

∂t2
, (5.10)

has a finite-difference representation of the form

P (m + 1) − 2P + P (m− 1)

(∆x)2
+

P (n + 1) − 2P + P (n − 1)

(∆z)2
=

1

v2

P (k + 1) − 2P + P (k − 1)

(∆t)2
, (5.11)
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which may be converted into the form

P (k + 1) = 2P − P (k − 1)+

1

C2
(P (m + 1) + P (m − 1) + P (n + 1) + P (n − 1) − 4P ) . (5.12)

Again, the two unknown amplitudes are P (m + 1) and P (k + 1).

If D is defined by the equation

D = 2C2P − 2C2P (k − 1) + P (m − 1) + P (n + 1) + P (n − 1) − 4P, (5.13)

then, when equation 5.12 is substituted into equation 5.9 the quadratic equation in

P (m + 1) which can be derived is

P 2(m + 1) − 2

(

C2P (m − 1) + D

C2 − 1

)

P (m + 1) +
C2P 2(m − 1) + C2R2 − D2

C2 − 1

= 0, (5.14)

which can be solved for P (m + 1), and using 5.12, for P (k + 1). The root that must

be chosen for the right (x) boundary is the one for which

(P (m + 1) − P (m − 1)) ∗ (P (k + 1) + P (k − 1)) ≤ 0, (5.15)

ensuring that when the difference in the x direction is positive, the difference in

the time direction is negative, and vice-versa. These are the conditions for a wave

advancing into the right boundary.

For the special case C = 1, the solution for P (m + 1) is

P (m + 1) = 2P + 2P (k − 1) − P (n + 1) − P (n − 1) +
R2

2P (m − 1) + 2D
. (5.16)
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5.3 Application to the elastic wave equation

The boundary conditions specified above have been adapted to the elastic wave equa-

tion by converting the elastic wave displacements into two sets of scalar amplitudes in

the region near the boundaries. This decomposition has been done by Randall (1988)

and Long and Liow (1990). A compressional potential is sufficient to describe the

pressure wave (P ), which Long and Liow called dilation. Shear distortion requires

a vector potential in a three dimensional model, but a scalar potential is sufficient

in the two dimensional case (T ), Long and Liow calling this rotation. Figure 5.3

shows the relative positions of the x and z displacements and the P and T potentials

within the staggered grid, all near the right side x boundary.
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Figure 5.3: The staggered grid displacements with the scalar potentials near the
right boundary. The projected scalars and vectors are shown in red.

Note that the difference in displacements from above and below each ‘P’ position

gives a measure of the pressure contribution from the z direction. Similarly, the
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difference in displacements from left and right of each ‘P’ position gives a measure

of the pressure contribution from the x direction. The total pressure is the sum of

these two, so that

P (m, n) = [Ux(m − 1, n) − Ux(m, n)] + [Uz(m, n) − Uz(m, n + 1)] . (5.17)

In a similar fashion, a twist (clockwise) may be determined from the displace-

ments surrounding each ‘T’ position. These are located at the intermediate positions

staggered from the pressure positions. The formula for these is

T (m, n) = [Ux(m, n − 1) − Ux(m, n)] − [Uz(m, n) − Uz(m + 1, n)] . (5.18)

Note that the relative values of the indices for Ux, Uz, P and T depend on how a

particular staggered grid system is defined.

The positions of Ux, Uz, P and T are related graphically in Figure 5.3. The

displacements calculated within the normal (interior) positions of the model are

shown by the arrows in black. The blue P ’s and T ’s are calculated from these

displacements. The P ’s and T ’s are estimated at the red positions by the scalar

projection described above. The projected T ’s allow the red z displacements to be

calculated, and then the P ’s may be used to calculate the x displacements.

5.4 Examples

The first example is shown in Figures 5.4, 5.5, and 5.6. Figure 5.4 shows a pressure

wave about to encounter a transmitting boundary. It originates as an explosive source

at the symmetric boundary on the left. The parameters are: compressional velocity

is 1600 m/sec, shear velocity is 800 m/sec, ∆x = 2 m, and ∆t = .0006 seconds.
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Figure 5.4: A pressure wave about to reach a transmitting boundary at right angles.
The source is a compressive wavelet on the symmetric edge.
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Figure 5.5 shows the pressure wave after it has encountered the transmitting

boundary. There is almost no indication of reflected energy with incident angles of

zero degrees through about plus and minus 70 degrees.
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Figure 5.5: A pressure wave after reaching the transmitting boundary. There is very
little reflection energy from the boundary for incident angles ranging from +/- 70
degrees.

Figure 5.6 shows the wave after it has reached the corners of the model. The

upper right corner is where the transmitting boundary meets the free surface bound-

ary, and the beginning of a Rayleigh wave may be seen. Elimination of reflections

here requires the simultaneous solution of the transmitting conditions and the free

surface conditions, and this has not yet been accomplished. By contrast, the lower

right corner is where the totally reflecting and transmitting boundaries meet, and

there is not much of a problem.
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Figure 5.6: A pressure wave encounter at the free surface/transmitting corner. A
strong Rayleigh wave has been generated.
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The second example is from the case studies, section 6.2.4. Figure 5.7 is a du-

plicate of Figure 6.14 from that section, which displays a model with a transmitting

right boundary at 200 milliseconds after the shot.
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Figure 5.7: Snapshot of case 1, basic model with 9m. source. The right boundary is
transmitting. This is a duplicate of Figure 6.14

The model was continued for another 200 milliseconds, and displayed in Figure

5.8. The direct pressure event Pd has moved cleanly across the boundary, and

the reflection of Pr from the surface (Prs) shows no reflection from the boundary.

Also, the shear events Scr (moving up) and Scs (moving down) show no boundary

reflections. The beginnings of a surface wave may be seen in the top right corner.
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Figure 5.8: Snapshot of case 1, basic model continued for 200 ms. The pressure event
Pd has made a clean escape across the boundary. Also, the high angle pressure event
Prs and shear event Scs (moving down) and Scr (moving up) show no boundary
reflections.
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5.5 Conclusions

• The eikonal equation can be combined with the scalar wave equation at a

boundary to solve for the unknown amplitude across the boundary.

• The transmitted wave amplitude is the solution to a quadratic with the choice

of sign corresponding to the direction of wave motion across the boundary.

• The method can be extended to the 2D elastic case by solving for scalar po-

tentials at the boundary corresponding to pressure and twist effects.

• Tests on simple models show the method to be effective for a broad range of

incidence angles.



Chapter 6

Finite-difference case studies

6.1 Surface waves

6.1.1 Introduction

This study shows the result of numerical experiments where Rayleigh waves en-

counter abrupt near surface velocity changes. These results are easily obtained, but

have not been found in the literature, and so have been included here. Exploration

seismologists are generally motivated to study Rayleigh waves because their high

energy near the shot point masks the valued reflections from deep horizons. There

is also some hope that a better understanding will allow an interpretation of near

surface conditions around the source point.

There are many papers showing successful finite-difference simulations of surface

waves, but their main focus is on earthquake seismology. Levander (1990) surveys

several significant Rayleigh and Love wave studies and their interactions with body

waves at surface anomalies. In one of Levander’s own papers covering the subject

(Levander, 1985), he developed an isolated Rayleigh wave designed for a particu-

lar layered earth, and propagated it through several realistic models of the earth’s

crust. Many papers use finite-difference methods to simulate how abrupt topographic

changes affect surface waves and convert energy to other wave forms. A paper by

Robertsson and Holliger (1997) is one example of these.

132
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6.1.2 Source wavelet

Surface waves have been studied mathematically since Rayleigh’s work in the 19th

century (Rayleigh, 1885), but usually in reference to earthquake generated waves

observed at long distances from their origin. Here the waves have formed into nat-

ural vibroseis sweeps, with a single frequency at any given time, but the frequency

gradually changing with time. These can be effectively modelled as single frequency

waves, and equations 6.2 and 6.3 can be used to describe the real and imaginary

components of these waves. Note that the single frequency in time is given in the

last term of each equation. The relative amplitudes of the components on the surface

and at depth are given in the rest of the equations.

The key to constructing a surface ‘wavelet’ is then to sum earthquake type waves

with a sampling of frequencies and the proper amplitudes so that the result takes a

compact form in both space and time. Levander has also used this trick.

The examples shown here build a Rayleigh wavelet similar to the one in Levan-

der (1985), but designed for a simple half-space. The construction begins with an

estimate of the wavelet propagation speed c, given by a formula from Achenbach

(1973), page 192. The Achenbach equation is

c ≈ β
0.862 + 1.14σ

1 + σ
, (6.1)

where β is the shear wave velocity and σ is Poisson’s ratio. This velocity can be

checked as a solution for Rayleigh’s equation, as for example equation 3.7 in Grant

and West (1965). For realistic exploration near surface conditions, this velocity was

found to be accurate to within 0.1 percent.

This velocity (c) may then be used to translate time frequencies into spatial
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wavenumbers, but also within the formulae for the x and z displacements. The

other symbols in the following equations are β for the shear wave velocity as given

above, α for the pressure wave velocity, and ω for the single frequency. The equations

are

Ux =
α

c
A

[

e−ζz − (1 − c2

2β2
)e−ξz

]

cos

[

ω(
x

c
− t)

]

(6.2)

and

Uz = −α

c

√

1 − c2

α2
A

[

e−ζz − (1 − 1

1 − c2/2β2
)e−ξz

]

sin

[

ω(
x

c
− t)

]

, (6.3)

where ζ is defined by

ζ =
ω

c

√

1 − c2

α2
, (6.4)

and ξ is defined by

ξ =
ω

c

√

1 − c2

β2
. (6.5)

These equations are expanded versions of the equations for U and W on page 61

from Grant and West (1965).

The method creates an isolated Rayleigh wavelet defined on the surface and at

depth, and a second similar wavelet displaced in position and phase to define how

the wavelet propagates. The following steps were used to construct this wavelet,

similar to Levander’s wavelet:

1. Generate a suitable zero phase surface wavelet, for example, a Ricker wavelet.

2. Do a discrete Fourier analysis of the wavelet, obtaining only cosine terms when

the wavelet is zero phase.

3. Translate each frequency into a wavenumber and resample if necessary.
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4. For each wavenumber, generate a discrete cosine trace of the analysed ampli-

tude for the surface case.

5. For each wavenumber, create a matrix with the surface trace from above, and

deeper traces with the modified amplitudes given by equation 6.3.

6. Sum the matrices for the Uz component.

7. For each frequency/wavenumber, generate a sine trace of the same amplitude

as the cosine trace, but modified by the factor from equation 6.2, for the surface

case.

8. For each frequency, create a matrix with the surface trace from above, and

deeper traces with the modified amplitudes given by equation 6.2.

9. Sum the matrices for the Ux component.

10. Repeat steps 4 − 8 with the cosine and sine series advanced sufficiently to

simulate the wavelet advanced by c times the time stepping time.

An initial wavelet generated by this means is shown in Figure 6.1. Figure 6.2

shows the form of the wave after propagation through 60 time steps of 0.0004 seconds.

