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Abstract

This thesis studies the physical seismic modeling of a simulated fractured medium to ex-

amine variations of seismic reflection amplitudes with source-receiver offset and azimuth

(AVAZ). The intent is to extract information about the fracture orientation and magni-

tude of the anisotropy of a naturally fractured medium. The simulated fractured medium

is constructed from phenolic LE-grade material which exhibits orthorhombic symmetry.

For initial characterization of the phenolic model, its elastic stiffness coefficients were

determined from group velocities. The group velocities along various directions were

obtained from three-component physical model transmission data. The phenolic model

approximates a weakly anisotropic layer with horizontal transverse isotropy (HTI).

Three-dimensional (3D) physical model reflection data were acquired over a model

consisting of the simulated fractured layer sandwiched between two isotropic plexiglas

layers submerged in water. Interference between primary and ghost events was avoided

with a careful 3D seismic survey design. After deterministic amplitude corrections, in-

cluding a correction for the directivity effect of the physical model transducers, reflection

amplitudes agreed with the amplitudes predicted by the Zoeppritz equations, confirming

the suitability of the 3D physical model data for a quantitative amplitude analysis.

Linear AVAZ inversions for the fracture orientation and HTI anisotropic parameters

(including shear-wave splitting parameter) were performed on P-wave reflection ampli-

tudes from the top of the simulated fractured medium. Sensitivity analysis of the in-

versions results, including variations of the background velocity model and maximum

incident angle used, confirms the accuracy of the amplitude analysis. The results reveal

that the amplitude analysis of the P-wave data alone allows for extraction the information

about the shear-wave anisotropy confined in the P-wave multi-offset and multi-azimuth

amplitude data, without any S-measurements.
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Chapter 1

Introduction

Naturally fractured reservoirs hold large hydrocarbon resources and represent attractive

economic targets in exploration ventures. Many of the reservoirs, such as carbonates,

tight clastics, and basement reservoirs are often fractured. Fractures play important

roles in hydrocarbon production. They can provide pore space in reservoir rocks to hold

oil and gas in place, and also increase the permeability of the reservoir rocks so oil and

gas flows easily to well bores (Zheng, 2006). They can also have a negative impact

on hydrocarbon production. Cemented or mineralized fractures may act as barriers to

fluid flow. Consequently, the distribution and orientation of fractures are important for

geophysicists, geologists, and reservoir engineers when evaluating a reservoir.

In exploring, developing, or evaluating a fractured formation, the zones of highest

fracture intensity must be found and drilled (Nelson, 1985). For optimal oil recovery,

the production wells should be drilled perpendicular or at some angle to the fracture

orientation, as wells parallel to fracture orientation could possibly miss fractures. There-

fore, the knowledge of fracture orientation and intensity helps in locating optimal drilling

locations and predicting the production rates of new wells.

Characterization of natural fractures relies on direct and indirect sources of infor-

mation. Fractures can be measured directly by logs (such as Formation Micro Imager

(FMI) logs), or by checking core samples, which only provides information around the

well bores. Three-dimensional (3D) three-component (3C) seismic can provide indirect

overall information on fracture intensity and orientation. When seismic waves travel

through, or are reflected from the boundaries of fractured layers, the fractures will leave

footprints in the seismic data. Generally speaking, the fractured medium will affect the
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amplitudes and traveltimes of both P- and S-waves. This provides an opportunity to

extract the fracture information from seismic waves by measuring the amplitude and/or

velocity anisotropy.

Seismic modeling is one of the methods for studying the effects of fractures on seismic

data, including phenomenons such as shear-wave splitting, or velocity and amplitude

anisotropy. It is extremely useful in bridging the gap between theory and the complexities

observed in seismic field data. In particular, physical modeling can provide invaluable

insights in studying fractured reservoirs, a premise on which this thesis is build. More

specifically, the effects of a simulated fractured medium on reflection amplitudes, recorded

on physical model data, are examined here by means of a quantitative amplitude analysis.

1.1 Fractures: Geological overview

A natural fracture is defined as a macroscopic, plane discontinuity that results from

stresses that exceed the rupture strength of the rock (Stearns, 1994). Virtually all reser-

voirs contain at least some natural fractures (Aguilera, 2003). From a geologic point

of view the fractures can be classified as tectonic (fold and fault related), regional and

contractional, and surface related (Aguilera, 2003). Depending on the origin, fractures

display different patterns (Nelson, 1985). Fold and fault related fractures have an X-

pattern (Figures 1.1a-b), regional and contractional fractures have orthogonal patterns

(Figure 1.2), and surface-related fractures due to dry-out have polygonal patterns. Ver-

tical fractures are among the most common fractures observed in naturally fractured

reservoirs (Nelson, 1985). The thesis deals only with the modeling of vertical fractures.

Fracture orientation, or strike, is the direction of the fracture face. For the fold and

fault related fractures, the average direction of the X-pattern is taken as the fracture

orientation. In geological field observations of the regularity of the fractures that appear
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(a) (b)

Figure 1.1: (a) A generalization of dominant fold-related fracture sets (Nelson, 1985).
(b) Tectonic fold-related fractures expressed on the bedding surface of Black Canyon
anticline in the Rocky Mountains Foreland near Rawlins, Wyoming. The field of view is
about 20ft (Nelson, 1985).

Figure 1.2: Orthogonal regional fractures in Devonian Antrim shale, Michigan Basin
(Nelson, 1985).

in fold and fault related outcrops, it might appear that fracture orientation is random.

However, measurement confirms a dominant fracture orientation related to the each stress

regime in the field (Parsons, 1996; Nelson, 1985).

Together with fracture orientation, fracture intensity, or density, is the other im-

portant quantitative fracture system parameter which describes fracture porosity and

permeability in a reservoir. Fracture density, the term used here in an attempt to qual-

ify the abundance of fractures in a reservoir, is considered to be an effective influence

of fracture width and fracture spacing on permeability. Fracture intensity is defined as

3



(a) (b)

Figure 1.3: Surface-related fractures. (b) A zoomed portion of small part of photo in (a)
(Nelson, 1985).

the product of fracture spacing and fracture width (Nelson, 2001). In the small scale of

fractures, the values of fracture width range from 0.01mm up to 0.5mm (Nelson, 1985).

Fracture spacing is defined as the average distance between regularly spaced fractures

measured perpendicular to a parallel set of fractures of a given orientation (Nelson, 1985).

1.2 Fractures: Geophysical point of view

Fractures can be expected of all length scales, which is consistent with observation (Lynn,

2004a,b; Schijns et al., 2012). At the upper end of the scale, faults are visible in seismic

images. Moving down the scale, fractures lie well beneath the limit of seismic resolution.

They nonetheless can be observed through induced seismic anisotropy. The dominant

orientation of fracture networks result in the fractured medium displaying azimuthal

anisotropy in seismic wave propagation. Seismic waves travel faster in the direction of the

fracture orientation (Bale, 2006). S-waves polarized parallel to the fracture orientation

propagate faster than S-waves polarized orthogonal to it, a phenomenon known as shear-

wave splitting or S-wave birefringence which historically has been a diagnostic informative
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and easily observable evidence of fractures (Crampin, 1981). Also, P-wave NMO velocity

appears to be faster in the direction of the vertical fractures, known as velocity variation

with angle and azimuth (VVAZ) Tsvankin (2001). Also, there are differences in the

seismic amplitude response parallel and perpendicular to fractures, known as amplitude

variation with angle and azimuth (AVAZ) Zheng (2006). AVAZ is useful for determining

dominant fracture orientation, fracture intensity, and sometimes the types of fluid in

fractures.

Horizontal transverse isotropy (HTI) is a first-order approximate symmetry model to

describe vertical fractures embedded in an otherwise isotropic rock matrix (Bale, 2006;

Rüger, 2001). In an HTI model, the fracture plane is considered to be isotropic, and

the direction normal to it is referred to as the symmetry axis (Figure 1.4). A more re-

alistic anisotropic model to represent the long-wavelength behavior of vertical fractures,

however, is orthorhombic symmetry (Schoenberg and Helbig, 1997). A combination of a

vertical transverse isotropy (VTI) background medium with a system of aligned vertical

fractures can be considered as a simple orthorhombic model. A medium with orthorhom-

bic symmetry is an anisotropic medium with three distinct and mutually orthogonal

planes of symmetry. Transverse isotropy, TI, particularly with vertical symmetry axis

(VTI) and HTI, is a degenerate case of orthorhombic symmetry.

1.3 Physical modeling

Numerical seismic modeling plays an important role in improving our understanding

of seismic wave propagation, and in the verification of processing algorithms. Seismic

modeling, the process through which a subsurface geologic model is transformed into a

seismic record, has been extensively done using numerical methods. The mathematical

formulation (acoustic or elastic) of wave propagation, and complexities in the computa-
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Figure 1.4: Schematic depiction of an HTI medium (Bale, 2006). The vertical planes
representing the fracture planes are the isotropy planes of the HTI model. The direction
normal to the isotropy plane is the axis of symmetry.

tional processes when modeling complex geological features, make numerical modeling

challenging.

In physical seismic modeling, an alternative to numerical modeling, the seismic data

are acquired over small, laboratory sized geological models. Physical modeling has been

used to evaluate the accuracy of mathematical models of wave propagation, to test seismic

data processing algorithms, and to provide insights into the interpretation of 3C seismic

data acquired over complex media (Ebrom and McDonald, 1994). Physical model data

have been used for many years to simulate exploration targets, of which a fractured

medium is an example. Traveltime and qualitative amplitude analysis of physical model

data acquired over simulated fractured media have been employed by many researchers

(Cheadle et al., 1991; Brown et al., 1991; Tadepalli, 1995; Sayers and Ebrom, 1997;

Grechka et al., 1999; Mah and Schmitt, 2001a; Theophanis and Zhu, 2003; Wang and

Li, 2003; Wang et al., 2007; Zheng and Wang, 2005; Chang and Gardner, 1997; Chen

and Hilterman, 2007; Enkanem et al., 2009; Ortiz-Osornio and Schmitt, 2010). Physical

modeling has gained interest in the study of anisotropic media as the waves propagate

in the same way that they propagate in real earth anisotropic media. The challenges
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associated with numerical modeling methods, including employing approximate mathe-

matical formulations (e.g., acoustic or elastic) and assumptions, or purely computational

difficulties like grid dispersion, are not present in physical modeling.

1.3.1 The physical modeling system

The University of Calgary physical modeling system has a scale of (1 : 10000) for length

and time (Figure 1.5). This means that, for example, 1mm in the physical model rep-

resents 10m and a frequency of 500kHz represents a frequency of 50Hz in seismic field

data. Having the same scale factor for length and time allows the velocity of the medium

to remain unscaled.

In physical modeling, the sources and receivers are ultrasonic piezoelectric transduc-

ers. A piezoelectric material has the property that, if deformed by external mechanical

pressure, electric charges are produced on its surface, thus acting as a seismic receiver. If

placed in an electrical field, a transducer changes its form producing mechanical pressure

simulating a seismic source (Krautkrämer and Krautkrämer, 1975). Compressional and

shear-wave (P and S) piezoelectric transducers are used, as both sources and receivers,

in acquiring the physical model seismic data. As receivers, the P- and S-transducers are

sensitive to displacements normal and tangential to the contact face of the transducer, re-

spectively, and represent vertical and horizontal component geophones. As a source, the

P- or S-transducers generate both P- and S-waves. Generally, the P-transducer emanates

dominating P-wave and the S-transducer emanates dominating S-waves. Transducers of

different sizes were employed in the acquisition of the physical model data used in this

thesis. More specific details regarding the transducers based on their specific usages, e.g.

collecting transmission gather or reflection gathers, will be given individually for each

experiment. As two examples, contact P-transducers were used to collect the transmis-

sion gathers of Chapter 2 (Figure 1.6), and pin P-transducers were used to collect the
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(a) (b)

Figure 1.5: (a) Physical modeling system at the University of Calgary/CREWES Project.
(b) Zoomed of one of the positioning arms. The contact circular transducer is a S-trans-
ducer and a strip of napkin at the contact is used to provide good coupling.

reflection gathers of Chapter 3 (Figure 1.7).

The modeling system is equipped with a robotic positioning system which has a

positioning error of less than 0.1mm. There are separate arms for positioning the source

and receiver (Figure 1.5) transducers. Vertical stacking of repeated source excitations

for each receiver position, and the progressive re-positioning of the receiver transducer,

generate a seismic gather. The vertical stacking processes ensured a high signal-to-noise

ratio for the collected physical model datasets.

(a) (b)

Figure 1.6: The P-transducer Panametric V 103 with a diameter of 13mm and a nominal
central frequency of 300kHz. (a) The contact transducer attached to a surface. (b) The
contact surface of the transducer.
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Figure 1.7: Piezoelectric Dynasen CA-1136 pin transducers with the piezoelectric element
being 1.36mm and 1.1mm in diameter, with a nominal central frequency of 500kHZ.

The location of a transducer is assigned to the location of the center of its contact

face. Thus, the stored coordinates in trace headers show the location of the center of

the transducers. The first source and receiver are nearly always manually positioned

according to a predefined coordinate system. Once the initial source-receiver offset is set,

the subsequent increments in offset are computer controlled, and as a consequence are

accurately known. The source pulse is highly repeatable over many hours of acquisition.

The pulse excitation is provided by a high voltage pulse generator which has independent

voltage control. More details about the University of Calgary laboratory equipment and

set-up can be found in Wong et al. (2009).

1.3.2 The simulated fractured medium

In the physical modeling of anisotropic media, and fractured media in particular, the first

challenge is to produce a model that is reasonably representative of real earth geology.

Hsu and Schoenberg (1993) and Luo and Evan (2004) simulated a fractured medium

by constructing a physical layer consisting of closely spaced parallel isotropic sheets of

Plexiglas. Phenolic material has been used to simulate a fractured medium for qual-

itative amplitude analysis (e.g., Uren et al., 1990; Brown et al., 1991; Cheadle et al.,

1991; Tadepalli, 1995; Chang and Gardner, 1997; Mah and Schmitt, 2001a; Wang and Li,

2003). Phenolic materials, because of their micro-layered texture, can be used to simu-
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Figure 1.8: Phenolic material from manufacturer.

late finely layered rocks, such as some sandstones, shale, or fractured limestone (Chang

and Gardner, 1997). The phenolic material exhibits seismic anisotropy with apparent

orthorhombic symmetry (Brown et al., 1991; Cheadle et al., 1991; Karayaka and Kurath,

1994).

For the purpose of this thesis, a physical model is constructed from phenolic material.

This simulated fractured layer is made of LE-gradeTM phenolic material, which is com-

posed of laminated sheets of linen fabric bonded together with phenolic resin (Figure 1.8),

and has a density of 1390 kg/m3. A manufactured board of phenolic material is milled to

provide flat and perpendicular surfaces parallel to the layering, the warp, and the weave

of linen fabric, as closely as possible. Hence, the symmetry of phenolic materials is rel-

atively well controlled (Mah and Schmitt, 2001b). To construct the simulated fractured

layer used in this study, the original board of phenolic material with horizontally-laid

linen fabric was cut into slabs along planes orthogonal to the plane of the linen layers.

These were rotated 90◦ and bonded together with epoxy under uniform high pressure.

This constructed layer simulates a homogeneous horizontal layer with vertical fractures

of a single orientation. It has an approximate area of 57 × 57cm2 and a thickness of

7cm (Figure 1.9 and 1.10). Note that the LE grade phenolic material is different from

the CE-grade phenolic material studied by Brown et al. (1991) and Mah and Schmitt

(2001a).
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Figure 1.9: (a) The simulated fractured medium in this study. The dark lines indicate
glued seams between separate phenolic blocks. (b) A slab of phenolic material with
dashed lines displaying the linen planes.

Figure 1.10: The constructed phenolic layer used for this study. The slab contacts were
epoxy glued under a press machine.

1.4 Hardware and software used

The physical modeling work presented in this thesis was done using the physical modeling

facility operated by the CREWES Project of the Department of Geosciences at the

University of Calgary. The physical modeling data were acquired by Dr. Joe Wong. The

author was involved in the majority of the data collection procedure. The computer

software to run the physical modeling machine was written by Dr. Joe Wong. The

construction of the phenolic experimental layer, and preparation of the solid interfaces

to ensure a properly welded contacts were done by Mr. Eric Gallant of the University of

Calgary. The ultrasonic transducers, used in the data acquisition of chapter 2, were from

Olympusr. The piezoelectric pin transducers, used in the data acquisition in chapter 3,

were from Dynasen Inc. The phenolic material was purchased from Johnston Industrial

Plastics.
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The majority of the programming was done in the MATLAB programming language.

This includes the AVAZ inversions, amplitude corrections procedures, the (τ, p) trans-

form, and velocity log smoothing. Synthetic data were generated using finite-difference

code written in MATLAB by Dr. Gary Margrave of the University of Calgary. A num-

ber of other MATLAB-based programs coded, including the PP raytracing code, by Dr.

Gary Margrave, were also utilized in this research. The physical model data were filtered

in PROMAX using the radial trace filtering by Mr. David C. Henley of the CREWES

Project. All plots in this thesis were generated in MATLAB. The five-layered model was

generated using Google SketchUp by Ms. Sayeh Moayerian. Word processing and thesis

assembly was done on a laptop computer using WinEdt 6.0 with a LaTeX engine.

1.5 Thesis objectives and organization

The main objective of this thesis is to investigate the effect of natural vertical fractures on

3D seismic data by employing physical seismic modeling. First, an initial characterization

of the simulated fractured medium is explained. Second, the suitability of physical model

data collected over the simulated fractured medium, generated by finite-size source and

receiver transducers, is discussed in the context of a quantitative amplitude analysis.

Third, applying amplitude inversions to 3D physical model data enables a determination

of the accuracy of amplitude analysis in providing information about fracture orientation

and intensity.

This thesis is organized as follows.

Chapter 2 presents the method for the initial characterization of the simulated

fractured medium by determining all its elastic stiffness coefficients. Some descriptions

of orthorhombic symmetry, relationships linking the phase and group velocities to the

orthorhombic stiffness coefficients, are given. Previous work on determining the stiffness
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coefficients, and methods to measure the phase and group velocities using finite-size

transducers, are investigated. The stiffness coefficients of the experimental phenolic layer

are determined from group velocities using a linearized expression between the group

velocities and the stiffness coefficients. The accuracy of the estimates is confirmed by

comparing the measured phase and group velocities to those predicted by the stiffness

coefficient estimates. The experimental phenolic layer is found to approximate a weakly

anisotropic medium with HTI symmetry, which makes it an appropriate model for use

in the simulation of a fractured medium.

Chapter 3 presents the acquisition of the 3D reflection physical model data over a

five-layered medium including the simulated fractured medium and top water layer. The

targets are reflection amplitudes from the top of the fractured layer. The processing steps

to extract the reflection coefficients from the reflection amplitudes of the target event are

developed. The effect of finite-size transducers on reflection amplitudes is investigated

and removed from recorded amplitudes. The corrected reflection amplitudes follow the

theoretical amplitudes predicted by the Zoeppritz equations, indicating the suitability of

the physical model data for a quantitative amplitude analysis.

Chapter 4 presents the plane-wave approximation for PP reflection coefficients from

a boundary of two HTI media. Knowing the fracture orientation, the chapter develops

the AVAZ inversion to extract anisotropy parameters of the simulated fractured medium

from pre-stack P-wave amplitudes. The method to determine the fracture orientation

from azimuthal amplitude variation is rigorously investigated, followed by the AVAZ

inversion of small-incident-angle data for fracture orientation. The AVAZ inversions

are then applied to the physical model data. Finally, some criteria on how to apply a

successful AVAZ inversion to elucidate fracture orientation and intensity are discussed by

comparing the inversion results with the results already obtained from traveltime analysis

in Chapter 2.
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1.6 Thesis contributions

The contributions of this thesis can be summarized as follows

• Determination of stiffness coefficients of an orthorhombic physical model, the simu-

lated fractured medium, from group velocities along various directions. The method

is based on a relatively new approximate relationship by Daley and Krebes (2006)

between group velocity and stiffness coefficients.

• The PP reflection amplitudes from the top of the simulated fractured layer, after

required AVO corrections, reveal a clear azimuthal variation caused by the simu-

lated fractured layer, and agreed with amplitudes predicted theoretically. Hence,

the suitability of 3D physical model data for a quantitative amplitude analysis of

anisotropic targets was confirmed.

• Applying AVAZ inversions, written in MATLAB, to obtain fracture orientation and

intensity from P-wave reflection data, demonstrated that it is possible to relate the

difference in P-wave azimuthal AVO variations directly to the fracture intensity

of the simulated fractured layer. Some sensitivity analysis for successful AVAZ

inversions using physical model data was applied.

14



Chapter 2

Determination of stiffness coefficients

The initial characterization of the constructed phenolic layer is presented in this chapter.

The elastic properties of the experimental phenolic layer are estimated by determining

all of its density-normalized stiffness coefficients, Aij = Cij/ρ, from group velocity mea-

surements obtained from traveltimes.

