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ABSTRACT 
 

This work develops and tests microseism event-classification techniques. Research 

was performed in collaboration with CREWES using microseismic data from Cold Lake, 

Alberta that was provided by Imperial Oil Ltd. The objective was to develop passive-

seismic signal classification algorithms capable of precisely and automatically 

distinguishing between microseismic events warranting further investigation from noise 

events that are generally not of interest. Novel methods involving frequency-filtering, 

event-length detection, and statistical analysis were developed.  

After extensive testing, it was found that developed statistical analysis algorithms 

performed best. Principal components analysis was applied to statistical analysis algorithm 

outputs to optimize classification. 

 Two MATLAB® implementation schemes were created. The second, most recent, 

application yielded classification accuracies between 90% and 99.5% when tested on a 

wide range of datasets. Given that up to tens of thousands of microseismic events are 

detected daily at Cold Lake, this work could have significant future impact.   
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CHAPTER ONE: Introduction 

1.1  Passive-Seismic Monitoring   

Passive-seismic monitoring listens for small earthquakes (microseisms) that can  

occur when there are stress changes in a reservoir (Maxwell and Urbanic, 2001). As 

opposed to conventional surface-seismic acquisition techniques, passive-seismic 

monitoring does not employ a source to create elastic waves. Instead, spontaneous 

subsurface microseismic events are detected with sensors when they occur.    

In oil fields, passive-seismic monitoring has various applications (Maxwell and 

Urbanic, 2001). When hydraulic fracturing occurs, microseismic signal characteristics can 

be analyzed to create images that may lead to inferences of the fractures’ location, size, 

orientation, complexity, and temporal growth. Microseismicity is also used in deformation 

monitoring of rock masses to detect and locate casing failures in producing wells. Other 

applications of microseismic monitoring include the mapping of fluid injection, fluid 

movements, compaction strains, and thermal fronts. Passive-seismic monitoring can also be 

used for structural mapping (Duncan, 2005).      

Various exploration and production companies are currently involved in 

microseismic monitoring. Some examples include Shell Canada and Imperial Oil at the 

Peace River and Cold Lake heavy oil fields, respectively, in Alberta, Canada; and Phillips 

Petroleum and Shell International Exploration and Production at the Ekofisk and Valhall 

offshore oil fields, respectively, in the Norwegian sector of the North Sea.  
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1.2  Cold Lake Oil Sands 

1.2.1 Background 

In the eastern portion of the Western Canadian Sedimentary Basin, there is a trend 

of heavy oil accumulations that were deposited during the early Cretaceous geologic period 

(Isaac, 1996). The oil sands deposit at Cold Lake, Alberta, is located in the east-central part 

of the province, and is one of three such deposits in Alberta, as shown in Figure 1.1 

(Imperial Oil Ltd., 2006a). The Cold Lake oil sands encompass an area of approximately 

6,500 km2 from Townships 52 to 67 north, and Ranges 4 to 10 west of the fourth meridian 

(Isaac, 1996). 

  

                                 

Figure 1.1: Alberta’s three major oil sands deposits. The Cold Lake deposit is located in the 
east-central part of the province (Imperial Oil Ltd., 2006a).     
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1.2.2 Imperial Oil Operations at Cold Lake 

Imperial Oil Limited is involved in oil sands production at Cold Lake, where  

there are currently approximately 850 million barrels of proved reserves, 3200 operating 

wells, and over 120,000 barrels of bitumen produced each day. Figure 1.2 (Imperial Oil 

Ltd., 2006b) shows the location of Imperial’s Cold Lake operations.   

                           

Figure 1.2: Imperial’s Cold Lake operations (Imperial Oil Ltd., 2006b). 

  A simplified stratigraphic chart of the Cold Lake area is shown in Figure 1.3 (Isaac, 

1996). Hydrocarbon production comes from the Clearwater formation, which has a 

primarily sandstone lithology. This producing formation is buried over 400 m deep at Cold 

Lake, and the bitumen contained within it has an American Petroleum Institute (API) 

gravity index of approximately 8° to 9°. Thus, surface mining techniques are not possible, 

and an enhanced oil recovery (EOR) technique is required. The EOR used by Imperial at 

Cold Lake is cyclic steam stimulation (CSS), sometimes also referred to as the “huff-and- 

puff” method. During CSS, production wells endure cycles of steam injection, soaking, and 
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production. Steam injection with durations of weeks to months is the first phase in the 

CSS cycle. The soak phase which follows allows the injected heat to soak into the 

producing formation and reduce the bitumen viscosity. This phase typically lasts from days 

to weeks. When the bitumen viscosity is sufficiently lowered for production, hot oil is 

pumped to the surface until the production rate declines past a predetermined threshold, 

giving way to another injection-soak-production cycle. This cycle is repeated so long as it 

is economically viable. Figure 1.4 (Imperial Oil Ltd., 2006c) depicts the CSS process for a 

single production well.  

 

Figure 1.3: Simplified stratigraphic chart of Cold Lake area (Isaac, 1996). 
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Figure 1.4: CSS enhanced oil recovery process for a single production well. The well is put 
through cycles of steam injection, soaking, and production, which is repeated so long as it 
is economically viable (Imperial Oil Ltd., 2006c). 
 

1.2.3  Passive-Seismic Monitoring Requirement 

 There are pertinent issues associated with the CSS process as applied to the oil 

sands at Cold Lake. When using CSS for recovery at Cold Lake, pressures and 

temperatures of approximately 320°C and 11 MPa, respectively, are created in the 

Clearwater formation (Campbell, 2005). Mechanical issues in the producing wells such as 

cement cracks or casing failures can result from these high pressures and temperatures. If 

undetected, these production issues could result in large cleanup costs, in addition to 
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potential legal implications. For example, a casing failure could potentially cause 

environmental damage such as aquifer contamination.  A microseismic earthquake with its 

focus near the damaged area is created when these mechanical issues occur. Imperial Oil 

Limited operates a passive-seismic monitoring system at Cold Lake to proactively detect 

these microseisms so that prompt action can be taken if a production issue is detected. The 

CREWES Project at the University of Calgary was involved in this passive-seismic 

research with Imperial Oil. 

The passive-seismic monitoring system implemented at Cold Lake is present on 

approximately 75 production pads, each of which contain about 18 to 24 producing wells 

(Campbell, 2005). Each pad has a centrally located monitoring well that records ground 

vibrations (including microseisms). The monitoring well is instrumented by a down-hole 

array of five or eight 3-component (3-C) geophone sondes connected to seismic recorders 

at the surface (Tan et al., 2006). Seismic recorders listen for discrete seismic events and 

store them as microseismic event files to disk for later review. For an array of five (eight) 

geophones, these digital event files contain fifteen (twenty-four) traces that display 1.365 

seconds (1.5 seconds) of microseismic activity recorded by the 3-component geophone 

sondes. Three traces are outputted from each 3-C geophone. Figure 1.5 shows an example  

schematic of a five-geophone array lowered into a monitoring well to detect microseismic 

events occurring in production wells. The approximate sensor depth locations shown are 

based on measurements by Talebi et al. (1998) pertaining to a project where they observed 

seismicity at Cold Lake. For this project, Talebi et al. (1998) observed received signals 

from five 3-C geophones spaced equally from the top of the Colorado Shales to the top of 
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the Clearwater Formation. The 3-C geophones were present at depths of approximately 

160 m, 220 m, 280 m, 340 m, and 400 m.  

Assuming the configuration shown in Figure 1.5, an example outline of a 

microseismic file is depicted in Figure 1.6. Since the schematic in Figure 1.5 depicts an 

array of five 3-C geophones, the corresponding microseismic file shown in Figure 1.6 

would contain fifteen traces of microseismic activity, as each 3-C geophone outputs three 

traces, each trace corresponding to a single component (x, y, or z). For this example, each 

trace, represented by an arrow in Figure 1.6, contains 1.365 seconds of microseismic 

activity. The three traces at the top of a microseismic event file come from the shallowest 

geophone; the next three traces below are from the second-shallowest geophone, and so on.  

 
Figure 1.5: Example schematic of a five-geophone array lowered into a monitoring well to 
detect microseismic events occurring in production wells. When a microseism occurs, 
elastic P- and S-waves are propagated from its focus. The focus in this example occurs in 
the Grand Rapids formation, above the producing Clearwater formation.   
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Figure 1.6: Example outline of a microseismic file assuming geophone configuration 
depicted in Figure 1.5. As each 3-C geophone outputs three traces, one for each component 
(x, y, and z), this example file contains fifteen traces of microseismic activity. Each trace in 
this example has a temporal duration of 1.365 seconds.  The three traces at the top of a 
microseismic event file come from the shallowest geophone; the next three traces below are 
from the second-shallowest geophone, and so on. Each trace is represented by an arrow in 
this figure. 
 

The 3-component geophone sensors deployed in monitoring wells require strong 

coupling with surrounding rock and a wideband frequency response (Maxwell and Urbanic, 

2001). Strong coupling is required between sensors and surrounding rock if microseism 

vibration energy is to be efficiently transferred from the rock to the sensors. At Cold Lake, 

strong coupling is achieved through cementation of the sensors to surrounding rock mass 

(Talebi et al., 1998). A wideband sensor frequency response is required to accurately depict 

detected microseisms. Ideally, a sensor frequency response with infinite bandwidth (which 

is impossible to achieve in practice) would be desired so that sensors can record all 

frequency components in a detected microseism without any attenuation. In practice, a 

wideband sensor frequency response is targeted. The passive-seismic monitoring system at 

Cold Lake has been observed to have a flat frequency response for frequencies up to     
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1500 Hz (Talebi et al., 1998). This signifies that frequencies up to 1500 Hz are accurately 

detected with negligible attenuation.  

Vendor-supplied event-classification software analyzes each created microseismic 

file and assigns a classification. If a file is classified as "good", this indicates that the 

software has decided that the event file warrants further investigation; conversely, if a file 

is classified as "noise", it is supposedly an event that is not of interest (Tan et al., 2006). 

Approximately 99% of all detected events are noise. Examples of "good" events worth 

further investigation include cement cracks around the casing in the wells, and casing 

failures. Examples of noise events include noise created by pump rods and passing vehicles 

(Campbell, 2005). Noise events are usually discarded.  

  

1.2.3.1 Microseismic Events 

The characteristics of “good” events are similar to those of a small earthquake that 

emanates P- and S-waves from its focus (e.g. Maxwell and Urbanic, 2001). Thus, 

conventional earthquake seismology can be used to explain common characteristics of 

“good” events, as these microseismic events are essentially very small earthquakes, which 

are created from radiated energy that is released when rock mass deformations rebound in 

the producing formation’s overburden due to the high temperatures and pressures present 

during CSS. These rock mass deformations due to pressure changes in the producing 

reservoir cause applied stress on the overburden resulting in strain.    

Theoretical earthquake seismology discussed by Scholz (1990); Lay and Wallace 

(1995); and Aki and Richards (2002) are outlined below to explain “good” event 

characteristics. Earthquakes occur when stress that is built up due to deformation of the 
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Earth’s crust is suddenly released. This release results in energy radiated from the 

earthquake’s source in the form of seismic elastic waves, which include P- (primary) and S- 

(secondary) body waves. It is estimated that less than 10 percent of the energy released by 

an earthquake is in the form of these seismic elastic waves. The majority of the released 

energy is in the form of heat. Possible causes of large earthquakes include volcanic 

eruptions and fault slippage. The “focus” is the location within the Earth where the P- and 

S-waves originate. This is the location where the sudden release of built-up elastic energy 

occurred. The “epicenter” is the point on the Earth’s surface directly above the 

Earthquake’s focus. 

P-waves travel through material through compression, resulting in material 

deformation in a direction parallel to propagation. P-wave velocity depends on elastic rock 

properties, namely the incompressibility, rigidity, and density of the rock through which the 

waves travel. Incompressibility pertains to the material’s resistance to volumetric dilation / 

compression, while rigidity corresponds to the material’s resistance to shear deformation. It 

has been shown that  

 

4
3

P

k
V

µ

ρ

+
=  ,                       (1.1) 

where VP represents P-wave velocity, k is incompressibility, µ is rigidity, and ρ is medium 

density. 

S-waves travel through media through shear, resulting in material deformation in a 

direction perpendicular to propagation. S-wave velocity depends only on rock rigidity and 

density. These waves travel slower than P-waves, and cannot travel through liquids, as 

liquids have no resistance to shearing. It has been shown that               
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  SV µ
ρ

= ,                                  (1.2) 

where VS represents S-wave velocity.  

Many microseismic events tend to have impulsive arrivals, high P-wave arrival 

frequencies, and decreasing signal frequency with increasing time (Lee and Stewart, 1981). 

S-wave arrivals in microseismic events are expected to have lower frequencies than P-wave 

arrivals because, for a fixed set of source dimensions (related to source wavelength), S-

waves have lower velocities compared to P-waves. Through inspection of the equation  

                          vf
λ

= ,                                           (1.3) 

it can be seen that if the source wavelength λ is held constant, then a slower velocity of 

propagation v, as is the case with S-waves compared to P-waves, should result in a lower 

signal frequency f. At Cold Lake, sonic well-logs have measured P-wave velocities in the 

range of 2200 m/s to 2400 m/s (Eastwood, 1993). Measured S-wave velocities are in the 

range of 1100 m/s to 1250 m/s. Thus, if equation 1.3 is applied, one could expect detected 

S-wave frequencies that are approximately half that of P-waves. A lower quality factor 

pertaining to shear waves has also been proposed as an explanation as to why S-wave 

arrivals in microseisms have lower frequencies than P-wave arrivals (e.g. DeNoyer, 1966). 

Microseism time-series are also non-stationary, signifying that the shape of microseismic 

wavelets varies with time (Correig and Urquizú, 2002). 

 Microseisms also tend to have higher frequencies than larger earthquakes because 

the dimensions of microseismic source regions are generally much smaller than those of 

source regions pertaining to lager earthquakes (DeNoyer, 1966). For example, many larger 

earthquakes are produced due to fault slippage, which takes place on a much larger spatial 
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scale than microseism production due to overburden deformation in a producing 

reservoir. As a result, seismic waves with shorter wavelengths and higher frequencies tend 

to be generated from microseismic sources. For example, the fault area of a conventional 

earthquake that generates surface waves of magnitude MS = 6 can be approximately 

8 21.3 10  m×  (Lay and Wallace, 1995). Surface waves, different from P- and S-waves, 

travel along trajectories approximately parallel to the Earth’s surface, as opposed to 

traveling through the Earth’s subsurface as is the case with P- and S- body waves. The 

surface wave earthquake magnitude MS represents a relative logarithmic amplitude 

measurement. To compare, the fault area in a microseism of magnitude MS  = -2 can be 

approximately 0.9 m2.    

 The earthquake’s “radiation pattern” affects the shape of detected waveforms. This 

pattern pertains to the shape of the wavefronts of emanated P- and S-waves close to the 

earthquake’s focus (Lay and Wallace, 1995). By observing the shapes of the P- and S- 

arrivals, inferences of the corresponding radiation pattern can be made followed by 

inferences of the faulting process that caused the earthquake. Related to this is the “fault 

plane solution”, where arriving P- and S- waveforms can be used to estimate the direction 

of faulting, which is parallel to the fault plane (e.g. Warren and Shearer, 2006). By 

examining these waveforms, the length of the fault, in addition to the rupture speed can also 

be estimated. This can be applied to both conventional earthquake and microseism analysis. 

For example, a fast rupture typically results in a radiation pattern that leads to microseisms 

that have larger peak amplitudes, as a greater energy burst is released compared to the case 

of a slow rupture.  Additionally, larger fault plane areas result in radiation patterns that lead 

to detected waveforms with longer wavelengths and lower frequencies, while radiation 
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patterns pertaining to smaller fault plane areas result in waveforms with shorter 

wavelengths and higher frequencies (e.g. DeNoyer, 1966).  

When a “good” microseismic event is automatically detected followed by manual 

confirmation, an attempt is made to locate its hypocenter, its point of origin. The distance 

from a sensor to the event’s hypocenter can be calculated by determining the time delay 

between the P-and S-wave arrivals. These arrival times can be picked through determining 

temporal locations where there are sharp increases in short-term to long-term averages of 

signal energy. Estimations of P- and S-wave velocities are also required to determine this 

distance. The orientation of the event’s focus relative to the sensors can be determined 

through observation of the received signals pertaining to the three detected directional 

components. In cases where many “good” events are detected over short time spans, it 

could be beneficial to plot potential event hypocenters on a map to determine where these 

hypocenters are most likely to be located (e.g. Campbell, 2005). Once hypocenter location 

has been performed, the cause of the recorded microseism is investigated further, and, if 

required, mechanical repairs could take place. 

Figures 1.7 to 1.16 show ten examples of “good” events from the Cold Lake dataset, 

with P- and S-wave arrivals indicated. Each trace depicts detected motion pertaining to a 

single component of a 3-C geophone. Empirically, it can be determined that these events 

are “good” due to the distinct and impulsive P- and S-wave arrivals. As expected, the P-

wave arrivals occur before the S-waves due to their higher velocity of propagation. A 

decrease in frequency can be seen in the S-wave arrivals compared to the P-waves in these 

events. Events are labeled 1 to 10 from Figure 1.7 to Figure 1.16, respectively, for future 
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reference when applying and demonstrating robustness of the developed classification 

algorithms discussed in chapters 2 to 4.  

Figures 1.7 to 1.16 provide perspective on how attributes can change from one 

event to the next in the Cold Lake microseismic dataset. The relative amplitudes between 

P- and S-wave arrivals; the degree of superimposed noise; and event frequencies are 

characteristics of interest. As previously discussed, higher event frequencies correspond to 

radiation patterns pertaining to smaller fault plane areas.    

Event #1 shown in Figure 1.7 is a “good” event with minimal superimposed noise 

with comparable P- and S-wave amplitudes. Event #2 in Figure 1.8 shows a “good” event 

with high-frequency noise superimposed. The P-wave arrival is still easily distinguishable 

and is followed by a significantly larger S-wave arrival. Event #3 in Figure 1.9 shows an 

event where a very impulsive, high-amplitude P-wave arrival is followed by a lower 

frequency, low-amplitude S-wave arrival. The exact cause for the significant decrease in 

shear-wave amplitude is not known, but hypotheses can be made. This amplitude decrease 

could be due to fluid content between the event hypocenter and the sensors, as shear waves 

can not travel through fluids. Also, differences between subsurface compressional and 

shear quality factors can cause differences between received P- and S-wave amplitudes 

(e.g. DeNoyer, 1966).   

 Event #4 in Figure 1.10 shows an event with an impulsive P-wave arrival followed 

by an impulsive S-wave arrival of higher amplitude. Low to moderate frequency noise is 

seen in this event; however, the P- and S-wave arrivals are still distinct and easily 

distinguishable. Event #5 in Figure 1.11 depicts an event with an impulsive P-wave arrival 

followed by an S-wave arrival with lower amplitude and lower frequency. Noise is 
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negligible in this trace. Event #6 in Figure 1.12 shows a P-wave arrival followed by a 

much larger S-wave arrival. Superimposed low-frequency noise is seen. Event #7 in Figure 

1.13 is an event with comparable P- and S-wave arrival amplitudes. Noise occurs between 

the P- and S-wave arrivals.  

 Event #8 in Figure 1.14 shows an impulsive P-wave arrival followed by high-

frequency noise, an S-wave arrival of lower amplitude, and low-frequency noise. Event #9 

in Figure 1.15 shows an impulsive P-wave arrival followed by noise with wideband 

frequency components, an S-wave arrival of smaller amplitude, and low-frequency noise. 

Event #10 in Figure 1.16 shows an impulsive P-wave arrival followed by high-frequency 

noise, an S-wave arrival of lower amplitude, and negligible noise thereafter.           

 
Figure 1.7: Example trace of a “good” event with minimal superimposed noise. The 
impulsive P- and S-wave arrival signatures indicate the presence of a “good” event. This 
“good” event is labeled “Event #1” for future reference.    
 

 

Figure 1.8: A “good” event with high-frequency noise superimposed. The P-wave arrival is 
still easily distinguishable and is followed by a significantly larger S-wave arrival. This 
“good” event is labeled “Event #2” for future reference.  
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Figure 1.9: A “good” event where a very impulsive, high-amplitude P-wave arrival is 
followed by a lower frequency, low-amplitude S-wave arrival. This amplitude decrease 
could be due to fluid content between the event hypocenter and the sensors and differences 
between subsurface compressional and shear quality factors. This “good” event is labeled 
“Event #3” for future reference.  
 

 

Figure 1.10: A “good” event with an impulsive P-wave arrival followed by an impulsive S-
wave arrival of higher amplitude. Low to moderate frequency noise is seen in this event, 
but P- and S-wave arrivals are still distinct and easily distinguishable. This “good” event is 
labeled Event #4 for future reference.  
 

 

Figure 1.11: A “good” event with an impulsive P-wave arrival followed by an S-wave 
arrival with lower amplitude and lower frequency. Noise is negligible in this trace. This 
“good” event is labeled Event #5 for future reference.  
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Figure 1.12: A “good” event with a P-wave arrival followed by a much larger S-wave 
arrival. Superimposed low-frequency noise is seen. This “good” event is labeled Event #6 
for future reference.  
 