A Rayleigh wave in a uniform velocity half space, as is used here, should have no

dispersion and thus preserve its wave form. The fact that the wave does not show

dispersion indicates that most of its energy is in the form of a Rayleigh wave.

6.1.3 Rayleigh wave examples

The examples all begin with a 30 Hz Ricker surface wavelet in a half space and show

vertical displacements at the surface as time advances. The half space velocity for
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Figure 6.1: Quiver plot of an initial Rayleigh wave.
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Figure 6.2: Quiver plot of a Rayleigh wave propagated through 60 steps. Notice how
the wave form has been preserved.
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P waves is 2857m/s, for the S waves is 1000m/s, and the density is 2g/cm3. The

models modified from this half space all have the same density, and most have the

S velocities multiplied by either 0.8 or 1.25. The exceptions are the models to show

the relative influence of the compressional strength (as given by P wave velocity)

where these velocities are multiplied by 0.8 or 1.2.

Figure 6.3 shows the wavelet propagating on the uniform half space. This is

the base case and can be seen to have almost almost no change of wavelet character

with time. The velocity of propagation is slightly less than the shear wave velocity,

consistent with the Achenbach equation 6.1.
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Figure 6.3: Surface vertical displacement of a Rayleigh wave on a uniform half space.
The P wave velocity is 2857m/s, the shear wave velocity 1000m/s, and the density
2g/cm3. ∆x is 1.25m and ∆t is 0.3ms. The dispersion can be seen to be minimal.

In Figure 6.4 the wave propagates into a material with lower velocity at all

depths. A line marks the boundary. A small reflected wave propagates left and the
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transmitted wave propagates more slowly to the right, undispersed.
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Figure 6.4: Rayleigh wave into a shear velocity zone which is 0.8 of the base case
shear velocity. The zone is marked by the red line. There is an obvious reflection
from the boundary, but there is still little dispersion.

The dispersive effects of layering on surface waves is shown in Figure 6.5 where

the wave propagates into a low velocity layer 15 metres thick (the position marked by

a box). The reflected wave and the first part of the transmitted wave are very similar

to Figure 6.4, but then the low-speed portion of the wavelet receives interference

from the higher-speed energy propagating below.

A thin low velocity zone with limited extent is shown in Figure 6.6. The wavelet

is affected in a similar way to the wavelet in Figure 6.5, but the slight dispersion

caused is then stable once it reaches the end of the zone.

A similar series of experiments with thin high velocity zones begin with Figure

6.7, where the case with great thickness is shown. The result is similar to Figure
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Figure 6.5: Rayleigh wave into a thin zone (15 metres) with the velocity 0.8 of the
base case shear velocity. The energy of the wave is dispersed, with the deep part
traveling at the base rate, and the shallow part more slowly. The reflection is quite
similar to the previous case.
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Figure 6.6: Rayleigh wave into a thin short lower velocity zone. This is similar to
the previous case, but the dispersion has been quite limited.

6.4, but the reflection event has opposite polarity.

Wavelet propagation into a high velocity layered model is shown in Figure 6.8.

The layer is thick enough (at 25 metres) to cause a small reflection, but causes only

minor dispersion. There is a larger reflection from the end of the zone.

The wavelet propagation into the shorter zone in Figure 6.9 is similar to that in

the previous Figure. Here, though, it is more clear that the reflection at the end of

the zone, from high to low velocity, is significantly stronger.

Figure 6.10 shows the greater dispersion caused by a very thin low velocity layer.

The low velocity zone here is 8 metres thick. Apparently a zone of this thickness

splits the wavelet energy into two almost equal packages, because it appears in a

cone spread from the high velocity (1000m/sec) to the low velocity (800m/sec).

The relative insensitivity of Rayleigh waves to compressional strength (or P wave
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Figure 6.7: Rayleigh wave into a zone where the shear velocity is 1.25 times the base
shear velocity. Similar to Figure 6.4, there is a reflection but little dispersion.
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Figure 6.8: Rayleigh wave into a thin zone with the velocity 1.25 times higher. The
thickness is 25 metres, but is plotted proportional to the time. There is a small
reflection and not much dispersion.



142

0 50 100 150 200 250 300

50

100

150

200

Offset

T
im

e 
in

 m
s

Figure 6.9: Rayleigh wave into a short thin higher velocity zone, similar to the
previous case. The reflection at the end of the zone (high to low velocity) is stronger
than that at the start (low to high velocity).
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Figure 6.10: Rayleigh wave into a low velocity zone that is only 8 metres thick. The
dispersion is much more obvious than in Figure 6.5.
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velocity) is shown in Figure 6.11. Here the shear wave velocity is left constant, while

the pressure wave velocity is reduced by 20 percent in the 8 metre zone. The minimal

dispersion is obvious here, compared to the previous figure. The strong reflection at

the end of the zone (from low to high velocities) is interesting.
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Figure 6.11: Rayleigh wave into a thin zone with only the P velocity lowered to 0.8 of
the base case. Comparison with Figure 6.10 shows how the Rayleigh wave velocity
has little dependence on compressional strength. A larger reflection at the low to
high P wave velocity boundary is evident.

6.1.4 Conclusions

A Rayleigh wave that is compact in length can be used to reveal some significant

general properties. Some simple rules may be stated, although the physics of the

situation may be quite complex.

• A Rayleigh wave encountering a vertical impedance contrast tends to transmit
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and reflect much as body waves do. The reflected and transmitted waveforms

tend to be much like that of the incident wave, and the reflected and transmit-

ted amplitudes are similar to those which plane body waves would have after

an encounter with a similar velocity contrast.

• A Rayleigh wave encountering a shallow impedance contrast zone transmits

and reflects in predictable ways. The reflected wave is lower in amplitude than

a wave reflected from a vertical contrast. The transmitted energy splits into

waves travelling at the background velocity and the thin layer velocity. The

amplitudes and the amplitude attenuation of the two transmitted components

depend on the layer thickness compared with the depth penetration of the

Rayleigh wave.

6.2 The effect of some shallow conditions on seismic records

6.2.1 Introduction

This is a study of how several conditions in the near surface affect seismic recordings.

The conditions studied are the depth of the energy source, and the near surface

velocity structure. The effects compared are the amplitude of the first breaks, the

amplitude of the ground roll, the frequency content of reflections, and the consistency

of reflection wavelets. Finally, the polarity of the first breaks is compared to the

polarity of the reflections, the main reason why this study was begun.
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6.2.2 Method

The finite-difference modelling was done with the methods developed in this thesis,

with the staggered grid, but without any correction factors for dispersion or stability.

The records were all initiated with a simulated compressional source (as in Appendix

G) on the symmetric edge (as in Appendix H) on the left of the model. The

bottom of the model was perfectly rigid, and the reflection from it was used as the

representation of a positive reflection coefficient. The right edge of the model had

transparent boundary conditions (see Appendix H) and, with the sample rates used,

were quite effective.

The seismic records were all recorded at the surface and displayed as standard

WVA traces. Snapshots are associated with each seismic record, the time of the

snapshot being near the time the P -wave energy was reflected from the bottom of

the model. The snapshots are all displayed with the pressure wave/shear wave colour

coding described in Appendix F.

6.2.3 Model parameters

The model parameters were realistic as metric units within the earth. The sample

rates in the x and z directions were then at 1 metre, and the sample rate in time

was 0.2 milliseconds. The basic velocities, used in the first models, were 1600m/s for

pressure waves and 800m/s for shear waves. These were modified for later models to

provide velocity steps and gradients, and these velocity profiles are shown in Figure

6.12.

All records have a 30 Hz zero-phase Ricker wavelet as a source signature. The

resulting surface recordings are all from vertical geophones. The snapshots show
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Figure 6.12: Compressional velocity profiles within models. The blue line is for the
base cases at 1600m/s, the green line is for the velocity gradient cases, and the red
line is for the velocity step cases. The shear velocities were half the compressional
velocities in each case.
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the form of the wavefronts within the earth, and they are identified with three main

symbols: R for surface (Rayleigh) waves, P for pressure waves, and S for shear waves.

The detailed codes are as follows: Pd for the direct pressure wave, Pr for the bottom

reflected pressure wave (with ghost energy), Sg for the shear wave ghost off the

surface, Scs for the the shear energy converted from the direct pressure wave at the

surface, and Scr for the shear wave converted upon reflection from the bottom.

6.2.4 Model results

Case 1: The base model case has the energy source at 9 metres within a uniform

velocity field, and the surface recording is shown in Figure 6.13. The zero-phase
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Figure 6.13: Surface record of case 1, basic model with 9m. source.

Ricker wavelet appears as a first break at zero offset (marked with an R). The

reflection at 280ms can be seen as a combination of the primary wave at 275ms

(marked P), and the ghost at 285ms (marked G). The two brackets have the same
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width, and show that the effective length in time of the composite wavelet has not

changed much from the near trace to an offset of 350m.

A snapshot of this model at a time of 200 milliseconds is shown in Figure 6.14.

The weak first breaks have reached about 270 metres offset. The compressional
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Figure 6.14: Snapshot of case 1, basic model with 9m source.

reflection Pr is propagating upwards.

Case 2: The second case is identical to the first except that the energy source

is placed at 18 metres, and the surface recording is shown in Figure 6.15. At the

left, the Ricker wavelet is again marked with an R, the primary reflection with a P,

and the ghost reflection with a G. The primary then appears in less time, and the

ghost at a later time. The advantage of this deeper shot is a reduced surface wave

(ground roll). The disadvantage is that the greater separation of primary and ghost
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Figure 6.15: Surface record of case 2, basic model with 18m source.

reflections causes the composite reflection to have a lower frequency content, and this

frequency content changes with offset. This can be seen from the shorter wavelength

at the longer offsets for the primary/ghost wavelet (shown by the brackets). The

change of frequency with offset shown here occurs along shallow reflectors, and the

effect is reduced as the depth of the reflectors increase.

The effective change of frequency with offset can cause a significant degradation

of statistical deconvolution results. The ghost is then not deconvolved except on near

offset traces. A trace at a long offset will have an inconsistent set of frequency lowered

reflections, ranging from minimum lowering at shallow times to the equivalent of zero

offset lowering at deeper times. This inconsistency severely limits the effectiveness

of deconvolution on these individual traces. A study of this effect with the real

Blackfoot data can be seen in Hamarbitan and Margrave (2001)

Inspection of Figures 6.13 and 6.15 shows results that are consistent with the



150

standard polarity convention. The first break energy is plotted as a zero-phase

trough, and the reflection from the positive impedance change (the bottom) is a

close approximation to a zero-phase peak. The interacting mechanisms to explain

this are quite complex, but an important part of the explanation is that the reflection

wavelet combines a primary and a ghost.
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Figure 6.16: Snapshot of case 2, basic model with 18m source.

