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Abstract

All practical wave equations are derived with common assumptions and simplifica-

tions in order to make their solution tractable. In this dissertation I will explore the

concept of the “high-frequency” approximation, and describe several ways in which

I have attempted to extend the range of validity down into the lower frequencies

which are most commonly found in seismic exploration geophysics.

I have done this in several ways. First, I have shown that the eikonal equation

may be extended to give useful results in lower frequencies by simply smoothing the

underlying wavespeed velocity model of the medium in a frequency-dependent fash-

ion. Second, I have shown that a similar kind of frequency-dependent smoothing

may also be applied to the design of the Generalized Phase-Shift plus Interpola-

tion (gpspi) algorithm wavefield extrapolation operator, and this too yields higher

fidelity in the extrapolation, especially at lower frequencies. Additionally, I have

taken theoretical mathematical extensions to this same operator, and developed

them into a practical and useful operator. In another study, I have shown that the

Early Arrival Waveform Tomography method, a low-frequency extension of more

common traveltime tomography, may be feasible to use for the time-lapse monitor-

ing of changing petroleum reservoirs. Following this, I show that planewave imaging

can dramatically reduce imaging computation time by introducing a new method for

measuring its convergence; this allows for more widespread usage of a method that

is inherently more valid at low frequencies than many other common algorithms.

Finally, I explain a new method for the stabilization and practical implementation

of a faster version of the gpspi method, which makes its overall lower-frequency

validity compared to other methods more practical and economical.
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Glossary

Definitions

air blast: A class of coherent noise associated with the sound/pressure wave of the
source explosion travelling through air and affecting the geophones.

asymptotic solution: An approximate solution to an equation that becomes exact
in some limit of a parameter. A high-frequency asymptotic solution, for
example, becomes an exact solution in the limit where frequency approaches
infinity.

evanescent waves: Waves which are generated at a boundary, and typically exhibit
exponential decay with distance from the boundary. A common example of
evanescent waves in geophysics is ground roll.

ground roll: A class of coherent noise typically associated with surface wave phe-
nomena. See Aki and Richards (2002) for more details on surface waves.

high-frequency approximation: An approximation, often to a solution to a wave
equation, that assumes that the scale of variability of wavespeed in a medium
is much smaller than the dominant wavelength under consideration.

imaging condition: In shot profile migration, an algorithm which compares the down-
going wavefield to the upgoing wavefield to derive an approximate reflectivity
at a location.

linear operator: An operator G is a linear operator if it is defined so that G(m1) +
G(m2) = G(m1 +m2) and G(αm) = αG(m).

poststack migration: Seismic imaging from partly reduced data, in which the data
from many individual shot records are summed prior to the imaging step.
Poststack imaging typically is seen as a correction to an existing image which
was constructed by assuming e.g. that the geologic features to be imaged are
composed of entirely flat plane homogenous layers. Under these assumptions,
any non-flat features will have imaging artifacts associated with them. Post-
stack imaging attempts to correct imaging errors introduced by overbroad
assumptions.

prestack depth migration: Seismic imaging using minimally-reduced data. Input
data typically includes a (smooth) velocity model and shot gathers. Other
gathers may be used, but in principle they are generally derivable from shot-
gather data. Prestack migration attempts to make as few assumptions about
the geologic features as possible, and makes use of as much of the data as

xiv



possible. It is a direct imaging process – the image is directly calculated from
input data and an existing velocity model. cf. Poststack migration.

profile imaging A method of seismic data migration (imaging) in which a surface-
recorded seismic wavefield is considering to be the upgoing wavefield, and a
modelled source approximating the original survey source is considered to be
a downgoing wavefield. These wavefields are compared at depth.

seismic imaging: The process of transforming seismic survey data into an image of
the geologic subsurface below the survey. “Migration” will often be used
interchangeably with “imaging”.

shot gather: All data from a single source recorded by all active geophones or hy-
drophones.

specular raypaths: Specular raypaths are those raypaths which obey Snell’s law and
the law of reflection.

Symbols

(x, y, z) Spatial dimensions.

G An operator representing the physics of a system.

∇ The Laplacian operator.

R The field of real numbers.

R
n The real coordinate space in n dimensions, with elements ~x = (x1, x2, . . . , xn).

µ Linear mass density.

ω Temporal frequency in radians per second.

~x A spatial vector, equivalent to (x, y, z) in three dimensional space.

t Time dimension.

xv
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Chapter 1

Introduction

1.1 Original contributions in this dissertation

In this dissertation, I will detail my original contributions to the field of exploration

seismic imaging and wave-equation studies in general.

In this introduction, I will introduce the non-specialist reader to all of the fun-

damental concepts that are required to appreciate the work found in the rest of the

dissertation. Most of the ideas are developed at least heuristically, and the most

common and fundamental references are given for those looking for a deeper under-

standing of the underlying issues. In Chapter 2, I will describe my work regarding

the extension of high frequency asymptotic solutions to the wave equation to lower

frequency regimes, specifically in the context of eikonal equations and ray-tracing

solutions. In Chapter 3, I will detail my contribution to the study of frequency-

dependent smoothing in the wavefield extrapolation method foci (Forward Opera-

tor, Conjugate Inverse; Margrave et al., 2005), and show how this smoothing greatly

improves the fidelity of the extrapolated wavefield. I will demonstrate that this may

be due to a better match of the operator symbol with the full-frequency “exact”

operator symbol. In Chapter 4, I will describe the adaptation of a theoretical im-

provement upon the operator symbol used in gpspi (Generalized Phase Shift Plus

Interpolation; Margrave and Ferguson, 1999) wavefield extrapolation into a practical

algorithm, useful for migration. This effectively extends the locally-homogeneous

high-frequency operator symbol, hopefully yielding higher fidelity for wavefield ex-
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trapolation. In Chapter 5, I will discuss our application of early-arrival waveform

tomography to time-lapse monitoring of steam injection for heavy-oil production.

This method uses primarily low-frequency information to identify and character-

ize anomalies in a velocity model, as opposed to many other time-lapse methods

which typically rely on much higher-frequency data. In Chapter 6, I will discuss

my investigation into the measurement of the convergence of plane wave imaging.

The primary significance of this contribution is that it may allow for more efficient

application of a method which has higher fidelity than many other methods, espe-

cially for relatively low frequencies. In Chapter 7, I will discuss my extension of the

gpspi operator to stabilize the foci operator in highly-variable media. This allows

for easier practical use of a gpspi method in cases where previously a less accurate

algorithm may have been considered.

1.2 Petroleum exploration

Petroleum exploration is often conducted with the assistance of seismic imaging.

This process uses a source of energy, frequently either a blast of dynamite or a

large vibrating mass, to shake the ground at a particular surface location. This

shaking travels through the ground as a wave, and reflects and refracts throughout

the subsurface. These reflections and refractions are recorded at the surface with an

array of geophones, instruments which can accurately measure vibrations via direct

measurements of either ground acceleration or velocity.

A current seismic survey typically consists of recording this information for hun-

dreds to thousands of individual “shots”; one shot is typically a single dynamite

blast or mass-vibration at one location. Shot locations are spaced out over the area



3

to be investigated, with typical spacing between shot locations on the order of per-

haps five or ten meters. Shots at any given location may be repeated, and the results

summed to reduce random noise. This is particularly common for mass-vibration

source surveys. Sources are often spaced linearly for a “2D” survey, or on a grid

for a “3D” survey. See Figures 1.1 and 1.2 for diagrams of typical “2D” and “3D”

survey geometry respectively.

Each shot is recorded into an array of geophones, with hundreds to thousands of

individual geophones in a given survey. Geophones are often placed with a spacing

of the order of five to ten meters. As with sources, the geophones may be placed

linearly or on a grid, depending on the survey type (“2D” or “3D”).

Although most discussion in this dissertation is in the context of geophones and

land-based acquisition, pressure-sensitive hydrophones may also be used to record

data in water, for marine surveys. In most respects, these may be taken as giving

information equivalent to that given by geophones, especially when an acoustic wave

equation is employed for imaging.

Data recorded from a single shot into all active geophones forms a single shot

gather – that is, all the data from a single shot is gathered together. A single shot

gather can be seen in Figure 1.3a, as recorded from the idealized geometry shown

in Figure 1.3b.

The measured disturbances at the surface are used to develop an image of the

rock formations in the subsurface. This is accomplished via seismic imaging, which is

also commonly known as migration. While there are many kinds of seismic imaging,

this dissertation will only focus on a certain type known as prestack depth migration.

Many versions of this method use shot gathers directly with minimal processing to

develop an image of the subsurface. While the data within these gathers may be
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Figure 1.1: An idealized 2D seismic survey layout. In this survey, source points are
placed at double the geophone spacing, with extra sources outside the survey to
allow for broader subsurface coverage. Although only a few sources and receivers
are shown, modern surveys typically place hundreds or more receivers and sources.
Spacings are typically on the order of meters to tens of meters.

resorted into other types of gathers for the imaging and/or filtered for noise, the

term prestack depth migration implies that information is only minimally reduced

before imaging. In prestack depth migration, each individual shot gather is typically

imaged individually and then all of these resulting individual images are combined

to give a final image. Other processes, for example poststack migration, have had

significant data reduction processes applied before imaging begins. In poststack

migration, typically the shot records are combined together and this combination is

then imaged in one operation. The prestack migration usually allows for much more

detailed imaging, while the poststack method is far less expensive computationally.

See e.g. Robein (2004) for more information on other migration methods.

Many other details about imaging and seismic data processing in general may

be found in Yilmaz (2001).
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Figure 1.2: An idealized 3D seismic survey layout in plan view (“map view”). It is
common to see one orientation with more densely spaced geophones (the “in-line”
orientation), and the orthogonal orientation (the “cross-line” orientation) with more
densely spaced shot locations. As with 2D surveys, spacings are typically on the
order of meters or tens of meters, with a full survey frequently covering up to several
kilometers on a side.
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(a) a shot gather showing recorded data. (b) a schematic of the shot gather concept.

Figure 1.3: In (a), a single 2D shot gather from geophones placed with a centrally-
located shot, over geology consisting of flat plane homogenous layers as illustrated in
(b). Each vertical trace is the recording from a single geophone. Reflection events
appear as approximate hyperbolæ. This shot gather has had a time-dependent
amplification applied to account for the geometric spreading energy and other losses.
In (a) the linear events beginning near time 0s and geophone 25, and forming a line
to the end geophones at time 0.4s show the direct arrival of the wave travelling just
beneath the subsurface directly towards geophones without reflection.

1.3 The scalar wave equation in one spatial dimension

Wave equations form a class of partial differential equations that describe the prop-

agation of disturbances through a medium. There are many different specific wave

equations that have been developed to handle many specific cases of type of distur-

bance, type of medium, and details of propagation. Although wave equations are

relatively straight-forward to derive and impose upon a medium, their solution is

virtually intractable in all but the most trivial of situations.

Consider a string under tension of magnitude T (x, t) and fixed at both ends,

with linear mass density µ. Assume the absence of external forces (e.g. gravity).

Trivially, this string will align linearly, motionless. However, with the introduction

of a small transient deflection from equilibrium at some point between the fixed
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Figure 1.4: The string under tension T , with deflection from equilibrium position
U , and deflection angle from horizontal θ.

ends, the system becomes dynamic. Figure 1.4 shows the situation for this transient

deflection on a small portion of the string. x denotes position along the string,

t is time, u(x, t) is the displacement of the string perpendicular from the linear

equilibrium position, θ(x, t) is the angle between the string and the linear equilibrium

position.

We will consider a small section of the deflected string, small enough that the

string is approximately linear. Since the deflection is small, θ(x, t) is small as well.

The net force on the segment of string is T (x, t) − T (x + ∆x, t). Application of

Newton’s second law (Newton, 1687) in the vertical direction yields:

µ
√

∆x2 + ∆u2∂2
t u = T (x+ ∆x, t) sin θ(x+ ∆x, t) − T (x, t) sin θ(x, t). (1.1)

Dividing equation 1.1 by ∆x and taking the limit as ∆x→ 0,

µ

√

1 + (∂xu)
2∂2

t u = ∂x (T (x, t) sin θ(x, t)) . (1.2)

By assuming that the deflection of the string is small, we effectively assume that
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sin θ ≈ θ. Since ∂u/∂x << 1, (∂u/∂x)2 ≈ 0 , so equation 1.2 simplifies to

µ
∂2u

∂t2
(x, t) =

(

∂T

∂x
(x, t)

)(

∂u

∂x
(x, t)

)

+ T (x, t)
∂2u

∂x2
(x, t). (1.3)

Since the string is fixed on both ends, the string does not move horizontally.

Therefore the net local horizontal force is zero such that,

T (x+ ∆x, t) cos θ(x0 + ∆x, t) − T (x, t) cos θ(x, t) = 0. (1.4)

In the limit as ∆x→ 0,

∂x (T (x, t) cos θ(x, t)) = 0. (1.5)

For small θ, cos θ(x, t) ≈ 1,

∂xT (x, t) ≈ 0 (1.6)

Inserting equation 1.6 into equation 1.3 and rearranging,

∂2u

∂t2
(x, t) =

T (x, t)

µ

∂2u

∂x2
(x, t). (1.7)

In equation 1.7, T (x, t)/µ is dimensionally equivalent to [velocity]2, and is in fact

interpreted as the wavespeed velocity, or the propagation velocity of a wave on the

string.

Equation 1.7 is a scalar one-dimensional wave equation. Note that even in this

simple case, we have had to restrict ourselves to an approximate description of the

phenomenon: we have assumed a “small” deflection from equilibrium. In reality, this

means that any finite deflection strictly invalidates this wave equation. Equivalently,

any real disturbance cannot possibly obey the wave equation exactly. Nevertheless,

it is a useful approximate solution.

Wave equations may be thought of as the combination of three concepts: New-

ton’s second law, in this case applied giving the result in equation 1.1; a constitutive
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relation, one example of which is Hooke’s Law; and a liberal application of lineariza-

tion. The application of linearization was clearly present in the treatment of “small”

deflections which allowed several simplifying approximations. In the absence of these

linearizations, we would have a non-linear wave equation, which is significantly more

challenging to solve.

Where, then, was the application of a constitutive relation like Hooke’s Law?

Generally speaking, a constitutive relation is an expression that describes how a

particular medium responds to a disturbance that distorts the medium away from

its equilibrium resting configuration. Hooke’s Law states that the force exerted by a

spring is linearly proportional to the distance through which the spring is compressed

or extended: F = kx, where F is the magnitude of the force, x is the distance of

extension or compression, and k is the so-called spring constant.

We may recognize the constitutive relation implicit in this wave equation as being

the source of the natural restoring force. As the string is deflected from horizontal,

the difference in tensions across a small section of the string results in a net local

vertical force directed toward restoring the string to its equilibrium zero-deflection

state. This restoring force is a function of the deflection, and so is analogous to

Hooke’s Law.

1.3.1 Beyond a one-dimensional scalar wave equation

Although a one-dimensional scalar wave equation is interesting mathematically, and

while it may be useful to approximately describe the behaviour of the string on a

guitar or the vibration of a stretched spring, it does not adequately describe the

reality of a seismic disturbance travelling through the subsurface.

It is possible to extend a comparable derivation to include three spatial dimen-
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sions in an acoustic medium to derive a 3D scalar wave equation. Careful treatment

of a three-dimensional perfectly elastic solid material leads to a vector wave equa-

tion, allowing both dilatation and rotational motion within the medium (e.g. Aki

and Richards, 2002). Allowing a viscosity or damping within the material will lead

to a viscoelastic wave equation (e.g. Lakes, 1998). Although these wave equations

increase the complexity of the physics and subsequently the nominal fidelity with

which the imaging may be conducted, designing seismic imaging algorithms based

on an acoustic wave equation is often a reasonable compromise between complexity

and simplicity, both in terms of computational cost and intensity of physics.

It is worth explicitly noting that the derivation of the three-dimensional elastic

wave equation (and every other commonly used seismic wave equation) also requires

the assumption of a “small” perturbation of the medium, such that any finite dis-

turbance strictly invalidates these equations as well.

1.4 Solutions to the wave equation

Though a wave equation is relatively simple to pose, as with many partial differ-

ential equations that model real physical phenomena, solutions to all but the most

trivial of cases can be extremely difficult to calculate. Three common approaches

to approximate solutions are direct numerical solution via finite differences, high-

frequency asymptotic solutions to the wavefield, and pseudodifferential solutions.

Each method of solution has its own unique strengths and weaknesses. Although I

do not directly address the pseudospectral method for solving wave equations in this

dissertation, this method is common in exploration geophysics. Many interesting

topics, including pseudospectral methods and more, are presented by Boyd (2001).
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It is important to emphasize that these are approximate solutions to a wave

equation which was derived using an approximation to reality – even in the most

optimistic case we can calculate almost the correct answer to not quite the correct

question. It is always important to question the validity of these calculated results

in the larger context of the approximations.

1.4.1 Direct numerical solution via finite differences

Direct numerical solution typically involves the approximation of the derivatives in

the equation with “finite differences”. For example, the derivative ∂xf(x, ·) may be

approximated by softening the implied limit that defines it: lim∆x→0
f(x+∆x,·)−f(x,·)

∆x
.

A finite (but small) ∆x can be used directly to approximately calculate the derivative

of a function. Typically, the choice of this ∆x size means that the derivative of a

function is approximated on a discrete grid of spacing ∆x.

A second derivative may be calculated with a similar process, leading to an

example approximate second derivative,

∂2
xf(x, ·) ≈ f(x+ ∆x, ·) − 2f(x, ·) + f(x− ∆x, ·)

∆x2
. (1.8)

There are many introductory texts that cover finite differences and other direct

numerical solutions techniques, including R̊ade and Westergren (2004) and Burden

and Faires (2004).

The main benefit of direct numerical solutions, especially with finite differences,

is that solutions can be arbitrarily accurate given sufficient computing resources.

This can be shown by considering a finite difference approximation as an implemen-

tation of the Taylor series expansion of the solution.

Given a function f which is n times continuously differentiable on the interval
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[a, x], and n + 1 times differentiable on the open interval (a, x), this function may

be expanded into a polynomial called the Taylor series:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +Rn(x). (1.9)

Rn is the remainder term, and quantifies the difference between the nth degree Taylor

polynomial and the original function f . One form of this remainder term says that

there exists a c between a and x such that

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1. (1.10)

A frequent application of the Taylor series is to extend an existing solution to an

equation (including derivatives) at the point a to a small neighbourhood around a.

That is, f(x) may be calculated given the values f(a), f ′(a), f ′′(a), . . ., f (n)(a). As

long as x − a is small, the remainder will be small. More on the Taylor series may

be found in many texts, including Morse and Feshbach (2005).

A first-order Taylor series for the function f at a may be rearranged,

f ′(a) =
f(x) − f(a)

(x− a)
+R1(x) (1.11)

This, however, is simply the first-order finite difference approximation for the deriva-

tive, plus the remainder term R. Explicitly,

R1(x) =
f ′′(c)

2
(x− a)2. (1.12)

Since c is between a and x, and since f is sufficiently smooth, this remainder may

be made arbitrarily small by keeping the interval [a, x] small. Practically speaking,

this means that the accuracy of the approximation depends on the size of the grid

spacing ∆x. In partial differential equations, the different derivative approximations
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for each partial derivative can often interact in a complicated fashion. For solutions

to a wave equation, the time-axis grid spacing and spatial-axis grid spacing are

related, and must be chosen in a fashion that satisfies a grid dispersion restriction.

See Cho et al. (2007) for an introduction to this concept, and Holberg (1987) for a

thorough discussion. Additionally, finite difference schemes must have these spacings

chosen to satisfy a stability requirement. That is, small errors in the computation

must not grow with time as this will cause the solution to diverge as the errors

swamp the results. This topic is discussed broadly in numerical analysis, with one

recent and applicable example given by Lines et al. (1998).

1.4.2 High-frequency asymptotic solutions

In addition to a frontal assault via computational methods, wave equations may

also be attacked indirectly via further approximations and assumptions. A “high

frequency” assumption is a popular and convenient approach in many cases. This

treatment follows one given by Pujol (2003). To derive the eikonal equation, begin

with a scalar wave equation with position coordinate ~x and time t,

(

∇2 − 1

v2(~x)
∂2

t

)

Ψ(~x, t) = 0. (1.13)

Fourier transform t→ ω:

∇2ψ(~x, ω) +
ω2

v2(~x)
ψ(~x, ω) = 0, (1.14)

where the Fourier transform is defined by,

ψ(~x, ω) =
1

2π

∫

R

Ψ(~x, t)e−iωtdt. (1.15)

Now assume trial solutions of (harmonic) form:

ψ(~x, ω) = A(~x, ω)eiωφ(~x). (1.16)
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Now we calculate the component of the ∇2 operator for each spatial axis j,

∂2
jψ =

(

∂2
jA+ 2i∂jAω∂jφ+ iωA∂2

j φ− Aω2(∂jφ)2
)

eiωφ (1.17)

By substituting this expression and the harmonic solutions from equation 1.16 into

equation 1.14, we have

(

∂2
jA+ 2i∂jAω∂jφ+ iAω∂2

jφ− Aω2(∂jφ)2
)

eiωφ +
ω2

v2
Aeiωφ = 0 (1.18)

for one spatial axis. Cancelling the exponential, dividing by Aω2, and rearranging

yields
(

(∂jφ)2 − 1

v2

)

− i

ω

(

2

A
∂jA∂jφ+ ∂2

jφ

)

− 1

ω2A
∂2

jA = 0. (1.19)

This solution can be simplified by considering real and imaginary parts separately.