The methods of measuring the phase and group velocities from physical modeling

transmission gathers are explained. The group velocity measurements are straightforward

and reasonably accurate, whereas the phase velocities measurements require specialized

physical modeling setups. The phase and group velocities along various directions are

measured from the transmission gathers collected over the phenolic model. The group

velocity measurements are then used to estimate the density-normalized stiffness co-

efficients of the phenolic model. An approximate explicit expression for the qP wave

group velocity (Song and Every, 2000; Daley and Krebes, 2006) is used to estimate the

off-diagonal stiffness coefficients. The predicted phase and group velocities from the es-

timates of stiffness coefficients are closely comparable to the measured velocities. The

estimated density-normalized elastic coefficients will be used to evaluate the accuracy of

the AVAZ inversion (Chapter 4) in predicting the anisotropy parameters of the phenolic

layer.

2.1 Background

In anisotropic media, the velocity of seismic waves varies with the direction of propaga-

tion. The phase velocity is the wavefront’s propagation velocity in the direction normal
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to the wavefront, and the group (ray) velocity is the energy propagation velocity along

the raypath from the source to the receiver (Figure 2.1).

Figure 2.1: The wavefront, group (ray) direction, and phase direction in a homogeneous
anisotropic medium.

In anisotropic media, the polarization of the body waves are not, in general, longitu-

dinal or transverse to the direction of the wave propagation, because of the differences

of elastic properties with direction (Musgrave, 1970). There are then, in general, three

body-waves which propagate through an anisotropic medium, called quasi-P, quasi-SV ,

and quasi-SH
1 (qP, qSV , qSH).

2.1.1 Stiffness coefficient matrix

This section follows Thomsen (1986) in describing the stiffness coefficient matrix. An

elastic material is defined as one in which each component of stress, σij, is linearly

dependent upon every component of strain, ekl, (Nye, 1957). Since each directional

index may assume values of 1, 2, 3 (representing the directions x, y, z), there are nine

such relations, each involving one component of stress and nine components of strain.

These nine equations may be written compactly as

σij =
3∑

k=1

3∑
l=1

cijklekl, i, j = 1, 2, 3, (2.1)

where the 3× 3× 3× 3 elastic stiffness coefficients tensor, cijkl, completely characterizes

the elasticity of the medium. Because of the symmetry of stress (σij = σji), only six

1Quasi-S waves are also called qS1 and qS2.
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of these equations are independent. Because of the symmetry of strain (ekl = elk), only

six of the terms on the right-hand side of each set of equation 2.1 are independent.

Hence, without loss of generality, the elasticity may be represented more compactly with

a change of indices, following the Voigt recipe for indexes (ij or kl): 11 → 1, 22 → 2,

33 → 3, 32 = 23 → 4, 31 = 13 → 5, 21 = 12 → 6, so that the 3 × 3 × 3 × 3 tensor cijkl

may be presented by the 6× 6 matrix Cij where both i and j range over 1, 2, ..., 6.

In this thesis, the density-normalized stiffness coefficients (Aij = Cij/ρ), which have

the dimensions of (velocity)2, are dealt with exclusively. Each symmetry class has its

own pattern of nonzero, independent components Aij. For example, for isotropic media

the density-normalized stiffness matrix assumes the simple form

A33 A33 − 2A44 A33 − 2A44

A33 − 2A44 A33 A33 − 2A44 0

A33 − 2A44 A33 − 2A44 A33

A44

0 A44

A44


. (2.2)

The simplest anisotropic case of broad geophysical applicability has one distinct direction,

while the other two directions are equivalent to each other. This case called transverse

isotropy, or hexagonal symmetry, has five independent elastic coefficients. The stiffness

matrix of the horizontal transverse isotropy (HTI), with the unique axis along the x1-

axis and the isotropic plane being (x2, x3) (Figure 1.9), is characterized by independent

elastic coefficients A11, A33, A44, A55, A13, and its matrix of density normalized stiffness
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coefficients follows as (Musgrave, 1970)

A11 A13 A13

A13 A33 A33 − 2A44 0

A13 A33 − 2A44 A33

A44

0 A55

A55


. (2.3)

Note that the off-diagonal elastic coefficient A23 = A33 − 2A44, related to the isotropic

plane (x2, x3), obeys the isotropy relation.

An orthorhombic medium with three distinctive axes has nine independent stiffness

coefficients. Consider the reference Cartesian coordinate system, (x1, x2, x3), associated

with the orthorhombic symmetry planes. In this reference coordinate system, the nine

independent orthorhombic density-normalized stiffness coefficients are the six diagonal

terms (Aii) plus three off-diagonal terms (A23, A13, A12). The resulting symmetric stiffness

matrix is 

A11 A12 A13 0 0 0

A12 A22 A23 0 0 0

A13 A23 A33 0 0 0

0 0 0 A44 0 0

0 0 0 0 A55 0

0 0 0 0 0 A66


. (2.4)

An HTI model is a degenerated case of an orthorhombic symmetry with only five inde-

pendent elastic coefficients.
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2.1.2 How to estimate orthorhombic stiffness coefficients.

Anisotropic stiffness coefficients can be estimated from phase or group velocities related

to quasi-body waves. For the orthorhombic symmetry planes, there are exact explicit

relations between the stiffness coefficients and the phase velocities obtained from the

solution of the Christoffel equation. Consequently, the stiffness coefficients are most

often determined using the measured phase velocities (e.g., McSkimin, 1967; Vestrum

et al., 1999; Mah and Schmitt, 2001a). For group velocity, there are no known exact

explicit relationships to the anisotropic stiffness coefficients. Using iterative least-squares

fitting, the stiffness coefficients have been estimated from group velocities measured over

a various directions (e.g., Every and Sachse, 1992; Kim et al., 1995; Okoye et al., 1996;

Vestrum et al., 1999).

In an orthorhombic media, along the coordinate principal directions (i.e. x1-, x2-, and

x3-axis), phase and group velocities are equal. The quasi-body wave velocities along the

coordinate principal axes determine diagonal stiffness coefficients (Table 2.1). Three qP

velocities specify the Aii(i = 1 : 3), and three qS velocities specify Aii(i = 4 : 6). The

off-diagonal stiffness coefficients, however, are not individually related to the phase or

group velocity along some arbitrary directions. Next the relation between off-diagonal

density-normalized stiffness coefficients and group velocity is described.

Table 2.1: Body waves’ velocities along the principal axes for an orthorhombic medium.
Here Vij (i, j = 1, 2, 3) is the body wave velocity which propagates along the xj-axis and
polarized along the xi-axis. For example V11 is the qP velocity propagating along the
x1-axis, and V23(= V32) is the qS velocity propagating along the x3-axis and polarizing
along the x2-axis.

Propagation
Polarization x1 x2 x3
x1 V11 =

√
A11 V12 =

√
A66 V13 =

√
A55

x2 V21 =
√
A66 V22 =

√
A22 V23 =

√
A44

x3 V31 =
√
A55 V32 =

√
A44 V33 =

√
A33
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2.2 Theory

Let ~N = (N1, N2, N3) = (sinΘcosΦ, sinΘsinΦ, cosΘ) be a unit vector in the direction

of group velocity (ray direction), where Θ is the polar angle measured from the x3-axis

and Φ is the azimuthal angle measured from the x1-axis. An approximate linearized

expression for the qP group velocity (Song and Every, 2000; Daley and Krebes, 2006) in

terms of the Aij in an orthorhombic medium is

1

V 2( ~N)
' N2

1

A11

+
N2

2

A22

+
N2

3

A33

−

E23N
2
2N

2
3

A22A33

− E13N
2
1N

2
3

A11A33

− E12N
2
1N

2
2

A11A22

, (2.5)

where the quantities Eij, are

E23 = 2(A23 + 2A44)− (A22 + A33),

E13 = 2(A13 + 2A55)− (A11 + A33), (2.6)

E12 = 2(A12 + 2A66)− (A11 + A22).

The Eij are called anellipsoidal deviation terms, as they describe the deviation of the

wavefront from ellipsoidal anisotropy (see Appendix A). Equation 2.5 explicitly represents

the qP group velocity in terms of the nine orthorhombic Aij. Daley and Krebes (2006)

derived equation 2.5 solving the eikonal equation by the method of characteristics. Their

orthorhombic qP group velocity formula is identical with that presented by Song and

Every (2000) where the results were not established by rigorous derivation but were

consistent with the numerical results.

Assuming the diagonal Aij are known, the off-diagonal stiffness coefficients may be

obtained from the qP group velocity expression, equation 2.5. It can be written as

D = BE23 + FE13 + LE12, (2.7)
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where the coefficients D, B, F, L are defined as follows

D = (
N1

2

A11

+
N2

2

A22

+
N3

2

A33

)− 1

V ( ~N)
2 ,

B =
N2

2N3
2

A22A33

, F =
N1

2N3
2

A11A33

, L =
N1

2N2
2

A11A22

. (2.8)

Incorporating qP velocity measurements in m different directions, equation 2.7 can be

used to obtain a linear system of m equations in the three unknowns (E23, E13, E12). The

linear system of equations has the form:
B1 F1 L1

...
...

...

Bn Fn Lm




E23

E13

E12

 =


D1

...

Dn

 . (2.9)

Or, in a matrix notation, GE = D. The unknown vector E will result from a damped

least-squares inversion, as E = (GTG + µ)−1GTD where the µ is the damping factor.

Knowing the deviation terms and diagonal Aij, the off-diagonal Aij can be determined

from equation 2.6 as

A23 = (E23 − 4A44 + A22 + A33)/2,

A13 = (E13 − 4A55 + A11 + A33)/2, (2.10)

A12 = (E12 − 4A66 + A11 + A22)/2.

The group velocity measurements should be along various directions, and the number of

them should be larger than three to obtain an over-determined and well-posed system of

equations. A larger number of m results in a more stable solution. The accuracy of these

estimations is dependent on the accuracy of the diagonal Aij. Some numerical tests of

this inversion for off-diagonal stiffness coefficients are presented in Appendix B.
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2.3 Velocity measurements

For rock samples, seismic velocities are often measured using relatively large ultrasonic

transducers in a transmission geometry (Bouzidi and Schmitt, 2009). Using two flat-faced

transducers attached to the model in various propagation directions, body-wave velocities

can be measured by picking arrival times. According to Dellinger and Vernik (1994)

and Vestrum (1994) such measurements estimate group velocities if the source-receiver

separation is large compared to the transducer size. If the transducers are large compared

to their separation, they will approximately transmit and receive plane waves over a large

spatial interval (Figure 2.2), thus enabling direct phase velocity measurement (Dellinger

and Vernik, 1994; Vestrum, 1994). To measure phase velocity from small samples, the

specimen gets appropriate cuts along various directions to make the desired contact plane

for the flat-faced large transducers. Then the phase velocity along the direction normal

to the cut planes can be measured. The next section describes measuring the group and

phase velocity on large physical models which simulate some geological features rather

than small core samples.

Figure 2.2: An illustration of the wavefront radiated and recorded by large circular phys-
ical model transducers (modeled by an acoustic finite-difference method). The black
parallel vectors show the travel of the plane-wave portion of the wavefront. The trans-
ducer’s size is chosen to be half of the layer thickness to exaggerate the plane-wave
generation.
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2.3.1 Group velocity

Consider a physically modeled transmission gather, where the source transducer is located

on one side of the model and the receiver’s profile is positioned on the other side. Treating

the physical model as a homogeneous layer, for point source and receiver transducers,

the length of the straight line connecting the source and receiver divided by the first

arrival traveltimes yields the group velocity in the source-receiver raypath direction. For

large source and receiver transducers, the effective source-receiver raypath is the straight

line connecting the nearest edges of source and receiver transducers (Figure 2.2). Brown

et al. (1991) calculated the group velocities in various directions by dividing such effective

source-receiver raypaths by the first arrival traveltimes of each mode. In this thesis

their method in measuring the group velocities is followed, hence the effective size of

transducers needs to be known. The effective size of transducers is defined by the active

portion of the piezoelectric crystal, and might be slightly different from the given size by

the manufacturer. The appropriate effective transducer size is decided from recordings in

an isotropic homogeneous plexiglas layer in advance. A justification for considering the

nearest edges distance as the raypath taken by the first arrival energy is provided below.

A circular physical model transducer can be considered as a continuous source/receiver

array. Using finite-difference modeling over an isotropic layer with a constant velocity

of 3500m/s, for this thesis a transmission gather, utilizing source and receiver arrays

representing a transducer with the diameter of 13mm (Figure 2.3a), is generated. To

generate the transmission gathers, acoustic finite-difference software is used which uti-

lizes a nine-point approximation to the Laplacian operator. The time steps were chosen

to be small enough ensuring that grid dispersion is as small as possible. A minimum

phase wavelet with the dominant frequency of 50HZ is used as the initial wavelet. In the

finite-difference generated transmission gather, the change in wavelet shape from near to

far offset is apparent and is due to finite-size source and receivers. Figure 2.3b shows
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the measured group velocity, obtained from first arrival times divided by the straight-

line raypath length, versus the group angle (the direction along nearest elements of the

source and receiver arrays) with an error of ±10m/s. Using the edge-to-edge distance

rather than the center-to-center distance between the source and receiver transducers, is

a simple geometrical correction.
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Figure 2.3: (a) Finite-difference generated transmission gather over a constant velocity
layer with a velocity of 3500m/s and source and receiver size of 13mm. (b) Measured
group velocity.

Figure 2.4 shows the group velocities of the experimental phenolic layer measured from

physical model transmission gathers acquired with 1.3mm, 6mm, and 13mm transducers.

The measurements from these three transducer sizes are consistent to within the picking

error, and independent of the size of the transducer used. A short gate automatic gain

control was applied to facilitate a careful first break picking.

2.3.2 Phase velocity

Kebaili and Schmitt (1997) presented a method using the (τ, p) transform to measure

phase velocity from two transmission shot gathers with two different shot depths. Con-

sider two transmission shot gathers recorded with the shots at depths of d1 and d2,

acquired by point sources and receivers. In a transmission gather the first arrival of each
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Figure 2.4: Group velocity measured from transmission data acquired with three trans-
ducer’s size using an edge-to-edge correction.

mode, for example P-wave, approximately appears as an hyperbolic event (Figure 2.5b).

Taking the (τ, p) transform, the first arrival hyperbola will be approximately mapped

onto an ellipse 2. In each transmission gather, consider the line with the slope of p0

(t = τ1 +p0x and t = τ2 +p0x) tangent to the first arrival hyperbola (Figure 2.5b). These

lines designate plane waves traveling with the horizontal slowness of p0, intercepting the

time axis at τ1 and τ2. Summation along these two lines produces the two points, (τ1, p0)

and (τ2, p0), at each (τ, p) event, respectively. Effectively, the p0 plane wave has traveled

the vertical distance of d2−d1 with the vertical slowness of q0 = (τ2 − τ1)/(d2 − d1) from

the source at d1 to the source at d2. Therefore, for any particular horizontal slowness, of

p0, in the (τ, p) domain, the two (τ1, p0) and (τ2, p0) points, picked from the transform of

the first arrival hyperbolic events, will estimate the phase velocity as vp0 = (p0
2 + q0

2)
−1/2

.

For a point source and receivers, in this thesis two finite-difference transmission gath-

ers are generated through an isotropic layer with the constant velocity of 3500m/s, with

the shot depths at d1 = 500m and d2 = 400m (Figure 2.6). For each p0, the correspond-

ing (τ1, p0) and (τ2, p0), are picked from the ellipses in the (τ, p) transforms of the two

gathers. Figure 2.7a shows the measured phase velocities versus phase angle. As is ap-

2Note, pure hyperbola and ellipse events are only true for isotropic case

25



parent, the Kebaili and Schmitt (1997) method successfully measures the constant phase

velocity of 3500m/s with an error of ±50m/s due to picking uncertainty. Assuming a

point source and a sufficient number of point receivers, the picking in the (τ, p) transform

can be done consistently on first arrival, peak, or trough within this error range.

Next, the same finite-difference transmission gathers are repeated, using source and

receivers with the size of 13mm. The receivers were attached to the top surface, and

the source receiver at the side of the layer with its top edge at the depths of d1 and

d2. Figure 2.7b shows the measured phase velocity comparing the results when it was

picked on the first arrival, peak or trough. The measured phase velocity has the error

range of ±400m/s whether peak or trough was picked (Figure 2.7b), and seems more

accurate with the error of ±150m/s when first arrival was used. Such large errors can

be believed that are related to the loss of resolution caused by the finite-size sources and

receivers, which was simulated by using source/receiver arrays. Essentially, the array

effect is a spatial averaging and the resulting distortion is less for first arrivals than for

subsequent arrivals. For physical model data acquired over anisotropic models, this wave

interference plus the presence of noise in the data reduces the reliability of phase velocity

measurements. Hence, for phase velocity measurements smaller transducers, resembling

point sources and receivers, as used in Mah and Schmitt (2001a), are desired. This

contrasts with the results in the previous section where we showed that the measurement

of group velocity is less sensitive to transducer size.

2.4 Group velocity measurements over the phenolic layer

3C transmission seismic data over the phenolic model were collected to facilitate the group

velocity measurements. The vertical, radial, and transverse component data were ac-

quired, utilizing P-transducers, radially polarized S-transducers, and transversely polar-
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(a)

(b)

(c)

Figure 2.5: (a) Schematic view of the acquisition geometry of the two transmission gather
required for measuring the phase velocity. (b) The two traveltime versus offset curves
for the two transmission gathers with different source positions. (c) (τ, p) transforms of
the traveltime curves in (b), note the determination of ∆τ at a given constant horizontal
slowness p0 (Mah and Schmitt, 2001a).
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(a) (b)

Figure 2.6: (a) Finite-difference generated transmission gather assuming point source
and receivers, with the shot depths at d1 = 500m, over a constant velocity layer with
the velocity of 3500m/s. (b) The (τ, p) transform of the gather in (a), the picks on first
breaks are shown in blue, on peaks are shown in white, and on trough are shown in red.
Two of such transmission gathers, with the shot depths at d1 = 500m and d2 = 400m,
were used in the estimation of phase velocities.
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Figure 2.7: Phase velocity measured from finite-difference data gathered over an isotropic
layer with the constant velocity of 3500m/s. (a) Point source and receiver data. (b) 13mm
transducer data.
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ized S-transducers, as source and receivers, respectively. For each component, the source

and receiver transducers always had identical polarizations. The P- and S-transducers are

Panametric V 103 and V 153 with diameter of a 13 mm and a nominal central frequency of

300 kHz. The reference Cartesian coordinate system used for the was chosen with to be

the same as the orthorhombic symmetry system. As the symmetry of phenolic materials

is relatively well controlled, the Cartesian axes were aligned with the symmetry planes of

the phenolic layer. Figure 2.8 shows the 3C data from one of the transmission shot gath-

ers. The shear-wave splitting phenomenon is observed between the radial and transverse

components, with the zero-offset arrivals of the qSV - and qSH-waves at approximately

0.45ms and 0.41ms respectively.

The transmission receiver lines were positioned along azimuths of 0◦, 90◦, 45◦, and

135◦ at the top surface (Figure 2.9a-d) with the source located at the bottom, and 0◦, 90◦

azimuth lines at the top surface with the source also at the top with a distance from the

receiver line (Figure 2.9e-f). The group velocity along different directions in the (x1, x3),

(x2, x3), azimuth 45◦, and azimuth 135◦ planes are estimated from the transmission

profiles in Figure 2.9a-d. The group velocity along different directions in the (x1, x2)

plane are estimated from the profiles in Figure 2.9e-f. The qP and qS velocities along the

(x1, x2, x3) axes are listed in Table 2.2. The errors of ±70m/s and ±35m/s are considered

for the qP- and qS-velocities measured from physical model data, using 0.1mm error in

distance and 0.004s error for first arrival time picks (1/8 of the dominant wavelength). To

examine how much heterogeneity effects the velocity measurements, these measurements

are also repeated by a pulse through transmission on several phenolic slabs individually.

It is found that the mean values are within the range of error from the ones measured from

transmission seismic data. This indicates the validity of the homogeneous assumption

for the experimental phenolic layer.

The qP group velocities are determined from qP first arrival traveltimes picked on

29



−2000 −1000 0 1000 2000
0.2

0.4

0.6

0.8

1

1.2

S
ca

le
d 

tr
av

el
tim

e 
(s

)

Scaled offset (m)

← direct qP
↓ direct qS

V
↓ reflected qP

(a) Vertical

−2000 −1000 0 1000 2000
0.2

0.4

0.6

0.8

1

1.2

direct qP →
↓ direct qS

V

S
ca

le
d 

tr
av

el
tim

e 
(s

)

Scaled offset (m)

(b) Radial

−2000 −1000 0 1000 2000
0.2

0.4

0.6

0.8

1

1.2

↓ direct qS
H

S
ca

le
d 

tr
av

el
tim

e 
(s

)

Scaled offset (m)

(c) Transverse

−2000 −1000 0 1000 2000
0.2

0.4

0.6

0.8

1

1.2

direct qP →
↓ direct qS

V

S
ca

le
d 

tr
av

el
tim

e 
(s

)
Scaled offset (m)

(d) Radial (filtered)

Figure 2.8: The 3C transmission data acquired along the x1-axis (Figure 2.9a), with the
wave propagation at the (x1, x3) plane. (a) Raw vertical-component data. (b) Raw radi-
al-component data. (c) Raw transverse-component data. (d) Filtered radial-component
data (radial filtering). Red dots are first arrival picks of each mode. Displayed data have
a long-gate automatic gain control applied for the vertical and transverse components.
The radial component data have been displayed with a shorter window automatic gain
control to boost the direct qSV arrival. The three components have similar noise levels.