Case 3: This model has a source at 9 metres as in case 1, but has a velocity

gradient of 1600 to 1920m/s over a depth range of 20 to 60 metres. This causes the

raypaths and wavefronts to curve upwards and provides much more energy to the

first breaks. The surface recording of this case is shown in Figure 6.17, and the

snapshot is shown in Figure 6.18.

In the snapshot, the higher energy of the wavefront is shown by the higher colour
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Figure 6.17: Surface record of case 3, gradient model with 9m. source.
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Figure 6.18: Snapshot of case 3, gradient model with 9m. source.
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intensity (compared with Figure 6.14), and the greater component of energy in the

vertical direction results in higher amplitude recording at the vertical geophones.

The higher first break amplitudes at longer offsets is obvious in Figure 6.17. Close

inspection shows a curve toward shorter times with longer offsets, also caused by

the velocity gradient. Inspection also shows the first breaks starting to spread out,

caused by energy arrival through more than one unique path.

Case 4: This model has the velocity gradient of case 3 and the 18 metre deep

source of case 2. A surface recording is shown in Figure 6.19, and a snapshot in

Figure 6.20.
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Figure 6.19: Surface record of case 4, gradient model with 18m source.

All the first break characteristics of case 3 can be seen here as well. The first

breaks at longer offsets tend to be higher amplitude, more dispersed, and arrive at

shorter times because of the velocity gradient.

Case 5: This model is similar to case 3 except that the velocity gradient was re-
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Figure 6.20: Snapshot of case 4, gradient model with 18m source.

placed by a velocity step, from 1600 to 1920m/s at 40 metres. This surface recording

is shown in Figure 6.21, and the snapshot in Figure 6.22.

This case is included to show that while a smooth velocity gradient is most

effective at curving energy paths toward the surface, stepped velocity increases have

similar effects. This is a result of the tendency of wavefronts to heal themselves, and

smooth out energy fluctuations.

Case 6: The model is the same as case 5, but with the source at 18 metres instead

of 9 metres. This surface recording is shown in Figure 6.23, and the snapshot in

Figure 6.24.
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Figure 6.21: Surface record of case 5, step model with 9m source.
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Figure 6.22: Snapshot of case 5, step model with 9m source.
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Figure 6.23: Surface record of case 6, step model with 18m source.
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Figure 6.24: Snapshot of case 6, step model with 18m source.
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6.2.5 Conclusions

Finite-difference modelling with an accurate free surface representation can give in-

sight into the relationship of the conventional reflections caused by body waves, and

the waves caused by boundaries, like first breaks and ground roll. In particular:

1. A seismic processing industry convention states that, to display positive re-

flections as peaks, the first breaks must be plotted as troughs. The particular

models run here confirm that relationship, although the reasons for it are quite

complex.

2. Deep sources (for example at 18 metres) cause reflected events to have a sig-

nificantly broader, or lower frequency, character. This character change is

reduced with shallower reflections at longer offsets, and so may not be possible

to correct with deconvolution.

3. The amplitude of ground roll and first breaks can be related to the depth of

shot and the near surface velocity profile. Ground roll is stronger from shallow

shots. First break energy from deeper shots is persistent to longer offsets, and

also arrives earlier, and has higher amplitudes at longer offsets. These same

properties can be found where there is a strong near surface velocity gradient.
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6.3 Models of standard AVO reflections with realistic initi-

ation

6.3.1 Introduction

The typical types of AVO responses are based on the Geophysics paper by Rutherford

and Williams (1989), who presented what they called three classes of responses from

gas sands. These were called high-impedance contrast sands, near zero contrast

sands, and low contrast sands. An additional class was later added by Castagna

et al. (1998), of a porous sand overlain by a high velocity unit, to get what is now

almost a standard set of four classes.

Work has continued on AVO responses of these classic types and others, with more

generalized conditions and fewer restrictions. These papers generally assume that

the superposition of plane waves at the reflecting interface is sufficient to characterize

the reflected and transmitted amplitudes. This assumption is the basis for use of the

Zoeppritz equation, where five plane waves (incident, reflected P and S, transmitted

P and S) are expected to intersect with the same phase at all points along a reflector.

It is not difficult to show, as will be shown here, that this is not the case. This is

because, although the processes of reflection and transmission do create waves with

predictable results in the vicinity of the reflector, away from the reflector the waves

are created and then propagated from past conditions. In general the resulting waves

are not plane waves, and the portions of these waves near the reflector do not take

the direction in space that plane waves would take.

Details of the wavefronts for the case of AVO class 1 will be shown here, followed

by the surface records from this model, and the plots of trace amplitudes. Only the
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amplitude plots will be shown for the other AVO classes.

6.3.2 Model parameters

Class
AVO 1 AVO 2 AVO 3 AVO 4

α1 2000 2000 2000 2000
β1 879.9 879.9 879.9 1000
ρ1 2.4 2.4 2.4 2.4
α2 2933 2400 1964 1599
β2 1882 1540 1260 654.3
ρ2 2.0 2.0 2.0 2.456

Table 6.1: The AVO classes. The velocities (in m/s) and densities (in g/cm3) for
the layer above the reflecting interface (1), and below (2).

The parameters used to model each AVO class are shown in Table 6.3.2. The

interface with the impedance contrasts listed in Table 6.3.2 was placed at 740 metres,

and an explosive P-wave source was initiated at a depth of 19 metres. Surface

displacements were measured from the source at 0, to 1900 metres. Recording was

continued until at least some of the shear wave energy reached the surface.

The finite-difference models all used a spatial sample rate of 2.4 metres, and

a time sample rate of .0005 seconds. Each model was initiated at the centre of a

symmetric medium, of which only the right half is shown. The right boundary was

absorbing, and the bottom boundary (at 1200 metres) was rigid. The initiating pulse

was a 30 Hz Ricker wavelet.

6.3.3 Model results

A snapshot of the AVO class 1 wavefields at a time of 0.575 seconds is shown in

Figure 6.25. The time was chosen to be near the crossover point (zero amplitude)
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for the P-wave reflection. The five short straight lines on the interface are the angles

of the wavefronts (supposed by a Zoeppritz program) for the offset at their centre.

The centre point here is called the quintuple point.
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Figure 6.25: AVO 1 snapshot near time of minimum P-wave reflection. The angles
which the five wavefronts are assumed to take (within a Zoeppritz program) are
indicated with short black lines.

Figure 6.25 has a zoomed in version in Figure 6.26, and the relationships between

the quintuple point angles and the actual wavefronts is more obvious. The theoretical

angle is a reasonable match for the incident wavefront (to the NE). The reflected P

wavefront (to the NW) is difficult to distinguish because the amplitude is so low, but

looks like a reasonable match to the diagram. Both of the shear wavefronts (reflected

and transmitted) have the proper angles, but are noticeably lagged. The transmitted

P wavefront (to South and a bit West) shows the largest deviation, with a lead over

the theoretical. Also, the actual direction which the waveform takes at the interface

is curled around, and even facing a bit North of East.
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Figure 6.26: A blowup of Figure 6.25, at the point along the interface where the
wave conversions from incident to transmitted and reflected is taking place. The
black lines show the theoretical directions which the wavefronts should have.

The vertical displacement record at the surface of the model is shown in Figure

6.27. The reflected P wave has a zero offset time of 0.780 seconds, and it can be seen

to have a polarity reversal. The converted wave has a much steeper slope. It has

zero amplitude at zero offset, but could be extended to zero offset at approximately

1.230 seconds. it may be seen much more clearly in Figure 6.29.

The amplitude of the reflected P wave is plotted in Figure 6.28. The theoretical

amplitudes from the Zoeppritz program are the two curves plotted in black, one the

negative of the other, and showing the polarity reversal expected for AVO case 1.

The amplitudes from the finite-difference program are plotted in two colours, blue

for the maximum positive amplitudes, and red for the minimum negative amplitudes.

The low amplitude zone is so wide that it is difficult to trace a reflection running

from a peak into a trough, but the general trend certainly fits into that form. The
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Figure 6.27: Type 1 AVO response, vertical component. The pressure wave reflection
at zero offset appears at time 780ms. Note the amplitude fadeout and then reversal.

intersecting ground roll energy creates the high amplitude events at about 650 metres.

The horizontal displacement at the surface is shown in Figure 6.29, and is the

complement to Figure 6.27. The P wave has very low amplitude until longer offsets

are reached, but the converted shear wave is much higher amplitude than on the

vertical recording.

The amplitude of the converted shear wave is plotted in Figure 6.30. The plot in

this case is the maximum vector amplitude calculated from the vertical and horizontal

displacements, with the polarity of the horizontal component. This procedure usually

provides a plot with less noise interference, and should match the Zoeppritz program

output more closely.

The amplitude of a pressure wave reflected from an AVO class 2 interface is shown
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Figure 6.28: Type 1 AVO response, Z-component of P-wave. Blue is positive, red
is negative. The Zoeppritz curve is repeated with opposite sign for comparisons.
Ground roll energy appears at 650m.
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Figure 6.29: Type 1 AVO response, horizontal component. The converted shear
wave reflection at zero offset projects to about 1270ms.
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Figure 6.30: Type 1 AVO response, total S-wave. Peaks and troughs are plotted
positive. The Zoeppritz curve is black.

in Figure 6.31. This curve and most of those following plot the maximum vector

amplitude as with Figure 6.30.

Figures 6.32, 6.34, and 6.36 show the converted shear wave reflection amplitudes

for the AVO cases of 2, 3, and 4 respectively. For cases 2 and 4, the vector form of

input data were used, while for case 3, the X-displacement data were used. For this

case, the Z-component data had severe interference.

Figure 6.33 and Figure 6.35 show the reflected pressure waves for AVO cases 3

and 4 respectively. Both of these used the vector form of input data.

6.3.4 Discussion of the model results

In Figure 6.26, comparison of the position and orientation of the modelling wave-

fronts with those assumed for Zoeppritz calculations shows one of the limitations

of the Zoeppritz method. In general, if the velocities of the lower medium are sig-
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Figure 6.31: Type 2 AVO response, total P-wave. Peaks and troughs are coloured,
the Zoeppritz curve is black. The high amplitude points are ground roll.
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Figure 6.32: Type 2 AVO response, total S-wave, with the same colours. Ground
roll starts at 1000m.
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Figure 6.33: Type 3 AVO response, total P-wave. The high amplitude spikes are
ground roll.
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Figure 6.34: Type 3 AVO response, S-wave X component only. Another reflection
interferes at 250m.
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Figure 6.35: Type 4 AVO response, total P-wave. Ground roll is at 750m.
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Figure 6.36: Type 4 AVO response, total S-wave. The end amplitudes are distorted
by another reflector.
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nificantly higher than those in the upper medium, as the lower wavefront becomes

more perpendicular to the interface it will tend to outpace the quintuple point. The

wavefronts will tend to heal, but take the wrong angles. Eventually the wavefront

below the interface will break contact with the other waves and become a head wave.

This can happen very soon after the critical point.

