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Abstract

Four aspects of reverse-time migration are discussed. They are wave modelling,

computational boundaries, reverse-time migration algorithms, and computational re-

sources.

Wave modelling is a part of reverse-time migration. Finite-difference methods

based on staggered-grid schemes are studied to model wave phenomena in elastic

media. Modelled wave cases include 1D P-wave, 2D SH-wave, 2D P-SV wave and

3D-wave cases, and analyzed wave phenomena and seismic problems include wave ve-

locity, wavelength, geometrical spreading, seismic resolution, surface boundary, seis-

mic reflection, transmission, and diffraction, different situations of head waves, guided

waves, Rayleigh waves, rigid boundaries, and so on. It is found that the modelling

results are usually faithful to the real world and are consistent with seismic theories.

The computational boundary problem has been a persistent topic in the literature

of wave modelling. After examining two of the most popular solutions to the problem,

absorbing boundary conditions, and a nonreflecting boundary condition, a method

of combining these two solutions is proposed. The proposed method results in fewer

boundary reflections with little computational cost.

Reverse-time migration is the heart of the dissertation. There are three special

features of the method studied in the dissertation. One feature is the finite-difference

method employed. People have practiced wave modelling on both non-staggered and

staggered grids, but they rarely use staggered-grid schemes in reverse-time migration

despite the known advantages the staggered-grid schemes. This dissertation applies
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a staggered-grid scheme to reverse-time migration. The second feature about the

migration method is a new method of imaging conditions for elastic reverse-time

migration, which is referred to as ‘source energy normalized imaging conditions’. The

third feature is the reverse-time migration workflow for multicomponent seismic data

processing. It is unique in some way. For example, ground roll suppression is not a

necessary part in the workflow.

High demands of computational resources pose challenges and are a drawback

for finite-difference depth migration methods. On this topic, the dissertation briefly

discusses parallel computing and the problem of disk space.
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Symbols, notations, and

abbreviations

Notations

• A vector is indicated by boldface type. For example, u denotes a displace-

ment vector, while ui is a scalar denoting a displacement component in the ith

direction.

• Newton’s notation for differentiation, also called the dot notation: a dot placed

over the function name to represent a time derivative, i.e., if y = f(t), then

ẏ denotes the first derivative of y with respect to t and ÿ denotes the second

derivative of y with respect to t.

• Complex exponential notation of harmonic waves: ψ = Aei(κx−ωt) is used to

describe an harmonic wave ψ = A cos(κx − ωt), where A is the amplitude, κ

is the circular wavenumber, ω is the circular frequency, and it is understood

that only the real part of the complex exponential is physically valid. That is,

although mathematically ψ = Aei(κx−ωt) = A cos(κx − ωt) + iA sin(κx − ωt),

only the part of A cos(κx − ωt) describes the physical quantity of the wave.

With the use of complex exponential notation, the calculations must be linear

(Krebes, 2006).
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Chapter 1

Introduction

The main objectives of this dissertation are to study an elastic wave modelling method

and to sketch a reverse-time migration algorithm, which is a prestack depth migration

for processing multicomponent seismic records.

This chapter starts with two background concepts, multicomponent and depth

migration, and then briefly reviews four aspects: wave modelling, computational

boundary conditions in modelling, reverse-time migration, and challenges of com-

putational resources. At the end of this chapter, the agenda of this dissertation is

listed.

1.1 Background: multicomponent and depth migration

1.1.1 Single-component and multicomponent

Seismic imaging technologies have advanced to a stage featured by elastic wave and

multicomponent seismic data, although single-component seismic reflection surveying

is still the working horse of exploration seismology.

Single-component (P-wave, or acoustic) surveying remains the primary seismic

method in oil and gas exploration. This is due to at least two reasons. First, single-

component reflection seismology simplifies yet highly abstracts the real wave phe-

nomenon. Regarding surface waves as noise, among all the other strongest waves,
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Figure 1.1: Single-component reflection and refraction concepts.

such as direct arrivals, reflected waves, and refracted waves, the P wave is usually the

strongest mode with the highest signal-to-noise ratio (Figure 1.1). When the source-

receiver offset is not very far and the subsurface reflectors are deep enough, vertical

particle motions recorded on the earth surface are mainly caused by P waves. Thus,

seismic images derived from the single-component reflection and refraction survey-

ing are very reliable. Second, based on the layered earth model and the concept of

Common Depth Point (CDP), which, again, are highly abstracted, academic and com-

mercial organizations have developed very elegant algorithms and software systems to

retrieve the subearth structures. Among all the algorithms of statics corrections, ve-

locity analysis, NMO correction, deconvolution, migration, and so on, CDP stacking

is a very important step for the reduction of noise (Lines and Newrick, 2004, chap.

5).

Multicomponent surveying started to be widely employed, for good reason. A

model of elastic media is a more accurate approximation of the real earth, compared

to the acoustic model for single-component surveying. Thus, multicomponent survey-



3

������ ������

�	
���
������

�

� �

�	
���
�����

Figure 1.2: Particle displacements in a 2D elastic medium can be decomposited to
horizontal(H) and vertical(V) components.

ing, which is based on the elastic model, usually provides more details on subearth

structures.

To record waves on surface of elastic media, one needs multicomponent receivers.

Particle displacements of waves can be decomposed into X-Y-Z components in 3D.

Figure 1.2 illustrates the decomposition of P and S waves in 2D, with ‘H’ denoting a

horizontal component and ‘V’ denoting a vertical component. Thus, any of the three

components (vertical, radial, and transverse) of a surface record always include both

P and S waves.

However, the vertical component of surface records is called PP data or PP waves,

and the horizontal component is called PS data or PS waves in exploration seismic

literature. There are two reasons. The first reason is the way people work with elas-

tic waves. People are focusing on a particular conversion: a downward-propagating

P wave, converting on reflection at its deepest point of penetration to an upward-

propagating S wave (Stewart et al., 2002). Comparing to S-to-S, S-to-P, or any other

transmitted or multiple conversions, the P-to-S conversion is usually the primary one,

with higher amplitudes. The second reason is that people make an assumption that

ray-paths of reflections are predominantly vertical in the near surface.
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In this dissertation, the author uses the names of vertical/horizontal component

instead of following the PP/PS tradition. Nevertheless, the term ‘PP’ is used to

denote a P-wave reflection of an incident P wave, and ‘PS’ an S-wave reflection of an

incident P wave, and so on and so forth.

1.1.2 Time migration and depth migration

Migration algorithms are categorized into two fundamental types: time migration and

depth migration. “We take the view that, roughly speaking, ‘time migration’ refers

to migration algorithms that pay no attention to ray bending, and ‘depth migration’

refers to algorithms that do honor ray bending. The distinction between time and

depth migration is actually more vague than that, . . . . In practice there is a sizeable

‘gray area’ between time and depth migration” (Gray et al., 2001). Reverse-time

migration is regarded as a typical depth migration algorithm, although there is the

word ‘time’ in the name.

There are advantages of time migration over depth migration. First of all, time

migration generally requires much less computational resources, in terms of comput-

ing CPU time and computer memory requirement. In fact, this is the main reason

that historically the development of time migration proceeded in advance of depth

migration. Second, time migration is more robust to subsurface model errors, while

depth migration is very sensitive to those errors. Third, seismic processors and inter-

preters often need to work in time coordinates, because surface seismic data, most of

the available processing (filtering, migration, etc.) and interpretation techniques and

tools, are in time and frequency.

Time migration mispositions subearth events in the presence of lateral velocity
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Figure 1.3: Time migration mispositions a point diffractor below a dipping layer
interface (adopted from Black and Brzostowski (1994)). A similar subearth model
shown in Figure 4.20 is used in reverse-time migration, and the migrated section is
shown in Figure 4.22.

variation (Black and Brzostowski, 1994; Bevc and Palacharla, 1995; Gray et al., 2001).

Even if the correct velocity is used, time migration mispositions events whenever the

velocity changes laterally (Figure 1.3). These errors increase with lateral velocity

variation, depth of burial, and dip angle. Black and Brzostowski (1994) listed formulae

for error calculation.

Depth migration is more ambitious than time migration, but it has not always lived

up to expectations. Nevertheless, depth migration is a more powerful interpretive

processing tool, and its results can give us greater confidence in both the geologic

structure and the velocity field than the results of time migration can (Gray et al.,

2001). Also, we ultimately drill to geologic targets that are in depth, so at some

point, there must be a conversion of seismic reflections in time to the depth domain.

Depth migration can provide the best method for such conversion.
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1.2 Elastic wave modelling

Seismic modelling plays an important role in data acquisition, processing, and in-

terpretation. Lines and Newrick (2004, chap. 15) summarized six uses of seismic

modelling: design of seismic experiments, prediction of results, enhanced interpreta-

tion, inversion, testing processing algorithms, and examining effects of noise.

Lines and Newrick (2004, chap. 15) also listed most typical modelling methods,

including normal-incidence reflectivity, amplitude variation with offset, ray tracing,

wave-equation finite-difference (FD) or finite-element (FE) solutions, and physical

modelling. Among them, wave-equation methods are regarded as a more expensive

category, but they can offer more general and complete seismic models than other

methods.

Finite-difference methods are practiced on numerical grid of nodal points both in

space and time. Depending on the choice of the nodal points, the grid scheme can

be classified in two broad categories: staggered and non-staggered. Seismologists use

both schemes to simulate elastic wave phenomena.

Two classic papers about non-staggered grid schemes are by Alterman and Karal

(1968) and by Kelly, Ward, Treitel, and Alford (1976). Alterman and Karal (1968)

proposed a very successful seismic source modelling method. Kelly et al. (1976)

generalized non-staggered grid schemes for heterogeneous media, further developed

the seismic source modelling method by Alterman and Karal (1968), and proposed

free-surface boundary conditions. The free-surface boundary conditions are widely

referred to as ‘the vacuum method’.

Two classic papers about staggered-grid schemes are authored by Virieux (1984,

1986). The first one (Virieux, 1984) talks about SH wave modelling, and the second
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one P-SV wave case. Both methods use particle velocities and stresses, with the

physical nodes on staggered grids. The models used are in 2D. Finite-difference

approximations are in the second order. The algorithms are in the time domain.

Staggered-grid schemes have been further developed ever since Virieux’s two pa-

pers. Levander (1988) proposed a forth-order method. Ohminato and Chouet (1997)

extended the method to 3D. Manning (2008) proposed techniques to enhance the

accuracy and efficiency of modelling in the frequency domain, using only particle dis-

placement in his modelling. The most recent development based on the staggered-grid

is on anisotropic fractured coalbed modelling (Pei, Fu, Sun, Jiang, and Zhou, 2012).

There are advantages of staggered-grid schemes over non-staggered grid ones. It

has been shown that staggered-grid schemes deal with liquid-solid interface without

the need for special treatment, which is not the case for non-staggered grid schemes

(Virieux, 1986; Levander, 1988; Stephen, 1988). Besides, the implementation of seis-

mic energy sources is much easier in staggered-grid schemes.

1.3 Computational boundary

A computational boundary problem arises from the limitation of available compu-

tational resources. This problem has been a persistent topic in the field of wave

phenomena modelling. Migration algorithms also have to deal with these boundaries.

1.3.1 The problem

Computational boundaries are different from the physical boundaries in media. In

the real world, physical boundaries are rock-rock, rock-water, water-air, rock-air in-

terfaces. In seismic modelling, in addition to those physical boundaries, there exist
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(a) A finite difference approxima-
tion for 2D acoustic wave equation

(b) Problem: an unavailable value at a
computational boundary

Figure 1.4: The computational boundary problem of a 2D finite-difference grid. Fig-
ure 3.7 illustrates one of the solutions.

computational boundaries. For example, for a 2D subsurface model of the shape of a

rectangle, the physical boundaries are a free surface on the top and rock boundaries

inside the subsurface, and the computational boundaries are a bottom boundary and

two sides on the left and right.

The computational boundary problem arises as follows. Finite-difference methods

estimate a wavefield value of a given subsurface node at a given time from the wave

field values of the same node and surrounded nodes at the previous times. Figure

1.4a sketches a finite difference approximation for the acoustic wave equation. When

a node is surrounded by other nodes in all four directions, the approximation can be

done. However, if a node is at the subsurface computational boundary and one of

its surrounding nodes is missing, how should one do the finite-difference calculation?

Figure 1.4b shows the problem.

If the wavefield values on the computational boundaries are set to zero, the re-
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sulting boundaries act like physical rigid boundaries. All the incident seismic energy

strikes upon a rigid boundary will be reflected back.

1.3.2 Known solutions

There are a lot of solutions to the boundary condition problems. The most cited

method for boundary conditions is the ‘absorbing boundary conditions’ proposed by

Clayton and Engquist (1977). Another popular method, called the ‘nonreflecting

boundary condition’, was presented by Cerjan, Kosloff, Kosloff, and Reshef (1985).

There are some other solutions as well, such as ‘transparent boundary’ by Long and

Liow (1990) and ‘Perfectly Matched Layer’ method by Collino and Tsogka (2001).

1.4 Reverse-time migration

Recent advances in technologies have made reverse-time migration commercially avail-

able, although the method was considered impractical due to its high requirements on

computational resources and its sensitivity to velocity models. For example, ION’s

subsidiary, GX Technology (GXT), states that it commercially introduced reverse-

time migration in 2005, and has used it effectively on 26 projects spread throughout

the world. “Significant improvement can be achieved both in the model building and

final migration by employing the two-way reverse time migration technique. It is the

combination of model building and migration that is the key to successful imaging”

(Ion, 2012).

Reverse-time migration is far more faithful in representing the full wave prop-

agation phenomena than most of the other migration methods, such as Kirchhoff

migration, and one-way wavefield extrapolation migration (Leveille1 et al., 2011).
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Due to high prices and increased difficulties in finding shallow deposits, exploration

and exploitation of hydrocarbon resources are expected to be moving to greater depths

and to deal with more complicated subearth structures. Consequently, reverse-time

migration will become a more important tool.

Reverse time migration was first derived for acoustic poststack migration based

on the exploding reflector model by McMechan (1983) and Whitmore (1983). Since

then it has advanced to elastic prestack forms (Chang and McMechan, 1986; Sun and

McMechan, 1986; Chang and McMechan, 1987; Sun and McMechan, 1988). Bord-

ing and Lines (1997) presented an excellent tutorial on modelling and reverse-time

migration.

The imaging principle and imaging conditions are the heart of reverse-time migra-

tion algorithms, and there is extensive literature about it. Claerbout (1971) stated the

imaging principle, “Reflectors exist at points in the ground where the first arrival of

downgoing wave is time coincide with an upgoing wave”, and proposed two methods

for imaging conditions, with one using a ratio of upgoing over downgoing wavefield

amplitudes, and the other using cross-correlation between downgoing and upgoing

wavefields, formulated in both frequency and time domains. Whitmore and Lines

(1986) proposed source normalized cross-correlation method. Chang and McMechan

(1987) used ray tracing. Loewenthal and Hu (1991) proposed two methods: one is

by maximum amplitude criteria, and the other is by minimum time criteria. Biondi

and Shan (2002) practiced the cross-correlation method. Kaelin and Guitton (2006)

proposed to normalize the cross-correlation by upgoing wavefields. Chattopadhyay

and McMechan (2008) summarized several methods: excitation-time imaging condi-

tions, which is similar to methods of Loewenthal and Hu (1991), cross-correlation
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imaging conditions, and ratio of upgoing over downgoing wavefield amplitudes. The

most recent technologies on imaging conditions are developed for elastic reverse-time

migration. For example, Yan and Sava (2007) presented elastic imaging conditions

based on wavefield decomposition, and Du, Zhu, and Ba (2012) applied source normal-

ized cross-correlation method with polarity reversal correction for elastic reverse-time

migration.

People apply finite-difference methods for elastic wave modelling on both non-

staggered and staggered grid. However, only non-staggered grid schemes are widely

employed in elastic reverse-time migration, while staggered-grid schemes are rarely

employed in reverse-time migration algorithms. When I was starting my elastic

reverse-time migration studies in 2009, the only document that I had found using

a staggered-grid scheme is by Wang (2000). However, that algorithm needs both

particle velocity and pressure data to be recorded.

1.5 Computational resources

High demand of computational resources, such as CPU time, memory, disk space,

network speed, and so on, is a drawback for finite-difference methods. Among the

challenges, CPU time is the number one. For example, Martin (2004) used 8 CPU

years to do modelling with Marmousi2 model.

The solution to the high demand of computational CPU time is parallel comput-

ing. According to the hardware used, parallel computing can be roughly classified to

two types: multi-core and multi-processor (hereafter referred to as multi-core) par-

allel computing using a single computer, and distributed parallel computing using

multiple computers, such as cluster computers.
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In the exploration seismology literature, Gavrilov, Lines, Bland, and Kocurko

(2000) have already practiced parallel computing to accelerate reverse-time migration.

They used the message-passing interface (MPI) to develop the distributed parallel

implementation and carried out the computing on a cluster computer.

Multi-core computing is a relatively new and rapidly developing technique. It

has become popular since 2005. During 2005, Intel R© developed its first dual-core

processor. In the following year it released Intel R© Threading Building Blocks (TBB),

a C++ template library, for writing software programs that take advantage of multi-

core processors. Computer hardware and software have been rapidly developed ever

since. Nowadays, computers with 16-core CPU’s are very common, and Intel R© TBB

has upgraded to version 4.0.

1.6 Dissertation outline

The main content of the dissertation is organized into four chapters: wave modelling,

computational boundary conditions, reverse-time migration, and computational re-

sources.

The next chapter, Chapter 2, is about elastic wave modelling by a staggered-grid

finite-difference scheme. Starting from equations about seismic waves, the chapter

details 1D P wave, 2D SH wave, 2D P-SV wave, and 3D wave modelling. Wave

modelling ingredients, including finite-difference scheme, free-surface boundary, seis-

mic energy source, subsurface model building, and so on, are integrated together to

form an elastic wave modelling system. In order to validate the correctness of the

modelling algorithms and coded programs and to find the pitfalls coming with them,

numerical modelling results are compared to mathematical analysis. And doing so,
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for myself, leads to better understandings of wave phenomena and seismic concepts,

including seismic energy sources, guided waves, head waves of different situations,

Rayleigh waves, and so on.

Chapter 3 addresses computational boundary conditions. First, rigid boundaries

are mathematically analyzed and numerically modelled. Then, absorbing bound-

ary conditions (Clayton and Engquist, 1977) and a nonreflecting boundary condition

(Cerjan et al., 1985) are examined. At last, a combined boundary condition is pro-

posed and results are compared to those of absorbing and nonreflecting boundary

conditions.

A prestack reverse-time migration workflow is sketched in Chapter 4. Some well-

known methods of imaging conditions in the literature are examined using a point

reflector subsurface model. Then, a new imaging condition for multicomponent data

processing, called energy normalized imaging condition, is described, and the results

are compared to other imaging conditions. The sketched workflow is very different

from traditional seismic data processing. For example, removal of ground roll in sur-

face records is not needed at all. Migration results of a shrunk Marmousi2 model are

created and interpreted, to demonstrate the characteristics of the proposed imaging

condition. Finally, in order to further demonstrate the correctness of reverse-time

migration, a migrated section from a dipping-layer model is presented.

Discussions on challenges of computational resources are included in Chapter 5.

The problems of computational time and disk space requirement are described, and

solutions to those problems are proposed.
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Chapter 2

Elastic wave modelling

After the theory on seismic waves and seismic source wavelets, this chapter details

modelling of 1D P wave, 2D SH wave, 2D P-SV wave, and 3D wave.

The discussion is not only about the modelling method itself, but also about

understanding wave phenomena and seismic theories by modelling. A modelling al-

gorithm integrates a finite-difference implementation, a seismic energy source scheme,

a free-surface boundary condition, computational boundary conditions, and subsur-

face models. Comparing modelling results to theoretical analysis leads to not only

better understandings of the modelling method itself, but also better understandings

of wave phenomena and theory, such as free-surface effect, guided waves, Rayleigh

waves, tuning effect, geometrical spreading, different kind of head waves, seismic

diffractions, and amplitude variation with offset (AVO).

2.1 Equations about seismic waves

Equations describing waves in elastic media include three relations: displacement-

stress relations, stress-strain relations, and displacement-strain relations. In addition,

the relations between traction and stress are important in describing free surfaces.
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2.1.1 Equation of motion: displacement-stress relations

By applying Newton’s second law of motion to a volume, the equation of motion can

be derived as,
3∑

j=1

∂σij

∂xj

+ fi = ρ
∂2ui

∂t2
, i = 1, 2, 3, (2.1)

where i and j are directions, σij is a stress tensor, fi is a force density, ρ is density, and

ui is a displacement component. Assuming body forces (e.g., gravity) are negligible,

the equation of motion becomes,

3∑
j=1

∂σij

∂xj

= ρ
∂2ui

∂t2
, i = 1, 2, 3. (2.2)

Thus, equation of motion indicates the relationship between particle displacements

and stresses.

In this dissertation, x1, and x2 are horizontal directions, and x3 is the vertical

direction. Sometimes, x, y, and z are used instead.

2.1.2 Stress-strain relations

Hooke’s law tells us that the force acting on a spring is a linear function of the spring’s

displacement. Similarly, stresses acting on an elastic medium are linearly related to

strains. Thus, the stress-strain relations for an isotropic medium are

σij =
3∑

k=1

3∑

l=1

cijklekl, i, j = 1, 2, 3, (2.3)

where σij is a stress tensor, cijkl is an elastic constant, and ekl is a strain tensor.

For an isotropic medium, whose physical properties are the same in all directions,
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an elastic constant can be denoted by Lamé constants as

cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.4)

where λ and µ are Lamé constants, and δij is Kronecker delta, which is defined by

δij =





1, if i = j;

0, if i 6= j.