The real part must be zero,

(∂jφ)2 − 1

v2
− 1

ω2A
∂2

jA = 0. (1.20)

If we consider the limiting case where ω → ∞, the last term in equation 1.20 becomes

negligible. By restoring to full dimension, we reveal the eikonal equation,

|∇φ(~x)|2 =
1

v2(~x)
. (1.21)

This equation is fundamentally valid only in this high-frequency limit. This

implies that the eikonal equation may only be used when variations in velocity are

negligible on spatial scales that are comparable to the wavelengths of the propagating

waves. Since seismic data typically contains useful frequencies in the range 5 – 100

Hz over media with acoustic wavespeeds varying between 1500 – 6000 m/s, this

implies a wavelength range of at least 15 – 1200 m. This in turn implies that this
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“high frequency” approximation will be valid when the medium variability is only

on scales of hundreds of meters or larger.

The eikonal equation allows for solution of φ(~x) throughout the medium. Refer-

ence to equation 1.16 reveals that this φ(~x) is in fact the traveltime of the wavefield.

By solving for the evolution of the phase of the wavefield, we are effectively solving

for the first-arrival traveltime of the high-frequency wavefront. That is, the eikonal

equation allows us to determine exactly the minimum time that it will take for theo-

retical high-frequency wave energy to arrive at any given point in the medium from

some chosen starting location.

As a simple example, consider v(~x) = v0 as a constant for all waves within the

medium, then the magnitude of the gradient of the traveltime is simply a constant,

|∇φ(r)| = |∂rφ(r)| = v−1
0 , (1.22)

where we have used the polar form of the gradient, noting that the angular deriva-

tives are zero for this isotropic medium. This gives a traveltime from the origin to

the distance r,

φ(r) = rv−1
0 + φ0. (1.23)

The transport equation is derived by considering only the second term in equation

1.19, noting that the imaginary part must be equal to zero, and multiplying by Aω/i.

Upon restoring to full dimension,

2∇A · ∇φ+ A∇2φ = 0. (1.24)

Again, with reference to equation 1.16, it is clear that this transport equation is

solving for the amplitudes, A(~x, ω), of the assumed harmonic solutions throughout

the domain. Note that solution of this transport equation requires prior solution of

the eikonal equation (or some other determination of φ).
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By solving for both A(~x, ω) and φ(~x), we can approximately solve for the full

wavefield, ψ(~x, ω), with validity in the high-frequency limit. The eikonal equation

will be discussed, along with extensions to improve its applicability to the explo-

ration seismic context, in Chapter 2.

1.4.3 The Helmholtz equation

An alternate form of approximate solution to the wave equation comes via the

pseudodifferential operator calculus, applied to the Helmholtz equation.

Throughout this dissertation we will consider a simple (but powerful) trans-

formation of the scalar wave equation: the Helmholtz equation. The Helmholtz

equation is a frequency-domain representation of the scalar wave equation:

(

1

c2
∂2

∂t2
−∇2

)

Ψ(~x, t) = 0. (1.25)

In a homogeneous medium, solutions to the scalar wave equation are quite simple.

Solutions will be a simple function of the form f(|~x| ± ct)/ |~x|. These solutions are

frequently taken to be exponential functions, in part to take advantage of the great

power and flexibility of Fourier analysis. In fact, if we assume that the wave solutions

are harmonic in time, this equation can be transformed into the Fourier domain.

Once transformed via t → ω, the scalar wave equation becomes the Helmholtz

equation,
(

ω2

c2
+ ∇2

)

ψ(~x, ω) = 0, (1.26)

.

This simple transform dramatically changes the nature of the equation. The

scalar wave equation propagates disturbances or discontinuities, such as those cre-

ated by an instantaneous impulsive source modelled by a delta function, through
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the spatial domain in time. The Helmholtz equation smoothes and spreads the

frequency spectrum across the spatial domain and converges on a stable solution.

That is, the wave equation marches a wavefield forward in time across space, while

the Helmholtz equation spreads frequency content across space in a sort of static

solution.

Once transformed into the Helmholtz equation, it is possible to conceptually re-

solve the solutions into two distinct components: the up- and down-going wavefields.

In a homogenous medium, this is a simple operation. Since there are no changes

in the medium whatsoever, waves travelling in one direction will continue travelling

in that direction forever. When there are changes in the medium, however, some

components of the wave will reflect or refract back in the opposite direction. If there

is more than one spatial dimension, changes in the medium will also spawn evanes-

cent waves. This complicates matters significantly. Pseudodifferential solutions that

address the Helmholtz equation will be explained in §1.5.2.

1.5 Seismic imaging

Seismic imaging may be defined as any process that transforms seismic reflection

data into a useful image of the subsurface over which the survey was performed.

There are many different imaging algorithms, but virtually all of them rely upon

the approximate solution of the wave equation within an estimated version of the

subsurface below the location of the survey.
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1.5.1 The profile imaging scheme

“Profile imaging” in the context of seismic exploration is fully described by Claer-

bout (1985). Briefly, profile imaging is a method of seismic data migration (imaging)

in which a surface-recorded seismic wavefield is considered to be the upgoing (“up-

coming” in Claerbout’s words) wavefield, and a modelled source approximating the

original survey source is considered to be a downgoing wavefield. These wavefields

are compared at depth in the subsurface in an attempt to recover the reflection coef-

ficient at this depth. This method requires an approximate model of the subsurface

wavespeeds at all locations.

The principle relies on the concept that, at each depth in the subsurface, a

downgoing wavefield is transformed into an upgoing wavefield via reflection. A

disturbance that is coincident at the same place and time in both wavefields is such

an event which means that there is a finite reflection coefficient at that location.

The reflection coefficient ratio commonly referred to as “Claerbout’s Imaging

Principle” is U(ω,x,z)
D(ω,x,z)

, where U and D represent upgoing and downgoing wavefields

respectively, Fourier transformed t→ ω (Claerbout, 1971). This ratio is not practi-

cal, however, as (for example) the denominator may be zero, leading to instabilities.

These instabilities may be reduced by adding a small amount of white noise to the

signal – a “prewhitening” or “water level”. Another approach is to use the zero

lag of the cross-correlation, U(ω, x, z)D∗(ω, x, z), where D∗ represents the complex

conjugate of D. This preserves the phase of the original ratio, and improves the sta-

bility of the operation. As long as the phase is preserved, the time/space location

of the coefficient will be preserved, though the exact amplitude may be somewhat

altered. In the case of seismic imaging, the accurate location of anomalies is typi-
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cally considered a higher priority than the absolute preservation of the amplitude of

the reflection coefficient. Amplitudes are certainly important, however, and there

are many other imaging conditions which attempt to protect amplitude information

while providing a stable result. See, for example, Rietveld (1995).

In exploration reflection seismology, geophones record the reflected wavefield.

Neglecting surface waves (e.g. ground roll), air blast, and other sources of noise;

and ignoring surface topography, recording problems, and other real-world issues,

the recorded wavefield in an ideal survey is effectively the upgoing wavefield at

depth z = 0. That is, we record directly U(x, z = 0, ω) – or at least, we record

noisy time-domain data that may be Fourier-transformed directly to approximately

U with appropriate filtering and noise-removal. The downgoing wavefield at z = 0

may be estimated by mathematically modelling the source. Given both wavefields

at the surface, all that remains is to extrapolate these wavefields to depth, and

compare them at each step along the way. It is this depth extrapolation step that

encompasses the solution of the wave equation throughout the estimated subsurface.

Also, this extrapolation requires an approximate model of the subsurface wavespeed

at all subsurface imaging locations (the “velocity model”).

Because of the requirement for a velocity model, the profile imaging scheme es-

sentially is a method of locating the boundaries between rock layers. Equivalently,

the profile imaging scheme locates the reflectors within a smoothed version of the

original velocity model – an accurate starting velocity model is required for pro-

file imaging and many other migration schemes. For details on velocity modelling

procedures used in modern seismic exploration, see Yilmaz (2001) or Robein (2004)

and references within.

It may seem trivial to migrate data when an existing velocity model already
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appears to tell exactly where the layer boundaries occur – why go through the

imaging process when we already have a good enough idea of the geology to build

a velocity model? In practice, however, the migration effectively reveals where the

seismic data disagrees with the velocity model in some fashion. For example, if we

assume flat plane homogeneous layers in the model, but in reality one layer has a

slight departure from this assumption – perhaps a small localized channel in one

layer, formed by erosion from the flow of an ancient river – then the migration will

locate not only the layer that we know about, but it will also locate with reasonable

accuracy the size and shape of this channel. Some slight error will occur due to the

initial modelling error, but this can be either ignored or accomodated by repeated

iterations of the imaging/velocity-modelling stage. Furthermore, velocity models

used for migration are often smooth, without hard boundaries between layers. The

migration is often used to precisely locate the boundaries between the layers.

1.5.2 Depth extrapolation

Many current wavefield extrapolation migration algorithms (see e.g. Gazdag, 1980;

Gazdag and Sguazzero, 1984; Berkhout, 1984; Holberg, 1988; Stoffa et al., 1990;

Hale, 1991; Wu, 1994) are space-frequency methods related to or derived from the

phase-shift method introduced by Gazdag (1978). In this method, the wavefield is

Fourier-transformed over time (t → ω) and the lateral spatial coordinates (x, y) →

(ξ, ν), resulting in a plane-wave decomposition. This plane-wave version of the

equation can greatly simplify solution.
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Phase-shift

Under the assumption of a constant velocity (i.e., acoustic wavespeed) at a given

depth, an appropriate phase-shift is applied to each Fourier plane wave to extrapo-

late the wavefield a single step in the vertical (z) direction, that is across a homo-

geneous layer. In geologic regions where this approximation is valid, for example in

a region with flat plane homogeneous layers commonly found in sedimentary basins

such as the Western Canadian Sedimentary Basin, this is a useful approximation.

The scalar Helmholtz equation, 1.26, may be easily solved when the velocity c is

constant. A two-dimensional wavefield at depth z may be extrapolated to a wavefield

at depth z + ∆z by simply phase-shifting each frequency through the appropriate

∆z step,

ψ̂(ξ, z + ∆z, ω) = ψ̂(ξ, z, ω) exp(i∆z
√

ω2/c2 − ξ2). (1.27)

This solution is nothing more than the convolution (i.e. Fourier-multiplication)

of the input wavefield with the delta-function solution of extrapolation from z to

z+ ∆z, and it assumes that waves are propagating in the positive z direction. This

concept will be more thoroughly and generally discussed later in this section during

the discussion of gpspi.

This method is inexpensive computationally to calculate: simply Fourier trans-

form the original recorded data from t → ω and x → ξ, and multiply by an ex-

ponentiated value (which may be precalculated and tabulated). This yields the

new wavefield ψ̂(ξ, z+ ∆z, ω). This new data may be again multiplied by this same

exponential, successively advancing the wavefield deeper and deeper into the section.

So far we have made no restriction on the relationship between ω, c and ξ. This

suggests that it is possible that
√

ω2/c2 − ξ2 may take imaginary values. In this case,

the argument of the exponential becomes real and negative. Then propagation of
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the wavefield changes from an effective phase rotation into an exponentially damped

propagation – i.e. evanescant propagation. At the point where
√

ω2/c2 − ξ2 = 0,

we define the evanescent boundary.

This method may be expanded beyond a homogeneous medium into one that

varies in the z direction simply by allowing c to vary in each step of ∆z. In this

case, however, only transmission is modelled. This method ignores all reflections,

as it can only propagate a wavefield in a single direction – i.e. in the positive z

direction, which is traditionally taken to be the downward vertical direction. This

method also ignores transmission coefficients, as no effort is taken to diminish the

amplitude of the transmitted wavefield between each ∆z step.

Split-step Fourier

The constant-velocity-in-x phase shift method may be extended simply but power-

fully by the split step method of Hardin and Tappert (1973). If we are to extend

equation 1.27 to handle a variable velocity in x, we must first allow for c to be a

variable in the result. Therefore, we will inverse-transform the result, and allow for

variation in the velocity so that c = c(x),

ψ(x, z + ∆z, ω) =

∫

R

ei∆z
√

ω2/c(x)2−ξ2

ψ̂(ξ, z, ω)eiξxdξ. (1.28)

This integral is extremely costly to compute, though it will be later discussed in

detail as Generalized Phase-Shift Plus Interpolation (gpspi).

This integral may be simplified considerably if the x dependence can be separated

from the ξ dependence, thus removing it from the integral. To do this, we begin

with the square root term in equation 1.28 as,
√

ω2

c(x)2
− ξ2. (1.29)



23

Identifying slowness S(x) = 1/c(x), and moving the factor ωS(x) out of the square

root,
√

ω2

c(x)2
− ξ2 = ωS(x)

√

1 − ξ2

ω2S(x)2
. (1.30)

Now we treat slowness as a perturbation around a reference slowness, such that

S(x) = S0 + ∆S(x),
√

ω2

c(x)2
− ξ2 = ωS0

√

1 − ξ2

ω2S(x)2
+ ω∆S(x)

√

1 − ξ2

ω2S(x)2
. (1.31)

Now we take the first term in expression 1.31 and multiply ωS0 back into the square

root. Also, we expand the second term in a binomial approximation, so that
√

ω2

c(x)2
− ξ2. ≈

(

ω2S2
0 −

ξ2S2
0

S(x)2

)1/2

+ ω∆S(x)

(

1 − ξ2

2ω2S(x)2

)

. (1.32)

If we assume that the perturbation ∆S(x) ≪ S0, then S2
0 ≈ S(x)2, simplifying 1.32

to
√

ω2

c(x)2
− ξ2. ≈

(

ω2S2
0 − ξ2

)1/2
+ ω∆S(x) − ξ2∆S(x)

2ωS(x)2
. (1.33)

The final term in expression 1.33 may be ignored in the case where horizontal

wavenumber ξ is small, where the perturbation ∆S(x) ≪ S(x), or when ω → ∞.

Equivalently, we may expect this approximation to be poor when we are interested

in low-frequency wavefields, when wavefields are propagating at high horizontal

wavenumbers, or when the perturbations to the reference slowness S0 are very large.

This approximation leaves the square root term in equation 1.28 greatly simpli-

fied:
√

ω2

c(x)2
− ξ2 ≈ ω∆S(x) +

√

ω2

c20
− ξ2, (1.34)

where c0 = 1/S0. This equation is preferable to the original because it explicitly

separates x and ξ dependence into two terms which are summed together, thereby

allowing a simplification of the original integral.
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Inserting this approximation back into equation 1.28,

ψ(x, z + ∆z, ω) ≈ ei∆zω∆S(x)

∫

R

ei∆z
√

ω2/c2
0
−ξ2

ψ̂(ξ, z, ω)eiξxdξ. (1.35)

This approximation results in a dramatic reduction in the cost of computation of the

integral, because all x dependence is moved outside of the integral. If x dependence is

left inside the integral, then we must perform this integral for every point x at which

we would like to evaluate this equation. In practice, this amounts to performing an

inverse Fourier transform for every x. However, with this x dependence outside, only

one inverse Fourier transform must be calculated, followed by simple multiplication

with an exponential for each output point x.

In this formulation, we refer to c0 as the reference velocity. The algorithm

extrapolates the entire wavefield with this one reference velocity, and then applies

an inexpensive spatially-dependent correction at each output x location that simply

requires the calculation of an exponential. This correction is closely related to the

thin lens correction in optics (Hecht, 1997). A diagram showing the idea of the

split-step method applied to phase-shift extrapolation can be seen in Figure 1.5.

When the lateral velocity variation in the medium is small, the split-step correction

offers an inexpensive method to achieve greater fidelity with the base phase-shift

method.

There are many other published methods (e.g. pseudo-screens, phase-screens)

that can be seen as generalizations and improvements upon the split-step method

(see e.g., and references within: de Hoop et al., 2000).

PSPI

Gazdag and Sguazzero (1984) extended the phase-shift method to accommodate

lateral inhomogeneity in the layer by interpolating a final result from a suite of
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Figure 1.5: Phase-shift plus split-step corrections using a reference velocity of
3000m/s. One large step at the reference velocity is taken for the entire width of
the survey, and then smaller corrections are made for the regions that vary around
the reference velocity.

reference wavefields each extrapolated with a distinct well-chosen constant reference

velocity. Typically, the number of reference wavefields calculated is much smaller

than the number of individual unique velocities found in the layer. This extended

method was called pspi, an acronym for Phase-Shift-Plus-Interpolation. A wavefield

can be marched though a highly heterogeneous medium by quantizing the velocity

model in the vertical direction into a suite of laterally heterogeneous layers (i.e., no

vertical variation) and recursively applying the pspi method to step across each one.

Pspi extends the usual phase-shift method by breaking a single step at a reference

velocity c0 into several steps, with the resulting wavefields interpolated together.

Naturally, the split-step correction may also be applied within the pspi frame-

work. Pspi plus split-step correction can yield impressive results even in extremely

complicated media.
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Generalized PSPI

Later Margrave and Ferguson (1999) developed gpspi (generalized phase-shift plus

interpolation), which can be considered the limiting form of pspi when a unique

reference velocity is used at each output point. Although the gpspi algorithm is

inherently unstable (Etgen, 1994; Wapenaar and Grimbergen, 1998; Le Rousseau

and de Hoop, 2001; Ferguson and Margrave, 2006), the instabilities do not become

significant when the extrapolation extends less than several hundred wavelengths,

which is the case in most practical seismic imaging applications. Although gpspi

may be considered a limit of pspi, and so heuristically “derived”, we will develop a

more careful and mathematically enlightening derivation of it here.

Mathematically, 2D wavefield extrapolation from z = 0 to z = ∆z may be

represented in abstract operator notation as

Ψ(x, z = ∆z, ω) =
(

Tα(0:∆z)Ψ
)

(x, z = 0, ω) (1.36)

where ω is temporal frequency, x is the lateral spatial coordinate, z is depth, and

Tα(0:∆z) is the wavefield extrapolation operator for a single step through a laterally

variable medium from depth z = 0 to z = ∆z. Tα(0:∆z) operates at constant ω

along the transverse (x) coordinates of the wavefield. In our approach we construct

Tα as a pseudodifferential operator (Martinez, 2002; Saint Raymond, 1991; Grigis

and Sjöstrand, 1994) where the subscript α is called the operator symbol and is

a function of position, wavenumber, and frequency that describes the physics of

the propagating waves. In principle, it is possible to find exact symbols for highly

complex lateral velocity variations (Fishman et al., 1997) which describe all internal

scattering as well as primary transmitted waves. Here we are concerned with more

approximate expressions.
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Pseudodifferential operators

There are several texts which give an introduction to the formal mathematics of

pseudodifferential operators, including Martinez (2002), Saint Raymond (1991), and

Grigis and Sjöstrand (1994).

Generally, a pseudodifferential (psdo) operator may be represented as

P (x,D)u(x) =
1

2πn

∫

Rn

∫

Rn

ei(x−y)ξP (x, ξ)u(y)dydξ (1.37)

where P (x,D) denotes a pseudodifferential operator on R
n. x is a coordinate, and D

signifies that the operator includes derivatives. y represents the spatial coordinate

variable before the operator’s action. Thus, we will Fourier-transform from y → ξ,

and then inverse Fourier-transform ξ → x. The distinction between x and y is made

to explicitly set the functional dependence of P (x,D) onto the output coordinate x

rather than input coordinate y. Alternatives exist for P such that it may depend

upon y or both x and y, and details of this may be seen in the standard psdo

references.

The square-root Helmholtz symbol

From the Helmholtz equation we may represent the second partial derivative of the

wavefield in depth in psdo form,

∂2

∂z2
Ψ(x, z, ω) =

∫

R

φ(ξ, z, ω)η2(x, ξ)e
iξxdξ, (1.38)

where φ(ξ, z, ω) is the Fourier transformation of the wavefield Ψ(x, z, ω) over lateral

spatial coordinate x→ ξ and η2 =
(

ξ2 − ω2

v(x)2

)

is called the symbol of ∂2/∂z2. Note

that for this operator, we have effectively defined P (x,D) to be the second partial

derivative in z, and we have already Fourier-transformed Ψ into φ, thus implicitly

one of the integrals in equation 1.37 has already been performed.
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The notion of an operator symbol is familiar to most geophysicists in the simpler

context of stationary filters. There the operator is convolution of a signal with a

filter impulse response. The corresponding operator symbol is the multiplier which

is applied in the Fourier domain to achieve the same result as convolution. Elliptic

psdos are the most well studied. Informally, elliptic operators effectively are those

which have symbols that grow quadratically with their arguments. A part of this

includes that they are bounded away from zero except possibly at the origin. We

assume ellipticity to allow the use of the asymptotic operator composition theorem

which is a generalization of the convolution theorem for stationary filters (Saint

Raymond, 1991, pg. 37). We note that η2 is strictly not elliptic as it vanishes when
∣

∣

∣

ω
v(x)

∣

∣

∣
= |ξ|, which corresponds to the evanescent boundary. Thus it is expected that

the use of elliptic psdo theory will lead to formulae that are not generally valid near

the evanescent boundary.