Figure 1.13: A “good” event with comparable P- and S-wave arrival amplitudes. Noise 
occurs between the P- and S-wave arrivals. This “good” event is labeled Event #7 for future 
reference. 
 

 

Figure 1.14: A “good” event with an impulsive P-wave arrival followed by high-frequency 
noise, an S-wave arrival of lower amplitude, and low-frequency noise. This “good” event is 
labeled Event #8 for future reference.  
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Figure 1.15: A “good” event with an impulsive P-wave arrival followed by noise with 
wideband frequency components, an S-wave arrival of smaller amplitude, and low-
frequency noise. This “good” event is labeled Event #9 for future reference. 
 

 

Figure 1.16: A “good” event with an impulsive P-wave arrival followed by high-frequency 
noise, an S-wave arrival of lower amplitude, and negligible noise thereafter. This “good” 
event is labeled Event #10 for future reference.           
 

Figures 1.17 to 1.21 show five examples of noise events. As noise events can be 

caused in a wide variety of ways including surface noise due to passing vehicles and pump 

rods operating in producing wells, noise events tend to be random and do not follow the 

discussed deterministic properties associated with “good” events. The noise events in 

Figure 1.17 to Figure 1.21 are labeled as Events 11 to 15, respectively, for future reference 

when applying and demonstrating robustness of the developed classification algorithms 

discussed in chapters 2 to 4.    

Figures 1.17, 1.18, and 1.19 contain events of relatively long duration, which could 

be caused by low-frequency (long duration) pump rod oscillation in production wells. 
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Figure 1.19 shows a noise trace with two such events. Figure 1.20 shows a noise trace 

containing a relatively impulsive, high frequency noise event, possibly caused by high-

frequency (short duration) pump rod oscillation in production wells.  Figure 1.21 shows 

random, lower frequency noise. This is likely random jitter detected by the sensors, as noise 

due to oscillating pump rods and passing vehicles tend to cause microseisms of higher 

frequencies. 

 

 
 
Figure 1.17: Example trace of a noise event. This event could be caused by low-frequency 
(long duration) pump rod oscillation in production wells. This noise event is labeled     
Event #11 for future reference. 
 
 

 

Figure 1.18: A noise trace containing an event of long duration. This event could be caused 
by low-frequency (long duration) pump rod oscillation in production wells. This noise 
event is labeled Event #12 for future reference. 
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Figure 1.19: A noise trace containing two events of long duration. These events could be 
caused by low-frequency (long duration) pump rod oscillation in production wells. This 
noise event is labeled Event #13 for future reference.   
 

 

Figure 1.20: A noise trace containing a relatively impulsive, high frequency noise event, 
possibly caused by high-frequency (short duration) pump rod oscillation in production 
wells. This noise event is labeled Event #14 for future reference.    
 
 

 

Figure 1.21: Random, lower frequency noise. This is likely random jitter detected by the 
sensors, as noise due to oscillating pump rods and passing vehicles tend to cause 
microseisms of higher frequencies. This noise event is labeled Event #15 for future 
reference.    
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The example traces shown in Figures 1.7 to 1.21, in addition to the developed 

synthetic data in section 1.3, will be used when demonstrating the classification algorithms. 

These traces are normalized to the largest data value (in magnitude), and have any DC 

offset removed.  

  

1.3 Synthetic Data 

Synthetic events pertaining to 1.365 seconds of microseismic activity were created 

as an additional test for algorithms developed to address the microseismic file-classification 

issue described in section 1.4. Synthetics representing “good” events with varying signal-

to-noise ratios were developed to test algorithm robustness. A synthetic noise event was 

also created. Synthetic parameters such as P-and S-wave event-lengths and frequencies 

were chosen to reasonably represent observed characteristics in the Cold Lake 

microseismic dataset.     

     

1.3.1 “Good” Events 

Synthetic “good” events containing impulsive, single-cycle P- and S-wave arrivals 

with varying signal-to-noise ratios were created.  

 Define a sampling frequency fs to be 3000 Hzsf = . The sample time interval is 

then 1

s

t
f

∆ = . Let 1 ( )s t represent an impulsive P-wave arrival with frequency 100 Hzpf =  

resulting in an angular frequency of 2p pfω π= and a period of 1
p

p

T
f

= . Define pt as the 
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time delay before the P-wave arrival and As as a signal amplitude to be determined. 

Then 1 ( )s t can be expressed as 

    1

1

( ) sin( ( )),     ;

( ) 0,                             otherwise.     
s p p p p ps t A t t t t t T

s t

ω= − ≤ ≤ +

=
                      (1.4) 

 Similarly, let 2 ( )s t represent a S-wave arrival with frequency 50 Hzsf =  resulting 

in an angular frequency of 2s sfω π= and a period of 1
s

s

T
f

= . Define st  as the time delay 

before the S-wave arrival. Then 2 ( )s t  can be expressed as  

                               2

2

( ) sin( ( )),     ;
( ) 0,                             otherwise.     

s s s s s ss t A t t t t t T
s t

ω= − ≤ ≤ +
=

                      (1.5) 

Define ( )Ts t  as a composite signal containing both the P- and S-wave arrivals given by  

                                 1 2( ) ( ) ( )Ts t s t s t= + .                                                        (1.6)                                          

 A noise component will be superimposed onto ( )Ts t . Let ( )n t represent this noise 

component given by  

                                   ( ) Nn t = ,                                                                       (1.7) 

where N is a uniformly-distributed random variable in the range Nn nA A− ≤ ≤ . This 

signifies that for any discrete time sample, it is equally probable for the random variable N 

to obtain any values between –An and An. A “good” event, ( )gs t , can now be created by 

combining the developed signal and noise signals as 

                                       ( ) ( ) ( )g Ts t s t n t= + .                                               (1.8) 

The relationship between the signal and noise amplitudes As and An, respectively, is 

determined by deciding upon a signal-to-noise ratio (SNR), which is defined as the ratio of 
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signal power to noise power. Since power is the square of amplitude, SNR can be 

defined as 

              
( )
( )

2 2

2 2

signal amplitudesignal powerSNR=
noise power noise amplitude

s

n

A
A

= = .             (1.9) 

In decibels, the signal-to-noise ratio is expressed as  

                             dBSNR =10log(SNR)=20log s

n

A
A

⎛ ⎞
⎜ ⎟
⎝ ⎠

 dB.                              (1.10)                          

After choosing an SNR value to determine the relationship between As and An, the “good” 

event ( )gs t is static shifted to have zero mean and is normalized to an amplitude range from 

-1 to 1.    

 Synthetic “good” events were created pertaining to SNR values of 30 dB, 25 dB,   

20 dB, 15 dB, 10 dB, and 0 dB. These events are shown in Figures 1.22, 1.23, 1.24, 1.25, 

1.26, and 1.27, respectively.  

 

 

Figure 1.22: Synthetic “good” trace with SNR = 30 dB. 
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 Figure 1.23: Synthetic “good” trace with SNR = 25 dB. 

 

Figure 1.24: Synthetic “good” trace with SNR = 20 dB. 

 

Figure 1.25: Synthetic “good” trace with SNR = 15 dB. 

 

Figure 1.26: Synthetic “good” trace with SNR = 10 dB. 



 25

 

Figure 1.27: Synthetic “good” trace with SNR = 0 dB. 

 

1.3.2 Noise Event  

A synthetic noise event with a duration of 1 second, ( )ns t , was created. Referring to 

equation 1.7 with An =1, the synthetic the noise event is expressed as  

                 
( ) ( ),      0.2 s 1.2 s;
( ) 0,           otherwise.      

n

n

s t n t t
s t

= ≤ ≤
=

                                     (1.11)                

This noise event is static shifted to have zero mean and is normalized between an amplitude 

range of -1 to 1. This event is depicted in Figure 1.28. 

 

 

Figure 1.28: Synthetic noise trace. 

 

 

 



 26
1.4  Thesis Objective 

The current event-file classification software has been known to misclassify a large 

portion of the received files. This has resulted in many noise events being incorrectly 

identified as “good” events, often referred to as “false positives”. These numerous 

misclassifications require extensive manual investigation. This time-consuming process of 

examining incorrectly classified files one-by-one can become very costly.  

The purpose was to develop and combine microseismic signal analysis algorithms 

capable of precisely classifying the microseismic event files generated by the passive-

seismic monitoring system at Cold Lake. Compared to noise events, I observed that many 

"good" events generally have lower dominant frequency content, shorter P-wave event-

lengths, and flatter time-domain characteristics. Based on these observations, classification 

algorithms involving frequency-filtering, event-length detection, and statistical analysis 

were developed. In the passive-seismic monitoring industry, it is often the convention to 

examine microseismic signal amplitudes for event-classification; however, the purpose here 

was to develop novel classification techniques that are more robust than simple amplitude 

examination.     

 

1.5  Original Thesis Contributions 

Novel passive-seismic event-classification algorithms involving frequency- 

filtering, event-length detection, and statistical analysis were created through observation, 

research, development, and optimization. In this thesis, theoretical background pertaining 

to developed classification algorithms will be provided in addition to application examples. 

A MATLAB® graphical user interface was created that combined many of these algorithms 
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into a self-contained application. Following this, extensive testing was performed to 

determine which classification algorithms were most accurate. These tests revealed that the 

developed statistical analysis classification algorithms performed best for the dataset at 

Cold Lake. Theoretical mathematics of principal components analysis (PCA) was explored 

and an application of PCA to statistical analysis algorithm output results was performed to 

optimize classification performance.  

A second, updated, application that employs PCA on the statistical algorithm results 

was developed and exhaustively tested on a wide-range of microseismic files from 72 

different production pads. This application yielded classification accuracies between 90% 

and 99.5%. Given that up to tens of thousands of microseismic events are detected daily at 

Cold Lake, this developed application could have significant future impact.   
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1.6 Thesis Outline 

Chapter one provides background regarding passive-seismic monitoring. Imperial 

Oil’s Cold Lake heavy-oil production operations are discussed explaining the necessity of 

employing their passive-seismic monitoring system. My thesis objective and original 

contributions are provided.    

Chapter two pertains to the developed frequency-filtering algorithms. An overview 

of frequency-filtering applications is first provided. Strengths and weaknesses of various 

filter frequency responses are discussed. Developed filters are applied to the microseismic 

traces of interest. Detailed filter theory and background are provided in Appendices A and 

B.  

Chapter three contains discussions on the developed event-length detection 

algorithms. After relevant theory is provided, event-length detection algorithms are 

developed and applied to the microseismic signals of interest.  

Chapter four examines observed statistical characteristics of “good” and noise 

microseismic signals. Applicable statistical theory is discussed. Statistical analysis 

algorithms are then developed and applied.  

Chapter five concerns performing multivariate data reduction using a technique 

referred to as “principal components analysis”. Extensive testing on a wide range of 

microseismic data from Cold Lake has revealed that statistical analysis algorithms yield 

results with the highest potential for consistently accurate microseismic file classification. 

Theoretical mathematics of principal components analysis is given in Appendix C. 

Application of this analysis to statistical algorithm output results is demonstrated.    
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Chapter six discusses implementation details pertaining to two cases: one where 

many created algorithms are combined into a graphical user interface for file classification; 

and the updated application which performs principal components analysis on statistical 

algorithm results to classify microseismic files. The latter configuration is found to yield 

more accurate results when applied to a wide range of data. Three major datasets are tested 

on this configuration and the results are provided.  

Chapter seven summarizes this thesis and contains pertinent conclusions. 
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CHAPTER TWO: Frequency Filtering 

2.1 Introduction 

In signal processing applications, it is often desired to pass certain frequency 

components of an input signal, while eliminating others. This is the essence of frequency 

filtering. A system can be said to filter an input signal if it presents different frequency 

responses to different frequency components of the signal (e.g. Haykin and Van Veen, 

2003).    

I observed that many "good" events generally have lower dominant frequency 

content than noise events. This chapter shows the application of frequency filtering to 

microseismic signals to demonstrate the potential of this technique regarding event-

classification. Background on frequency-filtering terminology and theory is provided. The 

strengths and weaknesses of the Butterworth, Chebyshev, and Inverse-Chebyshev 

frequency response approximations are explored prior to application.  

 

2.2 Background 

2.2.1  Terminology  

Filters can be described in terms of how they process input signals. A low-pass filter 

passes lower frequency components while attenuating high-frequency components, while a 

high-pass filter passes high frequencies while attenuating low frequencies. A band-pass 

filter passes signals that lie within a certain frequency band, while attenuating signals 

outside that band (e.g. Haykin and Van Veen, 2003).    

The range of frequencies that are passed by a filter is referred to as its passband, 

while the range of frequencies that are attenuated by a filter is referred to as its stopband. 
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Realistic and realizable filters have a smooth transition between the passband and 

stopband, called the transition band. The order of the filter is the order of the characteristic 

differential equation that describes its impulse response in the time domain. The higher the 

filter’s order, the sharper its transition band (e.g. Maundy, 2005). 

When performing frequency analysis, it is usually desired to analyze these 

characteristics in the frequency domain. A filter’s impulse response in the time domain 

corresponds to its transfer function in the frequency domain. In the frequency domain, the 

order of a filter is the highest power of the Laplace operator "s" that can be seen in the 

denominator of its transfer function. In real applications, as the desired accuracy of a filter 

increases, its required order increases as well. As the order of a filter increases, its 

realization increases in complexity. More components are required to construct high order 

filters. Thus, there is a tradeoff between filter accuracy and complexity.       

 

2.2.2  Common Filter Frequency Response Approximations 

In practical applications, there are four main filter responses that rely on 

approximations (e.g. Maundy, 2005): the Butterworth, Chebyshev, Inverse-Chebyshev, and 

Cauer. Three of them -- the Butterworth, Chebyshev, and Inverse-Chebyshev responses -- 

are used to develop passive-seismic event-classification algorithms.     

Figure 2.1 (adapted from Maundy, 2005) contains sketches of the attenuation 

characteristics of these four filter types for low-pass filtering. In Figure 2.1, ωp and ωs 

represent the passband and stopband limits, respectively, in radians per second. The 

quantity α(ω) signifies the attenuation of the filter (in dB) as a function of the angular 
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frequency. The symbols αmin and αmax are the desired minimum and maximum allowable 

attenuations in the stopband and passband, respectively.  

For high-pass filtering, the attenuation curve in Figure 2.1 would start high and 

decrease with increasing frequency. Also, the positions of αmin and αmax on the ω axis would 

be interchanged on Figure 2.1, as well as the positions of ωs and ωp (high pass filters 

attenuate low frequencies).      

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Sketches of attenuation characteristics of 4 main filter responses for a low-pass 
filter case: Butterworth (top-left), Chebyshev (top-right), Inverse Chebyshev (bottom-left), 
and Cauer (bottom-right). The horizontal axis ω pertains to angular frequency measured in 
radians per second. The vertical axis, α(ω), represents the filter’s loss function measured in 
decibels (dB) (adapted from Maundy, 2005).  
 

As shown in Figure 2.1, the Butterworth response has a maximally flat attenuation 

characteristic in the passband as frequency increases (an advantage) and a monotonically 

increasing attenuation characteristic in the stopband (e.g. Maundy, 2005). The transition 
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region between the passband and stopband limits of the Butterworth filter, however, is 

less sharp, a disadvantage, than that of a different response, such as the Chebyshev.  

The Chebyshev response has an equiripple attenuation characteristic in the 

passband (e.g. Zhou and McMechan, 1999) and a monotonically increasing attenuation 

characteristic in the stopband. The passband equiripple characteristic pertains to oscillations 

in the frequency response, which is a disadvantage of the Chebyshev filter; however, this 

response provides greater stopband attenuation than the Butterworth response for a given 

filter order, which is advantageous (e.g. Maundy, 2005).  

 The Inverse-Chebyshev response contains a maximally flat attenuation 

characteristic in the passband and an equiripple characteristic in the stopband. For a given 

minimum stopband attenuation, an Inverse-Chebyshev filter will require a lower order than 

a Butterworth filter (an advantage). When designing band-elimination topologies, however, 

the Inverse-Chebyshev response requires circuit realizations with high complexity (e.g. 

Maundy, 2005).  

To provide a diverse set of frequency responses and optimize the aggregate 

performance of these classification algorithms, each of the Butterworth, Chebyshev, and 

Inverse-Chebyshev frequency response approximations were modeled as filters in 

MATLAB®. 

 Practical filters require a smooth transition between the passband and stopband to 

be realizable. A smooth transition band is also required to minimize the effects from Gibbs’ 

Phenomenon, which states that if a sharp cutoff is applied in the frequency domain, 

undesired oscillations, or “ringing”, will occur in the time domain (e.g. Sheriff and Geldart, 

1995). To minimize this ringing, a smooth transition band is required.  
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 A preliminary available dataset of 7032 microseismic event files was used to 

decide algorithm details such as filter order, passband range, and stopband range. 

 

2.3  Low-Pass Inverse-Chebyshev Filter   

A fourth-order (n=4) Inverse-Chebyshev low-pass filter with a stopband edge 

angular frequency (ωs) of 628 rad/s (corresponding to a frequency of 100 Hz), passband 

edge frequency (ωp) of 225 rad/s (35.8 Hz), maximum passband attenuation (αmax) of 0.25 

dB, and minimum stopband attenuation (αmin) of 40 dB was implemented as a classification 

technique. Detailed development of the Inverse-Chebyshev low-pass filter frequency 

response is shown in Appendix A. Figure 2.2 shows the magnitude response for this filter 

generated in MATLAB®.   

 

Figure 2.2: Amplitude response of low-pass Inverse-Chebyshev filter.   

 

Figures 2.3 to 2.8 show the synthetic “good” traces depicted in Figures 1.22 to 1.27 

after applying this Inverse-Chebyshev low-pass filter. Figure 2.9 shows the synthetic noise 

trace depicted in Figure 1.28 after filtering. Compared to the peak amplitude of the filtered 

noise synthetic, the largest peak amplitude discrepancy when examining filtered “good” 

synthetics pertains to the case where the “good” synthetic with the highest SNR was input 
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to the filter. This can be seen by comparing Figure 2.3, which corresponds to an input 

synthetic “good” trace with SNR = 30 dB, to Figure 2.9, which corresponds to the synthetic 

noise input. The peak amplitude of the signal shown in Figure 2.3 is approximately 0.4, 

over twice the approximate peak amplitude of the signal shown in Figure 2.9, which is 

approximately 0.15. As the SNR of the input synthetic “good” trace decreases, the peak 

amplitude discrepancy between the filtered “good” and noise synthetic traces decreases as 

well. This discrepancy decrease can be seen by comparing Figures 2.4 through 2.8 to 

Figure 2.9. Table 2.1 summarizes the peak amplitudes of the synthetic traces after applying 

this low-pass Inverse-Chebyshev filter. 

Figures 2.10 to 2.19 show the “good” events from Figures 1.7 to 1.16, respectively, 

after low-pass filtering. Figures 2.20 to 2.24 show the noise events from Figures 1.17 to 

1.21, respectively, after filtering. Table 2.2 summarizes the filtered peak amplitudes of 

these traces. Note that the magnitudes of the filtered “good” events are considerably higher 

than those of the filtered noise events.  

 

Table 2.1: Summary of peak amplitudes of synthetic traces after applying low-pass Inverse-
Chebyshev filter. 

Event Type SNR (dB) Peak Amplitude 
Good 30 0.37 
Good 25 0.35 
Good 20 0.31 
Good 15 0.24 
Good 10 0.21 
Good 0 0.21 
Noise N/A 0.16 
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Table 2.2: Summary of peak amplitudes of “good” and noise events after applying low-
pass Inverse-Chebyshev filter. Note that the magnitudes of the filtered “good” events are 
considerably higher than those of the filtered noise events. 

Event Type Event # Peak Amplitude 
Good 1 0.47 
Good 2 0.35 
Good 3 0.33 
Good 4 0.28 
Good 5 0.33 
Good 6 0.57 
Good 7 0.55 
Good 8 0.22 
Good 9 0.54 
Good 10 0.26 
Noise 11 0.13 
Noise 12 0.037 
Noise 13 0.17 
Noise 14 0.18 
Noise 15 0.084 

 

Figure 2.3: Low-pass Inverse-Chebyshev filter applied to synthetic “good” trace shown in 
Figure 1.22 with SNR = 30 dB. 
 

 

Figure 2.4: Low-pass Inverse-Chebyshev filter applied to synthetic “good” trace shown in 
Figure 1.23 with SNR = 25 dB. 
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Figure 2.5: Low-pass Inverse-Chebyshev filter applied to synthetic “good” trace shown in 
Figure 1.24 with SNR = 20 dB. 
 

 

Figure 2.6: Low-pass Inverse-Chebyshev filter applied to synthetic “good” trace shown in 
Figure 1.25 with SNR = 15 dB. 
 

 

Figure 2.7: Low-pass Inverse-Chebyshev filter applied to synthetic “good” trace shown in 
Figure 1.26 with SNR = 10 dB. 
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Figure 2.8: Low-pass Inverse-Chebyshev filter applied to synthetic “good” trace shown in 
Figure 1.27 with SNR = 0 dB. 
 