(2.5)

Thus, the stress-strain relations for an elastic medium can be derived as,

σij = λDδij + 2µeij, i, j = 1, 2, 3, (2.6)

where D =
∑

k ekk = ∇ · u is the dilatation.

2.1.3 Displacement-strain relations

Displacement-strain relations, mathematically shown below, are gained from the def-

inition of strain.

eij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

), i, j = 1, 2, 3 (2.7)

2.1.4 Displacement-stress-strain relations

Combining the equation of motion, the stress-strain relations for an isotropic medium,

and the displacement-strain relations, one obtains a system as follows:

ρ
∂2ui

∂t2
=

3∑
j=1

∂σij

∂xj

, i = 1, 2, 3, (2.8a)
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σij = λDδij + 2µeij, i, j = 1, 2, 3, (2.8b)

eij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

), i, j = 1, 2, 3. (2.8c)

The above equation system is referred to as 3D displacement-stress-strain relations

for an isotropic elastic medium in this dissertation. All the modelling cases described

in the dissertation, including 1D P waves, 2D SH waves, 2D P-SV waves, and 3D

waves, are derived or simplified from the displacement-stress-strain relations.

2.1.5 Traction, stress tensor, and free-surface boundary condition

Following the convention of the course notes by Krebes (2006), one can denote the

relations between traction and stress tensor as

σij = Ti(ej) (2.9)

where Ti denotes a traction component, e denotes a unit vector normal to a surface,

the index i denotes the direction of the traction component, and the index j denotes

the direction normal to the surface on which the traction is applied.

Suppose one uses the top of a 3D cubic volume to model the free earth surface,

the traction component normal to this horizontal planar top is zero. That is

T3

∣∣∣∣
x3=0

≡ 0. (2.10)

Thus for 3D wave propagation, the free-surface boundary conditions at a horizontal
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planar surface are

σ3j

∣∣∣∣
x3=0

= T3(ej)

∣∣∣∣
x3=0

= 0, j = 1, 2, 3. (2.11)

Later in the dissertation, for modelling cases other than 3D, i.e., for 1D P waves, 2D

SH waves, and 2D P-SV waves, the above conditions are simplified and used.

The stress tensor is symmetric:

σij = σji i, j = 1, 2, 3. (2.12)

This property is used in the dissertation later without being referred to.

2.2 Seismic wavelets

There are many choices of wavelets in the literature. Ryan (1994) discussed four

common ones, Ricker, Ormsby, Klauder, and Butterworth wavelets. Alterman and

Karal (1968) proposed a time source. Manning (2008) discussed a time differentiated

Ricker wavelet. The characteristics and shapes of these wavelets are different from

each other.

Among the various wavelets mentioned above, Ricker, Ormsby, and time differen-

tiated Ricker wavelets have the benefit that it is easy to control their frequency range.

Their characteristics are analyzed below. Eventually, Ricker and time differentiated

Ricker wavelets are used in this dissertation.
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Figure 2.1: Two Ricker wavelets and their spectra. The peak frequencies are 25Hz
and 40Hz.

2.2.1 Ricker wavelets

Ricker wavelets are employed throughout the dissertation. A Ricker wavelet r(fp, t)

with a given peak frequency fp is denoted as

r(fp, t) = (1− 2π2f 2
p t

2)e−π2f2
p t2 , (2.13)

where t denotes time.

Figure 2.1 shows two Ricker wavelets and their amplitude spectra. Note that there

is a time shift of 0.6s applied for the Ricker wavelets.

The characteristics of a Ricker wavelet are uniquely decided by the peak frequency

fp. As shown in Figure 2.1a, the breadth of a wavelet in time domain is inversely

proportional to the peak frequency; on the other hand, as shown in Figure 2.1b, the
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spectrum amplitude at the peak frequency is the highest.

2.2.2 Ormsby wavelets
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Figure 2.2: An Ormsby wavelet and its spectrum. The characteristic frequencies are
20Hz, 25Hz, 35Hz, and 40Hz.

Ormsby wavelets was used in Marmousi2 modelling by Martin (2004). An Ormsby

wavelet o(f1, f2, f3, f4, t) with a given frequency range fp is denoted as

o(f1, f2, f3, f4, t) = πf 2
4 sinc

2(πf4t)/(f4 − f3)

− πf 2
3 sinc

2(πf3t)/(f4 − f3)

− πf 2
2 sinc

2(πf2t)/(f2 − f1)

− πf 2
1 sinc

2(πf1t)/(f2 − f1),

(2.14)
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where f1, f2, f3, and f4 are, respectively, low-cut, low-pass, high-pass, and high-cut

frequencies of the Ormsby wavelet. The characteristics of an Ormsby wavelet are

decided by those four frequencies.

Figure 2.2 shows an Ormsby wavelet, with characteristic frequencies 20Hz, 25Hz,

35Hz, and 40Hz, and its spectrum feature. Note that there is a time shift applied to

the wavelet.

As observed, a Ricker wavelet has only two side lobes, while an Ormsby wavelet

has many side lobes. Both wavelets are symmetric.

2.2.3 Time differentiated Ricker wavelets
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Figure 2.3: A wavelet obtained by taking time derivative of a Ricker wavelet. The
peak frequency of the original Ricker wavelet is 25Hz.

Both the Ricker wavelet and the Ormsby wavelet discussed are symmetric. Oc-
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casionally, one may need wavelets that are not symmetric. For example, in order to

observe the phase change of a wave reflected upon a free surface or a rigid boundary,

it is inconvenient if the incident wave has a symmetric waveform.

There are many forms of asymmetrical wavelets available, such as Butterworth

wavelets, time derivative of a Gaussian function, and a wavelet presented by Alterman

and Karal (1968). However, a wavelet obtained by taking time derivative of a Ricker

wavelet is selected as the asymmetrical wavelet used in this dissertation. The wavelet

is referred to as a time differentiated Ricker wavelet. The main reason that this

wavelet is chosen is that when double Ricker seismic source is applied, some times

the resulting wavelet is in the shape of the time derivative of a Ricker wave (Manning,

2008).

A time differentiated Ricker wavelet ṙ can be obtained by taking derivative with

respect to time of the Ricker function (2.13).

ṙ(t) = 2π2f 2
p t(2π

2f 2
p t

2 − 3)e−π2f2
p t2 . (2.15)

However, a convenient alternative is using central difference approximation to

calculate the discrete series of a time differentiated Ricker wavelet from a Ricker

wavelet with a given peak frequency as

ṙ(tn) =
r(tn+1)− r(tn−1)

2∆t
, (2.16)

where ∆t is the numerical time step.

Figure 2.3 shows a time differentiated Ricker wavelet, with the original Ricker

wavelet peak frequency 25Hz, and its amplitude spectrum. A Ricker wavelet with a
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peak frequency of 25HZ and its amplitude spectrum are shown in Figure 2.1. It is

observed that the peak frequency of the time differentiated Ricker wavelet is around

30Hz, which is higher than the original Ricker wavelet.

Mathematically the peak frequency change is reasonable. Denoting spectrum of

r(t) as r̄(ω), the spectrum of ṙ(t) is−iωr̄(ω), where−i is a 90◦ phase shift operator not

changing the amplitude spectrum, and the factor ω leads to richer higher frequency

spectrum and poorer lower frequency spectrum of ṙ(t) than those of r(t). For more

details, please see Chapter 6 of Krebes (2006).

2.3 1D P wave modelling

Following the description of the modelling algorithm, some modelling examples are

presented to analyze the algorithm.

2.3.1 Algorithm

Usually a wave modelling algorithm based on a staggered-grid scheme involves the

following items.

• A simplified elastodynamic equation system. This is derived from equations

about seismic waves (Equation 2.8).

• A velocity-stress system. This is derived from the elastodynamic equation sys-

tem.

• A finite-difference implementation.

• A free-surface boundary scheme.

• Computational boundary conditions.

• A seismic source scheme.
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• Subsurface models.

Elastodynamic equations

Consider a plane P wave travelling in the vertical direction x3, with particle vibrations

in the direction of wave propagation. In this case, there is no horizontal particle

vibrations, and only the normal stresses and normal strains parallel to the vertical

direction exist, i.e.,

ui ≡ 0, i 6= 3, (2.17a)

σij ≡ 0, i, j 6= 3, (2.17b)

eij ≡ 0, i, j 6= 3. (2.17c)

Substituting the above equations into the 3D displacement-stress-strain relations

(2.8), one can get 1D P-wave elastodynamic equations

ρ
∂2u3

∂t2
=
∂σ33

∂x3

, (2.18a)

σ33 = (λ+ 2µ)
∂u3

∂x3

, (2.18b)

Velocity-stress system

Denoting particle vibration velocity as v, the relationship between particle velocity

and particle displacement can be denoted as

∂u3

∂t
= v3. (2.19)
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Substitution of Equation (2.19) into Equation (2.18a) yields

ρ
∂v3

∂t
=
∂σ33

∂x3

(2.20)

Taking partial derivative with respect to time in equation (2.18b), and substituting

equation (2.19) into the resulting equation, one obtains

∂σ33

∂t
= (λ+ 2µ)

∂v3

∂x3

. (2.21)

Combining the above two equations, (2.20) and (2.21), one obtains 1D velocity-

stress system for an isotropic medium as

ρ
∂v3

∂t
=
∂σ33

∂x3

, (2.22a)

∂σ33

∂t
= (λ+ 2µ)

∂v3

∂x3

. (2.22b)

Note that the word “velocity” in the term “velocity-stress system” stands for the

particle vibration velocity, which is different from a wave propagation velocity.

Although the more commonly referred wave equations are not used in this dis-

sertation, it is interesting to find the connections between wave equations and the

velocity-stress wave systems. For example, if one substitutes equation (2.18b) into

equation (2.18a), one gets

ρ
∂2u3

∂t2
=
∂((λ+ 2µ)∂u3

∂x3
)

∂x3

. (2.23)
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For a homogeneous medium, where physical properties do not vary with position, the

above equation is simplified to

ρ
∂2u3

∂t2
= (λ+ 2µ)

∂2u3

∂x2
3

. (2.24)

which is the 1D wave equation for a P wave travelling in a homogeneous medium.

Thus, wave equations and velocity-stress wave systems are connected.

Finite-difference implementation

If a grid step h is used for x3 axis and ∆t is used for the time step, similar to the 2D

staggered-grid schemes by Virieux (1984, 1986), 1D velocity-stress system (2.22) of a

P wave can be approximated as

v3
n+1/2
k = v3

n−1/2
k +

∆t

hρk

(σ33
n
k+1/2 − σ33

n
k−1/2), (2.25a)

σ33
n+1
k+1/2 = σ33

n
k+1/2 +

(λ+ 2µ)k+1/2∆t

h
(v3

n+1/2
k+1 − v3

n+1/2
k ), (2.25b)

where k is the index for x3 discretization, and n is the index for time discretization.

According to Virieux (1986), the stability consition for an n-D space, is

vp
∆t

h
<

1√
n

(2.26)

The staggered grid is shown in Figure 2.4.

Two implementations of a free-surface boundary

The surface is stress-free, i.e.,

σ33

∣∣∣∣
x3=0

≡ 0. (2.27)



27

�������������������������������������������������������������
�
�
��

�
��

�
�

��
�

�

���

�

��
�

�

Figure 2.4: A staggered grid for 1D wave modelling.
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Figure 2.5: Two implementations of a free-surface boundary for 1D wave modelling.
a) is based on particle velocity, and b) is based on stress.
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This is a simplified case of Equation 2.11.

There are two ways to implement the free-surface boundary condition for the grid

shown in Figure 2.4. Schemes of both implementations are shown in Figure 2.5.

One way is to implement the boundary condition on particle velocities.

Substitution of

σ33 = (λ+ 2µ)e33 = (λ+ 2µ)
∂u3

∂x3

, (2.28)

into Equation 2.27 yields

∂u3

∂x3

∣∣∣∣
x3=0

= 0. (2.29)

Taking derivative with respect to time, with v3 = ∂u3

∂t
one gets

∂v3

∂x3

∣∣∣∣
x3=0

= 0. (2.30)

Suppose that above the surface, there is a fictitious cell with the same elastic proper-

ties as the cell on the surface, where the particle velocity node has a sequence number

of -1, and the stress node has a sequence number of −1
2
. Since on the surface the

stress is zero, it is possible to use central difference to approximate the above equation

and obtain the following discretized form of the free-surface boundary condition

v3
n+1/2
−1 = v3

n+1/2
1 , (2.31)

where v3
n+1/2
−1 is the particle velocity of the fictitious cell above the surface at dis-

cretized time n+ 1/2. Thus, on the surface

v3
n+1/2
0 = v3

n−1/2
0 +

∆t

hρ0

(σ33
n
1/2 − σ33

n
−1/2), (2.32a)
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σ33
n+1
−1/2 = σ33

n
−1/2 +

(λ+ 2µ)1/2∆t

h
(v3

n+1/2
0 − v3

n+1/2
1 ), (2.32b)

where σ33
n+1
−1/2 is the stress of the fictitious cell above the surface at discretized time

n+ 1.

The second way of implementing free-surface boundary condition is based on

stresses.

Using central difference to approximate the free-surface boundary condition (2.27),

one obtains the following discretized from

σ33

∣∣∣∣
t(n)

x3=0

=
σ33

n
−1/2 + σ33

n
1/2

2
= 0. (2.33)

Thus,

σ33
n
−1/2 = −σ33

n
1/2. (2.34)

The method of stress is much easier than that of particle velocity. However, the

method of particle velocity is useful in finite-difference methods that only deal with

particle velocities or displacements. For example, the method of particle velocity

(displacement) is used in the dissertation by Manning (2008).

Computational boundary

An absorbing boundary condition proposed by Clayton and Engquist (1977) is ap-

plied to 1D wave modelling. The details of computational boundary conditions are

addressed in Chapter 3.
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2.3.2 Modelling examples

The finite-difference modeling method simulates seismic-wave propagation by ap-

proximating elastodynamic equation system. There is no explicit implementation on

media interfaces except for free surfaces. Can the finite-difference method accurately

simulate the reflection and transmitted waves upon media interfaces? Do the mod-

elled waves travel at the wave velocities specified in the subsurface model? Do the

modeling results match with analytical results? How accurate do they match? To an-

swer these questions, two modeling results are presented here, and they are compared

to corresponding analytical results.

2.3.2.1 A homogeneous medium with a buried plane wave source

The subsurface medium used in this example is homogeneous. The top of the model

is the ground surface, and the bottom is at the depth of 1km. The P-wave velocity

inside the medium is 3000km/s, and the density of the medium is 2290.89kg/m3.

The time step is 0.00025s, and the space grid step is 1m.

In this modeling experiment, a plane wave source of a time-differentiated-Ricker

wavelet is placed at the depth of 300m, and two plane waves are generated from the

seismic source. One travels down towards the bottom of the model, and it seems to

go through the bottom boundary and disappear. The other one travels up towards

the surface of the model, and it strikes the surface on the top of the model. There

are no transmitted waves generated. All the wave energy is reflected back into the

subsurface. Then the wave travels down and disappears at the bottom of the model.

With this model, we can check the following aspects of the modelling method:

modelled wave velocity, reflection coefficient upon free surface, and absorbing bound-
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ary on the bottom.

Table 2.1: Travel times, distances, and amplitudes of modelled 1D waves in a homo-
geneous medium.

Figure Time (s) Depth (m) Distance (m) Amplitude
2.6c 0.0625 424 0 163.34
2.6d 0.0875 599 75 163.20
2.6e 0.1125 574 150 163.00
2.6f 0.1375 649 225 162.85
2.6g 0.1625 724 300 162.73
2.6h 0.1875 799 375 162.58
2.6i 0.2125 874 450 162.40
2.6j 0.2375 949 525 162.25

Modelled wave velocity

By checking wave peaks at different modelling times, shown in Table 2.1, it can be

observed that modelled waves travel at the specified velocity: 3000m/s.

Modelled free-surface reflectivity

Let u(I) and u(R) denote, respectively, the incident and reflected wave displacement

at an interface of two media, where the densities of the first and the second media

are, respectively, ρ1 and ρ2, and the wave velocities of the first and the second media

are, respectively, α1 and α2. From the stress-strain relations one can derive that

u(R) = −Ru(I), (2.35)
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(a) .0125s (b) .0375s (c) .0625s (d) .0875s (e) .1125s

(f) .1375s (g) .1625s (h) .1875s (i) .2125s (j) .2375s

(k) .2625s (l) .2875s (m) .3125s (n) .3375s (o) .3625s

Figure 2.6: Waves in a 1D homogeneous medium with a buried source.
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Figure 2.7: Incident and reflected waves upon a free surface.
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where R is the particle displacement reflection coefficient at the interface of the two

media:

R =
ρ2α2 − ρ1α1

ρ2α2 + ρ1α1

. (2.36)

For an upgoing P-wave normally striking a ground surface from the bottom of the

surface, the second medium is air, where ρ2 ≈ 0. Therefore, the reflection coefficient

is R = −1 and u(R) = u(I). In physical terms, this means that there is no amplitude

reduction or polarity reversal in the displacement upon reflection from a free surface

(Krebes, 2006).

Figure 2.7 shows a wave striking a ground surface from the bottom and its re-

flection. It can be observed that the reflection upon the free surface has the same

amplitude as the incident wave. This is consistent with the theoretical result.

Geometrical spreading of modelled wave

The peak amplitudes shown in Table 2.1 indicate that there is no geometrical spread-

ing. This is consistent with the theory. Theoretically, there should be no geometrical

spreading for a 1D wave (or a plane wave in 2D or 3D), since there is no wavefront

expansion.

2.3.2.2 A heterogeneous medium with a surface plane wave source

A heterogeneous model, shown in Figure 2.8, contains two layers, with the interface

being at the depth of 300m. The P-wave velocity in the shallow layer is 1000m/s,

and the density is 1741kg/m3. The P-wave velocity in the bottom layer is 3000m/s,

and the density is 2291kg/m3. The time step is 0.00025s, and the space grid step is

1m.

A plane wave source of a symmetric Ricker wavelet is placed at the surface. The
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Figure 2.8: A 1D heterogeneous medium.

wave travels down, until it hits the interface between two layers and generates reflected

and transmitted waves . The snapshots are shown in Figure 2.9.

With the model, we can check the aspects of modelled wave velocities, modelled

wavelengths, reflections and transmissions upon the media interface.

Modelled wave velocity

It is measured that the waves travel at two different velocities, 1000m/s and 3000m/s,

when they are in the different media.

Modelled wavelengths

It is observed that the wavelength of the wave at the bottom layer is approximately as

three times long as that in the shallow layer. This is reasonable since the wavelength
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(a) .0125s (b) .0500s (c) .0875s (d) .1250s (e) .1625s

(f) .2000s (g) .2375s (h) .2750s (i) .3125s (j) .3500s

(k) .3875s (l) .4250s (m) .4625s (n) .5000s (o) .5375s

Figure 2.9: Waves in a 1D layered medium (Figure 2.8) with a surface source.
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of a wave is determined by wave velocity for a given frequency:

λ =
v

f
. (2.37)

Modelled wave reflection and transmission

Theoretically, the reflection and transmission coefficients upon the media interface

are:

R =
ρ2α2 − ρ1α1

ρ2α2 + ρ1α1

=
2291× 3000− 1741× 1000

2291× 3000 + 1741× 1000

= 0.595774,

T = 1−R

= 1− 0.595774

= 0.404226.

The modelled reflection and transmission coefficients can be calculated from mea-

sured amplitudes. As shown in Figure 2.10a, The peak of a downgoing wave at time

0.2750s is 1.995837 at depth of 249m. As shown in Figure 2.10b, at time 0.3875s

the peak amplitude of the upgoing wave is -1.148883 at depth of 238m, and the peak

of the transmitted wave is 0.792668 at depth of 484m. Since there is no geometrical
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Figure 2.10: Incident, reflected and transmitted waves in a 1D layered medium (Figure
2.8). The reflector is at the depth of 300m.
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spreading, the reflection and transmission coefficients are calculated as:

R =
1.148883

1.995837

= 0.586783,

T =
0.792668

1.995837

= 0.397161,

Thus, the modelled reflection and transmission coefficients are approximately con-

sistent with the analytical results.

2.3.2.3 1D wave modelling summary

From the above experiments, one can conclude that the finite-difference method im-

plicitly implements a lot of wave propagation features, such as wave velocity, reflection

and transmission coefficients, wavelength, and geometrical spreading.

2.4 2D SH-wave modelling

It is important to study shear-horizontal (SH) wave, in addition to the more pop-

ular P-SV case. “The fact that surface SH waves are observed in nature has been

used to infer that the Earth’s crust is layered.” (Krebes, 2006). SH-wave seismic

reflection methods are also employed in natual resource exploration in recent years.

For example, Haines and Ellefsen (2010) used SH-wave methods to solve near-surface

problems.
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2.4.1 Algorithm

Elastodynamic equations

Consider a wave travelling in the plane of x1 − x3, with the particle vibrations per-

pendicular to the plane. In this case, only displacements perpendicular to the plane

x1 − x3 exist, and only shear stresses and strains connected to these displacements

exist, i.e.,

u1 = u3 ≡ 0, (2.38a)

σ11 = σ22 = σ33 = σ13 = σ31 ≡ 0, (2.38b)

e11 = e22 = e33 = e13 = e31 ≡ 0. (2.38c)

Substitution of the above equations into the 3D displacement-stress-strain relations

(2.8), one can get elastodynamic equations for the 2D SH-wave case as

ρ
∂2u2

∂t2
=
∂σ12

∂x1

+
∂σ23

∂x3

(2.39a)

σ12 = µ
∂u2

∂x1

, (2.39b)

σ23 = µ
∂u2

∂x3

, (2.39c)

Velocity-stress system

Similar to the conversion from 1D elastodynamic system (2.18) to the 1D velocity-

stress wave system (2.22), a 2D velocity-stress SH-wave system can be derived from
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system (2.39) as

ρ
∂v2

∂t
=
∂σ12

∂x1

+
∂σ23

∂x3

, (2.40a)

∂σ12

∂t
= µ

∂v2

∂x1

, (2.40b)

∂σ23

∂t
= µ

∂v2

∂x3

, (2.40c)

where v2 is the shear horizontal particle vibration velocity.

