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Abstract

It is acknowledged that Full Waveform Inversion (FWI) techniques are sensitive to the set of

model parameters that we choose for the minimization procedure. This model parametriza-

tion and sensitivity analysis for FWI has been extensively studied for acoustic and isotropic-

elastic media. In order to obtain an accurate image of subsurface earth, it is necessary to

include both anisotropy and attenuation in inversion procedures as subsurface materials are

far from being isotropic or elastic. In this thesis, we formulate the sensitivity analysis for

FWI in viscoelastic-isotropic/anisotropic media. To develop such analysis, we construct a

framework based on the first order perturbation theory called the Born approximation to find

the sensitivity of the FWI to isotropic, anelastic and anisotropic parameters. Sensitivities

are, essentially, radiation patterns induced by scattering of the seismic waves from inclu-

sions in medium properties in an isotropic background. Most importantly, we investigate

the effect of the inhomogeneity angle which is unique to viscoelastic waves, on these radia-

tion patterns (scattering potentials) and also on amplitude-variation-with-offset or azimuth

(AVO/AVAz) analysis. By decomposition of the scattering potentials into isotropic, vis-

coelastic and anisotropic components, we specify the effects of anelasticity, inhomogeneity of

wave and anisotropy on radiation patterns and the linearized AVO/AVAz equations. More-

over, we show how the obtained scattering potentials reduce to the linearized AVO/AVAz

equations without using the solution of Zoeppritz equations. This analysis is the starting

point for any FWI strategy in a complex media exhibiting both attenuation and anisotropy,

as the scattering potentials that we obtained can be effectively implemented to choose a

suitable model parametrization.
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Chapter 1

Introduction

1.1 Amplitude Variation with Offset and Azimuth in attenuative media

Amplitude Variation with Offset (AVO) or Angle (AVA) is a technique in reflection seismol-

ogy that is employed to extract information about the subsurface earth properties, such as

P-wave velocity, S-wave velocity, density, attenuation and anisotropic parameters. In AVO,

amplitude refers to the amplitude of the reflected wave from subsurface; offset refers to the

distance between the man-made source and the receiver (geophone) and angle is defined

between the direction of the incident wave from source and the normal to the surface plane.

AVO analysis based on the reflections from gas-sand (sandstones with low-+permeability)

reservoirs reveals that amplitude mostly vary with the normal-incidence reflection coefficient

and Poissons ratio, which can be used to classify the seismic data in terms of these two

parameters (Ostrander, 1984; Rutherford and Williams, 1989). An elastic-isotropic earth

is characterized by density, compressional wave or P-wave (P stands for primary) velocity

and shear wave (S-wave) velocity. However, accurate modeling of hydrocarbon reservoirs

requires understanding the way rock properties affect other, second order features of the

seismic amplitudes such as anisotropy and attenuation. Anisotropy refers to a rock property

in which the seismic velocities are angle dependent. Taking into account the anisotropy, the

ray parameter and slowness vectors becomes more complicated in these environments than

in their isotropic counterparts. Another rock characteristic that has been observed in seismic

data is attenuation, which appears as amplitude damping in reflected seismic wave. Seismic

attenuation is defined by one or more quality factors, whose reciprocals measure the energy

loss of the wave while propagating through the subsurface (Barton, 2007). Attenuation can

be caused by amplitude reduction due to scattering and intrinsic micro-structures in rock.

The first one is called the coda quality factor and the second one the intrinsic quality factor.

The heart of AVO analysis is to find how reflected wave from an interface between two

layers varies with the changes in medium properties. From exact solutions of the wave
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equation it is difficult to evaluate the variation of the reflected wave with offset and changes

in medium properties across the boundary. However in the case that properties only vary

a small amount across the reflecting boundary, a situation called “low contrast, we can

expand the exact reflection coefficients in terms of changes in medium properties to obtain

linearized AVO equations. The full description of this procedure for an isotropic-elastic

medium can be found in many standard seismic books (Aki and Richards, 2002; Castagna and

Backus, 1993; Ikelle and Amundsen, 2005). Seismic wave propagation in anisotropic media

in general is a complicated problem because of the dependency of the velocities to angle

and anisotropic parameters. However, the assumption of weak anisotropy with a specific

type of symmetry greatly simplifies the problem (Thomsen, 1986). For example, the most

common anisotropic symmetry demonstrated for sedimentary rock and shale is transversely

isotropic. In a transversely isotropic medium with both a horizontal axis of symmetry

(HTI-medium with a stack of vertical fractures embedded in an isotropic background) and

vertical axis of symmetry (VTI-medium with a stack of horizontal fractures embedded in

an isotropic background) AVO analysis has been studied by Rüger (1997, 1998, 2002). PP

reflection coefficients for weak-contrast interfaces separating two weakly, but arbitrarily,

anisotropic media were derived by Cervený and Psenćık (1998). J́ılek (2001, 2002) studied

the linearized converted PS-wave reflectivity equations for general anisotropic media using

first-order perturbation of the exact reflection coefficients and proposed an algorithm for

joint inversion of PP- and PS-waves acquired for a wide range of azimuths. Multicomponent

seismic data processing provides additional information about subsurface physical properties

(Stewart et al., 2002, 2003). Seismic characterization of naturally-fractured reservoirs is

investigated in various types of anisotropic media, including single vertical fracture system

in an isotropic background rock (HTI medium) (Bakulin et al., 2000a), two orthogonal

fracture sets in a isotropic host rock (orthorhombic medium) (Bakulin et al., 2000c) and a

medium with two nonorthogonal sets of rotationally invariant fractures (monoclinic medium)

(Bakulin et al., 2000b).

Fracture characterization plays a significant role in determining fluid flow during the

production(Far, 2011; Far et al., 2013a). The effects of natural fractures on the azimuth,

reflection PP-wave data is investigated extensively by many authors, for fractured gas sands
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(Sayers and Rickett, 1997); reservoirs containing multiple fracture sets (Sayers and Dean,

2001) and non-orthogonal fracture sets (Sayers, 2009; Far et al., 2013b). It has been shown

that reflection amplitude variations with offset and azimuth for converted PS-waves reveals

more information concerning the reservoir characterization than the PP-wave reflection am-

plitudes (Far and Hardage, 2016).

For isotropic viscoelastic media, reflection/transmission coefficients were derived by many

authors (Krebes, 1984, 1983; Ursin and Stovas, 2002; Stovas and Ursin, 2003; Borcherdt,

2009). For isotropic/anisotropic viscoelastic media linearized reflection coefficients based of

the exact solutions of the Zoeppritz equation are adopted widely to analyse the amplitude

variation with offset inversion/modeling. Moradi and Innanen (2016) derived the amplitude

variation with offset equations taking into account the jumps in attenuation angle for in-

homogeneous waves. It has been shown how attenuation in media impact the amplitude

variation with offset equations induced by the perturbations in five viscoelastic parameters.

In the presence of anelasticity in anisotropic media, near and beyond the critical angle

the P-wave reflection coefficient can vary remarkably strongly. Neither quality factors nor

anisotropic parameters have an effect on the zero offset P-wave reflection coefficients, and

anisotropy has more influence on small angle reflectivity than the attenuation (Carcione

et al., 1998). The reflection-transmission problem in viscoelastic transversely isotropic media

for incident homogeneous wave is studied by Carcione (1997) and Ursin and Stovas (2002)

and for incident inhomogeneous wave by Zhu and Tsvankin (2006b); Behura and Tsvankin

(2009b,a).