Figure 2.9: Low-pass Inverse-Chebyshev filter applied to synthetic noise trace shown in 
Figure 1.28.  
 

 

Figure 2.10: Low-pass Inverse-Chebyshev filter applied to Event #1, a “good” event. 
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Figure 2.11: Low-pass Inverse-Chebyshev filter applied to Event #2, a “good” event. 

 

 

Figure 2.12: Low-pass Inverse-Chebyshev filter applied to Event #3, a “good” event. 

 

 

Figure 2.13: Low-pass Inverse-Chebyshev filter applied to Event #4, a “good” event. 
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Figure 2.14: Low-pass Inverse-Chebyshev filter applied to Event #5, a “good” event. 

 

 

Figure 2.15: Low-pass Inverse-Chebyshev filter applied to Event #6, a “good” event. 

 

 

Figure 2.16: Low-pass Inverse-Chebyshev filter applied to Event #7, a “good” event. 
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Figure 2.17: Low-pass Inverse-Chebyshev filter applied to Event #8, a “good” event. 

 

 

Figure 2.18: Low-pass Inverse-Chebyshev filter applied to Event #9, a “good” event. 

 

 

Figure 2.19: Low-pass Inverse-Chebyshev filter applied to Event #10, a “good” event. 
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Figure 2.20: Low-pass Inverse-Chebyshev filter applied to Event #11, a noise event. 

 

 

Figure 2.21: Low-pass Inverse-Chebyshev filter applied to Event #12, a noise event. 

 

 

Figure 2.22: Low-pass Inverse-Chebyshev filter applied to Event #13, a noise event. 
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Figure 2.23: Low-pass Inverse-Chebyshev filter applied to Event #14, a noise event. 

 

 

Figure 2.24: Low-pass Inverse-Chebyshev filter applied to Event #15, a noise event. 

 

2.4  High-Pass Butterworth Filter   

A fourth-order (n=4) Butterworth high-pass filter with a passband edge angular 

frequency (ωp) of 2500 rad/s (398 Hz), stopband edge frequency (ωs) of 1351 rad/s (215 

Hz), maximum passband attenuation (αmax) of 3 dB, and minimum stopband attenuation 

(αmin) of 25 dB was implemented as a classification technique. Detailed development of the 

Butterworth high-pass filter frequency response is shown in Appendix B. Figure 2.25 

shows the magnitude response for this filter generated in MATLAB®.  



 44

 

Figure 2.25:  Amplitude response of high-pass Butterworth filter. 

Figures 2.26 to 2.31 show the synthetic “good” traces depicted in Figures 1.22 to 

1.27 after applying this Butterworth high-pass filter. Figure 2.32 shows the synthetic noise 

trace depicted in Figure 1.28 after filtering. Compared to the peak amplitude of the filtered 

noise synthetic, the largest peak amplitude discrepancy when examining filtered “good” 

synthetics pertains to the case where the “good” synthetic with the highest SNR was input 

to the filter. This can be seen by comparing Figure 2.26, which corresponds to an input 

synthetic “good” trace with SNR = 30 dB, to Figure 2.32, which corresponds to the 

synthetic noise input. The peak amplitude of the signal shown in Figure 2.26 is less than 

0.05, significantly less than the peak amplitude of the signal shown in Figure 2.32, which is 

approximately 0.9. As the SNR of the input synthetic “good” trace decreases, the peak 

amplitude discrepancy between the filtered “good” and noise synthetic traces decreases as 

well. This discrepancy decrease can be seen by comparing Figures 2.27 through 2.31 to 

Figure 2.32. Table 2.3 summarizes the peak amplitudes of the synthetic traces after 

applying this high-pass Butterworth filter. 

Figures 2.33 to 2.42 show the “good” events from Figures 1.7 to 1.16, respectively, 

after high-pass filtering. Figures 2.43 to 2.47 show the noise events from Figures 1.17 to 

1.21, respectively, after filtering. Table 2.4 summarizes the filtered peak amplitudes of 
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these traces. Note that the magnitudes of the filtered “good” events are considerably 

lower than those of the filtered noise events.  

 

Table 2.3: Summary of peak amplitudes of synthetic traces after applying high-pass 
Butterworth filter. 

Event Type SNR (dB) Peak Amplitude 
Good 30 0.045 
Good 25 0.055 
Good 20 0.1 
Good 15 0.14 
Good 10 0.23 
Good 0 0.49 
Noise N/A 0.91 

 

Table 2.4: Summary of peak amplitudes of “good” and noise events after applying high-
pass Butterworth filter. Note that the magnitudes of the filtered “good” events are 
considerably lower than those of the filtered noise events. 

Event Type Event # Peak Amplitude 
Good 1 0.047 
Good 2 0.083 
Good 3 0.262 
Good 4 0.255 
Good 5 0.05 
Good 6 0.018 
Good 7 0.013 
Good 8 0.0063 
Good 9 0.028 
Good 10 0.016 
Noise 11 0.74 
Noise 12 0.40 
Noise 13 0.27 
Noise 14 0.31 
Noise 15 0.59 
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Figure 2.26: High-pass Butterworth filter applied to synthetic “good” trace shown in Figure 
1.22 with SNR = 30 dB. 
 
 

 
Figure 2.27: High-pass Butterworth filter applied to synthetic “good” trace shown in Figure 
1.23 with SNR = 25 dB. 
 

 

Figure 2.28: High-pass Butterworth filter applied to synthetic “good” trace shown in Figure 
1.24 with SNR = 20 dB.           
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Figure 2.29: High-pass Butterworth filter applied to synthetic “good” trace shown in Figure 
1.25 with SNR = 15 dB.           
 

 

Figure 2.30: High-pass Butterworth filter applied to synthetic “good” trace shown in Figure 
1.26 with SNR = 10 dB.           
 

 

Figure 2.31: High-pass Butterworth filter applied to synthetic “good” trace shown in Figure 
1.27 with SNR = 0 dB.           
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Figure 2.32: High-pass Butterworth filter applied to synthetic noise trace shown in Figure 
1.28.  
 

 

Figure 2.33: High-pass Butterworth filter applied to Event #1, a “good” event. 

 

Figure 2.34: High-pass Butterworth filter applied to Event #2, a “good” event. 
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Figure 2.35: High-pass Butterworth filter applied to Event #3, a “good” event. 

 

Figure 2.36: High-pass Butterworth filter applied to Event #4, a “good” event. 

 

Figure 2.37: High-pass Butterworth filter applied to Event #5, a “good” event. 

 

Figure 2.38: High-pass Butterworth filter applied to Event #6, a “good” event. 
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Figure 2.39: High-pass Butterworth filter applied to Event #7, a “good” event. 

 

Figure 2.40: High-pass Butterworth filter applied to Event #8, a “good” event. 

 

Figure 2.41: High-pass Butterworth filter applied to Event #9, a “good” event. 

 

Figure 2.42: High-pass Butterworth filter applied to Event #10, a “good” event. 
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Figure 2.43: High-pass Butterworth filter applied to Event #11, a noise event. 

 

Figure 2.44: High-pass Butterworth filter applied to Event #12, a noise event. 

 

Figure 2.45: High-pass Butterworth filter applied to Event #13, a noise event. 

 

Figure 2.46: High-pass Butterworth filter applied to Event #14, a noise event. 
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Figure 2.47: High-pass Butterworth filter applied to Event #15, a noise event. 

 

2.5  Band-Pass Chebyshev Filter   

A fourth-order (n=4) Chebyshev band-pass filter with a high-frequency passband 

from 1000 rad/s to 2000 rad/s (159 Hz to 318 Hz) with a maximum passband attenuation 

(αmax) of 2 dB was implemented as a classification technique. The Chebyshev 

approximation theory is very similar to that of the Inverse-Chebyshev approximation; 

consequently, it is not shown here. Figure 2.48 shows the amplitude response of this filter. 

 

Figure 2.48:  Amplitude response of band-pass Chebyshev filter. 

Figures 2.49 to 2.54 show the synthetic “good” traces depicted in Figures 1.22 to 

1.27 after applying this Chebyshev band-pass filter. Figure 2.55 shows the synthetic noise 

trace depicted in Figure 1.28 after filtering. Compared to the peak amplitude of the filtered 

noise synthetic, the largest peak amplitude discrepancy when examining filtered “good” 
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synthetics pertains to the case where the “good” synthetic with the highest SNR was 

input to the filter. This can be seen by comparing Figure 2.49, which corresponds to an 

input synthetic “good” trace with SNR = 30 dB, to Figure 2.55, which corresponds to the 

synthetic noise input. The peak amplitude of the signal shown in Figure 2.49 is 

approximately 0.12, significantly less than the peak amplitude of the signal shown in Figure 

2.55, which is approximately 0.4. As the SNR of the input synthetic “good” trace decreases, 

the peak amplitude discrepancy between the filtered “good” and noise synthetic traces 

decreases as well. This discrepancy can be seen by comparing Figures 2.50 through 2.54 to 

Figure 2.55. Table 2.5 summarizes the peak amplitudes of the synthetic traces after 

applying this band-pass Chebyshev filter. 

Figures 2.56 to 2.65 show the “good” events from Figures 1.7 to 1.16, respectively, 

after high-pass filtering. Figures 2.66 to 2.70 show the noise events from Figures 1.17 to 

1.21, respectively, after filtering. Table 2.6 summarizes the filtered peak amplitudes of 

these traces. Note that the magnitudes of the filtered “good” events are generally 

considerably lower than those of the filtered noise events.  

 

Table 2.5: Summary of peak amplitudes of synthetic traces after applying band-pass 
Chebyshev filter. 

Event Type SNR (dB) Peak Amplitude 
Good 30 0.12 
Good 25 0.14 
Good 20 0.19 
Good 15 0.24 
Good 10 0.33 
Good 0 0.39 
Noise N/A 0.43 
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Table 2.6: Summary of peak amplitudes of “good” and noise events after applying band-
pass Chebyshev filter. Note that the magnitudes of the filtered “good” events are generally 
considerably lower than those of the filtered noise events. 

Event Type Event # Peak Amplitude 
Good 1 0.17 
Good 2 0.13 
Good 3 0.36 
Good 4 0.15 
Good 5 0.29 
Good 6 0.014 
Good 7 0.065 
Good 8 0.13 
Good 9 0.14 
Good 10 0.31 
Noise 11 0.36 
Noise 12 0.4 
Noise 13 0.53 
Noise 14 0.35 
Noise 15 0.42 

 

 

Figure 2.49: Band-pass Chebyshev filter applied to synthetic “good” trace shown in Figure 
1.22 with SNR = 30 dB.           
 

 

Figure 2.50: Band-pass Chebyshev filter applied to synthetic “good” trace shown in Figure 
1.23 with SNR = 25 dB.           
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Figure 2.51: Band-pass Chebyshev filter applied to synthetic “good” trace shown in Figure 
1.24 with SNR = 20 dB.           
 

 
Figure 2.52: Band-pass Chebyshev filter applied to synthetic “good” trace shown in Figure 
1.25 with SNR = 15 dB.           
 

Figure 2.53: Band-pass Chebyshev filter applied to synthetic “good” trace shown in Figure 
1.26 with SNR = 10 dB.           
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Figure 2.54: Band-pass Chebyshev filter applied to synthetic “good” trace shown in Figure 
1.27 with SNR = 0 dB.           
 

 

Figure 2.55: Band-pass Chebyshev filter applied to synthetic noise trace shown in Figure 
1.28.           
 

 

Figure 2.56: Band-pass Chebyshev filter applied to Event #1, a “good” event. 

 

Figure 2.57: Band-pass Chebyshev filter applied to Event #2, a “good” event. 
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Figure 2.58: Band-pass Chebyshev filter applied to Event #3, a “good” event. 

 

Figure 2.59: Band-pass Chebyshev filter applied to Event #4, a “good” event. 

 

Figure 2.60: Band-pass Chebyshev filter applied to Event #5, a “good” event. 

 

Figure 2.61: Band-pass Chebyshev filter applied to Event #6, a “good” event. 
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Figure 2.62: Band-pass Chebyshev filter applied to Event #7, a “good” event. 

 

Figure 2.63: Band-pass Chebyshev filter applied to Event #8, a “good” event. 

Figure 2.64: Band-pass Chebyshev filter applied to Event #9, a “good” event. 

 

Figure 2.65: Band-pass Chebyshev filter applied to Event #10, a “good” event. 
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Figure 2.66: Band-pass Chebyshev filter applied to Event #11, a noise event. 

Figure 2.67: Band-pass Chebyshev filter applied to Event #12, a noise event. 

Figure 2.68: Band-pass Chebyshev filter applied to Event #13, a noise event. 

Figure 2.69: Band-pass Chebyshev filter applied to Event #14, a noise event. 
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Figure 2.70: Band-pass Chebyshev filter applied to Event #15, a noise event. 

 

2.6 Conclusion 

I observed that many "good" events generally have lower dominant frequency 

content than noise events. Frequency filtering applied to microseismic signals was 

demonstrated to illustrate the potential of this technique regarding event classification. 

Background on frequency filter terminology and theory were provided. The characteristics 

of the Butterworth, Chebyshev, and Inverse-Chebyshev frequency response approximations 

were explored prior to application.  

 A low-pass Inverse-Chebyshev filter, a high-pass Butterworth filter, and a band-

pass Chebyshev filter, all fourth order, were developed and applied to example “good” and 

noise traces. Filtered results showed example “good” traces having lower frequency content 

than noise traces, through peak-amplitude examination of the filtered traces. These results 

suggest that these algorithms are potentially capable of event-classification. 
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CHAPTER THREE: Event-Length Detection 
 
3.1  Introduction 

 Event detection has been a major area of interest in the field of earthquake 

detection. When an earthquake occurs, energy is propagated outwards from its focus, 

resulting in induced ground motions. As more than 50,000 earthquakes and mining blasts 

occur annually worldwide (Withers et al., 1998), seismologists look for automatic methods 

to detect these events in order to estimate the location of the earthquake’s hypocenter and 

alert the public if necessary. This type of detection is critical to ensure maximal public 

safety. Automatic detection of earthquakes in the presence of environmental noise has been 

a major focus of research in the seismological world for over 40 years (Joswig, 1990).  

 There is a wide range of detection algorithms that have been proposed and / or 

discussed by Ambuter and Solomon (1974), Engdahl et al. (1998), Withers et al. (1998), 

Chael (1997), Allen (1997),  and Horiuchi et al. (2005), among many others. Many of these 

algorithms are specialized towards earthquake (as opposed to microseism) detection, but 

major fundamental concepts can be applied to microseisms generated during thermal oil 

recovery as well.  

 One of the most common earthquake event-detection methods that can also be 

applied to microseism detection concerns calculating moving averages of short-term to 

long-term energy ratios, also known as the STA / LTA method (Ambuter and Solomon, 

1974). This technique was applied as one of the event-classification algorithms. Another 

event-length detection algorithm based in the frequency-domain was developed and will be 

discussed. These algorithms were applied to microseismic event-classification based on the 
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observation that the P-wave event-length in many “good” traces was usually significantly 

shorter than noise event-lengths.            

  

3.2 STA / LTA Algorithm 

This time-domain algorithm continuously calculates ratios of short-term averages 

(STA) to long-term averages (LTA) of microseismic energy. This is the STA/LTA 

technique (Ambuter and Solomon, 1974) demonstrated by Munro (2005). In microseismic 

analysis, the STA/LTA ratio will significantly increase at the onset of a microseismic 

event; conversely, this ratio will significantly decrease at the event’s termination. 

Calculating the time interval between the onset and termination of a microseismic event 

yields its approximate length.  

 To demonstrate an application of this algorithm to microseismic event detection, 

assume that there are N data samples in the microseismic trace under examination. Take the 

sampling frequency to be fs. Define S as the length of the STA window in seconds 

containing p data points. Similarly, define L as the length of the LTA window in seconds 

containing q data points. Then, 

                                                                  
s

pS
f

= ,                                                 (3.1)                                

and 

          
s

qL
f

= .                                                 (3.2) 

 

Let ai represent the amplitude of an arbitrary data point in the microseismic trace with         

i = 0, 1, 2, …, N-1.  The relationship between a point in time ti and the index “i” is    
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                                                              i
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it
f

= .                                                   (3.3) 

 The following application of this algorithm was found to work best for 

microseismic event-length analysis. To perform the first STA / LTA calculation, the LTA 

window was positioned such that it calculated a long-term energy average from the 

beginning of the trace at t = 0  to the time t = L. Using equation 3.3, this corresponds to data 

point indices from i = 0 to i = Lfs. The STA window was positioned such that it calculated a 

short-term energy average of the trace from the time t = L – S to the time t = L. This 

corresponds to data point indices from i = (L-S)fs to i = Lfs. Let STAx and LTAx represent the 

xth short-term and long-term energy calculations, respectively. Let Rx signify the xth 

calculated STA / LTA ratio. Then, the first STA and LTA calculations are given by 
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The resulting STA / LTA ratio for this first calculation is then  

                                                   1
1

1

STA
R

LTA
= .                                                       (3.6) 

 Equations 3.4, 3.5, and 3.6 are specific to the first calculated STA / LTA ratio. 

These equations can be easily modified to give the xth calculated STA / LTA ratio, 
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assuming that the windows are advanced by single data point increments prior to 

subsequent calculations. The equations for the generalized quantities STAx, LTAx,   

and Rx are  
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and  

                            
STAxRx LTAx

= .                                                                       (3.9) 

The STA / LTA algorithm applied here moves the energy windows by single data 

point increments until a significant increase in Rx is seen, indicating the detection of the P-

wave arrival. The termination of the event is detected through a significant decrease in Rx. 

If no event is detected, then calculations of Rx terminate when the energy windows reach 

the end of the microseismic trace.  

 Figure 3.1 is a reproduction of Event #1 shown in chapter 1, a “good” event. The 

empirically picked P-wave event-length is somewhat subjective depending on how one 

wishes to pick the exact onset and termination points of the event. Here, it is empirically 

picked to have an event-length of 31 ms.   
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Figures 3.2 to 3.7 show the calculated STA / LTA ratios as functions of the STA 

window position. For example, a time point of 200 ms on this axis corresponds to the STA 

window having limits from t = 200 ms to t = 200 + S  ms for that specific STA / LTA 

calculation. The temporal window length L of the LTA window is set to L = 100 ms. The 

temporal length of the STA window is varied from 2 ms to 50 ms in these figures to 

illustrate the effect of varying this parameter. This window length S must be carefully 

chosen in a manner such that it is not too long to ensure that short term energy trends can 

be distinguished from long term energy trends, but S must also not be too short to ensure 

that noise does not drive the calculated values of Rx. A reasonably accurate approximation 

of the P-wave event length is also desired.   

The onset of an event can be detected where there is a sharp increase in Rx, and the 

termination of an event can be similarly detected where there is a sharp decrease in Rx. 

These sharp changes can be seen at around 400 ms. By examining Figures 3.2 to 3.7, it is 

clear that, for this example, if S is too small, the calculated event-length will be too short; 

conversely, if S is too large, the calculated event-length will be too long. A value of    

S = 20 ms gives the most accurate pick for the example in Figure 3.1. Table 3.1 provides a 

summary of the detected event-lengths using this STA / LTA technique. Note that the 

event-lengths of these example “good” events are considerably shorter than those of the 

example noise events, suggesting that this algorithm is capable of event-classification.   
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Figure 3.1: A “good” event with an empirically picked P-wave event-length of 31 ms. 

 

Figure 3.2: Calculated STA / LTA ratios of the trace in Figure 3.1 with S = 2 ms. The 
automatically picked event-length is 3.6 ms.   
 

  

Figure 3.3: Calculated STA / LTA ratios of the trace in Figure 3.1 with S = 6 ms. The 
automatically picked event-length is 9.1 ms.   
 



 67

 

Figure 3.4: Calculated STA / LTA ratios of the trace in Figure 3.1 with S = 10 ms. The 
automatically picked event-length is 12.6 ms.   
 

 

Figure 3.5: Calculated STA / LTA ratios of the trace in Figure 3.1 with S = 14 ms. The 
automatically picked event-length is 17.2 ms.   
 

 

Figure 3.6: Calculated STA / LTA ratios of the trace in Figure 3.1 with S = 20 ms. The 
automatically picked event-length is 30.3 ms.   
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Figure 3.7: Calculated STA / LTA ratios of the trace in Figure 3.1 with S = 50 ms. The 
automatically picked event-length is 52.4 ms.   
 

Table 3.1: Summary of detected event-lengths using STA / LTA technique. Note that 
event-lengths of example “good” events are considerably shorter than those of example 
noise events. 

Event Type Event # Event-Length (ms) 
Good 1 30 
Good 2 28 
Good 3 59 
Good 4 41 
Good 5 36 
Good 6 31 
Good 7 39 
Good 8 40 
Good 9 38 
Good 10 51 
Noise 11 531 
Noise 12 102 
Noise 13 197 
Noise 14 528 
Noise 15 379 
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3.3  Continuous-Time Frequency Analysis 

 It was observed that the high-frequency content of many microseismic traces 

usually increased significantly at the onset of an event and decreased significantly at the 

event’s termination.  