The finite-difference modelling and the Zoeppritz programs show similar trends in

most cases. For AVO case 1, the converted wave responses are almost identical, and

the pressure wave responses show similar polarity reversals, although not at quite

the same places. The other AVO cases show that the trends of the modelling and

Zoeppritz results are similar. In conditions where the zero offset reflectivity is zero

(for case 2 and all the converted waves), the two types of curves may be matched

quite closely.

There are some general observations that may be made about the amplitude plots.

Sharp features (at critical angles) are smoothed through with the finite-difference

versions. The high points are often shifted between the two versions, but the causes

are uncertain.

6.3.5 Conclusions

Finite-difference modelling has confirmed that Zoeppritz programs may make rea-

sonable estimates of the amplitude variations with offset of the classic gas sand

interfaces. However, the results differ in the details, and especially where velocity

contrasts are high, the Zoeppritz results may be misleading anywhere past the critical

point.



Chapter 7

Conclusions

This thesis is a study of finite-difference modelling in one and two dimensions. It

concentrates on several novel methods which can improve finite-difference results.

There are also some finite-difference models included which illustrate some interesting

aspects of exploration seismic interpretation.

Correction multiplier for finite-difference time stepping in one spatial

dimension

This method requires the application of a multiplicative correction to each fre-

quency of the acceleration calculated by an elementary finite-difference algorithm, a

factor which is the ratio of two sinc functions squared. The equation with correction

is

φ(x, t + ∆t, k) =

[

2 + (∆t)2v2sinc2(kv∆t
2

)

sinc2(k∆x
2

)
D2

x

]

φ(x, t, k) − φ(x, t − ∆t, k), (7.1)

which is a duplicate of equation 2.18. It compares with the most elementary finite-

difference equation which may be written as

φ(x, t + ∆t, k) =
[

2 + (∆t)2v2D2
x

]

φ(x, t, k) − φ(x, t − ∆t, k). (7.2)

These comments apply to the corrected equation:

• The equation is exact, and propagates a wave exactly as an analytic equation

would when the wave is sampled over sufficient length. However, it applies

within an infinite medium with uniform properties, and only for a monochro-

matic (single wavenumber) signal.

168
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• The method may be extendeded to polychromatic (many wavenumber) signals

by Fourier transforming the wave from space into wavenumbers, multiplying

each wavenumber by the appropriate correction, and transforming back into

space. The time-stepping is then done.

• This equation has been used before, but as far as is known, only for single fre-

quencies/wavenumbers (Cole, 1998). For this case no transforms are required.

• A correction consisting of just the denominator of this correction factor, but

for all frequencies, is equivalent to the pseudo-spectral method. This method

was developed by Kreiss and Oliger (1972).

• Models using this method show improved wave propagation.

• The equation may be analyzed to show how the flaws of uncorrected wave

propagation may be quantified. That is, an explicit formula for the velocity

dispersion results.

• Part of the explanation for the drastic results of modelling with unstable param-

eters is the fact that wavenumbers are generated that can not be propagated

because they are aliased in time. This explains why the unstable effects tend

to be local.

• Even an inherently unstable model may be usable with this correction multi-

plier.

The correction multiplier replaced by the correction filter in space
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The second novel method developed in this thesis is the transform of the Fourier

domain correction multiplier to the relatively short spatial domain correction filter.

The direct way to do this is an inverse transform of the correction multiplier, but

this leads to a filter which is essentially infinite in length. Here, the filter is the

optimum inverse of the forward Fourier transform, but a transform which calculates

only the wavenumbers below a given ‘high cut’ wavenumber. These comments on

the optimum correction filter apply:

• These optimum filters can have very beneficial effects even with only a few

points (e.g. 5 points).

• The ‘high cut’ wavenumber replaces the former criterion ‘minimum samples

per wavelength’.

• With inherently stable parameters (∆t < ∆x
v

) the wavenumbers above the

design top are attenuated, and don’t interfere with anything in the signal band.

• With inherently unstable parameters (∆t > ∆x
v

) a special design procedure

is required. An alternative sampling procedure, where the sample values are

taken one-half a sample distance from their normal positions, is one method of

achieving this.

Correction multiplier for elastic-wave finite-difference time stepping in

two spatial dimensions

This third method uses the style of correction multiplier developed for one di-

mension, but adapts it to the differential equation pair describing elastic wave prop-

agation in two spatial dimensions. Most of the terms for these equations require
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corrections which are easily related to the corrections of the one dimensional case.

The term with partial derivatives in both x and z has a correction which is not

immediately obvious, but turns out to have an easily calculated form. The following

points are of interest:

• The theory applies to both P and S waves of all frequencies.

• The theory applies at all angles, and so wave propagation is consistent in the

grid directions, and in particular at 45 degrees from the grid directions.

• Tests show that wave propagation is often most accurate at 45 degrees to the

grid, and so in these directions the corrections are minimal compared to the

corrections along the grid directions.

• Five unique correction terms are required for the different terms of the equation.

There are six terms between the two equations, but the two cross terms turn

out to have the same correction.

The correction multipliers replaced by correction filters in space

The fourth method designs two dimensional spatial correction filters to approxi-

mate the effect of the correction multipliers. This procedure is closely related to the

method used for the one dimensional filters. It requires the optimization of the in-

verse Fourier transform which has a cut-off high wavenumber response. Observations

similar to the one spatial dimensional case may be made here also:

• The optimal filters can have very beneficial effects even though quite small

spatially.
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• With stable parameters, the highest wavenumbers are attenuated.

• Tests show improved wave propagation compared to the well known Levander

(1988) scheme, even when limited to the same filter sizes.

The transmitting boundary by specification of precise external dis-

placements

This method relates the displacement at a projected point across a transmitting

boundary with the direction of energy flow at the boundary. This can be done by

supplementing the wave equation with the eikonal equation. The displacement at

each external point can then be chosen so no energy is reflected back into the model.

The solutions here are limited by the accuracy of the equations (as yet uncorrected)

and the model corners (where two types of boundary conditions must be satisfied).

Practical Rayleigh wave reflection and transmission properties

A Rayleigh wave that is compact in length can be used to reveal some significant

general properties.

• A Rayleigh wave encountering a vertical impedance contrast tends to transmit

and reflect much as body waves do, with a preservation of wave form and with

similar relative amplitudes.

• A Rayleigh wave encountering a shallow impedance contrast zone transmits

and reflects in predictable ways. The reflected wave is lower amplitude than

a wave reflected from a vertical contrast. The transmitted energy splits into

waves travelling at the background velocity and the contrast zone velocity. The

amplitudes of the two transmitted components depend on the zone thickness

compared with the depth of the Rayleigh wave.
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The effects of shallow conditions on body waves

Finite-difference models can show how deep body waves relate to the free surface,

to shallow conditions of the earth, and to source depth.

• Body wave reflection character, and especially offset dependent reflection char-

acter, can be related to the depth of shot. Deep shots can generate ghosts with

strong effects in the seismic frequency range, generally making the wavelet lower

frequency. However, the effect is not consistent, with shallower reflections at

longer offsets being less affected.

• The amplitude of ground roll and first breaks can be related to the depth of

shot and the near surface velocity profile. Ground roll is stronger from shallow

shots. First break energy from deeper shots is persistent to longer offsets, and

also persistent where there is a strong near surface velocity gradient.

• The polarity of body waves may be related to the apparent direction of first

breaks. It is shown that if the initial deflection of the first breaks are plotted

as troughs, then positive reflections will appear as peaks.

Finite-difference studies may contribute to understanding of AVO ef-

fects

The quantification of AVO effects can sometimes be made more realistic by in-

cluding finite-difference studies. This has been found in a case of an AVO of type 1,

where the wave fronts did not conform to the Zoeppritz assumption of the incident

wave coinciding with the two transmitted and two reflected waves. The disconnect

is most pronounced in the case of the transmitted P wave, where the front energy

can be largely from a head wave.
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Appendix A

Classic finite-difference modelling

A.1 Introduction

The laws of nature are usually best described by differential equations which, for the

macroscopic world, apply to usually continuous materials, and usually have continu-

ous solutions. Analytic results (from calculus) give elegant solutions for these cases,

but for a quite limited set of problems. That leaves many problems which must have

their solutions estimated by using arithmetic operations on arrays of numbers. The

point of the finite-difference literature is to minimize the difficulties that occur when

continuous functions (where the function points are so close together the differences

are infinitesimal) are represented by arrays of samples spaced at finite intervals.

Most of the effort within finite-difference studies is focused on ‘schemes’ which solve

problems posed in the form of the differential equations of science. These schemes

are then evaluated for efficiency and accuracy by theoretical means, and then with

test runs. This study concentrates on these ‘schemes’, and how they are derived.

A.2 First derivatives

The essential difficulty of finite-difference procedures becomes obvious when a finite-

difference option must be chosen to represent a first derivative. A first derivative,

or slope, can only be defined as a difference in values between two points. Within
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calculus the slope at a point is obtained by using the definition of limits to shrink

the difference between the sample points, and the differences of the values at those

points, down to infinitesimal amounts. This may be written as

df

dx
= lim

∆x↓0

f(x + ∆x) − f(x)

∆x
. (A.1)

This procedure is not allowed with finite differences, because only the samples as

given are available. The most similar finite-difference equation may be given as

Dxf =
f(x + ∆x) − f(x)

∆x
, (A.2)

where the difference is made as small as possible, or one fixed sample length away.

This same equation may also be given as

Dxfn =
fn+1 − fn

∆x
, (A.3)

where the input and output values are given in terms of sample numbers instead of

their locations along the x axis.

Just one of the finite-difference first derivative options available is the forward

difference (to the point ahead) in equation A.3. Also valid is a backward difference

(to the point behind),

Dxfn =
fn − fn−1

∆x
, (A.4)

or a central difference (from the point ahead to the point behind),

Dxfn =
fn+1 − fn−1

2∆x
. (A.5)

The central difference clearly has less bias, but depends on values that are further

(in total) from the point where it will be used.
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The result of using the forward and backward finite-differences are shown graph-

ically in Figure A.1. The analytic curve which has been sampled is shown in black,

and the derivative of this curve at the same point is shown in blue. It is obvious that

Figure A.1: The backward finite-difference slope is shown in red, and the forward
finite-difference in magenta. These may be compared with the true analytic deriva-
tive plotted in blue.

the finite-differences shown are biased toward the slopes in the direction from which

they were calculated.

The central-difference calculation of equation A.5 is much closer to the analytic

result, as shown in Figure A.2.

A.3 Second derivative

A second derivative does not have a similar range of options, because the difference

of differences falls naturally at the positions of the original samples. The second
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Figure A.2: The central finite-difference slope is shown in red, but is shifted to go
through the point at which it applies. For comparison, the forward finite-difference
in magenta is also shown. The central finite-difference is obviously much closer to
the true analytic derivative plotted in blue.
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derivative may be given by

D2
xfn =

fn+1 − 2fn + fn−1

(∆x)2
. (A.6)

A.4 Elementary schemes

The most simple finite-difference ‘scheme’ then has a selected type of estimate for

each term of the differential equation, which makes it into a difference equation. The

desired output is usually the function throughout space projected to an advanced

time (a time-stepped result). In many cases (the explicit cases), the difference equa-

tion may be manipulated to solve for an advanced time term. In some cases the

advanced time terms may be implicit, which means appear in ways that are impos-

sible to solve for directly. Special techniques may then be required for the solution.