30



x
2
−axis

x
1
−axis

*x 3−a
xis

(a)

x
2
−axis

x
1
−axis

*x 3−a
xis

(b)

x
2
−axis

x
1
−axis

*x 3−a
xis

(c)

x
2
−axis

x
1
−axis

*x 3−a
xis

(d)

x
2
−axis

x
1
−axis

*

x 3−a
xis

(e)

x
2
−axis

*

x
1
−axis

x 3−a
xis

(f)

Figure 2.9: Transmission profiles. Receiver lines are shown with bold lines, sources by
?, the raypaths connecting source-receivers with thin lines, slab joints with dash lines.
(a-d) Receiver lines at top surface along 0◦, 90◦, 45◦, and 135◦ (with respect to x1-axis),
with the source at bottom surface. (e-f) Receiver lines at top surface along 0◦, and 90◦

with the source also at the top surface.

the vertical component data. The qSV and qSH group velocities are obtained from the

qS-wave first arrivals picked on the radial and transverse data components. The qP and

qSH first arrivals are strong and easy to pick. The qSV first arrivals, however, are more

difficult to identify and pick (Figure 2.8) from raw radial component data. The qSV first

arrivals, however, are more difficult to identify and pick (Figure 2.8) from raw radial

component data. The horizontal component of the reflected qP-wave appears rather

strong in the radial-component data, and because of its velocity (almost twice that of

the shear waves) greatly interferes with the first arrivals of the qSV -wave, making the

picking of the direct arrival of the qSV -wave difficult, especially for the middle-angle

range. To overcome this difficulty, radial trace filtering (Henley, 2003) was applied to

the radial component data (see Appendix G for a description of radial trace filtering).

This estimate-and-subtract method attenuates the interference from events whose local
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Table 2.2: Phenolic qP- and qS-velocity (m/s) in principal directions. Here Vij
(i, j = 1, 2, 3) is the body wave velocity which propagates along the xj-axis and po-
larized along the xi-axis. For example V11 is the qP-wave velocity propagating along
the x1-axis, and V23(= V32) is the qS-wave velocity propagating along the x3-axis and
polarizing along the x2-axis.

V11 V22 V33 V23 V13 V12
2950± 70 3640± 70 3500± 70 1700± 35 1530± 35 1510± 35

dip differs from that of the qSV first arrival event. Done carefully, this type of the radial

trace filtering does not introduce traveltime changes to the target event (static shift) and

also preserves the amplitude (Henley, 2003).

The qP and qS group velocity surfaces for the symmetry planes, polar plots of group

velocity versus propagation angle are shown in Figure 2.10. The qSH wavefronts are

purely ellipsoidal. The qP wavefronts deviate slightly from the ellipsoidal with smaller

velocities (at middle-angle range) compared to the ellipse. The qSV wavefronts also

deviate from the sphere with slightly larger velocities (at middle-angles range) compared

to the circle.

2.5 Determining Aij, the density-normalized elastic constants

The diagonal Aij are determined from direct measurements of qP- and qS-wave velocities,

obtained from transmission traveltimes, along the x1-, x2-, and x3-axes. The off-diagonal

Aij are determined from the linear inversion of the measured qP group velocities along

various directions, as explained previously. The estimated Aij of the experimental phe-

nolic layer, and their statistical uncertainties are listed in Table 2.3. The statistical

uncertainties are estimated by introducing small random perturbations, representing un-

certainty, in the measured group velocities and observing the corresponding changes in

the Aij.
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Figure 2.10: The group velocity surfaces for the three modes (qP, qSV , qSH) in the
three symmetry planes. An elliptical wavefront is plotted for comparison in solid. The
measured velocities in the 0◦ and 90◦ directions, are considered to be the major and
minor axes of the ellipse. Group angles are plotted with respect to the vertical axis for
the (x1, x3) and (x2, x3) planes, and with the x1-axis for the (x1, x2) plane.

33



2.5.1 Verification of the accuracy of estimated Aij

As an accuracy test for the estimated Aij, the phase and group velocities predicted by

these estimations are calculated, and compared to the measured velocities. First the pre-

dicted phase velocities are calculated and then their values are used to calculate the group

velocities. The exact explicit orthorhombic phase velocity expression, for the symmetry

planes, is given by Tsvankin (2001), and the expression relating the phase and group

velocities is given in Appendix C. For the symmetry plane, Figure 2.11 compares the

measured qP group velocities from transmission data collected by 1.33mm transducers

and group velocities calculated from the estimated Aij. The theoretical velocities match

the measured velocities reasonably well. Some small discrepancies between the theoret-

ical group velocities and measured group velocities could be due to our assumption of

homogeneity of the simulated fractured layer or employing an approximate orthorhombic

group velocity expression rather than the exact form.

Table 2.3: Density-normalized stiffness coefficients of the simulated fractured layer. The
Aij have the units of (km/s)2.

8.70± 0.49 4.68± 0.21 5.07± 0.21 0 0 0

13.25± 0.49 5.13± 0.23 0 0 0

12.25± 0.49 0 0 0

2.89± 0.12 0 0

2.34± 0.12 0

2.28± 0.12

2.6 Phase velocity measurements over the phenolic layer

For each of the symmetry planes, two transmission seismic data gathers with sources at

two different depths from the receiver plane are acquired. This is the geometry studied

above and used by Kebaili and Schmitt (1997) to estimate phase velocities. The P-
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Figure 2.11: The group velocities versus propagation angle in the symmetry planes
(x1, x3), (x2, x3) and (x1, x2). The solid gray lines are theoretical velocities and the
dotted lines are measured ones. In (x1, x2) plane the black dotted line measured from a
receiver profile along x2-axis, the magenta dotted line measured from a receiver profile
along x1-axis.

35



Figure 2.12: The phase velocities versus phase angle in the symmetry planes (x1, x3),
(x2, x3) and (x1, x2). The solid gray lines are theoretical velocities and the dotted lines
are measured ones. In (x1, x2) plane the black dotted line measured from a receiver profile
along x2-axis, the magenta dotted line measured from a receiver profile along x1-axis.

transducers (piezoelectric pin CA-1136) with each piezoelectric element being 1.33mm in

diameter is used to produce the vertical component data. Using the method discussed

in Kebaili and Schmitt (1997), the phase velocities for the three symmetry planes are

measured. A great care picking on the (τ, p) transforms is been taken, a small window

AGC used in order to enable a consistent first arrival picking. The measured phase

velocities are compared to the theoretical velocities predicted from the estimated Aij

(Figure 2.12). Good agreement within the error range of velocity measurements was

obtained. This indicates that the estimated Aij from group velocity measurements are

able to be used to obtain the phase velocities with high accuracy. The estimated phase

and group velocities for the symmetry planes are compared together in Figure 2.13. The

phase velocities have larger values than group velocities except for the principal directions

that they are equal.
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Figure 2.13: Comparison of the estimated phase and group velocities in the symme-
try planes. The phase and group velocities are plotted versus phase and group angles
respectively.
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2.7 Thomsen-style anisotropy parameters

The stiffness coefficients, Aij of the experimental phenolic layer characterize the anisotropy

of the medium, while the strengths of anisotropy are less obvious. The dimensionless

orthorhombic anisotropic parameters are defined in Tsvankin (1997), and express the

measure of anisotropy similar to the well-known Thomsen (1986) coefficients ε, δ, and γ

for VTI media. Using expressions for the orthorhombic parameters in terms of the stiff-

ness coefficients, given in Table 2.7, these anisotropy parameters for the experimental

phenolic layer and their statistical uncertainties are listed in Table 2.4.

Table 2.4: Values of the orthorhombic anisotropic parameters of the phenolic layer.

δ(2) = −0.178± 0.002 δ(1) = −0.102± 0.001 δ(3) == 0.066± 0.004

ε(2) = −0.145± 0.003 ε(1) = 0.041± 0.0003 VP0 = 3500± 70 m/s

γ(2) = −0.106± 0.002 γ(1) = −0.013± 0.0003 VS0 = 1700± 35 m/s

The values of the Aij reveal that the experimental layer approximates an HTI medium

with the x1-axis being the symmetry axis and the (x2, x3) plane is a nearly isotropic plane.

The x1-axis with a qP-velocity of 2950m/s can be considered as the slow direction, and

the (x2, x3) plane with the fast velocity of 3570m/s (average of 3640m/s for x2-axis, and

3500m/s for x3-axis) can be considered as the fast plane. The qS-velocity in the (x1, x3)

and (x1, x2) planes (slow planes) are 1520 (average of 1510m/s and 1530m/s), and in the

(x2, x3) is 1700m/s. If we treat the experimental phenolic layer as an HTI medium with

the x1-axis as the symmetry axis, the five effective HTI anisotropic parameters required

in investigating the azimuthally AVO responses of the medium (α, β, ε(V ), δ(V ), γ), defined

by Rüger (2001) (Table 2.5), are as in Table 2.6.

Converting these HTI parameters to their equivalent Thomsen (1986) coefficients ε,

δ, and γ which carry the conventional meaning of anisotropy, the fractional differences
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Table 2.5: Anisotropy parameters for an HTI medium with the symmetry axis along the
x1-axis (Rüger, 2001).

ε(V ) = A11 − A33
2A33

δ(V ) =
(A13 + c55)

2 − (A33 − A55)
2

2A33(A33 − A55)
γ = A44 − A55

2A55

Table 2.6: Anisotropic parameters of the simulated HTI layer.

α = VP0 = 3500m/s

β = VS0 = 1700m/s

δ(V ) = δ(2) = −0.185

ε(V ) = ε(2) = −0.145

γ = A44−A55

2A55
= 0.117

of the fast and slow velocities, results in the following values: ε = 0.204, γ = 0.117, and

δ = −0.15. These values indicate the weak anisotropy (defined as ε, δ, γ � 1) for our

experimental phenolic layer.

Table 2.7: Tsvankin (1997) orthorhombic parameter relations to the stiffness coefficients.

δ(2) = (A13+A55)
2−(A33−A55)

2

2A33(A33−A55)
δ(1) = (A23+A44)

2−(A33−A44)
2

2A33(A33−A44)
δ(3) = (A12+A66)

2−(A11−A66)
2

2A11(A11−A66)

ε(2) = A11−A33

2A33
ε(1) = A22−A33

2A33
VP0 =

√
A33

γ(2) = A66−A44

2A44
γ(1) = A66−A55

2A55
VS0 =

√
A55

2.8 Discussions

In this chapter the group velocity in various directions are obtained by measuring direct-

arrival traveltimes on physically modeled 3C transmission gathers acquired by 13mm

transducers which are commonly used in physical modeling. The effect of relatively
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large physical model transducers were mitigated by using a single geometric edge-to-

edge correction assuming a known effective diameter for the transducers. The effective

diameter of the large transducers should be carefully decided from velocity measurements

over a known isotropic layer in advance to any anisotropic experiment. The qP-velocity

measurements by 13mm transducers were consistent with the ones by smaller transducers.

The qSV -waves from 13mm transducers were difficult to identify and pick. Hence it is

not clear that the edge-to-edge correction is as effective as it was for qP-waves. Because

the small S-transducers were not available at the time of this experiment, the difficulty in

picking might be due to existence of shear-wave singularity for the phenolic experimental

layer. Acquiring physical model data with small S-transducers might be considered to

solve this difficulty. Using very small point transducers, the measurements of group

velocities obviously will not need an extra edge-to-edge correction. However, very small

transducers do not usually produce a powerful enough signal for the large physical models.

In addition, they have coupling issues.

The group velocity measurements are easy and straightforward but the theoretical

linkage between group velocities and stiffness coefficients is not well known. However,

the energy propagation, group velocities are the ones normally resulting from seismic

gathers, including the NMO velocities. The author wishes to draw the readers attention

to the approximate group velocity expression of Daley and Krebes (2006) and suggest

that is has significant practical utility. A qP group velocity approximation in a general

21-parameter weakly anisotropic medium is presented in Daley and Krebes (2007). An

approximation for orthorhombic qS-waves is also available (Song and Every, 2000).

The characterization of physical models is usually done by employing the phase ve-

locities, as the theoretical link between stiffness coefficients and phase velocities are well

understood. Accurate measurement of phase velocities, however, is more difficult than

group velocities and the results depend strongly on the size of the transducers used. It
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Figure 2.14: Measured phase velocity picked on first arrival compared to picked on strong
peak.

been shown that the phase velocities measured, using the (τ, p) transform analysis of

1.3mm transducers, by a careful picking on first arrivals of the (τ, p) ellipse, are consis-

tent with the theoretical phase velocities predicted by stiffness coefficients estimated by

inversion of the group velocity measurements. Picking consistently on the strong peak or

trough of the ellipse will result in different trends for the phase velocities (Figure 2.14).

The wavefront generated by individual points on the large transducers are superimposed.

Thus the requirement of picking along a wavefront from a point source is violated.

Homogeneity of the simulated fractured medium is assumed in this work, so it is

believed that the frequency dispersion in this experimental layer in minimal. The ob-

served changes in the wavelet, in our transmission data, should be due mainly to the

effect of transducer size (Figure 2.3). A P-wave shot gather is numerically modeled over

an isotropic homogenous model with the dimensions of our simulated fractured layer,

using finite difference modeling with the source and receiver array length equal to our

transducer’s size. This modeling indicates the apparent change in wavelet shape from

near to far offset is due mostly to the large size of the source and receiver transducers

rather than a frequency dispersion effect (Figure2.15).
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Figure 2.15: (blue) P-wave transmission gather generated by finite-difference acoustic
modeling over an isotropic layer with the velocity of 3500m/s. (red) Vertical component
data acquired at (x1, x3) plane. Here the focus is direct arrival qP-wave. There is good
match for wavelet at the near-offset traces. Because of anisotropy and increasing velocity
toward x1-axis, the two seismic gathers do not quite match at the far-offset traces.

2.9 Summary

A straightforward method to characterize an orthorhombic material in a physical model-

ing setting is presented. The utility and value of group-velocity measurements to estimate

the stiffness coefficients is demonstrated. After the edge-to-edge correction, correcting for

the size of the transducers, the qP-velocity measurements are found to be less sensitive

to transducer size. qP phase velocities are determined from the (τ, p) transform analysis

of transmission data acquired by very small transducers, resembling point sources and

receivers. It is shown that the accuracy of the phase velocities is greatly dependent to

the size of the transducers used.

Our inversion method is based on a relatively new approximate relationship between

group velocity and orthorhombic stiffness coefficients. The orthorhombic qP velocity

expression by Song and Every (2000) and Daley and Krebes (2006) enables in off-diagonal

stiffness coefficients estimates. It is showed that the estimates of stiffness coefficients,
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for our physical layer, are consistent with the qP group and phase velocity data, by

comparing measured group and phase velocities produced by small transducer data with

the calculated theoretical velocities predicted by the estimated stiffness coefficients. The

estimated density-normalized stiffness coefficients suggest that the experimental phenolic

layer, with relatively well controlled symmetry, approximates a weakly anisotropic HTI

layer, or equivalently a vertically fractured transversely isotropic layer.
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Chapter 3

3D physical model reflection data for azimuthal AVA

The next step for physical modeling to become more upstream is the verification of the

suitability of physically modeled data in a quantitative amplitude analysis. A seismic

experiment utilizing a physical geological model has been conducted to acquire single-

component, multi-offset, multi-azimuth, 3D reflection seismic data, to verify the suitabil-

ity of physically-modeled data for AVAZ (amplitude variation with angle and azimuth)

analysis. This chapter details the acquisition and the processing of the physical model

reflection data.

The model consisted of five layers with the phenolic layer, simulating a vertically

fractured medium with a single set of fractures, in the middle. Two isotropic media

layers were above, and two below the anisotropic (fractured) layer with the uppermost

and lower layers being water. The upper and lower layers welded to the phenolic layer

were homogeneous isotropic plexiglas.

The amplitudes reflected from the top of the fractured layer, the target event, have

been picked from the primary reflection. The acquisition was designed to avoid the

overlapping of the primary and ghost events. Data have been filtered to avoid the wave

interferences from the top reflectors, to enable amplitude picking of the target event. The

picked reflection amplitudes have been corrected using standard AVO corrections for ma-

rine data, and additionally, a directivity correction has been applied to compensate for

the effects of the large physical model transducers. A successful quantitative investi-

gation of the AVO behavior of the P-wave reflections, from the two isotropic-isotropic

(water-plexiglas) and isotropic-anisotropic (plexiglas-phenolic) interfaces, which agreed

with the theoretical predictions, is presented. The corrected reflection amplitudes from
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the plexiglas-phenolic interface will be used for AVAZ analysis of Chapter 4.

3.1 Laboratory set-up

The model consists of five layers, which are water (scaled thickness: 700 m), plexiglas

(scaled thickness: 500 m), simulated fractured layer (scaled thickness: 690 m), plexiglas

(scaled thickness: 250 m), and water (scaled thickness: 300 m) (Figure 3.1). The sim-

ulated fractured layer and the two plexiglass layers were machined, to ensure flat and

smooth surfaces, and were glued with melted wax and placed in a high pressure environ-

ment to cure so as to ensure the simulation of a welded contact. These three layers were

submerged in a large water tank and located above the base water layer by adjustable

screws fastened near the corners of the tank. The adjustable screws allow for accurate

leveling of the model. The model was leveled carefully to ensure that the interfaces had

no dip, by equating the reflection traveltimes from the upper interface at each corner,

within the limits of the experimental recordings of the system. Some elastic properties

of the modeling material are listed in Table 3.1. The complete elastic properties of the

anisotropic phenolic layer was presented in Chapter 2 (table 2.3).

Figure 3.1: The five-layered earth model used in the acquisition of 3D reflection data.

As receivers these transducers simulated vertical component geophones. These trans-
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P-velocity S-velocity Density
(m/s) (m/s) (g/cc)

Water 1485 ∼ 0.0 1.00

Plexiglas 2745 1380 1.19

Phenolic 3570 (‖) 1700 (‖) 1.39
2900 (⊥) 1520 (⊥)

Table 3.1: A summary of the physical properties of the materials used.

ducers produced an acoustic wavelength of ∼ 2.8mm, corresponding to a wavelet with a

scaled center frequency of 52Hz for P-waves. In this experiment a strong voltage (325 V)

was used to image the reflection from the top of the fractured layer without clipping the

first reflector amplitudes.

For the reflection data, the first source- and receiver-transducer location are manually

positioned according to a predefined coordinate system. The source and receiver arms

should be reset according to this one coordinate system. Having finite-size transducers,

this coordinate assignment is not perfect; as for the origin this is set visually. Therefore,

the effective first source-receiver distance is not automatic. To check the accuracy of the

first source-receiver offset using the positions of the receivers (from trace headers), the

first-break traveltimes can be fitted by least-squares to obtain the first source-receiver

offset and the accurate velocity of the first (water) layer. Determining the first source-

receiver offset is explained in Appendix D. As previously mentioned, once the initial

source-receiver offset is set, the subsequent increments in offset are computer controlled,

and as a consequence are accurately known.
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3.2 Data acquisition

A common-midpoint (CMP) shooting arrangement similar to that employed in Chang

and Gardner (1997) is used. The seismic traces are gathered with respect to one CMP

point for a range of offsets and azimuths. The acquisition coordinate system was chosen

to coincide with the symmetry planes of the fractured layer; the vertical is the x3-axis,

the x1-axis is aligned with the symmetry axis, and the x2-axis coincides with the fracture

plane of the simulated fractured layer (Figure 3.2). A total of nine large-offset CMP

seismic lines were recorded along azimuthal directions of 0◦, 14◦, 27◦, 37◦, 45◦, 53◦, 63◦,

76◦, and 90◦ measured from the x1-axis. Figure 3.2 shows the acquisition geometry.

During data acquisition, elastic waves were generated and received by a source-receiver

pair starting with (S1, R1), collecting the first trace of each azimuth line. The source-

receiver pair was then moved outwards to collect other traces at the current azimuth. As

the robotic positioning system was only able to make movements along the principal axis

of x1 and x2, to acquire the azimuth lines the source and receiver were moved at (∆x,∆y)

intervals. The scaled (∆x,∆y) intervals are (40, 0), (40, 10), (40, 20), (40, 30), (40, 40),

(30, 40), (20, 40), (10, 40), and (0, 40), corresponding to the nine azimuths, respectively.

The maximum scaled offset is 3100m, mapping a CMP point at the top of the fractured

layer to the scaled depth of 1890m.

Figure 3.3 shows the CMP seismic line acquired along an azimuth of 0◦ (fractured

symmetry axis) and 90◦ (fracture plane), with the transducers’ tip at the water surface.

Five events are recognizable from the reflection data. The three strong PP reflections

from the plexiglass top (labeled ”A”), fracture top (labeled ”B”) and base layer (labeled

”E”), a strong PS reflection from the fracture top (labeled ”C”), and a weak PP reflection

from the bottom of the fractured layer (labeled ”D”). The reflections from the plexiglas

top and fractured top (labeled ”A and ”B”), appearing at approximately 0.95s and 1.3s,
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Figure 3.2: A map view of the acquisition geometry of the CMP survey lines. The thin
background lines schematically display the fracture plane direction with the line spacing
not representative of the fracture density distribution. The azimuth angle of survey lines
is with respect to the symmetry axis of the simulated fractured layer. The imaged CMP
point is indicated by an ?. Receivers are shown in blue, and the sources are shown in
red. The x1- and x2-axis are showing the scaled dimensions in meters. Only five azimuth
lines from a total of nine are displayed. The maximum number of traces in each azimuth
line is 291. A total of 2499 traces was acquired in the experiment.
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are examined in the amplitude analysis.