1.2 Model parametrization in Full Waveform Inversion

One of the most frequently-used methods for inversion of seismic data is wave-equation-based

inversion (Sava and Biondi, 2004b,a). The mathematical framework of this method is based

on two integral equations. The first one is the Lippmann-Schwinger integral equation whose

expansion in terms of perturbations in medium properties results in the Born scattering se-

ries. The second integral equation is the representation theorem which leads to the Kirchhoff

scattering series. The Born scattering series can be utilized for linearized inversion and Kirch-
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hoff scattering series to demultiple and to deghost the seismic data (Beylkin and Burridge,

1990; Matson, 1997; Weglein et al., 1997, 2003; Ikelle et al., 2003). Basically, after removing

ghosts and multiples we only deal with primaries to image the subsurface. The essential

step in inversion is forward modeling of wave propagation. One critical approach to forward

modeling of reflected seismic primary reflections is the Born approximation, which is based

on the linearization of the Lippmann-Schwinger equation. In this approximation wave prop-

agation take places in so-called background or reference medium. The background medium

is altered by a system of inclusions in which medium properties deviate from the background,

called perturbations. To consider only single scattering from these perturbations, the series

can be truncated at first order, and this truncation is called the Born approximation. From

the numerical point of view Born modeling is a low-cost technique as it does not contain

any iterations, (in contrast to the Lippmann-Schwinger integral equation). In addition the

relationship between the synthetic data and perturbations is linear which makes inversion

and analysis simpler. However, if the background medium is not completely known the Born

approximation can involve significant errors. Full consideration of seismic imaging and in-

version principles incorporating the inverse scattering series for scalar, acoustic and elastic

wave equation is presented by Stolt and Weglein (2012). Since the conventional Amplitude

Variation with Offset and Azimuth based inversion is not applicable for laterally varying

media, the Born-approximation-based inversion method can be implemented to invert the

fracture parameters (Bansal and Sen, 2010).

Among up-and-coming techniques for seismic estimation of subsurface properties, full

waveform inversion (FWI) ranks high, as a novel and powerful approach that can produce

highly-resolved images of the subsurface properties from single and multicomponent seismic

data (Fichtner, 2010; Virieux and Operto, 2009). The essence of FWI is based on the

minimization of the misfit function between the measured (or observed) seismic data with

the modelled (or synthetic) data. The advantage of FWI over other techniques is that all

information content of the wavefield is utilized in minimization procedure; in other words,

minimization of differences in amplitudes, converted waves, multiples, traveltimes, etc are

taken into account between the seismic data and synthetic data. The disadvantage of FWI

is that the seismic data may contain recordings unrelated to properties of the Earth.
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Model parameterizations is a key issue in multi-parameter FWI updates. A successful

FWI procedure depends on choosing the right model parameterizations; for example, one

model parametrization might lead to damaging artifacts in density estimation whereas in

another no artifacts arise (Tarantola, 1986). Sensitivity analysis is the tool by which we

survey and determine suitable model parametrization; it can be set up in the framework of

scattering theory based on the Born approximation. Numerical analysis of the scattering

patterns versus opening angle between incident and scattered waves, gives insights into the

influence of the different parametrization on the FWI.

In acoustic medium for long offset, P-wave velocity-density parametrization is more reli-

able to invert density than P-wave impedance-density parametrization (Prieux et al., 2013;

Gholami et al., 2013). In the context of anisotropic-acoustic FWI, based on the analysis

of the radiation patterns of different parameters, it has been shown that the influence of

the anisotropic parameter compared to the horizontal and vertical wave velocities remains

weak (Gholami et al., 2013). For large opening angles between the incident and reflected

wavevectors, a parametrization including one velocity and two anisotropic parameters max-

imal trade-off, which results in the low resolution for inverted anisotropy (da Silva et al.,

2016). Similarly efficient FWI models have been designed for acoustic vertical transversely

isotropic (VTI) (Plessix and Cao, 2011; Alkhalifah and Plessix, 2014; Operto et al., 2015;

He and Plessix, 2016) and acoustic orthorhombic media (Masmoudi and Alkhalifah, 2016).

In FWI, three parameter isotropic inversion is a challenging matter and not yet fully under-

stood; anisotropy and attenuation are not even yet themselves sufficiently well understood

in cases when both are active, to be included as unknowns in practical FWI. Anisotropic-

viscoelastic FWI therefore remains a “high value target for future technology development,

as the math-physics and numerical representation of the processes of wave propagation in

such media develop.

1.3 Thesis overview

The main objective of this thesis is to develop the theory of scattering of seismic waves from

arbitrary viscoelastic and anisotropic structures with applications to linearized AVO/AVAz
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analysis, model parametrization and sensitivity analysis in FWI. Necessary background

material on the notion of viscoelastic waves, the Born approximation, and the scattering

potential are presented for isotropic-viscoelastic media in chapter 2 and for viscoelastic-

anisotropic media in chapters 6 and 7. A detailed discussion on the low-contrast linearization

in viscoelastic-isotropic media introduced in chapter 4 and in viscoelastic-anisotropic media

in chapters 7. The rest of the thesis is organized as follows.

Chapter 2 is devoted to the scattering of the inhomogeneous (and homogeneous) seismic

waves in a low-loss isotropic-viscoelastic media. First three different types of wave, P-

, SI and SII are introduced based on the notation of Borcherdt (2009). Afterwards the

mathematical framework of the scattering potential based on the perturbation theory in

the complex domain is presented in both Cartesian and displacement coordinate systems.

Finally, the potentials for scattering of various types of viscoelastic waves are derived in

terms of perturbations in both isotropic and viscoelastic parameters, opening angle (the

angle between the directions of incident and scattered waves) and attenuation angle.

Chapter 3 presents a numerical implementation of the theoretical framework developed

in chapter 2. The modelling of viscoelastic wavefields is performed with a finite-difference

solver in time domain for a simple two layer medium. It is shown how contrasts in P- and

S-wave quality factors create reflections which are quantitatively in agreement with those

derived theoretically by Born approximation.

Chapter 4 deals with amplitude variation with offset in viscoelastic media when the

changes in attenuation angles across the boundary is taken into account. First viscoelastic

Snell’s law is discussed based on the complex ray parameter. By linearization of Snell’s

law, changes in phase and attenuation angles between two layers are expressed in terms of

changes in velocity and quality factors. Then, the exact reflection/transmission coefficients

are derived followed by linearized AVO equations. Finally, it is shown that how the linearized

AVO equations based on the perturbed Zoeppritz equation are equivalent to the scattering

potentials derived using the volume scattering approach explained in chapter 2.

Chapter 5 is dedicated to the importance of the effects of attenuation angle on the

both linear and nonlinear reflection coefficients. Taking into account Snell’s law in complex

domain, linearized AVO equations and exact reflection coefficients are decomposed into three
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terms, elastic, homogeneous and inhomogeneous. It is shown that how this decomposition

can be used to invert the quality factors in an appropriate inversion technique.

Chapter 6 contains a detailed analysis of how the scattering radiation patterns depend

on fractional and absolute changes in anisotropic and attenuative properties of the medium.

It is showed how P-to-P, P-to-SI, SI-to-SI and SII-to-SII scattering potentials can be decom-

posed into elastic, anisotropic, viscoelastic and anisotropic-viscoelastic components.

Chapter 7 is concerned with the scattering potentials and linearized reflection coeffi-

cients associated with weakly anisotropic, low-loss viscoelastic orthorhombic media. The

equations are obtained by applying the Born approximation based on the first order pertur-

bation theory. An elastic-orthorhombic stiffness tensor is described by nine real independent

parameters, vertical P- and S-wave velocity and seven generalized Thompson parameters

characterize the anisotropy in medium. If attenuation is taken into account, the stiffness

tensor components become complex, with imaginary parts that are connected to the quality

factors and Q-Thompson parameters. In deriving the results we assume that the background

medium is viscoelastic, however the perturbations are both in anisotropic and viscoelastic

properties. The obtained result is closely related to the linearized reflection coefficients

derived from the linearization of the exact solutions of the Zoeppritz equation.