In either case, the functions must be successively stepped through further incre-

ments in time to get a full picture through space and time.

The final requirement is to test the scheme. The most important test is for

stability. Here amplitudes at a range of frequencies are examined, to make sure that

these amplitudes never become infinite. In linear stability analysis this amounts to

the exponential growth of at least some frequencies, which soon swamp all other

features of the model.

Another test is for consistency, to make sure that a decrease in the step size of

all variables leads to reduced errors.

Further tests usually entail comparisons with certain known solutions, usually

analytical solutions, to see if the results are close enough to what is expected.

An example of this methodology is given in Aki and Richards (1980) where the
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wave equation is represented by the simultaneous equation pair

∂u̇

∂t
=

1

ρ(x)

∂τ

∂x
, (A.7)

∂τ

∂t
= E(x)

∂u̇

∂x
, (A.8)

where E(x) = λ(x)+2µ(x) for P-waves, or E(x) = µ(x) for S-waves, particle velocity

u̇ = ∂u/∂t, and stress τ = E(x)∂u/∂x. For an initial attempt, this is translated to a

scheme with forward finite differences for t-derivatives, and central differences for x-

derivatives. Although this appears to be a very natural choice for an explicit scheme,

it turns out to be unstable. A scheme with central differences for both t and x is

then tried and found to be stable. The details of this scheme are laid out as

u̇j+1
n − u̇j−1

n

2∆t
=

1

ρn

τ j
n+1 − τ j

n−1

2∆x
, (A.9)

τ j+1
n − τ j−1

n

2∆t
= En

u̇j
n+1 − u̇j

n−1

2∆x
. (A.10)

Here the time sample variations are annotated as superscripts instead of subscripts.

This explicit scheme may be solved for the advanced time terms u̇j+1 or τ j+1 as

functions of past states and the material parameters.

A.5 Smoothing

Several additional operations may be utilized to supplement the basic finite-difference

choices. One which may be incorporated is smoothing in the space domain, a tech-

nique introduced by Lax. An example of its use is given in Press et al. (1992), where

the one way wave-equation

∂u

∂t
= −v

∂u

∂x
(A.11)
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is represented by a forward finite-difference in time, and a central finite-difference in

space. This equation is

uj+1
n − uj

n

∆t
= −v

(

uj
n+1 − uj

n−1

2∆x

)

. (A.12)

This may be solved for the advanced time term uj+1
n , but as with the Aki and

Richards example, it is shown to be unstable. A smoother applied to the uj
n term

on the time side (a gapped running average) gives a result called the Lax-Friedrichs

scheme

uj+1
n − 1/2(uj

n+1 + uj
n−1)

∆t
= −v

(

uj
n+1 − uj

n−1

2∆x

)

, (A.13)

and with appropriate sample rates is shown to be stable (Strikwerda, 2004).

A.6 High accuracy derivatives

A second technique used is to improve the accuracy of the differentiation, usually of

the spatial co-ordinates. This is done by using a range of samples that extend further

than normal from the estimation point. For example, an estimated second derivative

may make use of 5 samples rather than the minimal number of 3. Strikwerda (2004)

shows how the ‘difference calculus’ may be used to derive an appropriate weighting

for these samples.

Dablain (1986) also shows how spatial derivatives may be calculated to a higher

order by incorporating samples further from the estimation position. He uses a more

direct technique, and so the principle may be a little easier to see.

Dablain starts with the formulation of the Taylor series given as

f(x + ∆x) = f(x) + f ′(x)∆x + f ′′(x)
(∆x)2

2!
+ f ′′′(x)

(∆x)3

3!
+ . . . . (A.14)
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If this is added to a similar expansion for −∆x

f(x − ∆x) = f(x) − f ′(x)∆x + f ′′(x)
(∆x)2

2!
− f ′′′(x)

(∆x)3

3!
+ . . . (A.15)

the result is

f(x + ∆x) + f(x − ∆x) = 2f(x) + 2f ′′(x)
(∆x)2

2!
+ 2f ′′′′(x)

(∆x)4

4!
+ . . . . (A.16)

This may be rearranged so that

f ′′(x) =
f(x + ∆x) − 2f(x) + f(x − ∆x)

(∆x)2
− 2f ′′′′(x)

(∆x)2

4!
+ . . . . (A.17)

Comparing this with equation A.6 shows that the usual expression for the second

derivative is really the first term of an infinite series, and is accurate to second order

(fourth order derivatives are required for higher accuracy).

The next stage of accuracy requires that larger ∆x’s of the Taylor series be

utilized, and so doubling the difference used in equation A.16 gives

f(x + 2∆x) + f(x− 2∆x) = 2f(x) + 2f ′′(x)
(2∆x)2

2!
+ 2f ′′′′(x)

(2∆x)4

4!
+ . . . . (A.18)

Equation A.18 may then be divided by 16 and subtracted from equation A.16 to

eliminate the f ′′′′ term. This equation is then solved for the f ′′ term, as for equation

A.17, but the result will be accurate to fourth order. In terms of sample numbers,

the equation becomes

D2
xfn =

−fn+2 + 16fn+1 − 30fn + 16fn−1 − fn−2

12(∆x)2
. (A.19)

A.7 High accuracy time-stepping

The final finite-difference extension shown here demonstrates how the time stepping

side of the equation may be enhanced. This can be done if the problem equation
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itself can be differentiated to give time derivatives of the unknown function in terms

of spatial derivatives. An example of this is given in Strikwerda (2004), where the

one way equation with a source function term,

∂u

∂t
= −a

∂u

∂x
+ f, (A.20)

is differentiated in time to get coefficients for a Taylor series expanded in time. The

steps to derive the second derivative with respect to t term are as follows:

∂2u

∂t2
= −a

∂2u

∂t∂x
+

∂f

∂t
, (A.21)

∂2u

∂t2
= −a

∂

∂x

(∂u

∂t

)

+
∂f

∂t
, (A.22)

∂2u

∂t2
= a2 ∂2u

∂x2
− a

∂f

∂x
+

∂f

∂t
. (A.23)

The Taylor series in time may be written as

u(t + ∆t, x) = u(t, x) + ∆t
∂u(t, x)

∂t
+

(∆t)2

2!

∂2u(t, x)

∂t2
+ . . . . (A.24)

Then equation A.23, and the original equation A.20 are used to get

u(t + ∆t, x) = u + ∆t
[

−a
∂u

∂x
+ f

]

+
(∆t)2

2!

[

a2∂2u

∂x2
− a

∂f

∂x
+

∂f

∂t

]

+ . . . , (A.25)

or

u(t+∆t, x) = u−a∆t
∂u

∂x
+∆tf+a2 (∆t)2

2!

∂2u

∂x2
−a

(∆t)2

2!

∂f

∂x
+

(∆t)2

2!

∂f

∂t
+. . . . (A.26)

The third and sixth terms above may be combined, and with λ = ∆t/∆x, the

finite-difference equation is

uj+1
n = uj

n − aλ

2
(uj

n+1 − uj
n−1) +

(aλ)2

2
(uj

n+1 − 2uj
n + uj

n−1)−
a∆tλ

4
(f j

n+1 − f j
n−1) +

∆t

2
(f j+1

n + f j
n). (A.27)



187

This result is the Lax-Wendorf scheme, which is often much better than the

equivalent Lax-Friedrichs scheme. Dablain (1986) uses the same technique to ob-

tain a two-dimensional fourth order accurate time step from fourth order spatial

derivatives in x and z.



Appendix B

Non-standard finite-difference modelling

The basic theory of non-standard finite-difference (NSFD) modelling was set up by

Mickens, with some of his papers from the early nineties. An important reference is

the book (Mickens, 2000) which he edited, and where he provided the first chapter.

B.1 Exact finite-difference schemes

Mickens shows that an ordinary differential equation with an analytical solution may

be matched exactly by a difference equation with a sampled solution. This equation

is what he calls an exact finite-difference solution. This polynomial, with difference

and other terms, comes from the determinant of a matrix which includes a minimal

set of samples from all the independent analytic solutions of the differential equation.

Use of the analytic solution as a guide for the finite-difference solution is nothing

new. Standard finite-difference (SFD) texts always plot their solutions against ana-

lytical solutions as a final quality check. Mickens’ ‘exact schemes’, however, use the

analytic solutions directly. As it turns out, these schemes have close parallels, but

significant deviations from the SFD equations.

An incomplete set of Mickens’ SFD and exact solutions is shown in Table B.1.

All within this set make use of forward differences for first derivatives.

For all these examples, the two solutions have the same number of terms in

roughly the same forms. The deviations tend to be of three types:
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Eq.
Differential
equation

Finite-difference equation Exact FD equation

1 du
dt

= −λu uk+1−uk

h
= −λuk

uk+1−uk
(

1−e−λh

λ

) = −λuk

2 du
dt

= −u2 uk+1−uk

h
= −u2

k
uk+1−uk

h
= −uk+1uk

3 du
dt

= −u3 uk+1−uk

h
= −u3

k
uk+1−uk

h
= −

(

2uk+1

uk+1+uk

)

uk+1u
2
k

4 du
dt

= λ1u − λ2u
2 uk+1−uk

h
= λ1uk − λ2u

2
k

uk+1−uk
(

eλ1h
−1

λ

) = λ1uk − λ2uk+1uk

5 d2u
dt2

= λdu
dt

uk+1−2uk+uk−1

h2 = λ
uk−uk−1

h

uk+1−2uk+uk−1
(

eλh
−1

λ

)

h

= λ
uk−uk−1

h

6 d2u
dt2

+ ω2u = 0
uk+1−2uk+uk−1

h2 + ω2uk = 0
uk+1−2uk+uk−1
(

4
ω2

)

sin2

(

ωh
2

) + ω2uk = 0

7 du
dt

= w uk+1−uk

h
= wk

uk+1−cos(ωh)uk
(

sin(ωh)
ω

) = wk

dw
dt

= −ω2u wk+1−wk

h
= −ω2uk

wk+1−cos(ωh)wk
(

sin(ωh)
ω

) = −ω2uk

Table B.1: Exact finite-difference schemes for ODEs, compared with standard
finite-difference schemes. For the two equations of case 7, note the difference be-
tween the variable w and the frequency ω.
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• The denominators of the derivative terms are usually not h (h = ∆t), but

instead some function of h, depending on the original equation. This is the

case for all of these examples except for the second and third. The function is

close to h (to the order of h2). In other words, the smaller h is set, the less the

modified function is required.

• Sometimes one of the terms in the numerator of a derivative is multiplied by a

function. This is shown in the seventh example. The modification is close to 1

(to the order of h2).

• Nonlinear terms are represented by non-local expressions, or non-local differ-

ence expressions. This may be seen in examples 2, 3, and 4, where x2 and x3

do not appear as x2
k and x3

k , but as more complex expressions.