In these physical modeling experiments, as the sources and receivers are located near

the water surface, primary and ghost reflections are expected. The interference of pri-

mary and ghost reflections corrupt the amplitude information required for an amplitude

analysis, and therefore should be avoided. Hence, the azimuth lines were acquired with

the transducers’ tip 2.5mm within the water, so that the primary and ghost events are

separated. This decision is based on a preliminary experiment designed to examine the

behavior of the ghosts. In this experiment, the source and receiver were kept at a fixed

offset of 10mm, and seismograms were recorded at 0.2mm depth intervals as both trans-

ducers were raised from a depth of 10mm up to zero depth (at which the active tips of

the transducers were nominally coplanar with the water surface). Figure 3.4 shows a

suite of seismograms from this experiment. For each reflector, three events are collected,

a primary, a ghost, and a constant traveltime event. The primary has a time moveout

towards earlier times as tip depth increases. This is as expected since, as tip depth

increases, the lengths of the raypaths from the tips to the reflecting interface decreases

(Figure 3.5a). For the ghost, the arrival times increase as tip depth increases, which is

also expected (Figure 3.5b), since the total raypaths for this ghost includes segments from

the tips to the surface (lengths increase with tip depth) and segments from the surface

to the reflecting interface (lengths are independent on tip depth). The third event has

an almost constant traveltime, and has a traveltime as if the source and receiver were

both located at the water surface, and therefore there is no apparent change in travel

path length as tip depth changes. This constant traveltime event is generated by two

single-sided ghost events at the source or receiver (Figure 3.5c). The existence of two

single-sided ghosts makes the constant traveltime event appear strong. In appendix B, it

is shown the single-sided ghost event has a constant traveltime as if the wave was gener-

ated at water contact with the source transducer, reflected from the CMP point between
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(a) Azimuth 90◦

(b) Azimuth 0◦

Figure 3.3: Sample CMP gather acquired over azimuth 90◦ and 0◦ data with transducers
touching the water surface. A long gate (900ms) automatic gain control is applied. In
the display, event ”A” is the PP reflection from the top of the plexiglas layer, event ”B”
is the PP reflection from the top of the fractured layer (our target), event ”C” is the
PS reflection from the top of the fractured layer, event ”D” is the PP reflection from
the bottom of the fractured layer, and event ”E” is a water bottom multiple. The PP
reflection event from the bottom of the fractured layer (D) in 0◦ azimuth data, is hardly
visible due to the higher amplitude decay along the fractures’ symmetry axis.
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the source and receiver, and recorded at water contact with the receiver transducer. An

optimum transducers’ tip depth within the water was chosen to be 2.5mm, as it is the

minimum transducer tip depth at which the primary and ghosts events can be recorded

completely separately. A larger transducer tip depth is not desired as the ghost events

from the upper reflector leak into the lower reflectors.

The 3D reflection data used for amplitude analysis were collected with the transducer’s

tip 2.5mm inside the water, Figure 3.6 shows the CMP gathers acquired along 0◦ and 90◦

azimuths. With the transducers inside the water, the reflections do not appear sharp and

focused and the wavelet seems to be stretched out due to the presence of ghost events

following the primary. However, for the purpose of using this dataset for a quantitative

amplitude analysis, keeping the reflection amplitudes away from any interference with

ghost events is of great importance.

3.3 Data processing

For each azimuth line, the P-wave reflections from the reflecting interfaces of interest

were identified, and the arrival times and reflection amplitudes were picked using an

automatic picker available in the CREWES MATLAB library1. The amplitudes of the

first reflector, water-plexiglas, are picked from the primary event of the raw data. The

second reflector, plexiglas-phenolic, was weak and hard to pick as its primary event

suffers from severe wave interferences from top reflectors (first-arrival and water-plexiglas

events). Figure 3.7-top is a blown up plot on the plexiglas-phenolic reflector for azimuths

0◦ and 90◦, and clearly shows the wave interferences. To overcome the difficulty of picking

the second reflector amplitudes, radial trace filtering (Henley, 2003) was applied to the

data (appendix G). This estimate-and-subtract method attenuates the interference of

the other events with the target event. Figure 3.7-middle shows the data after radial

1From ”plotimage” software.
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(a)

(b)

Figure 3.4: (a) Data acquired at a single source-receiver offset of 10mm with different
transducer depths in water. b) Expanded time scale to show detail of the reflections from
the water-plexiglas interface.
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(a) (b) (c)

Figure 3.5: (a) Primary raypath. (b) Ghost raypath. (c) Asymmetric raypaths, two
single-sided source and receiver ghosts, identified as ”XX” in Figure 3.4.

trace filtering. The target event appears intact and clean after radial trace filtering. The

applied filtering was successful in the attenuation of most of the interfering arrivals with

the target event (Figure 3.7-bottom). To examine whether radial trace filtering does

affect the amplitudes, the picked amplitudes from raw and filtered data are compared,

for all azimuths. It is found that the amplitudes of the target are preserved after radial

trace filtering. Figure 3.8 shows the target amplitudes picked from raw and filtered data

for the 0◦ and 90◦ azimuths. The overall trend of the target amplitudes is preserved after

filtering, an essential precondition to an amplitude analysis.

3.3.1 Amplitude corrections

Field recordings of seismic data, as well as physical model data, do not directly indi-

cate target reflection coefficients due to numerous factors. The most important factors

that disturb seismic amplitudes are geometrical spreading, transmission loss, anelastic

attenuation, interference of primary and ghost reflections due to a free surface, interbed

multiples, and source/receiver array response (e.g., Spratt et al., 1993). Such effects alter

amplitudes and are independent of the model properties and should be compensated for,

so that the reflection amplitudes represent the reflection coefficients of an interface.
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(a) Azimuth 90◦

(b) Azimuth 0◦

Figure 3.6: Sample CMP gather acquired over 90◦ and 0◦ azimuth data with transducers
2.5mm inside the water. A long gate (900ms) automatic gain control is applied. The
events A, B, C, D, and E are as defined in Figure 3.3. The arrows point to the primary
reflections. Note, primary events are weaker than their subsequent ghost events.
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(a) Azimuth 90◦, raw data (b) Azimuth 0◦, raw data

(c) Azimuth 90◦, filtered data (d) Azimuth 0◦, filtered data

(e) Azimuth 90◦, difference (f) Azimuth 0◦, difference

Figure 3.7: Azimuths 0◦ and 90◦ data zoomed around the plexiglas-phenolic reflection,
the target is pointed to by an arrow. The top plots show the raw data, followed by the
filtered data, and the bottom row shows the difference of the raw data (top row) and the
filtered data (middle row).
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(b) Azimuth 0◦

Figure 3.8: Picked amplitude from raw and filtered CMP data along azimuths of 90◦ and
0◦.

Duren (1992) presented AVO corrections on marine data to reveal amplitude behavior

with offset. In this thesis I follow Duren (1992) and apply a deterministic amplitude

correction to the physical model reflection amplitudes. As previously explained, the

acquisition design avoids overlapping primary and ghost events, and the interference

of interbed multiples with our target event. Assuming homogeneity of the model layers

and ignoring anelastic attenuation, the effects of geometrical spreading, emergence angle,

transmission losses, and source/receiver array (which is called source/reciever directivity

here) are the relevant factors for the physical model reflection amplitudes.

For a horizontally layered medium as shown in Figure 3.9, the recorded vertical-

component reflection amplitude (along a CMP profile at azimuth φ) can be considered

as

A(x, f) =
SD(θs, f)D(θh, f)L(x) cos θh

Dg(x)
RT (θT ) (3.1)

where f is the frequency, x is the source-receiver offset, θs is the source radiated ray

direction, θh is the emergence angle at the receiver, θT is the incident angle at the target
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Figure 3.9: Raypath geometry for horizontally layered subsurfaces (Duren (1991)).

reflector, and

A(x, f) = vertical-component recorded reflection amplitude,

S = overall scalar related to source strength,

D(θs, f) = source directivity along the θs direction,

D(θh, f) = receiver directivity along the θh direction,

RT (θT ) = target’s reflection coefficient,

Dg(x) = geometrical spreading,

L(x) = transmission loss.

Each of the factors in equation 3.1 should be compensated for so that the physical

model reflection amplitude, A(x, f), after corrections, estimates the reflection coefficient,

RT (θT ). Assuming a horizontally stratified subsurface and using ray theory, the subsur-

face factors in equation 3.1 can be estimated. For a given offset and target depth, the

primary’s raypath is being traced, employing Snell’s law, using a PP ray-tracing func-
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tion from the CREWES MatLab library2, to determine the ray incident angle at the

target reflector, the emergence angle at the receiver location, the geometrical spreading,

and the transmission loss. Appendix F presents the corrections for these subsurface fac-

tors in greater detail. In the next section, the directivity correction for physical model

transducers, D(θ, f), is presented.

3.3.2 Source/receiver directivity

Actual sources and receivers in the field are generally very small compared to seismic

wavelengths, and are treated as point sources and receivers. The physical model trans-

ducers, with their larger dimensions, cannot be treated as point sources/receivers. They

produce the seismic wavefield where amplitudes are directionally biased. An illustration

of the produced pressure field is shown in Figure 3.10, showing that less energy prop-

agates at high angles (i.e., far offsets). The directionality behavior of physical model

transducers can be best described by a seismic array. It is well known that the radiated

wavefield from a source array has a directivity pattern. (Parkes et al., 1984; Duren, 1988).

Directivity is defined as the ratio of radiated energy density in a particular direction to

the average radiated energy (Duren, 1988). A numerical model of the directivity of a

circular source transducer is presented next.

Consider a source transducer. Assuming Huygens’s principle, a transducer can be

regarded as an array of point sources where each individual element radiates the same

waveform simultaneously with the others. Take a coordinate system with the origin at

the center of the source transducer, and the circular planar transducer in the z = 0

plane with the individual element location at ~rs = (xs, ys, 0), and a point receiver in the

(x, z) plane at ~r = (R cos θ, 0, R sin θ) (Figure 3.11). Consider a monochromatic acoustic

wavefield radiated from individual points in the transducer and detected at the point

2traceray-pp.
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Figure 3.10: The calculated pressure field for a circular transducer of a diameter of
12mm as a function of depth and angle for a frequency of 200 kHz (after Buddensiek
et al. (2009)).

receiver, described by the Helmholtz Green function

p0
eik|~r−~rs|

|~r − ~rs|
. (3.2)

Here p0 is the initial pressure, k = 2π/λ is the spatial wavenumber, and ~rs is the location

of the point source. The total far-field is the sum of individually radiated wavefields

P (~r, f) = p0

∫ a

−a

∫ π

−π

eik|~r−~rs|

|~r − ~rs|
drsdθ, (3.3)

where P (~r, f) is the pressure field, and a is the transducer radius. When ~r is much

Figure 3.11: A circular source transducer in the z = 0 plane as a source array, with the
point receiver at location ~r.
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greater than the transducer radius, equation 3.3 is described analytically (e.g., Schmerr,

1998; Kundu, 2003) as:

P (~r, f) = p0
eikR

R

J1(X)

X
, (3.4)

X =
π(2a)f

v
sin θ,

where J1 is the Bessel function of order 1 and v is the P-wave velocity. In this equation, the

eikR/R term is the wavefield generated by a point source at the center of the transducer

as detected at a point receiver at a distance R. The second term defines the directivity

of the circular transducer assuming unit average energy. Hence, the directivity of the

transducer is

D(θ, f) =
J1(X)

X
. (3.5)

Figure 3.12 shows the directivity function for three transducer sizes. The transducers

used in acquiring the physical model reflection data, with a diameter of 1.36mm have a

directivity similar to Figure 3.12(a). The directivity equation for circular transducers is

similar to the response of a linear array of length L given by

sin(πLf
v

sin θ)
πLf
v

sin θ
. (3.6)

Equation 3.5 is used to compensate for the directivity effect of the employed source/reciever

transducers. By reciprocity, the directional characteristic of a circular transducer is the

same whether used as a source or a receiver.

3.4 AVO response of the water-plexiglas interface

The reflection amplitudes from the water-plexiglas interface were picked from the primary

event on the raw data as previously mentioned. Figure 3.13 shows the offset and incident

angle relation for the water-plexiglas reflector. The picked amplitudes were corrected for

the effects included in equation 3.1. The relevant corrections are geometrical spreading,
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Figure 3.12: Directivity of a circular transducer with the diameter of (a) 1.3mm, (b)
6.0mm, (c) 12mm, for a frequency of 500kHz.
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Figure 3.13: The picked amplitudes picked from the water-plexiglas reflector versus the
incident angle. The colorbar displays the offset values.

emergence angle, and directivity. Figure 3.14 shows the raw amplitudes and cumula-

tive results after each correction compared to the Zoeppritz solutions. The picked and

corrected amplitudes are calibrated to the theoretical near-offset reflection coefficient,

so that the amplitude variations between near and far offsets after each correction are

revealed (see scaling in appendix F). The substantial improvement after each correction

indicates the importance of each correction in preparing the amplitude data for an AVO

analysis.

In the directivity correction (equation 3.5), deciding the effective diameter of the

transducers, Buddensiek et al. (2009) method is followed. The value of the effective

diameter is the value that gives the best match to the observed amplitudes. An effective

diameter of 1.2mm was used for directivity correction. The nominal size of transducers

from the manufacturer is 1.36mm.

The corrected amplitudes reflected from the water-plexiglas interface have been com-

pared to the plane-wave and spherical-wave Zoeppritz solutions (Figure 3.14). The

spherical-wave Zoeppritz equation, implemented as a JAVA applet by Ursenbach et al.

(2006), is available from the CREWES website. The corrected water-plexiglas ampli-

tudes agree very well with the amplitudes predicted by the Zoeppritz equations for mid-
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Figure 3.14: Reflection amplitudes from the water-plexiglas interface. The plane-wave
Zoeppritz solution is shown in (blue), the spherical-wave Zoeppritz solution (black), raw
amplitudes (light blue), and cumulative results after geometrical spreading correction
(purple), after an emergence angle correction (green), and after a directivity correction
(red).

dle range angles of incident, before the critically refracted arrivals are starting to appear

(Figure 3.14). The corrected amplitudes deviate significantly from the theoretical ampli-

tudes passed the critical angle (around 32◦) with the corresponding offset around 1000m

(see Figure 3.13 for the incident angle and offset relation). Passed the critical angle,

amplitude picking was done on the strong head waves, rather than the weak post-critical

reflection. Figure 3.15 shows a CMP gather with a short gate AGC applied to boost the

weak post-critical reflection.

No azimuthal variations were observed for the water-plexiglas reflector, the interface

of the two isotropic media. Figure 3.16 displays the corrected water-plexiglas amplitudes

along the 0◦ and 90◦ azimuth lines.
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Figure 3.15: 0◦ azimuth data. The NMO curve of the water-plexiglas reflector is shown
in red.
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Figure 3.16: Water-plexiglas corrected amplitudes from the 0◦ azimuth (red squares) and
90◦ azimuth (green diamonds), to display that amplitudes are azimuthally invariant.
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3.5 Azimuthal AVO of the plexiglas-phenolic interface

The reflection amplitudes from the plexiglas-phenolic interface, an isotropic-anisotropic

interface, were picked from the primary event on the filtered data. Figure 3.17 shows

the offset and incident angle relation for the plexiglas-phenolic reflector for the azimuths

0◦ and 90◦. Reflection amplitudes were then corrected for geometrical spreading, trans-

mission loss, emergence angle, and directivity effects. The effective diameter of 1.2mm,

derived from the top reflector, was consistently used in correcting amplitudes for all nine

azimuths. The picked and corrected amplitudes, are calibrated to the theoretical near-

offset reflection coefficient, similar to the case of water-plexiglas reflector. For the 90◦

azimuth, the direction of the isotropic plane of the fractured layer, the amplitudes are

compared to the theoretical reflection coefficients from the Zoeppritz equations. The

picked and corrected amplitudes, after each correction, are plotted in Figure 3.18a. Sim-

ilar to the water-plexiglas reflector, each correction, except the directivity correction,

provided a substantial improvement. For the plexiglas-phenolic reflector the directiv-

ity correction is minimal. At this reflector, being 1890m away from the transducers,

the effect of the finite-size of the transducers is less pronounced. This is due to the

smaller emergence angle for the amplitudes coming from the plexiglas-phenolic reflector.

At the critical angle of the plexiglas-phenolic reflector (around 52◦ in azimuth 90◦), the

emergence angle is approximately 25◦. In Figure 3.14, the small effect of the directivity

correction for angles smaller than 25◦ can be seen.

Similar to the water-plexiglas reflector, the final corrected amplitudes follow the

spherical-wave predicted amplitudes, with better agreement at incident angles closer to

the critical angle, similar to that reported by Winterstein and Hanten (1985), Haase and

Ursenbach (2007), and Alhussain et al. (2008). However, perfect agreement between the

observed amplitudes and the spherical-wave predicted amplitudes is not observed either.

65



10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

Incident angle (degrees)

A
m

p
lit

u
d

e

 

 

500

1000

1500

2000

(a) Azimuth 90◦

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

Incident angle (degrees)

A
m

p
lit

u
d

e

 

 

500

1000

1500

2000

(b) Azimuth 0◦

Figure 3.17: The reflection amplitudes from the plexiglas-phenolic reflector versus the
incident angle. the colorbar displays the offset values.

This could be mostly due to the plane-wave nature of the applied corrections which are

based on the assumption of relating the amplitudes to a single ray. However, the reflec-

tion of the spherical-waves involves reflections of not just the part corresponding to the

specular ray but a bundle of rays within the ray beam around the central ray (Bleistein

et al., 2001).

The corrected amplitudes of the plexiglas-phenolic reflector for the nine azimuths

between 0◦ and 90◦ are shown in Figure 3.19a. The corrected amplitudes from only the

0◦, 45◦, and 90◦ azimuths are shown in Figure 3.19b. There is almost no azimuthal

amplitude variation for the incident angles before 30◦. The azimuthal variation starts to

pick up after 30◦. For the incident angles larger than 30◦, a clear azimuthal amplitude

variation is observed.

The amplitudes reflected from the top of the fractured layer follow the theoretically

predicted reflectivity of Rüger’s equation closely for incident angles up to the critical

angle (around 52◦ at the 90◦ azimuth), Figure 3.20. See Chapter 4 for a definition of

Rüger’s equation for the PP reflection coefficient from a boundary of two HTI layers.

Reflectivity amplitudes predicted by Rüger’s equation are calculated using the elastic

properties of plexiglas and the phenolic layer (Tables 3.1 and 2.6). Beyond about 50◦,

66



10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Incident angle (degrees)

A
m

p
lit

u
d

e

 

 

plane−wave Zoeppritz

spherical−wave Zoeppritz

picked amplitude

geometrical spreading

trans loss + spreading

emrg angle + trans loss + spreading

directivity + emrg angle + trans loss + spreading

(a) Azimuth 90◦

10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Incident angle (degrees)

A
m

p
lit

u
d

e

 

 

picked amplitude
geometrical spreading
trans loss + spreading
emrg angle + trans loss + spreading
directivity + emrg angle + trans loss + spreading

(b) Azimuth 0◦

Figure 3.18: The reflection amplitudes of the plexiglas-phenolic interface.
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Figure 3.19: The corrected plexiglas-phenolic reflection amplitudes for (a) all nine az-
imuths, (b) only three azimuths.
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the deviations of the experimental data from Rüger’s prediction are due to the fact that

Rüger’s equation is valid only for plane waves. The corrected amplitudes reflected from

the top of the fractured medium will be used as input to an AVAZ analysis to estimate

Thomsen’s anisotropic parameters of the fractured layer presented in Chapter 4.

3.5.1 The very near offset anomaly

Picking amplitudes of the plexiglas-phenolic reflector from the radial trace filtered data,

there is an anomaly in the amplitude data at small incident angles, existing in nearly all

azimuths (Figure 3.19). This anomaly is due to the inability of the radial trace filtering

algorithm to attenuate a wave interference with the target event at very small incident

angles. At very small incident angles, the interfering event has nearly the same dip as

the target event (Figure 3.7c-d), any dip filter is unable to discriminate it from the target

event, and consequently is unable to remove it, see appendix G. Whereas for the farther

offsets, the larger move-out differences between the target event and the interfering events

enable the radial trace filter to discriminate the unwanted linear event from the event of

interest (Figure G.2a). Consequently, for large incident angles a clear attenuation was

achieved, and amplitude data followed the expected trend nicely.

3.6 Discussions

The presented acquisition and processing of the 3D physical model data acquired, over a

simple horizontal layering model, might seem rather straight forward. The most impor-

tant challenges of the acquisition and processing of the physical model seismic data are

discussed in Appendix I; the effect of not having welded contacts for the solid interfaces,

and the directivity effect of the transducers, are discussed. Now knowing how to com-

pensate for the directivity effect of the transducers, and how to deal with the acquisition

of data from solid-solid interfaces, the explained acquisition and processing procedures
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Figure 3.20: Plexiglas-phenolic corrected amplitudes compared to theoretical reflection
coefficients predicted by Rüger’s equation, from (a) azimuth 90◦, (b) azimuth 76◦ (c)
azimuth 53◦, (d) azimuth 45◦, (e) azimuth 14◦, and (f) azimuth 0◦.
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can be applied to obtain physical seismic data over more complicated models.