Chapter 8 contains a summary and set of conclusions of this thesis.
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Chapter 2

Scattering of homogeneous and inhomogeneous seismic

waves in low-loss viscoelastic media

2.1 Abstract

Motivated by the need to derive and characterize increasingly sophisticated seismic data

analysis and inversion methods incorporating wave dissipation, we consider the problem of

scattering of homogeneous and inhomogeneous waves from perturbations in five viscoelastic

parameters (density, P- and S-wave velocities, and P- and S-wave quality factors), as formu-

lated in the context of the Born approximation. Within this approximation the total wave

field is the superposition of an incident plane wave and a scattered wave, the latter being a

spherical wave weighted by a function of solid angle called the scattering potential. In elastic

media the scattering potential is real, but if dissipation is included through a viscoelastic

model, the potential becomes complex and thus impacts the amplitude and phase of the out-

going wave. The isotropic-elastic scattering framework of Stolt and Weglein (2012), extended

to admit viscoelastic media, exposes these amplitude and phase phenomena to study, and

in particular allows certain well-known layered-medium viscoelastic results due to Borcherdt

to be re-considered in an arbitrary heterogeneous Earth. The main theoretical challenge in

doing this involves the choice of coordinate system over which to evaluate and analyze the

waves, which in the viscoelastic case must be based on complex vector analysis. We present a

candidate system within which several of Borcherdt’s key results carry over; for instance, we

show that elliptically polarized P- and SI- waves cannot be scattered into linearly polarized

SII-waves. Furthermore, the elastic formulation is straightforwardly recovered in the limit

as P- and S-wave quality factors tend to infinity.
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2.2 Introduction

Accurate and tractable mathematical models of wave propagation are a key to reliable seismic

data analysis. Our current ability to analytically describe seismic waves interacting with

arbitrary viscoelastic heterogeneities, in support of the derivation and characterization of

attenuation analysis methods and seismic full waveform inversion, is quite limited. Motivated

by this, we present a particular approach to the problem of scattering of homogeneous and

inhomogeneous viscoelastic waves from perturbations in density, P- and S-wave velocities,

and P- and S-wave quality factors, as formulated in the context of the Born approximation.

The scattering of seismic waves by purely elastic heterogeneities under the Born approxi-

mation has been investigated by many authors (Beylkin and Burridge, 1990; Sato et al., 2012;

Stolt and Weglein, 2012; Wu and Aki, 1985). Stolt and Weglein (2012) introduced a formal

theory for the description of the multidimensional scattering of seismic waves based on an

isotropic-elastic model. We identify as a research priority the adaptation of this approach to

incorporate other, more complete pictures of seismic wave propagation. Amongst these, the

extension to include anelasticity and/or viscoelasticity (Flugge, 1967), which brings to the

wave model the capacity to transform elastic energy into heat, ranks very high. Anelasticity

is generally held to be a key contributor to seismic attenuation, or “seismic Q”, which has

received several decades worth of careful attention in the literature (Aki and Richards, 2002;

Futterman, 1962). Development of methods for analysis (Tonn, 1990), processing (Bickel and

Natarajan, 1985; Hargreaves and Calvert, 1991; Innanen and Lira, 2010; Schwaiger et al.,

2007; Wang, 2006; Zhang and Ulrych, 2007), and inversion (Dahl et al., 1992; Causse et al.,

1999; Innanen and Weglein, 2007; Hicks and Pratt, 2001; Ribodetti and Virieux, 1998) of

wave data exhibiting the attenuation and dispersion associated with seismic Q remains a

very active research area.

Wave propagation in linear viscoelastic media has been extensively studied, both numer-

ically and analytically (Borcherdt, 1971, 1973a,b, 1977, 1982; Borcherdt and Wennerberg,

1985; Borcherdt et al., 1986; Borcherdt, 1988, 2009; Carcione et al., 1988b; Carcione, 1993;

Carcione et al., 1988a). Results for viscoelastic anisotropic media have also been derived

(Behura and Tsvankin, 2009b; Cervený and Psenćık, 2005a,b, 2008; Ursin and Stovas, 2002;
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Cervený and Psenćık, 1998). Borcherdt (2009) has presented a complete theory for seismic

waves propagating in layered linear viscoelastic media, describing reflection and refraction of

plane homogenous and inhomogeneous P, SI, and SII waves at planar viscoelastic boundaries.

In an elastic-isotropic setting, beginning with a plane defined by the incoming wave vector

and the outgoing wave vector, Stolt and Weglein (2012) develop scattering quantities which

in an intuitive manner generalize the layered-medium notions of reflections and conversions

of P, SV and SH-waves. The results are forms for the scattering operator whose diagonal

elements describe the potential of a volume scattering element to scatter a P-wave to a P-

wave, an SV to an SV-wave, and an SH to an SH-wave, and whose off-diagonal elements

describe the potential to convert, from, say, a P-wave to an SV-wave, etc. Having made a

”good” choice of coordinate systems, canonical results, such as the lack of P-SH and SV-SH

mode conversions, are naturally reproduced in their formulation: the off-diagonal element

corresponding to P-SH scattering is, for instance, seen to be identically zero.

Generalizing this approach to allow for viscoelastic waves of the type described by

Borcherdt has several positive outcomes. First, and foremost, it provides an analytical

framework for the examination of processes of scattering of viscoelastic waves from arbi-

trary three-dimensional heterogeneities, as opposed to layered media. Second, it provides

a foundation for direct linear and nonlinear inversion methods for reflection seismic data,

which go well beyond existing an-acoustic results (Innanen and Weglein, 2007; Innanen and

Lira, 2010; Weglein et al., 2009; Weglein, 2013). And third, it provides a means to compute

and analyze the gradient and Hessian quantities used in iterative seismic inversion (Virieux

and Operto, 2009). The main challenge lies in the need to choose from a much wider range

of possible systems of coordinates. Because viscoelastic wave vectors are complex, and the

real and imaginary components of these wave vectors are not necessarily parallel, the use of

incident and scattered wave vectors as the starting point for coordinate system selection is a

richer but more complicated idea. Nevertheless, judicious choices are possible, and we arrive

at a complex, or bivector coordinate system which appears to naturally extend the concepts

of Borcherdt (2009) to arbitrary 3D scattering.

We organize the paper as follows. Section 2.3 describes the mathematical framework

used to evaluate the wave propagation in a viscoelastic medium. Section 2.4 provides an
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explanation of viscoelastic scattering potential in displacement space based on the pertur-

bation theory. Section 2.5 develops the elements of scattering potential for various types of

viscoelastic wave scattering. Finally, section 2.6 offers some concluding remarks.

2.3 Mathematical formulation and review

2.3.1 Homogeneous and inhomogeneous waves in viscoelastic wave theory

The mathematical theory for the propagation of P, SI and SII waves in general viscoleas-

tic media is required to provide a rigorous basis for derivation of corresponding scattering

potentials. A brief summary of the theory as developed by Borcherdt (2009) is presented

here.

There are three types of waves in a viscoelastic medium: P, Type-I S, and Type-II S.

For each wave type there is a corresponding seismic quality factor. The quality factors for

homogenous waves can be expressed in terms of ratios of the real and imaginary parts of

the complex moduli, while those for inhomogeneous waves may be expressed in terms of the

quality factors and wave speeds for homogenous waves and the degree of inhomogeneity of

the waves. For low-loss media the quality factors for inhomogeneous waves do not necessarily

reduce to those for homogenous waves.

In this paper we will write quantities such as the viscoelastic wave vector and velocity for

inhomogeneous waves in terms of the reciprocal quality factors for homogenous waves, i.e., QP

andQS. Of the several mathematical possibilities this choice seems to be the most convenient,

expressing our results in the language of standard exploration and monitoring seismology.

As a consequence, the key result of this paper, the enumeration of the explicit elements

of the multidimensional viscoelastic scattering operator, appears in terms of perturbations

in QP and QS. These perturbations correspond to the relative-change quantities involved

in anelastic amplitude-variation-with-angle (AVA) and amplitude-variation-with-frequency

(AVF) expressions (Innanen, 2011).

In the case of inhomogeneous waves, the attenuation and propagation vectors are not

in the same direction. This makes the displacement vectors different from those of the

homogenous case. The particle motion for P-waves is elliptical in the plane constructed by
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attenuation and propagation vectors. This elliptical motion reduces to a linear motion in

the homogenous limit. Particle motion also distinguishes the two types of shear waves, SI

and SII. The first, which is the generalization of the SV-wave, has an elliptical displacement

vector in the propagation-attenuation plane. This is the SI-type wave. The second one,

which is the generalization of the SH wave, has linear particle motion perpendicular to the

propagation-attenuation plane. This is the SII-type wave.

2.3.2 Viscoelastic waves

Wave equations for the P- and S-wave potentials Φ and Ψ, respectively,

∇2Φ− α−2∂2
t Φ = 0, (2.1)

∇2Ψ− β−2∂2
t Ψ = 0, (2.2)

have plane wave solutions

Φ = αΦ0 exp [−i(KP · r− ωt)] , (2.3)

Ψ = βΨ0 exp [−i(KS · r− ωt)] , (2.4)

where √
KP ·KP = KP =

ω

α
, (2.5)

and √
KS ·KS = KS =

ω

β
, (2.6)

additionally, Φ0 and Ψ0 are complex scalar and vector constants (potentials respectively).