 A developed method to pick the onset and termination times of microseismic events 

was to continually analyze the frequency characteristics of a select number of points in the 

channel. Defining a time window from times t1 to t2 in the channel, a continuous-time 

frequency analysis was performed by supplying a moving time window that existed 

between t1 and t2, with the limits t1 and t2
 continuously increased up until the end of the 

channel data. This developed technique is similar to the Gabor transform (e.g. Feichtinger 

and Strohmer, 1998) and S-transform (Stockwell et al., 1996) techniques which represent 

frequency transform methods that can be localized in time. These transform methods are 

useful when dealing with signals that are not stationary. A stationary signal (or wavelet) is 

one whose waveform does not change shape over time (e.g. Margrave, 2007). The time 

series in an earthquake seismogram is not stationary (e.g. Stockwell et al., 1996). Thus, 

when analyzing microseismic signals, especially when event-lengths and temporal 

locations are desired, it is preferred to use a continuous-time frequency transform technique 

capable of temporally localizing signal frequency characteristics.  

For a continuous signal, frequency characteristics are determined using the Fourier 

transform, defined as  

   
-

( )    ( )exp(- 2 )              G f g t j ft dtπ
∞

∞

= ∫                         (3.10)    
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(e.g. Haykin, 2001). In applying equation 3.10, the function g(t) represents the data in the 

microseismic channel between the intervals t1 and t2, explained above. Thus, as t1 and t2 are 

continuously increased, a continuous-time Fourier transform is performed. The power 

spectral density (PSD), |G(f)|2 = G(f)G*(f), can be obtained where “*” is the complex 

conjugate operator. The procedure can be repeated as the limits t1 and t2 are increased. The 

obtained result can be examined to determine onset and termination times of microseismic 

events.  

For discrete signals, the discrete Fourier transform (DFT) is used to determine 

frequency characteristics. The generalized definition of the DFT is    

                                          
21
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(e.g. Margrave, 2007). In equation 3.11, n corresponds to the indices of the time-series 

elements fn (with n = 0, 1, 2, 3 … N-1), m corresponds to the indices of the frequency 

elements fm (with m = 0, 1, 2, 3 … N-1), and N is the number of array elements.   

Let an examined trace sampled at a frequency fs contain N data points. Let di 

represent an arbitrary data point in this trace with i = 1, 2, 3…N. The time value t 

corresponding to an index i is  

                                                          
s

it
f

= .                                                            (3.12) 

Let W represent a fast Fourier transform (FFT) boxcar window containing k data points. 

Define Wp as the pth data point contained in W, with p = 1,2,3 … k. The fast Fourier 

transform (FFT) is a built-in MATLAB® function that calculates the discrete Fourier 

transform using an optimized method to reduce computation time. 
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 To start, W is positioned at the beginning of the data, and an FFT of data points 

from d1 to dk is applied. The k time-series elements are transformed to k frequency 

elements. Let fm represent the mth frequency element of the transformed data (with m = 

1,2,3 … k) contained in the window W. For this algorithm, equation 3.11 can be rewritten 

as 
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= ∑ .                              (3.13) 

The Nyquist frequency fNYQ is the highest signal frequency possible in a sampling process 

before aliasing becomes present in the reconstructed signal (e.g. Sheriff and Geldart, 1995) 

and is given as 
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 Let Fm represent the frequency (in Hz) that each corresponding transformed 

frequency element fm pertains to. The expression for Fm will depend on whether k is odd or 

even. If k is even, the equation is  
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whereas if k is odd, the expression is   
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Equations 3.15a and 3.16a correspond to positive frequencies, while equations 3.15b and 

3.16b correspond to negative frequencies. Comparing these equations with equation 3.14, 

note that |Fm| ≤  fNYQ  for all m. 

 After this FFT step is complete, the PSD of the frequency elements fm is calculated. 

Let Pm represent the PSD magnitude corresponding to a transformed frequency element fm 

given by      

    Pm = fm fm
* = | fm| 2.                                                   (3.17) 

If the time series contained in W is real, as expected for a microseismic trace, then it can be 

shown that the amplitude spectrum of the transformed elements, |fm|, is an even function in 

frequency (e.g. Haykin and Van Veen, 2003), implying that Pm is an even function in 

frequency as well. Thus, transformed elements corresponding to negative frequencies can 

effectively be ignored, as they are redundant, and this analysis can be restricted to positive 

frequencies to reduce computation time. In other words, Pm need only be found for 

1
2
km ≤ +  (if k is even), or for 1 1

2
km −

≤ +  (if k is odd). The elements in Pm are then 

placed in a single column of a 2-D matrix whose rows and columns correspond to 

frequency and time, respectively.  

The above procedure is repeated as the window W moves forward by single data 

point increments until the end point of this window reaches dN. There is a direct tradeoff 

between frequency and time resolution as the size of W (denoted by k) changes. If k is too 

small, the final plot will have good time resolution, but poor frequency resolution; 

conversely, if k is too large, the plot will have good frequency resolution, but poor time 

resolution. This tradeoff is related to the Heisenberg uncertainty principle (Heisenberg, 
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1927), later translated to English in a textbook by Wheeler and Zurek (1983). In quantum 

physics, the Heisenberg uncertainty principle states that there is a tradeoff in measurement 

accuracy between position and momentum. Somewhat related to this is the fact that, in the 

continuous-time frequency analysis algorithm developed, there is a direct tradeoff between 

frequency and time resolution. This tradeoff will be demonstrated. 

Figure 3.8 depicts a general block diagram of this algorithm. The “Matrix Reversal” 

operation corresponds to reversing the element order of the matrix (the positioning of the 

first and last matrix elements are switched, and so on). High frequency content is examined 

in the resulting 2-D matrix to determine the onset and termination times of an event. In 

Figure 3.8, the time axis is defined as the temporal position of the first data element in the 

time-localized window W.     
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Figure 3.8: General block diagram of the developed continuous-time frequency-domain 
event-length detection algorithm. The row-vector represents input time data elements di. 
The output column-vectors are out1, out2, etc. The columns in the 2-D matrix are denoted 
by C1, C2, etc. 
 

Consider this algorithm applied to the microseismic traces in Figures 1.7 and 1.17, 

which correspond to Event #1 and Event #11, respectively. Event #1 is an example of a 

“good” event, while Event #11 is an example of a noise event. These traces have N = 4096 

and fs = 3000 Hz. To demonstrate the importance of choosing an optimal size k of the FFT 
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window W, the frequency-time resolution tradeoff is shown in subsequent figures. 

Figures 3.9 and 3.10 display Event #1 and Event #11, respectively, with this continuous-

time Fourier transform algorithm applied using a very small window size (k = 10). These 

figures show strong time resolution, but poor frequency resolution. Figures 3.11 and 3.12 

show these transforms using a very large window size (k = 1000). As expected, these 

figures have strong frequency resolution, but poor time resolution.     

After experimentation, it was found that a window size of k = 100 was optimal to 

obtain the best time-frequency resolution combination. Figure 3.13 and Figure 3.14 show 

the transformed “good” (Event #1) and noise (Event #11) examples, respectively. The 

frequency axis has an upper display limit of 250 Hz in Figure 3.13, although the resultant 

2-D matrix contains elements that correspond to frequencies up to 1500 Hz, the Nyquist 

frequency. The frequency content was negligible above 500 Hz in Figure 3.13. The 

calculated P-wave event-length in Figure 3.13 using this algorithm was 35 ms. The 

calculated noise event-length in Figure 3.14 was 547 ms. The onset and termination event 

locations are also shown in these figures.  

Figure 3.9: Continuous-time Fourier transform PSD plot of Event #1, a “good” trace, using 
an FFT window size k = 10. There is strong time resolution, but poor frequency resolution. 
The color spectrum spans from dark blue (low-magnitude) to bright red (high-magnitude). 
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Figure 3.10: Continuous-time Fourier transform PSD plot of Event #11, a noise trace, using 
an FFT window size k = 10. There is strong time resolution, but poor frequency resolution. 
The color spectrum spans from dark blue (low-magnitude) to bright red (high-magnitude). 

Figure 3.11: Continuous-time Fourier transform PSD plot of Event #1, a “good” trace, 
using an FFT window size k = 1000. There is strong frequency resolution, but poor time 
resolution. The color spectrum spans from dark blue (low-magnitude) to bright red (high-
magnitude). 

Figure 3.12: Continuous-time Fourier transform PSD plot of Event #11, a noise trace, using 
an FFT window size k = 1000. There is strong frequency resolution, but poor time 
resolution. The color spectrum spans from dark blue (low-magnitude) to bright red (high-
magnitude). 
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Figure 3.13: Continuous-time Fourier transform PSD plot of Event #1, a “good” trace, 
using an experimentally determined optimal FFT window size k = 100. There is adequately 
strong time and frequency resolution. The event-length was calculated to be 35 ms.  

 

Figure 3.14: Continuous-time Fourier transform PSD plot of Event #11, a noise trace, using 
an experimentally determined optimal FFT window size k = 100. There is adequately 
strong time and frequency resolution. The event-length was calculated to be 547 ms. 

  

 Applying the optimal FFT window size of k = 100, Figures 3.15 to 3.20 show PSD 

plots of the synthetic “good” traces depicted in Figures 1.22 to 1.27. Although the P-wave 

becomes harder to distinguish as SNR decreases due to noise frequency components 

causing increased distortion, this arrival remains relatively easy to pick for SNR values of 

15 dB or higher. The picked event-length of this P-wave arrival is 30 ms. When the SNR 
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decreases to 10 dB or lower, however, the PSD becomes driven by noise frequencies 

resulting in the P-wave arrival becoming very difficult to distinguish. In Figure 3.20, where 

the time-domain trace has an SNR of 0 dB, the P-wave arrival is indistinguishable in the 

PSD plot. Figure 3.21 shows a PSD plot of the synthetic noise trace depicted in Figure 

1.28. The picked noise event length is 1.1 seconds, significantly larger than the picked 

“good” event lengths of 30 ms.  

Figures 3.22 to 3.30 show PSD plots of Event #2 to Event #10, which are “good” 

events. Figures 3.31 to 3.34 show PSD plots of Event #12 to Event #15, which are noise 

events. Table 3.2 provides a summary of the detected event-lengths using this frequency 

transform technique. Note that the event-lengths of these example “good” events are 

considerably shorter than those of the example noise events, suggesting that this algorithm 

is capable of event-classification.   

 
Table 3.2: Summary of detected event-lengths using frequency transform technique. Note 
that event-lengths of example “good” events are considerably shorter than those of example 
noise events. 
 

Event Type Event # Event-Length (ms) 
Good 1 35 
Good 2 32 
Good 3 62 
Good 4 43 
Good 5 37 
Good 6 34 
Good 7 45 
Good 8 44 
Good 9 47 
Good 10 54 
Noise 11 547 
Noise 12 114 
Noise 13 234 
Noise 14 570 
Noise 15 415 
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Figure 3.15: Continuous-time Fourier transform PSD plot of synthetic “good” trace in 
Figure 1.22 (SNR = 30 dB) with FFT window size k = 100. The P-wave event-length was 
calculated to be 30 ms.  
 

 

Figure 3.16: Continuous-time Fourier transform PSD plot of synthetic “good” trace in 
Figure 1.23 (SNR = 25 dB) with FFT window size k = 100. The P-wave event-length was 
calculated to be 30 ms.  

Figure 3.17: Continuous-time Fourier transform PSD plot of synthetic “good” trace in 
Figure 1.24 (SNR = 20 dB) with FFT window size k = 100. The P-wave event-length was 
calculated to be 30 ms.  
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Figure 3.18: Continuous-time Fourier transform PSD plot of synthetic “good” trace in 
Figure 1.25 (SNR = 15 dB) with FFT window size k = 100. The P-wave event-length was 
calculated to be 30 ms.  
 

 
Figure 3.19: Continuous-time Fourier transform PSD plot of synthetic “good” trace in 
Figure 1.26 (SNR = 10 dB) with FFT window size k = 100. The P-wave event-length was 
calculated to be 30 ms, but significant noise frequency components increase the difficulty 
of distinguishing this arrival.  

 
Figure 3.20: Continuous-time Fourier transform PSD plot of synthetic “good” trace in 
Figure 1.27 (SNR = 0 dB) with FFT window size k = 100. The P-wave arrival is 
indistinguishable due to very large noise frequency components.  
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Figure 3.21: Continuous-time Fourier transform PSD plot of synthetic noise trace in Figure 
1.28 with FFT window size k = 100. The calculated event-length was 1.1 seconds. 

Figure 3.22: Continuous-time Fourier transform PSD plot of Event #2, a “good” event, with 
FFT window size k = 100. The calculated event-length was 32 ms. 

Figure 3.23: Continuous-time Fourier transform PSD plot of Event #3, a “good” event, with 
FFT window size k = 100. The calculated event-length was 62 ms. 
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Figure 3.24: Continuous-time Fourier transform PSD plot of Event #4, a “good” event, with 
FFT window size k = 100. The calculated event-length was 43 ms. 

 

Figure 3.25: Continuous-time Fourier transform PSD plot of Event #5, a “good” event, with 
FFT window size k = 100. The calculated event-length was 37 ms. 

 

Figure 3.26: Continuous-time Fourier transform PSD plot of Event #6, a “good” event, with 
FFT window size k = 100. The calculated event-length was 34 ms. 
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Figure 3.27: Continuous-time Fourier transform PSD plot of Event #7, a “good” event, with 
FFT window size k = 100. The calculated event-length was 45 ms. 

 

Figure 3.28: Continuous-time Fourier transform PSD plot of Event #8, a “good” event, with 
FFT window size k = 100. The calculated event-length was 44 ms. 

 

Figure 3.29: Continuous-time Fourier transform PSD plot of Event #9, a “good” event, with 
FFT window size k = 100. The calculated event-length was 47 ms. 
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Figure 3.30: Continuous-time Fourier transform PSD plot of Event #10, a “good” event, 
with FFT window size k = 100. The calculated event-length was 54 ms. 

 

Figure 3.31: Continuous-time Fourier transform PSD plot of Event #12, a noise event, with 
FFT window size k = 100. The calculated event-length was 114 ms. 

 

Figure 3.32: Continuous-time Fourier transform PSD plot of Event #13, a noise event, with 
FFT window size k = 100. The calculated event-length was 234 ms. 
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Figure 3.33: Continuous-time Fourier transform PSD plot of Event #14, a noise event, with 
FFT window size k = 100. The calculated event-length was 570 ms. 

Figure 3.34: Continuous-time Fourier transform PSD plot of Event #15, a noise event, with 
FFT window size k = 100. The calculated event-length was 415 ms.  
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3.4 Conclusion 
 
 I observed that the P-wave event-lengths in many “good” traces are usually 

significantly shorter than noise event-lengths. Thus, two event-length detection techniques, 

one in the time domain and the other in the frequency domain, were performed to 

differentiate “good” microseismic signals from noise based on calculated event-lengths. 

 The time domain technique continuously calculated ratios of short-term averages 

(STA) to long-term averages (LTA) of microseismic energy to determine event onset and 

termination times. This is known in literature as the STA/LTA technique. The developed 

frequency domain technique continuously analyzed the frequency characteristics of a select 

number of points in the channel through a moving time window, similar to the Gabor and 

S-transform techniques, and examined high frequency content to determine event onset and 

termination times. 

   The effects of varying window sizes pertaining to both the time and frequency 

domain techniques were examined. After empirically optimizing these parameters, these 

techniques appear capable of event-length detection. For example, the calculated noise 

trace event-lengths, shown in Figures 3.31 to 3.34, were significantly longer than the 

“good” event-lengths, shown in Figures 3.22 to 3.30, suggesting that these algorithms are 

potentially capable of event-classification. 
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CHAPTER FOUR: Statistical Analysis 

4.1 Introduction 

 Statistical analysis is applied in many fields such as science, math, economics, and 

humanities. Fundamentally, this type of analysis is applied to a collection of data, referred 

to as a “dataset”, to extract pertinent quantifiable characteristics. Statistical analysis is often 

performed to assist in making informed, rational decisions in many fields (e.g. Walpole et 

al., 2002).          

This chapter describes the application of statistical analysis to microseismic signal 

classification. The developed algorithms focus on simplicity, functionality, and 

computational efficiency.  

Compared to noise traces, I observed that “good” microseismic traces generally 

have lower signal variance, higher central data distribution, less frequent oscillations, and 

smaller signed amplitude differences between adjacent time-series data points. Statistical 

analysis classification algorithms were developed based on these observations. These 

algorithms are practical and simplified applications of the mathematics outlined in section 

4.2 that describe fundamental statistical relationships.    

 

4.2 Statistical Characteristics of Microseismic Signals 

 Observed statistical characteristics of “good” and noise microseismic signals will 

first be described. Fundamental statistics theory will be discussed. Based on these 

characteristics, algorithms were developed to differentiate between “good” and noise 

microseismic signals through analysis of individual data points contained in the signals’ 

time series.  
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Figure 4.1 is an example “good” signal shown in Figure 1.7 (Event #1), reprinted 

for easier reference in this chapter. Figure 4.2 is an example noise signal shown in Figure 

1.17 (Event #11).  

 

Figure 4.1: Example “good” signal. 

 

Figure 4.2: Example noise signal. 

 

4.2.1 Signal Variance  

 I observed that, in the Cold Lake dataset, microseismic noise signals tend to have 

greater data variance than “good” signals. As an example, define gi (ni) as the signed 

amplitude of the ith time series data point corresponding to the “good” (noise) trace shown 

in Figure 4.1 (4.2), for i = 1,2,…N, where N is the total number of data points in the time 

series. Referring to Figures 4.1 and 4.2, a value of i = 1 corresponds to a time of 1
1

s

t
f

= , 
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and a value of i = N corresponds to a time of N
s

Nt
f

= , where fs is the sampling frequency 

of the traces in Hertz. In Figures 4.1 and 4.2, N = 4096, and fs = 3000 Hz. Define µg (µn) as 

the average of the example “good” (noise) time series. As an example, µg can be expressed 

as   

                                                       1

N

i
i

g

g

N
µ ==

∑
 .                                        (4.1) 

The mean of the noise trace µn simply corresponds to replacing g with n in equation 4.1.  

 Define variance of the time series corresponding to the “good” (noise) trace as σ2
g 

(σ2
n).  Then, 
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∑
.                           (4.2) 

 

The variance of the noise trace σ2
n simply corresponds to replacing g with n in equation 4.2. 

The traces shown in Figures 4.1 and 4.2 have had DC offset removed, signifying that they 

have been adjusted such that 0g nµ µ= = . Thus, equation 4.2 can be reduced to   
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2 1
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i

g

g
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σ ==

−

∑
.                                       (4.3) 

 Variance is a measure of statistical dispersion in a dataset (e.g. Walpole et al., 

2002). It is a quantitative indicator of how values vary about the mean. Larger (smaller) 

dataset variances correspond to larger (smaller) expected deviations of arbitrary data points 

from the mean. The “good” microseismic trace in Figure 4.1 has a variance 2 0.0128gσ = , 
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while the noise trace in Figure 4.2 has a variance 2 0.0293nσ = . By empirically 

examining these two figures, a higher noise trace variance would be expected. Over the 

whole trace, the noise trace contains visibly larger deviations from the mean compared to 

the “good” trace. Thus, one could intuitively conclude that more noise data points would be 

expected to lie outside an arbitrary mean-centered amplitude window than “good” data 

points. Section 4.2.1.1 below quantifies this intuitive conclusion to a greater degree.    

 

4.2.1.1  Chebyshev’s Inequality 

 The likelihood of dataset points existing a given distance away from its mean can be 

quantified by applying “Chebyshev’s inequality”. Theory pertaining to Chebyshev’s 

inequality is given in this section, adapted from Lange (2003); Therrien and Tummala 

(2004); Miller and Childers (2004); Mitzenmacher and Upfal (2005); and Suhov and 

Kelbert (2005), written in a compact and paraphrased form. Conclusions drawn will be 

applied to develop a microseismic signal classification algorithm.  

 Chebyshev’s inequality follows from Markov’s inequality, which is explained 

below.  

Assume that β is a nonnegative arbitrary random variable (β ≥ 0). Define βi as a 

single possible value of β with an occurrence probability of ρi. Then, the expected value of 

β, E[β], can be defined as   

                                                 [ ] i i
i

β ρ β= ∑E .                                                 (4.4) 

Define another variable ξ that is related to β as  
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1    ,
0    otherwise. 

aξ β
ξ
= ≥
=

                                           (4.5) 

 

In equation 4.5, a is a positive arbitrary constant (a > 0). Since β ≥ 0 and a > 0, the 

relationship  

                                                            
a
βξ ≤                                                     (4.6) 

will hold. Since ξ is a variable that can only assume values of 0 or 1, referring to equation 

4.5, the expected value of ξ, E[ξ], will be  

                      E[ξ] = 0*Pr(ξ = 0) + 1*Pr(ξ = 1)  = Pr(ξ = 1)  = Pr(β ≥ a),           (4.7) 

where “Pr(ξ = 1)”, for example, means “the probability that ξ equals one”. Taking the 

expectation E[] of both sides of equation 4.6 and applying the result of equation 4.7 gives  

                               [ ]Pr( )  [ ]  a
a a
β ββ ξ ⎡ ⎤≥ = ≤ =⎢ ⎥⎣ ⎦

EE E ,                                 (4.8) 

where the well-known expectation relationship [ ] 
a a
β β⎡ ⎤ =⎢ ⎥⎣ ⎦

EE  was applied in equation 4.8. 