The operator composition theorem gives an asymptotic expansion formula for

the symbol of the psdo resulting from the composition of two other psdos. The

first term of this asymptotic expansion is simply the product of the two original

symbols. Further terms may be considered, though careful treatment of the evanes-

cent boundary must be undertaken (e.g. Stolk, 2004). We may treat the ∂2/∂z2

operator as the result of the composition of ∂/∂z with itself (that is, the derivative

operator is applied to the result of the derivative operator applied to a function),

(

∂

∂z

∂

∂z

)

Ψ(x, z, ω) =

∫

R

φ(ξ, z, ω) (η1#η1) (x, ξ)eiξxdξ, (1.39)

where η1 is the symbol of ∂/∂z and η1#η1 abstractly denotes the composition of

operator symbols underlying the composition of their respective operators. Away

from the evanescent boundary these operators are effectively elliptic. The leading



29

order term of the asymptotic expansion of η1#η1 is the product of the two symbols.

That is, η2 = η1#η1 ∼ (η1)
2. So we conclude

η1 ∼
√
η2 = ±i

√

ω2

v(x)2
− ξ2, |ξ| <

∣

∣

∣

∣

ω

v(x)

∣

∣

∣

∣

, (1.40)

and we have an expression for the psdo,

∂

∂z
Ψ(x, z, ω) ≈

∫

R

φ(ξ, z, ω)
√
η2e

iξxdξ. (1.41)

Choice of the square root branch is motivated by physical circumstances such as the

direction of wavefield propagation or extrapolation. For the remainder, we choose

the positive sign for convenience.

The GPSPI integral

To derive the gpspi integral, we write an expansion for Ψ(z + ∆z) using a Taylor

series,

Ψ(x, z + ∆z, ω) =

∞
∑

n=0

∆zn

(

∂

∂z

)n

Ψ(x, z, ω), (1.42)

where
(

∂
∂z

)n
denotes the n-fold self-composition of ∂/∂z. Encouraged and embold-

ened by equations 1.40 and 1.41, we further assume that

(

∂

∂z

)n

Ψ(x, z, ω) ≈
∫

R

φ(ξ, z, ω)(
√
η2)

neiξxdξ. (1.43)

With equation 1.43 we can treat each term of equation 1.42 as if it were a psdo.

If the order of integration and summation are exchanged we obtain an integrand

which can be summed in closed form to an exponential,

Ψ(x, z + ∆z, ω) ≈
∫

R

φ(ξ, z, ω) exp(∆z
√
η2)e

iξxdξ. (1.44)

Equation 1.44 represents an explicit form of equation 1.36, is known as the locally

homogeneous approximation (Fishman et al., 1997), and is written by Margrave and
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Ferguson (1999) as,

Ψ(x, z = ∆z, ω) ≈ ΨLH(x, z = ∆z, ω) =

∫

R

φ(ξ, z = 0, ω)α (k (x) , ξ, ω, 0 : ∆z) eiξxdξ,

(1.45)

where ξ is the wavenumber dual to x, and the symbol α (k (x) , ξ, ω, 0 : ∆z) is

α (k (x) , ξ, ω, 0 : ∆z) =











e∆zη(x), |ξ| ≤ k(x)

e−|∆zη(x)|, |ξ| > k(x)
(1.46)

where η(x) = i
√

k(x)2 − ξ2 and k(x) = ω
v(x)

.

This representation is called “locally homogeneous” because the form of the sym-

bol is mathematically the same as for the exact homogeneous case (Gazdag, 1978)

except that the actual velocity function v(x) is substituted for the homogeneous

velocity. Margrave and Ferguson (1999) call the algorithm derived using the locally

homogeneous operator generalized phase-shift plus interpolation (gpspi) because the

formula can be derived by eliminating the explicit interpolation in pspi by taking

the limiting form when a unique reference velocity is used for each output point.

There is one minor mathematical detail that must be addressed. Equation 1.40

explicitly excludes the evanescent boundary, i.e. when ω2/v(x)2 = ξ2. This sug-

gests that our approach may be strictly invalid for propagation at the evanescent

boundary. This is not surprising from a physical point of view. Physically, this one-

way extrapolation of wavefields is designed to propagate vertically. The evanescent

boundary, however, is reached in the limit where the propagation travels perpen-

dicular to our design direction, i.e. horizontally. Intuitively we can understand

why this causes a problem: it is nonsensical to calculate the relative vertical phase

shift that is incurred by a monochromatic plane wave component travelling hor-

izontally. As the planewave orientation approaches horizontal, the vertical phase
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shift approaches infinity, and is strictly undefined. Beyond horizontal, however, the

physics of extrapolation transforms from wavelike behaviour into evanescent, ex-

ponentially decaying behaviour as we expect. In practice, it is usually enough to

suppress extrapolation in a small neighbourhood around the evanescent boundary

with an exponential-decay (damping) term.

1.5.3 The FOCI algorithm

The gpspi algorithm describes a full Fourier-domain multiplication. That is, in

order to find the wavefield Ψ(x, z + ∆z, ω), we take the original wavefield at depth

z, Fourier-transform it over time and space to frequency and wavenumber, multiply

by the symbol α, and then inverse-transform back to time and space. Every Fourier

domain multiplication can also be implemented as a convolution in its conjugate

domain.

The foci algorithm described in Margrave et al. (2005) and Margrave et al.

(2006) does exactly this for the space-frequency domain. That is, it uses an equiv-

alent operation that takes place in the ω − x domain as

Ψ(x, z + ∆z, ω) =

∫

R

Ψ(x′, z, ω)W (k(x′), x− x′, z : z + ∆z)dx′ (1.47)

where

W (k(x′), x− x′, z : z + ∆z) =

∫

R

α(k(x′), ξ, ω, z : z + ∆z)eiξ(x−x′)dξ (1.48)

is the nonstationary convolution kernel of the lwkbj operator in the ω− x domain.

1.5.4 Plane wave migration

The previous sections dealt with the extrapolation of wavefield via plane wave de-

composition. That is, we break down the wavefield into individual monochromatic
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plane waves – points in ω− ξ space. Data in this domain is transformed via extrap-

olation and filtering operators. However, in many cases, we may suspect that very

few plane waves would be required to actually image the subsurface.

For example, consider geology consisting mainly of horizontal planar homogenous

layers, as might be found in a sedimentary basin. In this circumstance, if a source

wavefield approximating a single horizontally oriented (vertically travelling) plane

wave was generated for seismic imaging, the recorded wavefield would also be a

horizontally-oriented plane wave. In this case, all relevant geologic information

would be imaged, and the wavefield extrapolation algorithm would be reduced to a

one-dimensional solution of the wave equation, thus drastically reducing the required

computation time.

Unfortunately, practical concerns make this a challenging imaging procedure to

implement. The actual physical generation of a coherent plane wave hundreds to

thousands of meters across is difficult to imagine, though it could perhaps be accom-

plished approximately by the simultaneous detonation of hundreds or thousands of

point sources1. In this insight, however, there is a clue.

We can simulate this synthesis of a plane wave by the combination of individual

shot gathers. That is, the recorded seismic data from all individual point-source

generated shots may be directly summed to approximate what would have been

recorded had all shots been fired simultaneously. Thus, if all seismic data from all

shots is summed, and if a source model is generated based on all of the locations of

all source points used, then profile imaging may proceed as usual. The computation

of the image from this single simulated record is approximately the same cost as the

cost of the computation of the image from a single shot. In a survey of hundreds to

1or the simultaneous operation of hundreds or thousands of controlled vibration sources.
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Figure 1.6: Plane wave migration velocity model. The white region represents a
relative velocity of 4, grey represents 6, and black represents 3.

thousands of shots, we have therefore reduced our computation costs by a factor of

hundreds to thousands. This approach is only valid, obviously, if the data resulting

from the superposition of two individual shot gathers is equivalent to the data

resulting from shooting both individual sources simultaneously. The validity of this

linearity assumption in the wavefields is not proven, but is widely believed to be

true in exploration geophysics.

Of course, an economy is only realized if the single plane wave migration yields a

useful image. Consider a seismic survey over a geologic structure as shown in Figure

1.6. Obviously this is not a realistic velocity model, but the shapes of the structures

will highlight various strengths and weaknesses of the plane wave imaging approach.

This velocity model will not be adequately illuminated entirely by a single hori-
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zontal plane wave travelling vertically. However, if we were to additionally consider

plane waves oriented at angles, we could add more information to the imaging. In

the exhaustive limit in which all orientations were added, we would recover essen-

tially the full quality of the traditional shot-profile method. These variously oriented

plane waves are constructed by summing the shot gathers with a spatially-varying

time delay, guided by the same time-delay method that would be used to construct

an approximate oriented plane wave source from the point sources.

A standard shot-profile image generated by the migration of all 51 shots into

200 receivers is shown in Figure 1.7, which may be compared to Figure 1.8, an

image constructed of only the horizontal plane wave. Shots and receivers were both

equally spaced across the entire width of the velocity model. The horizontal reflector

is imaged in the migration, as are the top and bottom of the circular anomaly.

As there is very little direct energy travelling directly from source to near-vertical

features on the circular and back to receivers, these features are not well imaged in

this migration.

The single horizontal plane wave image shows significant structure but does not

have the definition throughout, nor does it show much detail of the circular feature

in the centre. However, as we add more plane waves, the image develops. Images

derived from three, five, seven, and fifty-one plane waves may be seen in Figures

1.9, 1.10, 1.11, and 1.12 respectively. Although numerical artifacts are present in

the image, the features within the model are clear.

1.5.5 Kirchhoff Migration

An alternative method of migration is known as Kirchhoff migration. Bleistein

et al. (2001) provides a thorough introduction to the theory of this method, and
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Figure 1.7: Full shot profile migration of the simulated survey. The survey consisted
of 51 shots equally spaced across the entire surface shown, with 200 receivers spread
equally across the entire span of the velocity model.
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Figure 1.8: Horizontal plane wave migration

Figure 1.9: Three plane wave migration, orientations at 0◦ and ±31◦.
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Figure 1.10: Five plane wave migration, orientations at 0◦, ±11◦,±31◦.

Figure 1.11: Seven plane wave migration orientations at 0◦, ±22◦, ±11◦, and ±31◦.
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Figure 1.12: Fifty-one plane wave migration, orientations equally spaced between
−31◦ and +31◦.

this will not be reproduced here. However, I will provide a heuristic introduction

to the concepts behind this method by describing a particular implementation of

Kirchhoff migration.

Essentially, the Kirchhoff algorithm requires the transformation of time-recorded

reflection data into an accurate image of the subsurface reflectors. However, this is

trivially true of all imaging algorithms. The Kirchhoff method attempts to accom-

plish this goal directly, rather than by recursive marching.

Given the locations of sources, the locations of receivers, and a model of the

underlying geologic features, it is possible to predict where and when on a e.g. shot

gather the energy from a given reflection event will be located – i.e. at the scatter

point. Figure 1.13 illustrates this idea. Once the appropriate energy is located,

this energy may be scaled according to the appropriate physics model used, and
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then placed at the scatter point location in the image matrix (Figure 1.14). Note

that although Figures 1.13 and 1.14 show the results from the specular raypaths,

all possible raypaths may be used to allow for the accurate imaging of diffracted

events.

With a mental model of this concept in mind, we may be more specific about the

actual calculation details. Given the source location at (xs, 0), a receiver location

(xr, 0), a subsurface location (x0, z0), and a model of the underlying geology, we can

estimate the time taken for the source energy to travel from source location, down

through the earth to a scatterpoint at (x0, z0), and back up to the receiver. The

reflection energy appearing on the receiver’s recording at the appropriate time can

be placed into an image, with this energy at the subsurface “scattering” location. As

with shot-profile imaging schemes, we assume that there is a reflection (or scattering)

at every point in the subsurface. Then we calculate the approximate reflectivity at

each point. This calculated reflectivity may be zero if there is no scattered data

found at the recorded data. Figure 1.14 (b) reveals the top two reflecting layers

placed at their correct location in the subsurface.

Therefore, the first part of Kirchhoff migration requires the computation of the

estimated traveltime from source to scatterpoint, and from scatterpoint to receiver.

This traveltime may be calculated in different ways, including solution of the eikonal

equation and ray tracing. I will not cover ray tracing in this dissertation, but a

thorough treatment may be found in Červený (2001).

Simply taking the data straight from the geophone recording is not sufficient to

estimate reflectivity, however. Shot profile imaging based on downward continua-

tion has an imaging condition to compare the downgoing wavefield to the upgoing

wavefield and generate an estimate of reflectivity, and Kirchhoff migration has a
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(a) Calculating traveltime from source to a subsurface scattering point at a
known location, and back up to receiver.
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(b) Identify the data at the calculated traveltime for the
appropriate recorded trace.

Figure 1.13: Schematic illustration of the principle behind Kirchhoff migration.
(a) shows the calculation of total traveltime from source to scattering point and
back up to receiver, through the initial hypothesized velocity model. (b) shows
the identification of the reflection event at the calculated travetime and on the
appropriate receiver trace.
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(a) Place a scaled version of the data identi-
fied into the image matrix.

(b) Repeat for every subsurface location
within the model.

Figure 1.14: A scaled version of the located energy (see Figure 1.13) is placed at
its appropriate subsurface location in (a), and this process is repeated for every
subsurface location in (b).

similar concept. In the Kirchhoff case, the outgoing wave is assumed to scatter at

the scatterpoint, and the travel back up towards the geophone. In this situation,

extensive physical arguments may be used to relate the amplitude of the recorded

event to the reflection coefficient at the scatterpoint based on the orientation of the

incoming and outgoing waves (rays), the assumed orientation of the reflector, and

other assumed physical characteristics of the subsurface.

As with shot-profile migration, the Kirchhoff method treats the location of a

reflection event separately from the strength of the reflection. The location of the

event loosely corresponds to an accurate measurement of the phase of the recorded

wavefield. The phase of the wavefield follows directly from the accurate estimation

of the traveltime between source and receiver. As long as a reasonable background

model is provided, the location of the reflection events (typically geological layer

boundaries ) can be determined. The amplitude of the reflection event holds infor-

mation about the reflectivity – the stronger the event, the higher the reflectivity.

The information contained within the amplitude of the recorded wavefield is
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historically more difficult to extract reliably than the information within the phase.

For example, it is more robust to identify the arrival time of a particular reflection

event within noisy data than it is to recover the “true” amplitude of this event in the

presence of noise. Additionally, some of the physics involved with the determination

of the reflectivity based on the recorded wavefields are sensitive to small errors –

for example, a small error in traveltime or distance travelled due to an error in the

velocity model will result in an amplitude that is anomalously high or low due to too

much or too little correction for the usual geometric spreading found in wavefield

propagation.

1.6 Inversion and early-arrival waveform tomography

1.6.1 Inverse problems

Inverse problems comprise an important part of applied mathematics. This brief

introduction to inverse problems may be supplemented by other standard texts such

as Aster et al. (2005) and Tarantola (2005).

Inverse problems can be defined in terms of forward problems. Typically, in

physical sciences and deterministic systems in general, a certain measurement based

on the configuration of a system can lead to a set of unique and predictable data. For

example, dropping an unknown massive object through an unknown height under

the influence of a gravitational field in the absence of all other forces will result in

that object experiencing a predictable acceleration. This constant of proportionality

is defined as g, the acceleration of gravity. A mass m experiencing a force will

accelerate according to Newton’s second law, f = ma, where in this case g takes

the role of a.
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The potential energy Eg of a mass suspended at a height h is defined as Eg =

hmg. The kinetic energy K gained by the mass falling through this height is equiv-

alent to the potential energy lost, and can be directly measured using the velocity

v relative to the velocity of the mass before falling. This kinetic energy is defined

as K = 1/2mv2. Since the potential energy is transformed to kinetic energy, the

values are equal, that is Eg (before falling) equals K (after falling). Equivalently,

mgh = 1/2mv2, or v =
√

2gh.

In this case, the forward problem requires taking the physical parameters of the

system, m, g, and h, and determining the resulting falling velocity v. We note that

actual knowledge of m is not necessary, but nonetheless it is a physical parameter

of the initial system. The inverse problem for this system is the inversion of this

process: given the resulting falling velocity v, can we reconstruct some or all of the

initial physical parameters of the system?

Given that v =
√

2gh, we can simply invert this equation to solve for the

normally-independent variables,

gh =
v2

2
. (1.49)

Equation 1.49 can be easily solved if we add some additional constraints – namely,

that this observation was taken in a place of known gravitational constant g, for

example, the surface of the earth. If we add this constraint, this equation becomes

h =
v2

2g
. (1.50)

Now we have a simple equation that can directly tell us an unknown physical pa-

rameter about the original system, h, simply by measuring the falling velocity v of

the mass after it has accelerated within the assumed gravitational field g. However,

there is one physical parameter in the initial system that is beyond our reach: the
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mass of the object, m. No measurement of the falling velocity can ever reveal this

mass, no matter how careful. Conversely, this may also be taken from the point of

view that, no matter what the original mass of the object, we can uniquely determine

the height through which it fell simply by measuring its falling velocity.

Modification of the original scenario can reveal more interesting information,

however. Consider that, instead of measuring velocity, we somehow directly measure

the kinetic energy after falling. Perhaps the falling mass slows by compressing an

ideal spring, compressing the spring by a distance x. Imagine that we arrange the

situation so that the height of falling is independent from the distance of compression

of the spring: e.g. the mass is a sphere, and it falls into an ideal frictionless tube with

a 90◦ bend that redirects the ball’s velocity from a vertical drop into a horizontal

direction without losses.

If the maximal compression of the spring is measured, then the kinetic energy

is transformed into potential energy of the spring, Es. Given the spring constant k,

the potential energy of a spring is Es = 1/2kx2. This must equal the initial potential

gravitational energy, Eg. Therefore,

1/2kx2 = mgh. (1.51)

If we rearrange this equation to put measurements on the left hand side, and system

configuration and known variables on the right hand side,

x =

√

2mgh

k
. (1.52)

Again, the forward problem is entirely deterministic and easily solved. Solution of

the inverse problem, however, is significantly more challenging.

The inverse problem for this system would be to determine m and h from mea-

surement of the spring compression x, including knowledge of the spring constant
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k and an assumption about the gravitational constant g. This yields an inverse

problem of the form,

mh =
kx2

2g
. (1.53)

Now we have an interesting problem: mass and height are both unknown. The

evaluation of the right hand side of Equation 1.53 tells us the product of m and

h, but it cannot uniquely determine either m or h. No measurement of the spring

compression (or indeed, any other direct measurement of the falling kinetic energy)

can yield a unique m or h for the original system.

Now let us consider the combination of both approaches: measurement of falling

distance, and direct measurement of kinetic energy. In this case, first we can directly

obtain the falling distance via Equation 1.50. Now equation 1.53 becomes h = kx2

2gm
,

and the height through which the mass has fallen is easily and uniquely determined.

General inverse problems

The unique determination of mass and falling distance is one simple example of a

general class of mathematical inverse problems. Generally, an inverse problem is to

find m given the equation,

d = G(m), (1.54)

where d is “data” (or measurements as in the previous example), m is a “model”,

(or system configuration and known parameters as in the previous example), and G

is an operator that describes some general physical process or explicit relationship

that transforms the model into the data under some observation process. In the

falling mass scenario, data includes the falling velocity and kinetic energy of the

mass. The model includes the gravitational constant. The operator would be the

physics describing gravitational force, acceleration of a mass due to a force, and the
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compression of a spring.

For another example, we may consider wave propagation. In this new scenario,

the model m may consist of the underlying wavespeed of the medium through which

the wave is propagating and an original source of energy, the data d would be the

resulting propagated wavefield after a certain time, and G would be the usual wave

equation operator acting upon the original source for the duration of the specified

time throughout the medium specified by the wavespeed.

Inverse problems are difficult for several reasons. Aster et al. (2005) cites several

essential issues that must be carefully considered when solving any inverse problem.

These include existence, uniqueness, and stability. There is also a challenge of

practical computability.

For a solution to exist, this requires a model that exactly reproduces the ob-

served data when transformed by the physics described by G. Strictly speaking,

existence is almost never entirely satisfied in real inverse problems. There are sev-

eral reasons for this. For example, the data almost always includes some kind of

noise that is not accounted for, or the physics is almost always an approximation

of the real world situation under which the data was collected (cf. §1.3, in which

a scalar wave equation is derived under the assumption that there is actually no

finite displacement of the material. This is clearly a non-physical assumption, and

therefore any operator G based on this physics is an approximation to reality).

