


the post-stack forward modeling-free with well calibration (figure 7.7c), and the pre-stack

forward modeling-free with well calibration (figure 7.7e). For the pre-stack migration, I use

the PSPI migration, with a deconvolution imaging condition, on the acquired data. As the

data does not contain higher frequencies, I migrate the data on the frequency band from 1Hz

to 60Hz. The migrated shots are muted and stacked to form a subsurface image (figures

7.7b, 7.7d and 7.7f).

Figure 7.7: Using the models a) initial, c) post-stack and e) pre-stack to apply a pre-stack migration

of the acquired data and obtain the respective subsurface images b), d) and f). Migration is

improved as the model is more precise.
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Looking at all the migrated images (figures 7.7b, 7.7d and 7.7f), I can say that all the

migration velocities (figures 7.7a, 7.7c and 7.7e) are very similar. Now, looking closely, as

we go deeper in the model, structures have different positions. It is more evident at the

high velocity body in the left size of the model on the depth of 2500m. The post-stack

FWI started to place the structure in a more correct place, as the pre-stack FWI did even

a better job. So, the higher resolution the model has, higher the resolution the subsurface

image have. And it is more evident as deeper as we go.

I am confident that I am proposing a cheap and fast FWI that will improve the initial

model to help in the seismic interpretation of the survey and to provide a clearer subsurface

image by providing a more accurate migration velocity.

7.3 Conclusions

A 100% forward modeling-free FWI is possible by combining the forward modeling-free

gradient approximation of chapters 5 and 6 with a well calibration (Margrave et al., 2010,

2011; Romahn and Innanen, 2016). Due to a calibration of the gradient with a local true

answer (a sonic log), the updated model has higher accuracy and resolution than the previous

forward modeling-free results. And it is valid for both pre and post-stack approximations.

By using the inverted models as migration velocity, the subsurface image seems to be slightly

improved as the inverted model is more accurate.
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Chapter 8

Conclusions

Results of tests and new interpretations of the FWI steepest-descent algorithm were pre-

sented following the chronological development during the Ph.D. program. Now I will show

my conclusions and analysis of the cost for each approximation used.

The standard steepest-descent (gradient) method was tested on chapter 2 on a 2D syn-

thetic dataset with great resolution of the inverted models. It showed to be stable on a

simple 2D model when a good initial model is used, and promising when the initial model

is derived from sonic logs located on different locations of the correct model. The gradient

is computed by a PSPI migration of the residuals with a deconvolution imaging condition

(that works as a diagonal Hessian approximation). The gradient is smoothed by convolving

it with a 2D Gaussian window, attenuating some artifacts, and avoiding over-fitting. A

mute must be applied and selected in a way to remove far offset artifacts, but preserving

important primaries information. The step length is estimated by a trial and error method

that is precise but costly. This initial algorithm was applied in the 2D Marmousi acoustic

model reaching convergence and improving the model until certain iteration. It was a good

example of an optimization method that got trapped on a local minimum, where the errors

of shots decreased at each iteration but the model deviation started to increase after a few

iterations decreasing. It suggests that the standard steepest-descent method is stable but

requires some modifications as the geologic complexity is higher. Actually, when analyzing

the method costs (figure 8.1), the total computational cost can be divided mainly into three

portions: the forward modeling (on the residual step), the migration (on the gradient step),

and the step length estimation (line search). A forward modeling process, even on an acous-

tic case, is costly depending on the algorithm used, and it was used a finite difference one
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Figure 8.1: Cost related to a regular steepest-descent FWI. The most expensive processes are the
forward modeling to compute the residuals, then the PSPI migration to estimate the gradient,
and the line search, that requires a few forward modeling calculations to compute the step length
(chapter 2).

(expensive but with better response). Remembering that a forward modeling is required for

each shot position on every iteration. Pre-stack migration can be highly expensive. PSPI

is a one-way phase shift back-propagation method, cheap when compared with others mi-

grations, and with great resolution. The cost for the step length estimation on a trial and

error technique is due to the number of forward modelings required for it. Higher precision

is reached as more values are tested.

Our first improvement came as a tentative to simulate some level of deconvolution (remove

the source), during the gradient estimation, by selecting a frequency band on one iteration

and migrating (PSPI) each frequency separately (chapter 3), ending up with several gradi-

ents. Thanks to the implementation of a cheaper algorithm to estimate the step length (Pica

et al., 1990), the final gradient is a weighted average of all the monochromatic gradients,

where the weights are each one of the step lengths. I call this approximation monochromatic

averaged gradient. I could show that this new approximation results on higher resolution
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Figure 8.2: For the monochromatic averaged gradient (chapter 3), the cost is reduced for one single
forward modeling to compute the step length by using the Pica et al. (1990) approximation, but
the migration cost is increased as each frequency is migrated separately, becoming even more costly
on higher iterations.