Finite-difference implementation

� ����� ��� �����

�
�
�
�
��

�
�
�

�
�
�
��

�

	


 �
�

�
�

�
��

�
��

Figure 2.11: A staggered grid for 2D SH-wave modelling.

If a grid step h is used for both x1 and x3 axes and ∆t is used for the time step,

using the staggered-grid schemes introduced by Virieux (1984), one can approximate

the 2D velocity-stress system of SH waves as

v2
n+1/2
i,k = v2

n−1/2
i,k +

∆t

hρi,k

(σ12
n
i+1/2,k − σ12

n
i−1/2,k + σ23

n
i,k+1/2 − σ23

n
i,k−1/2), (2.41a)
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σ12
n+1
i+1/2,k = σ12

n
i+1/2,k +

µi+1/2,k∆t

h
(v2

n+1/2
i+1,k − v2

n+1/2
i,k ), (2.41b)

σ23
n+1
i,k+1/2 = σ23

n
i,k+1/2 +

µi,k+1/2∆t

h
(v2

n+1/2
i,k+1 − v2

n+1/2
i,k ), (2.41c)

where i is the index for x1 discretization, k is the index for x3 discretization, and

n is the index for time discretization. A schematic diagram of the staggered-grid is

shown in Figure 2.11.

Seismic source scheme

Ricker wavelets are introduced into the staggered-grid onto a particle velocity node

as shown in Figure 2.12.
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Figure 2.12: Introducing an SH-wave source into a modelling grid.

Seismic resolution is related to seismic source frequencies. One can expect that

seismic waves with different frequencies have different spatial wavelengths when they

propagate in rocks.
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Free-surface boundary condition

In the 2D SH-wave case, the free-surface boundary condition can be denoted as

σ23

∣∣∣∣
x3=0

≡ 0, (2.42)

since this is the only stress caused by the SH wave that is acting normal to the surface.
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Figure 2.13: A free-surface boundary condition for the SH-wave case.

The discretization form of Equation 2.42 in the specified grid shown in Figure 2.11

is

σ23

∣∣∣∣
k=−1/2

= −σ23

∣∣∣∣
k=1/2

, (2.43)

where subscript −1/2 denotes a fictitious stress node about the surface. Since this

boundary condition is true at any time at any place on the surface, both the indices

for time and offset are ignored. The schematic diagram is shown in Figure 2.13.

Using the boundary condition, one can calculate fictitious stresses above the sur-
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face, which in turn, can be used to calculate particle velocities on the free surface at

the next half time step.

The method above is based on stresses. Similar to the free-surface boundary

condition in section 2.3, another implementation based on particle velocities is also

possible.

Computational boundary conditions

Absorbing boundary condition works very well for 1D P-wave case. However, it works

not as well in 2D SH case.

To reduce the artificial reflections that are introduced by the edge of the compu-

tational grid, a method of combining absorbing boundary conditions (Clayton and

Engquist, 1977) and nonreflecting boundary condition (Cerjan et al., 1985) is ap-

plied to the sides and bottom of subsurface models. For details about the combined

boundary conditions, please refer to Chapter 3 in this dissertation.

2.4.2 Modelling examples

To check the correctness and effectiveness of the wave modelling implementation,

a few subsurface models are created, and the modelling results are presented. At

the same time, by analyzing these results, one may gain some perceptual knowledge

about guided surface SH waves, seismic resolution problem, geometrical spreading,

and seismic wave multiples.

2.4.2.1 A homogeneous subsurface with a buried seismic source

The first subsurface model for SH-wave modelling is a 750mx750m homogeneous

medium, with S-wave velocity of 2020.73m/s and density of 2380.90kg/m3. The grid

spatial step is 1.25m, and the time step is 0.00025s.
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(a) t=0.05s (b) t=0.10s (c) t=0.15s (d) t=0.20s (e) t=0.25s (f) t=0.30s

Figure 2.14: SH waves in a homogeneous media, with a buried seismic source.

By burying a seismic source at the centre of the model and firing it, a shear wave

is generated and it propagates outwards. Figure 2.14 shows the wave propagation.

When the shear wave hits the bottom as well as both left and right sides of the

subsurface model, it just disappears. When the wave reaches the surface from the

bottom of the surface, reflections are generated. It can also be observed that the

amplitude of the reflection is approximately the same as that of the incident.

Obviously the computational boundary conditions applied to the bottom and the

left and the right sides of the subsurface work very well, since there is no noticeable

reflections generated from these boundaries.

Similar to the 1D free-surface boundary condition, the 2D free-surface boundary

condition applied here for SH waves also works very well.

2.4.2.2 A homogeneous subsurface with a surface seismic source

From a seismic source put at the surface centre of the same subsurface model as the

last subsection, an SH wave is generated and it propagates downwards. Figure 2.15

shows the wave propagation.

The distances that wave peaks travelled at different modelling times are shown in

table 2.2. It is calculated that the modelled waves travel at the velocity of 2020.00m/s,

which is very close to the specified value in the subsurface model. That is, the finite-
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(a) t=0.0625s (b) t=0.1250s (c) t=0.1875s (d) t=0.2500s (e) t=0.3125s (f) t=0.3750s

Figure 2.15: SH waves in a homogeneous media, with a surface seismic source.

Table 2.2: Travel times, distances, and amplitudes of modelled 2D SH waves in a
homogeneous medium.

Figure Time (s) Distance (m) Amplitude Amplitude×
√

distance
2.15a 0.0625 80.00 0.02416 0.216
2.15b 0.1250 206.25 0.01495 0.215
2.15c 0.1875 332.50 0.01169 0.213
2.15d 0.2500 458.75 0.00986 0.211
2.15e 0.3125 585.00 0.00863 0.209
2.15f 0.3750 711.25 0.00773 0.206
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difference method implicitly implements the propagation velocity of an SH wave.

In addition, from the calculation results of Amplitude×
√
distance shown in table

2.2, one can find that the amplitude scales as 1√
distance

. This is different from the

plane wave case in 1D wave modelling, where there is no geometrical spreading.

This is not the same as the spherical wave propagation in the 3D either, where

amplitude scales as 1
distance

. Books, such as the one by Shearer (1999), have explained

in detail about the amplitude-distance relation for spherical waves. One can apply

the same principles to explain the amplitude-distance relation for circular waves in

two dimensional modelling.

Although there are amplitude differences between the 3D real world and 2D mod-

elling, most of the time, this does not cause problems when one utilizes 2D algorithms

to process seismic data from the 3D world. However, for amplitude sensitive tech-

nologies, such as AVO, we need to have the concept of amplitude differences in mind.

Another interesting observation on this modelling experiment is: there is no sur-

face wave generated in this experiment, which is different from modelling experiments

of P-SV case described later. However, this is consistent with the theoretical predic-

tions, “surface SH waves cannot exist on the surface of a homogeneous half-space”

(Krebes, 2006). Analysis also tells us, though, surface SH waves can exist on the

surface of an inhomogeneous half-space. The next subsection is about an experiment

with an inhomogeneous medium, and we can check into surface SH waves.

2.4.2.3 A surface layer above a high velocity half-space

A surface layer model contains two layers: the surface layer is a low wave velocity

medium, and below the surface layer is a high speed half-space. For detailed geometry

and rock properties of the model, please refer to Table 2.3 and Figure 2.16. The
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numerical grid spatial step is 0.6m, and the time step is 0.0001s. The total modelling

time is 0.6001s

Table 2.3: Parameters of a surface layer model.

Layer S-wave velocity (m/s) Density (kg/m3) Thickness (m)
Surface layer 577.35 1740.70 60
Half-space 1732.05 2290.89 30

Figure 2.16: A surface layer above a high speed half-space.

In the modelling experiment, a seismic source is placed close to the top-left corner

on the surface. Snapshots from the modelling experiment are shown in Figure 2.17.

From the snapshots, one can identify direct arrivals, primary reflected waves, trans-

mitted waves, head waves, and multiple reflections. Significantly, most of the wave

energy is trapped inside the surface layer and the surface layer acts as a wave guide.

That is why the waves are called guided waves.

2.4.2.4 A thin layer model

“How thin is a thin layer?” This is a question posed in a paper (Widess, 1973) and

then referenced in a book (Lines and Newrick, 2004). This is a problem of seismic

resolution. By analyzing the coming modelling results, one can gain some perceptual
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(a) t=0.05s (b) t=0.10s

(c) t=0.15s (d) t=0.20s

(e) t=0.25s (f) t=0.30s

(g) t=0.35s (h) t=0.40s

(i) t=0.45s (j) t=0.50s

(k) t=0.55s (l) t=0.60s

Figure 2.17: Guided SH waves in a surface layer model.
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knowledge about this problem.

In the subsurface model shown in Figure 2.18, a thin layer is presented in sur-

rounding rocks. The thickness of the thin layer is 41m. The overburden rock has a

thickness of 460m. The S-wave velocities of the thin layer and the surrounding rock

are, respectively, 1443.38m/s and 2020.73m/s. The densities are 2188.82kg/m3 and

2380.90kg/m3. The grid spatial step is 1m, and the time step is 0.0002s.

Two seismic experiments are done with the seismic sources being put on the

surface centre. The only difference is the peak frequencies of the seismic sources:

one is of 12Hz, while the other is of 40Hz. Note that since the relation between

wavelength, velocity and frequency λ = v
f
, a 12Hz signal in a medium of S-wave

velocity being 2020.73m/s has a wavelength of approximately 163m, which is as four

times long as the thickness of the thin layer. While a signal of 40Hz has a wavelength

of approximately 50.5m, which is close to 5
4

times of the thickness of the thin layer.

Figure 2.18: A thin layer model.



51

Figure 2.19 shows surface records from the two seismic experiments. Direct arrivals

appears as linear events on the upper parts of the records, and reflection events

appears as hyperbolas on the lower parts. On the surface record of low frequency

seismic source (Figure 2.19a), one can only identify one reflection event. However,

on the record of high frequency source (Figure 2.19b), the two reflection events are

completely separated into two hyperbolas.

How thin is a thin layer? The answer is that it depends on the wavelength of a

seismic signal, which in turn, depends on the wave velocities in media and seismic

frequencies. The higher the peak frequency of the seismic source and the lower the

wave velocity in media, the better one can distinguish thin media layers. For a certain

medium, we cannot change the wave velocity, but we can utilize seismic sources of

higher frequencies to gain higher resolution survey results.

2.5 2D P-SV wave modelling

This section describes the algorithm of 2D P-SV wave modelling, followed by a few

modelling examples, which are used in the experiment of reverse-time migration later

in the dissertation.

Sometimes the SV wave is called S wave in this section.

2.5.1 Algorithm

Elastodynamic system

Consider a wave travelling in the plane of x1−x3, with the particle vibrations parallel

to the plane. In this case, only the displacements parallel to the plane x1 − x3 exist,
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(a) f=12Hz

(b) f=40Hz

Figure 2.19: Surface records generated from different source peak frequencies using
the thin layer model shown in Figure 2.18.
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and only stresses and strains connected to these displacements exist, i.e.,

u2 ≡ 0, (2.44a)

σ2j = σj2 ≡ 0, j = 1, 2, 3, (2.44b)

e2j = ej2 ≡ 0, j = 1, 2, 3. (2.44c)

Substituting the above equations into the 3D displacement-stress-strain relations

(2.8), one obtains elastodynamic equations for the 2D SH-wave case as

ρ
∂2u1

∂t2
=
∂σ11

∂x1

+
∂σ13

∂x3

, (2.45a)

ρ
∂2u3

∂t2
=
∂σ13

∂x1

+
∂σ33

∂x3

, (2.45b)

σ11 = (λ+ 2µ)
∂u1

∂x1

+ λ
∂u3

∂x3

, (2.45c)

σ33 = (λ+ 2µ)
∂u3

∂x3

+ λ
∂u1

∂x1

, (2.45d)

σ13 = µ(
∂u3

∂x1

+
∂u1

∂x3

). (2.45e)

Velocity-stress system

Similar to the conversion from the 1D elastodynamic system (2.18) to the 1D velocity-

stress wave system (2.22), a 2D velocity-stress P-SV wave system can be derived from

system (2.45) as

ρ
∂v1

∂t
=
∂σ11

∂x1

+
∂σ13

∂x3

, (2.46a)

ρ
∂v3

∂t
=
∂σ13

∂x1

+
∂σ33

∂x3

, (2.46b)
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∂σ11

∂t
= (λ+ 2µ)

∂v1

∂x1

+ λ
∂v3

∂x3

, (2.46c)

∂σ33

∂t
= (λ+ 2µ)

∂v3

∂x3

+ λ
∂v1

∂x1

, (2.46d)

∂σ13

∂t
= µ(

∂v3

∂x1

+
∂v1

∂x3

), (2.46e)

where v1 and v3 are, respectively, the horizontal and vertical components of particle

vibration velocities.
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Figure 2.20: A staggered grid for 2D P-SV wave modelling.

Finite-difference approximation

If a grid step h is used for both x1 and x3 axes and ∆t is used for the time step, using

the staggered-grid schemes introduced by Virieux (1986), one can approximate the

2D velocity-stress system of P-SV waves as

v1
n+1/2
i,k = v1

n−1/2
i,k +

∆t

hρi,k

(σ11
n
i+1/2,k − σ11

n
i−1/2,k

+ σ13
n
i,k+1/2 − σ13

n
i,k−1/2), (2.47a)
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v3
n+1/2
i+1/2,k+1/2 = v3

n−1/2
i+1/2,k+1/2 +

∆t

hρi+1/2,k+1/2

(σ13
n
i+1,k+1/2 − σ13

n
i,k+1/2

+ σ33
n
i+1/2,k+1 − σ33

n
i+1/2,k), (2.47b)

σ11
n+1
i+1/2,k = σ11

n
i+1/2,k +

(λ+ 2µ)i+1/2,k∆t

h
(v1

n+1/2
i+1,k − v1

n+1/2
i,k )

+
λi+1/2,k∆t

h
(v3

n+1/2
i+1/2,k+1/2 − v3

n+1/2
i+1/2,k−1/2), (2.47c)

σ33
n+1
i+1/2,k = σ33

n
i+1/2,k +

(λ+ 2µ)i+1/2,k∆t

h
(v3

n+1/2
i+1/2,k+1/2 − v3

n+1/2
i+1/2,k−1/2)

+
λi+1/2,k∆t

h
(v1

n+1/2
i+1,k − v1

n+1/2
i,k ), (2.47d)

σ13
n+1
i,k+1/2 = σ13

n
i,k+1/2 +

µi,k+1/2∆t

h

(v3
n+1/2
i+1/2,k+1/2 − v3

n+1/2
i−1/2,k+1/2 + v1

n+1/2
i+1,k − v1

n+1/2
i,k ), (2.47e)

where i is the index for x1 discretization, k is the index for x3 discretization, and

n is the index for time discretization. A schematic diagram of the staggered-grid is

shown in Figure 2.20.

The stability condition is

Vp
∆t

h
<

1√
2
, (2.48)

where Vp is the P-wave velocity.

Seismic source scheme

An explosive source, shown in Figure 2.21, is used. Four zero-phase Ricker wavelets

were introduced into a staggered-grid model, with displacement directed uniformly

about a centre. Manning (2008) has successfully used this source scheme in his

dissertation.
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Figure 2.21: Seismic energy source scheme for 2D P-SV wave modelling.

Free-surface boundary conditions

In the 2D P-SV wave case, free-surface boundary conditions can be denoted as

σ33

∣∣∣∣
x3=0

≡ 0, (2.49a)

σ13

∣∣∣∣
x3=0

≡ 0, (2.49b)

where σ13 is the stress connected to the horizontal component of wave displacement,

and σ33 is the one connected to the vertical component.

In a discretization scheme shown in Figure 2.20, one uses Equation (2.49a) directly,

while he or she needs to use a central difference to approximate Equation (2.49b),

since the quantities σ13 are not on the discretization nodes. Thus, Equations (2.49)

are rewritten as

σ33

∣∣∣∣
k=0

= 0, (2.50a)
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Figure 2.22: A free-surface boundary for 2D P-SV wave modelling.

σ13

∣∣∣∣
k=−1/2

= −σ13

∣∣∣∣
k=1/2

, (2.50b)

where subscript −1/2 denotes a fictitious stress node about the surface. Since these

boundary conditions are true any time any place on the surface, the indices for both

time and offset are ignored. The schematic diagram is shown in Figure 2.22.

Computational boundary conditions

The details will be discussed in the Chapter 3.

2.5.2 Modelling examples

2.5.2.1 A point reflector subsurface model

A 2D subsurface model contains a point reflector in a homogeneous medium in x1-x3

plane is built. The P-wave velocity is shown in Figure 2.23.

The parameters used in P-SV modelling are Lamé parameters, λ and µ, and

density, ρ. These parameters are derived from the P-wave velocities. The procedures

are:
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Figure 2.23: A point reflector model.

1. Densities are calculated from P-wave velocities by Gardner′s relationship, which

expresses density, ρ, in terms of P-wave velocities, vp, as

ρ = βvα
p , (2.51)

where α and β are constant coefficients for certain medium. According to Lines

and Newrick (2004), reasonable values for these coefficients are α = 0.25 and

β = 0.23 for velocity in ft/s and density in gm/cm3. Thus, using SI derived

units, one can denote Gardner′s relationship as

ρ = 2300(3.2808399vp)
0.25. (2.52)

2. Assuming the Poisson′s ratios of the medium to be 0.25, S-wave velocities are

calculated from P-wave velocities by the following relationship.

vs = vp

√
1
2
− σ

1− σ
. (2.53)
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3. Lamé parameters, λ and µ, are calculated by

µ = ρv2
s , (2.54a)

λ = ρv2
p − 2µ. (2.54b)

The parameters of the point reflector model are shown in Table 2.4.

As shown in Figure 2.23, the subsurface is 1400m wide and 500m high. With a

spatial step of 1m, there are 1400 nodes in offset and 500 nodes in depth. The point

reflector is a square with side length of 18m, positioned at offset from 691m to 709m,

and at depth from 350m to 368m.

This subsurface model is used for both P-SV modelling and reverse-time migration.

There are two reasons why this model is of interest. First, this is a relatively simple

model compared to other models. There are only two physical reflectors. One is the

point reflector, and the other one is the free surface. Although it turns out that the

wave propagation accompanying with the model is not simple at all, the model is

simpler than any other models except a homogeneous model. Second, according to

Huygens’ principle, without loss of generality, any modelling and migration algorithms

which work properly on this point reflector subsurface model should work properly

for any other models.

2.5.2.2 Modelling with a buried P-wave source

A modelling experiment is done using the point reflector subsurface model shown in

Figure 2.23. A time step of 0.0001s is set for wave modelling. Put a seismic energy

source illustrated in Figure 2.21 at offset of 350m and depth of 250m, a wave is
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(a) Vertical component, 0.04s

(b) Vertical component, 0.08s

Surface reflection

(c) Vertical component, 0.12s

Point reflection

(d) Vertical component, 0.16s

PS

PP

PP PS

(e) Vertical component, 0.20s

Figure 2.24: P-SV wave generated from a buried source [to be continued].
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(f) Horizontal component, 0.04s

(g) Horizontal component, 0.08s

Surface reflection

(h) Horizontal component, 0.12s

Point reflection

(i) Horizontal component, 0.16s

PS

PP

PP PS

(j) Horizontal component, 0.20s

Figure 2.24: [Continued]
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Table 2.4: Parameters of a point reflector model.

Rock vp(m/s) vs(m/s) ρ(kg/m3) λ(GPa) µ(GPa)
Point reflector 5000.00 2886.75 2602.95 21.69 21.69

Surrounding rock 3000.00 1732.05 2290.89 6.87 6.87

generated and it starts to propagate outwards.

Figure 2.24 shows the wave propagation snapshots from time 0.04s to 0.20s. The

first five snapshots are the vertical component of the wave and the next five are

the corresponding horizontal component. The vertical component snapshots show

opposite polarities upon the horizontal line crossing the source point, while the hori-

zontal component snapshots show opposite polarities upon the vertical line crossing

the source point. The wave first propagates as a pure P-wave, since it is in a ho-

mogeneous medium, as shown in snapshots of times 0.04s and 0.08s. Then the wave

hits the free surface from the bottom and surface reflections are generated. Snap-

shots of time 0.12s show the surface reflections. At time 0.16s, the wave has already

reached the point reflector and more reflections can be observed. The P- and S-wave

reflections from both the surface and the point can be clearly distinguished from each

other in the 0.20s snapshots.

The point reflections are centred by the point reflector and it looks like the reflected

energy is generated by the point. That can be explained by Huygens’s principle: every

point on a wave front can be regarded as a new source of waves.

2.5.2.3 Modelling with a surface source above the point reflector

A surface source modelling is accomplished with the same point reflector subsurface

model. A time step of 0.0001s is set for wave modelling.
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Figure 2.26: P-SV surface record with a centre surface source.
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A P-wave seismic source, illustrated in Figure 2.21, is put at a 10m below the

centre of the surface. That it, the source is vertically above the point reflector.