Also α and β are the complex numbers that, reduce to the P- and S-wave velocities respec-

tively in the case that attenuation in the medium goes to zero. For the low-loss viscoelastic

medium approximation where Q−1
P , Q−1

S � 1, α and β reduce to

α ≈ αL = αE

(
1 +

i

2
Q−1

P

)
, (2.7)

β ≈ βL = βE

(
1 +

i

2
Q−1

S

)
, (2.8)

12



where, αE and βE, respectively are P- and S-wave velocities and subscripts L indicates a

low-loss medium. The displacement vectors for P- and S-waves are given by

UP = ∇Φ = −iαKPΦ0 exp [−i(KP · r− ωt)] , (2.9)

US = ∇×Ψ = −iβ(KS ×Ψ0) exp [−i(KS · r− ωt)] . (2.10)

If Ψ0 = Ψ0n, where n is a unit vector orthogonal to the plane formed by PS−AS (Eq. 2.11),

the corresponding wave is considered to be of S type-I (SI) wave. Displacement vectors for

P- and S-waves with complex polarization vectors describe elliptical particle motion. The

wavevector of inhomogeneous waves is represented by

K = P− iA. (2.11)

Here P is the propagation vector, perpendicular to the constant phase plane P·r = constant,

and A is the attenuation vector perpendicular to the amplitude constant plane A · r =

constant, and r is the position vector. The attenuation vector A is in the direction of

maximum amplitude decay. If the attenuation and propagation vectors are parallel, the

wave is homogeneous (elastic behaviour is recovered in the limit as A vanishes) (figure 2.2).

If we represent the angle between P and A by δ, for δ 6= 90◦ we have

|P| = 2−
1
2

[
<(K ·K) +

√
[<(K ·K)]2 + [(=K ·K)]2 sec2 δ

] 1
2
, (2.12)

and

|A| = 2−
1
2

[
−<(K ·K) +

√
[<(K ·K)]2 + [(=K ·K)]2 sec2 δ

] 1
2
, (2.13)

where

K ·K = |P|2 − |A|2 − 2i|P||A| cos δ, (2.14)

and where <(K·K) and =(K·K) represent the real and imaginary parts of K·K respectively.

According to equation (2.14)

=(K ·K) = −2|P||A| cos δ, (2.15)

so, because in a viscoelastic medium =(K ·K) 6= 0, this implies that the maximum at-

tenuation |A| is not zero, and also that the direction of maximum attenuation cannot be
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perpendicular to the direction of phase propagation. As a result the attenuation angle

varies between 0◦ ≤ δ < 90◦. The attenuation angle δ for an isotropic viscoelastic medium

thus always varies between 0◦ and 90◦ (in anisotropic media it can exceed 90◦ (Behura and

Tsvankin, 2009a)). From this general framework we may now follow Borcherdt (2009) in

analyzing three types of independently propagating wave.

To understand the nature of the motion characterized by (2.9) and (2.10), consider a

complex number V = <V + i=V , multiplication of V with the complex wavevector K leads

to

VK = (<V + i=V )(P− iA) = (P<V + A=V ) + i(P=V −A<V ). (2.16)

If V is interpreted as a velocity, related to the wavevector via KV = ω, its real and imaginary

parts are

<V =
ω<K

(<K)2 + (=K)2
, (2.17)

=V = − ω=K
(<K)2 + (=K)2

. (2.18)

Because the polarization vector can be defined with the complex vector ξ as

ξ = <ξ + i=ξ =
V

ω
K, (2.19)

its real and imaginary parts of the polarization vectors are therefore

<ξ =
P<K −A=K

(<K)2 + (=K)2
, (2.20)

=ξ = − P=K + A<K
(<K)2 + (=K)2

. (2.21)

These two vectors are orthogonal, and |<ξ|2 − |=ξ|2 = 1. A simple analysis indicates that

particle motion related to the displacement for P-wave in equation (2.9) is an ellipse with

major axes |<ξ| and minor axes |=ξ|. In a similar manner, we can show that the polarization

vector for SI wave can be written as

ζS = <ζS + i=ζS = (<ξS + i=ξS)× n. (2.22)

As a result, for low-loss viscoelastic media the elliptical polarization takes the form

ξLP =
αE

ω

(
KLP +

i

2
Q−1

P PLP

)
, (2.23)
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ζLS =
βE

ω

(
KLS +

i

2
Q−1

S PLS

)
× n. (2.24)

Finally, we can redefine the displacement vectors for P- and S-waves as

ULP = ξLPΦ′0 exp [−i(KLP · r− ωt)] , (2.25)

ULS = ζLSΨ′0 exp [−i(KLS · r− ωt)] , (2.26)

Where we have defined Φ′0 = −iωΦ0 and Ψ′0 = −iωΨ0. Since we are interested in low-loss

viscoelastic medium, in what follows we will ignore the subscript L for notational simplicity.

We can rewrite the parameters that describe the elliptical motion for P- and SI-waves in

terms of attenuation angles and quality factors. For low-loss media, the major axis of ellipse

for P-wave particle motion, takes the form

|<ξP|2 ≈
1

2

(√
1 +Q−2

P sec2 δP + 1

)
, (2.27)

and the minor axes take the form

|=ξP|2 ≈
1

2

(√
1 +Q−2

P sec2 δP − 1

)
. (2.28)

If wave is excited by a point source in a weakly attenuating medium, the attenuation angle

is usually small (Zhu and Tsvankin, 2006b). If the attenuation vector forms an angle with

the propagation vector of 0◦ ≤ δP ≤ 70◦ always Q−2
P sec2 δP ≤ 0.1, then the absolute values

of the minor axes reduce to

|=ξP| =
1

2
Q−1

P sec δP. (2.29)

In Figure 2.1, we plot the magnitude of the minor axis of the ellipse of the P-wave particle

motion for the inhomogeneous P-wave vs. the attenuation angle δ (which varies from 0◦-

70◦). We repeat the plot for three values of reciprocal QP. The curves indicate that for fixed

material parameter values, |=ξP| increases with increasing degree of inhomogeneity, but this

increase is very small at small values of δ. For degrees of inhomogeneity of greater than 70

degrees the magnitude of the minor axis is significant for high absorption (Q−1
P > 0.1). When

δP = 0, the wave is homogeneous and the elliptical motion degenerates into linear motion in

the direction of propagation of the homogeneous wave. For high degrees of inhomogeneity
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Figure 2.1: Magnitude of the minor axes of the elliptical motion for an inhomogeneous wave
in a low-loss viscoelastic media versus attenuation angle δ for three values of reciprocal
quality factor.

(δP → 90◦) equation (2.29) is not satisfied. In this limit, Q−1
P sec δP � 1, so the minor and

major axes are equal:

|=ξP| ≈ |<ξP| ≈
√

1

2
Q−1

P sec δP. (2.30)

In this case polarization for inhomogeneous waves is circular.

Next, we assume that Ψ0 is not simply a complex number multiplied by a real unit vector

but is a complex vector in the xz-plane. In this case, the corresponding wave is considered to

be of SII-type (sometimes referred to as a linear S-wave). The particle motion for SII-wave is

linear for both homogeneous and inhomogeneous waves and perpendicular to the wavevector

KS. In this case the displacement vector takes the form

USII = y {KS · (Ψ0zx−Ψ0xz)} ei(−KS·r+ωt). (2.31)

Equation (2.31) indicates that the particle motion for SII-wave is linear perpendicular to the

(PS −AS)-plane.

2.4 The viscoelastic scattering operator and potentials

We next extend the elastic scattering theoretical framework of Stolt and Weglein (2012)

to accommodate the preceding viscoelastic quantities. We build on the above framework,
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Figure 2.2: a) Homogeneous wave with propagation and attenuation vectors in the same
direction (δ = 0). b) Inhomogeneous wave with none zero attenuation angle between the
propagation and attenuation vectors (δ 6= 0.)

formulating a description of scattering of homogeneous and inhomogeneous seismic waves

from arbitrary viscoelastic heterogeneities in the Earth. Scattering theory is a framework

within which various kinds of interactions of waves and particles can be analyzed. In the

context of seismic exploration, scattering theory relates perturbations in the properties of

the medium to the seismic waves that propagate through those perturbations (Weglein et al.,

2003). The perturbations are assembled, along with reference medium properties, in a core

quantity called the scattering operator, the construction of which for viscoelastic waves will

be the subject of this section.