The result  

                                 [ ]Pr( )a
a
ββ ≥ ≤

E ,                                        (4.9) 

is known as “Markov’s inequality”, and is a necessary relationship to obtain Chebyshev’s 

inequality.  

 Assume it is desired to determine the likelihood that a random variable X will lie, at 

the least, an absolute distance of a away from its mean E[X]. Thus, it is desired to quantify 

Pr(|X – E[X]|  ≥ a). Squaring both sides of this probability inequality leads to  
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       Pr(|X – E[X]|  ≥ a) = Pr((X – E[X]) 2  ≥ a2 ).                (4.10) 

Observing that {(X – E[X])2 ≥ 0} allows the application of Markov’s inequality defined in 

equation 4.9, which leads to  

                                       
2

2 2
2

[(X [X]) ]Pr((X [X]) )a
a
−

− ≥ ≤
E EE .                       (4.11) 

Define VAR[X] as the variance of variable X. The well-known identity 

                                         2[X] [(X [X]) ]= −VAR E E                                            (4.12) 

will be applied. Combining equations 4.10, 4.11 and 4.12 leads to Chebyshev’s inequality: 

                    2

[X]Pr(| X [X] |  )a
a

− ≥ ≤
VARE .                     (4.13) 

Equation 4.13 states that a larger dataset variance corresponds to an increase in the 

expected maximum number of data points lying outside a mean-centered window of width 

2a (or single-sided width a).  

 Recall from section 4.2.1, that the observed data variances in the “good” and noise 

trace examples were 2 0.0128gσ =  and 2 0.0293nσ = , respectively. Equation 4.13 

mathematically confirms and quantifies the intuitive conclusion that more noise data points 

would be expected to lie outside an arbitrary mean-centered amplitude window than “good” 

data points, since 2 2
n gσ σ>  . The developed “Threshold” classification algorithm 

described in section 4.3.1 draws on this conclusion. 
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4.2.2. Signal Distribution 

 I observed that the time series signed amplitude distribution of “good” traces tended 

to be more heavily concentrated near the time axis than noise traces, as can be seen in the 

“good” and noise traces in Figures 4.1 and 4.2, respectively. One tool that can be used to 

examine and quantify data distribution is a histogram.  

 A histogram is a graphical representation of the number of signal data points that 

fall within disjointed amplitude ranges. To better illustrate this, assume that the signed 

amplitude of the ith data point in an N-point discrete time series is di. For example, this time 

series could be one of the microseismic signals shown in Figures 4.1 or 4.2. Assume that 

both positive and negative values are present in this time series. Let dmax denote the largest 

positive value in the time series, and dmin denote the largest negative value. Assume there 

are n histogram bins each with a bin width of b. In this simple case, the total number of 

histogram bins, n, can then be calculated as     

           max mind d
n

b
−⎡ ⎤= ⎢ ⎥⎢ ⎥

 ,                                                   (4.14) 

where “ ⎡ ⎤⎢ ⎥ ” signifies rounding upwards to the closest integer. Let mk represent histogram 

bin k for 0,1,2,... 1k n= − . One possible method is to position the lower boundary of the 

first bin m0 on dmin, the second bin m1 on dmin + b, and so on.  Thus, mk would record the 

total number of points that fall in the range ( 1)min i mind kb d d k b+ ≤ < + + .  The notation 

             [ ( 1) ];     0,1,2,..., 1 k min i minm d kb d d k b k n→ + ≤ < + + = −         (4.15) 

will be used to signify this.  

 An issue that arises when creating a histogram includes determining the optimal bin 

width b (or equivalently, through equation 4.14, the total number of bins n). It is desired to 
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choose b (or n) such that the data distribution is well represented. If b is too large, critical 

information may be smeared across a single bin. That is, the frequency structure of the data 

may not be appropriately emphasized. Conversely, if b is too small, fluctuations in the 

histogram that may appear important could be the simple result of random data variation 

over a small interval.  

Statistics literature has attempted to determine how to optimally choose b. Three 

well-known equations have been developed by Sturges (1926), Scott (1979), as well as 

Freedman and Diaconis (1981). These equations will be briefly discussed.          

  Sturges (1926) assumed a histogram containing a total of n bins, where the number 

of data points recorded in histogram bin k (k = 0,1,2,…,n-1) was equal to the “binomial 

coefficient” 
1

   
n

k
−⎛ ⎞

⎜ ⎟
⎝ ⎠

. Using the general equation  

                                                   !
!( )!

n n
k k n k
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
                                                (4.16) 

(e.g. Walpole et al., 2002), where “!” is the factorial operator, the number of data points in 

histogram bin k can be rewritten as  

                                                    
1 ( 1)!

   !( 1 )!
n n

k k n k
−⎛ ⎞ −

=⎜ ⎟ − −⎝ ⎠
.                                    (4.17) 

Thus, the total number of points in the entire dataset (sample size), N, is the summation of 

the number of points contained in each bin, expressed as  

                                                    
1
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⎝ ⎠
∑ .                                                (4.18) 

 Sturges (1926) chose to assume this type of data distribution because as  
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n increases to large values, the data distribution approaches the shape of a normal (or 

Gaussian) distribution, which can be a reasonable approximation for some datasets. A 

normal distribution of a random variable X, that can assume values of x ( x∈ℜ ), is one 

whose probability density function f(x) is given as   

                                                   
2

22

1 ( )( ) exp
22

xf x µ
σπσ

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
,                      (4.19) 

where µ is the dataset mean, and σ2 is the dataset variance. As the number of bins n 

increases, the assumed data distribution approaches the shape of the Gaussian distribution 

in equation 4.19 with  1
2

nµ −
=  and 2 1

4
nσ −

=  (e.g. Scott, 1992).  

The “binomial theorem” is a well-known equation that expands out powers of sums. 

In its simplest and general form, it is given as  
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( )n n k k
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⎝ ⎠
∑                                 (4.20) 

(e.g. Walpole et al., 2002). Equation 4.18 can be rewritten by comparing it to equation 4.20 

with x = y = 1. This results in the sample size expressed as  

                                                      12nN −= .                                                        (4.21) 

Taking the logarithm of equation 4.21, the theoretical optimum number of bins n 

corresponding to the assumption of Sturges (1926) is then   

                                                      2log 1n N= + .                                               (4.22) 

Equation 4.22 is known as “Sturges’ rule”, which provides a suggested number of 

histogram bins n given a dataset with sample size N.  
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 While Sturges’ rule is often used as a rule of thumb for quick histogram 

generation, it is not universally applicable to all datasets (e.g. Scott, 1992). Sturges’ rule 

implicitly assumes a normal data distribution (for large n), an approximation that is 

appropriate for some datasets, but not for others. It has also been shown that as the sample 

size N becomes large, Sturges’ rule tends to result in histograms that are overly smoothed, 

resulting in information smeared across single bins.   

 Alternative equations to determine the histogram bin width b have been developed 

in statistics literature to improve upon Sturges’ rule. Scott (1979) developed the 

relationship  

               
3

3.5sb
N

= .                                                 (4.23) 

Freedman and Diaconis (1981) developed the expression  

                                                        13
3

2Q
b

N
= .                                     (4.24) 

In equation 4.23, s corresponds to the sample standard deviation. In equation 4.24, Q13  

pertains to the sample interquartile range, which is the difference between the two data 

sample values on the inner limits of the first and third quartiles of the dataset.  

While equations 4.23 and 4.24 improve upon Sturges’ rule, some limitations still 

exist. For instance, He and Meeden (1997) demonstrate an example where Scott’s 

relationship (equation 4.23) has the potential of obscuring histogram structure when the 

data is roughly distributed (as opposed to smoothly distributed).       

Generally, if time permits, it is best to empirically select histogram bin widths 

catered to the specific dataset under examination. No mathematical relationship concerning 

optimal histogram bin width has been developed that is optimally applicable to all types of 



 97
datasets. Thus, the bin width corresponding to the “Histogram” microseismic file 

classification algorithm described in section 4.3.2 was determined empirically.  

 

4.2.3  Signal Oscillation and Sequential Time-Series Behavior  

I observed that microseismic noise signals tend to oscillate more frequently about the 

time axis. This is similar to the frequency observations discussed in chapter 2. However, it 

was additionally observed that the magnitudes of signed amplitude differences between 

adjacent time-series data points were generally greater for noise microseismic traces 

compared to “good” traces. Essentially, this observation implies that “good” traces 

generally contain minimal signal noise. Noise that was observed in microseismic “good” 

traces had relatively low amplitude compared to microseismic noise traces. Alternatively 

stated, it was observed that, compared to noise traces, “good” traces often have less 

sporadic sequential time-series behaviour about its mean.           

 To illustrate the above observations, the “good” and noise traces in Figures 4.1 and 

4.2 are plotted as discrete time-series in Figures 4.3 and 4.4 from an example time interval 

of 1.14s to 1.15s. A very fine time interval is used in these figures to illustrate the signed 

amplitude difference between adjacent time-series data points corresponding to the example 

“good” and noise traces. Note that in Figure 4.4, corresponding to the noise trace, there are 

more instances where adjacent data points have opposite signs compared to the “good” 

trace in Figure 4.3. This is related to the observation that “good” traces oscillate less than 

noise traces. An additional important observation is that the magnitudes of signed 

amplitude differences between adjacent time-series data points are larger for the noise trace 

than the “good” trace, including areas where adjacent data points change polarity. Based on 
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these observations the “Specialized Zero-Crossing Count” algorithm described in section 

4.3.3 was developed.  

 

Figure 4.3: Discrete time-series plot of example “good” trace for t = 1.14s to t = 1.15s. The 
dashed line represents zero amplitude to better view polarity reversals. Fewer polarity 
reversals between adjacent data points are seen compared to the noise trace in Figure 4.4. 
Additionally, the magnitudes of signed amplitude differences between adjacent time-series 
data points are smaller compared to the example noise trace.    
 

 

Figure 4.4: Discrete time-series plot of example noise trace for t = 1.14s to t = 1.15s. The 
dashed line represents zero amplitude to better view polarity reversals. More polarity 
reversals between adjacent data points are seen compared to the “good” trace in Figure 4.3. 
Additionally, the magnitudes of signed amplitude differences between adjacent time-series 
data points are larger compared to the example “good” trace.       
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4.3  Statistical Classification Algorithms 

 Based on the observed signal characteristics described in sections 4.2.1 to 4.2.3, 

simple statistical algorithms were developed to classify microseismic files. Statistical 

analysis algorithms that were both simple and functional were developed to reduce 

computational time. In practical applications, minimal computation time is critical, as 

potentially tens of thousands of microseismic files may need to be classified daily. The 

developed statistical analysis algorithms are practical and simplified applications of the 

statistical mathematics outlined in section 4.2. It will be shown in chapter 5 that these 

statistical analysis techniques have the potential to classify microseismic files to a high 

degree of accuracy.     

   

4.3.1  Threshold Algorithm 

 As described in section 4.2.1, it was concluded that more noise data points would be 

expected to lie outside an arbitrary mean-centered amplitude window than “good” data 

points, since 2 2
n gσ σ> . This “Threshold” algorithm draws on this conclusion.  

 Define a window w existing from a w a− ≤ ≤ . This window is centered at the mean 

of examined traces, which is zero. This algorithm simply determines the fraction of time 

series data points that lie outside the threshold limits a± of the window w. This fraction can 

then be used for microseismic signal classification. Table 4.1 summarizes the percentage of 

outlying data points using a single-sided window width of a = 0.03 when this algorithm is 

applied to the synthetic traces shown in Figures 1.22 to 1.28. Table 4.2 summarizes the 

percentage of outlying data points with a = 0.03 when this algorithm is applied to Event #1 
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through Event #15. Note that, compared to noise traces, the example “good” traces 

generally contain fewer outlying data points.  

 

Table 4.1: Summary of the percentage of outlying data points using a single-sided window 
width of a = 0.03 when Threshold algorithm is applied to the synthetic traces. 
 

Event Type SNR (dB) Pts Outside (%) 
Good 30 4.9 
Good 25 22.7 
Good 20 49.8 
Good 15 59.3 
Good 10 78.4 
Good 0 89.2 
Noise N/A 70.3 

 

Table 4.2: Summary of the percentage of outlying data points using a single-sided window 
width of a = 0.03 when Threshold algorithm is applied to example “good” and noise events. 
Note that, compared to noise traces, the example “good” traces generally contain fewer 
outlying data points. 
 

Event Type Event # Pts Outside (%) 
Good 1 20.8 
Good 2 40.6 
Good 3 21.0 
Good 4 39.2 
Good 5 6.4 
Good 6 42.4 
Good 7 52.2 
Good 8 34.2 
Good 9 54.5 
Good 10 13.2 
Noise 11 68.2 
Noise 12 73.2 
Noise 13 79.3 
Noise 14 31.7 
Noise 15 65.8 
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4.3.2  Histogram Algorithm 

 Referring to the histogram theory presented in section 4.2.2, and the observation 

that the time series signed amplitude distribution of “good” traces tended to be more 

heavily concentrated near the time axis than noise traces, a “Histogram” microseismic 

classification technique was developed.  

 The histogram parameters were empirically chosen to best fit the given 

microseismic dataset. A total of n = 99 histogram bins, each of width b = 2
99

 were applied. 

The data limits were taken to be dmin = -1 and dmax = +1 to obtain a symmetrical histogram 

about the zero-mean signals. Referring to equation 4.15, histogram bin k (k = 0,1,2,…,98), 

represented by mk, would thus record the total number points that fall in the range 

2 2( 1)1 1
99 99i

k kd +
− + ≤ < − + . Using the notation in equation 4.15 for this example gives            

         2 2( 1)1 1 ;     0,1,2,...,98. 
99 99k i

k km d k+⎡ ⎤→ − + ≤ < − + =⎢ ⎥⎣ ⎦
       (4.25) 

 After histogram generation, the data occurrence recorded in a central bin (corresponding to  

2
nk ≈ , roughly speaking) can be examined for microseismic signal classification.  

If the 50th bin (k = 49) is examined,  the synthetic “good” traces in Figures 1.22 to 

1.27, which had SNR decreasing from 30 dB to 0 dB, had 32.4%, 18.1%, 10.4%, 5.93%, 

4.03%, and 2.37% of data points lying in the 50th bin range, respectively. This is expected 

because data point distribution spreads out to larger degrees and becomes less centralized 

as noise power increases. The synthetic noise event shown in Figure 1.28 has 1.1% of its 

data points in the 50th bin range. These results are summarized in Table 4.3. Table 4.4 
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summarizes the percentage of data points that lie in the 50th bin range pertaining to 

Event #1 through Event #15 when this algorithm is applied. Note that, compared to “good” 

events, noise events generally have fewer data points that lie in the 50th bin range. Figures 

4.5 to 4.26 show histogram plots corresponding to the “good” and noise synthetic and real 

traces.  

 
Table 4.3: Summary of the percentage of data points in the 50th (middle) bin range when 
the Histogram algorithm is applied to the synthetic traces.  
 

Event Type SNR (dB) Pts in 50th bin (%) 
Good 30 32.4 
Good 25 18.1 
Good 20 10.4 
Good 15 5.93 
Good 10 4.03 
Good 0 2.37 
Noise N/A 1.1 

 

Table 4.4: Summary of the percentage of data points in the 50th (middle) bin range when 
the Histogram algorithm is applied to example “good” and noise events. Note that, 
compared to “good” events, noise events generally have fewer data points that lie in the 
50th bin range. 
 

Event Type Event # Pts in 50th bin (%) 
Good 1 34.6 
Good 2 29.7 
Good 3 33.6 
Good 4 22.8 
Good 5 48.5 
Good 6 18.9 
Good 7 12.0 
Good 8 25.9 
Good 9 15.1 
Good 10 43.5 
Noise 11 10.7 
Noise 12 8.9 
Noise 13 6.6 
Noise 14 33.8 
Noise 15 10.4 
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Figure 4.5: Histogram plot corresponding to synthetic “good” trace (SNR = 30 dB) shown 
in Figure 1.22. 
 

Figure 4.6: Histogram plot corresponding to synthetic “good” trace (SNR = 25 dB) shown 
in Figure 1.23. 
 

Figure 4.7: Histogram plot corresponding to synthetic “good” trace (SNR = 20 dB) shown 
in Figure 1.24.  
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Figure 4.8: Histogram plot corresponding to synthetic “good” trace (SNR = 15 dB) shown 
in Figure 1.25.  
 

Figure 4.9: Histogram plot corresponding to synthetic “good” trace (SNR = 10 dB) shown 
in Figure 1.26.  
 

Figure 4.10: Histogram plot corresponding to synthetic “good” trace (SNR = 0 dB) shown 
in Figure 1.27. 
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Figure 4.11: Histogram plot corresponding to synthetic noise event shown in Figure 1.28. 

 

 

Figure 4.12: Histogram plot corresponding to Event #1, a “good” trace.  

 

Figure 4.13: Histogram plot corresponding to Event #2, a “good” trace.  
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Figure 4.14: Histogram plot corresponding to Event #3, a “good” trace.  

Figure 4.15: Histogram plot corresponding to Event #4, a “good” trace.  

Figure 4.16: Histogram plot corresponding to Event #5, a “good” trace. 

Figure 4.17: Histogram plot corresponding to Event #6, a “good” trace. 
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Figure 4.18: Histogram plot corresponding to Event #7, a “good” trace. 

Figure 4.19: Histogram plot corresponding to Event #8, a “good” trace. 

Figure 4.20: Histogram plot corresponding to Event #9, a “good” trace. 

 

Figure 4.21: Histogram plot corresponding to Event #10, a “good” trace. 
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Figure 4.22: Histogram plot corresponding to Event #11, a noise trace. 

Figure 4.23: Histogram plot corresponding to Event #12, a noise trace. 

Figure 4.24: Histogram plot corresponding to Event #13, a noise trace. 

Figure 4.25: Histogram plot corresponding to Event #14, a noise trace.  
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Figure 4.26: Histogram plot corresponding to Event #15, a noise trace. 

 

4.3.3  Specialized Zero-Crossing Count Algorithm 

Based on the observations that microseismic noise signals tend to oscillate more 

frequently about the time axis and that magnitudes of signed amplitude differences between 

adjacent time-series data points were generally greater compared to “good” traces, a 

“Specialized Zero-Crossing Count” algorithm was developed. 

Define a window v that exists in the signed-amplitude range z v z− ≤ ≤ . First, all the 

time-series data points that fall within v are set to zero. Essentially, this zeroing step sets all 

data points close to the time axis to zero and removes low-amplitude noise. As the signed 

amplitudes of adjacent time-series data points in microseismic noise signals generally vary 

to greater degrees compared to “good” traces, this zeroing step will tend to preserve 

polarity reversals (sign changes) in adjacent data points on noise traces, but eliminate many 

of these polarity reversals on “good” traces. Thus, this step helps to further improve the 

discrepancy between “good” and noise traces to improve classification accuracy.  

 After the zeroing step is applied, the total number of valid polarity reversals 

between adjacent data points is totaled, and that total is divided by the total number of trace 

data points to obtain a fractional measurement. A valid polarity reversal corresponds to 
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adjacent data points changing from a strictly positive to a strictly negative value, or 

vice-versa.  

With the zeroing step applied for z = 0.01, the synthetic “good” traces in Figures 

1.22 to 1.27, which had SNR decreasing from 30 dB to 0 dB, had measured polarity 

reversal percentages of 15.7%, 26.9%, 31.3%, 36.3%, 38.4%, and 43.6%, respectively. The 

synthetic noise trace in Figure 1.28 had a measured polarity reversal percentage of 40.8%. 

These results are summarized in Table 4.5. Table 4.6 summarizes the results when this 

algorithm is applied to Event #1 through Event #15. Note that the “good” events generally 

have significantly fewer valid polarity reversals than noise events.  

 

Table 4.5: Summary of the percentage of valid polarity reversals (zero-crossings) when the 
Specialized Zero-Crossing Count algorithm is applied to the synthetic traces.  
 

Event Type SNR (dB) Zero-Crossings (%) 
Good 30 15.7 
Good 25 26.9 
Good 20 31.3 
Good 15 36.3 
Good 10 38.4 
Good 0 43.6 
Noise - 40.8 
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Table 4.6: Summary of the percentage of valid polarity reversals (zero-crossings) when the 
Specialized Zero-Crossing Count algorithm is applied to example “good” and noise events. 
Note that “good” events generally have significantly less valid polarity reversals than noise 
events. 
 

Event Type Event # Zero-Crossings (%) 
Good 1 0.0244 
Good 2 3.42 
Good 3 0.0977 
Good 4 0.22 
Good 5 0.147 
Good 6 0.171 
Good 7 0.0244 
Good 8 0.195 
Good 9 0.0732 
Good 10 0.513 
Noise 11 7.28 
Noise 12 5.82 
Noise 13 4.52 
Noise 14 3.91 
Noise 15 9.20 

 

 To illustrate the value of applying the zeroing step to eliminate low-amplitude noise 

present in the time series, consider an example case where this zeroing step is omitted. 