Dynamite charges for land surveys are commonly buried in shot holes, with a wide

range of depths from 1 meter to 35 meters. However, compared to the depth range of

seismic wave surveys, the seismic energy source is still very close to the earth surface.

Figure 2.25 shows the wave propagation snapshots from time 0.08s to 0.40s. Both

vertical and horizontal components are included.

Although a pure P-wave source, same as in the buried-source modelling experi-

ment, is used, waves generated close to the source point include P waves, S waves,

downgoing head waves, and Rayleigh waves, as shown in Figure 2.25c, 2.25d, 2.25e,

and 2.25f.

Why both P and S waves are generated from a pure P-wave source? One can

imagine that at first, there is only a P-wave circle front generated from the source

point, and then the upper part hits the free surface and both reflected P waves and

S waves are generated. Since the reflected P waves are very close to the lower part

of the source P-wave circle, they mix and propagate down as one P-wave front. On

the other hand, the reflected S wave propagates down as another wave front. Since

the time difference between the source wave generation and the S wave resulted from

surface reflection is very small, the reflected S wave propagates downwards as if it is

generated from the source point.

The downgoing head waves that connect the P and S wavefronts are plane S

waves in the 2D P-SV modelling experiments. The head waves are generated when

the faster P wavefront breaks away from the slower S wavefront. This can be explained

by Huygens’ principle (see Krebes, 2006, chap. 4).
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Rayleigh waves are also generated. In Chapter 3 and 4 of the course notes by

Krebes (2006), there is detailed mathematical analysis about Rayleigh wave. Here

one may be interested in observing some of the Rayleigh wave properties stated in

the mentioned course notes. First, the Rayleigh wave is considered as one kind of

evanescent wave, which travels along the surface and its amplitude decreases with

depth. Second, Rayleigh wave velocity c is approximated as

c ≈ 0.862 + 1.14σ

1 + σ
β, (2.55)

where σ is Poisson′s ratio and β is shear wave velocity. Since σ = 0.25 in the point

reflector subsurface model, Rayleigh wave velocity is expected to be modelled as

c ≈ 0.918β theoretically. Modelling results confirm the theoretical prediction. In

fact, when the surface wave is removed from modelled surface records for reverse-

time migration later in the dissertation, this velocity is used in the muting operation.

Third, Rayleigh waves decay more slowly than body waves. In the real 3D world, the

body waves decay as 1
r
, where r is distance, and Rayleigh waves decay as 1√

r
. In the

2D P-SV modelling, body waves decay as 1√
r
, while Rayleigh waves do not decay at

all.

In addition to the above P waves, S waves, downgoing head waves, and Rayleigh

waves, there are also reflections upon the point reflector. As shown in Figure 2.25c and

2.25d, before time 0.16s, P wave has striked the point reflector and wave reflections

have already shown up. At snapshots of time 0.24s, as shown in Figure 2.25e and

2.25f, one can identify the reflections including both P- and S-wave reflections, which

are annotated, respectively, as PP and PS in the figure. At time 0.24s, S wave
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has already reached the point reflection, but there is almost no reflections, since the

S-wave amplitudes at the centre part are very weak.

The point reflections, PP and PS, propagate outwards. When their upper parts

hit the free surface, they are reflected back down again.

PP-wave reflections upon the surface is annotated as PPP and PPS in Figure

2.25. Wave PPP is the P-wave reflection of wave PP, and wave PPS is the S-wave

reflection. In this case, particle vibrations of Wave PPP is mainly vertical. Therefore

PPP is more significant in the vertical component plots, as shown in Figure 2.25g and

2.25i, than in the horizontal component plots, as shown in Figure 2.25h and 2.25j.

On the other hand, particle vibrations of wave PPS is mainly horizontal. Therefore

PPS is more significant in horizontal plots than in vertical ones.

Figure 2.27: A PS wave strikes a free surface from its bottom, with the incident angle
equals to the critical angle.

An interesting phenomenon is head waves generated by the PS wave striking the

free surface from the bottom. The PS wave is the shear wave reflection resulted from

the incident P wave striking the point reflector. According to Huygens’ principle,

the point reflector can be regarded as a point source and the PS wave is generated

from it with a circular wavefront. When the PS wave strikes the free surface from the

bottom, at first the incident angle is 0, and only reflected shear wave is generated.
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Then the PS wave generates both P- and S-wave reflections upon earth surface, called,

respectively, PSP and PSS waves (Figure 2.25i and 2.25j), when the incident angles

are greater than 0. Denote the incident angle of the PS wave as φ, the reflection angle

of the PSP wave as θ, and the P- and S-wave velocities as vP and vS, according to

Snell’s law,

sinφ

vS

=
sinθ

vP

. (2.56)

Hence, there is a critical angle φC of φ at which θ = 90◦.

When the incident angle φ is smaller than the critical angle φC , the PSP and PSS

waves share the same wavefront position on the surface, although they have separated

wavefronts inside the subsurface.

When the incident angle φ reaches and then is beyond the critical angle φC , the

PSP wavefront breaks away from the PSS wavefront (Figure 2.27). For the given

subsurface model with vP = 3000.00km/s and vS = 1732.05km/s, as shown in Table

2.4, the critical angle for the incident PS wave is calculated as

φC = sin−1(
vS

vP

)

= sin−1(
1732.05

3000.00
)

= 35.26◦.

(2.57)

From the geometry shown in Figure 2.27, the horizontal distance d that the PS

wave have travelled when the PSP and PSS wavefronts break away from each other
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is calculated as

d = h tanφC

= 359 tan 35.26◦

= 253.8m.

(2.58)

where h = 359m is the depth of the point reflector. Since the offset of the point

reflector is 700m, one can expect the PSP-PSS breakaway happens at the offset of

700 − 253.8 = 446.2m. At time 0.40s, the left PS-wave peak has already reached

around offset 420m. Thus, the PSP-PSS breakaway should have already happened

(Figure 2.25i and 2.25i), although it is difficult to observe because of the wavelength.

At time 0.48s, however, it is very clear that PSP and PSS waves have separated from

each other (Figure 2.25k and 2.25l). Note that, since the shallow PSP-wave causes

mainly horizontal particle vibrations, the breaking-away effect is more evident on the

horizontal component snapshot (Figure 2.25l) than on the vertical one (Figure 2.25k).

The same phenomenon can be observed on the right side of the seismic source as

well.

On the surface records, as shown in Figure 2.26, the strong events are direct P

waves, Rayleigh waves, PP and PS waves. Among them, amplitudes of Rayleigh

waves and direct waves are much stronger than the reflections. The effect of the

PSP-wave front breaking away from the PSS wave can be clearly observed from time

0.47s to 0.6s on the PS reflection event. As in the snapshots, the effect is also more

evident on the horizontal component (Figure 2.26b) than on the vertical one (Figure

2.26a).
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2.5.2.4 Modelling with a surface source horizontally far away

Another modelling experiment is done by putting a surface seismic energy source at

an offset of 400m from the top-left corner of the subsurface. In this case,the source

is about horizontally 300m away from the point reflector.

The snapshots are shown in Figure 2.28.

At first, as in the modelling experiment in the last subsection, P- and S-waves,

Rayleigh waves, and downgoing head waves are generated close to the source and

propagate outwards.

Then reflections upon the point reflector are generated. There are two incident

waves upon the point reflector. First, a P wavefront strikes it, and is reflected as P

and S waves, called PP and PS. Second, an S wavefront reaches the point reflector,

and is reflected as P and S waves, called SP and SS. Since the S wave has a strong

amplitude this time, the SP and SS reflections are much stronger than those in the

modelling experiment show in the last subsection.

Part of the point reflections goes upwards and reaches the surface. The order in

which the reflections reach the surface is PP, PS, SP, and SS.

The effect of the PSP breaking away from the PSS is not obviously shown in this

case, since the PS, PSP, and PSS waves are relatively weak. However, the effect of

the SSP breaking away from the SSS is significant, as shown in the snapshots of time

0.64s and 0.72s (Figure 2.28o, 2.28p, 2.28q, and 2.28r).

Surface records are different from those of the surface centre source modelling,

too. Figure 2.29 shows surface records of this modelling. The strong events are P

waves, Rayleigh waves, PP, SP, PS, and SS reflections. The break-away of the SSP

from the SSS can be observed from time 0.63s to 0.75s on the event of SS reflection.



72

(a
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

08
s

(b
)

H
or

iz
on

ta
l
co

m
po

ne
nt

,
0.

08
s

R
a
y
le

ig
h

w
a
v
e

S

P

H
ea

d
w
av

e

S

(c
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

16
s

R
a
y
le

ig
h

w
a
v
e

S

P

H
ea

d
w
av

e

S

(d
)

H
or

iz
on

ta
l
co

m
po

ne
nt

,
0.

16
s

R
a
y
le

ig
h

w
a
v
e

S

H
ea

d
w
av

e

P

P
P

P
S

(e
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

24
s

R
a
y
le

ig
h

w
a
v
e

S

H
ea

d
w
av

e

P

P
P

P
S

(f
)

H
or

iz
on

ta
l
co

m
po

ne
nt

,
0.

24
s

F
ig

u
re

2.
28

:
P

-S
V

w
av

e
p
ro

p
ag

at
io

n
w

it
h

a
h
or

iz
on

ta
ll
y

fa
r

aw
ay

su
rf

ac
e

so
u
rc

e
[t

o
b
e

co
n
ti

n
u
ed

].



73

P
S

P
P

(g
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

32
s

P
S

P
P

(h
)

H
or

iz
on

ta
l
co

m
po

ne
nt

,
0.

32
s

P
P
S

P
P
P

P
P

P
S

S
P

S
S

(i
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

40
s

P
P
S

P
P
P

P
P

P
S

S
P

S
S

(j
)

H
or

iz
on

ta
l
co

m
po

ne
nt

,
0.

40
s

S
P

P
S

S
S

(k
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

48
s

S
P

P
S

S
S

(l
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

48
s

F
ig

u
re

2.
28

:
[t

o
b
e

co
n
ti

n
u
ed

]



74

S
S

S
S
P

S
S
S

(m
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

56
s

S
S

S
S
P

S
S
S

(n
)

H
or

iz
on

ta
l
co

m
po

ne
nt

,
0.

56
s

S
S

¾ S
S
P

S
S
S

(o
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

64
s

S
S

¾ S
S
P

S
S
S

(p
)

H
or

iz
on

ta
l
co

m
po

ne
nt

,
0.

64
s

S
S
S

S
S
P

(q
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

72
s

S
S
S

S
S
P

(r
)

V
er

ti
ca

l
co

m
po

ne
nt

,
0.

72
s

F
ig

u
re

2.
28

:
[C

on
ti

n
u
ed

]



75

P

R
ay

le
ig
h

w
av

e

PP

PS

SP

SS

H
ea

d
wav

e

(a) Vertical component

P

R
ay

le
ig
h

w
av

e

PP

PS

SP

SS

H
ea

d
wav

e

(b) Horizontal component

Figure 2.29: P-SV surface record with a horizontally far away surface source.



76

Figure 2.30: A two-layer subsurface model

Table 2.5: Wave velocities and densities in the model shown in Figure 2.30

Layer P-wave vel.(m/s) S-wave vel.(m/s) Density (kg/m3)
Surface layer 3000 1732.05 2290.89
Deeper layer 1000 577.35 1740.7

2.5.3 Reflection coefficients at non-normal incidence

Reflection and transmission coefficients of modelled 1D P wave are found to be very

close to the theoretical values (subsection 2.3.2). This section studies the reflection

coefficients of 2D P-SV case. The FD modelled results are compared to analytical

results obtained from Zoeppritz equations.

Modelling on a two-layer subsurface model

A two-layer subsurface model was built, as shown in Figure 2.30. The media includes

a flat geological interface separating two rock layers. The rock interface is at the

depth of 500m. The finite-difference node spacing in the model is 1m. The wave

velocities and densities are shown in Table 2.5.
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Trans. PS

Trans. PP

Figure 2.31: A snapshot of vertical component at time 1.5s. The subsurface model is
shown in Figure 2.30.

A modelling experiment was done with a time step of 0.0001s and with a P-

wave source at (100m, 400m) and receivers at 400m. Wavefields are generated and a

vertical component snapshot is shown in Figure 2.31. The five wavefronts are a direct

P wave generated from the energy source, a PP reflection and a PS reflection upon

the rock interface at 500m, a PS transmission and a PP transmission under the rock

interface.

Seismic data recorded at the depth of 400m are shown in Figure 2.32. The recorded

events include direct P-wave arrival, PP and PS reflections from the rock interface,

and some other events. The studied reflection coefficients RPP is based on the PP

event.
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Figure 2.32: Records received at a depth of 400m. The wavefield is generated from
the subsurface model shown in Figure 2.30.
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Measuring modelled PP reflection coefficients

There are two obstacles for one to study the rock interface PP reflection coefficients

(RPP ) from the records shown in Figure 2.32. First, the PP event is merged into

the direct P-wave arrival with large offsets. Second, from the wave energy source

to the receivers, the amplitude attenuation includes both geometrical spreading and

transmission losses.

To calculate the reflection coefficients RPP , another subsurface model, referred to

as the homegeneous model, was built. The demensions of the model are the same

as the two-layer model shown Figure 2.30. However, the new model contains only a

homogenerous medium, which has the same rock properties as the surface layer in

the two-layer model.

Two wave modelling experiment is done using the homogeneous model.

The first experiment is designed to help remove the direct arrival in records from

the two-layer model: a same acquisition geometry is employed, and only direct P wave

and its surface reflections are generated. Thus, recorded events are the same P-wave

arrival and its surface reflections as those obtained in the two-layer model experiment.

Substraction of the homogeneous model records from the two-layer model records

removes the direct arrival and its surface reflections in the two-layer-model records.

Using this method, the PP event in the two-layer experiment is separated from the

direct P-wave arrival. The records after removing the direct P-wave arrival are shown

in Figure 2.33.

The second experiment on the homogeneous medium is done with an energy source

at (100m, 600m). Recorded data are the P-wave arrival and its surface PP reflection

(Figure 2.34). Suppose A is a point on the event on a certain trace, and A′ is a
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Figure 2.33: Records resulted from removing direct arrival and its surface reflections
in Figure 2.32.
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corresponding point on the PP event on a corresponding trace from the two-layer

model. Because the raypath length of A is the same as that of A′, geometrical

spreading of A is the same as A′. Thus, the ratio of the amplitudes between A′ and

A should be equal to the reflection coefficient on the raypath of A′.

In the calculation of reflection coefficients, two adjustments have to be done. First,

the ratios are negative because of the change of wave propagation direction upon

the rock interface. Second, one needs to find A′ as the local maximum in a trace

according to the position of A (i.e., the time of A), since there is a slight position

difference between A and A′, which is caused by the phase change accompanying

with wave reflection. Calculated reflection coefficients are shown in Figure 2.35. The

measurement of the amplitudes and the calculation of incident angle are limited to

85◦ because of the limited width of the subsurface model.

Modelled versus analytical reflection coefficients

Reflection and transmission of plane P-SV waves at non-normal incidence are gov-

erned by Zoepprize equations and the analytical solutions are given by Aki and

Richards (2002, chap. 5). For the given rock interface shown in Figure 2.30 and

Table 2.5, the analytical results are also plotted in Figure 2.35.

There are differences between the modelled and analytical reflection coefficients.

There might be three causes of discrepancy: the seismic energy source, inaccuracy

of the modelling method, and/or inaccuracy of the reflection coefficient measuring

method. However, only the first one is discussed here.

A first guess is that the differences are mainly caused by the seismic energy sources:

the modelling results are obtained with a circular source, while the analytical results

are based on a plane wave source.
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Figure 2.34: Records at a depth of 400m, with the source at (100m, 600m) and a
homogeneous medium subsurface model. The medium has the same rock properties
as those of the surface layer in the two-layer model shown in Figure 2.30.
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Figure 2.35: Reflection coefficients calculated from Zoeppritz equations versus those
measured from modelling results.

If the discrepancy is due to circular waves, then it should become less if one

increased the distance between the point envergy source and reflectors. This causes

the incident wavefront to have a larger radius of curvature and hence be more locally

planar.

In order to verify the guess about the source, another set of experiments are carried

out. First, another two-layer subsurface model was built, as shown in Figure 2.36.

The rock interface is at the depth of 800m. The finite-difference node spacing in the

model is 1m. The wave velocities and densities are the same as shown in Table 2.5.

Second, modelling and calculation on the larger two-layer model are done similar to

those on the smaller model, but the energy source and receivers are put at a depth

of 200m. The result is plotted in Figure 2.37.

It can be found that the distance between the circular energy source and the

reflector has very limited affections on the modelling result, although at small angles

the large distance modelling agrees with Zoeppritz solution more.

Thus, it seems that the reflection coefficient discrepancy between the Zoeppritz
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Figure 2.36: A two-layer subsurface model, larger than the one shown in Figure 2.30
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Figure 2.37: Reflection coefficients calculated from Zoeppritz equations versus those
measured from modelling results.
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solution and the finite-difference modelling result is mainly caused by inaccuracy of

the modelling method.

2.6 3D wave modelling

2.6.1 Algorithm

Finite-difference implementation
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Figure 2.38: A staggered grid for 3D wave modelling.

If a same grid step h is used for x1, x2, and x3 axes and ∆t is used for the

time step, a discrete form of the velocity-stress system of 3D waves is derived from
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displacement-stress-strain relations (2.8) as

v1
n+1/2
i+1/2,j,k = v1

n−1/2
i+1/2,j,k +

∆t

hρi+1/2,j,k

(σ11
n
i+1,j,k − σ11

n
i,j,k + σ12

n
i+1/2,j+1/2,k

− σ12
n
i+1/2,j−1/2,k + σ13

n
i+1/2,j,k+1/2 − σ13

n
i+1/2,j,k−1/2) (2.59a)

v2
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where i, j, and k are the indices for x1, x2, and x3 discretization, and n is the index

for time discretization. The corresponding staggered-grid mesh is shown in Figure

2.38.

Free-surface boundary

Free-surface boundary conditions defined by equations (2.11) can be rewritten as

σ13

∣∣∣∣
x3=0

≡ 0, (2.60a)

σ23

∣∣∣∣
x3=0

≡ 0, (2.60b)

σ33

∣∣∣∣
x3=0

≡ 0. (2.60c)

However, similar to the 2D P-SV case described in section 2.5.1, the above conditions

can not be directly applied to the staggered-grid finite-difference scheme. The reason

is that the shear stresses σ13 and σ23, are not exactly positioned on the surface. Thus,

a scheme, which is similar to the one in section 2.5.1, is developed to model the free

surface. The difference is that the scheme is in 3D.

2.6.2 Modelling with a homogeneous medium

A homogeneous model is used to do 3C-3D wave modelling. The model is a 600m×
600m× 300m cuboid (Figure 2.39). The P- and S-wave velocities of the medium are

3000.00m/s and 1732.05m/s, and the density is 2290.89kg/m3.

A P-wave seismic energy source is buried at a depth of 10m below the surface

centre. The source is modelled by six zero-phase Ricker wavelets (Figure 2.40). A

cross-section annotated by ‘A’ spans the surface centre and the source point.

If the P-wave seismic energy source is buried deep inside the model, pure P wave
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Figure 2.39: A 3D subsurface model geometry. A seismic energy source is 10 meters
below the surface centre. The coordinate unit is meter. Snapshots of cross-section
‘A’ at different times are shown in Figure 2.41, and 3C-3D snapshots on cross-section
‘A’-‘E’ at time 0.105s are shown in Figure 2.42.
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Figure 2.40: A seismic energy source scheme for 3D wave modelling.
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is generated. This is similar to the 2D P-SV case described in earlier sections, except

that in 3D modelling the wave front is a sphere, instead of a circle of 2D case. In

fact, the seismic source for 2D P-SV modelling is regarded as a line source, with the

line perpendicular to the model plane, while here the source is a point in 3D.

With the source buried at a shallow depth, both P and S waves are generated near

the source, because of the free surface above the source. When the wave propagates

away from the source point, head waves connecting the P and S waves are generated.

Also, Rayleigh waves propagate on the 3D surface, with a circular ring wave front.

Figure 2.41 and Figure 2.42 show the wave propagation in the 3D volume.

Figure 2.41 shows vertical component snapshots of generated waves in cross-

section ‘A’ at three different times. All the waves, including P and S waves, downgoing

head waves, and Rayleigh waves, appear as expected.

Amplitude of the waves decay when the waves propagate away. However, they

decay at different rates: body waves, i.e., P and S waves and downgoing head waves,

decay faster than the surface waves. In fact, theoretically, the body waves decay

in the rate of distance, while the surface waves decay in the rate of square root of

distance.

Waves travel at different velocities. P wave is the fastest. S waves and downgoing

head waves travel at the same velocity, since the downgoing head waves are also S

waves. Rayleigh waves are the slowest.

To interpret 3C-3D wave snapshots at time 0.105s, as shown in Figure 2.42, one

starts with the whole 3D picture of the wavefield. As mentioned before, there are P

and S waves, downgoing head waves, and Rayleigh waves generated from the seismic

energy source. P, S, and the downgoing head waves are body waves. The P wavefront
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(a) Time 0.045s

(b) Time 0.075s

(c) Time 0.105s

Figure 2.41: Vertical component snapshots of the centre cross-section ‘A’ shown in
Figure 2.39.
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(c) Horizontal component 2

Figure 2.42: 3C-3D wave snapshots at time 0.105s.
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is a hemisphere at the most outside of the wavefield, because it travels faster than

any other waves. The S wavefront is another hemisphere, which stays inside. The

downgoing head wave shapes as a funnel, connecting P and S waves. The head wave

is an S wave, travelling at the S-wave velocity in the subsurface, showing an apparent

velocity of the P wave on the surface. The Rayleigh wave is a circular ring, spreading

on the surface at a velocity slower than the S-wave velocity. With the 3D picture in

mind, it is easy to recognize them in Figure 2.42 even though sometimes they seem

strange, such as the places annotated with ‘wavefront of Rayleigh wave’, ‘downgoing

head wave’, and ‘wavefront of P wave’ in the figure.