The Born approximation is a solution accurate to first order in the scattering operator,

and is used as the basis for many types of migration and linearized inversion in seismic

applications (Bleistein, 1979; Clayton and Stolt, 1981; Beylkin, 1985). Mapping between

the scattering operator and the Born approximate model of seismic data usually involves

integrating the product of the scattering operator with Green’s functions, whose role is to

model wave propagation through the smooth parts of the Earth model. In this framework the

scattering operator studied in isolation provides insight into the physics of the interactions

of the wave with rapidly varying parts of the Earth. In this section we arrive at interpretable

forms of the viscoelastic scattering operator, including explicit expressions for the elements
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of the operator. Each element will represent the potential of a point in space to scatter a P

to a P wave, a P to an SI wave, etc. Then we will be in a position to analyze the viscoelastic

scattering problem for general insights.

2.4.1 The scattering operator in displacement space

In the scattering framework, the unperturbed medium is a reference medium and the per-

turbed medium is associated with the actual medium. The difference between the actual

and reference medium wave operators is the perturbation operator or scattering operator

(figure 2.3). In the elastic-isotropic case, this operator can be expressed in terms of a 3× 3

matrix, each element of which corresponds to the scattering of one wave type to another.

The diagonal elements refer to scattering which conserves wave type, and off-diagonal ele-

ments refer to the those which convert wave type. In viscoelastic case, the wave operator

is complex, as a result we have the differences in complex quantities. However we do not

define the perturbation in complex quantities explicitly, but we define the perturbation in

real physical quantities (Appendix A). To begin the process of form a viscoelastic scattering

operator, we express the viscoelastic wave equation as

LVE(r, ω)U(r, ω) = 0. (2.32)

Here the wave operator in Cartesian coordinates is

LVE =


Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

 , (2.33)

with the elements

(LVE)ij = ρω2δij + ∂i(ρα
2)∂j + δij∂k(ρβ

2)∂k − 2∂i(ρβ
2)∂j + ∂j(ρβ

2)∂i, (2.34)

for i, j, k = x, y, z. In the above equation we used the sum rule notation. The P- and S-wave

velocities are defined as

α =

√
ρ−1

(
K +

4M

3

)
, (2.35)
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Figure 2.3: Schematic breakdown of actual medium into reference medium and perturbations.

and

β =
√
ρ−1M, (2.36)

where ρ is the mass density, and M and K are viscoelastic moduli which are generally complex

and frequency dependent. The scattering matrix is the difference between perturbed and

unperturbed wave operators of the type in equation (2.33):

VVE(r, ω) = LVE(r, ω)− LVE0(r, ω) =


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

 , (2.37)

where subscript ”0” denotes the reference medium.

We restrict ourselves to scattering in locally isotropic viscoelastic medium. The fractional

variation in density, velocities and quality factors for S and P-waves are

Aτ =
τ − τ0

τ
� 1, (2.38)

where τ = ρ, αE, βE, QP, QS. Furthermore using equations (2.7) and (2.8), we can write

ρα2 − ρ0α
2
0 = ρ0α

2
0(Aρ + 2AαE

− iQ−1
P0AQP

) (2.39)

and

ρβ2 − ρ0β
2
0 = ρ0β

2
0(Aρ + 2AβE − iQ−1

S0AQS
). (2.40)

The elements of the scattering potential, in terms of these perturbations, are

ρ−1
0 (V ρ

VE)kl = Aρω
2δkl + α2

0∂kAρ∂l + β2
0 (δkl∂mAρ∂m − 2∂kAρ∂l + ∂lAρ∂k) , (2.41)
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ρ−1
0 (V αE

VE )kl = 2α2
0∂kAαE

∂l, (2.42)

ρ−1
0 (V βE

VE)kl = 2β2
0 (δkl∂mAβE∂m − 2∂kAβE∂l + ∂lAβE∂k) , (2.43)

ρ−1
0 (V QP

VE )kl = −iα2
0Q
−1
P0∂kAQP∂l, (2.44)

and

ρ−1
0 (V QS

VE )kl = −iβ2
0Q
−1
S0 (δkl∂mAQS

∂m − 2∂kAQS
∂l + ∂lAQS

∂k) , (2.45)

where we have defined

VVE = V ρ
VE + V αE

VE + V βE
VE + V QP

VE + V QS

VE . (2.46)

2.4.2 The scattering operator in P, SI and SII space

The next task is to evaluate the scattering matrix in a coordinate system which naturally

describes Borcherdt’s viscoelastic modes P, SI, SII, namely

VVE =



P
PVVE

P
SIIVVE

P
SIVVE

SII
P VVE

SII
SIIVVE

SII
SI VVE

SI
P VVE

SI
SIIVVE

SI
SIVVE


. (2.47)

Here, as in the original elastic-isotropic theory of Stolt and Weglein (2012), the diagonal

elements represent scattering which preserves the wave types and off-diagonal elements refer

to scattering which converts the type of waves. For example, P
SIVVE represents the potential

of a scattering point to convert a P-wave into an SI-type wave. Some elements are identically

zero, for instance P
SIIVVE = 0, as we shall show presently. This means that a P-wave with

elliptical polarization cannot convert into an SII wave with linear polarization. Since the

particle motion for SII-type wave is in the n direction we can define the normal polarization

vector in this direction.

Now, the scattering potential in displacement space can be written (Beylkin and Burridge,

1990)

I
RVVE = ξTI VVEξR. (2.48)
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Here ξ is the polarization vector, VVE is the scattering operator and subscripts I and R

respectively refer to the incident and reflected waves. Each type of displacement is deter-

mined by two angles, σ and δ, which indicate the directions of propagation and attenuation.

The vectors Pi and Ai (propagation and attenuation vectors for the incident wave) point

towards the scatterer while the vectors Pr and Ar for the reflected waves point away from

the scatterer. Without loss of generality we assume that the incident propagation vector is

in the z-direction, so the reflected and incident propagation and attenuation vectors can be

written as

Pr =
ω

VE

(x sinσ − z cosσ), (2.49)

Pi =
ω

VE

z, (2.50)

Ar =
ω

2VE

Q−1(x sinσ − z cosσ − tan δr(x cosσ + z sinσ)), (2.51)

Ai =
ω

2VE

Q−1(z− x tan δi). (2.52)

Here σ, with 0◦ < σ < 180◦, denotes the opening angle between the incident and reflected

propagation vectors and δr and δi are the angles between the attenuation and propagation

vectors for reflected and incident waves respectively, x is the unit vector in x-direction and z is

the unit vector in z-direction. In addition VE refers to elastic velocities αE and βE. The angle

that the attenuation vector makes with the z-axis is σ − δ. Regarding the displacements,

for inhomogeneous P- and SI-waves, the polarization vectors display an elliptical motion

in the x-z plane. In the homogeneous case P-wave particle motion is in the direction of

the propagation vector P and for SI-waves is a unit vector in the direction of P × y. For

SII-waves for both inhomogeneous and homogeneous waves the polarization is linear in the y-

direction. The polarizations vectors for incident and reflected P-waves using the propagation

and attenuation vectors are given by

ξPi = z + x
i

2
Q−1

P tan δPi, (2.53)

ξPr = [x sinσ − z cosσ] +
i

2
Q−1

P tan δPr [x cosσ + z sinσ] . (2.54)

The slowness vectors for incident and reflected waves are

kPi =
KPi

ω
=

1

αE

(
z− i

2
Q−1

P [z− x tan δPi]

)
, (2.55)
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kPr =
KPr

ω
=

1

αE

[x sinσ − z cosσ]−

i

2αE

Q−1
P [x sinσ − z cosσ − tan δPr(x cosσ + z sinσ)] . (2.56)

In this case the polarizations for incident and reflected SI waves are given by

ζSi = −x + z
i

2
Q−1

S tan δSi, (2.57)

ζSr = [z sinσ + x cosσ] +
i

2
Q−1

S tan δSr [z cosσ − x sinσ] . (2.58)