B.2 Non-standard finite-difference schemes

The rationale of the NSFD method, then, is to improve general finite-difference

schemes by including some of the ‘exact’ forms. Exact results would not be expected

from the new schemes, but higher efficiency and better accuracy would be. As with

standard schemes, testing would determine whether the new forms were better. This

testing has been encouraging for many cases.

Mickens encapsulates his experiences with NSFD schemes into 6 rules which he

has found to be useful. He then goes on to show examples of ordinary and partial

differential-equations where NSFD based schemes have given superior results, and

gives the rationale for his choice of particular schemes.
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He usually modifies the denominators of the derivative terms according to the

expected form of the solution. For harmonic type equations, denominators of the

type in example 6 are used; and for exponential type equations, denominators of the

type in example 1 are used.

Mickens discovered that important benefits can be found with the use of appro-

priate ‘non-local’ terms. The obvious symmetry of example 2 shows how the correct

choice of the non-derivative expression makes the usual adjustment of the derivative

expression unnecessary. However, example 3 shows that the expression may become

quite complex.

A successful example of a NSFD equation is one set up for a combustion model

du

dt
= u2(1 − u). (B.1)

The SFD equation would be

uk+1 − uk

h
= u2

k − u3
k, (B.2)

whereas Mickens’ NSFD equation is

uk+1 − uk
(

1 − e−h
) = 2(uk)

2 − uk+1uk − uk+1(uk)
2. (B.3)

To the right of the equal sign, the net of the first two terms makes up a square with

amplitude 1, and the last term is a cube with amplitude 1, just as the SFD scheme

has. The exact formulation for these terms is designed to give a finite-difference

solution with the same zeros as the analytic solution. In particular, when u reaches

1, the slope is exactly zero. Note that this is an explicit scheme, because it is easily

solved for uk+1.
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A second example of a NSFD scheme is a solution for a linear advection-diffusion

equation (normalized). This partial differential equation is

∂u

∂t
+

∂u

∂x
= b

∂2u

∂x2
, (B.4)

and the scheme is

uj+1
m − uj

m

∆t
+

uj
m − uj

m−1

∆x
= b

[uj
m+1 − 2uj

m + uj
m−1

b(e∆x/b − 1)∆x

]

. (B.5)

This was constructed quite simply, because

∂u

∂t
+

∂u

∂x
= 0 (B.6)

has an already exact solution

uj+1
m − uj

m

∆t
+

uj
m − uj

m−1

∆x
= 0, (B.7)

and

∂u

∂x
= b

∂2u

∂x2
, (B.8)

has an exact solution

um − um−1

∆x
= b

[um+1 − 2um + um−1

b(e∆x/b − 1)∆x

]

, (B.9)

and the two solutions were just combined.

B.3 Non-standard finite-difference wave equations

The lead in using NSFD schemes for the wave equation has been taken by Cole.

Chapter 3 in Mickens’ book was written by Cole, and shows how he has used NSFD

techniques to model the wave equation in one, two, and three dimensions.
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The starting point for wave equation NSFD modelling is the one-dimensional

one, where it is shown that for a given wavenumber and frequency, the sample rate

∆t may be replaced by sin(ω∆t/2), and the sample rate ∆x by sin(k∆x/2). This

conforms with Mickens’ first observation of his exact scheme changes. Cole shows how

a truncated single frequency wave train propagated through a narrow high velocity

barrier appears much closer to expectations with the NSFD algorithm compared to

the SFD algorithm.

Cole continues to two dimensions by combining the normal Laplacian with an-

other oriented at 45 degrees. The combination begins with a variable weighting, but

is then optimized. The accuracy of this combination he calculates to be of order

8, as compared to order 2 for the SFD scheme. In a similar fashion he extends the

method to the full three dimensions.

At the end of the chapter, Cole shows how the SFD Yee algorithm for Maxwell’s

equations may be improved by using a NSFD version. The discussion here is for an

harmonic (single frequency) case, but apparently works very well for the range of

frequencies that are required to make up a signal with a finite length in time. He

also claims that NSFD techniques may be used to improve the propagation of broad

band signals as well.



Appendix C

Definitions used in finite-difference modelling

C.1 Time-stepping

Finite-difference techniques are the natural way to use the sampled data required for

digital computers to simulate the infinitesimal differences used in classical analysis.

Differences and differences of differences, then, are used to simulate first and second

derivatives within a differential equation. The questions of how finely spaced the

sampling must be, and how the differences must be related to the original sampling,

determine the accuracy which results from the finite-difference approximations.

The term “time stepping” or “time marching” indicates that the differential equa-

tion will be used to show the form the function takes as time progresses. For the

finite-difference method, the function will be determined at a succession of time

points called steps. The original function defined in “n” space with initial condi-

tions, will then be used to create an “n+1” dimensional function, with time as the

extra variable.

In the practical terms of the wave-equation, it will show how waves travel through

a medium in time.
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C.2 Errors - instability and dispersion

The problems that result from finite-difference modelling are mostly either insta-

bility or dispersion. In some terms they may be considered to result from opposite

causes, and the best approximations result from a selection of parameters which steer

between the two hazards.

Instability is a disastrous type of error which eventually overwhelms the useful

results from the model. It is characterized by an exponential growth of amplitudes,

usually at the highest frequencies. The error may take some time to become evident

if the amplitudes of the problem frequencies begin at very low levels.

Dispersion is a more subtle error characterized by a spreading out of energy

packets. It may be quantified as a difference in the propagation velocities of high and

low frequency signals, or components of signals. Dispersion occurs naturally in real

materials, usually with low frequencies lagging the high frequencies. Unfortunately,

“numerical dispersion” or “grid dispersion” causes a lag of high frequencies from low

frequencies.

C.3 Order of accuracy

In the finite-difference world, a solution scheme is usually attributed with an ‘order

of accuracy’. This accuracy can be associated with a particular sampling interval

required in the solution. As an example, the finite-difference solution of the wave-

equation requires sampling in space and time, and so a particular solution might be

characterized as ‘fourth order in space’ and ‘second order in time’.

To determine an order of accuracy of a finite-difference equation, or part of an
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equation, it must be expressed in terms of an infinite Taylor series in powers of the

sample rate. If the spatial sample rate is ∆x, for example, the Taylor series must be

expressed with terms of (∆x)n. The order of accuracy is then the power of the last

term before those terms of the series which must be truncated. Examples are given in

section A.6, where equation A.17 shows why the standard finite-difference operator

for the second derivative is second order, and gives the fourth order operator for the

second derivative in equation A.19, and how it is derived.

It may be seen with this example that higher order accuracy is obtained by

considering a greater length of curve.

C.4 Explicit vs. implicit

Finite-difference schemes may be sorted into those with explicit or implicit solutions.

An explicit scheme is the most simple to calculate because the advanced or stepped

variable appears only once, and its value can be found by an algebraic manipulation

of the other terms in the equation . The time-stepped wave equation as it is treated

in this thesis is explicit, and the type of equation developed is shown in Figure 2.18.

The advanced time step is denoted by the time t + ∆t.

An implicit scheme has the advanced variable appearing in the scheme more that

once, and usually can not be solved for with algebra. It appears to require the answer

in order to compute the answer.

The advanced variables in an implicit scheme may be found as a solution to a set

of n simultaneous equations where, for the case of one spatial dimension, n is the

number of samples in the line. Specifications of the boundary conditions must also
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be included as part of the simultaneous equations.

Solutions for these simultaneous equations are not as difficult as they first appear,

because the relevant matrix is very sparse and has the same terms appearing along

the main diagonals. An implicit scheme with the displacement at advanced time

appearing in three terms will be ‘tri-diagonal’, and have repeating coefficients along

the main diagonal and the two adjacent diagonals. A simple example of this type

of scheme is given in Strikwerda (2004) equation 1.6.1, and the solution technique is

given in section 3.5.



Appendix D

Non-staggered grid corrections

Finite-difference displacement modelling in two dimensions was originally done with

the two components of the displacement defined at the same points, for example in

Kelly et al. (1976). Figure D.1 shows the layout of this system for the z component

acceleration (Contrast with Figure 3.2 for the staggered grid). The acceleration

contributions from the z displacements (offset in either the x or z directions) are the

same as with the staggered grid.

However, with this non-staggered grid, the contributions from the x displacements

are a full grid spacing away in both the x and z directions, in contrast to the staggered

grid system where they are only one-half a spacing away.

Derivation of the non-staggered grid corrections requires changes to some of the

formulae in section 3.3. In particular, the cross-term DxzUx operation on the expo-

nential mono-chromatic plane wave, using the points shown in Figure D.1 results in

equation D.1. Here ε is defined by equation 3.16.

DxzUx =
sinθ

(2∆x2∆z)
(

eiε(z+∆z,x+∆x,t) − eiε(z+∆z,x−∆x,t) − eiε(z−∆z,x+∆x,t) + eiε(z−∆z,x−∆x,t)
)

. (D.1)

This equation may be compared with equation 3.28.

The same sequence of steps following equation 3.28 may be used to arrive at the
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x−∆ x     x     x+∆ x

z+∆ z

    z     

z−∆ z

Figure D.1: The non-staggered grid. The arrows show all the relative positions and
components of the displacements which will determine the second-order z acceler-
ation at the centre. The four contributing x displacements are dark coloured, and
surround the output point a full grid spacing away in both directions.

equivalent of equation 3.33, and in this way equation D.2 may be reached.

DxzUz = sinc (kx∆x) sinc (kz∆z)
∂2Ux

∂x∂z
. (D.2)

Again, it may be assumed that the relevant wavenumbers are contained within

±Nyquist. Then the relevant values of k are contained within [−π∆x−1, π∆x−1], and

it follows that the sinc function arguments fall within [−π, π] radians. Figure 2.2

shows that the sinc functions go right to zero in this range. This means that away

from the principle axes directions, higher wavenumbers may be severely attenuated

by the non-staggered grid model, and the Nyquist wavenumbers reduced close to

zero.

The severe attenuation, and thus dispersion, in the off-axes directions, explains

why the staggered grid models became so popular.



Appendix E

Finite-difference modelling formulae

There are a number of formulae that should be considered at the beginning of a finite-

difference modelling project. They apply to finite-difference modelling in general,

although the choice of an algorithm may require fine tuning of some parameters.

The first determining factor is usually the frequency range of the seismic wavelet

that will be propagated. The maximum frequency required here must be translated

into the maximum wavenumber required, because numerical dispersion increases

strongly with increasing wavenumber. The translation formula is

Wmax =
fmax

Vmin
, (E.1)

where W is a wavenumber, f is a frequency, and V is a velocity.

An example of a wavelet spectrum is given in Figure E.1. The wavelet is a 30 Hz.

Ricker, and the peak energy appears at 30 Hz in the Figure. The highest frequency

in the wavelet is where the smooth wavelet disappears into the numerical noise at

about 100 Hz.