A ‘strange’ phenomenon in the wavefield is cross-section ‘A’ of the horizontal

component 2 (Figure 2.42c). There is no wave energy on this plot, i.e., there is no

particle vibration perpendicular to this plane. However, this must be true in the

physical world since it can be proven that there should be no particle vibrations

perpendicular to this plane when the P-wave source wavefield is symmetric and the

medium is isotropic.

It is proven as follows that there should be no particle vibrations perpendicular to

the plane ‘A’. Suppose a point P0 is on cross-section ‘A’. Another two points P−1 and

P1 are on the opposite side of P0 adjacent to it, and they are on a line perpendicular to

the plane ‘A’. Cross-section ‘A’ is the plane of a point seismic source, and it becomes

a plane of wavefield symmetry since the medium is isotropic homogeneous. If one uses

uP−1 , uP0 , and uP1 to denote the vibration component perpendicular to the plane ‘A’

at a time t, uP−1 and uP1 must have the same amplitudes but with opposite directions.

Since the displacement should be continuous at the three points, uP0 must be zero.
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2.7 Chapter summary

This chapter has discussed elastic wave modelling. Modelling algorithms are presented

in details, and Modelling results are analyzed.

Modelling algorithms

Modelling methods for 1D, 2D, and 3D are discussed in great detail: equations about

waves, finite-difference formulae based on staggered-grid schemes, seismic energy

sources, free-surface boundary conditions, and subsurface model building. However,

one important aspect of wave modelling, computational boundary problem, is left for

the next chapter.

Modelling Results

Modelled results are analyzed to ensure the correctness of the modelling algorithms:

modelled waves, such as surface waves, head waves, and body waves, are consistent

with seismic theories.

Surface waves show up in the modelling of both SH-wave case and P-SV wave

case, and in both 2D and 3D. It is confirmed that for the SH-wave case, surface waves

do not exist in a homogeneous half-space, while they appear in a heterogeneous half-

space. Rayleigh waves emerge in both homogeneous and heterogeneous half-spaces,

and they travel at a slower velocity than body waves. Surface waves do not decay in

2D wave case, but they do in 3D case.

Body waves in the modelling results are more intensively interpreted. Modelled

wave velocities and wave lengths are confirmed to be as designed. Wave amplitudes

and phases are checked to study reflection and transmission coefficients. Geometrical

spreading effects are checked in 1D, 2D, and 3D. The tuning effect is studied in the
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SH-wave case.

Two head-wave cases are analyzed in the 2D P-SV wave modelling. The first case

is the downgoing head waves that connecting the P and SV waves. They are actually

plane SV waves. This case is commonly seen in the wave modelling literature. The

second case is connected to the surface reflections of a upgoing S wave. This case

is not seen in the literature, so it is analyzed in more details: the critical angle is

calculated, the ‘critical distance’ is predicted and confirmed in the modelling results,

and their appearances on surface records are pointed out.

2D P-SV case is discussed mostly using a point reflector model. The modelling is

a preparation for Chapter 4.

Modelling of 3D waves is briefly presented for a 3D homogeneous half-space. How-

ever, the experiment reveals wave phenomena more rightfully than both 2D and 1D

modelling.

In conclusion, the wave modelling results are faithful to elastic seismic theory. On

one hand, this indicates the correctness of the modelling algorithms and their software

implementation. On the other hand, conducting modelling and analyzing modelling

results lead to better understanding of wave phenomena and seismic theories.
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Chapter 3

Computational boundary

This chapter focuses on computational boundaries. First, rigid boundaries are math-

ematically analyzed and numerically modelled. Then, two most popular solutions to

the computational boundary problem, absorbing boundary conditions proposed by

Clayton and Engquist (1977) and a nonreflecting boundary condition proposed by

Cerjan et al. (1985), are examined. Finally, a method of combining absorbing and

nonreflecting boundary conditions is proposed.

3.1 Rigid boundary condition

A rigid boundary is “an idealized immovable interface” (Krebes, 2006). Waves striking

it produce no motion of the boundary at all. A rigid boundary is convenient to

implement in wave modelling by setting boundary displacements or particle velocities

to be zeros. However, it results in very strong reflections. In fact, all the seismic

energy will be reflected upon a rigid boundary. The reflections from such a boundary

is artificial, and they mask the physical reflections inside the subsurface model. Thus,

usually they are not wanted.

Modelling of rigid boundaries is useful, though. First, it exists in theory and

represents a logical end point within the physical world. Second, it is important for

comparison to the various computational boundary condition methods.
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Figure 3.1: Bottom-most nodes in a staggered grid for 1D wave modelling.

3.1.1 1D P wave on a rigid boundary

For 1D P-wave modelling, the computational boundary is usually on the bottom. The

bottom-most nodes of a 1D subsurface model are shown in Figure 3.1.

The rigid boundary condition for a 1D staggered-grid modelling is:

v3

∣∣∣∣
K−1

= 0. (3.1)

where the subscript K−1 indicates the bottom-most particle velocity node, since the

index starts from 0.

With the above rigid boundary condition, stresses on the node K − 1
2

is not

calculated for all the time steps of the finite-difference approximation.

Theoretically, waves striking a rigid boundary will be completely reflected back

with the same amplitudes and phases. 1D P wave numerical modelling results are

consistent with the theory.
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3.1.2 2D P-SV wave on a rigid boundary

After a mathematical analysis of a rigid boundary for 2D P-SV waves, a numerical

implementation is designed. Numerical modelling results are shown to be consistent

with the theoretical predictions.

(a) P wave incident (b) SV wave incident

Figure 3.2: Reflection and transmission of incident P and SV waves. A and B, respec-
tively, represent amplitudes of P and SV waves; Subscripts I, R, and T, respectively,
represent incident, reflected, and transmitted waves; The boldface arrows define the
virtual positive directions of particle motion (adapted from (Krebes, 2006)).

Rigid boundary in theory

Theoretically, what are the reflections off a rigid boundary ?

Consider the P-SV case shown in Figure 3.2. An incident P wave striking a

boundary of media 1 and 2 produces reflected and transmitted P and SV waves. The

boundary conditions are governed by the four Zoeppritz equations, which contain the

following two equations for the horizontal and tangential components of displacement:
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(AI + AR)sinθ1 + (BI +BR)cosφ1 = AT sinθ2 +BT cosφ2, (3.2a)

(AI − AR)cosθ1 − (BI −BR)sinφ1 = AT cosθ2 −BT sinφ2. (3.2b)

where A and B, respectively, represent the amplitudes of the P and SV waves; I, R,

and T, the incident, reflected, and transmitted waves; and θ and φ, P and SV wave

angles.

Waves striking a rigid boundary produce no motion on the boundary. Thus, the

boundary conditions for the rigid boundary are: the normal and tangential compo-

nents of displacement must be zero.

Consider a special case that there is only an incident P wave, i.e., there is no

incident SV wave. There are no transmitted waves beyond the rigid boundary, so the

boundary conditions in equation 3.2 can be re-written as

(AI + AR)sinθ +BRcosφ = 0, (3.3a)

(AI − AR)cosθ −BRsinφ = 0. (3.3b)

where media subscripts are dropped, since only medium 1 is involved.

Solving for the reflected P and SV waves yields

AR =
cosθcosφ− sinθsinφ

cosθcosφ+ sinθsinφ
AI , (3.4a)

BR = − 2sinθcosθ

cosθcosφ+ sinθsinφ
AI . (3.4b)
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Using the trigonometric addition formulas, one gets

AR =
cos(θ + φ)

cos(θ − φ)
AI , (3.5a)

BR = − sin2θ

cos(θ − φ)
AI . (3.5b)

These equations tell us that

1. The incident P wave energy is all reflected as P wave energy, i.e., there is no

reflected SV wave, when an incident P wave travelling inside a solid medium

strikes a rigid boundary with an incident angle equal to zero. There are both

P and SV wave reflections when the incident angle is greater than zero.

2. For the vertical displacement, there is a polarity reversal for the P wave reflec-

tions compared to the incident P wave when the incident angle is such that

θ + φ is less than 90◦. This is determined by not only the reflection coefficient

RPP = AR/AI given by equation (3.5a), but also by the polarity vector (the

boldface arrow in Figure 3.2). The amplitude of the reflected P wave becomes

weaker when the incident angle becomes greater, until the reflected P wave dis-

appears when the incident angle is such that θ + φ is equal to 90◦. Denoting

the unique P-wave incident angle and S-wave reflection angle as θUN and φUN ,

by applying Snells law, these angles can be decided as

θUN = arctan(
vP

vS

), (3.6a)

φUN = arctan(
vS

vP

). (3.6b)
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When the incident angle is even greater such that θ + φ is greater than 90◦,

the reflected P wave appears again, but there is no polarity reversal compared

to the incident P wave.

3. For the horizontal component of the reflected P wave, similar conclusions can be

drawn, but the polarities are different. When the incident angle of the incident

P wave is small enough, there will be no polarity reversal for the reflected P

wave, compared to the incident P wave. Then there will be a polarity change

in the reflected P wave when the incident angle reaches θUN .

4. There is no reflected SV wave when the incident P wave is vertically incident

upon a rigid boundary. The reflected SV wave appears when the incident angle

is greater than zero.

The interpretations above can be used to clarify the validity of an algorithm of

rigid boundary conditions in the numerical wave modelling.
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Figure 3.3: Rigid boundary conditions for a 2D P-SV staggered grid.
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Rigid boundary in a staggered grid

For a staggered-grid scheme with velocity / stress and time splitting, shown in 2.20,

the indices of the lines of horizontal particle velocity nodes are from 0 to K − 1 for

the horizontal particle velocities, and from 1/2 to K − 1/2 for the vertical particle

velocity nodes.

The natural assumption for the rigid boundary conditions is to set the boundary

particle velocities to zero, i.e., set the values on the nodes on line K − 1 and K − 1/2

in Figure 3.3 to zero, but this turns out to be false. This conclusion is drawn from

the fact that there are only P wave reflections off the boundary resulting in the

numerical modelling experiment. Why does this implementation of rigid boundary

conditions fail? The reason is that this method does not guarantee the horizontal

particle velocities on the boundary (line K − 1/2) to be zero.

Taking the line K−1/2 as the rigid boundary, in addition to the values of vertical

particle velocities on this line being set to zero, one should also make sure that the

horizontal particle velocities on this line equal to zero although there are no real

numerical nodes on this line. If a virtual line of nodes is put on the line K, and the

values on the virtual line are set anti-symmetric to those on the line K − 1, i.e.,

v1

∣∣∣∣
K

= −v1

∣∣∣∣
K−1

, (3.7a)

v3

∣∣∣∣
K−1/2

= 0, (3.7b)

then, the values of v1 on the boundary line K − 1/2 would be guaranteed to be zero
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by the central finite difference:

v1

∣∣∣∣
K−1/2

=
1

2
(v1

∣∣∣∣
K

+ v1

∣∣∣∣
K−1

) = 0. (3.8)

Numerical modelling experiment

A 2D subsurface model is built to check the algorithm. The subsurface is 5000 meters

in length and 1000 meters in depth. It is a homogeneous medium. The space steps

on both horizontal and vertical directions are the same: 1.25m. The P wave velocity

is 3000m/s and the density is estimated by Gardner′s relationship. Then the S wave

velocity is calculated to be 1732m/s by assuming the Poisson′s ratio to be 0.25. After

the velocity and density parameters are decided, the Lamé coefficients are calculated

and then used with the density data in the numerical modelling.

An explosive source is placed at the centre of the surface. The source consists of

four zero phase Ricker wavelets with peak frequency equal to 40Hz.

The time step of modelling is 0.00016s. The number of total time steps is 5500,

which makes the total time of modelling to be 0.88s.

Modelling snapshots of the centre shot are shown in Figure 3.4 and 3.5. The

first group of snapshots show the vertical component and the second ones show the

horizontal component.They are shown in the time order.

In the snapshots of time 0.288s, a P wave, an SV wave, and down-going header

waves are traveling outwards from the seismic source, which is at the surface centre.

On the surface, Rayleigh waves, which are slower than the SV wave, are also observed.

In the snapshots of time 0.4s, the P wave strikes the bottom boundary, and

reflections are produced although the reflections are not clearly distinguishable.
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Figure 3.4: P-SV wave upon a rigid boundary - vertical component.
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Figure 3.5: P-SV wave upon a rigid boundary - horizontal component.
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At times 0.512s and 0.624s the reflected P and SV waves are clearly distinguish-

able. The polarity reversal of the vertical component of the reflected P wave, com-

pared to the incident P wave, can be observed. With the incident angles of the P wave

on the bottom boundary becoming greater and greater, the P wave reflection becomes

weaker and weaker. Spherical spreading is one cause of the amplitude attenuation,

but the main cause is the incident angle change.

At time 0.736s, the P wave reflected off the bottom boundary becomes very weak

and seems to have disappeared. In fact, om this specific medium P- and S- wave

velocities are, respectively, 3000m/s and 1732m/s. According to equations 3.6, when

the incident angle θ is equal to 60◦, the PS reflection angle φ is 30◦. In turn, (θ + φ)

is equal to 90◦. Thus, the amplitude of the reflected P wave is zero when the incident

angle θ is equal to 60◦ in this specific medium.

At time 0.848s, the P wave reflection has reappeared with a reversed polarity.

Thus, two different polarities are observable on the same wave front of the P wave

reflection.

Hence, one can conclude that the above observations accurately match the math-

ematical derivations and qualitative interpretations.

3.2 Absorbing boundary conditions

Absorbing boundary conditions proposed by Clayton and Engquist (1977) are exam-

ined in both 1D and 2D.
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3.2.1 1D P-wave absorbing boundary conditions

Similar to the 2D absorbing boundary condition for a non-staggered grid finite-

difference scheme (Clayton and Engquist, 1977), one can derive 1D absorbing bound-

ary condition for a staggered-grid finite-difference system.

One-dimensional P-wave wave equation is

∂2v3

∂t2
= v2

P

∂2v3

∂x2
3

, (3.9)

where v3 is the vertical displacement, and vP is P-wave velocity in an isotropic homo-

geneous medium. Using complex exponential to describe harmonic waves, one gets

the solution of the 1D wave equation

v3 = Aei[κ3(x3−vP t)] = Aei(κ3x3−ωt), (3.10)

where A is the amplitude, κ3 is the circular wavenumber in the direction of x3, ω is

the circular frequency.

The first and the second partial derivatives of displacement with respect to time

and space could be derived as

∂v3

∂t
= −iωAei(κ3x3−ωt) = −iωu3, (3.11a)

∂2v3

∂t2
= −ω2u3, (3.11b)

∂v3

∂x3

= iκ3u3, (3.11c)

∂2v3

∂x2
3

= −κ2
3u3. (3.11d)
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Substituting the second derivatives into the wave equation, one obtains the dis-

persion relation

ω2

v2
P

= κ2
3. (3.12)

Thus,

κ3 = ± ω

vP

, (3.13)

where the plus sign equation describes a plane wave travelling in the +z direction,

while the minus sign equation describes a plane wave travelling in the −z direction.

From the first partial derivatives, one gets the following equations

ω = −
∂v3

∂t

iv3

, (3.14a)

κ3 =
∂v3

∂x3

iv3

. (3.14b)

Submitting these two equations into κ3 = ω
vP

, one obtains the absorbing boundary

condition for the bottom boundary as

∂v3

∂x3

= − 1

vP

∂v3

∂t
. (3.15)

Suppose the 1D model has totally K spatial nodes, coded from 0 to K − 1,

for particle displacement. Using one-sided differences to approximate the absorbing
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boundary condition on this node, one gets:

v3
n+1
K−1 − v3

n
K−1

∆t
= −vP K−3/2

v3
n
K−1 − v3

n
K−2

h
. (3.16)

That is,

v3
n+1
K−1 = v3

n
K−1 −

vP K−3/2∆t

h∆t
(v3

n
K−1 − v3

n
K−2) (3.17a)

= (1− vP K−3/2∆t

h∆t
)v3

n
K−1 +

vP K−3/2∆t

h
v3

n
K−2. (3.17b)

Modelled absorbing boundary

By checking the snapshots at time 0.2625s (Figure 2.6k) and at time 0.2875s (Figure

2.6l), it can be observed that the absorbing boundary works very well: there are

almost no reflections.

In fact, the modelled data show that the boundary reflections are very weak com-

paring to the incident wave. The peak amplitude of the boundary reflections at time

0.2875s is -1.32825 at depth 911m. This is about 1
122

of the incident peak amplitude

shown in Table 2.1, i.e., the reflection coefficient upon the absorbing boundary is

about 1
122

. This is observed in Figure 3.6, which contains both an enlarged color plot

of Figure 2.6l and its wiggle plot.
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Figure 3.6: Reflection from an absorbing bottom boundary - enlarged Figure 2.6l and
its wiggle plot.
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3.2.2 P-SV wave absorbing boundary conditions

Numerical implementations

The absorbing boundary conditions A1 (Clayton and Engquist, 1977) for the bottom

boundary of a 2D elastic subsurface model can be written as

∂v1

∂x3

+
1

β

∂v1

∂t
= 0, (3.18a)

∂v3

∂x3

+
1

α

∂v1

∂t
= 0, (3.18b)

where v1 and v3 are, respectively, the horizontal and vertical particle velocity; α and

β are, respectively, P-wave and S-wave velocity.

Figure 3.7: Absorbing boundary conditions: a solution to the problem shown in
Figure 1.4b.

Using backward difference operator with respect to x3 and forward difference

operator with respect to time t, one can write system 3.2.2 in the staggered-grid
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scheme as

v1
n−1/2
i,K−1 − v1

n−1/2
i,K−2

h
+

1

β

v1
n+1/2
i,K−1 − v1

n−1/2
i,K−1

∆t
= 0, (3.19a)

v3
n−1/2
i+1/2,K−1/2 − v3

n−1/2
i+1/2,K−3/2

h
+

1

α

v3
n+1/2
i+1/2,K−1/2 − v1

n−1/2
i+1/2,K−1/2

∆t
= 0, (3.19b)

where (i, k) is the space node index, n is the time node index. From the formulae,

particle velocities on the boundary v1
n+1/2
i,K−1 and v3

n+1/2
i+1/2,K−1/2 are calculated from the

data at time n−1/2. The data used at time n−1/2 are on the last two lines of nodes.

Figure 3.7 sketches the approximation. This is a solution to the problem shown in

Figure 1.4b.

i
Point

Figure 3.8: A point reflector subsurface model for boundary condition modelling. The
dimension of the point reflector is 10m by 10m.

A point reflector subsurface model

In order to check different boundary conditions, another 2D subsurface model is built.

The model contains a point reflector in a homogeneous medium in x1-x3 plane. Figure

3.8 shows its geometry with P-wave velocities. The subsurface is 3750m wide and

1000m high. With a spatial step of 1.25m, there are 3000 nodes in offset and 800

nodes in depth. The point reflector is a square with side length of 10m, positioned at
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offset from 2300m to 2310m, and at depth from 250m to 260m. The point reflector

will generate physical reflections in wave modelling, and the reflections are compared

to computational boundary reflections.

The rock properties of the point reflector and its surrounding rock are the same

as in Table 2.4.

(a) Vertical component

(b) Horizontal component

Figure 3.9: Modelling results using absorbing boundary conditions.

Modelling results using absorbing boundary conditions

Modelling is done by using a time step of 0.00016s and a total steps of 3500. Thus,

the total modelling time is 0.56s.

Figure 3.9 shows the resulting wavefield, with two components. In addition to the

source waves, P and S waves and Rayleigh waves, there are two sets of reflections.

One is physical reflections from the point reflector and the free surface, and the other
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one is artificial reflections from the bottom boundary. The physical reflections include

PP and PS reflections generated by the incident P wave, SP reflection generated by

the down-going head wave, and surface reflections of PP and PS waves. The artificial

reflections PP and PS are generated from the incident P wave. Both are much weaker

than the incident P wave. This indicates that the absorbing boundary conditions do

work. However the artificial reflections are still much stronger than the physical

reflections, which is not desirable.

(a) Vertical component

(b) Horizontal component

Figure 3.10: Modelling results using three-point absorbing boundary conditions.
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Approximate with three-point difference

First order derivatives can be approximated by a two-point forward or backward

difference approximation. The two-point backward approximation can be written as

f ′(xi) =
f(xi)− f(xi−1)

h
. (3.20)

The two-point forward and backward difference approximations have truncation errors

of the order of O(h).

First order derivatives can also be approximated by a three-point forward or back-

ward difference approximation. The three-point backward approximation can be writ-

ten as

f ′(xi) =
3f(xi)− 4f(xi−1) + f(xi−2)

2h
. (3.21)

The three-point forward and backward difference approximations have truncation

errors of the order of O(h2).