The slowness vectors for incident and reflected waves are

kSi =
KSi

ω
=

1

βE

(
z− i

2
Q−1

S [z− x tan δSi]

)
, (2.59)

kSr =
KSr

ω
=

1

βE

[x sinσ − z cosσ]−

i

2βE

Q−1
S [x sinσ − z cosσ − tan δSr(x cosσ + z sinσ)] . (2.60)

2.5 Elements of the P-SI-SII scattering matrix

We next write the scattering matrix element in frequency-independent form (Stolt and We-

glein, 2012). Since the differential operators are sandwiched between unperturbed Green’s

functions, we replace the left derivatives with i multiplied by the reflected wavevector Kr

and right derivative with i multiplied by the incident wavevector Ki. After replacing the left

and right derivatives by the appropriate wavevectors, the frequency independent scattering

potential is given by

VVE

ρ0ω2
= VVE = Vρ

VEAρ + VαE
VEAαE

+ VβE
VEAβE + VQP

VEAQP
+ VQS

VEAQS
, (2.61)

with the following components

(Vρ
VE)kl = δkl − α2

0k
r
kk

i
l − β2

0

(
δklk

r
mk

i
m − 2krkk

i
l + krl k

i
k

)
, (2.62)

(VαE
VE)kl = −2α2

0k
r
kk

i
l , (2.63)

(VβE
VE)kl = −2β2

0

(
δklk

r
mk

i
m − 2krkk

i
l + krl k

i
k

)
, (2.64)
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(VQP

VE)kl = iQ−1
P0α

2
0k

r
kk

i
l , (2.65)

and

(VQS

VE)kl = iQ−1
S0 β

2
0

(
δklk

r
mk

i
m − 2krkk

i
l + krl k

i
k

)
. (2.66)

Now to obtain the scattering matrix we sandwich the above expressions with the proper

polarization vectors. We use the vectors R and I to indicate the reflected and incident

polarization vectors, respectively. For perturbation terms we will write

I
RV

ρ
VE = I

RF − I
RGα − I

RGβ, (2.67)

I
RV

QP

VE = − i
2
Q−1

P0

{
I
RV

αE
VE

}
=
(
iQ−1

P0

)
I
RGα, (2.68)

I
RV

QS

VE = − i
2
Q−1

S0

{
I
RV

βE
VE

}
=
(
iQ−1

S0

)
I
RGβ, (2.69)

where we have defined

I
RF = R · I, (2.70)

I
RGα = α2

0(R · kr)(I · ki), (2.71)

I
RGβ = β2

0 {(R · I)(kr · ki)− 2(R · kr)(I · ki) + (I · kr)(R · ki)} . (2.72)

To determine the explicit forms for each component of the scattering potential, we need to

calculate I
RF , I

RGα and I
RGβ.

2.5.1 Viscoelastic P-P scattering

This element quantifies the potential for a point in a viscoelastic medium to scatter a P-wave

into a P-wave. The incident and reflected P-waves can be either inhomogeneous with elliptical

motion or homogeneous with linear motion in the direction of propagation, depending on the

angle between the propagation and attenuation vectors. In this case incident and reflected

waves are P-waves, R = ξPr and I = ξPi, and so we have

P
PF = ξPr · ξPi, (2.73)

P
PGα = α2

0(ξPr · kPr)(ξPi · kPi), (2.74)

P
PGβ = β2

0 {(ξPr · ξPi)(kPr · kPi)− 2(ξPr · kPr)(ξPi · kPi) + (ξPi · kPr)(ξPr · kPi)} . (2.75)
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Using the dot products of various types of polarizations and slowness vectors we have

ξPr · ξPi = − cosσ +
i

2
Q−1

P0 sinσ (tan δPr + tan δPi) , (2.76)

ξPr · kPr = ξPi · kPi =
1

αE0

(
1− i

2
Q−1

P0

)
, (2.77)

ξPr · kPi = ξPi · kPr =
1

αE0

{
− cosσ

(
1− i

2
Q−1

P0

)
+
i

2
Q−1

P0 sinσ (tan δPr + tan δPi)

}
, (2.78)

kPr · kPi =
1

α2
E0

[
− cosσ

(
1− iQ−1

P0

)
+
i

2
Q−1

P0 sinσ (tan δPr + tan δPi)

]
. (2.79)

The scattering potential for PP mode is

P
PVVE = P

PVE + iPPVAE, (2.80)

where elastic scattering potential P
PVE is given by

P
PVE =

[
−1− cosσ + 2

(
βE0

αE0

)2

sin2 σ

]
Aρ + 4

[(
βE0

αE0

)2

sin2 σ

]
Aβ − 2Aα (2.81)

and anelastic part of the scattering

P
PVAE = P

PV
ρ
AEAρ + P

PV
β
AEAβ + P

PV
QS

AEAQS
+ P

PV
QP

AEAQP
(2.82)

with

P
PV

ρ
AE = 2

(
βE0

αE0

)2
{

sin2 σ(Q−1
S0 −Q

−1
P0) +Q−1

P0

[
sin 2σ +

1

2

(
αE0

βE0

)2

sinσ

]
tan δP

}
(2.83)

P
PV

β
AE = 4

(
βE0

αE0

)2 {
sin2 σ(Q−1

S0 −Q
−1
P0) +Q−1

P0 sin 2σ tan δP

}
(2.84)

P
PV

QS

AE = −2Q−1
S0

(
βE0

αE0

)2

sin2 σ (2.85)

P
PV

QP

AE = Q−1
P0 (2.86)

In above equations we used the average attenuation angle δP = (δPr + δPi)/2. From equation

(2.80) it is evident that the viscoelastic scattering potential is complex. The real part is the

elastic scattering potential and the imaginary part is the term induced by the anelasticity of

the medium. Let us consider as a special case the situation that the incident and reflected

waves are homogeneous. In this case (2.83) and (2.84) reduce to

P
PV

β
AE = 2

(
P
PV

ρ
AE

)
= 4

(
βE0

αE0

)2

(Q−1
S0 −Q

−1
P0) sin2 σ. (2.87)
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Figure 2.4: Elastic and anelastic density(left) and S-wave velocity(right) components of the
viscoelastic potential for scattering of incident inhomogeneous P-wave to inhomogeneous
reflected P-wave versus of reflected wave angle σ, for δP = 60◦. Quality factor of P-wave for
reference medium is to be 10 and for S-wave is 7. Also the S-to P-wave velocity ratio for
reference medium is chosen to be 1/2. Dash line is for anelastic part and solid line for elastic
part.
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Here the angle dependences of density, S-wave velocity and S-wave quality factor are the

same. As a result the scattering patterns for these three parts are the same. In Figure

2.4 we plot the elastic and anelastic parts of the density and S-wave velocity components

of the potential for scattering of an inhomogeneous P-wave to an inhomogeneous P-wave.

We observe that the anelastic density component is comparatively small and the major

contribution comes from the elastic part. In the limit of normal incidence (σ = 0), where

incident and reflected propagation vectors are in the opposite direction, the absolute value

of the density part of the elastic scattering potential goes to its maximum value, and the

anelastic part approaches zero. For S-wave velocity component of the scattering potential,

similar to the density component, the major contribution to the reflectivity is from the elastic

part. In this case both elastic and anelastic components approach zero for normal incidence

as expected.

2.5.2 Viscoelastic P-SI scattering

In this case the reflected wave is of type SI, R = ζSr, and the incident wave is a P-wave,

I = ξPi. We have

P
SIF = ζSr · ξPi (2.88)

P
SIGα = α2

0(ζSr · kSr)(ξPi · kPi) (2.89)

P
SIGβ = β2

0 {(ζSr · ξPi)(kSr · kPi)− 2(ζSr · kSr)(ξPi · kPi) + (ξPi · kSr)(ζSr · kPi)} . (2.90)

The dot products of the polarization and slowness vectors can be expressed in terms of

the angle of the reflected propagation vector and the angles between the propagation and

attenuation vectors:

ζSr · ξPi = − sinσ − i

2
cosσ(Q−1

S0 tan δSr +Q−1
P0 tan δPi) (2.91)

ξPi · kSr =
1

βE0

{
− cosσ

(
1− i

2
Q−1

S0

)
+
i

2
sinσ(Q−1

S0 tan δSr +Q−1
P0 tan δPi)

}
(2.92)

ζSr · kPi = − 1

αE0

{
sinσ

(
1− i

2
Q−1

P0

)
+
i

2
cosσ(Q−1

S0 tan δSr +Q−1
P0 tan δPi)

}
(2.93)

kSr · kPi =
1

αE0βE0

{
− cosσ

(
1− i

2
(Q−1

P0 +Q−1
S0 )

)
+
i

2
sinσ(Q−1

S0 tan δSr +Q−1
P0 tan δPi)

}
.