For a solution to be unique, the model must be the only model that could

possibly reproduce the observed data when the operator G is applied. In the case

of the earlier example involving the falling mass, we saw a clear example of non-

unique solutions when only the falling velocity of the mass was observed. In this

case, it was possible to reproduce the data (i.e. the falling velocity) by dropping
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any mass m through a height h. In this case, the m was not unique. In the case

where we directly measured the kinetic energy K of the falling mass, the product

mh was the result, leaving both mass and height without uniqueness. However, the

combination of both direct kinetic energy measurement and falling velocity led to a

unique constraint on both h and m.

For a solution to be stable, a small change in the data should lead to only a

“small” change in the resulting model. If we consider a version of equation 1.54

that includes a true model, mtrue, a small amount of noise, µ, an imaginary data

measurement without any noise or error, dideal, and a “real world” measurement

that includes noise drw, then

drw = G(mtrue) + µ (1.55)

= dideal + µ (1.56)

= G(mest), (1.57)

where mest is the model estimated from the noisy data. Stability requires that

when µ is small, mest −mtrue should also be small. In the case of our falling mass

example, this is clearly a stable solution. If we add a small amount of error to the

falling velocity or kinetic energy measured, the resulting mass and/or heights change

by a finite amount.

A naturally unstable problem, however, is the process of seismic deconvolution.

This procedure is illustrated in Figures 1.15a through 1.15f. Briefly, a seemingly

innocuous signal (Figure 1.15a) is convolved with the filter shown in Figure 1.15b.

When this result is deconvolved with the original signal, the exact filter is recovered

(Figure 1.15f). However, when small random noise is added to the filtered signal, as

in Figure 1.15d, the recovered signal (Figure 1.15e) is completely unrecognizable.
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(a) input signal (b) applied filter

(c) filtered signal (d) filtered signal with random noise added

Figure 1.15: (Page 1 of 2) Deconvolution is an unstable process. The input signal in
(a) is convolved with the filter in (b). This results in the signal shown in (c). A very
small amount of random noise is added to this result, giving the signal shown in
(d). This noisy signal is then deconvolved with signal (a), resulting in the (unstable)
result in (e). Ideally it would result in a signal approximately like that in (f), which
is the convolved signal shown in (c) deconvolved with (a).
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(e) recovered filter from noisy signal (f) real inverse filter from ideal signal

Figure 1.15: (Page 2 of 2) Deconvolution is an unstable process. The input signal in
(a) is convolved with the filter in (b). This results in the signal shown in (c). A very
small amount of random noise is added to this result, giving the signal shown in
(d). This noisy signal is then deconvolved with signal (a), resulting in the (unstable)
result in (e). Ideally it would result in a signal approximately like that in (f), which
is the convolved signal shown in (c) deconvolved with (a).
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For a solution to be practically computable, a numerical implementation

of the solution must be computable within practical constraints such as time and

computing resources. This is necessarily a poorly defined concept, and changes based

on context and with computational technologies. However, in many cases in real

world applications of inverse problem solutions, it is extremely important. Many

theoretical solutions to inverse problems elegantly deal with existence, uniqueness,

and stability challenges, but are infeasible to compute.

1.6.2 Early arrival waveform tomography

The Early Arrival Waveform Tomography (eawt) method is an algorithm for treat-

ing seismic imaging as an inverse problem. The data collected d is composed of

refracted (as opposed to reflected) seismic waves that have travelled from the source

down into the subsurface and refracted back up towards the surface (Figure 1.16).

The model is a model of the underlying subsurface wavespeed, describing the geol-

ogy over which the survey is undertaken. The operator G is effectively a simplified

wave equation.

The initial work in this area was performed by Lailly (1983) and Tarantola

(1984); a brief introduction to the history of the method is given by Pratt (1999).

A full description of the core method is described in Pratt (1999), and an exam-

ple of its application to crosshole data is given in the continuation of this paper,

(Pratt and Shipp, 1999). In this introduction, I will briefly outline the method gen-

erally and heuristically, but for a mathematically thorough treatment of an example

implementation, please consult these two papers.
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Figure 1.16: Seismic acquisition diagram showing three refracted arrivals travel-
ling from source to receiver. Wave energy travels with wavefronts perpendicular to
the black arrows, from the source down through the earth refracting at each layer
interface, eventually being turned back up toward the receiver.
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The inversion algorithm in eawt

Here I will introduce the basic ideas supporting the process of inversion as applied

to eawt. For a more thorough introduction to the fundamental concepts, see Aster

et al. (2005). This discussion is heavily inspired by Pratt (2008).

Consider the (ideal) recorded data d = G(mtrue), and synthetic data u = G(mest).

Ideally, we hope to improve mest so that the difference between u and d is reduced

to a minimum. Inverse theory often introduces a misfit function, E(m) = 1
2
δdT δd,

where d is a vector representation of d. Minimization of E is a least-squares solution

for the minimization of δdi = ui − di, which are known as the residuals. T signifies

a conjugate transpose. In this context, then, solving an inverse problem amounts to

finding a minimal E(m).

As with all inverse problems, it is conceptually possible to test every m and

therefore exhaustively map the function E(m). “Exhaustive” is the correct word

for this, however, and for any but the most trivial problem this is practically impos-

sible. Another approach would be to sample E(m) sparsely throughout its domain

– if a randomized approach is used to select points, this would correspond to a

Monte Carlo method. Alternatively, we may attempt to search for the minimum

“intelligently”. We may consider taking the value of E(m) at a given location and

then use other local information, such as derivatives, to find a likely direction in

which to travel where we would expect to find a minimum. If we are minimizing

this misfit, then perhaps we can simply drive “down hill” towards this minimum!

This approach naturally suggests an abstract Taylor series expansion of the mis-

fit, denoting transpose as t,

E(m + δm) = E(m) + δmt∇mE(m) +
1

2
δmtHδm + . . . (1.58)
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where ∇m is the gradient of the misfit with respect to m,

(∇mE)i = ∂mi
E, (1.59)

and H is the Hessian – a matrix of second derivatives,

Hij =
∂2E

∂mi∂mj
. (1.60)

As with any minimization problem, to solve this we simply differentiate E(m +

δm) with respect to model perturbations δm, and then set the result equal to zero.

This results in a standard expression,

Hδm = −∇mE(m). (1.61)

Since δm is the model perturbation that would modify the current approximate

model into the model for the E approximated by the Taylor series, it is essentially

the solution we are looking for. Obviously, the solution to this equation is

δm = −H−1∇E. (1.62)

By simple application of the inverted Hessian, the solution is complete. Unfortu-

nately, actual inversion of the Hessian is completely impractical in any but the most

trivial problem. The Hessian contains one column and one row for each parameter

in the model. If our problem is the inversion of a recorded wavefield propagating

through a velocity model with, say, 100 x 100 grid points, then this inversion would

correspond to inverting the Hessian of size 10 000 x 10 000. This is numerically

challenging, even if the Hessian is actually invertible mathematically. Furthermore,

even this grid size is laughably inadequate to treat any realistic modern exploration

seismic problem.
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This Hessian inversion method is frequently referred to as Newton’s method, and

in its simpler forms it sees frequent application in many solvers (e.g. Burden and

Faires, 2004). In general, this method may be understood by recognizing that it is

approximating the E function with a quadratic function (during the initial Taylor

series expansion). Then it solves for the minimum of this approximating polynomial.

In the case where the original function E is quadratic itself, then this method will

converge in exactly one step.

While Newton’s method is impractical for large models, we still may gain insight

from it, as we retreat into our original desire for a method that simply “drives

downhill”. In fact, we can use this concept directly in an iterative method,

mk = mk−1 − αk−1∇Ek−1. (1.63)

That is, we update the model by driving into the direction of the gradient2, and we

take a step size α. By repeating this n times, we can approach the solution as long

as the shape of the misfit function is convex.

The key, then, is to calculate both ∇mE and α efficiently. Accomplishing these

goals is strongly dependent on the exact nature of the inverse problem. For the eawt

problem, Pratt (2008) explains that the calculation of ∇mE amounts to three steps:

1. Time-reverse the partial derivatives of the wavefield – which are closely related

to diffracted wavefields.

2. Convolve these diffractions with residuals.

3. Sum these results over all receivers.

2or more correctly, exactly against the gradient, as the gradient points in the direction of
greatest increase.
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The α term may be calculated in several different ways. It would be possible to

execute a line-search strategy to find an approximate α by simply testing several

values. Pratt (2008) suggests the use of an estimate,

α =
|∇Em|2

|J∇mE|2
, (1.64)

where Jij = ∂ui

∂mj
is the Fréchet derivative matrix, and each column in J contains a

partial derivative wavefield. These partial derivative wavefields may be thought of

as diffracted wavefields, representing changes in the wavefield due to an infinitesimal

perturbation of the underlying velocity model.

Pratt (2008) also describes the actual implementation of the gradient calculation

as consisting of two main steps

1. The data residuals are used as effective sources into the forward-modelling

code, using the current best velocity model. These residuals correspond to

those parts of the wavefield which exist in the actual recorded data, but do not

exist in the forward-modelled data using the velocity model. In this manner,

the residuals will naturally back-propagate to the location of the differences

in the velocity model which cause scattering in the “true” model, but which

are not present in the estimated model.

2. This back-propagated wavefield is multiplied (in the Fourier domain, so cross-

correlated in the time-domain) by virtual sources at each grid point.

These virtual sources arise by local perturbations of the velocity model at a given

point. If we think of the forward-modelled wavefield travelling through the current

estimated velocity model as some kind of “reference” wavefield, then by introducing

a small perturbation in the model at some point, this point will act like a new point
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scatterer and generate a perturbation in the wavefield that was not in the original

“reference” wavefield. By comparison of these forward-propagated virtual sources

with the backward-propagated residual wavefields, we migrate the residuals.

This new “imaged” perturbation of the wavefield gives the location and “direc-

tion”, and even magnitude of the mismatch between the true and estimated velocity

models. We may imagine that the amplitude of this velocity anomaly image, which

bears some resemblence to a reflection coefficient as explained in §1.5.1, may be used

to estimate an approximate α with an analagous concept of an imaging condition.

In Chapter 5, I introduce a novel application of the eawt method to time-lapse

seismic monitoring. Although this method was originally developed to invert for

(static) velocity models to improve or even replace seismic migration, in my research

I have shown that it may also be useful in highlighting time-evolving changes in the

structure of the subsurface relative to some initial baseline survey. This is a use

of low-frequency information in a field where it is common for industry to attempt

to use mainly high-frequency information in an effort to delineate a small spatial

anomaly.

1.7 Chapter summary

Within this chapter is an introduction to the main concepts underlying the aspects

of modern seismic imaging that I have chosen to address in my research. Although

many topics are introduced heuristically and approximately, an understanding at

this level is all that is necessary to fully appreciate the contributions that are detailed

in the following chapters.

The underlying theme of my dissertation could be summarized as, “what as-
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sumptions and simplifications are we making in order to solve these problems, and

are they justified? Could we perhaps do a little better in some cases, in order to

save a little more computation time, or perhaps get a more accurate result with the

same computation time?”

Frequently, in terms of the wave equation, the fundamental approximation that

is most commonly made is the high-frequency approximation. Equivalently, we often

assume that the waves travelling through a medium are of a significantly shorter

wavelength than the scale of variation of the medium. In seismic imaging, this

is unfortunately very far from the case. In some cases, I have chosen to address

this broad gap empirically and practically, as in Chapters 2 and 3. In another

case, I have approached the issue from a more analytic and theoretical direction, by

adapting advanced mathematical theory into a working imaging scheme, as detailed

in Chapter 4. In Chapter 5, I investigate a new and unintended realm of application

of an existing method that is explicitly designed for low-frequency validity. Finally,

in Chapters 6 and 7 I develop improvements to a fundamental imaging algorithm

that has a stronger validity in lower-frequency solutions (gpspi), and so it is more

practical and useful for seismic imaging.
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Chapter 2

Applying the eikonal equation to lower frequencies

2.1 Introduction

The eikonal equation is derived as a high-frequency asymptotic solution to a scalar

wave equation in §1.4.2. This eikonal equation is frequently used in seismic imaging,

with application to Kirchhoff migration as described in §1.5.5. The eikonal equation

is used to calculate first-arrival traveltimes between any two points within a velocity

model. A typical application of this equation to Kirchhoff migration would be to

use it to calculate traveltimes from a source or geophone location to all points

in the subsurface. Then for the stage in Kirchhoff migration in which the total

traveltime from source to scattering point and then back up to receiver is required,

it is simply a matter of checking the solutions from the source location eikonal

solution to the scatterpoint, and then from the geophone location eikonal solution

to the scatterpoint, and summing. This satisfies the traveltime requirement of the

Kirchhoff algorithm.

The eikonal equation is a useful approximation to solving traveltimes econom-

ically, especially when implemented with a high-speed method e.g. fast marching

(Sethian and Popovici, 1999). However, its high-frequency nature fundamentally

conflicts with the reality of seismic exploration. P-wave propagation speeds within

competent solid rock are typically at least 2000m/s (more often 3000-5000m/s),

while exploration-target bedding thicknesses are often tens of meters thick at most.

A single wavelength of 100m in 2000m/s rock oscillates at 20Hz. The “high-
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frequency” assumption, however, effectively asserts that the wavelength of prop-

agating waves must be much smaller than the characteristic size of variability in the

medium. Therefore, to be valid, we must consider only frequencies “much higher”

than 20 Hz. Even if we consider wavelengths that are only one fifth of the char-

acteristic length scale of the medium, this restricts us to using only the portion of

the signal above 100Hz when we are exploring in 100m-thick bedding with 2000m/s

speed of propagation – all generous and almost unrealistic relaxations of our restric-

tions1.

Clearly, “high-frequency” does not apply to the vast majority of seismic explo-

ration data. Nevertheless, these approximations are extremely useful, and are much

simpler to calculate than the full-frequency versions. For this reason, we are moti-

vated to find methods that take advantage of the performance of the high-frequency

approximations, while retaining more of the low-frequency validity of the full ex-

pression.

2.1.1 The hypereikonal equation

One classical attempt to extend the eikonal equation concept to lower frequencies

results in the hypereikonal equation, also known as the frequency-dependent eikonal

equation.

We will define reference slowness S0(~x) such that

S0(~x)
2 =

1

v(~x)2
= |∇φ(~x)|2 . (2.1)

1Seismic data rarely contains significant information higher than 100 Hz. A typical useful
band of signal will be between perhaps 4 Hz and 80 Hz, though this varies widely depending on
acquisition particulars.
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By inserting this into the full-dimensional version of equation 1.19,

(

(∂jφ)2 − 1

v2

)

− i

ω

(

2

A
∂jA∂jφ+ ∂2

jφ

)

− 1

ω2A
∂2

jA = 0,

simplifying, and considering only the real part, we arrive at the hypereikonal or

frequency-dependent eikonal equation,

∣

∣

∣
∇φ̃(~x, ω)

∣

∣

∣

2

= S(~x, ω)2 = S0(~x)
2 +

1

ω2

∇2A(~x, ω)

A(~x, ω)
. (2.2)

This reference slowness S0(~x) is the “natural” slowness model of the medium, while

this new slowness S(~x, ω) is a frequency-dependent effective slowness. We have also

extended φ as defined in equation 1.16 to depend upon both ω and ~x.

This hypereikonal equation allows for the solution of frequency-dependent trav-

eltimes through a medium. Reference slowness S0 is used to find traveltimes for the

limiting case ω → ∞, while the frequency-dependent slownesses give traveltimes for

finite frequencies. Note that the only assumption made in this hypereikonal equa-

tion is that harmonic solutions of the form given in equation 1.16 may be found –

this is not another high frequency approximation. However, the hypereikonal equa-

tion requires the simultaneous solution for A, which contributes to the complexity

of solving the entire equation.

The physical meaning of this equation is interesting to ponder. Biondi (1997)

has shown that it is feasible to solve numerically for these frequency-dependent

slownesses, with some moderate linearization in the equation. The solutions reveal

a sort of frequency-dependent smoothing, with heavy smoothing at low frequen-

cies, and very little smoothing at high frequencies. Unfortunately, these solutions

are extremely complicated to calculate accurately and in a stable fashion. There is,

however, one important conclusion: even this simple approach to a scalar wave equa-
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tion in an idealized acoustic medium reveals a sort of intrinsic chromatic dispersion

that is rarely considered.

2.1.2 The physics of the eikonal equation

Physically, the (high-frequency) eikonal equation may be thought of as defining an

outer envelope which would approximately contain all rays traced from the start time

t = 0 to some later travel time t0. Consider a medium consisting of a homogeneous

background velocity of 2000 m/s but with random fluctuations of a nearly-normal

distribution with a standard deviation of 500 m/s but with velocities outside of 2σ

set to 2σ. In Figure 2.1, ray tracing through this medium is shown, along with the

eikonal solution for the same propagation time. Ray tracing was accomplished with

the crewes raytracing tools, which are implemented in matlab (CREWES, 2010).

Eikonal solutions were developed in matlab following the algorithm presented by

Sethian and Popovici (1999). Note how very few of the rays actually approach the

traveltime given by the eikonal solution. If this medium is lightly smoothed, the

rays much more readily agree with the eikonal solution in this smoothed medium,

as in Figure 2.2. With heavier smoothing, the match is even better (Figure 2.3).

This, however, raises the question: is this better physics?

Finite difference methods were used to benchmark the solutions. The code used

for these solutions is a part of the crewes Matlab Library (CREWES, 2010). In a

velocity model with extreme random variation, a finite-difference solution as shown

in Figure 2.4 does reveal a wavefront in the expected location. However, a significant

portion of the energy of the wavefield is represented by the multiply-scattered waves

inside the wavefront. Although the wavefront location is distinct, it is not necessar-

ily where the vast majority of the energy may always be found. Physically, then,
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Figure 2.1: Ray tracing (in red) through a 2000m/s, σ = 500m/s medium. The
eikonal solution envelope for the same propagation time is overlaid in blue.
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Figure 2.2: Ray tracing (in red) through a 2000m/s, σ = 500m/s medium with light
smoothing. The eikonal solution envelope for the same propagation time is overlaid
in blue.
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Figure 2.3: Ray tracing (in red) through a 2000m/s, σ = 500m/s medium with
heavy smoothing. The eikonal solution envelope for the same propagation time is
overlaid in blue.
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Figure 2.4: Finite differences solution of a 2000m/s, σ = 200m/smedium. A distinct
wavefront is visible.
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perhaps the ray-tracing in Figure 2.1 is an appropriate approximation of the sort

of propagation seen in Figure 2.4 in that the ends of the ray paths proportionally

represent the location of the energy of the propagation. Since the raypaths do not

entirely terminate on the eikonal solution, we may infer that the bulk of the energy

of the wavefield is still confined to a much smaller radius than the theoretical fastest

outgoing wavefront represented by the eikonal solution.

In terms of seismic migration, however, this question is not always so impor-

tant. Velocity models actually used for ray-tracing are not usually contaminated

with high-amplitude random variations, so we would expect that ray-tracing-derived

traveltimes and solutions to the eikonal equation would be a closer match – at least

in the case of simple out-going wavefields. Therefore, we will treat the eikonal so-

lution as as limiting case of ray-tracing, valid when ray-tracing through media free

from extensive local variability, and for this reason we will now only consider velocity

models without a high degree of local variability throughout.

2.2 Frequency-dependent smoothing of a banded velocity model

In chapter 3, frequency-dependent smoothing of the velocity model is shown to be

effective in improving imaging via gpspi (Hogan and Margrave, 2006). Here we will

investigate whether or not the same is true for eikonal-equation based approaches

to solution of the wave equation.

To test this, we generated a velocity model consisting of horizontal stripes of al-

ternating high-velocity/low-velocity bands (Figure 2.5). This original velocity model

was smoothed several times with Gaussian smoothers, with σ varying between 0 and

25m. A representation of these variously-smoothed velocity models is shown in Fig-
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Figure 2.5: Striped velocity model, velocity in m/s.

ure 2.6.

A finite-difference solution of the wave equation over this domain with a high-

frequency (60 Hz dominant minimum-phase) source at (500,500) was calculated to a

final time of t = 0.136s, and a solution of the eikonal equation over the same domain

was also calculated. These solutions may be seen in Figure 2.7. The position of the

outgoing wavefront may be seen to agree well with the eikonal contour.

Next, lower-frequency finite-difference wavefields were calculated over the same

unsmoothed medium. At the extreme low-frequency end (2 Hz dominant minimum

phase source), the outermost envelope of the wavefield coincides best with an eikonal

solution over the original velocity model smoothed by convolving with a Gaussian

smoother with σ=25m, i.e. a smoothing length of 25m. For comparison, Figure 2.9

shows eikonal solutions for both unsmoothed and smoothed velocity models overlaid

on the finite-difference solution with a 2 Hz dominant source. At approximately
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Figure 2.6: Vertical sections of the velocity models used for eikonal solutions. On
the left is the unsmoothed velocity model, on the right is the most heavily smoothed
model.
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Figure 2.7: 60 Hz dominant source in unsmoothed velocity model, with eikonal
solution to the unsmoothed model overlaid in blue.
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Figure 2.8: 2 Hz dominant source, with eikonal solution to the 25 m smoothing
length model overlaid in blue.
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Figure 2.9: 2 Hz dominant source, 25 m smoothing length eikonal solution in white,
unsmoothed velocity model eikonal solution in blue.