Thus, using three-point backward difference operators with respect to x3 and two-

point difference with respect to t, system 3.2.2, one can write absorbing boundary

conditions for the bottom boundary in the staggered-grid scheme, as

3v1
n−1/2
i,K−1 − 4v1

n−1/2
i,K−2 + v1

n−1/2
i,K−3

2h
+
v1

n+1/2
i,K−1 − v1

n−1/2
i,K−1

β∆t
= 0,

(3.22a)

3v3
n−1/2
i+1/2,K−1/2 − 4v3

n−1/2
i+1/2,K−3/2 + v3

n−1/2
i+1/2,K−5/2

2h
+
v3

n+1/2
i+1/2,K−1/2 − v1

n−1/2
i+1/2,K−1/2

α∆t
= 0,

(3.22b)
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Boundary PP

Boundary PS

Incident S

(a) Vertical component, 2-point approxi-
mation

Boundary PP

Boundary PS

Incident S

(b) Horizontal component, 2-point approx-
imation

Boundary PP

Boundary PS

Incident S

(c) Vertical component, 3-point approxi-
mation

Boundary PP

Boundary PS

Incident S

(d) Horizontal component, 3-point approx-
imation

Figure 3.11: Wiggle plots of traces at offset 1500m from Figure 3.9 and 3.10.
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Figure 3.10 shows the resulting wavefield and Figure 3.11 displays four traces

from Figure 3.9 and 3.10. The boundary reflections resulted from the three-point

approximation are slightly weaker. This shows that three-point approximation works

better than two-point approximation.

However, the artificial reflections are still much stronger than the physical reflec-

tions. This is more evident on the PS reflections in the horizontal component plots

3.9b and 3.10b.

3.3 Nonreflecting boundary condition

���������	
��
	�

�����	��	�����
����
���

Figure 3.12: Non-reflecting boundary strips on the left, right and bottom of a sub-
surface model.

A nonreflecting boundary condition (Cerjan et al., 1985) employs a strip of nodes

on the boundary to attenuate wave amplitudes, as shown in Figure 3.12. For a strip

width of n nodes, the amplitude values are multiplied by a factor

G = e[−ε(N−i)]2 , (3.23)
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where ε is a constant; i denotes the grid distance between the node and the outside

boundary.

Attenuating wave amplitude by the factors has two effects. First, the wave is

weakened towards the outside boundary, which means the reflection from the outside

boundary will be attenuated. The other effect is that, when the wave goes through

the energy absorbing strip, it ‘sees’ the changes in impedance of the medium because

of the attenuated amplitudes and then part of the wave energy will be reflected back.

Thus, for a strip width of N , there seems to exist N fictitious reflectors.

Figure 3.13: Reflections from a non-reflecting boundary.

Hence, there are two kinds of reflections generated from the nonreflecting bound-

ary, as shown in Figure 3.13. One is from the fictitious reflectors; the other one is from

the outside rigid boundary. The constant ε affects both reflections. The greater the

constant ε is, the stronger the fictitious reflector reflections will be, but the weaker

the outside rigid boundary reflection will be. The width N has little influence on

the fictitious reflector reflections, while large N certainly results in weaker outside

boundary reflections.

Figure 3.14 shows the reflections from the bottom non-reflecting boundary with

parameters ε = 0.004 and N = 50. A smaller ε and a greater N could have been used

to reduce reflections to the least extent, but these parameters are chosen so that one
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(a) Vertical component

(b) Horizontal component

Figure 3.14: Modelling results using non-reflecting boundary conditions.

can observe the reflections and compare the result to that of other methods.

3.4 Combining absorbing and nonreflecting boundary condi-

tions

���������	
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	�

�����	��	�����
����
���

���������
����
���

Figure 3.15: Applying absorbing boundary conditions outside of a non-reflecting
boundary.

By combining absorbing boundary conditions at the outside boundary of the non-
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(a) Vertical component

(b) Horizontal component

Figure 3.16: Modelling results using combined boundary conditions.

reflecting boundary strip (Figure 3.15), with the same strip width N and the same

constant ε for the non-reflecting boundary, the boundary reflections can be further

reduced.

Figure 3.16 shows a snapshot of the combined boundary, with parameters ε =

0.004 and N = 50 for the non-reflecting strip. Compared to either the result of

absorbing boundary conditions (Figure 3.9) or that of a non-reflecting boundary

condition (Figure 3.14), the reflections are much weaker. The same as mentioned

with non-reflecting boundary, these parameters are chosen for the sake of algorithm

demonstration. It is possible to choose smaller ε and greater N to reduce the resident

reflections to the least extent.
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3.5 Computational costs of boundaries

In addition to the wavefield computing within the subsurface model, there are more

computational resources involved if a nonreflecting boundary condition is employed.

First, more memory is required for non-reflecting boundary condition, since finite-

difference nodes are padded to the subsurface model. In the cases of above non-

reflecting boundary and combined boundary experiments, the number of nodes in the

subsurface model are 3000 × 800 = 2400000, and the additional number of non-

reflecting boundary nodes is 235000, so the memory requirement is increased by

10.2%.
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Figure 3.17: Computational times of different boundary conditions.

Second, more computational time is required for nonreflecting boundary condition

and combined boundary conditions. Figure 3.17 lists the total computational times

when rigid, absorbing, non-reflecting, or combined boundary condition is applied to

the same subsurface model as shown in Figure 3.8. The computational times of
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non-reflecting and combined boundary conditions are approximately 10% longer than

those of rigid and absorbing boundary conditions. The increase rate is consistent

with that of memory.

The computational time of the rigid boundary is longer than that of the absorbing

boundary. This is a surprise at the first look since a rigid boundary seems less

computational intensive than an absorbing boundary. However, a closer check on

the rigid boundary (see section 3.1) reveals that a rigid boundary is actually more

computational intensive than an absorbing boundary.

3.6 Chapter summary

This chapter has focused on one of the most important issues in wave modelling:

computational boundary problem.

Results from numerically modelling of rigid boundaries are consistent with the-

oretical predictions. On one hand, this confirms the problem of the computational

boundaries. On the other hand, it also verifies the correctness of the modelling algo-

rithms.

The method of absorbing boundary conditions (Clayton and Engquist, 1977) works

well for 1D wave case. However, reflections resulted from an absorbing boundary in

2D can be stronger than those from physical reflectors.

The method of the nonreflecting boundary condition (Cerjan et al., 1985) can

reduce artifacts to any extent if the nonreflecting stripes are thick enough. However,

thick nonreflecting stripes lead to extra computational costs.

The proposed method, which combines the absorbing boundary and the nonre-

flecting boundary, works better, in terms of reducing artificial reflections and compu-
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tational costs.
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Chapter 4

Reverse-time migration

After introduction to the principles of reverse-time migration, this chapter examines

some popular imaging conditions for reverse-time migration and demonstrates an

improved method of imaging conditions for multi-component processing. The analysis

is done using the point reflector subsurface model used in Chapter 2.

A prestack reverse-time migration workflow is sketched and tested with a shrunk

Marmousi2 model and a dipping layer model. The processing workflow is very dif-

ferent from the traditional seismic data processing workflow. For example, it is not

necessary to remove ground roll from surface records.

4.1 Principles of reverse-time migration

4.1.1 Time reversed waves

A brief yet clear explanation of the principle behind reverse-time migration can be

found in Lines and Newrick (2004, chap. 6). For 1D homogeneous wave equation,

∂2u

∂x2
=

1

v2

∂2u

∂t2
, (4.1)
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a general solution is of the form

u = f(x+ vt) + g(x− vt), (4.2)

where f and g are arbitrary functions that are twice differentiable. It can be shown

that the solutions to the wave equation remains valid if one changes the sign of t. In

other words, mathematically, a time reversed wave will still obey the wave equation,

although with time in the physical world, we can progress in only one direction.

Thus, the numerical forward modelling and reverse-time extrapolation should and

can be done with the rules of the same wave equation. Take the above 1D homo-

geneous case for example, the numerical implementation of the above principle is

as follows. Approximated with central difference, the above wave equation can be

written as

u(t+ ∆t)− 2u(t) + u(t−∆t)

∆t2
=

1

v2

u(x+ h)− 2u(x) + u(x− h)

h2
, (4.3)

where ∆t and h are, respectively, time step and space step of finite difference. On

one hand, the forward modelling of wave is

u(t+ ∆t) = 2u(t)− u(t−∆t) +
∆t2

v2

(
u(x+ h)− 2u(x) + u(x− h)

h2

)
, (4.4)

where wavefield at a next time step is approximated from the previous times. On the

other hand, the reverse-time extrapolation of wave is

u(t−∆t) = 2u(t)− u(t+ ∆t) +
∆t2

v2

(
u(x+ h)− 2u(x) + u(x− h)

h2

)
, (4.5)
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where wavefield at a previous time step is extrapolated from the next times.

The above description is for the acoustic case. In the thesis, elastic waves are

stepped backwards in time.

4.1.2 Imaging principle

The imaging principle (Claerbout, 1971) states “Reflectors exist at points in the

ground where the first arrival of downgoing wave is time coincide with an upgoing

wave”.

Imaging conditions are implementations of the imaging principle. People have

practiced various imaging conditions. Most of the imaging conditions are for acoustic

case, but recently elastic imaging conditions have also appeared.

Some popular acoustic (scalar) imaging conditons are: ratio of upgoing over down-

going wavefield amplitudes (Claerbout, 1971; Chattopadhyay and McMechan, 2008),

cross-correlation (Claerbout, 1971; Biondi and Shan, 2002), source normalized cross-

correlation (Whitmore and Lines, 1986), ray tracing (Chang and McMechan, 1987),

minimum time (Loewenthal and Hu, 1991; Chattopadhyay and McMechan, 2008),

maximum amplitude (Loewenthal and Hu, 1991), and receiver normalized cross-

correlation (Kaelin and Guitton, 2006),

Two categories of elastic imaging conditions have emerged. The first one is based

on wavefield decomposition or wave-mode separation. Multicomponent wavefields

are separated into P and S waves based on Helmholtz decomposition (Yan and Sava,

2007). The second category is based on the elastic wavefields without decomposition.

For example, Du et al. (2012) presented source normalized cross-correlation imaging

conditions with polarity reversal correction. The imaging conditions discussed in the
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dissertation fall into the second category.

Note that ‘source wavefield’, ‘downgoing wavefield’, and ‘incident wavefield’ are

used as synonyms in this chapter, and so are ‘receiver wavefield’, ‘upgoing wavefield’,

and ‘reflected wavefield’.

4.2 Reverse-time extrapolation: a point reflector

The same point reflector subsurface model used in modelling, whose P-wave velocities

are shown in Figure 2.23, is used here.

Two modelling experiments analyzed in subsection 2.5.2.3 and 2.5.2.4 are used

here in the reverse-time migration experiments. The first experiment is done with a

centre surface source, and the second with a horizontally far-away surface source.

4.2.1 Reverse-time extrapolation: centre shot

Figure 4.1 shows snapshots from a centre source experiment. Three columns in the

figure are, respectively, the forward modelling, the reverse-time extrapolation, and

their cross-correlation term. Vertically, the snapshots are in time order.

Forward modelling and downgoing waves

Forward modelling creates the “downgoing” waves, so-called by Claerbout (1971).

The forward modelling snapshots are created from the same forward modelling

experiment as shown in Figure 2.25.

The left column of Figure 4.1 shows forward modelling snapshots in time order.

In the experiment, the P and S downgoing waves each strikes the point reflector once,

which happen at times of around 0.135s and 0.235s. At first, at time 0.135s, as shown
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in Figure 4.1d, an incident P wave strikes the point reflector and diffraction starts to

appear on the snapshot, and the reflected PP and PS waves are shown in Figure 4.1g.

Then, at time 0.235s, as shown in Figure 4.1g, an incident S wave strikes the point

reflector and another diffraction shows up. However, the incident S wave upon the

point reflector is very weak and the second diffraction is also weak. Thus the main

reflections recorded, PP and PS, are caused by the 0.135s P-wave strike. Figure 2.26

shows the surface records.

Reverse-time extrapolation and upgoing waves

Reverse-time extrapolation of surface records creates the “upgoing” waves, so-called

by Claerbout (1971). That is, the upgoing (reflected) wavefield in the subsurface is

reconstructed from the surface records.

Reverse-time extrapolation is mostly the same processing as forward modelling:

the same finite-difference formulas and boundary conditions are used to do reverse-

time extrapolation. Nevertheless, during this processing the surface record acts as

numerous sources, and the process is reversed in time.

It is assumed that the medium is in equilibrium at the beginning of reverse-time

extrapolation, i.e., initially stresses and particle velocities are set to zero everywhere

in the medium. The assumption is usually not true because the time the extrapolation

starts is the time that one stops the forward modelling of the incident wave, or the

time that one stops recording in a real acquisition experiment, while at this time

the subsurface wavefield usually exists. However, it is chosen to follow the false

assumption of zero initial condition. For one thing, one wants to reconstruct upgoing

wavefield without the downgoing wavefield. For another, the subsurface wavefield is

unknown in a real seismic experiment. The false assumption of zero initial condition
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(a) Vertical component

(b) Horizontal component

Figure 4.2: Muted surface records from a centre surface source. The corresponding
records without muting are shown in Figure 2.26.
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causes artifacts during the extrapolation, though. This was found by comparing two

experimental results: in one experiment the modelled wavefield was used as the initial

values, while in another experiment, zeros were used instead.

It is necessary to preprocess the surface record before it is used to do reverse-time

extrapolation.

First, direct P-wave arrivals in surface records are connected to the source gener-

ated P wavefronts in the subsurface, so it is necessary to remove direct P-wave arrivals

from surface records. This is done by muting.

Second, head waves arriving as first breaks are muted from surface records.

Third, consideration is given to ground roll, the Rayleigh waves in seismic records.

In traditional seismic data processing based on Kirchhoff migration, ground roll has to

be removed, which usually turns out to be a challenging task if one wants to keep the

reflected energy intact. However, in my point of view, for reverse-time migration, it

is not critical to remove ground roll in surface records, since the extrapolated energy

in the subsurface will be surface waves, which only affect very shallow subsurface

imaging. Based on this judgment, the ground roll in the migration of the shrunk

Marmousi2 data later in this chapter, which are difficult to remove, are not removed.

However, in the point reflector experiments in this section (Section 4.2), the ground

roll is simply muted from surface records. Figure 4.2 shows muted surface records of

the centre shot, which are in Figure 2.26.

The central column of Figure 4.1 shows snapshots resulted from reverse-time ex-

trapolation. Reverse-time extrapolation starts from the end of the forward modelling

time. Fed from the surface with preprocessed surface records, PS waves propagate

downwards from time 0.535s (Figure 4.1q), to 0.435s (Figure 4.1n), and then to 0.335s
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(Figure 4.1k). At 0.235s, as shown in Figure 4.1h, PS waves keep going down, and a

PP wave also propagates down. The PP wave travels at a higher velocity and even-

tually merged together with the PS waves at time 0.135s at the position of the point

reflector, as shown in Figure 4.1e. After striking the point reflector, the wave energy

reverse-time extrapolated as reflections, annotated as P′′′ and S′′′ in Figure 4.1b.

Cross-correlation and time coincidence of waves

Projecting the upgoing wavefield to a downgoing wavefield is a means of measuring

how much of the upgoing wavefield is coincident with the downgoing wavefield. This

projecting is done by multiplying the upgoing wavefield at a certain time to the

corresponding downgoing wavefield point by point. This is equivalent to a zero-lag

cross-correlation term.

The right column of Figure 4.1 shows the cross-correlation snapshots.

At time 0.135s (Figure 4.1f), the cross-correlation results in strong energy. This is

the product of the incident P wave shown in Figure 4.1d and the reflected PP wave

shown in Figure 4.1e. Thus, this energy is a real image of the point reflector.

However, some cross-correlation energy exists at times 0.035s (Figure 4.1c) and

0.235s (Figure 4.1i). There are no corresponding reflectors in the subsurface model,

and that cross-correlation energy is regarded as imaging noise. In fact, the imaging

artifact shown in Figure 4.1c is caused by the incident P wave shown in Figure 4.1a

and the reverse-time extrapolated P′′′ wave shown in Figure 4.1b. Since the incident

P wave and the reverse-time extrapolated P′′′ wave travel in different directions, they

appear at the same space only for a short time. Thus this kind of imaging artifact,

annotated as ‘P-P′′′ artifact’, distributes in limited space. However, the imaging

artifact shown in Figure 4.1i is caused by the reflected PP wave shown in Figure 4.1g
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and the reverse-time extrapolated PP wave shown in Figure 4.1h. Since the reflected

PP wave and the reverse-time extrapolated PP wave always travel at the same time

and in the same space, this kind of imaging artifact, annotated as ‘PP-PP artifact’,

spreads everywhere between the seismic energy source and the reflector.

Horizontal component

Figure 4.1 shows only the vertical component. The horizontal component is used in

reverse-time migration for subsurface imaging as well. For example, Figure 4.3 shows

horizontal component snapshots of forward modelling and reverse-time extrapolation,

and snapshots of horizontal component involved cross-correlation at time 0.135s.

The cross-correlation of horizontal component of downgoing waves with upgoing

waves (Figure 4.3d and 4.3e) does not provide much subsurface imaging information.

This is not surprising, since the incident P wave upon the point reflector does not

cause much horizontal vibrations at all.

However, the cross-correlation of vertical component of downgoing waves with

horizontal component of upgoing waves, as shown in Figure 4.3c, shows strong sub-

surface imaging energy. In fact, this valuable information is comparable to the cross-

correlation of vertical component of downgoing waves with vertical component of

upgoing waves, as shown in Figure 4.1f.

4.2.2 Reverse-time extrapolation: far-away surface source

Figure 4.4 shows snapshots generated with a surface source located far away from the

point reflector.

The left column of Figure 4.4 shows forward modelling snapshots. In the ex-

periment, the downgoing waves strike the point reflector twice, at times of 0.17s and
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(a) Forward modelling, horizontal component

(b) Reverse-time extrapolation, horizontal com-
ponent

(c) Cross-correlation term, vertical component in
Figure 4.1d versus horizontal component in Figure
4.3b

(d) Cross-correlation term, horizontal component
in Figure 4.3a versus vertical component in Figure
4.1e

(e) Cross-correlation term, horizontal component
in Figure 4.3a versus horizontal component in Fig-
ure 4.3b

Figure 4.3: Horizontal component snapshots which are involved in forward modelling,
reverse-time extrapolation, and cross-correlation at time 0.135s. For comparison,
amplitude clips are the same as corresponding plots in Figure 4.1.
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0.29s, respectively. At first, at time 0.17s, as shown in Figure 4.4a, an incident P wave

strikes the point reflector and diffraction starts to appear on the snapshot. Then, at

time 0.29s, as shown in Figure 4.4d, an incident S wave strikes the point reflector and

another diffraction starts to appear. Different from the centre source shot, the inci-

dent S wave here is strong and the reflected SP and SS waves are also strong. Thus

the main reflections recorded, PP, PS, SP, and SS, are caused by the 0.17s P-wave

strike and 0.29s S-wave strike. Figure 2.29 shows the surface records.

The central column of Figure 4.4 shows reverse-time extrapolation snapshots.

Reverse-time extrapolation starts from the end of the forward modelling time. Fed on

the surface with preprocessed surface records, SS waves propagate downwards, and at

time 0.41s (Figure 4.4h) SS and SP wave energy has already completely extrapolated

from the surface record to the subsurface. At time 0.29s (Figure 4.4e), the SP wave

merges to the SS wave at the point reflector, while PS and PP waves are still on their

way towards the point reflector. Eventually PS and PP waves merge at the point

reflector at the time about 0.17s (Figure 4.4b).

The right column of Figure 4.4 shows the cross-correlation snapshots. Two snap-

shots, Figure 4.4c and 4.4f, show strong imaging energy. The image energy in Figure

4.4c is caused by the downgoing P wave and its reflections restored in reverse-time

extrapolation, and the imaging energy in Figure 4.4f is caused by the downgoing S

wave and its reflections restored in reverse-time extrapolation. These parts of imaging

energy are desirable.
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4.3 Imaging conditions

4.3.1 Cross-correlation imaging condition without normalization

An imaging condition for a shot gather in prestack reverse-time migration is a zero-

lag cross-correlation of source waves and receiver wavefields (Claerbout, 1971; Biondi

and Shan, 2002)

Image(x1, x3) =
∑

t

S(x1, x3, t)R(x1, x3, t), (4.6)

where S(x1, x3, t) and R(x1, x3, t) are, respectively, the source and receiver wavefields.

The cross-correlation term S(x1, x3, t)R(x1, x3, t) at a certain time looks like a snap-

shot shown on the right column of Figure 4.1. Thus the imaging condition for a shot

gather in equation 4.6 is implemented by stacking all the cross-correlation snapshots.

For a multi-component algorithm, there are both horizontal and vertical com-

ponents for both source and receiver wavefields. Thus, one can actually have four

cross-correlation imaging conditions:

IV V (x1, x3) =
∑

t

SV (x1, x3, t)RV (x1, x3, t), (4.7a)

IV H(x1, x3) =
∑

t

SV (x1, x3, t)RH(x1, x3, t), (4.7b)

IHV (x1, x3) =
∑

t

SH(x1, x3, t)RV (x1, x3, t), (4.7c)

IHH(x1, x3) =
∑

t

SH(x1, x3, t)RH(x1, x3, t), (4.7d)

where subscripts V and H denotes, respectively, vertical and horizontal components.

Hereafter the imaging conditions will be referred to as VV, VH, HV, and HH imaging
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conditions.

Strong-source effect

(a) VV

(b) VH

Strong-source effect

(c) HV

(d) HH

Figure 4.5: Centre shot imaging result of cross-correlation without normalization.

Figure 4.5 shows imaging results from the centre source shot, and Figure 4.6 shows
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Strong-source effect

(a) VV

Strong-source effect

(b) VH

Strong-source effect

(c) HV

(d) HH

Figure 4.6: Far-away source shot imaging result of cross-correlation without normal-
ization.
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images from the far-away source shot. As stated in the paper by Claerbout (1971),

the imaging energy “drops off rapidly in any region where either the downgoing wave

is weak or the upgoing wave is weak”. This is a desirable property. First, for regions

where the downgoing wave is coincident with the upgoing wave, there is imaging

energy; second, for stronger coincidence, there is stronger imaging energy. However,

for the regions close to the seismic energy source point, where the downgoing wave, or

source wavefield, is very strong, the imaging energy becomes very high. This source

effect of imaging is not a desirable property. This is referred in this dissertation as

‘strong-source effect’ of cross-correlation imaging conditions, in order to distinguish

this kind of source effect from another kind of source effect described in the next

subsection. Strong-source effect can be observed in Figure 4.5a, 4.5c, 4.6a, 4.6b, and

4.6c.