The wavenumber spectrum translates directly from the frequency spectrum with

the same formula as equation E.1. The translation depends on the velocity of the

material in which the wavelet propagates, and the highest wavenumber in the spatial

frequency depends on the lowest velocity in the model.

As an example, if only a pressure wave propagating at 2000 m/sec. is being

modelled, the wavenumber spectrum in space is shown in Figure E.2. If a shear
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Figure E.1: Frequency spectrum of a zero-phase Ricker wavelet in time. The highest
wavelet frequency is at about 100 Hz.

wave propagating at 1000 m/sec. is also being modelled, its wavenumber spectrum

in space is shown in Figure E.3. It may be seen that the spatial sampling is

sufficient for the pressure wave (at .05 cycles/m.), but not for the shear wave.

The second step is to determine the maximum fraction of the Nyquist wavenum-

ber that may be modelled with acceptable dispersion. It may be necessary to trans-

late the figure grid points per wavelength to a fraction of Nyquist wavenumber. The

formula is

fraction = 2/n, (E.2)

where fraction is the maximum allowable fraction of the Nyquist wavenumber, and n

is the number of grid points required per wavelength. The number grid points required

per wavelength has been suggested as 10 in Virieux (1984) for uncorrected modelling,

and 5 for Levander modelling (Levander, 1988). These translate into fractions of

0.2 and 0.4. With correction filters of size 5 by 5, a fraction of 0.5 is usually quite

practical, and sometimes 0.75 works well.
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Figure E.2: Wavenumber spectrum of a pressure wavelet (2000 m/sec.) in space.
The highest wavenumber is at about .05 cycles/m.
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Figure E.3: Wavenumber spectrum of an shear wavelet (1000 m/sec.) in space. The
highest wavenumber is above Nyquist when the sample rate is 6 m.
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Choice of these minimum parameters may depend on the details of the model. A

thin layer of the lowest velocity material may cause minimal dispersion because of

the few steps required to cross it.

The spatial sample rate may then be determined from

∆x =
2 ∗ fraction

Wmax

, (E.3)

where ∆x is the spatial sample rate.

The final step is to choose a time sample rate to provide stability. For general

second-order finite-difference models, and for the correction filter modified models,

the time sample rate may be chosen to meet the criterion specified in equation 3.73.

For Levander style models the time sample rate must be made slightly smaller again,

and the formula is

∆t <
∆x

v

√

3

8
, (E.4)

as described in Lines et al. (1999). This means that Levander models must use a

sample rate that is approximately 15% smaller than other models, and the slightly

lower efficiency and higher dispersion act against some of the Levander advantages.



Appendix F

Colour display of wavefields

Most of the wavefields in this thesis have been displayed in colour, with the colour

code shown in the bottom right corner. There are two types of coding. The first code

shows displacement direction, with the highest amplitude displacement having the

most intense colour. The second code shows the amount of stored potential energy,

with one colour pair showing compressional energy, and another colour pair showing

shear energy.

The displacement coding used in shown in Figure F.1. The red, green, blue

proportions were chosen mainly for ease of implementation, and all three colours are

present at most angles. An example of this type of display is Figure 4.31.

A more discriminating system might have colours combined in pairs rather than

triplets. This has not yet been attempted.

The potential energy colour coding system distinguishes pressure and shear en-

ergy by calculating the divergence and curl of the displacement field. If U is a plane

pressure wave with wave form F propagating at an angle θ (as in Figure 3.1) its

displacements are given by

Uz = cosθF ((zcosθ + xsinθ)k − ωt), (F.1)

Ux = sinθF ((zcosθ + xsinθ)k − ωt). (F.2)

By contrast, if U is a plane shear wave with wave form G propagating at an angle
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Figure F.1: The coding details of displays coded by displacement. The inner ring
shows how colour relates to displacement direction. The outer three coloured curves
in polar coordinates show the level of red, green and blue combined for each direction.
The black circular ring shows level zero.
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θ (as in Figure 3.3) its displacements are given by

Uz = sinθG((zcosθ + xsinθ)k − ωt), (F.3)

Ux = −cosθG((zcosθ + xsinθ)k − ωt). (F.4)

Then the divergence and curl of the pressure wave are

∇ · U =
∂Ux

∂x
+

∂Uz

∂z
= F ′, (F.5)

∇× U =
∂Ux

∂z
− ∂Uz

∂x
= 0. (F.6)

The curl in this two dimensional case is taken to be a scalar, consisting of the y

component of the curl. The x and z components are zero because the y displacement

is zero, and the displacement variations with y are zero.

By contrast, the divergence and curl of the shear wave are

∇ · U =
∂Ux

∂x
+

∂Uz

∂z
= 0, (F.7)

∇× U =
∂Ux

∂z
− ∂Uz

∂x
= G′. (F.8)

Again, the curl has only one component, and may be considered a scalar.

These results indicate that a plot of the divergence of the displacement field will

show a gradient only where the displacements are caused by pressures. Similarly,

a plot of the curl will show gradients only where the displacements are caused by

shears. The two plots may be combined into one colour coded display if the two

scalar values are treated as displacements. They may then be plotted with the

displacement colour code described above.

The key for the pressure/twist plot is shown in Figure F.2. The colours are the

same as the Displacement plot in Figure F.1, except for a 45 degree rotation. With
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Figure F.2: The coding details of the interpreted pressure/twist plot.

this orientation pressure variations display as red and green, and shear variations

display as blue and yellow. Areas with combinations of pressure and shear energy

will display intermediate colours. An example of this type of display is Figure 4.33,

corresponding to Figure 4.31.



Appendix G

Initializing wavefields

There are two two ways in which sonic energy was introduced into the model envi-

ronment. The first way, called the time source, was by adding to the existing model

displacements within a very small area, but over an extended time period. The sec-

ond way, called the space source, was by specification of all the displacements within

the model at two times: time 0 and time 0 + ∆t.

The advantages of the time source is that it can simulate quite accurately an

explosive energy source, and it may be used near any boundary. The disadvantages

are that it takes additional time for the energy to be introduced, it applies a derivative

to the wavelet form, and sometimes high frequency artifacts may be created. It is

very useful for simulating an explosive source near the surface. Figure G.1 shows

how a simulated dynamite source may be introduced into a staggered grid model.

The displacements used were not impulsive, but took the smoothly varying positive

and negative values of a band limited pulse.

An example of a wavelet used for a time source is the zero-phase Ricker wavelet

displayed as the top curve in Figure G.2. The centre curve is a perfect derivative

of this wavelet, and the bottom curve is an actual propagating wavelet as recorded

within the model. It may be seen that the resulting wavelet is very close to the

derivative of the input wavelet. This may be expected because in Figure G.1, the

two opposing sources are both allowed to propagate in both directions, and this is

very close to differentiating the wavelet.
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Figure G.1: The simulated dynamite source, with displacements directed uniformly
about a centre.

Figure G.2: The top curve is a typical time source wavelet. The centre curve is the
derivative of this wavelet, and the bottom curve is an actual resulting wavelet as
recorded in the model.
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The advantages of the space source introduction are the close control of the

wavelet form, and the time saved. The disadvantages are the elaborate preparations

required to construct the time pair, and the requirement for a sizable constant ve-

locity zone within the model where the wavelet can be introduced. It is very useful

for testing, and for generating Rayleigh waves.

A space source time zero wavelet ring may be constructed by specifying, at each

displacement location within the wavelet range, the displacements appropriate for

the component, the distance from the centre, and the distance from the wavelet end.

The values must also be scaled to represent the dropoff associated with a cylindrical

wave. The 0 + ∆t ring may be constructed using the same principles, but advanced

in an outward direction by the distance v∆t.

An example of a space source is shown in Figure 3.11, which shows a combination

of a pressure ring and a shear ring in a colour displacement plot. Figure 3.10

shows the same combination of rings but with a vector plot. The final wavefront

displacements which were initiated in this way are shown in Figure 3.12, among

others.



Appendix H

Common boundary conditions for edges

Specification of boundary conditions for finite difference modelling consists of choos-

ing displacement values for points beyond the limits of the region being modelled.

One additional point in each of the displacement directions is required for the most

basic modelling, because the finite difference operators involve at least one displace-

ment in each offset direction from the output point of the calculation. So output

points on the boundary then require input points from beyond the boundary. These

external points cannot themselves be calculated by the same means as the internal

points, and so special methods must be used.

The easiest specification for external points is to make their displacements zero.

Zero displacement mean the external medium is perfectly rigid, and it reflects all

impinging energy directly back into the model. This may be a good choice for some

applications.

Another form of boundary condition, called here a transmitting boundary, is

mentioned in chapter 5. These boundaries are required where the model must be

continuous with an unbounded region of featureless space.

This appendix is concerned with two types of boundaries which are sometimes

useful: the symmetric boundary and the free surface boundary. The symmetric

boundary does not represent a physical boundary, but may sometimes be used to

cut the modelling effort in half. The free surface boundary represents the real surface

of the earth, and it must be properly represented for many seismic applications.
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The symmetric boundary is useful where the medium to be modelled is symmet-

ric, and the energy source is also symmetric. A model of plane layers is an example

of symmetry in the medium, and a compression (explosive) source is an example

of symmetry in the source. A symmetric boundary requires that the correct dis-

placements be assigned to the external columns shown on the left of Figure H.1.

1 2 3 4 5

1 2 3 4 5

Figure H.1: The staggered grid set up with a symmetric boundary on the left side.
The symmetric source is normally positioned at the green line.

The black arrows represent the internal portion of the model, and the blue arrows

on the left represent the external displacements which must be determined. Before
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each time step, the horizontal displacement in column 2 must be duplicated with

the opposite sign in column 1. Also the vertical displacement in column 3 must be

duplicated with the same sign in column 1. These steps may be seen to be symmetric

about the vertical displacement in column 2, and this is where the pressure source

must be centered. If the finite-difference operators require more points, the symmetry

may be extended to further points across the boundary.

The free-surface boundary is defined in Figure H.2 as the the line between the

internal black arrows, and the external blue arrows at the top. Rather than try to

1

2

3

4

1

2

3

4

a

b c

d e

f

Figure H.2: The blue boundary positions which must have displacements calculated
to represent a free surface, positioned at the green line.

represent the external displacements as caused by very low velocities and densities,

these displacements are designed to provide the zero stress conditions which give

the same results. The stress equations, which must be made equal to zero by the

appropriate choice of external displacements, are

σxz = µ(
∂Uz

∂x
+

∂Ux

∂z
) = 0, (H.1)

σzz = (λ + 2µ)
∂Uz

∂z
+ λ

∂Ux

∂x
= 0. (H.2)
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These equations may be found in Levander (1988), where they are used in the split

step modelling method.

The practical use of equation H.1 is illustrated with the abcd block in Figure

H.2. It requires that d must be made equal to a + c − b. This means that the abcd

block may be twisted, but not distorted.

Similarly, equation H.2 applies to the cdef block. It requires that f must be

made equal to c + (e − d)λ/(λ + 2µ). If the medium was a fluid (µ = 0) it would

mean maintenance of a constant area. In an elastic medium the imposed external z

displacement at f is somewhat reduced compared to the displacement at c.