The presented physical model reflection data were processed with no deconvolution

techniques applied. The model has large-contrast, isolated reflectors which are resolv-

able without applying deconvolution. Once data were scaled in a manner suitable for

AVO, there was no need to apply a deconvolution. The overall scalar that calibrated

the amplitudes to the near-vertical reflection coefficient predicted by the Zoeppritz equa-

tions, can also be considered as removing the source signature for a single reflector.

Most deconvolution techniques applied to the previous physical model data (Appendix I)

increased noise level by boosting noise dominated high frequencies. A careful deconvolu-

tion requires measuring the transducer’s emitted wavelet and designing a deconvolution

operator, which would probably have to be varied with direction (angle). A proper de-

convolution should improve the data quality, especially the ghost reverberations at near

offsets, but was beyond the scope of this study.

A piezoelectric transducer produces a wavelet with a restricted bandwidth around its

resonance frequency (Buddensiek et al., 2009). Figure 3.6 shows the amplitude spectrum

of one of the physical model seismic traces used in this Chapter with the transducers’

tips just slightly inside the water. It displays the restricted bandwidth and the strong

amplitude at the scaled resonance frequency of 50Hz, while the notches in the amplitude

spectrum are caused by ghosts events. In the case of using physical model data in a

frequency sensitive inversion, in particular when the low-frequency content is important,

such restricted band width should be considered. Nevertheless, the restricted bandwidth

does not affect our amplitude analysis, as the interest of this work is the frequency band

width of 0 − 50Hz. Also, this restricted frequency band width, and the missing low

frequency content, were taken care of by applying an overall scalar which calibrated the

amplitudes to near-vertical reflection coefficient values.

Another characteristic of a piezoelectric transducer is the change of the radiated
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waveform with offset (Buddensiek et al., 2009), which is due to the large size of the

transducer, as previously discussed in Chapter 2. The change in wavelet shape from near

to far offsets is quite pronounced for the transducers with a size of 14mm Figure 2.3a.

Nevertheless, for the amplitude analysis presented in this chapter, this effect can also be

neglected as the size of the transducers (1.36mm) is smaller than the emitted wavelength

(the acoustic wavelength is 2.8mm). Additionally, reflection data do not show a noticeable

change in the wavelet shape between near and far offset traces.

Enabling the amplitude picking for the target event, radial trace filtering was applied

to the reflection data. Reflection amplitudes appears to be unaltered on the filtered

data, preserving the overall trend they have in the unfiltered data. Radial filtering was

preferred over other coherent noise attenuation techniques, such as the regularly used

filtering in the (f, k) transform domain, as the (f, k) technique, true to its reputation,

greatly smears amplitudes.

Summary

The suitability of physical model seismic data for a quantitative amplitude analysis

is being investigated. The reflection amplitudes from one isotropic-isotropic and one

isotropic-anisotropic interface are subjected to corrections to make them represent re-

flection coefficients, and therefore can be used in an AVO analysis. The azimuthal AVO

was clearly observed from the amplitudes reflected from the top of a simulated fractured

layer, and agreed with theoretical amplitudes.

Real wave propagation occurs in physical modeling, so that the physical model seismic

data can be treated as field data. While the traveltimes in physical modeling are reli-

able, the large, highly-directional transducers distort the seismic amplitudes, and their

effect should be compensated for before any amplitude analysis. The directional ampli-
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tude responses of the transducers has been mitigated using an array-type (directivity)

correction.
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Figure 3.21: Amplitude spectrum of two of the physical model traces. (a) Transducers‘
tip touching the water surface, the data has time sample interval of 1ms. (b) The
transducers‘ tip was 2.5mm inside the water, the time sample interval was 2ms. (c)
Comparing the two traces.
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Chapter 4

AVAZ inversion for fracture orientation and intensity

The pre-stack amplitude inversions of P-wave data for fracture orientation and intensity

are presented in this chapter. The method was tested on multi-azimuth multi-offset

physical model reflection data. The acquisition and processing of the data acquired over

the simulated fractured medium were explained in Chapter 3. This chapter follows the

method used by Jenner (2002) for amplitude inversion to extract the fracture orientation.

Testing this method on the reflection amplitudes from the top of the simulated fractured

layer, it is demonstrated that the orientation estimate is quite accurate. With the fracture

orientation known, the linear PP reflection coefficient approximation given by Rüger

(1997) was modified to invert for anisotropy parameters (ε(V ), δ(V ), γ), in addition to the

isotropic terms (∆α/α,∆β/β,∆ρ/ρ). Wide-angle data are required for an accurate AVAZ

inversion applied to the reflection amplitudes from the top of the simulated fractured

layer, since the material shows only slight azimuthal amplitude variations for angles

less than 37◦. The results for all three anisotropy parameters from AVAZ inversion

compare very favorably to those obtained previously by a different technique (traveltime

inversion in Chapter 2). This result makes it possible to compute the shear-wave splitting

parameter, γ, related directly to fracture intensity, from a quantitative analysis of only

the PP reflected data, independent of the S-wave measurements required to determine

the shear-wave splitting parameter more conventionally.
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4.1 Background

For an isolated interface, the Zoeppritz equations Aki and Richards (1980) predict that

the reflected amplitude changes as a function of angle of incidence. This is the basis of

AVO (Amplitude Variations with Offset) or more properly AVA (Amplitude Variations

with Angle). The Zoeppritz equations are derived for the idealized situation of two

half-spaces in welded contact. In Aki and Richards (1980) it is assumed that these half-

spaces are elastic and, in particular, isotropic. Daley and Hron (1977), Thomson (1988),

Rüger (1997), and Tsvankin (2001) derived the AVO relationships for transverse isotropy

anisotropy and beyond. For isotropic media, AVO inversion is a well established seismic

exploration methodology to predict the earth’s elastic parameters and thus rock and fluid

properties. Among the many researcher who contributed to this topic, I like to mention

Smith and Gidlow (1987); Lortzer and Berkhout (1993); Jin et al. (2000); Margrave et al.

(2001); Downton (2005).

In a fracture-detection study, the ultimate goal of using an AVO inversion is to obtain

information about the direction of fracture orientation and the magnitude of fracture in-

tensity from 3D seismic data. Open natural fractures may hold fluid and can provide

pathways for hydrocarbon flow. Detailed information about fracture intensity and ori-

entation can help optimizing the drilling at sweet spots (Zheng, 2006). As previously

mentioned in Chapter 1, depending on the stress regime that causes fracturing, the frac-

ture orientation (however random) has a dominant direction confirmed by geological field

measurements (Nelson, 1985).

It is assumed that a medium with a single set of natural vertical fractures can be

described as an HTI medium, meaning that the direction of the dominant fracture face

is in the direction of the isotropic plane of the HTI model. The azimuthal dependence

of P- and S-wave stacking velocities and reflection amplitudes has been used to extract
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information related to the fracture intensity and orientation. Shear-wave splitting due to

fractures has been historically used to detect fracture orientation (from the direction of

the fast S-wave), while the shear-wave splitting parameter, γ, has been determined from

an analysis of time delays of split shear waves (Crampin, 1981). Using P-wave NMO

velocity variation with azimuth (VVAZ), fracture orientation is considered to be in the

direction of the fast P-wave. Some indicator of fracture intensity results from estimating

the Thomsen δ parameter (e.g., Tsvankin, 2001; Grechka and Tsvankin, 1998). Zheng and

Wang (2005) used a target-oriented VVAZ approach, in which the differential residual

NMO travel times between the top and the base of a fractured layer is used to invert

for fracture orientation and the δ parameter. Quantitative amplitude analysis is also

used for fracture detection, as in amplitude variation with angle and azimuth (AVAZ)

method (Gray et al., 2002; Hunt et al., 2010). Jenner (2002) used the small-incident-angle

approximation of the Rüger (1997) equation, which is a plane-wave approximation of the

PP reflection coefficient for a boundary between two HTI layers, to directly invert for

fracture orientation and the anisotropic gradient (a combination of δ and γ parameters)

from azimuthal amplitude data.

4.2 Rüger’s equation

Rüger’s equation relates the AVO response to the anisotropy parameters, and provides

physical insight into the reflection amplitudes. It is a plane-wave approximation for the

PP reflection coefficient at a boundary between two HTI media with the same symmetry

axis direction, Rüger (1997). Rüger’s equation for HTI media with the symmetry axis
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along the azimuth ϕ0 is

RHTI
PP (θ, ϕ) ∼=

1

2

∆Z

Z̄
(4.1)

+
1

2

{
∆α

ᾱ
−
(

2β̄

ᾱ

)2
∆G

Ḡ
+

[
∆δ(V ) + 2

(
2β̄

ᾱ

)2

∆γ

]
cos2(ϕ− ϕ0)

}
sin2θ

+
1

2

{
∆α

ᾱ
+ ∆ε(V )cos4(ϕ− ϕ0) + ∆δ(V )sin2(ϕ− ϕ0)cos2(ϕ− ϕ0)

}
sin2θtan2θ.

where θ is the incident angle (with respect to the vertical direction), ϕ is the source-

receiver azimuth, α is the vertical P-wave velocity (fast P velocity), Z = ρα is the P-wave

impedance, β is the vertical S-wave velocity (S‖-wave, fast S velocity), G = ρβ2 is the

shear modulus, and ∆ denotes the difference in the elastic properties across the boundary.

The average values of elastic properties of the two layers is denoted by the terms with

overscores. (ε(V ), δ(V ), γ) are the Thomsen-style anisotropy parameters for HTI media,

as defined by Rüger (1997) (Table 2.5). As previously mentioned in Chapter 2, ε(V )

describes the difference between vertical and horizontal P-wave velocities, γ describes

the difference between fast and slow S-wave velocities, and δ(V ) describes the departure

from isotropy for near vertical propagation.

Reformulating Rüger’s equation as a function of P- and S-wave velocities using

∆Z

Z̄
=

∆α

ᾱ
+

∆ρ

ρ̄
,

∆G

Ḡ
= 2

∆β

β̄
+

∆ρ

ρ̄
, (4.2)
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the results is the following which has a form analogous to equation 4.1,

RHTI
PP (θ, ϕ) ∼=

(
1

2cos2θ

)
∆α

ᾱ
−
(

4β2

α2
sin2θ

)
∆β

β̄
(4.3)

+

(
1

2
− 2β2

α2
sin2θ

)
∆ρ

ρ̄

+

(
1

2
cos4 (ϕ− ϕ0) sin2 θ tan2 θ

)
∆ε(V )

+

(
1

2
cos2 (ϕ− ϕ0) sin2 θ +

1

2
cos2 (ϕ− ϕ0) sin2 (ϕ− ϕ0) sin2 θ tan2 θ

)
∆δ(V )

+

(
4β2

α2
cos2 (ϕ− ϕ0) sin2 θ

)
∆γ.

The first three terms are Aki and Richards (1980) approximation for the PP reflection

coefficient at a boundary between two isotropic media. The second three azimuthally

dependent terms indicate the influence of each of the anisotropy parameters on the PP

reflection coefficient approximation. In this thesis, the AVAZ inversion for fracture in-

tensity is based on equation 4.3.
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Figure 4.1: Function sin2 θ tan2 θ plotted versus the angle in degrees.

4.3 Jenner’s method

Considering only small incident angle data (e.g., less than 40◦), for which the value of

the sin2 θ tan2 θ term is very small and can be neglected (Figure 4.1), equation 4.1 can
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then be written as:

RHTI
PP (θ, ϕ) ∼= I +

(
G1 +G2 cos2(ϕ− ϕ0)

)
sin2 θ, (4.4)

where

I =
1

2

∆Z

Z̄
, (4.5)

G1 =
1

2

(
∆α

ᾱ
−
(

2β̄

ᾱ

)2
∆G

Ḡ

)
, (4.6)

G2 =
1

2

(
∆δ(V ) + 2

(
2β̄

ᾱ

)2

∆γ

)
. (4.7)

Equation 4.4 describes the behavior of RHTI
PP at small incident angles as a function of the

AVO intercept (I) and gradient 1. The gradient term

Q = G1 +G2 cos2(ϕ− ϕ0), (4.8)

is composed of the azimuthally invariant term G1, and an anisotropic term G2, and is

non-linear in the three unknowns (G1, G2, ϕ0). The goal is to apply a linear inversion of

the PP amplitude data for these three unknowns. The following describes how to bypass

this non-linearity and apply a linear inversion.

Using the identity sin(ϕ − ϕ0)
2 + cos(ϕ − ϕ0)

2 = 1, the gradient term, equation 4.8

becomes

Q = (G1 +G2)cos2(ϕ− ϕ0) +G1sin
2(ϕ− ϕ0). (4.9)

For any particular incident angle, if the AVO gradient does not change sign azimuthally,

the gradient versus azimuth vector delineates a curve that closely resembles an ellipse

(Rüger, 1997) with the semi-axes aligned with the symmetry plane directions of the

fracture system (Figure 4.2). Taking (y1, y2) to be a coordinate system aligned with the

1Conventinally, the coefficient of the sin2 θ term is called the AVO gradient.
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fracture system, every point of the gradient satisfies

y1 = r cos(ϕ− ϕ0), (4.10)

y2 = r sin(ϕ− ϕ0),

where r is the vector magnitude. Then, the gradient term can be written as:

Q =
1

r

(
(G1 +G2)y

2
1 +G1y

2
2

)
. (4.11)

Figure 4.2: Reference coordinate system. (x1, x2) is the acquisition coordinate system,
and (y1, y2) is the coordinate system aligned with the fracture system. ϕ is the source-re-
ceiver azimuth, and ϕ0 is the fracture orientation azimuth.

By expanding the trigonometric terms of equation 4.9, the gradient term can be

written as

Q = W11 cos2 ϕ+ 2W12 cosϕ sinϕ+W22 sin2 ϕ, (4.12)

where the Wij terms are functions of (G1, G2, ϕ0). Using this form hides the non-linearity

with respect to the fracture orientation in the Wij coefficients. The acquisition coordinate
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system, (x1, x2), can be thought of as a ϕ0 rotated version of the (y1, y2) coordinate system

(Figure 4.2). In the acquisition coordinate system, every point of the gradient follows

x1 = r cosϕ, (4.13)

x2 = r sinϕ.

If one writes the gradient ellipse in equation 4.12 in the acquisition coordinate system,

the ellipse equation inherits a nonlinear term x1x2, of the form

Q =
1

r

(
W11x

2
1 + 2W12x1x2 +W22x

2
2

)
. (4.14)

Equation 4.14 is a quadratic form, and can be written in matrix form,

1

r

[
x1 x2

]W11 W12

W12 W22


x1
x2

 =
1

r

(
XTWX

)
. (4.15)

The matrix W is symmetric, and therefore orthogonality diagonalizable (e.g., Lax, 1997).

The eigenvalues of the matrix W are

λ1,2 = 0.5

[
(W11 +W22)±

√
(W11 −W22)2 + 4W 2

12

]
. (4.16)

Denoting the eigenvectors of the matrix W as y′1 and y′2, equation 4.14 can be rewritten

in the form;

Q =
1

r

(
λ1y

′
1
2

+ λ2y
′
2
2
)
. (4.17)

Comparing coefficients from equations 4.17 and 4.11, the eigenvectors of y′1 and y′2 can

be considered as the unit vectors along the ellipse’s semi-major and semi-minor axes

(Figure 4.2); one also obtains: G1 +G2 = λ1 and G1 = λ2, hence:

G1 = 0.5

(
W11 +W22 −

√
(W11 −W22)

2 + 4W 2
12

)
,

G2 =

√
(W11 −W22)

2 + 4W 2
12. (4.18)
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From the eigenvalue problem, it is known that the orthogonal rotation matrix, Rϕ0 ,

relates the two coordinate systems as followsy1
y2

 = Rϕ0

x1
x2

 , (4.19)

where the rotation angle (ϕ0) obeys (e.g., Lax, 1997)

tan 2ϕ0 =
2W12

W11 −W22

. (4.20)

This results in two values for ϕ0 where ϕ
(1)
0 = π/2+ϕ

(2)
0 . Using the trigonometric identity

tan 2ϕ0 =
2 tanϕ0

1− tan2 ϕ0
, one can obtain the two values of ϕ0 as:

tanϕ0 =
W11 −W22 ±

√
(W11 −W22)

2 + 4W 2
12

2W12

. (4.21)

Equation 4.21 is used by Jenner (2002) without rigorous derivation, and is equivalent

to the equation introduced by Grechka and Tsvankin (1998) to determine the fracture

orientation from the azimuthal variation of the NMO velocity.

4.4 AVAZ inversion for fracture orientation

Substituting equation 4.12 into equation 4.4, the small-incident-angle approximation to

the PP reflection coefficient becomes

RHTI
PP = I +

(
W11 cos2 ϕ+ 2W12 cosϕ sinϕ+W22 sin2 ϕ

)
sin2 θ. (4.22)

Incorporating the corrected pre-stack PP reflection amplitudes from different azimuths

and small incident angles as the input data (Dnm), equation 4.22 can be used to express
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a linear system of ”nm” equations in three unknowns:

cos2ϕ1sin
2θ11 2 cosϕ1 sinϕ1sin

2θ11 sin2ϕ1sin
2θ11

...
...

...

cos2ϕ1sin
2θn1 2 cosϕ1 sinϕ1sin

2θn1 sin2ϕ1sin
2θn1

...
...

...

...
...

...

cos2ϕmsin2θ1m 2 cosϕm sinϕmsin2θ1m sin2ϕmsin2θ1m
...

...
...

cos2ϕmsin2θnm 2 cosϕm sinϕmsin2θ1m sin2ϕmsin2θ1m


(nm×3)


W11

W12

W22


(3×1)

=



R11 − I
...

Rn1 − I
...

...

R1m − I
...

Rnm − I


(nm×1)

(4.23)

where m is the number of azimuths, and n is the number of incident angles at each

azimuth. The AVO intercept, I, can be calculated using a smooth vertical P-wave velocity

and density. The matrix form of equation 4.23 can be written as,

Gnm×3X3×1 = Dnm×1. (4.24)

The unknown vector X = (W11,W12,W22) can be obtained from a damped least-squares

inversion, as Xest = (GTG + µI)−1GTD, where µ is the damping factor2. Here, Xest

is obtained by using singular value decomposition, SVD, of the coefficient matrix G

(Appendix H). After the AVAZ inversion, knowing Wij, equation 4.21 is used to estimate

the fracture orientation.

4.5 AVAZ inversion for fracture intensity

Assuming the fracture orientation, ϕ0, as known, the PP reflection coefficient in equa-

tion 4.3 can be considered as a function of six parameters (∆α
ᾱ ,

∆β
β̄

,
∆ρ
ρ̄ ,∆ε(V ),∆δ(V ),∆γ).

2I is the 6× 6 Identity matrix.
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Equation 4.3 can be written as

RHTI
PP = A

∆α

ᾱ
+B

∆β

β̄
+ C

∆ρ

ρ̄
+ D ∆ε(V ) + E∆δ(V ) + F∆γ, (4.25)

where A, B, C, D, E, and F are defined as in equation 4.3. These coefficients are

functions of θ, the azimuth, and the velocity model, as

A =

(
1

2cos2θ

)
, (4.26)

B = −
(

4β2

α2
sin2θ

)
,

C =

(
1

2
− 2β2

α2
sin2θ

)
,

D =

(
1

2
cos4 (ϕ− ϕ0) sin2 θ tan2 θ

)
,

E =

(
1

2
cos2 (ϕ− ϕ0) sin2 θ +

1

2
cos2 (ϕ− ϕ0) sin2 (ϕ− ϕ0) sin2 θ tan2 θ

)
,

F =

(
4β2

α2
cos2 (ϕ− ϕ0) sin2 θ

)
.

Incorporating the corrected pre-stack PP amplitudes from different azimuths and

incident angles (e.g., wide-angle up to (5◦−7◦) before the critical angle) as the input data

in Dmn below, equation 4.25 can be used to express a linear system of ”mn” equations

in six unknowns:



A1ϕ1 B1ϕ1 C1ϕ1 D1ϕ1 E1ϕ1 F1ϕ1

...
...

...
...

...
...

Anϕ1 Bnϕ1 Cnϕ1 Dnϕ1 Enϕ1 Fnϕ1

...
...

...
...

...
...

...
...

...
...

...
...

A1ϕm B1ϕm C1ϕm D1ϕm E1ϕm F1ϕm

...
...

...
...

...
...

Anϕm Bnϕm Cnϕm Dnϕm Enϕm Fnϕm


(nm×6)



∆α/α

∆β/β

∆ρ/ρ

∆ε(V )

∆δ(V )

∆γ


(6×1)

=



R11

...

Rn1
...

...

R1m

...

Rnm


(nm×1)

(4.27)
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where m is the number of azimuths, and n is the number of offset at each azimuth.

Equation 4.27 in matrix form can be written as,

Gnm×6X6×1 = Dnm×1. (4.28)

The unknown vector X can be estimated from a damped least-squares inversion,

Xest = (GTG+ µI)−1GTD, (4.29)

where µ is the damping factor. Again, the estimates of the six-parameter vector Xest are

obtained by using singular value decomposition (Appendix H).

4.6 The application of the AVAZ inversions

The proposed AVAZ inversions for fracture orientation and intensity were tested on the

previously described physical model reflection data. The corrected reflection amplitudes

from the top of the simulated fractured layer, from nine long-offset common midpoint

(CMP) gathers acquired along azimuths of 0◦, 14◦, 27◦, 37◦, 45◦, 53◦, 63◦, 76◦, and 90◦,

were input to the AVAZ inversions.