4.3.2 Source normalized cross-correlation imaging conditions

Source normalized cross-correlation imaging condition for an acoustic shot gather is

given as (Whitmore and Lines, 1986; Kaelin and Guitton, 2006; Chattopadhyay and

McMechan, 2008)

Image(x1, x3) =

∑
t S(x1, x3, t)R(x1, x3, t)∑

t S
2(x1, x3, t)

. (4.8)

Obviously, when implement the imaging condition, one needs to employ one of the

techniques to avoid the problem of division by zero. One technique is to use an

additive constant in the denominator. Some other methods are based on a threshold:

if the denominator or the numerator is less than a certain threshold, the imaging
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result is set to zero. In the thesis, the auther used a threshold for the denominator.

Because the source wavefield auto-correlation term is used as the denominator

on the right, for regions close to the shot point, the imaging energy will be brought

down. Hence, the strong-source effect is suppressed.

For a multi-component algorithm, Du et al. (2012) re-wrote the above imaging

condition to four equations as follows.

IV V (x1, x3) =

∑
t SV (x1, x3, t)RV (x1, x3, t)∑

t S
2
V (x1, x3, t)

, (4.9a)

IV H(x1, x3) =

∑
t SV (x1, x3, t)RH(x1, x3, t)∑

t S
2
V (x1, x3, t)

, (4.9b)

IHV (x1, x3) =

∑
t SH(x1, x3, t)RV (x1, x3, t)∑

t S
2
H(x1, x3, t)

, (4.9c)

IHH(x1, x3) =

∑
t SH(x1, x3, t)RH(x1, x3, t)∑

t S
2
H(x1, x3, t)

, (4.9d)

where a denominator uses the same component of source wavefield in the numerator.

Figure 4.7 shows the resulting centre shot images. Comparing Figure 4.7a to

Figure 4.5a, and Figure 4.7c to Figure 4.5c, one can observe that the imaging energy

close to the shot point has gone, i.e., strong-source effect is suppressed.

However, there is another kind of source effect. Figure 4.7c and 4.7d show high

imaging energy right below the seismic energy source position. This is caused by the

fact that the horizontal component of the downgoing wave is very weak: the incident

P wavefront right under the source causes no or very weak horizontal vibrations of

rock particles, and the incident S wave front right under the source causes no or very

weak vibrations (horizontal or vertical) either. I call this ‘weak-source effect’ of source

normalized imaging conditions.



142

(a) VV

(b) VH

Weak-source effect

(c) HV

Weak-source effect

(d) HH

Figure 4.7: Centre shot imaging result of cross-correlation with source normalization.



143

(a) VV

(b) VH
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(d) HH

Figure 4.8: Far-away source shot imaging result of cross-correlation with source nor-
malization.
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The weak-source effect of imaging conditions is seen more evidently in the far-away

source shot images of Figure 4.8.

I have tried some methods to suppress the weak-source effect within the frame

of source normalized cross-correlation imaging condition. One method is to detect

surrounding energy level, and decide an imaging threshold to avoid the false imaging.

The method works well, especially when the source and the reflector are not in the

same horizontal range. However, the method presented in the next subsection is a

more general solution to the weak-source effect problem.

4.3.3 Source energy normalized cross-correlation imaging condition

By slightly modify the source normalized cross-correlation imaging conditions, I get

another set of imaging conditions as follows.

IV V (x1, x3) =

∑
t SV (x1, x3, t)RV (x1, x3, t)∑

t (S2
V (x1, x3, t) + S2

H(x1, x3, t))
, (4.10a)

IV H(x1, x3) =

∑
t SV (x1, x3, t)RH(x1, x3, t)∑

t (S2
V (x1, x3, t) + S2

H(x1, x3, t))
, (4.10b)

IHV (x1, x3) =

∑
t SH(x1, x3, t)RV (x1, x3, t)∑

t (S2
V (x1, x3, t) + S2

H(x1, x3, t))
, (4.10c)

IHH(x1, x3) =

∑
t SH(x1, x3, t)RH(x1, x3, t)∑

t (S2
V (x1, x3, t) + S2

H(x1, x3, t))
. (4.10d)

The denominators on the right are the sum of zero-lag auto-correlation of both

source components. And this is expected to help reduce the weak-source effect. Also,

it makes more sense to use the whole source wave energy as the denominator than to

use only one component - The reflections are caused by the whole source wave instead

of one component, after all.

The acoustic imaging condition (Equation 4.8) is expected to extrapolate the
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acoustic reflection coefficients. Correspondingly, each of the four imaging conditions

in Equation 4.10 can be interpretated as a linear combination of the PP, PS, SP, SS

reflection coefficients, and each imaging condition is a brute approximation of the

reflection coefficients: VV imaging condition is an approximation of PP reflection

coefficients, VH is of PS, and so on.

Since the right side of the four equations in 4.10 has the same denominator, it is

reasonable to try to stack the four images together as follows.

Image(x1, x3)

=IV V (x1, x3) + IV H(x1, x3) + IHV (x1, x3) + IHH(x1, x3)

=

∑
t(SVRV + SVRH + SHRV + SHRH)∑

t(S
2
V + S2

H)
.

(4.11)

where SV ,SH , RV , and RH are all functions of (x1, x3, t). The stacking operator in

the above equation seems to be unclear in physical meanings, but it leads to sharper

and clearer maps of subsurface structures, as shown later.

The sum of zero-lag auto-correlation of both source components has the physical

interpretation of the wave energy. Thus, I call the above five equations ‘source energy

normalized cross-correlation imaging conditions’.

Figure 4.9 shows the resulting centre source shot images and Figure 4.10 shows

the resulting far-away source shot images.

There are advantages of source energy normalized imaging conditions. On one

hand, comparing to the imaging conditions without normalization (Figure 4.5 and

4.6), the source energy normalized imaging conditions do not lead to a strong-source

effect. On the other hand, comparing to the source normalized imaging conditions
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(a) VV

(b) VH

(c) HV

(d) HH

(e) Stack of above four images

Figure 4.9: Centre shot image with source energy normalization.
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(a) VV

(b) VH

(c) HV

(d) HH

(e) Stack of above four images

Figure 4.10: Far-away source shot image with source energy normalization.
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(Figure 4.7 and 4.8), the source wave energy, instead of one component of the wave,

avoids the weak-source effect. In addition, the source energy normalized imaging

conditions result in images with higher signal-to-noise ratio which can be easily rec-

ognized.

All the four multi-component imaging conditions in Equations 4.10 images the

point reflector to some extent, while each of them has its own characteristics. First,

generally speaking, the imaging quality of imaging condition in Equation 4.10a (VV

imaging condition), which is resulted from the use of the vertical component of source

wavefield and the vertical component receiver wavefield, is the best (Figure 4.9a

and 4.10a). Second, imaging condition in Equations 4.10a and 4.10d (HH imaging

condition) result in relatively higher vertical resolution than horizontal one, while

imaging conditions in Equations 4.10b (VH imaging condition) and 4.10c (HV imaging

condition) result in higher horizontal resolution than vertical one. Some researchers,

such as Du et al. (2012), try some techniques to apply polarity reversal correction in

imaging conditions. In my point of view, that correction hurts the image resolution,

especially the horizontal resolution. Third, for a near offset subsurface target (Figure

4.7), the VV and VH imaging conditions work significantly better than the HV and

HH imaging conditions, while for a far offset target (Figure 4.8), the HV and HH

imaging conditions work not as bad as in the near offset case.

Imaging condition in Equation 4.11 (stacking imaging condition) results in even

better image quality (Figure 4.9e and 4.10e). First, the overall imaging energy is the

highest and the highest amplitudes are more focused on the point reflector better

(see the legends in Figure 4.9 and 4.11, in which the highest amplitudes are the clip

amplitudes). Second, the stacked images show both higher vertical and horizontal
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resolutions than all the other imaging conditions do.

4.3.4 Stacking shot images

The above discussion was about shot gather reverse-time migration. Eventually,

stacking shot images results in a final image of the prestack reverse-time migration

algorithm.

Figure 4.11 shows the stacked images of VV, VH, HV, and HH images from 27

shots, and the stack of the four stacked images.

4.4 Reverse-time extrapolation: shrunk Marmousi2

4.4.1 Marmousi, Marmousi2, and shrunk Marmousi2

There are two Marmousi subsurface models available in the literature.

The first one, Marmousi, was created by the Institut Francais du Petrole in 1988,

based on a true geological profile. This is an isotropic heterogeneous acoustic model,

with P-wave velocity profile only.

The second one, Marmousi2, was generated by the Allied Geophysical Laboratory

at the University of Houston (Martin, 2004; Martin et al., 2006). It was based on the

original Marmousi model. As the original model, Marmousi2 is isotropic and hetero-

geneous. However, Marmousi2 is elastic, profiled with not only P-wave velocities, but

also S-wave velocities and densities.

In addition to the new elastic attribute, Marmousi2 is more complicated than the

original Marmousi model. Geologically Marmousi2 is richer than Marmousi. Geomet-

rically Marmousi2 is bigger. The lateral distance of the model is extended from the



150

(a) VV

(b) VH

(c) HV

(d) HH

(e) Stack of above four images

Figure 4.11: Stacked image from 27 shot gathers, with source energy normalization.
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original 9.2km to 17km, and the depth is extended from the original 3km to 3.5km.

(a) P-wave velocity

(b) S-wave velocity

(c) Density

Figure 4.12: A new elastic Marmousi model cut and shrunk from Marmousi2.

I extracted part of Marmousi2 and shrunk it to create a much smaller subsurface
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model. There are 13601 horizontal nodes and 2801 vertical nodes in Marmousi2.

First, the part from the grid node (3201, 405) to (10560, 2800) of the Marmousi2

model is extracted to obtain the structure. Note that the water layer is removed by

this step. Then, one node from every three in both horizontal and vertical direction

is extracted to obtain a down-sized Marmousi model. Now the new model has a grid

of 2453× 798 nodes, with a lateral length of 2066.25m and a depth of 997.5m. Thus,

the shrunk Marmousi model (Figure 4.12) keeps the complex structures of Marmousi2

model, but its size is much smaller, which has the advantage of less computational

cost. However, with rock layers being shrunk to one third of the original thickness,

it is more difficult to image.

Table 4.1: Wave velocity and density range of the shrunk Marmousi2 model.

Property Low limit High limit
P-wave velocity (m/s) 1530.56 4700.00
S-wave velocity (m/s) 311.53 2752.00

Density (kg/m2) 1720.00 2627.00

Table 4.1 shows the rock property ranges for the new model. The low velocity

and low density ‘layers’ are mainly at the shallow subsurface. These property set of

P- and S- wave velocities and densities are translated to the property set of Lamé

constants and densities when used in my finite-difference computing, as described in

Chapter 2.
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Figure 4.13: Prestack reverse-time migration workflow.

4.4.2 Prestack reverse-time migration workflow

There are four main steps in the prestack reverse-time migration workflow for the

shrunk Marmousi2 model, as shown in Figure 4.13.

Input data for migration

The first step is to acquire surface records and to build subsurface model. In a real

seismic survey, surface records are acquired from seismic surveys, and a subsurface

model can be built from well logs, velocity analysis from surface record, full waveform

inversion, and so on. In my numerical experiment, the subsurface model is the shrunk

Marmousi2 model, and the surface record is acquired from wave modelling using the

shrunk Marmousi2 model.

Figure 4.14 shows vertical component of some selected snapshots of centre shot

modelling. The seismic source is put at the lateral distance of 1500m, i.e. 1200th
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(a) t=0.30s, vertical component

(b) t=0.42s, vertical component

Figure 4.14: Selected centre shot snapshots of shrunk Marmousi2: vertical compo-
nent.
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(a) Shot record - vertical component

(b) Muted record - vertical component

Figure 4.15: Centre shot record of shrunk Marmousi2 [to be continued].
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(c) Shot record - horizontal component

(d) Muted record - horizontal component

Figure 4.15: [Continued]
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lateral node, close to the centre of the surface, and at the depth of 12.5m, i.e. the 10th

node in depth. Due to the complex subsurface structure, it is difficult to interpret the

wavefronts in the snapshots, as described for the point reflector modelling. However,

one still is able to interpret some wave phenomena. For example, wave front in the

depth direction travels faster than in the lateral direction; wave front in the right

travels much faster than the part in the left; shear waves and Rayleigh waves are

much slower and weaker than the P waves. All these wave phenomena are consistent

with the subsurface model (Figure 4.12).

It is easy to recognize some common events from the surface records. Figure 4.15a

and 4.15c show, respectively, the vertical and horizontal components of centre shot.

First arrivals are direct waves and head waves. Hyperbolas are caused by reflectors in

the subsurface. Ground roll travels at lower velocities, cutting through the hyperbolas

in the time record.

Shot record reverse-time migration

The second step is reverse-time migration of shot records, which contains forward

modelling, reverse-time extrapolation of surface records, and applying imaging con-

ditions.

Muting ground roll here is not critical for reverse-time migration of the shrunk

Marmousi2 model. There are three reasons. First, the ground roll energy will only

affect the migration of near surface part. Second, ground roll in shot images will

cancel each other in the next step, stacking. Third, the ground roll energy for the

shrunk Marmousi2 model is relatively weak, due to the fact that the shallow part of

the subsurface has very low S-wave velocities. Thus, the preprocessing of the surface

record for reverse-time extrapolation is muting direct arrivals and head waves without
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getting rid of the ground roll in surface records (Figure 4.15b). This is different from

the preprocessing for the point reflector model in Section 4.2, where direct arrivals,

head waves, and ground roll are all muted.

Figure 4.16: Centre shot migration of shrunk Marmousi2. Imaging conditions of
Equation 4.11 are applied.

The centre shot image (Figure 4.16) shows subsurface structures with significant

imaging artifacts. First, image amplitudes are mostly positive values, and the overall

amplitude of the upper part is higher than the bottom part. It is not surprising

that stacking of shot images will have the same feature. Second, the bottom-left

and bottom-right corners are not imaged or poorly imaged. This is reasonable since

seismic reflections from those parts can barely reach the surface receivers. If the

seismic source is put close to the left part of the surface, one can expect the image of

the bottom-left corner will be improved. It is the same with the bottom-right corner.

In addition to the above two features, there is some other imaging artifacts, which

might be the results of poor preprocessing of the surface record before reverse-time

extrapolation. For example, the rough process of muting might be one of the causes.
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Figure 4.17: Stacked reverse-time migration image of shrunk Marmousi2. It is the
stack of 49 shot images.
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Stacking of shot images

The third step is stacking shot images obtained from the second step. The stack

process improves signal-to-noise ratio, similar to the processing of CDP stacking.

The image shown in Figure 4.17 is the stacking result of 49 shots. Seismic sources

are placed at lateral 50th to 2450th finite-difference nodes, with distances being 50

nodes. Imaging conditions of Equation 4.11 are applied.

Compared to the centre shot image, the areas close to bottom-left and bottom-

right corners are better imaged. Also the subsurface structures are clearer, indicating

a higher signal-to-noise ratio.

As shown in the two ‘trace’ wiggle plots, the upper part amplitudes are higher

than those of the lower part. This has the effect that the signals of reflectivity appear

riding on the low frequency artifacts.

Poststack processing - highpass filtering

A fourth step of poststack processing, applying a highpass filter on the stacked image

to remove the very low frequencies in the stacked image, is necessary.

There are many ways to reduce low frequencies. I have tried three of them.

The first method is subtracting neighborhood average values for each sample in

the stacked image, since in a small window of neighborhood samples along the traces,

the values appear like an AC signal rides on a DC bias. Along each trace of the data,

for each sample, a certain length (for example, 50 samples) of window centered by

this sample is defined. The average amplitude of the samples in the defined window

is calculated, and then this value is subtracted from the central sample value. In this

way, each sample value is reduced by the neighborhood averages.

The second method is taking first derivatives along the traces in the stacked image.
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This method is often used within Kirchhoff migration (Bancroft, 2006).

The third method is filtering the stacked image using a high pass filter since the

artifacts are the low frequencies. The lowest frequency (actually it should be called

‘wavenumber’) of the signals is estimated, by counting wave circle numbers from the

traces shown on the bottom in Figure 4.17, as 0.028 wavenumber per metre. Thus,

the cutoff frequency for the high pass FIR filter is decided to be 0.026 wavenumber

per metre.

Figure 4.18: Frequency response of a high pass FIR filter, which is used to filter the
stacked image.

Using MATLAB, a filter is designed, which is a Hamming-window based, linear

phase, 48th order finite impulse response (FIR) filter. Because the normalized cutoff

frequency 1.0 corresponds to the Nyquist frequency of 0.4 wavenumber per metre

(since the grid spacing is 1.25 m), and the cutoff frequency is decided to be 0.026

wavenumber per metre, the FIR filters normalized cutoff frequency is set to 0.026÷
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0.4 = 0.065. Thus, the FIR filter coefficients are calculated in MATLAB by

h = FIR1(48, 0.065, ‘HIGH ′) (4.12)

The resulting FIR filter coefficients are:

h(k) = {0.0010, 0.0012, 0.0013, 0.0016, 0.0018, 0.0020, 0.0019, 0.0016, 0.0008,

− 0.0006,−0.0027,−0.0055,−0.0091,−0.0135,−0.0187,−0.0244,−0.0305,

− 0.0369,−0.0431,−0.0491,−0.0544,−0.0588,−0.0622,−0.0642, 0.9341,

− 0.0642,−0.0622,−0.0588,−0.0544,−0.0491,−0.0431,−0.0369,−0.0305,

− 0.0244,−0.0187,−0.0135,−0.0091,−0.0055,−0.0027,−0.0006, 0.0008,

0.0016, 0.0019, 0.0020, 0.0018, 0.0016, 0.0013, 0.0012, 0.0010}.
(4.13)

where k is the index of the coefficients. Then the traces in the stacked image are

filtered by

y(n− K

2
) =

K−1∑

k=0

h(k)x(n− k) (4.14)

where x and y are, respectively, the input and output signals of the filter; n is the

sample index in the trace; K = 49 is the length of the filter; K
2

is the group delay of

the FIR filter.

The highpass filter method results in the best image. Figure 4.19e shows the

filtered result of the stacked image in Figure 4.17.
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4.4.3 Migration results

Figure 4.19 shows results of the multicomponent prestack reverse-time migration of

the shrunk Marmousi2. They are obtained by the workflow described in subsection

4.4.2. The only difference between the images shown in Figure 4.19 are imaging

conditions. Each of the images corresponds to one of the source energy normalized

imaging conditions in Equation 4.10 or 4.11.

Depth penetration and Resolution

The migrated images show different features, in terms of depths of penetration and

resolutions. These features are connected to the imaging conditions applied.

Different imaging conditions provide different depths of penetration with the same

input data and under the same processing workflow. The VV imaging condition

(Equation 4.10a, see Figure 4.19d) provides the deepest depth of penetration among

the first four imaging conditions. This is reasonable: usually P waves are the main

contributers to the vertical component in seismic surveys, and with faster velocities

they covers deeper depth.

Different imaging conditions provide different resolution of the subsurface geology

in both the vertical and horizontal dimensions. Resolution is a measure of the ability

to recognize individual, closely spaced reflectors. It is judged by image amplitudes

and their continuity of the subsurface interfaces in the migrated images. In this sense,

Figure 4.19d and 4.19b show better vertical resolutions than Figure 4.19c and 4.19a,

while the latter two images show better horizontal resolutions. That is, the VV and

HH imaging conditions provide better vertical resolutions, while the VH and HV

imaging conditions provide better horizontal resolutions.

Figure 4.19e, which is the stack of Figure 4.19a, 4.19b, 4.19c, and 4.19d, shows
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the best image. First, it shows the deepest depth of penetration. Second, it shows

the best resolution in both the vertical and horizontal dimensions. And third, as a

result, it shows the highest signal-to-noise ratio overall. Thus, the stacking imaging

condition is the best in all of the five proposed source energy normalized imaging

conditions.

Figure 4.20: A P-wave velocity model with lateral velocity variation.

4.5 Migration of a dipping-layer model

Black and Brzostowski (1994) described time migration errors and provided formulas

to calculate those errors (Section 1.1.2). This section shows some modelling and

reverse-time migration results using a dipping-layer model that is similar to the one

described by Black and Brzostowski (1994).

A dipping-layer model in Figure 4.20 is a model with lateral velocity variations.
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It contains three media: a medium with lower P-wave velocity (2000m/s) sits on top

of a medium with higher P-wave velocity (3000m/s), and there is a diffractor (P-

wave velocity is 5000m/s) in the bottom layer, positioned at the horizontal centre.

Supposing Poisson’s ratio to be 0.45, one can estimate the S-wave velocities and

densities by the same method used in subsection 2.5.2.1.
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Figure 4.21: Centre shot record (vertical component) of the dipping-layer model
shown in Figure 4.20. ‘PP (dip)’ is the P-wave reflection of the dip event, ‘PP
(point)’ is the reflection of the point reflector, and ‘PPPP (multiple)’ is the multiple
caused by the dip event and the free surface.