(500, 800) on Figure 2.9, it may be seen that the smoothed-model eikonal contour

extends farther down in the section than the amplitude of the original wavefield.

This may be explained by considering the velocity model in Figure 2.6. The 25m

smoother smears the high-velocity band between 800m and 900m depth up into

the low-velocity band between 700m and 800m. Thus the eikonal contour locally

out-paces the actual velocity of propagation in this direction. This is purely a

local effect, and is corrected upon farther propagation. Similar smoothed-model

eikonal solutions are overlaid on finite-difference solutions for a 5 Hz dominant

source (Figure 2.10), 10 Hz dominant source (Figure 2.11), 20 Hz dominant source

(Figure 2.12), and a 40 Hz dominant source (Figure 2.13).



70

Figure 2.10: 5 Hz dominant source, eikonal solution to 20 m smoothing length model
overlaid in blue.
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Figure 2.11: 10 Hz dominant source, eikonal solution to 15 m smoothing length
model overlaid in blue.
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Figure 2.12: 20 Hz dominant source, eikonal solution to 10 m smoothing length
model overlaid in blue.
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Figure 2.13: 40 Hz dominant source, eikonal solution to 5 m smoothing length model
overlaid in blue.
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Figure 2.14: Smoothing length as a function of dominant frequency.

Overall results are summarized in Figure 2.14. At high frequency, the eikonal

solutions match the finite difference wavefield well. At lower frequencies, smoothing

lengths up to σ =25m become necessary.

2.3 Effects of smoothing on ray-tracing

Figure 2.15 shows the result of tracing rays through the unsmoothed medium. Many

of the rays terminate on the eikonal contour as expected. However, several rays

appear to reflect and terminate inside the contour. This highlights one major differ-

ence between eikonal-based modelling and ray-tracing modelling: ray-tracing allows

for more natural inclusion of the modelling of multiple reflections, while standard

eikonal solutions are insensitive to multiple reflections2. Whether or not either is a

2though this can depend on the actual algorithm employed to solve the eikonal equation.
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Figure 2.15: Ray-tracing (red) through the unsmoothed velocity model), with
eikonal contour (black).

benefit or hindrance is dependent on the goals of the modelling. When the velocity

model is smoothed, ray-tracing and eikonal solutions converge: that is, more rays

terminate exactly at the eikonal contour as in Figure 2.16.

In Figure 2.17, the 60 Hz source wavefield is shown with rays traced. Here it is

clear that the reflected rays are following the high-amplitude reflected event in the

full wavefield. By contrast, in Figure 2.18, the smoothed velocity model allows the

raypaths to accurately track the envelope of the low-frequency wavefield.

2.4 Chapter summary

Frequency-dependent smoothing of a velocity model can lead to eikonal and ray-

tracing solutions which match the propagation envelope of a full wavefield better at

low frequencies, where these approximations are not strictly valid. At these lower
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Figure 2.16: Ray-tracing (red) through the 25m smoothed velocity model, with
eikonal contour (black).
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Figure 2.17: Ray-tracing (red) through the unsmoothed velocity model, with 60 Hz
dominant finite difference wavefield (grayscale).
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Figure 2.18: Ray-tracing (red) through the 25m smoothed velocity model, with 2
Hz dominant finite difference wavefield (grayscale).

frequencies, the smoothed velocity model also leads to ray-tracing solutions which

converge to give the same kinematics as the eikonal solutions. These solutions are

very simply calculated, and do not require any new code development. Simply

inserting the appropriately-smoothed velocity model into existing eikonal solvers

will yield immediately useful results.
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Chapter 3

Frequency-dependent velocity model smoothing in GPSPI

3.1 Introduction

The gpspi algorithm (Margrave and Ferguson, 1999) provides a highly-accurate

wavefield extrapolation method for use in pre-stack migration seismic imaging. This

algorithm depends upon a numerical implementation of the “infinitesimal extrapo-

lator”,

Ψ(x, z + ∆z, ω) = Tα(z:z+∆z)Ψ(x, z, ω)

≈
∫

R

φ(ξ, z, ω)α(x, ξ, ω, z : z + ∆z)eiξxdξ (3.1)

where

α (x, ξ, ω, z : z + ∆z) =











exp
(

i∆z
√

ω2

v(x)2
− ξ2

)

, |ξ| ≤ |ω|
v(x)

exp
(

−
∣

∣

∣
∆z
√

ω2

v(x)2
− ξ2

∣

∣

∣

)

, |ξ| > |ω|
v(x)

. (3.2)

Here Ψ represents the wavefield as a function of horizontal position x, vertical depth

z, depth-step ∆z, and temporal frequency ω. T is the infinitesimal extrapolation

operator characterized by symbol α, where α is a function of x, horizontal wavenum-

ber ξ, ω, and z. φ is the wavefield Ψ after Fourier-transforming from x to ξ. In this

case, T extrapolates the wavefield from depth z to depth z + ∆z.

Since this algorithm is intimately connected to seismic imaging, a robust, effi-

cient, and accurate method is key to successful application. In this chapter, the

high-frequency nature of the locally-homogeneous approximation to the square-root

Helmholtz operator symbol is investigated. Here, we use knowledge of the overall
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evolution of the true full (not approximate) operator symbol to guide an estimation

process that supports the use of frequency-dependent smoothing of the underlying

velocity model to design gpspi operator symbols.

3.2 The square-root Helmholtz operator symbol

Fishman (2002) identifies the term
√

ω2/v(x)2 − ξ2 in equation 1.46 as the limit-

ing form of a high-frequency approximation to the square-root Helmholtz operator

symbol (i.e. an “infinite-frequency symbol”). Figure 3.1 shows the real part of the

infinite-frequency symbol as used in gpspi. This symbol is calculated for a velocity

model consisting of three blocks of constant velocity. On the left, velocity v1 is rela-

tively high; in the middle, velocity v2 is relatively low; and on the right, velocity v3

is moderate. Figure 3.2 shows an ensemble of exact square-root Helmholtz operator

symbols for high, moderate, low, and zero frequency, also due to Fishman (2002).

These symbols have been rotated to show the detail within the symbol. At high fre-

quency, the symbol appears to be quite similar to the infinite-frequency symbol. The

added ripple features capture the physics of the trapped horizontal modes – effec-

tively the multiple horizontal reflections. The symbol at moderate frequency retains

many of these features, but appears somewhat smoothed compared to the higher

frequency symbol. The low-frequency symbol appears heavily smoothed, and the

zero-frequency symbol shows only a single effective velocity. In an intuitive sense,

these symbols are demonstrating that the various frequencies “see” different media.

The highest frequencies are affected by all scales of structure within the velocity

model, while the lowest frequencies see only the largest-scale overall velocity – any

finite velocity changes are lost and only the background average velocity appears.
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Figure 3.1: Real part of the infinite-frequency square-root Helmholtz operator sym-
bol for a velocity model with blocks of constant velocity. Adapted from Fishman
(2002). This is the symbol as used in gpspi.
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Figure 3.2: Ensemble of real parts of the square-root Helmholtz operator symbols
for a velocity model with blocks of constant velocity. Adapted from Fishman (2002).

3.3 Approximating symbols

Although the symbol calculations given by Fishman (2002) are, at this point, far too

computationally expensive for practical migration purposes, approximations may be

considered. Specifically, we choose to preserve the apparent smoothing displayed by

the symbols at various frequencies. Figure 3.3 again displays a three-block velocity

model symbol at infinite frequency. Figure 3.4 shows this same symbol calculated

with a velocity model that is smoothed with a smoothing length determined by the

wavelength of low-frequency waves. The optimal method for smoothing remains an

open problem, and at this point smoothing is done purely empirically.
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Figure 3.3: Real part of the infinite-frequency symbol for the three-block velocity
model.
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Figure 3.4: Real part of the low-frequency symbol approximation (via smoothing of
the velocity model) for the three-block velocity model.
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Figure 3.5: The Marmousi velocity model. Velocities range between approximately
1500m/s and 5500m/s.

3.4 Testing

Testing of smoothed vs. unsmoothed symbols was performed using the foci (Mar-

grave et al., 2006) method of gpspi migration. The foci code used was the reference

implementation developed by crewes using matlab. The smoothing was accom-

plished using the spatial-resampling portion of the foci method. Although this

spatial resampling was originally developed to address numerical stability and effi-

ciency concerns, it effectively does perform a frequency-dependent smoothing of the

velocity model. The smoothing method within spatial resampling is a simple spatial

averaging. Migration tests were performed using synthetic data from the Marmousi

model (Figure 3.5).

The foci spatial resampling typically decomposes the data into on the order

of 10 frequency bands, ranging from low frequency (≈ 4 − 6Hz) to high frequency

(≈ 42−60Hz). We may recognize that the low-frequency components are travelling

with a much longer wavelength, and so require far fewer effective geophone traces

to adequately sample them than the higher frequencies. Therefore, significant com-

putation time may be saved since only a fraction of the original number of traces
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in the chunk must be considered in the extrapolation. However, by down-sampling

the original traces, we also must anti-alias filter and then downsample the underly-

ing velocity model which is used for extrapolation in these lower-frequency bands.

This filtering and downsampling effects a smoothing with a spatial averaging that

is characteristic for each frequency band.

Migrations were run both with and without spatial resampling. As the foci

algorithm requires spatial resampling for stability and efficiency, special care was

taken to ensure that these features were preserved in the unsmoothed case. Specifi-

cally, the image calculated using smoothed symbols had a final operator length of 31

points1. In order to preserve stability and fidelity of the operator in the absence of

the spatial resampling, the operator length had to be scaled in order to provide the

same operator control within the wavelike region of propagation for each frequency

band. Therefore, for the lowest frequency block, a final operator length of more

than 200 points was required. Full details of the foci algorithm may be found in

Margrave et al. (2006).

The resulting images are shown in Figure 3.6. The image calculated with the

smoothed symbol is clearly significantly better than the image calculated with the

infinite-frequency symbol.

In order to determine the frequency-dependence of the difference in image qual-

ity, the concept of “residual” as defined in §6.2.2 was used. The smoothed- and

unsmoothed-symbol images were broken into frequency bands 10 Hz wide, centred

every 5 Hz from 5 to 55 Hz. 11 new images were generated, each image consisting of

1The number of foci operator “points” corresponds to the number of spatial grid points over
which the convolutional operator is non-zero. A larger number of points corresponds to a more
accurate and stable operator, while a smaller number of points corresponds to a faster but possibly
more unstable operator due to the truncation of the operator and resulting Gibbs phenomenon.
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a) b)

Figure 3.6: Images of the Marmousi model generated a) without frequency-
dependent smoothing of the symbol and b) with frequency-dependent smoothing
of the symbol. The image generated with the smoothed symbol is clearly far supe-
rior to the image generated with the infinite-frequency symbol.

the unsmoothed-symbol image with one frequency band replaced by the respective

frequency band from the smoothed-symbol image. For example, the first image was

generated with the 5-15 Hz band from the smoothed-symbol image, along with all

other 10 bands from the unsmoothed-symbol image. Each of these images was com-

pared with an image composed of all 11 bands of the unsmoothed-symbol image.

The residuals are plotted in Figure 3.7.

These residuals indicate that the smoothing of the symbol had the most effect on

the image in the lower frequencies, and had very little effect on higher frequencies.

This matches our expectations that the biggest differences in the symbol will be

found in the lower frequency bands, and so the biggest improvement in overall

quality will be found there as well.
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Figure 3.7: Determination of effectiveness of symbol smoothing as a function of
frequency. Lower residuals indicate that the smoothing of the symbol resulted in
a change in quality of the overall image, while a residual of 1 indicates that the
smoothing had little to no effect in this region.

3.5 Chapter summary

The frequency dependence found in the exact square-root Helmholtz operator sym-

bol is striking and leads to symbols that are dramatically different from the infinite-

frequency symbols that are used in standard gpspi migration. Although these ex-

act operator symbols are extremely difficult to compute, a qualitative and possibly

näıve approximation to these symbols based on frequency-dependent smoothing of

the underlying velocity model results in an image that is far superior to one that is

calculated with just the infinite-frequency symbol.

The foci algorithm may already be implemented with a simple but effective

form of symbol smoothing: spatial resampling following Margrave et al. (2006).

Therefore, in addition to providing greater computational efficiency and numerical

stability to the imaging, this spatial resampling also adds somewhat more accurate
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physics to the wavefield extrapolation and therefore a better image.
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Chapter 4

The Stolk operator in GPSPI migration

4.1 Introduction

Much of the recent research in “wavefield extrapolation methods” (wem) is directed

towards improving the quality of the wem code without sacrificing numerical effi-

ciency. Modern algorithms that make use of wem, such as the Generalized Phase-

Shift-Plus-Interpolation (gpspi) migration algorithm due to Margrave and Ferguson

(1999), have produced high-quality seismic images at affordable computational costs.

Moving beyond gpspi migration will require either significantly better images, or

significantly improved numerical performance without a loss of imaging quality (or

both). The current gpspi migration operator uses an approximation in which the

local wavefield propagation velocity is assumed to be a constant, which is effectively

a high-frequency approximation. In this chapter I evaluate a new migration op-

erator that mathematically extends the capabilities of the gpspi operator beyond

this assumption to account for a local first derivative in (horizontal) slowness, thus

incorporating more physics and hopefully a higher-fidelity wavefield extrapolation

over a broader range of frequencies.

4.1.1 Recursive phase-shift wavefield propagation

Many current wem algorithms are space-frequency methods related to or derived

from the phase-shift method introduced by Gazdag (1978). Fourier-transforming

the scalar wave equation results in the Helmholtz equation, which results in an
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interpretation of the wavefield as a sum of plane waves. By applying an appropriate

phase-shift to each plane wave, the wavefield may be propagated through a distance

accurately.

4.1.2 Generalized PSPI

The gpspi algorithm is an accurate, efficient implementation of these phase-shift

concepts. This algorithm takes an entire constant-depth-slice of the wavefield and

propagates it to a deeper (or shallower) level. The z (depth) direction is typically

referred to as the range direction, while horizontal directions x and sometimes y are

referred to as transverse directions. In addition to Fourier-transforming the time

series of the data, it is often convenient to represent the transverse directions x and

y in their Fourier-transformed coordinates, ξ and ν.

Mathematically, the gpspi algorithm may be represented in compact operator

notation as:

Ψ(x, z = ∆z, ω) = TαΨ(x, z = 0, ω) (4.1)

Or, more explicitly:

Ψ(x, z = ∆z, ω) ≈
∫

R

φ(ξ, z = 0, ω)α (k (x) , ξ, ω) eiξxdξ (4.2)

where

α (k (x) , ξ, ω) =











ei∆zkz(x), |ξ| ≤ ω
v(x)

e−|∆zkz(x)|, |ξ| > ω
v(x)

,
kz(x) =

√

k(x)2 − ξ2

k(x) = ω
v(x)

(4.3)

and

φ(ξ, z = 0, w) =
1

2π

∫

R

Ψ(x, z = 0, ω)e−iξxdx. (4.4)

This version of gpspi is mathematically identical to that given in §3.1, but is written

slightly differently to accomodate the work developed here.
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The algorithm applies a nonstationary filter to the data (Margrave, 1998), is a

pseudodifferential operator in the Standard Calculus (Hörmander, 1985) and is the

limiting form of the pspi algorithm described by Gazdag and Sguazzero (1984) when

taken to the extreme of using a separate velocity for each and every output point.

(Margrave and Ferguson, 1999). In the pseudodifferential calculus, α is known as

the symbol of the operator Tα, which is explicitly defined in equation (4.3).

It may be seen that the wavefield Ψ(x, z, ω) at each output point (x0,∆z) is

the result of the wavefield extrapolation operator Tα applied to the entire line

(x, 0) x ∈ R. A new operator is constructed for each required output point along

the line using the local velocity at the output point v(x0,∆z). The core assumption

at the heart of the gpspi method is its dependence on the fact that the wavefield

at each output point (x0,∆z) is calculated by propagating the wavefield from the

line at depth z = 0 assuming that the entire wavefield at depth z = 0 propagates

through a medium of constant velocity v(x0,∆z). That is, the local region between

the line (x, 0) x ∈ R and the point (x0,∆z) is assumed to be homogeneous. For this

reason, equation (4.2) with symbol as defined in equation (4.3) is often referred to

as the locally-homogeneous approximation (Fishman et al., 1997). The magnitude

of ∆z is typically on the order of ∼ 10m, which is assumed to be much smaller than

the scale of the range velocity variation and so a range-homogeneous approximation

is often reasonable. In numerical implementations the length of the line (x, 0) x ∈

R is frequently many hundreds of meters or more, so a transversely-homogeneous

approximation is far from ideal. Dipping events with strong velocity gradients will

likely not be imaged accurately.
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4.1.3 The Stolk operator

It is hoped that mathematically-sound extensions to the gpspi migration scheme

that allow for locally-inhomogeneous velocity models will result in improved image

quality compared to computational cost. We consider the specific case of transverse

velocity variations. The hope is that this will allow for high-quality images in

media that feature strong lateral velocity variations – salt-dome flanks, for example.

This extension of the operator is accomplished by adapting mathematical theory

introduced by Stolk (2004) into a useful gpspi-type operator.

The formal mathematical approximations to the solutions of the Helmholtz equa-

tion developed by Stolk (2004) form the inspiration for a new operator that may be

tested in comparison to the gpspi operator. This theory is especially attractive as

it presents itself as a correction to the standard operator (the “square-root”) used

in gpspi migration. Specifically, the Stolk correction adds a term involving the

derivative of the slowness s(x) = 1/v(x), so that the kz term within α in equation

(4.3) becomes:

kz(x) =

(
√

ω2

v(x)2
− ξ2

)

+
iξ

2

ω2

v(x)

(

∂s

∂x

)(

ω2

v(x)2
− ξ2

)−3/2

(4.5)

This means that it is relatively straight-forward to adapt existing gpspi code to

make use of this extended theory: we simply replace the kz(x) =
√

w2/v(x)2 − ξ2

term in the original implementation with the new expression in equation 4.5. We

will refer to kz(x) as the operator symbol, and this is what is used within gpspi,

which applies this as a full Fourier-domain multiplier. We may also take the inverse

Fourier transform of this symbol for a constant x, and transform ξ → x′. This is

referred to as the operator kernel, and is applied within the foci algorithm as an

ω − x convolution.
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This correction is interesting theoretically, as it is directly applicable to the pure

rigourous psdo interpretation of the gpspi algorithm, rather than being an ad hoc

approximation built upon physical intuition or signal-processing approaches. Most

other improvements to the basic gpspi-oriented algorithm address computational

efficiency (e.g. foci) or computational stability (e.g. lWKBJ operators as in §7).

Some care must be taken to ensure a valid implementation within fast versions

of the gpspi ideas such as the foci algorithm (Margrave et al., 2004) so that the

correction is not lost via some assumption. For example, the foci method normally

assumes a symmetric kz(x) in x, while the Stolk correction results in a kz(x) which

may be asymmetric.

Equation (4.5) has one obvious problem: there is a singularity at the evanescent

boundary, that is where ω/v(x) = ξ. Stolk (2004) corrects for this by using a

damping term h(ς) that masks the singularity:

h(ς) =























0

exp(−1/ς)/(exp(−1/ς) + exp(−1/(1 − ς)))

1

ς ≤ 0,

0 < ς < 1,

ς ≥ 1.

(4.6)

This damping function is shown in Figure 4.1. We can use κ |(ω2/v(x)2 − ξ2)| = ς,

where κ is a scaling constant chosen to broaden or narrow the width of the damping

function. This will shape an appropriate function built from equation (4.6), and the

resulting damping term effectively removes the singularity but passes the bulk of

the wavelike region. A sample plot of this damping function is shown in Figure 4.2

for κ = 400 and v = 1000m/s. Here κ is chosen to be relatively small in order to

exaggerate the damping effect. Note that the function is nearly zero with a broad

range around the evanescent boundary. A larger κ value will obviously narrow the

damping breadth by scaling the range of the argument to h(ς). Practical values of
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Figure 4.1: The damping function h(ς).

κ range between 1000 and 10 000. Within the wavelike region, the magnitude of

α is 1, and within the evanescent region it decays exponentially. At the evanescent

boundary there is a sharp corner in the magnitude of α. It is at this point where

|(ω2/v2 − ξ2)| = 0 where the singularity occurs, and so it must be suppressed with

the damping term. Figure 4.3 shows |α| =
∣

∣eikz(x)
∣

∣ for v = 1000m/s. Note that the

evanescent boundary, shown as the sharp corner bounding the region where |α| = 1,

exactly corresponds to the locations where the damping function h(ς) takes values

of 0, as shown in Figure 4.2. The damping function in equation 4.6 approaches zero

when ς approaches zero. ς approaches zero as we approach the evanescent boundary,

which is where the instabilities in kz occur. Thus, the instabilities are effectively

suppressed.