Event #1, a “good” trace, will be compared to Event #11, a noise trace, as an example. If 

the zeroing step is omitted, Event #1 would have 302 polarity reversals out of 4096 points 

(7.37%), while Event #11 would have 550 polarity reversals (13.43%). Thus, omitting the 

zeroing step, only 1.82 times more polarity reversals would be seen in the example noise 

trace (Event #11) compared to the “good” trace (Event #1). Referring to Table 4.6,      

Event #11 has 298 times more polarity reversals than Event #1 with the zeroing step 

applied. 
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4.4 Conclusion  

When compared to noise traces, I observed that many “good” microseismic traces in 

the Cold Lake dataset generally have lower signal variance, higher central data distribution, 

less frequent oscillations, and smaller signed amplitude differences between adjacent time-

series data points. Based on these observations, statistical analysis algorithms were 

developed after fundamental statistical mathematics was reviewed.      

The developed statistical algorithms are the “Threshold”, “Histogram”, and 

“Specialized Zero-Crossing Count” techniques described in this chapter. These techniques 

focus on functionality and simplicity for accurate and computationally efficient 

microseismic file classification.     

Significant differences in algorithm measurements were obtained when these 

techniques were tested on example “good” and noise traces. These results suggest that the 

developed statistical analysis techniques are capable of reasonably accurate microseismic 

file classification.  
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CHAPTER FIVE: Multivariate Data Reduction 

 
5.1 Introduction 
 
 Testing was performed to determine which algorithms perform best concerning 

microseismic file classification. An example of these tests is discussed in section 5.3. After 

extensive testing, it was found that statistical analysis algorithms discussed in chapter four 

yield results with the highest potential for consistently accurate microseismic file 

classification. This was seen through statistical algorithms giving the most consistent 

clustered results when tested on “good” and noise files. These algorithms were the 

Threshold, Histogram, and Specialized Zero-Crossing Count methods. 

It is desired to examine the outputs from the developed algorithms for accurate 

microseismic file classification. As these algorithm outputs result in a multidimensional 

data space, multivariate data reduction (i.e. reducing the effective dimensionality of the 

data) would simplify file classification. The multivariate data reduction technique 

employed is referred to as principal components analysis. 

 Principal components analysis was performed first using outputs from all developed 

algorithms, shown in section 5.4.1. Following this, principal components analysis was 

performed using only the three statistical algorithm outputs, discussed in section 5.4.2. It is 

shown that optimal microseismic file classification accuracy is obtained when principal 

components analysis is restricted to the statistical algorithm outputs.        

  

 

 

 



 114
5.2 Principal Components Analysis  
  
 Given a dataset with many measured variables, redundancy could be present. This 

redundancy is related to the mathematical correlation between variables in a multivariate 

dataset. It is often desired to remove redundancy between these variables to more easily 

extract key information from the dataset.         

Principal components analysis (PCA) is a linear technique that transforms a dataset 

with many variables to a new set of variables that are orthogonal and uncorrelated, called 

the “principal components” of the dataset (e.g. Jackson, 1991). PCA can also be thought of 

as representing an N dimensional dataset with N orthogonal basis vectors (principal 

components) such that data projected onto the first principal component have the highest 

variance and thus best characterize the dataset (e.g. Shlens, 2003).    

 PCA has been applied in many fields, including astrophysics, neuroscience, 

criminology, and computer science (i.e. image processing / pattern recognition). Here, PCA 

was used to optimize microseismic file classification accuracy through application to the 

outputs of the developed algorithms.  

 Mathematical theory pertaining to PCA is discussed in Appendix C. Following the 

test results described in section 5.3, an application example of PCA to classification 

algorithm outputs is shown in section 5.4.  
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5.3  Test Results 

A diverse example test dataset of 540 microseismic files from 28 different 

production pads is used in this section. The correct file classification is known, as these 

files were previously manually classified as “good” or noise.    

Algorithm outputs after normalization were obtained for each file in the dataset. 

Normalization indicates that each algorithm measurement was divided by the largest value 

pertaining to that measurement over all examined microseismic files. Normalization is 

necessary when applying principal components analysis, a multivariate data reduction 

technique (refer to Appendix C). 

For the frequency-filtering techniques, the normalized algorithm outputs correspond 

to the normalized peak amplitude of the trace after filtering described in chapter 2. The 

normalized algorithm output of the time and frequency-domain event-length detection 

techniques are the normalized calculated trace event-length described in chapter 3. The 

normalized algorithm outputs of the Threshold, Histogram, and Specialized Zero-Crossing 

Count statistical analysis techniques pertain to the normalized fraction of outlying data 

points (Threshold), the normalized fraction of data points falling in the range pertaining to a 

centre histogram bin (Histogram), and the normalized fraction of polarity reversals after 

low-amplitude noise is removed (Specialized Zero-Crossing Count) described in chapter 4. 

For the tests shown here, the algorithm settings pertaining to the statistical analysis 

algorithms are slightly modified from those given in chapter 4. The Threshold window was 

set to +/- 0.006 (Threshold algorithm), the 51st histogram bin was examined (Histogram 

algorithm), and low-amplitude noise with an absolute value less than 0.006 was removed 

(Specialized Zero-Crossing Count algorithm).   
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Figures 5.1 to 5.8 show normalized algorithm outputs pertaining to the eight 

developed algorithms discussed in chapters 2 through 5. Each pink square (blue diamond) 

corresponds to an algorithm output pertaining to a known “good” (noise) file. The 

calculated and normalized results from the known “good” and noise files are plotted in 

overlapping horizontal regions to best view vertical overlap between the normalized “good” 

and noise results. Ideally, no overlap between calculated and normalized algorithm outputs 

of known “good” and noise files is desired to perform perfect classification. Each plotted 

data point represents the normalized average algorithm output corresponding to the three 

traces in the microseismic file that have the strongest “good” characteristics. For example, 

in Figure 5.6, which corresponds to the Threshold algorithm outputs, each point represents 

the normalized average fraction of data points lying outside a predefined window  

corresponding to the three traces in a microseismic file that contain the lowest fraction of 

outlying points.  

From Figures 5.1 to 5.8, it can be seen that applying the statistical algorithms result 

in best data clustering, where there is minimal vertical overlap for algorithm measurements 

between “good” and noise files. Thus, it may be appropriate to restrict microseismic file 

classification by using statistical algorithm outputs only. Section 5.4 will illustrate principal 

components analysis first applied to all eight algorithm outputs, followed by an application 

of this technique to the three statistical algorithm outputs only. It is shown in section 5.4 

that restricting principal components analysis to statistical algorithm outputs yields 

improved classification accuracy.  
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Figure 5.1: Normalized algorithm output of low-pass filtering algorithm described in 
section 2.3. Each pink square (blue diamond) pertains to a normalized peak amplitude 
measurement for a single “good” (noise) microseismic file.    
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Figure 5.2: Normalized algorithm output of high-pass filtering algorithm described in 
section 2.4. Each pink square (blue diamond) pertains to a normalized peak amplitude 
measurement for a single “good” (noise) microseismic file.    
 
 
 



 118
 

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400
Microseismic Files

N
or

m
al

iz
ed

 A
lg

or
ith

m
 O

ut
pu

t

Noise
Good

 
Figure 5.3: Normalized algorithm output of band-pass filtering algorithm described in 
section 2.5. Each pink square (blue diamond) pertains to a normalized peak amplitude 
measurement for a single “good” (noise) microseismic file.    
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Figure 5.4: Normalized algorithm output of STA / LTA event-length detection algorithm 
described in section 3.2. Each pink square (blue diamond) pertains to a normalized event-
length measurement for a single “good” (noise) microseismic file.    
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Figure 5.5: Normalized algorithm output of time-localized frequency transform event-
length detection algorithm described in section 3.3. Each pink square (blue diamond) 
pertains to a normalized event-length measurement for a single “good” (noise) 
microseismic file.    
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Figure 5.6: Normalized algorithm output of Threshold statistical analysis algorithm 
described in section 4.3.1. Each pink square (blue diamond) pertains to a normalized 
measurement for a single “good” (noise) microseismic file. 
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Figure 5.7: Normalized algorithm output of Histogram statistical analysis algorithm 
described in section 4.3.2. Each pink square (blue diamond) pertains to a normalized 
measurement for a single “good” (noise) microseismic file. 
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Figure 5.8: Normalized algorithm output of Specialized Zero-Crossing Count statistical 
analysis algorithm described in section 4.3.3. Each pink square (blue diamond) pertains to a 
normalized measurement for a single “good” (noise) microseismic file. 
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5.4 Applying PCA to Microseismic File Classification 

5.4.1  Applying PCA to All Eight Algorithm Outputs 

 Referring to Figures 5.1 to 5.8 and equation C.1 in Appendix C, let the matrix A 

contain algorithm measurements after normalization, where each row of A pertains to a 

single algorithm, and each column corresponds to the algorithm outputs for a single 

microseismic file. Thus, A will be a 8 540×  matrix. Normalization indicates that each row 

of A has been divided by the largest value (in magnitude) found in that row. Assume that 

the normalized results from the low-pass filter, high-pass filter, band-pass filter, STA/LTA, 

time-localized frequency transform, Threshold, Histogram, and Specialized Zero-Crossing 

Count algorithms are placed in the first, second, third, fourth, fifth, sixth, seventh, and 

eighth  rows of A, respectively. Microseismic event files contain either 15 or 24 traces. 

Assume that each row of A contains the normalized average algorithm output 

corresponding to the three traces in the microseismic file that have the strongest “good” 

characteristics. For example, the element a65 would represent the normalized average 

fraction of data points lying outside a predefined window (Threshold algorithm) 

corresponding to the three channels in the fifth microseismic file that contain the lowest 

fraction of outlying points.    

Let  i jc  (i , j =  1, 2, 3, …,8)  represent the calculated covariance between any two 

of the eight algorithm outputs. For example, 26c  represents the covariance between the 

normalized high-pass filter and Threshold algorithm outputs since the high-pass filter 

results are stored in the second row of A, while the Threshold results are stored in the sixth 

row of A. If i = j, the element i jc  would correspond to the calculated variance of a single 
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algorithm output. For example 77c represents the variance of the Histogram algorithm 

outputs. 

Referring to Appendix C, the symmetric covariance matrix C of the dataset can be 

defined as  

                

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

c c c c c c c c
c c c c c c c c
c c c c c c c c
c c c c c c c c
c c c c c c c c
c c c c c c c c
c c c c c c c c
c c c c c c c c

⎡
⎢
⎢
⎢
⎢

=

⎣

C

⎤
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

.                                   (5.1) 

Applying equations C.2 to C.8, the elements in this covariance matrix were found to be 

 

              

0.0275 0.0258 0.0261 0.0184 0.0195 0.0213 0.0338 0.0302
0.0258 0.0331 0.0296 0.0204 0.0218 0.0233 0.0371 0.0332
0.0261 0.0296 0.0349 0.0214 0.0225 0.0244 0.0381 0.0340
0.0184 0.0204 0.0214 0.0186 0.0172 0.0198 0.0297

− − − − − −
− −
− −
− −

=C
0.0236

0.0195 0.0218 0.0225 0.0172 0.0207 0.0213 0.0313 0.0246
0.0213 0.0233 0.0244 0.0198 0.0213 0.0298 0.0404 0.0253
0.0338 0.0371 0.0381 0.0297 0.0313 0.0404 0.0667 0.0418
0.0302 0.0332 0.0340 0.0236 0.0246 0.0253 0.

− −
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− − 0418 0.0658

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 .          (5.2) 

The elements in C confirm the general trends seen in Figures 5.1 to.5.8. For 

example, a general increasing trend of the pink squares in Figure 5.3 (band-pass filter 

algorithm) is seen with a general increasing trend of the pink squares in Figure 5.6 

(Threshold algorithm), confirming 36 0c > . As another example, a general decreasing trend 

of the pink squares in Figure 5.1 (low-pass filter algorithm) is seen with a general 
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increasing trend in Figure 5.2 (high-pass filter algorithm), confirming 12 0c < . Similar 

arguments can be made for the trends of the blue diamonds in the figures.  

 Referring to Appendix C, the calculated unit-length orthogonal eigenvectors of the 

covariance matrix C, or equivalently the principal components of the dataset  

Ê1, Ê2, …, Ê8 (equation C.18) can be calculated and stored in the transformation matrix V 

(equation C.22). The corresponding eigenvalues ( 1 2 8, ,  ..., λ λ λ ), which are equal to data 

variance when projected onto the corresponding eigenvectors (Ê1, Ê2, …, Ê8) are    

                                              

1

2

3

4

5

6

7

8

0.2163,
0.0294,  
0.0124,
0.0053,
0.0046,
0.0042,
0.0027,   and
0.0023.

λ
λ
λ
λ
λ
λ
λ
λ

=
=
=
=
=
=
=
=

                                                         (5.3) 

By determining the quantity    

                          1

1 2 3 4 5 6 7 8

100% 78%,
λ

λ λ λ λ λ λ λ λ
∗ =

+ + + + + + +
                        (5.4) 

 
it is clear that 78% of all variance present in this test dataset can be seen by projecting the   

data onto the first principal component Ê1. Thus, for this dataset, principal components 

analysis has reduced effective data dimensionality from eight to one. 

 Figures 5.9, to 5.16 show the normalized dataset after projection onto the first 

through eighth principal components. Thus, referring to equation C.11 in Appendix C, 

Figures 5.9 to 5.16 each show data from a single row of the matrix P that contains the 

projected data. In this specific example, P is a 8 540× matrix that contains data from the 
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normalized and mean-corrected matrix B, also a 8 540×  matrix, after projection onto 

the eight principal components contained in the rows of V, a square 8×8 matrix. For this 

example, B in equation C.11 is found with equation C.2, and V is determined using 

equation C.22.        

In Figure 5.9, a reduction in vertical overlap and improved vertical separation can 

be seen between the “good” and noise data points when compared with most individual 

algorithm results. Figure 5.10 to 5.16 appear to be noise components, and no useful 

information can be extracted from these figures. While some overlap has been reduced in 

Figure 5.9, there is still significant vertical overlap remaining after principal components 

analysis. Section 5.4.2 improves upon this result by restricting PCA to statistical algorithm 

outputs.  
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Figure 5.9: Eight-dimensional dataset projected onto first principal component. Reduction 
in vertical overlap is seen, but significant overlap still remains.  
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Figure 5.10: Eight-dimensional dataset projected onto second principal component. No 
useful information can be extracted, as only noise is seen.  
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Figure 5.11: Eight-dimensional dataset projected onto third principal component. No useful 
information can be extracted, as only noise is seen. 
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Figure 5.12: Eight-dimensional dataset projected onto fourth principal component. No 
useful information can be extracted, as only noise is seen. 
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Figure 5.13: Eight-dimensional dataset projected onto fifth principal component. No useful 
information can be extracted, as only noise is seen. 
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Figure 5.14: Eight-dimensional dataset projected onto sixth principal component. No useful 
information can be extracted, as only noise is seen. 
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Figure 5.15: Eight-dimensional dataset projected onto seventh principal component. No 
useful information can be extracted, as only noise is seen. 
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Figure 5.16: Eight-dimensional dataset projected onto eighth principal component. No 
useful information can be extracted, as only noise is seen. 
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5.4.2 Restricting PCA to Statistical Algorithm Outputs  
 

PCA is restricted to the three statistical algorithm outputs in this section to improve 

classification accuracy.   

Referring to Figures 5.6 to 5.8 and equation C.1 in Appendix C, let the matrix A 

contain algorithm measurements after normalization, where each row of A pertains to a 

single statistical analysis algorithm, and each column corresponds to the algorithm outputs 

for a single microseismic file. Thus, A will be a 3 540×  matrix. Normalization indicates 

that each row of A has been divided by the largest value (in magnitude) found in that row. 

Assume that the normalized results from the Threshold, Histogram, and Specialized Zero-

Crossing Count algorithms are placed in the first, second and third rows of A, respectively.  

Microseismic event files contain either 15 or 24 traces. Assume that each row of A contains 

the normalized average algorithm output corresponding to the three traces in the 

microseismic file that have the strongest “good” characteristics. For example, the element 

a15 would represent the normalized average fraction of data points lying outside a 

predefined window (Threshold algorithm) corresponding to the three channels in the fifth 

microseismic file that contain the lowest fraction of outlying points.    

 Let TTc , HHc , and ZZc  represent the calculated variance of the normalized 

Threshold, Histogram, and Specialized Zero-Crossing Count algorithm outputs, 

respectively. Also let  THc , TZc , and HZc  represent the calculated covariance between the 

normalized Threshold-Histogram, Threshold-Zero Crossing Count, and Histogram-Zero 

Crossing Count algorithm outputs, respectively. Applying equations C.2 to C.8 in 

Appendix C, the symmetric covariance matrix C of the dataset was found to be 
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11 12 13

21 22 23

31 32 33

0.0298 0.0404 0.0253
0.0404 0.0667 0.0418

0.0253 0.0418 0.0658

TT TH TZ

TH HH HZ

TZ HZ ZZ

c c c c c c
c c c c c c
c c c c c c

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C .     (5.5) 

The elements in C confirm the general trends seen in Figures 5.6, 5.7, and 5.8. For 

example, a general increasing trend of the pink squares in Figure 5.6 (Threshold algorithm) 

is seen with a general decreasing trend of the pink squares in Figure 5.7 (Histogram 

algorithm), confirming 0THc < . A similar argument can be made for the trends of the blue 

diamonds in the figures.  

 The calculated unit-length orthogonal eigenvectors of the covariance matrix C, or 

equivalently the principal components of the dataset (Ê1, Ê2, and Ê3), found using equation 

C.18, are stored in the first, second, and third columns of a square matrix F. For this 

example test dataset,  

                              
0.4246 0.3624 0.8297
0.6725 0.4873 0.5570

0.6062 0.7945 0.0368

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

F  .                                        (5.6) 

The eigenvalues ( 1 2 3, ,  and λ λ λ ), which are equal to data variance when projected onto the 

corresponding eigenvectors (Ê1, Ê2, and Ê3) are    

                                              
1

2

3

0.1298,
0.0287,  and 
0.0038.

λ
λ
λ

=
=
=

                                                      (5.7) 

By determining the quantity    

                                                1
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100% 80%,
λ

λ λ λ
∗ =

+ +
                                     (5.8) 
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it is clear that 80% of all variance present in this test dataset can be seen by projecting 

the   data onto the first principal component Ê1.  

 Figures 5.17, 5.18, and 5.19 show the normalized dataset after projection onto the 

first, second, and third principal components, respectively. Thus, referring to equation 

C.11, Figures 5.17, 5.18, and 5.19 show data from the first, second, and third rows of the 

matrix P, respectively. In this specific example, P is a 3 540× matrix that contains data 

from the normalized and mean-corrected matrix B, also a 3 540×  matrix, after projection 

onto the three principal components contained in the rows of V, a square 3×3 matrix. For 

this example, B in equation C.11 is found with equation C.2, and V is determined using 

equation C.22.        

In Figure 5.17, no vertical overlap exists between the “good” and noise data points, 

which clearly suggests that file classification using Figure 5.17 corresponding to PCA 

would be improved over attempting to empirically classify files with the normalized raw 

measurements shown in Figures 5.6 to 5.8. The results shown in Figure 5.17 are a 

significant improvement over Figure 5.9, where all eight algorithm outputs were used. This 

improvement is seen through improved vertical separation and the complete removal of 

vertical overlap. Figures 5.18 and 5.19 correspond to noise components in the data and are 

not useful for microseismic file classification. Thus, for this dataset, PCA has reduced the 

effective dimensionality from three to one.  

Figure 5.17 suggests that if PCA is used for multivariate data reduction, all 540 files 

from 28 different pads in this specific example dataset could be classified to perfect 

accuracy, which is encouraging. This obviously will not always be the case for all datasets, 

but PCA does allow an analytical examination of multivariate classification measurements 
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to determine the “direction” where the most important classification information 

resides. This technique results in improved classification accuracy over simply observing 

individual algorithm outputs for classification. Restricting PCA to statistical analysis 

algorithm outputs further improves classification accuracy.             

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200 250 300 350 400

Microseismic Files

C
om

po
ne

nt
 V

al
ue

Noise
Good

 
Figure 5.17: Three-dimensional dataset projected onto first principal component. No 
vertical overlap is seen between “good” and noise points. For this specific test dataset, 
perfect classification accuracy could be achieved using PCA and examining this 
component.   
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Figure 5.18: Three-dimensional dataset projected onto second principal component. No 
useful information can be extracted, as only noise is seen.  
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Figure 5.19: Three-dimensional dataset projected onto third principal component. No useful 
information can be extracted, as only noise is seen.  
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5.5  Conclusion 
 

Testing shown in section 5.3 suggests that statistical analysis algorithms discussed in 

chapter four yield results with the highest potential for maximally accurate microseismic 

file classification.  Principal components analysis, a multivariate data reduction technique, 

was first applied to all eight algorithm outputs pertaining to a diverse test dataset of 540 

microseismic files from 28 different production pads. Following this, principal components 

analysis was applied only to statistical algorithm outputs, which resulted in improved 

classification accuracy.  