(2.94)
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Figure 2.5: Elastic and anelastic density(left) and S-wave velocity(right) components of the
viscoelastic potential for scattering of incident inhomogeneous P-wave to inhomogeneous
reflected SI-wave versus of reflected wave angle σ, for δS = δP = 60◦. Quality factor of
P-wave for reference medium is to be 10 and for S-wave is 7. Also the S- to P-wave velocity
ratio for reference medium is chosen to be 1/2. Dash line is for anelastic part and solid line
for elastic part.
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The scattering potential for P to SI is, consequently,

P
SIVVE = P

SIVE + iPSIVAE (2.95)

where the elastic part of the scattering potential P
SIVE is given by

P
SIVE = −

[
sinσ +

(
βE0

αE0

)
sin 2σ

]
Aρ − 2

[(
βE0

αE0

)
sin 2σ

]
Aβ (2.96)

and anelastic part is given by

P
SIVAE = P

SIV
ρ
AEAρ + P

SIV
β
AEAβ + P

SIV
QS

AEAQS
(2.97)

with

P
SIV

ρ
AE = −1

2

(
βE0

αE0

)
×{

sin 2σ(Q−1
S0 −Q

−1
P0) +

[
2 cos 2σ +

(
αE0

βE0

)
cosσ

]
(Q−1

S0 tan δS +Q−1
P0 tan δP)

} (2.98)

P
SIV

β
AE = −

(
βE0

αE0

){
sin 2σ(Q−1

S0 −Q
−1
P0) + 2 cos 2σ(Q−1

S0 tan δS +Q−1
P0 tan δP)

}
(2.99)

P
SIV

QS

AE =

(
βE0

αE0

)
Q−1

S0 sin 2σ. (2.100)

Similarly to the P-P case, the P-SI scattering potential is a complex function whose real

part corresponds to the potential for elastic P-SV scattering, and whose imaginary part

corresponds to the part of the reflectivity due to the anelasticity of the medium. The

correspondence is qualitatively as expected given standard AVO results. For instance, in

P-SI scattering there is no contribution from the change in P-wave velocity to reflection

response.

In the special case that both reflected and incident waves are homogeneous the density

and S-wave velocity parts reduce to

P
SIV

β
AE = 2P

SIV
ρ
AE = −

(
βE0

αE0

)
(Q−1

S0 −Q
−1
P0) sin 2σ, (2.101)

from which we discern that the contributions from density, S-wave velocity and its quality

factor have the same angle dependencies. In contrast with the P-P scattering potential, for a

P-SI element at small angles, the relative change in S-wave quality factor does make a contri-

bution to the anelastic part. At normal incidence, the elastic part of the scattering potential
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is zero, however the anelastic part due to relative change in density and S-wave velocity is

not zero. In Figure 2.5 we plot the elastic and anelastic parts of the potential of density and

S-wave velocity perturbations to scatter an inhomogeneous P-wave into an inhomogeneous

SI-wave. At normal incidence, the density component of the scattering potential is zero for

any background attenuation angle, but the anelastic part goes to its maximum value. In

contrast to the case of P-P scattering, here the contribution of density to the anelastic part

of the scattering is considerable. For the S-wave velocity component, the elastic and anelas-

tic parts of the scattering potential have the almost the same contribution to the change

in reflectivity but the opposite phase. In other words, for normal incidence the anelastic

part goes to its maximum value and the elastic part is zero. Comparing this to the case of

P-P scattering, we conclude that the anelasticity of a scattering heterogeneity has a greater

influence on the P-SI mode than on the P-P mode.

2.5.3 Viscoelastic SI-to-SI scattering

The third diagonal element of the scattering matrix refers to the scattering of an SI-wave

to another SI-wave. In this case both incident and reflected waves are S-waves, respectively

represented by wave number vectors ζSr and ζSi. We have, to begin,

SI
SIF = ζSr · ζSi (2.102)

SI
SIGβ = β2

0 {(ζSr · ζSi)(kSr · kSi) + (ζSi · kSr)(ζSr · kSi)} . (2.103)

Using the dot product

ζSr · ζSi = − cosσ +
i

2
Q−1

S0 sinσ (tan δSr + tan δSi) (2.104)

ζSr · kSi = −ζSi · kSr =
1

βE0

{
sinσ

(
1− i

2
Q−1

S0

)
+
i

2
Q−1

S0 cosσ(tan δrS + tan δiS)

}
, (2.105)

the related scattering element is

SI
SIVVE = SI

SIVE + iSI
SIVAE (2.106)

where the elastic part of the scattering potential SI
SIVE is given by

SI
SIVE = − (cosσ + cos 2σ)Aρ − (2 cos 2σ)Aβ (2.107)
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Figure 2.6: Elastic and anelastic density(left) and S-wave velocity(right) components of the
viscoelastic potential for scattering of incident inhomogeneous SI-wave to inhomogeneous
reflected SI-wave versus of reflected wave angle σ, for δS = 60◦. Quality factor for S-wave is
7. Also the S- to P-wave velocity ratio for reference medium is chosen to be 1/2. Dash line
is for anelastic part and solid line for elastic part.

and anelastic part by

SI
SIVAE = SI

SIV
ρ
AEAρ + SI

SIV
β
AEAβ + SI

SIV
QS

AEAQS
, (2.108)

with

SI
SIV

ρ
AE = Q−1

S0 (sinσ + 2 sin 2σ) tan δS (2.109)

SI
SIV

β
AE = 4Q−1

S0 sin 2σ tan δS (2.110)

SI
SIV

QS

AE = Q−1
S0 cos 2σ. (2.111)

At normal incidence the scattering potential is zero. Also, in the case of zero background at-

tenuation angle, only the AQS
influences the scattering potential, with the contribution from

density and the S-wave velocity vanishing. In Figure 2.6, we plot the elastic and anelastic

parts of the potential of density and S-velocity heterogeneities to scatter an inhomogeneous
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SI-wave into an inhomogeneous SI-wave. Comparing the P-P, P-SI and SI-SI modes alto-

gether, we conclude that the anelasticity of a scatterer has a more pronounced effect on the

outgoing wave for the converted wave modes. We can see by comparing Figures 2.4, 2.5 and

2.6 that only for the P-SI mode is the anelastic part of the scattering potential comparable

to the elastic part.

2.5.4 Viscoelastic scattering of SII-waves

Borcherdt (2009) proved that for an infinite planar boundary between viscoelastic media

in welded contact, neither an incident P- nor an SI-wave can convert through reflection

or transmission into an SII-wave, and vice-versa. In the case of viscoelastic scattering from

multidimensional heterogeneities we will show likewise that to first order (i.e., under the Born

approximation) an incident SII-wave can only scatter into another SII-wave. For example

let us consider the scattering of P-wave to SII-wave, in this case we have

P
SIIF = n · ξPi = 0 (2.112)

P
SIIGα = α2

0(n · kSr)(ξPi · kPi) = 0 (2.113)

P
SIIGβ = β2

0 {(n · ξPi)(kSr · kPi)− 2(n · kSr)(ξPi · kPi) + (ξPi · kSr)(n · kPi)} = 0, (2.114)

where we have used the fact that polarization direction for SII wave is perpendicular to the

plane constructed by the attenuation and propagation vectors. In a similar manner it is seen

that the scattering elements for SI-SII, SII-P, P-SII, SII-SI and SI-SII are identically zero.