With time migration, the diffractor will be migrated upward and to the right of

the real position (Figure 1.3). Why will this happen? The reason is that the lateral

velocity variations above the point diffractor shifted the apex of the point diffractor

hyperbola to the right, even though the diffractor itself is at the lateral centre of the

model (Black and Brzostowski, 1994). One can confirm the apex shift by ray tracing,

or by checking the modelled surface record shown in Figure 4.21.
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Figure 4.21 is the vertical component of the centre shot record modelled from the

dipping-layer model shown in Figure 4.20. In addition to P waves and ground roll, the

main reflections in the surface record are (1) P-wave reflection of the source P wave

from the dip event, annotated as ‘PP (dip)’ in the figure, (2) P-wave reflection of the

source P wave from the point reflector, annotated as ‘PP (point)’, (3) P-wave multiple

caused by the dip event and the free surface, annotated as ‘PPPP (multiple)’.

Figure 4.22: Reverse-time migration of the dipping-layer model shown in Figure 4.20.

With reverse-time migration, the diffractor can be correctly imaged (Figure 4.22).

The migration workflow is similar to the one described in section 4.4.2.

4.6 Chapter summary

The reverse-time migration demonstrated in this chapter has three new features.

First, it employs a staggered-grid finite-difference scheme. The potential benefit is
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that the method will handle solid-liquid boundaries more accurately. Potential, this

is a big advantage for Ocean-Bottom Seismic (OBS) data processing.

Second, an improved imaging condition for multicomponent imaging, so-called

‘source energy normalized imaging condition’, is proposed. The imaging condition

suppresses both strong-source effect and weak-source effect of some other imaging

conditions.

Third, it was found that ground roll suppression is not critical for reverse-time

migration at all. This was proved by the shrunk Marmousi2 migration experiment -

water layer was removed, so strong ground roll was generated. Hence, the procedure

of noise attenuation in reverse-time migration may be able to exclude ground roll

suppression.
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Chapter 5

Computational resources

Prestack reverse-time migration is computationally expensive, which is a drawback

for applying the migration method.

Program run times are long, in terms of the total number of CPU cycles, and

it requires large amounts of hard disk free space. To accelerate computing, parallel

computing is employed. Intel R© Threading Building Blocks (TBB) and multi-core

computers, are used for both the forward-time modelling and reverse-time migration

phases of the computation. To solve the problem of limited free disk space, the forward

modelling phase is conducted twice instead of once, which may seem counter-intuitive.

Two other enduring problems are described at the end of the paper: the require-

ment for large working memory, and limited access speeds of mass storage (hard disk)

compared to the speed of computation in RAM memory.

5.1 Computational time

Elastic wave modelling based on finite-difference methods is time consuming. For

example, it took Martin (2004) a total of 70,000 hours, or approximately 8 CPU

years to do elastic wave modelling using the Marmousi2 model.

Prestack reverse-time migration based on finite-difference methods needs an even

longer computational time. As described later in this chapter, the migration of one
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shot needs two forward modelling steps and one reverse-time extrapolation. Thus, it

will take about 24 CPU years to migrate Marmousi2 data by the same hardware and

software.

One of the solutions to the CPU intensiveness problem is parallel computing.

Although both a distributed parallel computing technique, which uses multiple com-

puters or a cluster computer, and a multi-core/multi-processor parallel computing

technique, which uses a single computer with many CPU cores/threads are available,

the author only used the latter for the computations in the dissertation.

5.1.1 Hardware for parallel computing: multi-core computers
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Figure 5.1: The logical architecture of the dual-core Lenovo R60e notebook computer.

My first parallel computing experiment was carried out on a dual-core PC. This is

a Lenovo R60e notebook computer, which has an Intel R© core 2 CPU (1.83 GHz) and 3

GB memory. The Intel R© core 2 CPU has two CPU cores, which can be employed to do

parallel computing. The logical architecture of the computer is shown schematically

in Figure 1.4.

Multi-core parallel computing can also be done on cluster computers. Some nodes
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Figure 5.2: The logical architecture of the cluster computer Gilgamesh (adopted from
Bonham et al. (2008).

on a cluster computer, called Gilgamesh, at the Consortium for Research in Elastic

Wave Exploration Seismology (CREWES), are used to do most of the reverse-time

migration computing for this study. There are totally 19 nodes on Gilgamesh (Figure

5.2). Each node of Gilgamesh is based on the Super Micro X7DVL-E system, with

two Intel R© Harpertown 2.66 GHz quad-core processors. The logical architecture of

the Gilgamesh node is similar to that of the dual-core PC, except that the number

of cores is 8 instead of 2, the RAM memory size is 16 GB instead of 3 GB, and the

total space of 2 hard disks is 320 GB (Bonham et al., 2008).

5.1.2 Software: Intel R© TBB

Intel R© TBB is used to parallelize the modelling and reverse-time migration appli-

cation. Intel R© TBB is a C++ template library for writing software programs that

take advantage of multi-core processors. There are two builds of it: commercial build

and open source build. According to the website of Intel R©, there are no differences

between those versions except standard commercial support for the purchased version

of TBB. The open source build is used in the dissertation.
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The advantages of Intel R© TBB are obvious. First, it is a very efficient way to write

parallel code for an experienced C/C++ programmer. An example of migrating

serial code to parallel code is shown in the subsection 5.1.2.1. Second, since it is

a software library, there are minimal requirements on programming language and

compiler support. If a software application is written in pure C++, the application

of Intel R© TBB is straight forward, since the interface is in C++. If a software system is

based on other languages, such as C or FORTRAN, the techniques of mixing program

languages can be employed to build an interface between the custom software system

and Intel R©. Third, Intel R© TBB is portable across Windows, Linux, Mac OS X, Solaris

and many other operating systems, according to the documentation. In fact, I have

used it on both Windows and Linux. Fourth, Intel R© TBB can co-exist and inter-

operate with other parallel methods. It is especially beneficial to inter-operate Intel R©

TBB with a distributed parallel computing system. For example, a very powerful

practice is to use both socket parallel and Intel R© TBB in an software application.

With the use of a socket, computing tasks can be sent to different computers as child

processes; with the use of Intel R© TBB in child processes, the child processes will be

able to take advantage of all of the CPU cores on each specified computer on a local

network.

5.1.2.1 An example of migration serial code to parallel code

The following is a simple example of migrating a piece of serial code to parallel code.

The code shown here is from my C++ template class CMatrixT, which carries out

matrix operations.

A simplified serial version of adding up two matrices by elements is shown in

Program 1.
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Program 1 Adding up two matrices element by element - serial version.
template <typename T>

CMatrixT<T>& CMatrixT<T>::operator +=(const CMatrixT &in_matrix)

{

int i,j;

// m_nD1 and m_nD2: dimensions of the matrices

// m_entry: a 2D array

for(i=0; i<m_nD1; i++)

for(j=0; j<m_nD2; j++)

m_entry[i][j] += in_matrix.m_entry[i][j];

return *this;

}

A parallel version of the program is shown in Program 2. First, the function is

migrated to use parallel for to indicate that the computing task will be parallely

finished by a C++ class CPlusByElement. Second, a C++ class CPlusByElement

is written to carry out the computation. The core of the C++ class code is very

similar to the serial code: two loops control the scan of matrices. The difference is

the outside loop range.

5.1.3 Efficiency of parallelization and Amdahl’s law

The efficiency of parallelization was first tested on the dual-core PC mentionsed above.

A simplified model, which contains 872 nodes in the x1 direction and 366 nodes in the

x3 direction, is used in reverse-time migration. For 10 shots, the parallelized program

employs the dual-core CPU and the total computation time is reduced by 44.7%, i.e.,

the speedup is 180.69% (Figure 5.3).

A modelling program was then tested on a Gilgamesh node with eight CPU cores.

The subsurface model contains 3000 nodes in the x1 direction and 800 nodes in the
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Program 2 Adding up two matrices element by element - parallel version.
template <typename T>

CMatrixT<T>& CMatrixT<T>::operator +=(const CMatrixT &in_matrix)

{

#ifdef USETBB // parallel

tbb::parallel_for( tbb::blocked_range<int>(0, m_nD1),

CPlusByElement<float>(*this, in_matrix) );

#else // serial

int i,j;

for(i=0; i<m_nD1; i++)

for(j=0; j<m_nD2; j++)

m_entry[i][j] += in_matrix.m_entry[i][j];

#endif

return *this;

}

template <typename T>

class CPlusByElement

{

private:

CMatrixT<T>& m_in1;

const CMatrixT<T>& m_in2;

public:

CPlusByElement(CMatrixT<T> & in1, const CMatrixT<T> & in2)

:m_in1(in1),m_in2(in2) {}

void operator()(const tbb::blocked_range<int>& range) const

{

int i,j;

for(i=range.begin(); i<range.end(); i++)

for(j=0; j<m_in1.getD2Size(); j++)

m_in1(i,j) += m_in2(i,j);

}

};
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Figure 5.3: Computational efficiency with and without parallel computing.

x3 direction. For 16 shots, the parallelized program employs the eight CPU cores and

the total computation time is reduced by 75.3%, i.e., the speedup is 404.76% (Figure

5.3).

The computational efficiency gets improved more when there are more CPUs

available. However, the improvement is not exactly proportional to the number of

available CPUs. This is consistent with Amdahl’s law, though.

Amdahl’s law can be used to predict the speedup by parallel computing (Amdahl,

1967; Wikipedia, 2012). Suppose P is the paralleled proportion of a job in which N

CPU cores are used. The speedup that can be achieved is

Speedup(N) =
1

(1− P ) + P
N

, (5.1)

where 1 − P is interpreted as the proportion of the job that remains in serial, and

P
N

is interpreted as the speedup of the paralleled proportion of the job which uses N

CPU cores. For example, if 50% of a job is parallelized by 2 CPU cores, the expected
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Figure 5.4: Amdahl’s law, adopted from Wikipedia (2012). ‘P’ indicates paralleled
proportion of a job.

speedup is 133.33% (Figure 5.4).

Some parts of my programs, like any other programs, cannot or are difficult to be

parallelized. For example, disk I/O, including reading in subsurface model, reading

and writing temporary processing data, writing the final results, and so on, is impos-

sible to be parallelized. Thus, the speedup is impossible to be proportional to the

number of CPU cores.

5.2 Disk space

The problem of limited hard disk free space arises when one tries to calculate cross-

correlation imaging conditions (such as Equations 4.7, 4.9, and 4.10). Take the simpler
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acoustic imaging condition for example,

Image(x1, x3) =
∑

t

S(x1, x3, t)R(x1, x3, t), (5.2)

where S(x1, x3, t) and R(x1, x3, t) are , respectively, the source wavefield produced by

modelling and the receiver wavefield produced by reverse-time extrapolation. Imagine

that we have decided that we should compute the forward modelling by time steps

t = [1, 2, 3, ..., T − 2, T − 1, T ]. When we reach the last time T, we begin the reverse-

time migration phase by time steps t = [T, T − 1, T − 2, ..., 3, 2, 1]. At each step t

in the reverse-time calculation, the imaging condition requires cross-correlation with

the corresponding t in the forward time calculation. This means stepping backward

through the snapshots of the wavefield representation, which had been previously

computed in the forward direction. Unfortunately, the disk space required to store

every step in the forward calculation, would be prohibitive.

Take Marmousi2 model, which has a grid of 13601 × 2801 nodes, for example.

Suppose it is padded with 150 nodes on both sides and on the bottom, it has a size of

13901 × 2951 nodes. To store the vertical component of one snapshot, one needs at

least 164,087,404 bytes, i.e., approximately 156MB. For 5-second modelling time of

a time step 100ms, one needs free disk space of about 7,800TB. For a 2-component

migration, the disk space requirement is doubled.

Even for the size-shrunk model used in this dissertation, the disk space require-

ment is still huge, if one needs to store every snapshot in the forward modelling. The

shrunk model has a size of 2453× 798 nodes. With padding, the size is increased to

2753. To store 1.2-second modelling snapshots of a time step 100ms, one needs disk



182

space of about 240GB for two components.

Figure 5.5: Modelling twice instead of once, to keep the disk space requirements
within available limits.



183

The solution to the disk space challenge can be to use CPU time, doing mod-

elling twice instead of once, to keep the disk space requirements within available

limits. Modelling and reverse-time extrapolation is done with a total of 12,000

time steps. During the first forward modelling phase, instead of saving to disk

all the wavefield snapshots (subsurface particle horizontal and vertical velocities)

for each time step t = [1, 2, 3, ..., 11999, 12000], one stores the wavefields (subsur-

face particle velocities and stresses) for only every 200th time step, i.e., for t =

[200, 400, 600, ..., 11800]. Computing backward in the reverse-time extrapolation, for

t = [12000, 11999, ..., 3, 2, 1], one can re-model each block of 200 snapshots from the

stored wavefield state at the time it is needed for the cross-correlation. For example,

when one has done reverse-time extrapolation of time 3200, one would re-model snap-

shots for time t = [3001, 3002, 3003..., 3198, 3199] by reading the disk-stored wavefield

state at time t = 3000, and re-modelling 200 time steps and keep the 400 snapshots

(200 time steps, two components per time step) in memory. With the extrapola-

tion in time-reversed order for time t = [3199, 3198, ..., 3000], the re-modelled forward

modelling snapshots are then used to do cross-correlation for those time steps (Figure

5.5). Thus, without storing all the modelling snapshots at every time step onto disk,

the imaging condition can be implemented, although the modelling has to be done

twice.

5.3 Other computational cost problems

There also exist some other problems in addition to the computing time and free disk

space challenges. Here the author describes two of them: memory requirements and

the bottleneck of hard disk drive I/O speed.
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5.3.1 Memory requirement

Reverse-time migration needs a large amount of memory. Take the famous elas-

tic Marmousi2 model for example. The model has a grid. Thus, totally there are

38,096,401 nodes. For each node, 4 bytes are needed to store a data type float, which

means 152,385,604 bytes for the matrix. The elastic model has 3 parameter matrices:

densities, P-wave velocities, and S-wave velocities, which are used in a non-staggered

grid finite-difference method, or densities and lamé coefficients, which are used in a

staggered-grid scheme. So, to load the model, 457,156,812 bytes, i.e., approximately

436 MB of memory, is needed. To calculate finite-differences, 5 more parameter ma-

trices (2 particle velocities and 3 stresses in the case of staggered-grid scheme) of the

same size as the grid need to be loaded in memory for each of 2 successive time steps.

So the memory needed for finite-difference is 1,523,856,040 bytes, i.e., more than

1,453 MB. Thus, the total memory requirement for forward modelling or reverse-time

extrapolation is at least 1,981,012,852 bytes, i.e., more than 1,889 MB.

3D processing needs even more memory. Take 3D wave modelling system described

by Equations (2.6.1) for example. There are totally 26 quantities involved in each

unit cell. With the use of single-precision floating point numbers for a small grid of

dimension 300×300×300, the memory requirement is at least 300×300×300×26×4 =

2808000000 bytes, i.e., more than 2.6GB, if all the subsurface model parameters and

one time snapshot are loaded into the memory simultaneously.

5.3.2 Disk I/O operation

Another problem is disk input and output (disk I/O) operation. Sometimes disk I/O

could be the bottleneck of parallel computing. There are two reasons why hard disk



185

I/O can be the bottleneck of parallel computing. First, hard disk I/O speed is much

slower than memory I/O. Secondly, CPU cores on cluster computers compete with

each other for writing to and reading from the same disks. When there is a lot of disk

I/O, a whole cluster node, or even the whole system could be slowed down. In fact,

I actually observed this phenomenon: when all the eight CPU cores are computing

without disk I/O, the percentage of CPU usage shown by the utility top, is usually

800% or close to this number, i.e., all the eight cores are fully made use of; when the

eight CPU cores need to do disk I/O, the percentage sometimes can be as low as 200,

i.e., six of the eight CPU cores are waiting for the disks at that moment.

If we must process large amounts of seismic data, or we must do a lot of disk I/O

for some reasons, we will have to learn new tricks to overcome this challenge.

5.4 Chapter summary

Computational bottlenecks could be CPU time, disk space, RAM memory, disk I/O

efficiency, network efficiency, and so on. This chapter attacked the problems of CPU

time and disk space.

Intel R© Threading Building Blocks (TBB) is a technique of multi-core parallel com-

puting. Computational times are measured from two simple experiments to evaluate

the technique. Utilizing two cores in a notebook computer, the speedup of the com-

putation is 180.69%. With eight cores on a node of a cluster computer, Gilgamesh,

the speedup is 404.76%. The computational time can be further reduced by shorten-

ing the serial part of programs and by using more CPU cores. However, there is a

speedup limitation of the parallel computing, as stated in Amdahl’s law.

It is a powerful practice to inter-operate Intel R© TBB with a distributed parallel
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computing technique: Intel R© TBB makes use of CPU cores available on a computer,

while a technique of distributed parallel computing makes use of available computers

on a local network.

To solve the problem of limited free disk space in reverse-time migration, a tech-

nique that seems counter-intuitive is used: the forward modelling is conducted twice

instead of once.
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Chapter 6

Conclusions and future directions

6.1 Conclusions

Wave modelling

The wave modelling method has been presented and discussed. The method integrates

a staggered-grid finite-difference scheme, a seismic energy source, a free surface, com-

putational boundaries, and elastic subearth models. The modelling method simulates

wave phenomena in isotropic elastic media with very general and complete models, so

modelling results usually are faithful to wave propagation in the physical world. The

modelling method is used in the dissertation not only as a part of the reverse-time

migration algorithm, but also as a tool to understand wave phenomena and seismic

theory. Potentially, the method can be used to design seismic surveys, predict seismic

experiment results, enhance interpretation, do inversion, test processing algorithms,

and examine data noise.

Computational boundary

A method to reduce computational boundary reflections is proposed. The method

combines a nonreflecting boundary condition and absorbing boundary conditions. It

generates fewer computational boundary reflections. The method is demonstrated in

a staggered-grid scheme of a finite-difference algorithm, but it is readily applied in
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non-staggered grid algorithms.

Reverse-time migration

A prestack reverse-time migration for multi-component seismic data processing is for-

mulated. The feature of the migration method includes the employment of staggered-

grid finite-difference scheme, the source energy normalized imaging conditions, and

the unique workflow.

First, with the employment of staggered-grid finite-difference schemes, the migra-

tion method has the potential advantage of handling solid-liquid boundaries better.

Second, source energy normalized imaging conditions are proposed. They result

in less source effect than other imaging conditions. Both the strong-source effect of

cross-correlation imaging conditions and the weak-source effect in source normalized

imaging conditions are suppressed.

Third, the workflow is unique in some way. For example, noise attenuation in

reverse-time migration is very different from traditional seismic data processing. As

demonstrated in Section 4.4, ground roll suppression is not necessary. In addition,

it is well understood that seismic multiples in surface records help image subsurface

structures in reverse-time migration.

Computational resources

Intel R© Threading Building Blocks (TBB) is utilized in parallel computing to solve

the problem of long computational time. The limitation is that it is designed to

utilize multi-cores on a same computer. However, it is convenient to incorporate this

technique with distributed parallel computing methods.

Another challenge of computational resources is disk space. The solution is to do

modelling twice instead of once.
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6.2 Future directions

6.2.1 Further studies

Further studies on wave modelling and reverse-time migration would be irregular

topography, efficient 3D implementation, modelling based on more advanced medium

descriptions, and wavefield decomposition.

Irregular topography

The wave modelling and reverse-time migration methods developed in the disserta-

tion assumes plain horizontal free surface, which is usually not true in real seismic

surveys. It is necessary for one to integrate an irregular topography algorithm into

the modelling method. Fortunately, this is an area of rich literature. For example,

Perez-Ruiz et al. (2005) presented an excellent and detailed paper on this topic.

Efficient 3D implementation

Although some preliminary 3D modelling results are presented in Chapter 2, the

efficiency needs to be improved. When subearth models are too large to be fully

processed in the computer memory, it is very slow to use a disk buffer.

Advanced medium descriptions

The implemented wave modelling method is based on isotropic elastic earth descrip-

tion. Although an isotropic elastic model of the earth is much more accurate than an

acoustic model, there are still more advanced models available.

Imaging conditions based on wavefield decomposition

The imaging conditions discussed are based on elastic wavefields without being de-

composed into P and S waves. Research on imaging conditions based on wavefield

decomposition is also an interesting direction.
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6.2.2 Applying reverse-time migration to real data

The reverse-time migration developed in the dissertation has been applied to synthetic

datasets. However, to apply the method to real data, one needs to consider the

following issues in addition to the aspects of wave modelling mentioned above.

Subsurface model building

An accurate subsurface velocity model is critical for a migration process. Depth

migration is more sensitive to errors in subsurface models than time migration.

Noise attenuation

Noise attenuation in reverse-time migration is very different from traditional seismic

data processing. Noise attenuation in reverse-time migration should be despiking,

white noise attenuation, anti-aliasing filtering, and so on, excluding ground roll and

multiple attenuation.

Interpolation

The question about interpolation arises when one compares the fine grids in finite-

difference methods to the sparsely and irregularly sampled real seismic data.

In order to get accurate modelling and reverse-time extrapolation results, common

practice in the literature is to set spatial grid step to the level of 1m and time grid step

to the level of 0.0001s. Usually seismic records are sparsely and irregularly sampled.

Does one need to interpolate the surface records to those fine meshes? The answer is

no, according to Zhu and Lines (1997). “Fortunately, reliable interpolation of missing

traces is implicitly included in the reverse-time wave equation computations. This

implicit interpolation is essentially based on the ability of the wavefield to ‘heal itself’

during propagation.”
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Thus, explicit interpolation is not necessary for a reverse-time migration algorithm

to use sparsely and irregularly sampled seismic data as the input.

Efficient algorithms

A more efficient reverse-time migration workflow (Jiang, Bancroft, and Lines, 2010) is

not incorporated in the dissertation. That method does not have the problem of high

demand of disk space, so it is not needed to do modelling twice for reverse-time cross-

correlation operation. That means almost one third less computation and almost no

disk I/O operations.
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