At each azimuth for a given offset and depth of the fractured layer, the primary ray-

path was traced to determine θ. Using a smooth isotropic background velocity model,

a PP ray-tracing algorithm for horizontal isotropic layering was used to obtain θ, and

then to calculate the coefficients A, B, C, D, E, and F (equation 4.26). Estimates of the

six parameters (∆α
ᾱ ,

∆β
β̄

,
∆ρ
ρ̄ ,∆ε(V ),∆δ(V ),∆γ) are then calculated by solving the linear

system in equation 4.27. 1% of the maximum singular value of the matrix G is used as

the damping factor.

In the analytical derivation of the plane-wave isotropic Aki and Richards (1980) ap-

proximation, and its anisotropic extension by Rüger (1997), ”θ” is the incident angle.

Shuey (1985) showed that using the average angle (average of the incident and trans-

mission angles across the boundary) for ”θ” results in a better approximation, verified
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this by numerical examples. Since the Shuey (1985) work , the average angle has been

regularly used in AVO approximations. Hence, the average angle is used for θ in this

thesis.

When testing any AVO inversion technique, in particular AVAZ inversion, the in-

fluence of the accuracy of the background velocity model has always been a question,

particulary in a linear AVO inversion, where the coefficients are calculated from the

background velocity. Therefore, the influence of the background velocity on AVAZ inver-

sions should be examined.

The AVAZ inversion for fracture orientation seeks the azimuths of the maximum and

minimum of the gradient, which defines the two eigenvectors (equation 4.17). Then, the

rotation that matches the acquisition coordinate system to the eigenvectors provides the

fracture orientation. Hence, to obtain an accurate estimate of the fracture orientation,

it is important not to include any erroneous azimuthal variation in the gradient. The

concerns over false amplitude variation also apply in the AVAZ inversion for the six pa-

rameters. For the physical model data used in this thesis, the very near offset anomaly,

previously discussed in section 3.5.1, appears as an azimuthal variant and can be consid-

ered to be a false amplitude variation. Therefore, its effect should be considered before

incorporating the near-offset data in any AVAZ inversion.

It is essential to both AVAZ inversions to include large incident angle data with a clear

azimuthal variation. As Rüger’s plane-wave approximation is not valid near the critical

angle, and since for the plexiglas-phenolic reflector, the azimuthal amplitude variations

appear only at large incident angles, then the question of how large the maximum incident

angle data should be in the inversions needs to be considered. Observing azimuthal

variations only at large incident angles might be valid for many datasets in the weak

anisotropy category, and is not unique to the material used in this thesis.

For the AVAZ inversions discussed here, the effect of the following three factors on
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the inversion results have been investigated:

• the very near offset anomaly in the data,

• accuracy of the background velocity,

• maximum incorporated incident angle of the input data.

The accuracy of the AVAZ inversions with some possible scenarios highlighting these

three factors is examined next.

4.7 Estimated orientation of the simulated fractured layer

While acquiring data from the physical model above, the symmetry of the simulated

fractured medium was known, and the acquisition coordinates were aligned with the

simulated fracture system. Next, the acquisition coordinate system was rotated to ar-

bitrary directions, and the proposed AVAZ inversion was used to estimate the fracture

orientation. In the inversion process, wide-angle data up to 46◦, and a highly smoothed

background velocity (Figure 4.3), were used. Table 4.1 shows the estimated fracture ori-

entations. Having a simulated fractured medium with known symmetry directions, the

AVAZ inversion estimates indicate the capability of the method to successfully estimate

the fracture orientation.

Table 4.1: Estimated fracture orientation from the AVAZ inversion.

True ϕ0 0◦ 10◦ 20◦ 40◦ 50◦ 60◦ 80◦

Estimated ϕ0 0.8◦ 10.8◦ 20.8◦ 40.8◦ 50.8◦ 60.8◦ 80.8◦

90.8◦ 100.8◦ 110.8◦ 130.8◦ 140.8◦ 150.8◦ 170.8◦

As the method essentially calculates the direction of the eigenvectors of the gradient

ellipse, no matter the orientation of the acquisition coordinate system with respect to

the fracture system, the error of the estimated orientation depends on the input data
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only. Hence, for all rotations the constant error of 0.8◦ was obtained. The method was

successful in predicting the fracture orientation; however, there is an ambiguity in the

estimation as the method predicts both the fracture orientation and the direction normal

to it (symmetry axis).

4.7.1 Influence of the near offset data

The effect of the very near-offset anomaly which appears at incident angles less than 10◦,

on the AVAZ inversion result, have been investigated. As there is almost no azimuthal

variation for incident angles up to 37◦, the influence of the small incident angle data on

the AVAZ inversion results has also been investigated.

For the maximum incorporated incident angle of 46◦, and using a highly smoothed

background velocity, Table 4.2 shows the effect of small-incident-angle data on the esti-

mated orientation. Table 4.2 suggests the following points:

• The very near offset anomaly has almost no effect on the orientation estimates from

AVAZ inversion.

• Omitting data for angles less than 30◦ has almost no effect on the inversion results,

as there is hardly any azimuthal variation observable up to this point. However,

omitting more data, up to 37◦ for instance, appears to add small errors to the

estimated orientation.

The result of this test for the AVAZ inversion for the orientation, suggests using whole

dataset with no omissions at the near offsets.

4.7.2 Influence of the background velocity model

The influence of the background velocity on the fracture orientation estimate from the

AVAZ inversion has also been investigated. The true velocity model is being smoothed

using a polynomial fit for various order of the polynomials. Figure 4.3 shows four choices
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Table 4.2: The effect of the small-incident-angle data on the estimated orientation.

data used error of ϕ0

0 ≤ θ ≤ 46 0.81◦

3 ≤ θ ≤ 46 0.82◦

6 ≤ θ ≤ 46 0.96◦

9 ≤ θ ≤ 46 1.24◦

12 ≤ θ ≤ 46 0.91◦

15 ≤ θ ≤ 46 0.65◦

20 ≤ θ ≤ 46 0.01◦

30 ≤ θ ≤ 46 −1.3◦

37 ≤ θ ≤ 46 −6.2◦
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Figure 4.3: Four differently smoothed background velocity models.

89



for the background velocity model; the choice (b) is the highly smoothed velocity model,

shifted down by 100m. Table 4.3 shows the accuracy of the estimated orientation for

these background velocities, when all data up to a maximum incident angle of 46◦ are

used. Table 4.3 suggests the following points:

• The inversion for orientation performs very stably with different smoothed back-

ground velocities. Smoothing the background velocity has almost no effect on the

estimated orientation .

• The highly smoothed velocity model, although it hides many details of the model,

is the best choice. This is a realistic choice, similar to a real data situation where

details might not be available.

Table 4.3: The effect of the background velocity model on the estimated orientation.

background velocity error of ϕ0

true velocity 0.83◦

mildly smoothed velocity 0.83◦

moderately smoothed velocity 0.83◦

highly smoothed velocity 0.81◦

highly smoothed + shifted velocity 0.81◦

4.7.3 Influence of the maximum incorporated incident angle

The effect of the maximum incorporated incident angle on the orientation estimate from

the AVAZ inversion has also been investigated. Table 4.4 shows the orientation estimate

error when all available small-incident-angle data and the highly smoothed background

velocity are used. Table 4.4 indicates the following points:

• Incorporating only small-incident-angle data (less than 36◦), where the azimuthal

amplitude variations are negligible, generates orientation estimates with large er-

rors.
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• Large incident angle data, where a clear azimuthal variation is observable, are

required for an accurate estimate of the fracture orientation.

• Very large incident angle data, close to the critical angle, should be avoided. How-

ever, they still produce less error than using small-incident-angle data only.

Table 4.4: The effect of the maximum incident angle on the estimated orientation.

max incident angle error of ϕ0

36◦ 21◦

38◦ 18◦

40◦ 18◦

42◦ 13◦

44◦ 6◦

45◦ 4◦

46◦ 0.8◦

47◦ −1.9◦

48◦ −4.6◦

50◦ −7.37◦

4.8 Estimated anisotropy parameters of the simulated fractured medium

Once the fracture orientation for our simulated fractured medium is known, the proposed

simultaneous six-parameter AVAZ inversion, for (∆α/α,∆β/β,∆ρ/ρ, ε(V ), δ(V ), γ), was

applied to the physical model data. The main goal is to obtain accurate estimates of the

three anisotropy parameters (ε(V ), δ(V ), γ), where the γ-parameter is directly related to

fracture intensity. The estimates of the six parameters from the AVAZ inversion of all

azimuth data, using the incident angle data of (9◦ ≤ θ ≤ 46◦) and the highly smoothed

background velocity model, are shown in Figure 4.4. The errors have been obtained by

comparing the results to the ones previously obtained for the simulated fractured layer

by traveltime inversion in Chapter 2. The AVAZ inversion was successful in obtaining

favorable results for all six parameters with a maximum error of 20% for ε(V ).
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Figure 4.4: AVAZ inversion for the six parameters, using azimuth data with incident
angles from 9◦ to 46◦, and the highly smoothed background velocity.

4.8.1 Influence of the near offset data

The sensitivity of the six-parameter AVAZ inversion to the mentioned three different

factors is investigated next, in a manner similar to that for the AVAZ inversion for

orientation. The effect of the very near-offset anomaly, which varies with azimuth, has

been investigated. For the maximum incorporated incident angle of 46◦, and using the

highly smoothed background velocity, Figure 4.5 shows the influence of small incident

angle data on the estimates of the six parameters. Figure 4.5 indicates the following

points:

• Unlike in the AVAZ inversion for orientation, the very near-offset anomaly imposes

erroneous azimuthal effects and changes the estimates noticeably. This applies

especially to the first three terms.

• Eliminating incident angles smaller than 9◦ results in better estimates. This differs

from the AVAZ inversion for orientation where all incident angle data could be

included.

• The small incident angle data have a rather large influence on the estimates of the

first three (isotropy) terms, and a small effect on the estimates of the last three

(anisotropy) terms.
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• It is better to include the incident angles down to 9◦ rather than eliminating these

azimuthally invariant data; inversion of data from incident angles larger than 15◦

produces larger error especially for the isotropic terms. This can be predicted from

theory (equation 4.3); the normal incident angle data give the estimate of ∆α/α+

∆ρ/ρ.

4.8.2 Influence of the background velocity model

Figure 4.6 demonstrates the influence of the background velocity model on the six-

parameter AVAZ inversion, when the incident angle data between 9◦ and 46◦ are used.

It indicates the following points:

• The background velocity has a stronger effect on the estimates of the six parameters,

compared to the AVAZ inversion for orientation. Nevertheless, the background

velocity does not effect the inversion results strongly.

• If a representative background velocity is chosen, the six-parameter AVAZ inversion

is capable of producing good results.

It is unexpected that the six-parameter AVAZ does not produce better estimates using

the true velocity model. This might reflect the fact that Rüger’s equation is approximate

and not exact. The true velocity model here is a large-contrast example. Therefore,

it is expected that Rüger’s equation also has rather large errors for this large-contrast

example, similar to the Aki and Richards (1980) approximation as reported in (Innanen,

2012). Another thought might be that the difficulties in the ray-tracing algorithm for

large-contrast velocity models causes the results to be less perfect for the true velocity

model.
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Figure 4.5: The effect of small-incident angle data on the six-parameter AVAZ inversion.
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Figure 4.6: The six-parameter AVAZ inversion results for different background velocities.
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4.8.3 Influence of the maximum incorporated incident angle

Figure 4.7 shows the six-parameter inversion estimate errors for different maximum incor-

porated incident angles, when the highly smoothed background velocity and a minimum

incident angle of 9◦ are used. Figure 4.7 indicates the following points:

• For the proper choice of the maximum incorporated incident angle (between 44◦ and

48◦), the linear AVAZ inversion results in reasonable estimates for all six parameters.

• The six-parameter AVAZ inversion using incident angles of less than 39◦ produces

good estimates for the isotropy terms. This indicates a higher influence of the small-

incident-angle data on the estimates of the isotropy terms. The small-angle data do

not produce good estimates for the three anisotropy parameters, since the data do

not exhibit any noticeable azimuthal amplitude variations at this point. Note that

estimates from input data between 9◦ and 37◦ produce large errors for the isotropy

terms due to the a small amplitude anomaly between 35◦ and 37◦ which is clearly

observable in Figure 3.20b-d.

• Incorporating large incident angles (e.g., 45◦) within 5◦ − 8◦ of the critical angle

can result in reasonable estimates of all six parameters.

• Incorporating very large incident angles, closer to the critical angle, does not result

in better estimates of the anisotropy terms. The overall error for all six parame-

ters are larger when incorporating incident angles close to the critical angle, since

Rüger’s linear equation is not valid in this region.

Deciding on the proper choice of the maximum incorporated angle, especially as a rec-

ommendation for an application to field data, the model resolution matrix (Appendix H)

of the coefficient matrix G, for various maximum incident angles, has been examined.

The model resolution matrix defines how well the estimated values resembles the true

solution. In the case of a perfect solution, the resolution matrix should be a 6× 6 iden-
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Figure 4.7: Six-parameter AVAZ inversion for various maximum incorporated incident
angles. The estimates are compared to the values previously estimated from traveltime
inversion.
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Figure 4.8: The model resolution matrix of the six-parameter AVAZ inversion for various
maximum incorporated incident angles.
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tity matrix, which means each parameter is estimated independently from the others.

Figure 4.8 shows that the model resolution matrix, for the proper choice of the max-

imum incident angle and larger angles, is the perfect identity matrix. For the smaller

maximum incident angles, the non-unit diagonal elements of the model resolution ma-

trix imply that the estimates are linear combinations of the true values. By gradually

increasing the maximum incident angle of the input data for the six-parameter AVAZ

inversion, and searching for an identity model resolution matrix, the proper maximum

incident angle can be detected once the identity model resolution matrix is obtained.

4.9 Limited azimuth data in the six-parameter AVAZ inversion

Theoretically, using input data from even one single azimuth should be able to produce

estimates of the six parameters. However, the AVAZ inversion, with several input azimuth

data, is expected to give superior results compared to an amplitude inversion using single

azimuth input data, because of the statistical leverage. Least-squares fitting of more input

data produces a better fitted curve than using only a few input data points. Figure 4.9

shows the six-parameter AVAZ inversion with the single azimuth input data. Comparison

of Figure 4.4 to Figure 4.9 shows that, by using all azimuth data, the AVAZ method gives

markedly superior estimates of all six parameters.

The superior behavior of the six-parameter AVAZ inversion, when using all azimuth

data, can also be observed by examining the model resolution matrix. The model reso-

lution matrixes of the six-parameter AVAZ inversion, by using all the azimuth data and

single azimuth data as input, are given in Figure 4.10. The six-parameter AVAZ inver-

sion is applied using the highly smooth background velocity, and incident angles between

9◦ and 46◦, for all cases. The singular values of the six-parameter AVAZ inversion, for

mentioned input data, are listed in Table 4.5. The six-parameter AVAZ inversion, using
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the single azimuth input data, is unstable resulting in three zero singular values.
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Figure 4.9: The six-parameter AVAZ inversion of single azimuth input data.

To further investigate on how much azimuth data are actually needed in the AVAZ

inversion, the following two questions are answered:

• Are all azimuth data required for an accurate estimation of all six parameters?

• Do certain azimuths have more influence on the estimates of some of the six pa-

rameters?

To answer these two questions, azimuth data are divided into three regions:
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Figure 4.10: The model resolution matrix from the six-parameter AVAZ inversion using
different azimuth input data.

Table 4.5: The singular values of the six-parameter AVAZ inversion with different input
data.

s1 s2 s3 s4 s5 s6

all azimuths 27.4 6.0 3.3 0.6 0.4 0.1
azimuth 0◦ 10.1 2.4 0.3 0.0 0.0 0.0
azimuth 45◦ 8.1 1.7 0.1 0.0 0.0 0.0
azimuth 90◦ 9.5 1.9 0.1 0.0 0.0 0.0

101



• Near sector, which includes azimuths of 0◦, 14◦, and 27◦.

• Mid sector, which includes azimuths of 37◦, 45◦, and 53◦.

• Far sector, which includes azimuths of 63◦, 76◦, and 90◦.

Figure 4.11 shows the six-parameter AVAZ inversion of each sector, using the highly

smooth background velocity and incident angles between 9◦ and 46◦. It shows the fol-

lowing points:

• The far sector has more influence on the isotropy terms’ estimates. This is expected

as the 90◦ azimuth is the direction of the isotropic plane of the simulated fractured

layer.

• The near sector produces smaller errors for the anisotropy estimates, but is still

inferior to the case when all azimuths are input in the inversion. This indicates the

sensitivity of the AVAZ inversion to estimate anisotropy parameters. A widened

range of azimuth data provides a more stable inversion.

• The mid sector produces intermediate results in terms of accuracy compared to the

near and far sectors.

Figure 4.12 shows the six-parameter AVAZ inversion results using three sets of az-

imuth data only (one from each sector), using the highly smoothed background velocity

and incident angles between 9◦ and 46◦. For a majority of azimuth choices, the AVAZ

inversion of the reduced dataset produces results comparable to the case of using all

azimuth data. Figure 4.13 shows model resolution matrices for the AVAZ inversion of

limited azimuth data; for a majority of the examples, a close approximation to the iden-

tity model resolution matrix is obtained. Apparently, depending on the quality of the

data used, some choices of the limited input data are sufficient to produce good esti-

mates. However, it is not certain that all choices of limited azimuth data are capable

of producing good estimates. It seems to be safest to use all azimuth data for reliable
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inversion results.
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Figure 4.11: Accuracy of six-parameter AVAZ inversion using the near, mid, and far
sector azimuth data.

4.10 Limited azimuth data in AVAZ inversion for fracture orientation

In the AVAZ inversion for orientation, some investigations were undertaken to determine

whether all azimuth data are required for an accurate orientation. Using input data from

a single azimuth, or from one sector only, and expecting to obtain the accurate estimate
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Figure 4.12: The six-parameter AVAZ inversion using the three azimuth data only.
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Figure 4.13: The model resolution matrix for the six-parameter AVAZ inversion using
three azimuth data only.
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for the orientation might not be rational. As previously mentioned, the AVAZ inversion

for orientation essentially fits an ellipse to the AVO gradient. Using input data from one

sector only, the AVAZ inversion estimates the extreme values of the gradient within that

sector and is unable to predict the global minimum and maximum directions. Examin-

ing the influence of the input limited azimuth data on the AVAZ inversion for fracture

orientation, at least three azimuth lines, one from each sector, should be provided.

Table 4.6 shows the orientation estimate errors for an AVAZ inversion using three

sets of azimuth data only. The highly smoothed background velocity, and data with an

incident angle of less than 46◦, were used in this test. The inversion of limited azimuth

data estimates the orientation to within 6◦, except for one particular set (14◦, 45◦, 63◦)

which has a high error of −16◦. The inversion of this particular set of data was repeated

using data with the small-incident-angle data eliminated, and it is found that the error

is not an effect of the near-offset anomaly. The repetitions were based on data with

incident angles of 9◦ ≤ θ ≤ 46◦, 20◦ ≤ θ ≤ 46◦, and 25◦ ≤ θ ≤ 46◦. The orientation

estimates had errors of −15◦, −14.3◦, and −14◦, respectively. The poor estimate of the

orientation, for this particular set of data, is most probably due to the presence of noise

in the input data. It can be concluded that it is safest to use all azimuth data for a

reliable orientation estimate, similar to the case of the six-parameter AVAZ inversion.

For the limited azimuth data, the AVAZ inversion for orientation results, (Table 4.6)

compared to the six-parameter AVAZ inversion (Figure 4.12) results do not show a one-

to-one correlation. Some choice of azimuths produced small errors for the six-parameter

estimates but not a small error for the orientation estimate. However, the AVAZ in-

version for orientation (Table 4.6) results do show a clear a one-to-one correlation to

the model resolution matrix results (Figure 4.13. This most probably indicates that the

six-parameter estimates from the traveltime inversion of Chapter 2 are not perfect.
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Table 4.6: The AVAZ inversion for orientation using data for three selected azimuths
only.

limited azimuth data error of ϕ0

azimuths (0◦, 37◦, 63◦) 6.4◦

azimuths (0◦, 45◦, 90◦) −0.7◦

azimuths (0◦, 53◦, 76◦) −0.3◦

azimuths (27◦, 53◦, 76◦) 4.0◦

azimuths (14◦, 37◦, 63◦) 3.7◦

azimuths (14◦, 45◦, 63◦) −16.4◦

azimuths (14◦, 45◦, 76◦) −2.8◦

azimuths (27◦, 53◦, 90◦) −1.0◦

4.11 Summary

This chapter presented the pre-stack linear amplitude inversion procedures to extract

the anisotropy parameters (ε(V ), δ(V ), γ), and fracture orientation from the azimuthal

variations in the PP reflection amplitudes. Since the shear-wave splitting factor, γ, is

directly related to fracture intensity, the presented analysis shows that it is possible to

relate the difference in P-wave azimuthal AVO variations directly to the fracture intensity

of the simulated fracture layer.

The presented AVAZ inversion is based on the reflection coefficient approximations

by Rüger (1997). The accurate AVAZ inversion estimates demonstrate that Rüger’s

equation is suitable for quantitative amplitude analysis of anisotropic targets, and can

be employed in numerical inversion algorithms.