For this specific dataset, applying PCA to statistical algorithm outputs would result in 

perfect microseismic file classification. This perfect classification result is not expected 

over all datasets, but the demonstrated improvement after applying PCA in microseismic 

file classification is expected.          
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CHAPTER SIX: Algorithm Implementation 

6.1 Introduction 

 The microseismic signal analysis techniques described in chapters 2 to 5 were 

implemented in MATLAB®. Two MATLAB® program implementations were realized. For 

the first implementation, a graphical user interface (GUI) was created that applied the 

discussed algorithms in an equally-weighted fashion for microseismic file classification. 

Following the first implementation, extensive testing demonstrated that statistical analysis 

techniques discussed in chapter 4 yield results with the highest potential for consistently 

accurate microseismic file classification. These statistical algorithms gave the most 

consistent clustered results when tested on “good” and noise files. Following these tests, a 

condensed classification function pertaining to a second, different, implementation was 

created. This function applied principal components analysis (PCA) to statistical algorithm 

outputs for microseismic file classification and yielded improved results over the first 

implementation.  

 Results from the first implementation were encouraging for a very specific dataset, 

as algorithm settings were optimized to this dataset. These results, however, did not carry 

over to other, more diverse, datasets. 

The results, detailed in section 6.3, from the second implementation are 

encouraging over a wide range of datasets. This implementation has demonstrated to be 

robust, as function settings can be left unchanged when applied to various datasets. Given 

that up to tens of thousands of microseismic events are detected daily at Cold Lake, this 

developed application could have significant future impact.  
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Section 6.2 provides general implementation outline examples for illustrative 

purposes. The implemented programs were similar, but not identical to, the descriptions in 

section 6.2. 

 

6.2 Program Implementations   

6.2.1  Graphical User Interface 

 For the first implementation, the discussed algorithms were combined and 

optimized to a preliminary test dataset of microseismic event files, most of which were 

from only 5 different production pads. A graphical user interface (GUI) application was 

created in MATLAB®. This application, entitled "Event_Analyzer", classifies and separates 

microseismic event files into noise events and "good" events. Figure 6.1 depicts the 

appearance of this GUI upon program startup.  

In Figure 6.1, the algorithms that influence the microseismic file classification 

appear in the "Decision Settings" panel with the default deciding thresholds shown below 

the labels. LPF, HPF, and BPF correspond to the low-pass filtering, high-pass filtering, and 

band-pass filtering algorithms described in chapter 2, respectively. FDM corresponds to the 

frequency-domain event-length detection algorithm described in chapter 3. Thresh, Hist, 

and SR pertain to the “Threshold”, “Histogram”, and “Specialized Zero-Crossing Count” 

statistical analysis algorithms described in chapter 4, respectively. When the GUI runs, the 

results from these seven algorithms determine whether a file is classified as "good" or 

noise. The time-domain event-length detection (STA/LTA) method was not implemented in 

the GUI because it significantly increased the program runtime. Also, a technique similar to 
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this STA / LTA method was already previously applied to the received test data in order 

to detect events and to limit microseismic traces to 1.365 (or 1.5) seconds of activity.     

 

Figure 6.1: “Event_Analyzer” program upon startup.       

During program run, each microseismic signal analysis algorithm is applied to each 

of the traces in an event file. Results from the algorithms are coded as "1" if the algorithm 

deems the trace to contain a "good" event, and "0" otherwise. The algorithm results are 

summed on a per-trace basis providing a per-trace score. Traces that have a score exceeding 

a threshold are flagged as "good", while the remaining traces are flagged as "noise". The 

overall file classification is determined by identifying the total number of "good" traces 

(Tan et al., 2006).  
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As an example, the "good" and noise traces shown in Figures 1.7 and 1.17, 

respectively, are passed through the GUI. Assume that a trace will be classified as "good" if 

it "passes" at least four of the seven algorithms. This setting is adjustable under the #G/C(1-

7) label in the "Decision Settings" panel in Figure 6.1. A given trace “passes” an algorithm 

if that algorithm’s output falls within a predetermined range. For the frequency-filtering 

techniques (LPF, HPF, and BPF), the algorithm outputs correspond to the peak amplitude 

of the trace after filtering. The algorithm output of the frequency-domain event-length 

detection technique (FDM) is the calculated trace event-length. The algorithm outputs of 

the statistical analysis techniques (Thresh, Hist, and SR) pertain to the fraction of outlying 

data points (Thresh), the fraction of data points falling in the range pertaining to a centre 

histogram bin (Hist), and the fraction of polarity reversals after low-amplitude noise is 

removed (SR). Table 6.1 shows how the “good” and noise example traces in Figures 1.7 

and 1.17 perform for each algorithm. 

 

Table 6.1: Performance of example traces. Trace values that "pass" are in boldface. 

Algorithm Passing Range "Good" Trace Value Noise Trace Value
LPF             >= 0.55 0.49 0.131 
HPF             <= 0.1 0.0484 0.708 
BPF             <= 0.15 0.165 0.364 

Thresh             <= 0.6 0.208 0.682 
SR             <= 0.0097128 0.00024414 0.0728 
Hist             >= 0.15 0.346 0.107 

FDM (seconds)             <= 0.1 0.040333 0.534 
  

Since the example "good" trace from Figure 1.7 passes five algorithms, this trace 

would be classified "good". The example noise trace passes none of the algorithms and 

would thus be classified as noise. Microseismic event files contain either 15 or 24 traces. 
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This analysis repeats for every trace in a file, and based on the number of "good" traces, 

the file is classified as either "good" or noise. A "good" file classification could require that 

there are at least four "good" traces in an event file, for example. This default setting is 

adjustable by changing the #GC/F(1-10) label in the "Decision Settings" panel in Figure 

6.1. After a microseismic file is classified, the program automatically proceeds to the next 

file in the queue, and this procedure is repeated until all files have been classified.      

 

6.2.2   Principal Components Analysis Applied 

Testing that followed the GUI implementation described in section 6.2.1 

demonstrated that the statistical analysis techniques yielded results capable of more robust 

and accurate microseismic file classification. The statistical analysis techniques were also 

found to be the most computationally efficient, a required characteristic when potentially 

classifying tens of thousands of files daily. The second implementation applied principal 

components analysis (PCA), described in chapter 5 and Appendix C, to statistical algorithm 

outputs for file classification. 

First, it is required to obtain the principal components from a reference dataset. To 

ensure classification robustness, this dataset should be as diverse as possible. Thus, it is 

best to obtain data from as many different production pads as possible. The statistical 

algorithm outputs pertaining to an incoming microseismic file can then be projected onto 

the principal components obtained from the reference dataset for classification.   

Assume the reference dataset contains n microseismic files. Referring to equation 

C.1, let A be a 3 n×  matrix containing normalized statistical analysis algorithm outputs. 

Normalization indicates that each row of A has been divided by the largest value (in 
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magnitude) found in that row. Let maxi denote the maximum algorithm output value 

over all dataset files pertaining to the Threshold ( 1i = ), Histogram ( 2i = ), and Specialized 

Zero-Crossing Count ( 3i = ) algorithms, before normalization. These quantities will be 

required at a later stage. The rows of A pertain to different normalized algorithm outputs, 

while its columns correspond to different microseismic files. Assume that the normalized 

results from the Threshold, Histogram, and Specialized Zero-Crossing Count algorithms 

are placed in the first, second, and third rows of A, respectively. Microseismic event files 

contain either 15 or 24 traces. Assume that each row of A contains the normalized average 

algorithm output corresponding to the three traces in the microseismic file that have the 

strongest “good” characteristics. For example, the element a15 would represent the 

normalized average fraction of data points lying outside a predefined window (Threshold 

algorithm) corresponding to the three channels in the fifth microseismic file that contain the 

lowest fraction of outlying points.    

Referring to equation C.2, let B represent the reference dataset matrix A after row 

means have been subtracted. Let iµ denote the row means pertaining to the normalized 

Threshold ( 1i = ), Histogram ( 2i = ), and Specialized Zero-Crossing Count ( 3i = ) 

algorithm outputs in A. These values will be required at a later stage. Applying equation 

C.8, the covariance matrix C, pertaining to the data in B, can be calculated. Following this, 

the unit-length eigenvectors of C (Ê1, Ê2, Ê3 ) can be found, which are equivalent to the 

principal components of the dataset. Subsequently, each principal component can be stored 

in a column of a matrix F.  

The algorithm outputs stored in B can then be projected onto the unit-length 

eigenvectors, to obtain projected data (stored in P), by applying equations C.11 and C.22. 
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The first, second, and third rows of P, pertaining to data projected onto the first, second, 

and third principal components, can then be examined to empirically determine 

classification boundaries. For example, if Figures 5.17, 5.18, and 5.19 represent the 

reference dataset projected onto its first, second, and third principal components, 

respectively, a file could be deemed as “good” (noise) if its first principal component value 

is less than zero (greater or equal to zero). Depending on the reference dataset, the second 

and third principal components could also be used for microseismic file classification.   

After the principal components of a reference dataset have been calculated, a single 

incoming microseismic file can be classified. Let T, H, and Z pertain to the measured 

Threshold, Histogram, and Specialized Zero-Crossing Count algorithm output values, 

respectively, for a single microseismic file to be classified. Define a 3-element column-

vector Bfile as       
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where maxi and iµ  ( 1,2,3i = ) were obtained from the reference dataset. The elements of 

Bfile can then be projected onto the principal components of the reference dataset contained 

in F. This projected data can be stored in the column-vector Pfile given as     
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where pi ( 1, 2,3i = ) represents the algorithm outputs pertaining to the single 

microseismic file of interest projected onto the ith principal component of the reference 

dataset.   

The elements of Pfile can then be examined to classify the microseismic file using 

classification boundaries previously determined with the reference dataset. For example, 

referring to Figure 5.17 and the preceding reference dataset discussion, a single 

microseismic file could be classified as “good” if p1<0, and noise otherwise. Depending on 

the reference dataset, p2 and p3 could also be used for microseismic file classification. 

Once a single microseismic file has been classified, subsequent files in the queue 

can be classified through application of equations 6.1 and 6.2.  

 

6.3 Results 

 The first GUI implementation that applied the developed algorithms in an equally-

weighted fashion was not adequately robust. Algorithm settings required adjustments when 

datasets were altered. For example, after algorithm settings were optimized to a test dataset 

where most microseismic files originated from five production pads, an accuracy of 99.9% 

was obtained; however, accuracy decreased to approximately 70% when tested on more 

diverse datasets.   

The second implementation that applied principal components analysis to statistical 

algorithm outputs was found to be robust and yield accurate results over diverse datasets 

without altering any program settings. When applied to a specific dataset where most files 

originated from five production pads, an accuracy of 99.5% was obtained. Testing on a 

more diverse dataset with files from 28 different pads yielded a classification accuracy of 
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98.8%. An exhaustive test on microseismic files from 72 different production pads 

resulted in a 90% accuracy. Given that up to tens of thousands of microseismic events are 

detected daily at Cold Lake, this developed application could have significant future 

impact.   

6.4  Conclusion      

 Two implementation schemes were designed to apply the developed algorithms to 

microseismic file classification. The first was a graphical user interface (GUI) that applied 

the developed algorithms in an equally-weighted fashion. After this first implementation, it 

was found that statistical analysis algorithms yielded the most consistent clustered results 

when tested on “good” and noise files, suggesting that these algorithms were most capable 

of accurate microseismic file classification. The second implementation applied principal 

components analysis (PCA) to statistical algorithm outputs to classify files. 

 The first implementation was not found to be adequately robust, as algorithm 

settings required adjustments when datasets were altered. The second implementation 

demonstrated robustness over a wide range of datasets, yielding classification accuracies 

between 90% and 99.5%. Given that up to tens of thousands of microseismic events are 

detected daily at Cold Lake, this developed application could have significant future 

impact.   
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CHAPTER SEVEN: Conclusions and Future Work 

7.1  Summary  

 Passive-seismic event-classification algorithms were developed and applied to 

synthetic data and to microseismic events generated from Imperial Oil’s passive-seismic 

monitoring system at Cold Lake, Alberta, where heavy-oil production is present. The 

purpose was to develop algorithms capable of differentiating “good” events worth further 

investigation, from noise. Novel algorithms were required, as the current event-file 

classification software has been known to misclassify a large portion of microseismic files, 

resulting in "good" events and noise events being incorrectly identified. Numerous 

misclassifications require extensive manual investigation, which can become very costly.    

 Based on the observation that many “good” events contain lower signal frequencies 

than noise events, frequency filters with practical responses were developed. A low-pass 

Inverse-Chebyshev filter, high-pass Butterworth filter, and band-pass Chebyshev filter were 

developed and applied to example “good” and noise traces. Peak amplitude differences 

were seen pertaining to example “good” and noise traces after filtering.  

 Event-length detection techniques were developed in the time- and frequency-

domains based on the observation that P-wave event-lengths of many “good” traces are 

significantly shorter than noise event-lengths. The time-domain technique examined ratios 

of short-term to long-term energy averages to determine event-lengths. The frequency-

domain technique examined high-frequency content present in time-localized Fourier 

transform windows. Calculated event-length differences were seen corresponding to 

example “good” and noise traces. 
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 Statistical analysis techniques were developed based on the observations that, 

compared to noise, many “good” traces contain less signal variance, stronger centralized 

data distribution, and less sporadic sequential time-series behaviour about its mean. 

Computationally-efficient algorithms that examined the fraction of time-series data points 

outside a predefined window; determined centralized data-point concentration; and 

examined the fraction of polarity reversals after low amplitude noise was removed were 

developed. When applied to example “good” and noise traces, significant algorithm output 

differences were seen.  

Extensive testing demonstrated that the developed statistical analysis techniques 

yield results with the highest potential for consistently accurate microseismic file 

classification, as these statistical algorithms yielded the most consistent clustered results 

when tested on “good” and noise files. Principal components analysis (PCA) was applied to 

project statistical algorithm output data onto components of maximum data variance in 

order to optimize microseismic file classification. 

Two implementation schemes were created to apply the developed algorithms to 

microseismic file classification. The first applied the developed algorithms in an equally-

weighted fashion through a graphical user interface (GUI). This implementation was found 

to be inadequately robust, as program settings required alteration over varying datasets. The 

second implementation applied PCA to statistical algorithm outputs. This latest 

implementation demonstrated robust accurate performance over a wide range of datasets, as 

program settings could be held constant over different datasets. Given that up to tens of 

thousands of microseismic events are detected daily at Cold Lake, this developed 

application could have significant future impact. 
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7.2 Future Work 

Empirically, microseismic events can be deemed to be “good” through observation 

of a distinct and impulsive P-wave arrival followed by a lower-frequency time-delayed S-

wave arrival. Another classification technique could be developed that characterizes a 

microseismic event as “good” based on a successful automated search of an impulsive P-

wave arrival followed by an S-wave arrival of lower frequency.                         
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Appendix A 

Inverse-Chebyshev Low-Pass Frequency Response 

This derivation follows the development in Maundy (2005).  

To obtain this filter’s transfer function, T(jω), where ω is the angular frequency and 

j = 1− , the magnitude-squared function is first written as    
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In equation A.2, K is a constant to be determined, and Cn(.) is the nth
 order Inverse-

Chebyshev function given by  
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where Ω represents the radial frequency ω normalized to the stopband edge frequency ωs. 

Substituting 
s
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Ω =  into equation A.2 and using this result in equation A.1 yields 
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T j

KC
KC

⎛ ⎞
⎜ ⎟Ω⎝ ⎠Ω = =
⎛ ⎞+ + ⎜ ⎟⎛ ⎞ Ω⎝ ⎠⎜ ⎟Ω⎝ ⎠

.                                           (A.4) 

In dB, the filter’s amplitude response, TdB(jΩ) is given by 
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2

2

1 1( ) 20log( ( ) ) 20log 10log 11 11
1

dB

n

n

T j T j
KC

KC

⎛ ⎞
⎜ ⎟
⎜ ⎟Ω = Ω = = − +

⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎛ ⎞ Ω⎝ ⎠⎝ ⎠⎜ ⎟Ω⎝ ⎠

.       (A.5) 

The attenuation function in dB, α(Ω), is  

                                   
2

1( ) ( ) 10log 1
1dB

n

T j
KC

α

⎛ ⎞
⎜ ⎟
⎜ ⎟Ω = − Ω = +

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟Ω⎝ ⎠⎝ ⎠

 .                            (A.6) 

To find K, equation A.3 is used with the substitution Ω=1 and thus 

Cn(Ω) =Cn(1) = 1. Using this result in equation A.6 gives 

                     min
2

1 1(1) ( 1) 10log 1 10log 1
1
1

dB

n

T j
KKC

α α

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟= − = + = + =⎜ ⎟⎛ ⎞⎜ ⎟ ⎝ ⎠

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.            (A.7) 

Note that α(1) = αmin, because Ω = 1 corresponds to a radial frequency of ωs. From Figure 

2.1, the attenuation at ωs is αmin. Solving equation A.7 for K yields 

                                        
0.1 1min(10 1)K
α −= − .                                                            (A.8) 

Substituting equation A.8 into equation A.4 gives 

  

1

2

1 2

1 2

0.1

0.1
min

min

1 1( ) 11 11 (10 1)1(10 1)
n

n

T j
C

C

α

α

−

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟Ω = = +

⎛ ⎞⎜ ⎟+ − ⎜ ⎟⎜ ⎟⎛ ⎞ Ω⎝ ⎠⎝ ⎠− ⎜ ⎟Ω⎝ ⎠

.                (A.9) 

 From Figure 2.1, the attenuation at the passband edge frequency ωp (or normalized 

frequency Ωp) is equal to αmax. Substituting equations A.8 and A.3 into equation A.6 with   

Ω = Ωp yields 
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          max

2 1

0.1 min10 1( ) 10log 1
1cosh cosh

p
p

s

p

n

αω
α α α

ω
−

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞ −

Ω = = + =⎜ ⎟⎜ ⎟ ⎡ ⎤⎛ ⎞⎝ ⎠ ⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟Ω⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

.                     (A.10) 

Solving for the filter order n in the above equation gives 

                        

1
0.1 2

1
0.1

1

min

max

10 1cosh
10 1

cosh s

p

n

α

α

ω
ω

−

−

⎡ ⎤
⎛ ⎞−⎢ ⎥⎜ ⎟⎢ ⎥−⎝ ⎠⎢ ⎥⎣ ⎦=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

.                                                           (A.11) 

Equation A.11 is a useful relationship for determining the required filter order n when the 

desired passband and stopband ranges, as well as the attenuation limits are known. It can 

also determine any one of the parameters knowing the other four.  

To find the transfer function in the Laplace domain, T(s), the Laplace operator         

s (=jΩ for sinusoids), is substituted into equation A.4. A magnitude-squared function is the 

product of complex conjugate pairs. Applying this property and substituting s
j

Ω =  in 

equation A.4 gives 

                   

2

2

2
( ) ( ) ( )

1

n

n

jKC
sT j T s T s

jKC
s

⎛ ⎞
⎜ ⎟
⎝ ⎠Ω = − =
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

.                                                (A.12) 

Thus, the zeros of T(s) are the roots of the equation  

                                     2 0n
jKC
s

⎛ ⎞ =⎜ ⎟
⎝ ⎠

,                                                                   (A.13) 
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where K is defined in equation A.8, and the function Cn() is shown in equation A.3. The 

zeros are found as 

                                       sec( )i iz j θ= ± ,                                                                 (A.14) 

where  

                         
(2 1),        1, 2,...,   (for even );

2 2
1                               1, 2,...,  (for odd ).

2

i
ni i n

n
ni n

πθ = − =

−
=

                             (A.15)    

For stability, the poles of T(s) must lie on the left-half-side (LHS) of the complex 

plane. Those that lie on the right-half-side (RHS) of the complex plane correspond to an 

unstable system, which are not of interest and will be assigned as the poles of T(-s). Thus, 

the poles of T(s) are the LHS roots of the equation  

                                       21 0n
jKC
s

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

.                                         (A.16) 

To find these roots, the LHS roots to the equation 

                                       21 0n
sKC
j

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
                                                                (A.17) 

are first determined. The roots to equation A.16 (the desired solutions) are the reciprocal   

of the roots to equation A.17. Let pk represent a LHS complex pole pertaining to equation 

A.17. Separated into its real and imaginary components, pk is given by 

                                           k k kp jα β= − + ,                                                            (A.18)  

where 

                 sin( )sinh( ),      and      cos( )cosh( )k k k ka aα θ β θ= = .                             (A.19) 

In equation A.19,  
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                  0.11 1 min1 1 1sinh sinh 10 1a
n nK

α− −⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
.                                         (A.20) 

Also, 

                                  (2 1),      1, 2,3..., . 
2

                                             

k k k n
n
πθ = − =                                           (A.21) 

The final poles pk
1 (the solutions to equation A.16), are the reciprocal of pk, given as 

        1 1 11 1
k k k

k k k

p j
p j

α β
α β

= = = − +
− +

,                                         (A.22) 

where  

                     1 1
2 2 2 2       and          k k

k k
k k k k

α β
α β

α β α β
−

= =
+ +

.                                   (A.23) 

The normalized transfer function for the Inverse-Chebyshev low-pass filter is now simply 

                                 
[ ]

1
( )

i
i

norm
k

k

s z
T s G

s p

−
=

⎡ ⎤−⎣ ⎦

∏
∏

,                                                         (A.24) 

where Π represents term-by-term multiplication. The constant G represents a gain 

correction. For a low-pass filter, 1G ≈ . Finally, the denormalized transfer function for this 

low-pass filter is  

                                     ( ) ( )den normT s T s ss
sω

=
=

.                                                         (A.25) 
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Appendix B 

Butterworth High-Pass Response 

This derivation follows the development in Maundy (2005).  