As previously stated, gpspi algorithms may be implemented in the ω−ξ domain

as a full Fourier-domain multiplication process. foci is the ω − x convolutional

equivalent algorithm. Therefore, it makes sense to consider the resulting operator
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Figure 4.2: The damping function h(κ |(ω2/v2 − ξ2)|) for κ = 400 and v = 1000m/s.

Figure 4.3: |α| =
∣

∣eikz(x)
∣

∣ for v = 1000m/s.
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symbol/kernel in both the ω − x and ω − ξ domains. In Figure 4.4, the Stolk

operator symbol and kernel for frequency 70Hz, v = 2000ms−1, with no horizontal

velocity (slowness) gradient is displayed. This operator is exactly equivalent to the

usual foci operator for these parameters. The top panel in this figure shows the

convolutional kernel in ω−x. This kernel is convolved with the Fourier-transformed

traces in space. The middle panel shows the amplitude spectrum of the equivalent

symbol – ie the equivalent ω − ξ domain multiplier. This amplitude spectrum is

ideally identically one throughout the wavelike region, and decays exponentially

in the evanescent region. In this figure, we see that the amplitude spectrum is one

throughout most of the wavelike region, but instabilities at the evanescent boundary

(around ±0.035) are visible. The bottom panel in this figure shows the applied

phase-rotation for each wavenumber ξ. The phases match well throughout most of

the region, though they differ slightly near the evanescent boundary.

Referring to Figure 4.5, this operator may be directly compared to the Stolk

operator for precisely the same medium but with one difference: a local slowness

gradient equivalent to a velocity gradient of approximately 35s−1. Notice the dra-

matic change in both the ω − x and the ω − ξ representations. The operator is

clearly asymmetric, reflecting the asymmetric nature of the underlying medium.

The effect is obviously frequency dependent. At low (15Hz) frequency, the

resulting operator can be seen in Figure 4.6, and at intermediate frequency (30Hz)

the operator can be seen in Figure 4.7. Changing the sign of the velocity gradient

also reverses the asymmetry of the operator, as seen in Figure 4.8, in which the 30Hz

case is recalculated with an effective velocity gradient of −4s−1. Additionally, it can

be seen in this figure that a weaker velocity gradient (−4s−1 compared to 35s−1)

results in a weaker distortion of the otherwise-flat operator in the ω − ξ plots.
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Figure 4.4: The Stolk operator symbol in ω − x and ω − ξ domain for 70Hz at
2000ms−1 with no horizontal velocity (slowness) gradient – ie this operator is exactly
equivalent to foci. The top panel shows the ω − x expression of the symbol, the
middle panel shows the operator symbol amplitude in ω − ξ, and the bottom panel
shows the operator symbol phase in ω − ξ.
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Figure 4.5: The Stolk operator symbol in ω − x and ω − ξ domain for 70Hz at
2000ms−1 for 35s−1 velocity gradient. The top panel shows the ω− x expression of
the symbol, the middle panel shows the operator symbol amplitude in ω − ξ, and
the bottom panel shows the operator symbol phase in ω − ξ.
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Figure 4.6: The Stolk operator in ω−x and ω−ξ domain for 15Hz at 2000ms−1 for
35s−1 velocity gradient. The top panel shows the ω − x operator, the middle panel
shows the operator amplitude in ω − ξ, and the bottom panel shows the operator
phase in ω − ξ.
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Figure 4.7: The Stolk operator in ω−x and ω−ξ domain for 30Hz at 2000ms−1 for
35s−1 velocity gradient. The top panel shows the ω − x operator, the middle panel
shows the operator amplitude in ω − ξ, and the bottom panel shows the operator
phase in ω − ξ.
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Figure 4.8: The Stolk operator in ω−x and ω−ξ domain for 30Hz at 2000ms−1 for
−4s−1 velocity gradient. The top panel shows the ω− x operator, the middle panel
shows the operator amplitude in ω − ξ, and the bottom panel shows the operator
phase in ω − ξ.
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4.2 Testing

The Stolk symbol was implemented in both the standard gpspi and foci fashion,

using existing matlab codes developed by crewes and potsi. Impulse response

and focussing-power tests were calculated using standard gpspi methods, while full

pre-stack depth migrations were calculated using the foci algorithm.

4.2.1 Impulse response

The impulse reponse of the Stolk operator in a homogeneous medium is compared

to the reponse of the operator using the standard square-root in Figure 4.9. The

Figure 4.9: Impulse response of standard symbol on the left compared to Stolk
on the right, both symbols propagated an impulse 200m through a homogeneous
medium.

responses are identical in appearance as they should be for a homogeneous medium.

They are numerically identical as well. The impulse response of the symbols through
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an inhomogenous medium, specifically one with a strong horizontal velocity profile,

is shown in Figure 4.10. Once again, the symbols look very similar. The difference,

Figure 4.10: Impulse response of standard symbol on the left compared to Stolk
on the right, both symbols propagated an impulse 200m through a medium with a
strong velocity gradient.

however, is only apparent upon subtraction of the two impulse responses as seen in

Figure 4.11. Overall, the character of both impulse responses is extremely similar.

In Figure 4.10 the strength of both impulses is nearly identical. The Stolk response

appears to be somewhat smoother qualitatively, and this makes up the bulk of the

difference shown in Figure 4.11.

4.2.2 Focussing power

While it is interesting to observe the impulse response of the operator, the focussing

power may be measured by back-propagating a wavefield that is the result of an
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Figure 4.11: Difference of standard symbol and Stolk symbol, magnified 10 times.

impulse that has been forward-propagated by an exact1 extrapolator. In this case,

the exact forward propagation was accomplished using the method of Pai (1988).

After the back-propagation is executed, in principle the impulse should be recovered.

First, the “high-velocity lens” model (Figure 4.12) was tested. After a propa-

gation through 200m with the exact extrapolator, the result was refocussed using

gpspi and Stolk operators. The resulting point is shown in Figure 4.13.

Visually, there is little difference between the focussing power of the two oper-

ators. Numerically there is very little difference as well. The energy density as a

function of radius from the central point was measured and plotted in Figure 4.13.

The energy density of the Stolk-focussed point is virtually indistinguishable from

the gpspi-focussed point.

A more complicated velocity model was also tested. In this case, it is a section

1...and very computationally expensive
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Figure 4.12: High-velocity lens model. The centre is 4500 m/s, with sides at 1500
m/s. Total width of the central portion is approximately 300 m.
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Figure 4.13: Focussing power of gpspi and Stolk operators for the high-velocity
lens model on the left. Radial energy density for the high-velocity lens model on
the right. The gpspi and Stolk lines are nearly indistinguishable.
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of the Marmousi model as described by Bourgeois et al. (1991). The section used

is shown in Figure 4.14. The resulting focussed points are compared in Figure 4.15,

Figure 4.14: Marmousi chunk model, with velocity in m/s

with relative energy densities compared in Figure 4.15. Once again, the focussing

powers of the operators are very nearly identical.

4.2.3 Marmousi migration

In addition to impulse response and focussing power tests, full prestack migrations

of the Marmousi model were calculated using foci. The standard foci operator

was compared to a modified version that included the Stolk correction term in the

operator design phase but was otherwise identical in all operational parameters.

Specifically, the operators were calculated with a forward operator size of 41 points,

an inverse operator size of 51 points, and a final window size of 41 points2. A

2The number of foci operator “points” corresponds to the number of spatial grid points over
which the convolutional operator is non-zero. A larger number of points corresponds to a more



107

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
x 10

−3

Radius (m)

R
el

at
iv

e 
en

er
gy

Relative radial energy density

PSPI
Stolk

Figure 4.15: Focussing power of gpspi and Stolk operators for the Marmousi chunk
model on the left. Radial energy density for the Marmousi chunk model on the
right.

standard foci image is shown in Figure 4.16, and the resulting Stolk image is

shown in Figure 4.17. The two images are very similar.

Several subsections of the image are compared more closely in Figures 4.18–4.21.

Each figure contains four panels. On the top left, the v(z) image is displayed. On the

bottom left, the foci image is displayed. On the top right, the corresponding region

from the Marmousi velocity model is displayed. On the bottom right, a histogram

of the colourbar usage of both images is shown, in order to allow for an accurate

comparison of the relative strengths and weaknesses of amplitudes within the images.

In the first region (Figure 4.18) there is almost no visual difference between the two

images at all. The second region (Figure 4.19) shows slightly better definition and

continuity, especially in the neighbourhoods of (5400, 1300) and (5700, 1300). These

differences are extremely small, however. The third region (Figure 4.20) reveals a

very slight improvement in continuity near the top left, near (6200, 500). The fourth

accurate and stable operator, while a smaller number of points corresponds to a faster but possibly
more unstable operator due to the truncation of the operator and resulting Gibbs phenomenon.
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Figure 4.16: Marmousi migration in standard foci with 41/51/41 windowing.
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Figure 4.17: Marmousi migration using Stolk correction, run with 41/51/41 win-
dowing.
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Figure 4.18: Marmousi migration, Stolk vs. FOCI migration with 41/51/41 opera-
tors. Region 1.
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Figure 4.19: Marmousi migration, Stolk vs. FOCI migration with 41/51/41 opera-
tors. Region 2.
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Figure 4.20: Marmousi migration, Stolk vs. FOCI migration with 41/51/41 opera-
tors. Region 3.
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Figure 4.21: Marmousi migration, Stolk vs. FOCI migration with 41/51/41 opera-
tors. Region 4.
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region (Figure 4.21) shows perhaps slightly less definition in the Stolk image. This

is evident in a small loss of resolution around (6500, 2500).

Overall, the Stolk image seems to have the theoretical potential for better imag-

ing, but in the migration of the Marmousi image it has produced very little actual

improvement.

4.3 Discussion of imaging performance

The overall imaging performance of the Stolk operator in the migration of the Mar-

mousi model was disappointing. It seemed to produce a very slight improvement.

There were cases, however, in which the Stolk operator actually produced worse

results. It was noted that performance of the Stolk operator seemed to be improved

in the shallower regions, and degraded deeper down. It is possible that instabilities

in the ω− x representation of the operator make it less suitable for use. This could

be addressed by an alternate implementation of this method that does not make use

of the foci algorithm, or by tuning of the foci algorithm as more is understood

about the Stolk operator’s behaviour within the foci framework.

Additionally, it should be noted that the Stolk correction is dependent on strong

high-frequency assumptions in its derivation. The Marmousi model is not an espe-

cially high-frequency data set. We are trying to image complicated and finely-layered

structures with frequencies of at most ∼ 60Hz with velocities between 1500ms−1

and 4500ms−1. This corresponds to wavelengths between 25m and 75m in the best

case. For this structural model, a “high-frequency” assumption really only has va-

lidity in a regime where the frequencies are significantly higher than 60Hz if we are

interested in imaging with 25m wavelengths
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4.4 Discussion of computational performance

All calculations were performed using matlab 7.1 on Linux-based PC computers

with 3.06 GHz Intel Pentium 4 CPUs. The running performance of the foci-based

Stolk migration is comparable to the running performance of standard foci. Stan-

dard foci completes the Marmousi migration in approximately 16 hours. Experi-

ence suggests that using Stolk operators adds approximately 10% more time to the

imaging. The extra time is largely consumed in the overhead of selecting the correct

operator from a two-dimensional table (velocity and slowness derivative) instead of

just a one-dimensional (velocity only) table as for standard foci.

Unfortunately, the precalculation of the Stolk operators requires more compu-

tational time than the migration itself. In fact, the operator calculations require

approximately 1.5 to 2 times as much calculation as the generation of the image!

Standard foci operator calculation times are insignificant compared to the calcula-

tion time of the total image.

We believe, however, that there is significant room for improvement here. A more

thorough analysis of the table calculation requirements may reveal a far more effi-

cient manner of determining the optimal partitioning of the slowness gradient range

into discrete operators. Currently, the procedure is to divide the slowness deriva-

tive dimension into the same number of elements as are contained in the velocity

dimension. This procedure, combined with the substantial increase in computation

time for each individual operator, makes the table calculations more than an n2

operation. Perhaps a more sparse slowness gradient dimension would produce an

adequate image, or perhaps a non-linear coverage of the slowness gradient dimension

would produce an even higher quality image with less overall table computation.
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Even the problem as it stands is not unmanageable, however. Once a table is

calculated, it never need be calculated again (for the same parameters). Therefore,

a database may store these calculations for future reuse, allowing an asymptotic

approach to standard foci calculation times.

4.5 Chapter summary

By incorporating the local derivative in slowness, the Stolk correction is a first step

towards the inclusion of more information about the local propagation region within

the gpspi migration framework. This may eventually provide a useful imaging ben-

efit for high-quality data sets. However, at this moment it is not clear that the

benefit is worth the additional computational cost, and instabilities in the propaga-

tion make it difficult to compute optimally. Further research may reveal much more

efficient ways to calculate and use the required operators more effectively.
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Chapter 5

Feasibility testing of time-lapse seismic monitoring with

early-arrival waveform tomography.

5.1 Introduction

Early-arrival waveform tomography represents a natural low-frequency extension of

the concept of standard traveltime tomography. In this approach, the whole wave-

form of the transmitted signal is used in the tomographic process, rather than simply

the first arrival time. This method originated 25 years ago with the work of Lailly

(1983), Tarantola (1984), and Mora (1987). It has been subsequently developed

by many others, including Woodward (1992). Lately the primary champion of this

method has been Gerhard Pratt and his research group. A subset of these publi-

cations includes Pratt (1990); Pratt and Worthington (1990); Pratt et al. (1998);

Pratt (1999); Pratt and Shipp (1999); Sirgue and Pratt (2004); Brenders and Pratt

(2006, 2007). An introduction to this method is given in §1.6.2.

To date, applications of this method to the analysis of time-lapse seismic data

have been sparse. We believe that this method is ideally suited to this analysis, how-

ever. In time-lapse analysis, it is common to have a well-established velocity model

of the relevant geology, due to past surface seismic surveys, VSP investigations, and

well-log data. The waveform tomography process requires a sufficiently accurate

starting model, typically constrained by requiring that diving waves travelling from

source to receiver in the starting model must have first-arrival times within roughly
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half the period of a given frequency multiplied by the average velocity along the

travel path (Pratt, 1999).

If it is possible to construct a velocity model that accurately models the first-

arrival of seismic waveforms on a baseline survey, then it may be possible to use

waveform tomography to analyze time-lapse changes in the imaged region. Small,

subtle local perturbations to this velocity field should in principle be recoverable

given sufficient data.

The purpose of this study is to investigate two major questions. First, is wave-

form tomography at all feasible for time-lapse monitoring? Second, if so, what

acquisition parameters would maximize the effectiveness of this method?

5.2 Feasibility testing on synthetic data

Our primary test model is a laterally-homogeneous section derived from the hori-

zontal extension of a P-wave sonic log from the Pikes Peak field. This 2D model

is displayed in Figure 5.1. A perturbation of -500 m/s over an area of approxi-

mately 100m horizontally and 30m vertically is introduced to simulate the effect

of steam injection or some other physical process with a similar net result on the

seismic velocity of the region. This perturbation may be seen in Figures 5.2 and

5.3. Raytracing, shown in Figure 5.4, through a smoothed version of this velocity

model reveals that our survey size is sufficient (barely) to capture the diving waves

that pass through the perturbed region. Without this smoothing, these raypaths

are reflected before they reach the target depth. This implies that only relatively

low frequency diving waves will reach the target, and that the longest offsets will be

required for inversion. The model dimensions were constrained by computational
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Figure 5.1: Original velocity model with no time-lapse change.

Figure 5.2: Original velocity model plus steam-injection effect. The location of
the VSP receivers is marked as a vertical green line at the injection site. The
approximate wavelength at 5 Hz in the injected region is displayed for scale.
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Figure 5.3: Original velocity model plus steam-injection effect. The location of the
VSP receivers is marked as a vertical green line at the injection site.

limitations.

5.2.1 Surface seismic modelling and inversion procedure

The forward modelling was performed on the perturbed model using a 2D acoustic

frequency-domain finite difference code as provided by Gerhard Pratt. This is the

same forward-modelling code that is used in the inversion algorithm, and so is

committing the so-called “inverse crime”. Future work could involve extending this

to using external acoustic and elastic codes. A sample time slice of this modelling

is shown in Figure 5.5.

The simulated seismic surface reflection survey was recorded with receivers placed

along the surface of the model at 10 m spacing. Sources were placed with 20 m spac-

ing. Sources and receivers were located across the entire 2000 m extent of the survey.
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Figure 5.4: Raytracing through the original model convolved with a 20m Gaussian
smoother
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Figure 5.5: Sample time slices of the forward-modelled data on the perturbed model
showing the wavefront periodically as it progresses through the medium. The white
rectangle delineates the extent of the perturbation. Very little energy penetrates
beneath the horizontal reflector at depth ∼ 700m

The waveform tomography inversion was then performed using the original (un-

perturbed) background velocity model as its starting point, carried out with the

reference implementation of the algorithm provided by Gerhard Pratt. Constant-

frequency inversions were carried out beginning at 5 Hz, and then using this result

as input into a 6 Hz inversion. Although in many cases it is possible to use many

(or few) frequencies to optimize the convergence (Sirgue and Pratt, 2004), for this

inversion we found that results were best with an inversion beginning no higher than

5 Hz, and that beyond 6 Hz no appreciable improvement was detectable.

All inversions were constrained to update the model only within a region of 500

m by 500 m, centred at the anomaly. This stabilizes the inversion, and would be a

reasonable (perhaps even overly conservative) constraint for the inversion of realistic

data. This constrained region is shown in all difference plots of the inversion results.
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Figure 5.6: The resulting surface-seismic velocity estimate from inversion at 5 Hz, as
a difference from the starting (background) velocity model. Ideally, the amplitude
of the perturbation would be exactly +500 m/s. One wavelength at 5 Hz would
approximately span this entire displayed region at the velocity of the target region.
The black box marks the spatial extent of the actual perturbation.

5.2.2 Surface seismic inversion results

The updated velocity model with the 5 Hz (Figure 5.6) and 5, 6 Hz (Figure 5.7)

inversions are shown as a difference-plot with respect to the starting (background)

velocity model, zoomed into the region of interest shown in Figure 5.2.

5.2.3 VSP modelling and inversion procedure

The same starting velocity models were also used in a simulated VSP survey. In

this survey, source locations across the 2000m extent of the model were used at

20m spacing. Receivers were placed in a borehole from 300m to 600m deep, at 10m

spacing. This well bore bisected the perturbed (steam-injection) site. This borehole
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Figure 5.7: The resulting surface-seismic velocity estimate from inversion at 5 Hz, as
a difference from the starting (background) velocity model. Ideally, the amplitude
of the perturbation would be exactly +500 m/s. One wavelength at 5 Hz would
approximately span this entire displayed region at the velocity of the target region.
The black box marks the spatial extent of the actual perturbation.
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Figure 5.8: The resulting VSP velocity estimate from inversion at 5 Hz, as a differ-
ence from the starting (background) velocity model. Ideally, the amplitude of the
perturbation would be exactly +500 m/s. One wavelength at 5 Hz would approx-
imately span this entire displayed region at the velocity of the target region. The
black box marks the spatial extent of the actual perturbation.

is marked in green in Figure 5.2.

The updated velocity model with the 5 Hz and 5, 6 Hz inversions are shown

in Figures 5.8 and 5.9 respectively, again as a difference-plot with respect to the

starting (background) velocity model zoomed into the region of interest shown in

Figure 5.2.

5.3 Discussion of the results

The waveform inversion procedure is providing significant updates to the background

velocity model at well below the wavelength scale. Both surface seismic and VSP

approaches yielded useful updates to the model that were consistent with the true
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Figure 5.9: The resulting VSP velocity estimate from inversion at 5 and 6 Hz, as
a difference from the starting (background) velocity model. Ideally, the amplitude
of the perturbation would be exactly +500 m/s. One wavelength at 5 Hz would
approximately span this entire displayed region at the velocity of the target region.
The black box marks the spatial extent of the actual perturbation.
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anomaly both in terms of spatial extent and in magnitude. Although the maximum

amplitude of the anomaly (∼300 m/s for the surface seismic, and ∼400 m/s for

the VSP survey) is somewhat less than the true amplitude (500 m/s), this is not

surprising as the discovered spatial extent of the anomaly is somewhat larger than

the true anomaly.

Both images gained the most benefit from 5 Hz data, with some minor improve-

ment with the addition of 6 Hz. Although it was hoped that higher frequencies

would focus the image better, in practice, higher frequencies did not converge effec-

tively within the region of constraint. We speculate that this is due to the higher

frequency components of the wavefields reflecting off strong contrasts in shallower

regions.

5.4 Chapter summary and potential future work

The results we have seen strongly indicate that waveform tomography merits further

investigation as a viable method for analyzing a time-lapse signal in seismic data.