The analysis found that the maximum incorporated incident angle is the most impor-

tant factor controlling the accuracy of the proposed linear AVAZ inversions. Applying

the linear AVAZ inversions, with various maximum incorporated incident angles, demon-

strated that the accurate inversion for the anisotropy parameters and fracture orientation

requires wide-angle data. However, incorporating very large offset data close to the crit-

ical angle should be avoided, since linear plane-wave Rüger’s approximation is not valid
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close to the critical angle. This result is based on comparing the estimated parameters to

values previously obtained by traveltime inversion (Chapter 2). The investigation on the

model resolution matrix of the AVAZ inversions, which defines how well the estimated

values resemble the true solution, suggests that the optimal maximum incorporated in-

cident angle is of the lower end of the range of angles which resulted in a nearly identity

resolution matrix. The model resolution matrix analysis can be used independently with-

out knowing the true values in advance. This indicates that the method outlined in this

study could be easily implemented for seismic field data.

A background velocity model is required to calculate the coefficient matrix of the

AVAZ inversions. In general, the effect of the background velocity model is a major con-

cern for reliable estimates from a linear AVO inversion. The present analysis shows that

a detailed background velocity model is not needed to obtain accurate estimations. This

is good news for the application of the proposed AVAZ inversions on seismic field data

for which a detailed velocity model is not usually available. The smoothed background

velocity had almost no effect on the orientation estimate from the AVAZ inversion. The

smoothed background velocity also did not largely effect the estimates of the six param-

eters. The highly smoothed background velocity produced even more accurate estimates

for the six parameters. This is consistent with the results of the isotropic linear AVO in-

version for P-impedance, S-impedance, and density (Figure 3.54 of Mahmoudian (2006)),

in which the AVO inversion is less sensitive to background velocity errors. The sensitivity

test shown here assumes horizontal layering, but the validation of the AVAZ inversions

is not restricted to horizontal layering.

Inquiring as to the need of a full coverage of 3D azimuth data for reliable linear

AVAZ inversions, the AVAZ inversions were applied to limited azimuth data. Estimates

based on AVAZ inversions of limited azimuth data might be as good as estimates using

all azimuth data, as long as data from all azimuth sectors are used. This statement
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certainly depends on the quality of the data used, as some choice of azimuths produced

large errors for the estimates, and a corresponding non-identity model resolution matrix.

It seems that, however, for accurate estimates of anisotropy parameters and the fracture

orientation, using input data from all azimuth sectors is the safest choice. Examples

given show that the far azimuth sector data have more influence on the isotropy terms’

estimates.

The AVAZ inversion determines the fracture orientation with an inherent ambiguity,

since it predicts both the directions of the isotropic plane and the symmetry axis of an HTI

medium. For unique determination of the fracture orientation some other information is

required, such as azimuthal NMO or shear-wave splitting. These effects are qualitatively

different from azimuthal AVO and can be combined effectively to invert for fracture

orientation.
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Chapter 5

Summary, future directions, and conclusions

5.1 Summary

As outlined in the Introduction, the main goal of this thesis was to determine whether

information regarding the anisotropy and directions of the symmetry planes of a fractured

medium can be extracted from an amplitude analysis. Physical seismic modeling was

used as the main tool in this investigation. Physical model seismic data have often

been used for traveltime analysis, yet incorporating them in an amplitude analysis was

limited due, in part, to the large size, highly-directional physical model transducers

employed as sources and receivers. Using numerical simulations, the effect of large size

transducers in measurements of the group and phase velocities, and on the amplitudes

of physical model reflection data were investigated. By the edge-to-edge correction,

the qP-velocity measurements are found to be less sensitive to transducer size. Phase

velocity measurements using the (τ, p) transform method are only possible if small point-

like transducers are available. For physical model reflection data, the highly-directional

effect of transducers on reflection amplitudes was mitigated using a directivity correction.

In Chapter 2 the construction and initial characterization of a simulated fractured

medium is discussed. A straightforward method to determine the elastic stiffness coeffi-

cients of the orthorhombic phenolic model from group velocity measurements is detailed.

The estimated stiffness coefficients are then shown to predict phase and group velocities

consistent with the measured velocities.

In Chapter 3 a careful acquisition of multi-offset, multi-azimuth, physical model re-

flection data over the simulated fractured layer are examined. In order to use the reflec-
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tion amplitudes for an amplitude analysis, a deterministic amplitude correction procedure

was applied to reflection amplitudes from two liquid-solid and solid-solid interfaces. The

corrected amplitudes agreed with the predicated amplitudes from the Zoeppritz equa-

tion, indicating that the correction procedure properly reduces the reflection amplitudes

to reflection coefficients required by an amplitude analysis.

In Chapter 4 the AVAZ inversions to extract the anisotropy parameters and frac-

ture orientation, based on the reflection coefficient approximations by Rüger (1997), is

detailed. The sensitivity analysis indicates the necessity of using large offset data for a

six-parameter AVAZ inversion. The estimated fracture orientation from AVAZ inversion

has an inherent ambiguity, as it predicts both the fracture orientation and the direction

normal to it.

5.2 Future directions

5.2.1 Further analysis on the 3D physical model data

Reflection amplitudes from only two interfaces, water-plexiglas1 and plexiglas1-phenolic

were investigated in this thesis. Since the construction of and acquisition of data from the

physical model took much longer than was anticipated, I was unable to do any further

investigations on this 3D dataset. Testing all aspects of acquisition and equipments,

more than 700 seismic gathers were acquired, while only a couple of them were actually

required in the analysis of this thesis. Now that these 3D physical model reflection data

is ready, and partially processed, some immediate analyses can be suggested:

• AVAZ analysis on the reflection amplitudes from the bottom of the simulated frac-

tured layer (phenolic-plexiglas2 interface) to estimate the anisotropy parameters

of the simulated fractured medium, similar to the AVAZ analysis applied to the

amplitudes from the top of the fractured layer. A joint azimuthal amplitude analy-
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sis of both reflectors (plexiglas1-phenolic and phenolic-plexiglas2 interfaces) is also

recommended.

• Azimuthal velocity variation analysis (traveltime analysis) of the NMO-velocity

of the simulated fractured layer. This VVAZ analysis can be used to estimate

the anisotropy parameters of the simulated fractured medium and may that be

compared to the values estimated in this thesis. This might help in developing the

existing VVAZ analysis applied by Tsvankin (1997).

• NMO and AVO data, which are qualitatively different, can be combined effectively

and inverted for anisotropy parameters.

• An independent analysis also can be provided by converted wave data. The PS

reflection from the plexiglas1-phenolic interface was clear and can be used. These

converted wave amplitudes can also be used in a joint inversion with the PP am-

plitudes to invert for the elastic properties of the simulated fractured medium.

Both NMO and amplitudes of converted waves contain viable information about

the anisotropy. This physical model dataset can be used to appreciate the potential

of converted-wave analysis in azimuthally anisotropic media.

• The deterministic amplitude correction procedure used in thesis requires the knowl-

edge of the true velocity model of the overburden. For real data, the exact velocity

is unknown, and usually some statistical amplitude corrections are employed. This

dataset can provide the opportunity to evaluate the accuracy of some practical am-

plitude correction procedures, which is one possible area of interest in any AVO

analysis.

5.2.2 New physical model experiments

As a result of the presented physical model data acquisition, and investigations on the

effect of large size transducers, I believe that solid knowledge of properly collecting 3D
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physical model data from anisotropic models, and a procedure to preserve azimuthally

varying amplitude signatures, have been gained in CREWES. Consequently, some future

experiments on the presently available models at the CREWES physical modeling lab

can be suggested:

Figure 5.1: A model available in CREWES with two slabs of phenolic material, with
perpendicular symmetry axes directions.

• Many exploration targets show several independent fracturing geometries. A medium

with two sets of vertical fractures with different orientations is a good start to ex-

amine such targets. 3D physical model seismic data over the presently available

model (Figure 5.1) at the CREWES physical modeling lab can provide significant

insight for investigating such targets. This model has two slabs of phenolic ma-

terial fused together, with perpendicular fracture orientations. Additionally, the

amplitude analysis of 3D physical model data over a model with several sets of

fractures with different orientations (Figure 5.2), can provide many insights into

the exploration of fractured targets.

• A physical model with two consecutive anisotropic layers with two different fracture

orientations, perhaps one with a tilted symmetry axis, sets a very good example

toward a more realistic model.

5.2.3 Fracture orientation from amplitude analysis

The AVAZ inversion for fracture orientation has a 90◦ ambiguity. It predicts both the

isotropic plane and the symmetry axis, the fast and slow directions, of the HTI medium.
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(a) Constructed model

(b) Sketch model

Figure 5.2: An available model, already constructed, in CREWES with several patches
of phenolic material, with symmetry axes of different directions, embedded in a plexiglas
layer.
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The current practise might not add any extra information to the fracture detection tech-

niques. The smallest and largest values of the AVO gradient, for any AVO class (Fig-

ure 5.3), could give the same information even without the trouble of applying an AVAZ

inversion. In the future, more investigation on the capability of an AVO analysis to

extract the correct fracture orientation is needed.

Figure 5.3: AVO classification (Castagna and Backus, 1993).

5.2.4 Orthorhombic PP reflection coefficients

Throughout this thesis, the simulated fractured layer was treated as an HTI medium.

However, the phenolic model, although it is close to an HTI medium, is in fact or-

thorhombic. Orthorhombic symmetry is a more realistic model to describe a fractured

medium. Vertical fractures in a VTI background medium, or a medium with two sets

of fractures, or a medium with multiple sets of fractures, can be effectively modeled as

an orthorhombic model. Some theoretical reviews on orthorhombic PP reflection co-

efficient approximation are presented below. This could potentially be used to extract

the orthorhombic stiffness coefficients (anisotropy parameters) of the simulated fractured

medium.
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Table 5.1: Orthorhombic anisotropic parameters (Tsvankin, 1997). Note only seven of
them are independent.

Thomsen parameter ε γ δ

(x2, x3) plane ε(1) = A22−A33

2A33
γ(1) = A66−A55

2A55
δ(1) = A23+2A44−A33

A33

(x1, x3) plane ε(2) = A11−A33

2A33
γ(2) = A66−A44

2A44
δ(2) = A13+2A55−A33

A33

(x1, x2) plane ε(3) = A22−A11

2A11
γ(3) = A44−A55

2A55
δ(3) = A12+2A66−A33

A33

Vavryčuk and Pšenčik (1998) have derived PP reflection coefficients for weak contrast

interfaces separating two weakly but arbitrary anisotropic media using a set of anisotropy

parameters different than Rüger (1997) (their anisotropy parameters are linear approx-

imations of the ones used by Rüger). The orthorhombic PP reflection coefficient given

by Vavryčuk and Pšenčik (1998) for general weak anisotropy media (their equation 40)

can be written as

RPP (θ, ϕ) =

(
1

2 cos2 θ

)
∆α

ᾱ
+

(
4β2

α2
sin2θ

)
∆β

β̄
+

(
1

2
− 2β2

α2
sin2θ

)
∆ρ

ρ̄

+
1

2

[
∆(

A13 + 2A55 − A33

A33

) cos2ϕ

+

(
∆(

A23 + 2A44 − A33

A33

)− 8∆(
A44 − A55

2A33

)

)
sin2ϕ

]
sin2θ

+
1

2

[
∆

(
A11 − A33

2A33

)
cos4ϕ+ ∆

(
A22 − A33

2A33

)
sin4ϕ

+ ∆

(
A12 + 2A66 − A33

A33

)
cos2ϕsin2ϕ

]
sin2θtan2θ, (5.1)

where ϕ is the azimuth angle with the x1-axis, θ is the incident angle, α2 = A33, and

β2 = A55. The Thomsen-style anisotropy parameters are not explicitly used in equa-

tion 5.1; their anisotropy parameters are combinations of the Aij’s but can be equiva-

lently renamed to the Thomsen-style anisotropy parameters. I renamed their parameters

to the orthorhombic anisotropy parameters introduced by Tsvankin (1997). Translat-

ing to the Thomsen-style anisotropy parameters using Table 5.1, the orthorhombic PP

116



reflection coefficient becomes

RPP (θ, ϕ) =

(
1

2 cos2 θ

)
∆α

ᾱ

−
(

4β2

α2
sin2θ

)
∆β

β̄

+

(
1

2
− 2β2

α2
sin2θ

)
∆ρ

ρ̄

+

(
1

2
cos2ϕsin2θ

)
∆δ(2)

+

(
1

2
sin2ϕsin2θ

)
∆δ(1)

−
(

4β2

α2
sin2ϕ sin2θ

)
∆γ

+

(
1

2
cos4ϕsin2θ tan2θ

)
∆ε(2)

+

(
1

2
sin4ϕsin2θ tan2θ

)
∆ε(1)

+

(
1

2
cos2ϕsin2ϕsin2θ tan2θ

)
∆δ(3). (5.2)

For an HTI medium in a coordinate-system where its symmetry axis coincides with

the x1-axis, ε(1) = δ(1) = 0, and δ(3) = δ(2). Hence, Vavryčuk’s orthorhombic PP reflection

coefficient (equation 5.2) for a boundary of two HTI media becomes:

RHTI
PP (θ, ϕ) =

(
1

2cos2θ

)
∆α

ᾱ
−
(

4β2

α2
sin2θ

)
∆β

β̄
+

(
1

2
− 2β2

α2
sin2θ

)
∆ρ

ρ̄

+
1

2
cos2ϕsin2θ

(
1 + sin2θ tan2θ

)
∆δ(2)

−
(

4β2

α2
sin2ϕ sin2θ

)
∆γ(3) +

(
1

2
cos4ϕsin2θ tan2θ

)
∆ε(2). (5.3)

This expression for the PP reflection coefficient is analytically similar to Rüger’s PP

reflection coefficient (equation 4.1) for a boundary of two HTI media. The following

considerations of equation 5.3 (Vavryčk) and equation 4.1 (Rüger) reveal that these two

equations are analytically very similar.

• The Vavryčk anisotropy parameter ε(2) is exactly the same as ε(V ) used by Rüger.
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• The Vavryčk anisotropy parameter δ(2), good for weak anisotropy, is the linear

approximation to the δ(V ) used by Rüger.

• The Vavryčk anisotropy parameter γ(3) is exactly the same as γ used by Rüger.

• The Vavryčk shear-wave velocity β2 = A55 corresponds to the vertically propagating

SV -wave in the (x1, x3) plane. The Rüger shear-wave velocity β2 = A44 corresponds

to the vertically propagating SH-wave in the (x1, x3) plane.

• The Vavryčk β is equal to βRuger(1− γ) for weak anisotropy.

By calculating and plotting numerical values, it can be shown that Vavryčk’s and

Rüger’s expressions for the PP reflection coefficient for a boundary separating two HTI

media are almost equivalent. The specific example uses the elastic properties of the

plexiglas and phenolic material. Figure 5.4 shows the PP reflection coefficient for three

azimuths (0◦, 45◦, 90◦).
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Figure 5.4: Comparison of the results from Rüger’s and Vavryc̈uk’s equation for the
plexiglas-phenolic interface.
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5.2.5 Derivation of anisotropic reflection coefficients from scatting theory

Numerical examples, and many case studies, have shown that Rüger’s plane-wave ap-

proximation for the PP reflection coefficient are close to the exact reflection response

for situations in which the underlying assumptions about the reflecting boundary are

satisfied. However, Rüger’s is not suitable for analysis of parameters at interfaces with

strong anisotropy and large contrasts in the elastic parameters. It is also not valid for the

boundary of two HTI layers with differently oriented symmetry axis. For AVO class I, the

predicated critical angle versus azimuth, by Rüger’s equation, stays the same, in contrast

to what has been shown with the physical model reflection data in this thesis in which

the critical angle decreases toward the fast direction. Therefore, it is important to estab-

lish a physical foundation for better anisotropic reflection coefficient approximations. I

believe, the method to derive reflection coefficients by Innanen (2012), using scattering

theory, can be extended to develop more accurate anisotropic reflection coefficients.

5.3 Conclusions

Estimates of the elastic parameters have been obtained via the determination of or-

thorhombic stiffness coefficients using easy-to-measure less-sensitive-to-transducer-size

group velocities. The advantage of the proposed method over the conventionally used

phase velocities, which are sensitive to transducers size, is shown. The relations be-

tween phase velocities and stiffness coefficients are exact, but inaccurate phase velocity

measurements from large transducers will introduce larger errors to the estimates than

directly using group velocities and approximate expressions relating them to the group

velocities.

Using deterministic amplitude corrections, the suitability of 3D physical model re-

flection data for a quantitative amplitude analysis have been confirmed, by showing that
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reflection coefficients derived theoretically are in a good agreement.

Incorporating wide-angle data is essential for accurate estimates for anisotropy pa-

rameters of a fractured medium. The most important one, the shear-wave splitting

parameter, can be estimated from azimuthal amplitude variations. The six-parameter

AVAZ inversion estimates demonstrate that Rüger’s equation is suitable for quantitative

amplitude analysis of anisotropic targets, and can be employed for numerical inversion

algorithms.

The estimated fracture orientation from AVAZ inversion has an inherent ambiguity, as

it predicts both the fracture orientation and the direction normal to it. For an AVO class

I situation, the information about the critical angle can provide the accurate fracture

orientation direction.
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Appendix A

Anellipsoidal deviation terms

This appendix provides the basis on how the Eij terms in theory section can be interpreted

as deviation, from elliptical anisotropy terms. Lets start with the definition of a velocity

surface, plotting the phase/group velocity of a given mode (qP-, qS-waves) as the radius-

vector in all directions. The group velocity surface, therefore, is the wavefront at unit

time. An orthorhombic medium has ellipsoidal anisotropy, if the wavefront, and hence

the group velocity surface, is an ellipsoid, then, the formula for group velocity surface is

that of an ellipsoid. The qP ellipsoidal group velocity surface, then, has the exact form

1

V 2( ~N)
=
N2

1

A11

+
N2

2

A22

+
N2

3

A33

, (A.1)

and the corresponding phase velocity has the form (Musgrave (1970), equations 8.2.1 and

8.2.2b page 96)

v2(~n) = A11n
2
1 + A22n

2
2 + A33n

2
3, (A.2)

where ~n = (n1, n2, n3) = (sinθcosφ, sinθsinφ, cosθ) is the unit vector normal to the

wavefront, with θ and φ having similar definitions as Θ and Φ.

For a general weakly anisotropic medium, the first-order linearized approximation

for qP phase velocity is ρv2(~n) ' cijklninjnknl, (Backus, 1965). Defining the density-

normalized stiffness tensor as aijkl = cijkl/ρ, it reads

v2(~n) ' aijklninjnknl. (A.3)

Using Voigt notation for indexes (11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6), the

density-normalized stiffness coefficients Aij will be obtained as aijkl = Amn. Expanding
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equation A.3 for orthorhombic symmetry one obtains

v2(~n) ' A11n
4
1 + A22n

4
2 + A33n

4
3 + 2(A12 + 2A66)n

2
1n

2
2 +

2(A13 + 2A55)n
2
1n

2
3 + 2(A23 + 2A44)n

2
2n

2
3. (A.4)

Equation A.4 can be modified to read (Daley and Krebes, 2006),

v2(~n) ' A11n
2
1 + A22n

2
2 + A33n

2
3 +

E23n
2
2n

2
3 + E13n

2
1n

2
3 + E12n

2
1n

2
2. (A.5)

where the quantities Eij were perviously defined. Equation A.5 is an expression for or-

thorhombic phase velocity in an approximate form. Comparing it with the ellipsoidal

phase velocity (equation A.2), we interpret the Eij as anellipsoidal deviation terms.

Helbig (1983) states, that in the study of transverse isotropy by Rudzki (1911), the

wavefront for the compressional wave in the (x1, x3) plane is ellipsoidal if and only if

(A11 − A55)(A33 − A55)− (A13 + A55)
2 = 0. The E13 deviation term in equation 2.6 is a

linearized approximation of this deviation term used by Rudzki (1911).
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Appendix B

Numerical tests of the group velocity expression

The approximate qP group velocity, equation 2.5 is generally in good agreement with the

exact calculations, even for highly anisotropic media. For weakly anellipsoidal anisotropic

media which group velocity singularity does not appear, the group velocity approximation

was bench marked against the exact solution and found to be very accurate (Daley and

Krebes, 2006). In addition, it was compared to the approximation presented in Pšenč́ık

and Farra (2005). The results were equivalent; about 0.2%− 0.3% deviation from exact

traveltime calculations for weakly anisotropic media and 2% for a highly anisotropic

(olivine) medium. Song and Every (2000) numerically validated equation 2.5, and showed

that this formula can accurately account for the non-ellipticity of the qP group velocity

surface in the absence of cusps.