The transfer function for a low-pass Butterworth response must be found before 

determining the high-pass response.  

 The magnitude-squared function of the Butterworth response is given in its general 

form as 

                                             2

2
2

1

1( )
1

n
k

k
k

T j
a

ω
ω

=

=
+∑

,                                     (B.1) 

where a2k represents a set of coefficients, and n is the order of the filter. For maximum 

flatness at ω = 0, all of the coefficients for k≠ n must be zero so that the first (n-1) 

derivatives of equation B.1 with respect to ω2 are zero. This leads to  

    2

2
2

1( )
1 n

n

T j
a

ω
ω

=
+

.                                           (B.2) 

The loss function, α(ω), is then  

1
2 22

2 2( ) 20 log( ( ) ) 20log(1 ) 10log(1 )   dBn n
n nT j a aα ω ω ω ω

−
= − = − + = + .        (B.3) 

The half-power angular frequency, ωo, is defined as the angular frequency where the loss is 

3 dB. From equation B.3, this gives 

                                2
2( ) 10log(1 ) 3dB 10log2n

o n oaα ω ω= + = ≈ .                         (B.4) 

Thus, 

                                                        2 2

1
n n

o

a
ω

=  .                                                    (B.5)  

Substituting equation B.5 into equations B.2 and B.3 gives 
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                                                    2

2

1( )

1
n

o

T jω
ω
ω

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

,             (B.6) 

and 

                                                   
2

( ) 10 log 1    dB
n

o

ωα ω
ω

⎛ ⎞⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.                        (B.7) 

From Figure 2.1, the maximum allowable attenuation in the passband, αmax, occurs 

at the passband edge angular frequency, ωp. Substituting this observation into equation B.7 

gives 

                                           
2

max( ) 10 log 1    dB
n

p
p

o

ω
α ω α

ω

⎛ ⎞⎛ ⎞
⎜ ⎟= = + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.                    (B.8) 

Let a “tolerance” ε be defined as 

                                             0.1 max10 1αε = − .                                                       (B.9) 

Using equations B.8 and B.9 together, it can be found that  

                                              
1

o p
nω ε ω
−

= .                                                                (B.10) 

Substituting equation B.10 into equation B.6 yields 

                                               2

2

2

1( )

1
n

p

T jω
ωε
ω

=
⎛ ⎞

+ ⎜ ⎟⎜ ⎟
⎝ ⎠

,                                          (B.11) 

and thus 

                                                
2

2( ) 10log 1    dB
n

p

ωα ω ε
ω

⎛ ⎞⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.                         (B.12) 



 154
Similar to the Inverse-Chebyshev case, it is useful to find a relationship between 

the parameters n, ωs, ωp, αmax, and αmin. From Figure 2.1, αmax occurs at the passband edge 

angular frequency, ωp, and αmin occurs at the stopband edge angular frequency ωs. Using 

equation B.12 with α(ωs) = αmin, and solving for n with 0.1 max10 1αε = −  gives 

                                         

0.1 min

0.1 max

10 1log
10 1

2log s

p

n

α

α

ω
ω

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 .                                                     (B.13) 

 To find the poles of the Butterworth function, a normalized frequency variable Ω is 

first defined where  

                                    
1
n

o p

ω ωε
ω ω

⎛ ⎞
Ω = = ⎜ ⎟⎜ ⎟

⎝ ⎠
 .                                                     (B.14) 

With this normalized frequency variable, define another magnitude-squared function as   

                                                2

2 2

1 1( )
1 ( )n

n

T j
B j

Ω = =
+Ω Ω

,                                  (B.15) 

with a corresponding loss function given by 

                                              2( ) 10log(1 )nα Ω = +Ω .                                                  (B.16) 

In equation B.15, Bn(jΩ) represents the Butterworth Polynomial, which is an analytic 

function. The Laplace parameter s can be defined as s=jΩ for sinusoids. Making this 

substitution for |Bn(jΩ)| and equating the denominators of equation B.15 while setting the 

result to zero gives 

     
2

2 2( ) ( ) ( ) ( ) ( ) 1 1 ( ) 0
n

n
n n n n n

sB j B j B j B s B s s
j

⎛ ⎞
Ω = Ω − Ω = − = + = + − =⎜ ⎟

⎝ ⎠
.           (B.17) 
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Solving equation B.17 for s yields the poles of the product T(s)T(-s). These s-poles, Si, 

are  

                                   
(2 1)
22 ,     1, 2,...., 2 .i

j ij
nS e e i n

ππ −

= =                                             (B.18) 

Equation B.18 shows that the poles are equally spaced on a unit circle and separated by an 

angle of 
n
π radians. As with the Inverse-Chebyshev case, the poles on the left-half-side 

(LHS) of the complex plane pertain to T(s). The poles on the right-half-side are not of 

interest, as they result in instability and pertain to T(-s). The LHS poles, Sk, are found to be  

                                    
sin cos ,

(2 1),    1, 2,... .
2

k k k

k

j kS e j

k k n
n

θ θ θ
πθ

= = − +

= − =
                                                 (B.19) 

 The normalized transfer function Tnorm(s) of a Butterworth low-pass filter is then 

                                 

1

1 1( )
( ) ( )

norm n
n

k
k

T s
B s s S

=

= =
−∏

.                                                   (B.20) 

The denormalized transfer function for a low-pass response is 

            ( ) ( )norm ss
o

T s T s
ω=

= .                                                                (B.21) 

 

 The high-pass Butterworth response is obtained using a low-pass-prototype (LPP) 

algorithm.  First, the half-power frequency ωo is found using  
1

o p
nω ε ω= . Note that this is 

slightly different than equation B.10 which corresponds to a pure low-pass response.  Then, 

the normalized low-pass-prototype transfer function TLPPnorm(s) is found using equations 
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B.19 and B.20. Once TLPPnorm(s) is known, the denormalized high-pass Butterworth 

transfer function is  

                               ( ) ( )HP LPPnorm os s
T s T s ω=

= .                                                           (B.22) 
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Appendix C 

Principal Components Analysis Mathematical Theory 

Principal components analysis (PCA) and fundamental linear algebra theory 

presented by Dunteman (1989), Jackson (1991), Lupton (1993), Jolliffe (2002), Smith 

(2002), and Shlens (2003), are discussed here in a compact and paraphrased form. This 

section is written for applicability to microseismic file classification discussed in section 

5.4.       

 Assume an experiment has been performed where m variables have been measured 

n times. The quantity n equivalently corresponds to the number of trials in the experiment.  

Define an m n×  matrix A containing these observations after normalizing each row by 

dividing row elements by the largest value (in magnitude) found in the row. Normalizing is 

necessary to ensure each matrix element is dimensionless, so that data can be freely 

projected onto principal component vectors at a later stage. Normalizing also ensures that 

measurements that are orders of magnitude larger than others do not drive the entire dataset 

when performing PCA. The matrix A after data normalization can be written as    

                                               

11 12 13 1

21 22 23 2

1 2 3

..

..
: : : .. :

..

n

n

m m m mn

a a a a
a a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A  .                                 (C.1) 

In equation C.1, aij represents a normalized measurement of the ith variable corresponding 

to the jth trial. Thus, each row of A corresponds to a single variable, and each column 

corresponds to a single trial.  
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To obtain zero-mean data, which is required to perform PCA, define a matrix B 

where the row averages have been subtracted from A. In other words,                  

11 12 13 1 11 1 12 1 13 1 1 1

21 22 23 2 21 2 22 2 23 2 2 2

1 2 3 1 2 3

.. ..

.. ..
: : : .. : : : : .. :

.. ..

n n

n n

m m m mn m m m m m m mn m

b b b b a a a a
b b b b a a a a

b b b b a a a a

µ µ µ µ
µ µ µ µ

µ µ µ µ

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

B ,    (C.2)    

where  

                                                       1 ,   ( 1, 2,..., )

n

ij
j

i

a
i m

n
µ == =

∑
.                                  (C.3) 

 The concept of covariance is required to perform PCA. Referring to equation C.2, 

define Bi as a single variable where the element bij represents a measurement of Bi 

corresponding to the jth trial. Then, the covariance between two arbitrary variables Bx (i set 

equal to x) and By (i set equal to y) over n trials is  

                                        12

( )( )

1

n

j
xy

B Bx yxj yjb b

n
σ =

− −
=

−

∑
.                                            (C.4) 

In equation C.4, 2
xyσ  is the covariance between Bx and By, while Bx and By are the 

averages of variables Bx and By, respectively. Referring to equation C.2, the averages of the 

variables have been subtracted to obtain zero-mean data for PCA, resulting in both Bx and 

By equaling zero. Thus, for PCA, equation C.4 reduces to 

                                               12

1

n

j
xy

xj yjb b

n
σ ==

−

∑
.                                                           (C.5)  
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In the case where x = y, equation C.5 would correspond to calculating the variance of a 

single variable, as opposed to calculating the covariance between two different variables.  

 Calculating covariance quantifies important data characteristics between two 

variables. A covariance of zero between two variables signifies that there is no correlation 

or redundancy between them. In other words, if one variable increases, it is equally likely 

for the other variable to either increase or decrease. The larger the calculated covariance (in 

magnitude) between two variables, the larger the degree of linear correlation. If a positive 

(negative) covariance is calculated, it is more likely that increasing one variable results in 

an increase (decrease) of the other, resulting in a positive (negative) linear correlation. 

Figure C.1 contains sketches to give a generalized illustration of hypothetical crossplots 

between two arbitrary variables B1 and B2 corresponding to negligible covariance, large 

positive covariance, and large negative covariance.       

 
Figure C.1: Sketches of hypothetical crossplots to illustrate significance of covariance 
calculations between two example variables B1 and B2. a) Negligible covariance. b) Large 
positive covariance. c) Large negative covariance.     
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 Define a square “covariance matrix” C that contains an exhaustive set of all 

possible two-variable covariance values as 

                                             

11 12 1

21 22 2

1 2

..

..
: : .. :

..

m

m

m m mm

c c c
c c c

c c c

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

C  ,                                           (C.6) 

where an arbitrary matrix element  

                                                       2
xy xyc σ= ,                                                          (C.7)  

as defined in equation C.5. Thus, each off-diagonal element in C represents the covariance 

between two variables in the dataset. Each diagonal element represents the variance of a 

single variable in the dataset. Referring to equations C.5, C.6, and C.7, it is clear that C is 

symmetric ( xy yxc c= ).  

 Through examining equations C.2, C.5, C.6, and C.7, the covariance matrix C can 

be expressed through matrix multiplication as  

                                                       1
1n

=
−

TC BB ,                                                    (C.8)  

where BT is the matrix transpose of B. In general, the off-diagonal elements of C will not 

be zero, indicating a degree of correlation, and thus redundancy, between variables.  

The purpose of PCA is to develop m vectors, called principal components, on which 

to project the data. These principal component vectors should be orthogonal to each other, 

resulting in no existing redundancy between data projected onto these vectors. Define an 

m m×  square matrix V containing these developed principal component vectors as        
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11 12 1

21 22 2

1 2 3

..

..
: : .. :

m

m

m m m mm

v v v
v v v

v v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

V  ,                               (C.9) 

where the mth row of V contains the mth developed principal component vector. Since the 

principal components are orthogonal, the vector dot product between any two principal 

component vectors should be zero. In other words, 

                                                         
1

0
m

j
rj sjv v

=

=∑ ,                                                (C.10) 

where r and s are integers in the range 1 ,r s m≤ ≤  with r s≠ .  

Define a matrix P representing the data in B projected onto the vectors in V, where 

                                     

11 12 13 1

21 22 23 2

1 2 3

..

..
: : : .. :

..

n

n

m m m mn

p p p p
p p p p

p p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

P VB .                            (C.11)                                

The dimensions of P are equal to the dimensions of B. Similar to B, the columns of P 

correspond to trials; however, the rows of P correspond to data projected onto the 

developed principal components. The ith row of P contains the resulting data projection 

onto the ith principal component.  

 Let D represent the covariance matrix corresponding to the projected data contained 

in P. Similar to equation C.8, D can be expressed as   

                                                      1
1n

=
−

TD PP .                                                   (C.12) 

The off-diagonal elements in D represent covariance between data projected onto two 

different principal component vectors. Since the principal component vectors must be 
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orthogonal, this implies that all off-diagonal elements in D must be zero. Thus, D is a 

diagonal matrix. The ith diagonal element in D corresponds to the variance of the data after 

having been projected onto the ith principal component vector. The principal component 

with the highest corresponding data variance after projection represents the direction of 

variation where most meaningful information can be extracted from the data.          

 To determine the elements of V, substitute equation C.11 into equation C.12 to 

obtain   

                                                         1 ( )( )
1n

=
−

TD VB VB .                                      (C.13) 

Applying the identity ( ) =T T TVB B V  with the substitution 1
1n

=
−

TC BB   (equation C.8) 

results in   

                                                         1
1n

= =
−

T T TD VBB V VCV .                          (C.14) 

As previously stated, C is an m m×  symmetric and square covariance matrix of B. If D is 

to be a diagonal matrix, then the product TVCV must be a diagonal matrix. Consequently, 

the matrix V, which contains the desired principal components, must be chosen such that 

TVCV is a diagonal matrix.  

The principal component vectors in V can be determined through examination of 

the symmetric and square covariance matrix C. It has been shown that a symmetric matrix 

can be expressed through matrix multiplication of its eigenvectors with a diagonal matrix. 

Thus, the concept of eigenvectors and eigenvalues will first be briefly discussed.  

When a matrix is multiplied by one of its eigenvectors, the result is a scaling of the 

eigenvector by a corresponding eigenvalue. Define Ei as an 1m×  matrix representing one 
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of the m eigenvectors of C (i = 1, 2, …m) with a corresponding eigenvalue iλ . Then the 

relationship       

                                                           iλ=i iCE IE                                                (C.15) 

would be satisfied. The matrix I is the identity matrix that contains values of 1 on all 

diagonal elements and values of 0 elsewhere. As previously stated, m corresponds to the 

number of measured variables in the dataset.  

To obtain iλ  and Ei, equation C.15 can be rewritten as  

                                                         ( ) 0iλ− =iC I E ,                                           (C.16) 

which will have non-trivial solutions only if the condition  

                                                           | | 0iλ− =C I                                                (C.17) 

is satisfied. In equation C.17, the vertical bars “||” correspond to a determinant calculation. 

Thus, equation C.17 states that non-trivial solutions will exist only if the calculated 

determinant of the matrix ( )iλ−C I  is zero. Solving equation C.17 will yield m eigenvalues 

( 1 2, , ..., mλ λ λ ), from which a chosen iλ can be substituted into equation C.16. Following this, 

a system of m equations (of which m-1 of them are linearly independent) with m unknowns 

will be created. By setting one of the m unknowns to an arbitrary constant, the elements of 

Ei can be determined. This procedure can be repeated m times to obtain all of the m 

eigenvectors of C (E1, E2… Em). Since C is symmetric, these eigenvectors will be 

orthogonal to each other, signifying that the dot product between any two different 

eigenvectors will be zero. Define unit vectors Êi  (i = 1, 2, …m) as   

                                                           
|| ||

= i
i

i

E
Ê

E
,                                                (C.18) 
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where || ||iE  represents the length of vector Ei. 

 Define a matrix F that contains all of the m unit-length eigenvectors of C (Ê1, Ê2… 

Êm ) with each unit-length eigenvector placed in a single column.  Thus, F will be a square 

m m×  matrix whose columns are orthogonal to each other. To obtain V, which contains the 

desired principal component vectors, further examination of the symmetric matrix C is 

required. As previously stated, it has been shown that a symmetric and square matrix can be 

expressed through matrix multiplication of its orthogonal eigenvectors with a diagonal 

matrix. Specifically, it has been shown that a symmetric matrix, such as C, can be 

expressed as 

                                                              = TC FHF ,                                            (C.19)    

where H is a diagonal matrix. Substituting equation C.19 into equation C.14 gives 

                                                              = T TD VFHF V .                                    (C.20) 

It is desired to choose V such that only the diagonal matrix H remains on the right-

hand side of equation C.20, resulting in D being a diagonal matrix and thus implying that 

the projected data contained in P has zero covariance. This would further imply that 

redundancy is eliminated in P. It can be easily demonstrated that, since F is a square matrix 

whose columns have unit length and are orthogonal to each other (the dot product between 

any two different columns will be zero), the relationship 

                                                                =TF F I                                                (C.21) 

will be satisfied. In equation C.21, the element in the ith row and jth column of TF F , where 

, 1, 2...i j m=  simply corresponds to calculating the dot product of columns i and j in the 

matrix F. Thus, the diagonal elements of TF F , which are dot products of single columns 
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with themselves, represent the column lengths, which are unity. The off-diagonal 

elements of TF F will be zero, since columns of F are orthogonal with respect to each other. 

This confirms the relationship in equation C.21. 

 Comparing equations C.20 and C.21, setting       

                                                    TV = F                                                 (C.22) 

would be appropriate. This results in  

                              ( ) ( )= = = =T T T TD VFHF V F F H F F IHI H ,                      (C.23) 

which is desired, as this results in D becoming a diagonal matrix implying that the 

projected data contained in P has zero covariance. This further implies that redundancy is 

eliminated in P.  

The results obtained suggest that the principal components of the dataset contained 

in the rows of V are equal to the unit-length eigenvectors of C contained in the columns of 

F. Thus, the principal components of the dataset are found by determining the unit-length 

eigenvectors (Ê1, Ê2… Êm) of the covariance matrix C.   

 In summary, B contains mean-corrected measurements of several variables that 

could be correlated and thus redundant to a degree. This redundancy can be seen through 

non-zero off-diagonal elements in C, where C is a covariance matrix corresponding to the 

measurements in B.  It is desired to project the data in B onto orthogonal principal 

component vectors contained in the rows of V, eliminating redundancy. This projected data 

is stored in the matrix P. Each principal component present in each row of V is a single 

unit-length eigenvector of the covariance matrix C.   

It has been shown in the cited literature that data variance after projection onto a 

principal component, where each principal component is a single eigenvector, is equal to 
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the eigenvalue of the corresponding eigenvector. The eigenvector whose eigenvalue is 

largest corresponds to the direction of maximum variance in the dataset. Data projected 

onto this eigenvector will yield the most useful information about the dataset. The 

eigenvector whose eigenvalue is second largest is oriented in the direction of maximum 

possible data variance given the restriction that it must be orthogonal to the first 

eigenvector. A similar relationship would hold for the third “most important” eigenvector 

relative to the second, and so on. Eigenvectors whose eigenvalues are relatively small likely 

correspond to noise components, where little meaningful information can be extracted.  

For discussions pertaining to PCA application that follow, Ê1 will represent the 

principal component whose eigenvalue is largest (the first principal component). Thus, data 

projected onto Ê1 will contain maximum variance and thus yield the most meaningful 

information. Expressed mathematically,  

                                               1 2 ... mλ λ λ> > > .                                     (C.24)       

Figures C.2 and C.3 are hypothetical illustrations to demonstrate PCA applied to a 

simple two dimensional example. Assume that measurements have been performed 

corresponding to two arbitrary variables with zero-mean correction applied. As per 

convention, the first variable is plotted with respect to the x axis, while the second is plotted 

with respect to the y axis. A crossplot of these hypothetical measurements is shown in 

Figure C.2, where each circle represents a single trial. The x and y axes are oriented 

horizontally and vertically, respectively. Clearly, there is a strong positive linear correlation 

between the two variables. PCA would project the data onto two new axes corresponding to 

the calculated principal component vectors, as shown in Figure C.3. Only the Ê1 axis, 
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however, contains significant data variance. The other, Ê2, is mainly a noise 

component. Thus, PCA has reduced the effective dimensionality of the data from two to 

one.                    

 When analyzing data in two dimensions, it is relatively easy to determine, even 

visually, the direction where significant data variance exists. As data dimensionality 

increases, however, it becomes significantly more difficult to visualize the dataset and 

determine directions of maximum variance. Thus, PCA becomes an important tool to 

extract key information from datasets with many measured variables.     
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Figure C.2: Illustrative 2-D crossplot example of measurements taken for two variables 
with zero-mean correction applied. The first variable is plotted with respect to the x axis, 
and the second is plotted with respect to the y axis. Strong positive correlation is seen 
between the two variables.    
 
 

 

 

 

 

 

 

 
Figure C.3: Illustrative 2-D crossplot example from Figure C.2 with principal component 
vectors Ê1 and Ê2 shown. Maximum data variance is seen in the direction of Ê1, while 
mainly noise is seen in the direction of Ê2. Thus, data projected onto Ê1 would yield 
virtually all important information about the dataset, resulting in the effective 
dimensionality of the data reduced from two to one.    
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