Both surface and VSP methods provided comparable images, with slightly better

results from the VSP method.

Seismic source considerations are significant. First, this “ideal conditions” in-

version required 5 Hz data. Although explosive-source surveys easily contain this

frequency and lower, vibration-source surveys often begin their sweep at frequencies

higher than 5 Hz.

Acquisition geometry is also significant. In this test case, raytracing revealed

that only the longest offsets (nearly 2 km for a 500 m deep target) contributed

significantly to the inversion. Also, although VSP surveys with geophones directly
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in the zone of interest are useful for reflection surveys, and can in some cases provide

more information than surface seismic, in this case there was very little difference

in results. We speculate that a crosswell survey or a VSP in a nearby observation

well, either providing many raypaths travelling through the zone of interest, will

yield improved results.

There are many open issues that could be addressed in the near future. These

are broadly grouped into at least two sections: modelling and inversion methods,

and acquisition and practical concerns.

For potential future work in modelling and inversion, other migration/imaging

approaches besides Pratt’s frequency-domain inversion may be attempted. It may

prove worthwhile to directly migrate residuals within a conventional depth imaging

algorithm, for example.

In terms of acquisition and practical concerns, there are at least two main poten-

tial areas of focus for future work. First, one could investigate the effect of shallower

layers in shadowing the perturbations at higher frequencies. This may allow for the

optimization of acquisition geometries, including testing cross-well surveys, to allow

broad-band signals to propagate effectively through the target region more easily.

Second, there is potential for an investigation into more practical scenarios for the

inversion, such as beginning the inversion with a more realistic seismic-derived back-

ground velocity model rather than the “perfect” background velocity model used in

this investigation, including random and coherent noise, unknown source waveforms,

and unknown near-surface layers.
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Chapter 6

Measurement of planewave migration convergence

6.1 Introduction

Prestack depth migration is costly for complex regions with strong lateral velocity

variations. In these regions, it is desirable to use a wave-equation migration al-

gorithm such as foci (Margrave et al., 2006). Plane-wave migration was in part

developed to preserve the fidelity benefits of prestack wave equation techniques while

adding the benefits of poststack processing economy (see e.g. Rietveld et al., 1992;

Whitmore, 1995; Mosher and Foster, 1998; Duquet et al., 2001; Liu et al., 2006).

Physically, the method may be seen as an application of Huygens’ principle. A

plane wave is synthesized by the superposition of numerous point sources. In terms

of seismic imaging, this may be accomplished by stacking common shot gathers that

are time-delayed by a linear function of the shot location. This stack is imaged using

a similarly constructed plane wave source model. A zero time-delay corresponds to

a horizontal plane wave (i.e. with 0◦ orientation). Positive and negative time-delays

correspond to plane waves with positive and negative orientation.

In contrast to usual shot-profile migration, plane-wave migration has the benefit

that, in many cases, a useful image can be developed from relatively few individual

plane waves. In the case of flat homogeneous layers and a seismic survey with

numerous shots and receivers, it is conceivable that only the 0◦ plane wave could be

required to generate a usable image. This is roughly equivalent in cost to a poststack

migration. However, plane-wave migration has the added benefit that more plane
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waves with varying orientation may be added at any time to selectively improve the

image. This allows fine control of the overall cost of imaging, and allows individuals

to choose precisely where they would like to spend their time in imaging.

The algorithm we have implemented is an extension of the crewes foci code. It

retains all features of foci including operator stabilization and spatial resampling,

but adds the ability to stack shot records into plane-wave gathers and use the

requisite plane-wave source model.

6.2 Theory

The theory of plane-wave migration is explained by several authors. Here we select

several important concepts as described by Liu et al. (2006). A similar treatment

may also be found in Romero et al. (2000).

Consider a source wavefield of a shot Sj(ω, x, z), where ω is temporal frequency,

x is the lateral spatial coordinate, z is spatial coordinate below the surface, and

index j = 1, 2, . . .N where N is the total number of shots. A composite wavefield

S̄(ω, x, z) is expressed as

S̄(ω, x, z) =

N
∑

j=1

aj(ω)Sj(ω, x, z) (6.1)

where the aj(ω) are N functions that serve to time-delay shots as required via

time-delay/phase-shift equivalency. Similarly, we may consider a composite receiver

wavefield R̄(ω, x, z),

R̄(ω, x, z) =

N
∑

j=1

aj(ω)Rj(ω, x, z). (6.2)

Rj(ω, x, z) is the backward-extrapolated receiver wavefield that corresponds to Sj(ω, x, z).

Compose a 2D plane-wave section simulating a line-source wavefield with ray
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parameter p,

aj(ω) = f(ω)eiωp(xj−x0) (6.3)

where f(ω) is a real-valued function describing the amplitude of the plane-wave

components, and x0 is the plane wave origin at the surface.

For wavefield extrapolation operators, Liu et al. (2006) define L and its conjugate

operator L∗ such that

S(ω, x, z) = L∗[S(ω, x, z − ∆z)] (6.4)

R(ω, x, z) = L[R(ω, x, z − ∆z)] (6.5)

Application of L to S̄ and R̄ gives

S̄(ω, x, z) = L∗[S̄(ω, x, z − ∆z)], (6.6)

R̄(ω, x, z) = L[R̄(ω, x, z − ∆z)]. (6.7)

Use of a cross-correlation imaging condition (Claerbout, 1985) yields an image

I(x, z),

I(x, z) =
∑

ω

S̄∗(ω, x, z)R̄(ω, x, z) (6.8)

=

N
∑

j=1

∑

ω

|aj(ω)|2 S∗
j (ω, x, z)Rj(ω, x, z) (6.9)

+
N
∑

j 6=k

∑

ω

a∗j (ω)ak(ω)S∗
j (ω, x, z)Rk(ω, x, z)

Liu et al. (2006) describe each term in equation 6.9. The first is the stack of images

for each individual shot, which is the expected output from a shot-profile migration.

The second term is described as the results of the crosscorrelation of source wave-

fields with the receiver wavefields from different shots – “cross terms”. This results

in an imaging artifact which is traditionally reduced with phase encoding techniques

(e.g. Romero et al., 2000).
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6.2.1 2D source plane-wave migration

If equation 6.3 is substituted into equation 6.9, Liu et al. (2006) show that the image

generated by a single plane-wave section Ip(x, z) is

Ip(x, z) =
∑

ω

f 2(ω)

N
∑

j=1

N
∑

k=1

eiωp(xj−xk)S∗
k(ω, x, z)Rj(ω, x, z), (6.10)

that, upon stacking all source plane waves, the final image I(x, z) is

I(x, z) =

Np
∑

p=−Np

Ip(x, z)

=
N
∑

j=1

N
∑

k=1

∑

ω

f 2(ω)S∗
k(ω, x, z)Rj(ω, x, z)

Np
∑

l=−Np

eiωl∆p(xj−xk), (6.11)

and that the final sum in equation 6.11 approximates a delta function,

lim
Np→∞

Np
∑

l=−Np

eiωl∆p(xj−xk) = |ω|−1 δ(xj − xk). (6.12)

This important result demonstrates that, given enough plane waves, the cross terms

are suppressed. Also, plane-wave migration is valid even in cases of irregular and

sparsely-sampled data sets. Liu et al. (2006) also make the point that the computa-

tional savings in plane-wave migration are likely to be found in large data sets. The

number of plane waves required to suppress these artifacts is roughly a constant for

a given physical volume to image, independent of the actual number of shot records

in that volume.

6.2.2 Residuals

The question remains, how many plane waves are enough? We propose a simple

measure of convergence. This residual is defined in terms of two successive plane-

wave images, IN (x, z) and IN+1(x, z). N may refer to any ordering of plane-wave
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images. For example, IN (x, z) refers to the image generated by the stacking of 11

distinct plane wave images, while IN+1(x, z) refers to the image generated by the

stacking of 13 distinct plane wave images. In this implementation for the sequence,

plane waves are added symmetrically, two at a time, of mirror-symmetric orientation.

Therefore, the 13 plane-wave image is the successor to the 11 plane-wave image.

This avoids any biasing of the image quality improvement due to a true image that

contains significant energy of a dipping-left or dipping-right orientation. As a more

extended example, the first image, I1, will contain the plane-wave image generated

with only a single horizontal plane-wave – 0◦. I2 may correspond to the image

generated with I1 plus the addition of ±11◦ plane-wave images. I3 may correspond

to the image generated with I2 plus the addition of ±33◦ plane-wave images, and

so on.

The two successive images are spatially localized by a window Ω(x, z), with

a value of one inside the region of interest, zero when well outside, with a smooth

transition between inside and outside. This windowing allows the algorithm to focus

on a specific portion of the image, perhaps shallow or deep, perhaps in complex or

simple structure.

Specifically, the residual R(x, z) is calculated as

R(x, z) =

√

∑

x,z Ω(x, z)(IN+1(x, z) − IN (x, z))2

√

∑

x,z Ω(x, z)(IN (x, z))2
(6.13)

6.3 Testing

6.3.1 Simple synthetic

We tested the algorithm on the velocity model shown in Figure 6.1. This model

was chosen to provide a continuous range of dip in order to highlight the various
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Figure 6.1: Velocity model. The white region represents a relative velocity of 4,
grey represents 6, and black represents 3.

plane-wave incident angles, and the effectiveness of varying numbers of plane-wave

images.

The simulated seismic model data consisted of 51 equally spaced shots span-

ning the surface of the model recorded into 200 equally spaced receivers which also

spanned the surface. The data was generated with the crewes afd shotrec finite

difference modelling facility.

Figure 6.2 shows an image of this velocity model calculated with a standard foci

shot-profile migration. The horizontal contact is easily visible. It appears that dips

up to approximately 30◦ of the circle are visible as well. The shot-profile image here

does not show the steep sizes of the circle due to a lack of adequate direct scattering

of energy back to the surface.

Figure 6.3 shows the plane wave image generated using only the horizontal plane

wave. This is roughly equivalent in computation time to a poststack migration. A

significant portion of the image is recognizable, though it is hardly equivalent to the

full shot-profile image. Figure 6.4 shows the addition of plane waves at ±31◦. With
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Figure 6.2: An image of the velocity model calculated with shot-profile migration.

just three plane waves, we have clearly revealed the gross structure of the model

including the same ±30◦ dip limits on the top of the circle. As seen in Figure 6.4,

the addition of plane waves oriented at ±11◦ clarifies the image and removes noise,

especially for the horizontal contact. With two more plane waves at ±22◦, the image

in Figure 6.5 clarifies even more, though no significant structure is revealed.

Finally, in Figure 6.5, 51 plane waves ranging between +31◦ and −31◦ are used to

generate an image of comparable computational cost to the shot-profile migration,

which required the migration of 51 shot records.

6.3.2 Marmousi testing

Testing of this method on the Marmousi velocity model (Figure 6.6) showed an inter-

pretable image that emerged from very few plane waves. Residuals were calculated

following equation 6.13 for the region at approximately (6500, 2400), and are shown

in Figure 6.7. First, we notice that the plane-wave migration seems to converge to

its final form much faster than the shot-profile migration. Second, we notice that
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Figure 6.3: The horizontal plane wave image.

the plane-wave image stops improving dramatically with the use of 41 plane waves,

and essentially stops improving at 81 plane waves. At this point, the plane-wave

migration was halted as no improvement was evident. The shot-profile migration

continues to benefit from additional shots throughout the entire 240 shots, though

the major improvement slows at around 110 shots. Figure 6.8 shows shot-profile

migration with 110 shots compared to its final state at 240 shots. Figure 6.9 com-

pares the result from 41 plane waves to the result from 41 shots, and Figure 6.10

compares the result from 81 plane waves to the result from 81 shots.

However, the plane-wave migration images seem to suffer from a lack of high-

frequency resolution in the fine details of the images, and very little improvement

in the image quality is observed with more than 81 plane waves.

Converging, but to what?

Figure 6.7 clearly shows the plane-wave imaging converging to its final result faster

than shot-profile migration. The obvious question is then, is plane-wave migration

converging to the “correct” final image? To test this, we first accept that the shot-
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a) b)

Figure 6.4: Plane-wave images generated with a) plane waves oriented at 0◦,±31◦,
b) 0◦,±11◦,±31◦.

a) b)

Figure 6.5: Plane-wave images generated with a) plane waves at
0◦,±11◦,±22◦,±31◦, b) 51 plane waves between −31◦ and +31◦.
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Figure 6.6: The Marmousi velocity model. Velocity ranges from 1500 m/s to 6000
m/s.
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Figure 6.7: Residuals for shot-profile and plane-wave migration as a function of
number of individual migrations (i.e. number of plane waves or number of shot
records migrated). The plane-wave residuals show dramatically faster reduction in
residual, compared to the slower decline in shot-profile migration.
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a) b)

Figure 6.8: Marmousi shot-profile migration with a) 110 shot records and b) 240
shot records.

a) b)

Figure 6.9: Marmousi migration with a) 41 plane waves and b) 41 shot records.
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a) b)

Figure 6.10: Marmousi migration with a) 81 plane waves and b) 81 shot records.

profile migration calculated with 240 shots (Figure 6.8) is clearly superior to the final

plane-wave image calculated with 81 plane waves (Figure 6.10). We then calculate

the residual between an intermediate calculation and this 240-shot image. These

residuals are shown in Figure 6.11. Although the final plane-wave image does not

have the fine detail of the final shot-profile image, it is clear that the plane-wave

image approaches the final shot-profile image much faster than the shot-profile image

itself converges. That is, the 81 plane-wave image has a significantly lower residual

than the 81 shot image. In fact, the full numerical results reveal that the shot-profile

image requires 175 shots to reach the same level of residual as the 81 plane-wave

image.

6.4 Discussion

The plane-wave migration resolves the image efficiently, requiring only a few plane

waves to adequately resolve the structure. The single horizontal plane-wave image

suggested the placement of the horizontal contact, and hinted at the location of the

top of the circle feature. With the addition of two plane waves at approximately
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Figure 6.11: Residual calculated between an intermediate image and the final “best”
image calculated with 240 shots.

+30◦ and −30◦, however, the horizontal contact and a great deal of the shape of the

circle were clearly revealed. Optimal results for this particular example appear to

manifest at 7 plane waves. The qualitative difference between using 7 plane waves

and 51 plane waves is small, so with plane-wave migration a comparable image can

be calculated in this case in something like 15% of the original shot-profile migration

calculation time.

The final process using 51 plane waves did not result in an image of the same

quality as the shot-profile migration. This suggests that the algorithm as imple-

mented is somehow suboptimal. One possible shortcoming is the method for choice

of plane waves to use in migration. This issue was explored for real data by Stork

and Kapoor (2004), who specifically wondered about how many plane waves may

be required for reliable imaging. In this experiment, plane waves were chosen in an

ad hoc fashion, simply based on a constant increment of the time-delays used to
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create the effective plane waves. Perhaps a more careful algorithm for the selection

of plane wave distribution could be developed in order to optimize the imaging.

The Marmousi migration yielded similar results. The plane-wave image very

quickly converged to a final image that was not as clear as the final shot-profile mi-

gration. However, the plane-wave method revealed a useful image with significantly

fewer migrations than the shot-profile image. It is expected that the quality of the

final plane-wave image is strongly dependent on the number of shot and receiver

locations. It is in situations of very fine spacing that plane-wave migration is ex-

pected to yield its best value in the sense that the number of plane-waves required

to produce an image stays nearly constant, but the quality improves with finer sam-

pling. This contrasts with shot-profile migration, in which many more shots would

directly require a similar increase in the number of migrations.

6.5 Chapter summary

Plane-wave migration is useful for efficient prestack depth wave-equation migration.

By generating effective plane waves and using a plane wave source model, a standard

wave-equation algorithm can be easily adapted to plane-wave migration. Though

it is relatively straight-forward to implement such an algorithm, other details, such

as the number of plane waves to use and specific orientation of these plane waves,

remain unsolved problems in many cases.

The residual measure introduced here may be useful in many situations. In

addition to giving a numerical measure of when performing more calculation (in the

form of adding more plane waves to the image) leads to diminishing returns, there

are other possible uses. This residual may be used to guide the selection of the actual
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plane waves used in migration. In the case of asymmetric geology, for example, it

may be desirable to use an angular range of, say, −30◦ to +5◦. The residual may also

be used to guide focused illumination of a particular geologic feature. For example,

the residual may be used to determine which plane waves enhance the imaging of

salt flanks, subsalt features, or other poorly-illuminated regions.



144

Chapter 7

Locally WKBJ Operators

7.1 Introduction

Chapter 4 considered the case where the locally-homogeneous gpspi operator was

extended to include a horizontal velocity gradient. This chapter will describe an

operator that treats the case of a vertical velocity gradient, v(z) = v0 + mz. The

approach will be similar to that of Margrave (2001) to extend the gpspi operator

to a local vertical gradient.

7.1.1 The design of the lWKBJ operator

The composition of many GPSPI operators

Consider decomposing the operator Tα(0:∆z) from equation 4.1 into a cascade of

operators taking the wavefield from a depth z = 0 to z = ∆z in N discrete steps.

Suppressing ω, k(x), and ξ dependence in α we have an operator

Tα(0:∆z) =
(

Tα((N−1)∆z
N

:∆z) ◦ · · · ◦
(

Tα(∆z
N

:2∆z
N ) ◦ Tα(0:∆z

N )

))

, (7.1)

which takes the wavefield from depth z = 0 to z = ∆z in N steps as required, where
(

Tα(∆z
N

:2∆z
N ) ◦ Tα(0:∆z

N )

)

represents the composition of Tα(∆z
N

:2∆z
N ) with Tα(0:∆z

N ). If

we treat the symbols of these operators as elliptic psdo symbols (Saint Raymond,

1991), then the standard asymptotic expansion may be calculated,

α(0 : ∆z) ∼ α

(

0 :
∆z

N

)

α

(

∆z

N
: 2

∆z

N

)

· · ·α
(

(N − 1)
∆z

N
: ∆z

)

, (7.2)

truncating all but the first term in the expansion.
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Since each symbol in equation 7.2 is an exponential like equation 1.46, the N -fold

product becomes an exponential with an N -fold sum in the exponent,

α (k (x0) , ξ, ω, 0 : ∆z) =











exp
(

i∆z
N

∑N
j=1

√

ω2

v2
j−ξ2

)

, |ξ| ≤ ω
vj

exp
(

−∆z
N

∑N
j=1

∣

∣

∣

√

ω2

v2
j−ξ2

∣

∣

∣

)

, |ξ| > ω
vj

. (7.3)

Where vj = v(x0, j∆z/N), and the symbol is valid at a given output point (x0,∆z).

In the limit as N → ∞ the summation becomes an integral reminiscent of a wkbj

approximation (see e.g. Aki and Richards, 2002), leading us to the “locally wkbj

operator” (hereafter lwkbj). Practically, this limit is not taken, but rather a finite

number of terms is used. In this work, we have used N = 10, as greater values show

no discernable improvement. As the correction is for kinematic reasons, a zeroth

order wkbj-type correction that addresses only the phase of the symbol is sufficient.

Although real-earth velocity models may contain vertical velocity gradients, this

is not the reason for this approach. The advantage is that a velocity with positive

gradient in z has the effect of limiting the aperture of the migration operator on

the line (x, 0) x ∈ R. Consider a point source at depth in a medium with a positive

vertical velocity gradient. The upward-traveling raypaths from the point source will

all intersect the surface within a finite lateral aperture from the source. Figure 7.1

demonstrates this effect. The effect of the lwkbj process may be seen in amplitude

(Figure 7.2) and phase (Figure 7.3), as it effectively smoothes out the sharp corner

found at the evanescent boundary of the locally homogeneous symbol amplitude.

The stability of this operator was motivated from an intuitive raypath argument

suggesting the limitation of the support of the operator on the input data, however

this symbol amplitude reveals the mathematical source of the new-found stability:

the sharp corner in the original locally-homogeneous symbol amplitude causes trou-

ble via Gibbs phenomenon upon truncation (Morse and Feshbach, 2005, §6.3). If
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Figure 7.1: In the top panel, raytracing through a homogeneous medium is shown.
Note that rays leaving horizontally will travel to infinity. In the bottom panel, rays
are traced through a lwkbj medium. Aperture radius was limited to 20 meters, and
takeoff angles from −90◦ to 90◦ are displayed in ten meter increments
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Figure 7.2: Symbol amplitudes for a locally homogeneous medium and for a lwkbj

medium are compared. xr = 30m, vloc = 2000m/s, v0 = 1785m/s,m = 45s−1, dz =
10m
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Figure 7.3: Symbol phases for a locally homogeneous medium and for a lwkbj

medium are compared. xr = 30m, vloc = 2000m/s, v0 = 1785m/s,m = 45s−1, dz =
10m



149

this sharp corner is removed, the Gibbs phenomenon is significantly reduced and

so stability is enhanced. The lwkbj method provides a fast and simple method

for rounding the corner without losing operator fidelity. The series of terms as in

equation 7.3 shows the origin of the rounding. Effectively there are N terms of suc-

cessively narrower wavelike regions multiplying together. This blurs the evanescent

boundary somewhat, giving the desired “soft” corner.