Appendix I

Zero-phase filters from a Fourier transform

The most general way to design a zero phase filter is to start with a Fourier transform

equation which has its space domain origin in the centre. The cosine (real) terms of

the matrix will then be symmetric about the centre, and the sine (imaginary) terms

will be anti-symmetric. The real terms of the output spectrum will be the desired

amplitude spectrum, and the imaginary terms may be specified as zero, so phases

cannot be shifted, and the amplitude spectrum is not affected. Figure I.1 shows a

Fourier transform equation, and the symmetry of the transform matrix may be seen.

An advantage to this type of design is that it may be used to design a non-symmetric

filter to compensate for an internal boundary.

A more efficient way to design a zero phase filter is to assume initially that it will

be symmetric. The origin of the Fourier components in the matrix may be assumed

to be at the left edge, and the centre of the filter at the top of the vector. The

full forward Fourier analysis may then be duplicated by doubling the amplitude of

all the filter coefficients except for the centre (top) coefficient. This applies to the

transform shown in Figure 2.22. The optimal inverse matrix equation may be set up

by doubling all the terms of the Fourier series except for those on the axis (leftmost).

The zero phase filter may then be constructed by reversing the order of the output

time sequence (from the second to the end), and attaching it to the front of this

same output filter. This procedure would apply to the operation shown in Figure

2.24.
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Figure I.1: The general matrix equation for the design of a zero phase filter. The
Fourier components are centered, and both cosine and sine terms are included. The
sine terms (S’s) may be set to zero.
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A similar procedure may be set up for the design of optimal two-dimensional

filters.



Appendix J

Correction filters for unstable conditions

Most of the analysis done in this thesis assumes that the sampling parameters have

been chosen for stability before corrections are made. Correction filters may be

designed to compensate for inherently unstable parameters, and this is discussed to

a limited extent in this section. This type of correction filter might prove useful in

a model with a limited extent of high velocity material, and where high accuracy is

required in other areas. The discussion here will be limited to the one-dimensional

case.

In the one-dimensional case, ∆t < ∆x/v ensures that a model is stable but

dispersive. The correction filter reduces this dispersion. In section 2.6 the correction

filter design procedure is shown, and example filters are shown in Figures 2.26 and

2.27. Note that for wavenumbers above the design top, the correction is conservative,

and insufficient to prevent dispersion. This means that wavenumbers here remain

attenuated, and fade out of the model as required for stability.

Two examples show how this design procedure works where the parameters are

inherently unstable. The first example is where ∆t is exactly twice what it should

be (∆t = 2∆x/v). This case has a perfect solution, and is discussed in section

2.4. Figures 2.19 and 2.20 from that section show the corrections required in the

wavenumber and spatial domains. The filter as derived by the optimising program

is shown in Figure J.1. This derived filter is the same as the ideal, except for terms

on the order of 10−15, shown for terms 1 and 5 in the Figure.
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Figure J.1: The optimizing response of the program where the exact response is
known, unstable case. The spatial coefficients appear are expected to be .25, .5, .25
as the centre values in the Figure show. The first and last terms of the filter are very
close to zero. The parameters are: v = 1500 m/sec, ∆x = 3m, and ∆t = .004 secs.

The second example is one which has no exact solution. A first attempt to design

a correction using the princples from section 2.6 gives the result shown in Figure J.2.

Here the stabilizing effort would appear to be less onerous because the time sample

rate is smaller than the first example, and therefore closer to stability. Instead, the

black design curve does not suppress the high wavenumber energy sufficiently. This

is most notable at the Nyquist frequency, where the amplitudes should be suppressed

to almost 0.2, but are left at more than 0.4. Note that kmax, as specified in equation

2.24, is plotted as the vertical red line, and that all wavenumbers to the right of this

line should be reduced to below the black line levels. This shows how the conservative

result of the techniques used for stable cases does not work well for the inherently

unstable cases.
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Figure J.2: The black curve shows the optimizing response of the program for a gen-
eral unstable case. The program here has designed a filter which does not attenuate
higher wavenumbers sufficiently. For stability, all wavenumbers to the right of the
red (kmax) line must have their amplitudes below the levels of the blue curve. The
parameters are: v = 1500 m/sec, ∆x = 3m, and ∆t = .003 secs.
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At this point a non-standard co-ordinate origin is introduced, which sheds some

light on several aspects of optimal correction filter design. The origin of spatial

co-ordinates used to this point may be considered to be the FFT standard. Here

the origin coincides with the position of one of the data points. An equally logical

location for an origin is exactly half way between sampled data points. These choices

are shown on the diagram in Figure J.3. The most critical features which the choice

FFT
origin

nonFFT
origin

Figure J.3: A display of how the choice of origin with respect to the sample positions
affects some critical forms. A standard FFT origin is on the left, and a non FFT
origin on the right. It affects the assignment of the Nyquist frequency as a cosine or
sine, and the type of symmetry for zero-phase wavelets.

of origin affects are the assignment of the Nyquist frequency as a sine or cosine, and

the type of symmetry of a zero-phase wavelet.

The standard FFT origin assigns zero to the center of a sample position. All

the cosine (real) terms are one here at the origin, and in particular the Nyquist

frequency (with extremes on every sample) fits the cosine definition. The cosine

terms of the Fourier transform with the FFT convention number two more than the

sine terms. This is because the DC and Nyquist terms both have amplitudes of one
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at the origin, consistent with the values of cos(0) and cos(Nyquist) there (see the

cosine terms in table J.1). The sine terms of these same frequencies are uniformly

zero, and therefore two fewer terms are required (see the sine terms in table J.1).

Cycles/length DC 1 2 3 4 ............ n/2-3 n/2-2 n/2-1 n/2
Cosines x x x x x x x x x
Sines x x x x x x x

Table J.1: The required frequencies for a standard FFT transform of length n.

Cycles/length DC 1 2 3 4 ............ n/2-3 n/2-2 n/2-1 n/2
Cosines x x x x x x x x
Sines x x x x x x x x

Table J.2: The required frequencies for a non-standard (shifted origin) FFT trans-
form. Note the Nyquist frequency (n/2) is a sine.

Also, The following observations may be made about the zero-phase (symmetric)

filters within this convention.

1. Their output position (at the center) coincides with the input sample positions.

2. They are the ideal correction filters for second derivative operations, where the

output points also coincide with the input sample positions.

3. The filters may be used to either reduce high frequencies (by averaging) or

enhance high frequencies (with a decon effect).

4. They have an odd number of filter coefficients.

5. They make natural correction filters for inherently stable models.

The non FFT origin assigns zero to a position half way between the sample

positions. The Nyquist frequency here is a sine term because its extremes are shifted
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one half sample spaces from the origin. There are an equal number of cosine and

sine terms in this system, because the significant Nyquist term is a sine instead of a

cosine (see table J.2).

The following observations may be made about the zero-phase filters within this

convention.

1. Their output position is half way between the input sample positions.

2. They are the ideal correction filters for first derivative operations, where they

compensate for the intermediate output position of these operations.

3. The filters are most naturally used to reduce high frequencies (they have a

natural averaging effect).

4. They have an even number of filter coefficients.

5. They make natural correction filters for inherently unstable models, with their

averaging tendency at the highest frequencies.

There are two arguments to show why the non FFT origin convention is effective

for unstable correction filters. The first is the implicit averaging action of the near

samples, mentioned above. The second is a more elaborate argument based on

whether the Nyquist frequency is a cosine or sine term. With either discrete Fourier

transform, all the sine terms must be minimized to ensure symmetry about the zero

axis. With the standard FFT convention, the Nyquist and other high frequency

cosine terms must be explicitly zeroed, separately from the sine terms. With the

non FFT convention, most of the corresponding frequencies near Nyquist are already

zeroed along with the zeroing of the other sine terms.
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An example of a non FFT design for an unstable case is shown in Figure J.4.

The 7 point correction filter designed here has a moderately good fit throughout the
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Figure J.4: The black curve shows the 7 point non FFT optimizing response of the
program for a general unstable case. Construction is by autocorrelation of a pure non
FFT design. It may be seen that this design style results in an effective stabilizing
filter for the wavenumbers beyond kmax, marked by the red line. This figure may be
compared with Figure J.2, where the parameters are the same.

design zone, and adequately suppresses the noise wavenumbers beyond kmax. This

filter is actually an autocorrelation of a filter designed by non FFT principles. The

desired response of the original filter was specified as the square root of the ultimate

design. This filter was then truncated and autocorrelated, which resulted in the

necessary amplitude response and the odd number of coefficients.

The filter designed here was tested for stabilization of a real wave. The wave

was first propagated with no corrections, and the familiar instability artifacts may

be seen in Figure J.5.

The correction filter as designed and displayed in Figure J.4 was then applied,
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Figure J.5: Wave propagation for a general unstable case, uncorrected for 6 steps.
The unstable zones appear at the ends of the defined wavelet, as in Figure 2.17

and the model was propagated for 100 steps and displayed in Figure J.6. The result

is stable, although there is some distortion of the wavelet.
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Figure J.6: Wave propagation for a general unstable case, corrected with the filter
given in Figure J.4. The parameters are: v = 1500 m/sec, ∆x = 3m, and ∆t = .003
secs., and the wave is propagated for 100 steps.



Appendix K

Formulae derivations for uncorrected time

stepping

In chapter 2 a formula was derived which gave an implicit definition of a wavenumber

dependent velocity. This is the velocity with which an uncorrected time-stepping

algorithm would propagate a wave component of that wavenumber. An explicit

definition of this velocity is derived here, although there is minimal insight to be had

from it, and it is not likely to be useful to many modellers.

The implicit formula is 2.21, repeated here for reference,

v(k) = v
sinc(k∆x

2
)

sinc(kv(k)∆t
2

)
. (K.1)

The sinc functions may be expanded to obtain

v(k) = v
sin(k∆x
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and

v(k) =
2

k∆t
arcsin

(

v
∆t

∆x
sin

(

k
∆x

2

)

)

. (K.5)
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A second equation which appears when the uncorrected time-stepping algorithm

is used, is the approximate velocity with which a wavelet appears to travel. This is

known as the group velocity, and is given by the formula vg = dω/dk. If the phase

velocity is given by the implicit equation 2.21, or K.1, the group velocity may be

derived from it. First assume that the wave frequency is dependent on k, given by

the formula

ω(k) = kv(k), (K.6)

then v(k) is defined by the formula

v(k) = v
sinc(k∆x

2
)

sinc(ω(k)∆t
2

)
, (K.7)

which has ω(k) in the place of kv(k). Then

ω(k)sinc
(ω(k)∆t

2
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= kvsinc
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, (K.8)
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Then, after taking the derivative,
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and

vg =
dω(k)

dk
= v

cos(k∆x
2

)

cos(ω(k)∆t
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)
. (K.12)

This is the formula used in Figures 2.8 and 2.10.