inverted models, which gets better if the initial model is closer to the global minimum, when

tested on a 2D Marmousi acoustic seismic simulation. The convergence is even closer to

the global minimum if a conjugate gradient algorithm is used, showing to be a great im-

provement with a very low cost. Figure 8.2 is a representation on how the costs change

with the monochromatic averaged gradient. The forward modeling’s cost for the residuals

calculation kept the same as the one on figure 8.1. Gradient estimation has a higher cost

as each frequency is migrated separately. Line search’s (step length) cost is decreased for

a single forward modeling, but it required to be estimated for each frequency. However,

it will only be more expensive than the trial and error when the inversion is working on

higher frequencies, and I showed that the FWI is more efficient on lower frequencies. An

initial try for an impedance inversion of the gradient (until this point, I were assuming that

the migration output - reflection coefficients - was equivalent to an impedance update when

multiplied by the step length) was test by a simple trace integration, and I concluded that
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a better approximation was necessary.

In chapter 4 the impedance inversion of the gradient, prior to the step length estimation,

became the focus of the analysis. As I took to our attention before, I was using migration’s

output (reflection coefficients) as an unscaled impedance update. On each iteration only

a selected frequency band is used, this leaded us to decide for a band-limited impedance

inversion (BLIMP) of the gradient, where the impedance inversion is optimized by using the

low frequency content present on the initial model. This means that the initial model must

contain, at least, the linear trend of the correct model. I concluded that it was a successful

improvement, as it is stable, converges fast, and is less costly than the monochromatic

averaged gradient approximation. Figure 8.3 shows the new cost scheme for the BLIMP based

Figure 8.3: With the implementation of the BLIMP to better estimate the gradient (chapter 4),
the migration cost went back to its initial standards (chapter 2). However, a small cost is added
to apply the impedance inversion of the reflection coefficients based gradient.

gradient. The forward modeling cost to compute the residuals is still the same. Migration

cost is reduced back to the same level as the standard steepest-descent method (all the

frequencies of the band are migrated at the same time). An impedance inversion (BLIMP)

cost is included in the scheme, as it requires depth to time and time to depth conversions.
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The step length estimation is reduced to a single forward modeling for each iteration. In

others words, I could reduce significantly the routine costs by implementing an impedance

inversion of the gradient, and ending up with similar resolution as the inverted model using

the monochromatic averaged gradient method.

Figure 8.4: Approximating the gradient as the residual difference of the current model, and the
impedance inversion of the acquired data migrated using the current model (chapter 5, subsection
5.2.1), reduced the cost of the FWI method to, basically, the cost of the pre-stack depth migration
(PSPI), as no forward modeling is required to compute the gradient.

Perhaps the most important development is shown in chapters 5 and 6. There I show that

the gradient can be simplified by the difference between current model and the impedance

inversion of the acquired data migrated using the current model. This solution came when

I started to understand the FWI routine as a combination of seismic processing tools, and

assumed linearity properties of them. This way, no forward modeling and source estimation

are required to compute the gradient. It was demonstrated for P-wave velocity only, but I am

confident that the same strategy can be expanded for any invertible parameter. The inverted

model is somewhat comparable with previous inversions, but with a great difference in cost.

With this new approximation, the main cost of the process is due to the PSPI migration
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(figure 8.4). Each iteration has basically the same cost of a pre-stack depth migration of the

whole survey. It is possible to make the process even cheaper when I commute the order of

the stacking and migration processes during the gradient estimation. This way, the gradient

Figure 8.5: The post-stack migration based gradient (chapter 6 reduces significantly the total cost
of the FWI method.

is computed by a post-stack depth migration (a zero-offset PSPI was used). I show on figure

8.5 that the total cost of the inversion is abruptly reduced. For the 2D Marmousi acoustic

simulation, I could run the whole inversion on a tablet. However, some trade-off between

cost and resolution occurs, and must be taken in consideration.

In chapter 7 the gradient started to be calibrated by a well sonic log instead of the Pica

et al. (1990)’s algorithm. This allowed the process to be 100% forward modeling-free, fast,

cheap, and with increased resolution. Figure 8.6 represents the costs when the post-stack

forward modeling-free gradient method is combined with the well calibration. Costs are

reduced, source does not need to be estimated, and quality is improved. The process took 8

minutes to run in the Marmousi model on a personal laptop. This means that, if the sonic

log is available, anyone or any company can have a cheap and fast FWI routine, and have a
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Figure 8.6: The post-stack migration based gradient with well calibration (chapter 7 reduces the
total cost of the FWI method to the same as the post-stack migration per iteration.

final model that helps on the interpretation of the seismic data.

Figure 8.7: The pre-stack migration based gradient with well calibration (chapter 7. The cost is

equivalent of the pre-stack migration at each iteration.

Also in chapter 7, resolution is improved be replacing the post-stack migration by a pre-
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stack one. The total cost of the method is increased, as show on figure 8.7, but the model

presented higher resolution. As discussed before, the choice of the FWI method will depends

on user trade-off decisions and needs.

In the end, I could test the standard steepest-descent FWI routine and make a few new

interpretations of the gradient to end up with a cheap, simple, and high precision strategy.
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