7.1.2 The ω − x operator

Given the symbol for a psdo operator such as equation 1.46 or 7.3, we can develop

an equivalent operation that takes place in the ω − x domain as

Ψ(x,∆z, ω) =

∫

R

Ψ(x′, 0, ω)W (k(x′), x− x′, 0 : ∆z)dx′ (7.4)

where

W (k(x′), x− x′, 0 : ∆z) =

∫

R

α(k(x′), ξ, ω, 0 : ∆z)eiξ(x−x′)dξ (7.5)

is the nonstationary convolution kernel of the lwkbj operator in the ω − x domain

and α is defined in equation 7.3.

Convolution kernels are shown in figure 7.4, with a foci-stabilized kernel com-

pared to a typical lwkbj kernel and an “overstable” kernel (i.e., its aperture radius

was severely limited to exaggerate the effect). The convolution kernels have a large

spatial extent, but the figures have been limited to show a width of 400m. These

kernels may be transformed back to symbol form using the inverse of equation 7.5,

and so we may examine the amplitude and phase spectra to understand their effects.

The amplitude spectra are compared in Figure 7.5. The foci-stabilized kernel shows

excellent stability in the wavelike region, with some instability near the evanescent

region that must be corrected in the algorithm. The lwkbj-stabilized kernels show
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Figure 7.4: ω− x operator kernel for foci(a), lwkbj with normal stabilization (b),
and lwkbj with overstabilization (c). The kernel is not compactly supported, only
a 400m extent is shown here.
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Figure 7.5: Equivalent truncated ω − ξ symbol amplitude for foci(a), lwkbj with
normal stabilization (b), and lwkbj with overstabilization (c).
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slight instabilities throughout the amplitude spectrum, but with far better control

of the instabilities near the evanescent region. The exaggerated lwkbj kernel shows

the expected improved stability, though the width of the propagating wavelike re-

gion is slightly reduced. Thus the lwkbj operator has a natural damping response

near the evanescent boundary.

The respective phase spectra are compared in Figure 7.6. We expect that the

phase spectra should closely match the phase spectrum of the exact symbol. The

foci-stabilized kernel matches extremely well. The typical lwkbj-stabilized kernel

is comparable to the foci-stabilized kernel. The exaggerated lwkbj-stabilized ker-

nel matches well throughout most of the spectrum, but has significant phase error

near the evanescent boundary. From Figure 7.5, however, the phase error lies exactly

within the newly-damped region. This self-censoring property is due to the variation

in the width of the wavelike region of the amplitude spectra as a function of depth

from z0 → z0 + ∆z. That is, at the end of the interval [z0, z0 + ∆z] the v(x, z) takes

its maximum value which is greater than vloc. This leads to a narrower evanescent

region and therefore a damping of this region and this self-censoring. This corre-

sponds to an effective loss of extrapolation of extremely high-angle components of

the wavefield. Typically, these high horizontal wavenumbers do not contribute much

to the final image, so it is not a significant loss.

7.2 Marmousi migration

Full prestack migrations of the Marmousi model were calculated using both foci

and our lwkbj algorithm. The two migration codes were identical in all respects

except for the different operator kernels.
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Figure 7.6: Equivalent truncated ω−ξ symbol phase for foci(a), lwkbj with normal
stabilization (b), and lwkbj with overstabilization (c).



154

A prestack migration image of the Marmousi model was generated using both

standard foci (Figure 7.7) and lwkbj (Figure 7.8) operator kernels.

Several subsections of the image are compared more closely in Figures 7.9–7.12.

Each figure contains three panels: the velocity model for the region, and the foci

and lwkbj images for that region. On the top, the Marmousi velocity model for the

region is displayed, in the middle, the foci image is shown, and on the bottom the

lwkbj image is displayed.

In region 1 (Figure 7.9) the complex layering is clearly imaged by both algo-

rithms. It is difficult to choose a “better” image, though in several cases (e.g., near

(3600, 1300) and (4400, 1000)) the lwkbj image seems to have better continuity of

the reflectors. In region 2 (Figure 7.10) the images are slightly different. The lwkbj

image seems to display better reflector continuity, but in some cases loses some of

the sharpness of the foci image. In region 3 (Figure 7.11) again, the lwkbj image

seems to have better continuity. Also, the fault line appears more obviously in the

lwkbj image. Finally, in region 4 (Figure 7.12), the reservoir target area is dis-

played. This reservoir target is well-imaged by both algorithms. The lwkbj image

appears to have less noise contamination than the foci image. This is especially

evident in the top-right corner of each region, around (7500, 2250), though it may

be observed throughout the region.

7.2.1 Parameter choice and performance

For the choice of v(z) = v0 +mz, two constraints are required to uniquely determine

the velocity function. Since the v(z) velocity function is purely conceptual, designed

to stabilize the operator and not to represent any physical gradient, for our first

constraint we require that the overall traveltime through the small depth step ∆z
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Figure 7.7: Marmousi image, foci migration with full stabilization. (31 point
forward operator, 41 point inverse operator, 31 point final window, 187.5m effective
operator length.)
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Figure 7.8: Marmousi image, lwkbj migration. (31 point (187.5m) operator, 40m
aperture radius.)
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Figure 7.9: Marmousi region 1. a) Velocity model of the region b) foci image
c) lwkbj image. Note the improved continuity in reflectors near (3600, 1300) and
(4400, 1000)
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Figure 7.10: Marmousi region 2. a) Velocity model of the region b) foci image c)
lwkbj image. The lwkbj may have better reflector continuity, but seems to lose
some focus compared to the foci image.
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Figure 7.11: Marmousi region 3. a) Velocity model of the region b) foci image c)
lwkbj image. The lwkbj image appears to have better continuity, with a more
prominent fault line.
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Figure 7.12: Marmousi region 4. a) Velocity model of the region b) foci image c)
lwkbj image. The reservoir target is well imaged by both algorithms.
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through the v(z) medium match the traveltime through the same depth step at the

velocity model’s local value vref . For our second constraint, we choose the gradient

such that a ray with a takeoff angle of 90◦ at the output point is normally incident

at the input depth at precisely the desired operator’s aperture radius.

This leads us to two equations for the two unknowns. From raypath arguments

(see e.g. Aki and Richards, 2002) it can be shown that, for an aperture radius xr, a

depth step of ∆z, and an initial velocity v0, the required gradient (accelerator) m is

m =
2v0∆z

x2
r − ∆z2

. (7.6)

By equating the traveltimes for a linear v(z) with a constant velocity medium at

vref , the second constraint is given in equation 7.7,

log

(

1 +
m∆z

v0

)

=
m∆z

vref
. (7.7)

From equations 7.6 and 7.7 it is obvious that the aperture xr must not approach

∆z too closely, or a singularity results.

Combining equations 7.6 and 7.7 and solving for v0 yields equation 7.8:

v0 = vref log

(

1 +
2∆z2

x2
0 − ∆z2

)

(x2
r − ∆z2)

2∆z2
. (7.8)

So with equations 7.6 and 7.8, the required v(z) is expressed purely in terms of

reference velocity vref , aperture radius xr and depth-step size ∆z.

A factor in choosing the operator length parameters for the operation of the

lwkbj operator is time-to-compute vs. image quality. Simply put, longer operators

usually mean a better image, but also a slower calculation. In figure 7.13, another

lwkbj Marmousi image with a 101 point (625m) operator and an 80m aperture

is shown. In figure 7.14, a final lwkbj Marmousi image with a 15 point (87.5m)
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operator and a 23m aperture is shown. All calculations were performed using mat-

lab 7.1 on Linux-based PC computers with 3.06 GHz Intel Pentium 4 CPUs. The

31 point (187.5m) operator requires approximately 4 minutes per shot record to

migrate, resulting in a total time of about 16 hours. The 101 point operator re-

quires approximately 4.6 minutes to calculate each shot record, with a total time of

slightly more than 18 hours. The 15 point (87.5m) operator requires approximately

2 minutes per shot record to migrate, resulting in a total time of about 8 hours.

Obviously the calculation time is not directly proportional to the operator length as

there is significant overhead and other numerical complications within the code, but

operator length does have an impact on the total time taken. As can be seen from

a careful examination of figures 7.8 and 7.13, the 101 point operator does result

in small improvements in the quality of the final image. These improvements were

gained at the cost of an extra 15% calculation time. The 15 point operator does

give an interpretable image compared to the 30 point operator, and saves about half

the total computation time. However, the 15 point image does show incipient in-

stability artifacts around coordinates (5000–8000, 2500+), demonstrating that this

stabilization method does have some limitations.

Aperture radius does not directly affect calculation time, since a convolution

kernel designed with a narrower aperture radius but the same operator length will

simply be a padded version of the operator with the shorter aperture radius. That is,

a 31 point operator with a 20m aperture radius will compute in the same time as a

31 point operator with a 30m aperture radius, the only difference will be in stability.

Aperture radius can affect the quality of the image if the radius is not significantly

larger than the depth step of each extrapolation. Also, a smaller aperture radius

does allow a shorter operator length, which will result in a faster calculation. The
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Figure 7.13: Marmousi image, lwkbj migration. (101 point (625m) operator, 80m
aperture radius.)
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Figure 7.14: Marmousi image, lwkbj migration. (15 point (87.5m) operator, 23m
aperture radius.) Instability artifacts contaminate the image near the reservoir
target, (5000 − 8000, 2500+).
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stabilization of the operator is ineffective if the radius is not significantly less than

the radial extent of the operator. In the Marmousi data set, traces are 12.5m apart.

Thus, a 31 point operator has an effective radial extent of 15 × 12.5m = 187.5m.

Therefore, the choice of a 40m aperture radius is smaller than the radial extent of

the operator (187.5m), but greater than the depth step of the extrapolation (12.5m).

Testing on migrations of the Marmousi model suggests that a useful aperture

radius measure is such that the ratio of operator radial extent OL to aperture radius

xr is somewhat greater than the ratio of aperture radius to depth-step size ∆z. Also,

we require that OL > xr > ∆z. Dividing the two ratios and calling the quotient ρ:

(

∆x(OL− 1)/2

xr

)(

∆z

xr

)

= ρ (7.9)

allows a numerical description of the aperture radius xr where OL is the operator

length in points and ∆x is trace spacing in meters. Therefore, aperture radius xr

may be suggested as follows, given that useful values of this ratio are in the range

ρ = (1, 2.5]. Solving equation 7.9 for aperture:

xr =

√

∆x ∆z(OL− 1)

2ρ
. (7.10)

This aperture radius balances the requirement for effective natural truncation of

the operator to avoid Gibbs phenomenon instability, while maximizing the quality

of the final image.

7.3 Conclusions and chapter summary

The extrapolation of Fourier plane waves by the gpspi operator is effectively a

stable operation in the ω− ξ for seismic imaging purposes, but it becomes unstable

when performed in the ω−x domain due to the necessary truncation of an operator
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that is infinitely long. By introducing a local positive vertical velocity gradient into

the design of each operator that preserves vertical traveltime but limits the spatial

extent of the operator to a chosen horizontal distance, it is possible to design an

effectively stable ω − x operator which can produce high-quality migration images

of complicated models like the Marmousi model.

This operator is constructed as the composition of many operators which have

pseudodifferential operator symbols in the form of exponentials. Since we approxi-

mate the composition of these symbols as simply the multiplication of the symbols,

the resulting symbol is also an exponential where the argument is the sum of all ar-

guments of each composed symbol. In the limit where an infinite number of symbols

are composed, this sum may be represented as an integral, leading to a wkbj-style

integrated phase approximation. Although other methods exist to stabilize explicit

ω − x wavefield extrapolation, the main benefit of this approach is its simplicity:

it allows for relatively easy and efficient implementation of a stable version of this

operator.
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Chapter 8

Conclusions

In Chapter 1, a one dimensional wave equation was derived to describe the propa-

gation of the deflection of a string under tension. This may be the simplest wave

equation imaginable, and yet the derivation required a dramatic approximation: we

assumed that there was no finite deflection of the string! This means that any real,

physical situation that may conceivably be adequately described by this equation,

such as the plucking of a guitar string, is strictly incorrect. It is a theoretical wave

equation, that cannot describe exactly any real physical situation.

Virtually every wave equation applied to seismic imaging has an analogous ap-

proximation: we assume that the medium does not change in any finite sense as a

wave passes through it. We have linearized the problem, in that we assume that the

passage of a wave does not appreciably impact the passage of other waves.

Of course, in reality this is strictly not the case, as the material must compress,

expand, or shear some small but non-zero amount in order for a measurable wave-

field to exist. This deformation necessarily alters the density and other physical

parameters of the material in some finite way, and so the passage of the wave must

alter the passage of waves in general, in a non-zero fashion. Presumably all serious

students of the wave equation recognize this approximation, yet we are comfortable

with it in varying degrees. We realize that without this approximation, solutions

to the wave equations derived would be hopelessly intractable for even the simplest

imaginable circumstances.

We also have a fundamental intuition for what this approximation says: the
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passage of a wave does alter the supporting medium, but only in a very small way

that essentially does not impact our investigations. We also have an intuition for

when this assumption is invalid: e.g. when the medium is catastrophically altered

by the deformation. A hammer striking the metal of an anvil may only temporarily

and trivially deform the anvil. A subterranean detonation of a high-yield nuclear

weapon, on the other hand, may be expected to dramatically and permanently

alter the rocks surrounding it1. The wave propagation properties of this rock will

be dramatically non-linear nearby the detonation in this case. Yet we may also

expect that the rock will behave approximately linearly when we are far away from

this source. A linearized wave equation will be hopelessly inadequate in the region

near the explosion, yet may give useful results farther away. The validity of an

approximation depends entirely upon its context.

This linearity approximation is emphasized in order to underscore the fact that

in seismic imaging, we are always making assumptions, and we must continously

question the validity of these assumptions. We must always keep in mind that we

are always finding the wrong answers to not-quite the right questions!

In my research, I have addressed the issue of approximate wave equation solu-

tions in several different ways. I have not directly considered the linearity of the

wave equation as used in the examples in preceding paragraphs, however – this issue

remains hidden underneath the details, lurking. Instead, I have addressed more sub-

tle approximations that do not exist in the “standard” (acoustic) wave equations

as derived in this dissertation, but rather exist within the approximate solutions

to the “exact” acoustic wave equation made under the assumption that the domi-

1There is always a small region in the neighbourhood of a seismic source where non-linear effects
dominate.
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nant wavelength of the propagating wavefield is significantly smaller than the scale

of variation within the medium. These are commonly known as “high-frequency”

approximations. We assume that in the limit where the wavelength becomes much

smaller than the scale of variation in the medium, the approximate solutions we find

converge to the “exact” solutions to the wave equation. Of course, a diminishing

wavelength is equivalent to an increasing frequency.

High-frequency approximations are common in many fields of wave equation

studies. In many of the traditional wave-equation problems, ranging from under-

water acoustic sound propagation to visible-light optics, high-frequency approxima-

tions are frequently justified. In exploration seismology, however, this validity is

worth questioning. Seismic investigations are often conducted with sources that

produce negligible energy at frequencies higher than 100 Hz. Wave propagation

speeds within rocks are rarely slower than, say, 1500 m/s (the nominal acoustic

wavespeed of water). This produces wavelengths of 15 m as a minimum wavelength.

The bulk of exploration seismic energy is more commonly in the 20-30 Hz range,

propagating in rocks with wavespeeds perhaps 3000 m/s or more. This gives more

usual wavelengths of 100 m or larger. Meanwhile, geologic layers frequently have

appreciable variations in wavespeed and other relevant properties on scales of me-

ters or even finer. Even the coarsest determination of geologic layers seldom defines

layers thicker than a few tens of meters. Yet to have a “high frequency” medium for

even the most optimistic case, we require geologic layering to vary on spatial scales

such that 15 m is a negligible distance in comparison. This is grossly unrealistic,

and it behooves us to consider the validity of the results that are derived based on

our questionable assumptions.

In Chapter 2, I showed the results of my investigations into one of the most com-
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mon high-frequency approximate solutions to the wave equation, the eikonal equa-

tion. Here I demonstrated that eikonal solutions in proxy velocity models that are

essentially smoothed versions of the “true” velocity model can yield traveltimes that

more closely match the traveltimes derived from solutions to the wave equation made

without a high-frequency approximation. In a heuristic sense, low-frequency wave-

fields appear to propagate approximately as high-frequency wavefields in a smoothed

version of the original medium. This is directly and economically useful in virtually

any wave equation problem that requires efficient approximate solutions when the

medium is variable on length scales that are comparable to the dominant wave-

lengths of the wavefield: simply solve an eikonal equation in a smoothed version of

the medium, and the solution will be useful at lower frequencies.

In Chapter 3, I investigated a very different sort of high-frequency approxima-

tion, but with some shared characteristics with the results in Chapter 2. In this

chapter, I worked with pseudodifferential solutions to the “exact” wave equation.

These solutions, in principle, can yield exact, full-frequency validity. Unfortunately,

they are computationally excruciating to calculate. To bring these algorithms into

useability, we approximate the operator symbol using a high-frequency approxima-

tion. That is, the operator symbol is exact in the limit ω → ∞, and approximate

for any finite ω. This is a much lower-level high-frequency approximation, that will

yield much more valid results at a wider range of frequencies than a high-frequency

approximation to the wavefield directly. In this case, as with the eikonal solu-

tions, I have shown that performing the high-frequency approximate solution on a

smoothed version of the full velocity model can give an operator symbol that more

closely matches the full-frequency operator symbol. Again, this is directly and eco-

nomically useful in that it allows a higher fidelity solution without introducing any
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significant extra computational or analytical complexity.

Chapter 4 shows the results from my work to incorporate a more physically de-

scriptive operator symbol based on mathematical theory. This theory effectively

introduces a dependence on a derivative in horizontal slowness of the medium into

the symbol. Since the locally-homogeneous approximation is effectively a high-

frequency approximate symbol, this work extended the symbol beyond this. Al-

though the overall economic benefits of this extended symbol were slight, I believe

it was certainly worth investigating whether the standard elliptic pseudodifferen-

tial calculus could be employed directly to improve imaging with gpspi and related

algorithms. The shortest way to state the result of this investigation is, “not eas-

ily”. I believe that this result underscores the overall effectiveness of the locally

homogeneous operator, though it does leave open a possibility for the improvement

of gpspi-type algorithms with the elliptic calculus, if significant technological chal-

lenges are adequately addressed.

Chapter 5 approaches the high-frequency approximation from a different angle.

Rather than introducing an idea which extends the high-frequency approximation

to a lower frequency regime, instead I adapt an existing full-frequency algorithm to

a new application. With this work, I show that it is feasible to consider using Early

Arrival Waveform Tomography for time-lapse seismic monitoring. Its development

was motivated by seismic imaging and migration, but I believe that it could see

significant use in the detection of a time-dependent change in an underlying velocity

model. Practical acquisition constraints are considerable, but not insurmountable.

In Chapter 6, I continue in a similar direction. Instead of introducing a new al-

gorithm to directly extend the range of validity of approximate solutions, this work

on the measurement of the convergence of plane wave migrations was intended to
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assist in the adoption of existing algorithms which make fewer (i.e. less strict) high-

frequency assumptions. Although the gpspi algorithm contains a high-frequency

approximation in the design of the operator symbol, it is a much milder approxima-

tion than found in e.g. the eikonal equation, or other approximations that apply a

high-frequency assumption directly to the wavefield. In this work, I am intending to

make a higher fidelity algorithm like gpspi more palatable for general commercial

use by allowing for the efficient measurement of the convergence of a plane wave

gpspi migration algorithm. This imaging algorithm can help to reduce the compu-

tational cost of seismic imaging, and a useful measurement of this improvement can

definitely assist in the widespread use of these sorts of algorithms.

Finally, in Chapter 7, I extend the operator symbol in gpspi again, this time

in order to incorporate a derivative in the vertical velocity model. Although in a

sense this does incorporate a more interesting local model of velocity than the simple

locally-homogeneous symbol, the true benefit is not the inclusion of more compli-

cated physics. In fact, the actual useful part of this vertical gradient ends up being

the simplification of the implementation of gpspi-type algorithms. Algorithms of

this type frequently end up being most efficiently applied in the space-frequency

domain. The vertical gradient has a net effect of stabilizing the Gibbs phenomenon

which develops in a näıve implementation of gpspi in this domain. This is a similar

overall benefit to that shown in Chapter 6: although we are not introducing a new

broader-frequency validity, we are making an existing algorithm that has attrac-

tive low-frequency features much more practical and attractive to use in standard

migration.

In conclusion, practical solutions to the wave equation invariably involve at least

some level of approximation. Simply put, they’re wrong. My overall accomplishment
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during the completion of my dissertation has been to carefully look at especially the

high-frequency assumptions within these solutions that underlie modern exploration

seismic imaging, and to extend the range of validity of those solutions at least

somewhat towards the range of frequencies/wavelengths that are common in seismic

imaging.

In short, I have made seismic imaging less wrong than ever.
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