Here the validity of the proposed inversion for off-diagonal terms are tested for two

numerical examples. Using transmission traveltimes along various directions, generated

from an anisotropic ray-tracing code, I calculated the group velocities (similar to the

way presented next, just assuming point sources and receivers). The first example, I use

the Aij of Greenhorn shale (Sayers and Ebrom, 1997), classified as weakly transversely

isotropic. The stiffness coefficients for this model are A11 = A22 = 19.19, A33 = 15.65,

A13 = A23 = 7.06, A12 = 7.79, A44 = A55 = 4.11, and A66 = 5.7 where all the Aij

have the units of (km/s)2. The estimated value of A13 is to within 1.2% accurate. The

second example is olivine, an orthorhombic medium with strong anisotropy. Its density-

normalized stiffness coefficients are A11 = 9.779, A33 = 7.103, A13 = 2.163, A44 = 2.358,

and A66 = 5.7. Olivine’s qP group velocity surface, in the (x1, x3) symmetry plane, is

highly anisotropic. In this case, the proposed inversion for A13 resulted in a 2.3% error.
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For the above weak and strong anisotropic examples, the proposed inversion for off-

diagonal Aijs are highly accurate. Of course, this accuracy is highly dependent on the

accuracy of the independently estimated diagonal Aii, which in this case were assumed

known without error.
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Appendix C

Exact orthorhombic phase velocity expressions

Tsvankin (1997) presented the exact orthorhombic phase velocity expressions for the

symmetry planes. For propagation in the (x1, x3) symmetry plane, the exact qSH phase

velocity is

vSH
(θ)2 = A66 sin2 θ + A44 cos2 θ, (C.1)

where θ is the phase angle with the x3-axis. The exact phase velocity of the qP and qSV

modes are

2v2(θ) = (A11 + A55)sin
2θ + (A33 + A55)cos2θ (C.2)

±
√[

(A11 − A55)sin
2θ − (A33 − A55)cos2θ

]2
+ 4(A13 + A55)

2sin2θcos2θ,

where the plus and minus signs correspond to the qP and qSV modes of propagation,

respectively. For the propagation in other symmetry planes, the appropriate indexes are

used.

For the orthorhombic symmetry planes, the group velocity and group angle, of three

wave modes, are related to the phase velocity by (Berryman, 1979)

VG = v(θ)

√
1 +

(
1

v(θ)

dv(θ)

dθ

)
, (C.3)

tanψ =
tan θ + 1

v(θ)
dv(θ)
dθ

1− tan θ
v(θ)

dv(θ)
dθ

, (C.4)

where VG is the magnitude of the group angle, ψ is the group angle, v is phase velocity,

and θ is the phase angle.
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Appendix D

Initial source-receiver offset determination

In this appendix, two practical ways to estimate the first source-receiver offset for a

physical model data are presented.

D.0.1 Initial offset: manual positioning

Consider a Cartesian coordinate system for collecting a seismic gather along the x-axis.

Establish an origin on your solid model. Have your both transducers touching the first

solid layer. Require that both source and receiver transducer are in contact with the

first solid layer. Manually move source transducer to the marked origin and reset the

positioning system for the source-arm to have this point as the origin. Use the automatic

positioning system to move the x-coordinate of the source transducer back −10mm.

Manually move the receiver transducer to the marked reference point, and again reset

the positioning system for the receiver-arm to this point. Now, nominally both source

and receiver transducers have the same origin which might not be very accurate as it is set

visually. Using the automatic positioning system, move the z-coordinates on both source

and receiver transducers to a certain depth in water. The first-arrival traveltime (the

direct arrival though the water between the transducers) should give a value of 6.73µs

( 0.01 (m)/1485 (m/s) = 6.73µs) as the transducers are 10mm apart. Use the automatic

positioning system to move receiver transducer slightly until the first-arrival traveltime

of 6.73µs is achieved. The location of the receiver transducer gives a 6.73µs traveltime

is the origin. Reset the x-coordinate of your receiver transducer again to this present

location. This sets the first source-receiver offset to the value of 10mm accurately within

the precision of the positioning system. An approach to estimate the first source-receiver
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directly from reflection data is given next.

D.0.2 Initial offset: estimate from common-shot gather data

In a shot gather, consider the first-arrival traveltimes, a linear event propagating with

the first-layer P-wave velocity, as

ax+ b = t, (D.1)

where t are the first-arrival traveltimes, and x is the receiver location. The constant a

can be interpreted as the slowness of the first-layer, and −b/a is the first source-receiver

offset. The constants a and b can be obtained from the least-square fitting of the first-

arrival traveltimes. Using equation D.1, the (x, t) picks of the first-arrival event can be

used in a linear system of equations,
x1 1

...

xn 1


a
b

 =


t1
...

tn

 (D.2)

where n is the number of the picks. A least-squares solution of system of equations D.2

gives an estimate of the slowness of the first layer as well as the first source-receiver

offset. If the (x, t) data are from a water layer, the slowness value should be equal to

(1485m/s)−1
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Appendix E

Single-leg ghost event

The traveltime of a single-leg ghost event generated due to the presence of a free-surface

is examined in this appendix. I show that a single-leg ghost has the same reflection

traveltime as that of a wave generated and recorded at the water contact with the trans-

ducers.

Assume a virtual wave propagation in which the wave is generated and recorded at

water contact with the source and receiver transducers (see Figure E.1a). The traveltime

of this event is

tt =
2
√

x2

4
+ d2

Vw
, (E.1)

where x is the source-receiver offset, Vw is the P-velocity of water, and d is the reflector

depth. With a source-receiver offset x/2 = d tan θ, where θ is the incident angle at the

CMP between the source and receiver, equation E.1 becomes

tt =
2
√
d2tan2θ + d2

Vw
,

tt =
2d

Vw cos θ
. (E.2)

Now assume a single-leg ghost at the receiver, see Figure E.1b. With the notation used

in Figure E.1b, x/2 = x1 +x2, x1 = d1 tan θa , x2 = d2 tan θa and d = d1 + d2. Designate

the traveltime related to this single-leg ghost as ta,

ta =
2
√
x21 + d21
Vw

+
2
√
x22 + d22
Vw

,

ta =
2d1

Vw cos θ
+

2d2
Vw cos θ

,

ta =
2(d1 + d2)

Vw cos θ
,

ta =
2d

Vw cos θ
, (E.3)
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(a) (b)

Figure E.1: (a) Raypath of the virtual wave propagation in which the wave is generated
and recorded at water contact. (b) Raypath of a single-leg ghost.

Then comparing ta with equation E.2 it may be seen that tt = ta. This means the

traveltime of the single-leg ghost event is equal to the traveltime of a wave generated and

recorded at the water contact with the transducers. Therefore, the single-leg ghost event

has a constant traveltime independent of the source and receiver transducers’ tip depth

within the water, provide both reach the same depth.
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Appendix F

AVO corrections for subsurface factors

This appendix details about the AVO corrections for the subsurface effects applied to

the reflection amplitudes from water-plexiglas and plexiglas-phenolic interfaces, as well

as some simple instructions for the corrections of field datasets.

F.0.3 Geometrical spreading

As seismic energy propagates away from a source, the total energy of the wavefront surface

remains the same. As the wavefront becomes larger the energy per unit area becomes

smaller, and consequently the amplitudes become weaker. This amplitude decay is a

geometrical effect. For a single homogeneous layers consider a seismic ray with amplitude

A1, after traveling a raypath of length L its amplitude will be A1/L, so the geometrical

spreading factor is L. For multiple layers, in addition to the raypath length, the confined

area in a ray tube after reflection or transmission from each layer should also be taken into

account. For plane parallel homogeneous layers, the raypaths are composed of straight

line segments. For a given offset and target depth, the geometrical spreading factor is

given as (Červený and Ravindra, 1971)

Dg(x) =
cos θs
vs

√√√√( k∑
j=1

hjvj
cos θj

)(
k∑
j=1

hjvj
cos3θj

)
(F.1)

where hj and vj are the thickness and velocity of the layer containing to the jth ray

segment, and θj is the angle the jth ray segment makes with the vertical axis. Knowing the

velocity of water and plexiglas, this provides the exact geometrical spreading correction

(Dg(x) in equation 3.1) for horizontal layering which is applied to the physical model

reflection amplitudes.
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For field data, which lacks details about the overburden layers, exact velocities, such

an exact geometrical spreading correction is often not possible. However, there are readily

applied zero-offset and offset-dependent geometrical spreading corrections that can be

applied to shot gather (or CMP gather) data before move-out is applied. The zero-offset

geometrical spreading correction is (Newman, 1973; Resnik, 1993)

g0(t) = V 2
rms(t0)t, (F.2)

where t is the two way traveltime and Vrms is an estimate of the root-mean-square (rms)

velocity at the corresponding zero-offset time, t0. A single velocity function is used

for the entire gather, meaning it does not change at each offset. This provides a good

approximate correction, but does not fully compensate for spreading effect at far offsets.

An offset-dependent geometrical spreading correction given by Ursin (1990) is

g21(t, x) = g20(t) +

[
2

(
Vrms
V1

)2

− 1

]
x2 +

1

t0
2

(
1

V 2
1

− 1

V 2
rms

)
x4, (F.3)

where x is the source-receiver offset, and V1 is the first layer velocity. Figure F.1 shows

the water-plexiglas reflector amplitudes versus incident angle that have been corrected for

geometrical spreading using corrections by raytracing, zero-offset, and offset-dependent

geometrical spreading. The offset-dependent correction compensates nearly as well as

the raytracing geometrical spreading correction (equation F.1).

F.0.4 Transmission loss

The Zoeppritz equations can provide the downgoing PP transmission coefficient, Tj,j+1(θj),

and upgoing PP transmission coefficient, Tj+1,j(θj+1), between layers j and j + 1. The

decrease in amplitude associated with transmission loss between layer j and j + 1 is the

product Tj,j+1(θj) × Tj+1,j(θj+1). The transmission loss factor, L(x) in equation 3.1, is

the total loss for all interfaces along the entire raypath (e.g. Duren, 1991; Spratt et al.,
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Figure F.1: Geometrical spreading corrections (raytracing, zero-offset, and offset-depen-
dent) applied to the water-plexiglas reflection amplitudes. The amplitudes have been
compared to Zoeppritz predicated reflection coefficients.
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1993):

L(x) =
k−1∏
j=1

Tj,j+1(θj)Tj+1,j(θj+1). (F.4)

For field data, a deterministic correction of transmission loss is problematic as the

overburden can not be perfectly characterized. Transmission loss is the most significant

problem encountered in AVO analysis (Gassaway, 1984). In practice the transmission

loss is compensated for using statistical corrections.

F.0.5 Emergence angle

For vertical component data, the recordings should be converted to total motion for

amplitude data to represent reflection coefficients. Knowing the emergence angle (θh) at

the receiver location, the factor cos(θh) (equation 3.1) provides the total motion and is

called emergence angle correction in this thesis.

F.0.6 Scalar factor

After applying all subsurface and surface corrections, a constant scalar factor is required

to normalized the amplitude magnitude to the range of [−1, 1], the reflection coefficient

range. This scalar factor is the S term in equation 3.1. The single scalar factor is applied

to the entire seismic gather and is related mostly to the source strength and some possible

power filters applied in processing.

For the reflection amplitudes from an individual reflector (e.g., amplitudes reflected

from the water-plexiglas interface), the scalar factor can be determined by calibrating

the near-offset amplitudes to the normal incident reflection coefficient from the Zoeppritz

equations. At each incident angle, call the Zoeppritz reflection coefficient AZ(θ), and the

raw picked amplitudes A(θ). Then the scalar factor can be calculated as

S =
AZ(θ ' 0)

averageA(θ1 : θn)
, (F.5)
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where A(θ1 : θn) refers to the near-offset amplitudes (e.g., θn < 10◦). The examined

amplitudes in Chapter 3, after each corrections, have been normalized using equation F.5.

Finding the scaler for a shot gather, consider the time window around your target

event, the scalar factor can be obtained by minimizing A(x0, t)−SR(t) in a least-squares

sense, where A(x0, t) are the near-offset amplitudes and R(t) is the reflectivity model

defined by well logs or a velocity model. Minimizing

b =
max∑
k=1

(Ak − SRk)
2, (F.6)

means

∂b

∂S
=
∑
k

−2Rk (Ak − SRk) = 0, (F.7)

and the scalar becomes (Margrave, 2000):

S =

∑
k RkAk∑
k RkRk

, (F.8)

where
∑

k RkAk is the zero-lag cross-correlation of R(t) and A(t), and
∑

k RkRk is the

zero-lag autocorrelation of R(t).
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Appendix G

Radial trace filtering the physical model data

The radial trace (RT) transform is a seismic data mapping algorithm, developed to atten-

uate coherent noise in seismic data. This appendix follows Henley (2003) in describing

briefly the principles of the method, and its application in processing physical model

reflection data.

G.1 The RT transfrom

The RT transform maps seismic amplitudes from coordinates of source-receiver offset

and traveltime, S(x, t), to coordinates of apparent velocity and traveltime, Ŝ(v, T ), with

no change to amplitudes. Using a fan of common-origin linear trajectories in the (x, t)

domain (a set of constant-apparent-velocity dips), the amplitude values from the (x, t)

panel are mapped into a (v, t) panel ( Figure G.1a). Each trace in the RT domain consists

of amplitude values selected from the (x, t) domain along a linear trajectory of constant

apparent velocity, v, where v becomes the trace identifier in the RT domain. Each radial

trace has the same traveltime coordinate and sample increment as the original (x, t)

data (Figure G.1a). Since the RT transform is a non-uniform mapping, interpolation

is required to obtain samples in the RT domain which fall between two traces along a

trajectory in the (x, t) domain. Every interpolation involves only one sample, at the

same traveltime, from each of the two nearest traces. Depending upon the particular

interpolation used, the RT transform can be inverted very accurately (similar to NMO,

which is also a non-uniform mapping transform).

Linear events in the (x, t) domain which align with the trajectories of the RT trans-
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(a) (x, t) domain (b) (x, t) domain

Figure G.1: Mapping of seismic traces from the (x, t) domain to the (R, T ) domain. (a)
Seismic gather with constant velocity trajectories. (b) Radial traces. Because the high-
-velocity trajectories encounter the linear events on the (x, t) panel very nearly parallel to
their wavefronts, these linear events become low-frequency events on the corresponding
radial traces (Henley, 2003).

form are rotated by the transform to low-frequency vertical events, thus providing the

separation from reflection events required for successful attenuation. Because their RT

domain bandwidth is usually well below the bandwidth of legitimate reflection events,

linear noise events can be filtered in the RT domain either by applying a low-cut filter,

which passes reflection energy while rejecting linear noise, or by applying a low-pass filter,

which passes only the linear noise. The RT domain noise estimate can then be trans-

formed back to the (x, t) domain and subtracted from the original (x, t) panel (preferred).

By choosing the origin coordinates and apparent velocity range of the RT transform to

best overlay targeted linear events on the (x, t) panel, noise estimation and attenuation

are maximized. When not all linear events project to a common origin, several subse-

quent filter passes, using parameters which help the RT transform align with particular

events, can be very effective.
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G.2 Attenuating the linear events in the physical model data

For the physical model data, multiple RT filtering is applied to suppress all linear events

intercepting the event of interest. First, the hyperbolic event of interest has flattened by

normal-move-out (NMO) removal correction (Figure G.2). Consequently, the unwanted

interferening events appear as a family of linear events with some residual slope cross-

ing the event of interest (Figure G.2a); multiple RT filters are then applied, with each

designed to subtract events with a particular slope. Figure G.2a shows the plexiglas-

phenolic reflector (Chapter 3) flattened with all the interfering events clearly appear

with intercepting slopes. Figure G.2b shows the plexiglas reflector after several passes of

radial filtering. While interfering events have been attenuated adequately for the large

offsets, the RT filtering was unable to attenuate the very small offset interfering event.

At very small offsets, there is very little move-out discrimination between the event of

interest and the interfering event. The interfering event has been nearly flattened as the

event of interest itself. For the further offsets, distinguishable interfering events with

different dips were removed easily.
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(a) Before radial trace filtering

(b) After radial trace filtering

Figure G.2: Plexiglas-phenolic reflector along azimuth 0◦ (Chapter3), NMO removed.
Note the interference events crossing the target event.
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Appendix H

Singular value decomposition

Singular value decomposition, SVD, is a common and precise way of solving linear least-

squares problems Sheriff (1991). Consider the matrix equation

Gnmmm1 = Dn1. (H.1)

For the matrix G of order nm, a mapping from the model space S(m) to the data space

S(D), there is always a matrix decomposition called the singular value decomposition

(SVD) of matrix G. SVD allows the matrix G to be expressed as the product of the

matrices (Lay, 1996),

G = UΛV T , (H.2)

where U is the matrix of eigenvectors of GGT that span the data space, and V is the

matrix of eigenvectors of GTG that span the model space. The singular values of the

matrix G are the positive square roots of the eigenvalues of the matrix GTG. Λ is a

diagonal matrix with the singular values of the matrix G in the diagonal elements in a

decreasing order. The SVD of matrix G can be written as (Menke, 1985)

G = UΛV T = UpΛpV
T
p (H.3)

where Up and Vp consist of the first p columns of U and V , related to non-zero singular

values.

The SVD of matrix G always exists due to the existence of the matrices U and V

(Lay, 1996). Since the diagonal entries in matrix Λp are nonzero, the generalized inverse,

also called the Lanczos inverse of matrix G, is defined as (Lay, 1996)

G−1g = VpΛ
−1UT

p = Vp

[
diag

(
1

σp

)]
UT
p . (H.4)
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For the generalized inverse matrix, the following holds:

G−1g GG−1g = G−1g , (H.5)

GG−1g G = G. (H.6)

Applying the generalized matrix G−1g to both sides of equation H.1,

G−1g Gm = G−1g D. (H.7)

From equation H.5, equation H.7 becomes G−1g Gm = G−1g GG−1g D. Then the estimated

solution mest becomes

mest = G−1g D. (H.8)

Substituting equation H.1 for D, equation H.8 transforms into (Menke, 1985)

mest = G−1g Gm. (H.9)

The matrix G−1g G is called the model resolution matrix. The model resolution matrix

defines how well the estimated solution, mest, resolves the true solution, m. For a perfect

resolution, the resolution matrix will be the identity matrix. The diagonal elements of

a resolution matrix are good measures of the model resolution. The non-unit diagonal

elements imply that the estimates are linear combinations of the true values.
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Appendix I

Failed experiment setup

The 3D physical model reflection data presented in this thesis successfully comply with

the elastic Zoeppritz theory. The date of this acquisition was 15 March 2013. The start

of the journey to get this dataset goes back to April 2011, when a 3D common-shot-

gather was acquired over a four-layered model consisting of: water, plexiglas, phenolic

layer, and water (Figure I.1). The solid surfaces were not machined and were attached

together by having a thin layer of vaseline between them. From this dataset, the raw re-

flection amplitudes from the plexiglas-phenolic interface (Figure I.2) showed some small-

and long-wavelength variations. This was due to the fact that the reflection ampli-

tudes were from various mid-points, and since the two solid interfaces were rough with

slight undulations, the mid-points were not exactly the same. For horizontal layering, a

common-shot-gather is equivalent to a CMP gather, but the unevenness of the solid lay-

ers obviate this assumption. After applying the amplitude corrections (I was not aware

of the directivity effect of the transducers at that point), the corrected amplitudes still

showed a larger drop than was anticipated.

Figure I.1: First try, the four-layered earth model used in the acquisition.

To avoid the effect of unevenness of the solid surfaces on the recorded seismic data,

a CMP gather over the four-layered model was collected at September 2011. In a CMP

gather all reflections are related to a single subsurface point. Any overlapping of the pri-
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Figure I.2: The amplitudes from plexiglas-phenolic reflector from common-shot-gather
dataset.

mary and ghost events were avoided this time. Again none of the reflection amplitudes

from the two reflectors (water-plexiglas and plexiglas-phenolic) agreed with the theory.

After realizing the directivity effect of the transducers and applying the directivity correc-

tion, the water-plexiglas reflection amplitudes were following the theory. This was only

true for the water-plexiglas amplitudes picked from the primary event. The amplitudes

picked from primary and ghost events showed different trends (Figure I.3). The directiv-

ity correction applied in Chapter 3 only works for the primary event, because the physical

model transducers only behaves according to the theory presented in section 3.3.2 if the

emitted waveforms travel downward into the medium. These transducers are damped so

that they do not pass the energy upward. Since for a ghost event energy travels upward

from the source and then is reflected at the free-surface, the mentioned directivity cor-

rection does not work. So for the plexiglas-phenolic reflector the only choice was to pick

on the primary event. But the primary event from the plexiglas-phenolic interface was

masked by the wave interferences from top reflectors. Ignoring these wave interferences,

appearing as large jitters in the recorded amplitudes, the overall trend of the amplitudes

versus the incident angle was lower than was predicted from the theory (Figure I.4). The
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only possible explanation left was that the plexiglas and phenolic layers were not welded

together as was required by the Zoeppritz equations. Therefore, another dataset had to

be collected after eliminating the non-welded contact boundary.

Figure I.3: The water-plexiglas reflection amplitudes, picked from primary, two-sided
ghost and one-sided ghost events.

Two plexiglas blocks and the phenolic layer were sent to the workshop to be machined,

to ensure flat, smooth interfaces, and to be glued together with epoxy. The model came

back to the physical modeling lab, with the epoxy being thick (thickness of around 1mm)

causing to appear as a separate reflector in the seismic data. Next, the solid layers were

glued together with a thin layer of melted wax 1 under a high pressure to ensure welded

contact boundaries. The result was the physical model data presented in Chapter 3, which

successfully agreed with the elastic Zoeppritz theory. Now, in addition to this good 3D

physical model reflection dataset, CREWES has an example of a perfect physical model

reflection dataset of a non-welded interface.

1You probably don’t want to know, it was Persian leg wax.
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Figure I.4: The corrected plexiglas-phenolic reflection amplitudes, picked from primary,
two-sided ghost and one-sided ghost events. The ghost events received a directivity
correction based on the above reflector (water-plexiglas). A polynomial has been fitted
to the primary event (in blue color), just to see the overall trend.
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