To analyse SII-SII scattering we calculate the second diagonal element of the scattering

matrix, namely SII
SIIVVE, obtaining

SII
SIIVVE = SII

SIIVE + iSII
SIIVAE (2.115)

where the elastic part of the scattering potential is given by

SII
SIIVE = (1 + cosσ)Aρ + (2 cosσ)Aβ (2.116)

and the anelastic part by

SII
SIIVAE = −Q−1

S0 sinσ tan δS(2Aβ + Aρ)−Q−1
S0 cosσAQS

(2.117)
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Figure 2.7: Elastic and anelastic density(left) and S-velocity(right) components of the vis-
coelastic potential for scattering of incident inhomogeneous SII-wave to inhomogeneous re-
flected SII-wave versus of reflected wave angle σ, for δS = 60◦. Quality factor for S-wave is
7. Also the S-to P-velocity ratio for reference medium is chosen to be 1/2. Dash line is for
anelastic part and solid line for elastic part.
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In Figure 2.7 we plot the elastic and anelastic parts of the potential of density and S-wave

velocity perturbations to scatter an inhomogeneous SII-wave into an inhomogeneous SII-

wave.

2.6 Summary and conclusion

The seismic response of the real earth deviates from the elastic-isotropic model often used

to frame the seismic wave propagation problem. Here we investigate viscoelasticity in its

capacity to reproduce the effect of dissipation on the propagation of a wave. Full formal

theory for viscoelastic seismic waves exists, but the most powerful versions of it have largely

been restricted to layered media. Exact, closed-form solutions for viscoelastic waves in

arbitrary multidimensional media are not in general available, but, to first order, scattering

formulations can provide interpretable approximate forms. These forms are important for

obtaining physical insight into interactions of seismic waves with dissipative media, but also

for posing and solving inverse scattering and full waveform inversion problems.

In a viscoelastic medium generally the directions of maximum attenuation and wave

propagation are not aligned, in which case the wave is considered inhomogeneous. Allowing

for inhomogeneity, there are three types of waves that propagate in a viscoelastic medium.

P and SI-waves with elliptical motion in the plane defined by propagation and attenuation

directions, and SII with linear polarization perpendicular to that plane.

To make a scattering matrix whose elements refer to the scattering of viscoelastic wave

modes, we first define the polarization vectors for P, SI and SII-waves. For P-wave the polar-

ization vector is a complex vector in the plane of attenuation-propagation. This polarization

involves the elliptical particle motion. For SI-waves, polarization vector is also a complex

vector, this time perpendicular to the P-wave polarization. The particle motion for SI-wave

is on an ellipse perpendicular to the P-wave particle motion ellipse. In the case that attenu-

ation in medium goes to zero, SI-wave reduces to the SV-wave. Another S-wave is SII, which

has a linear polarization and in the case of elastic reduces to the SH wave. We show that an

SII-wave can only be scattered to an SII-wave. Also P- and SI-waves can not be converted

to an SII-wave. So in the scattering matrix the only converted waves are P-SI and S-IP.
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The scattering potential in displacement space is obtained by sandwiching the scattering

operator between the incident and reflected polarization vectors. Since for the viscoelas-

tic waves, polarizations are complex, the viscoelastic scattering potential we obtained is a

complex function whose real part is elastic scattering potential and whose imaginary part is

related to the anelasticity of the medium. In contrast to the elastic scattering potential that

only alters the amplitude of the outgoing field, the viscoelastic scattering potential alters

both amplitude and phase of the outgoing field. Anelasticity appears to have more significant

effect on converted waves than on conserved modes.
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Appendix A

Perturbation in complex domain

Consider to the complex velocity in a low-loss viscoelastic medium

V = VE

(
1 +

i

2
Q−1

)
, (A.1)

the perturbation in V is given by

∆V = V − V0 = VE − VE0 +
i

2

(
VEQ

−1 − VE0Q
−1
0

)
. (A.2)

By inserting

VE = (1 + AVE)VE0, (A.3)

Q−1 = (1− AQP
)Q−1

0 , (A.4)

into (A.2) we arrive at

∆V = ∆VE +
i

2
(AVE − AQ)VE0Q

−1
0 , (A.5)

or in terms of fractional perturbations

AV = AVE −
i

2
Q−1

0 AQ. (A.6)

So the fractional perturbation of complex velocity is equal to perturbation in elastic velocity

plus a complex term related to the perturbation in quality factor. Now let’s consider to the

amplitude and phase of the fractional perturbation in V, in this case amplitude and phase

respectively are

Amp(AV ) = |AV | =
√
A2
VE

+
1

4
Q−2

0 A2
Q ≈ |AVE|, (A.7)

Phase(AV ) = arctan

(
1

2
Q−1

0

AQ
AVE

)
≈ 1

2
Q−1

0

AQ
AVE

, (A.8)

As a result, in linearized form of the scattering potential for a low-loss viscoelastic medium,

the only change in the complex quantities appears in the phase of the fractional perturbation.
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Chapter 3

Numerical analysis of scattering in a viscoelastic

medium

3.1 Abstract

Recently we have developed a theoretical picture of viscoelastic scattering applicable to

seismic waves propagating in arbitrary multidimensional geological volumes. The purpose

of this paper is to begin to integrate this theoretical analysis with numerical analysis. That

combination will permit very general versions of attenuation/Q related analysis, processing,

and inversion in multicomponent seismic to be formulated. Here we used the code developed

by Martin and Komatitsch (2009b) to simulate the reflections caused by general viscoelastic

contrasts designed to be comparable to the results from the Born approximation. We apply

the code to a viscoelastic geological model involving a contrast between two layers with

different elastic and anelastic properties. We show that the anelastic contrasts generate

reflection amplitudes which quantitatively are in agreement with those derived theoretically

by Moradi and Innanen (2013).

3.2 Introduction

The goal of seismic inversion is estimation of physical properties of subsurface earth from

recorded data. In an inverse problem recorded wavefield is known whereas the subsurface

properties in which the wave field propagates are unknown. In order to solve the inverse

problem, it is essential to understand the forward problem in which we model the the observed

data from physical characteristics of subsurface.

The scattering of seismic waves in a heterogenous medium in the context of the Born

approximation has been investigated by many authors (Beylkin and Burridge, 1990; Stolt

and Weglein, 2012). Stolt and Weglein (2012) introduced a formal theory for the description

of the multidimensional scattering of seismic waves based on an isotropic-elastic model. We
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have elsewhere identified as a research priority the adaptation of this approach to incorporate

other, more complete pictures of seismic wave propagation. We have progressed one of these,

the extension to include anelasticity and/or viscoelasticity (Flugge, 1967), which brings to

the wave model the capacity to transform elastic energy into heat. Anelasticity is generally

held to be a key contributor to seismic attenuation, or “seismic Q”, which has received

several decades worth of careful attention in the literature (e.g., Aki and Richards, 2002;

Futterman, 1962).

Wave propagation in linear viscoelastic media has been extensively studied numerically

(Carcione et al., 1988b,a; Carcione, 1993). Borcherdt (2009) has presented a complete theory

for seismic waves propagating in layered anelastic media, assuming a viscoelastic model to

hold. Borcherdt in particular predicts a range of transverse inhomogeneous wave types

unique to viscoelastic media (Type I and II S waves), and develops rules for conversion of

one type to another during interactions with planar boundaries.

Motivated by the need to derive and characterize increasingly sophisticated seismic data

analysis and inversion methods incorporating wave dissipation, the problem of scattering of

homogeneous and inhomogeneous waves from perturbations in five viscoelastic parameters

(density, P- and S-wave velocities, and P- and S-wave quality factors), formulated in the

context of the Born approximation (Moradi and Innanen, 2013). In this report, we validate

those formulation using existing numerical forward modeling schemes (Carcione, 1993).

The paper is organized as follows. In section 1 we review the physical models for viscoelas-

tic medium based on the dash-pot spring systems and introduced the constitutive equation

between stress and strain. In section 3.3, the wave equation for viscoelastic medium based

on the memory variables are described. In section 3.4, we briefly describe the scattering

potential components in Born approximation. In section 3.5, we simulate the wave propa-

gation in a two layer medium with elastic and anelastic properties. Finally in section 3.6 we

summarized the results and clarify the future directions for this research.
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3.3 Review of common viscoelastic models

For a linear elastic medium the stress and strain has linear relationship. If the stress is

removed, a linear elastic medium instantaneously returns to its original shape. Mathemati-

cally it is said that elastic medium behaviour is time-independent. In contrast, a viscoelas-

tic medium has a time-dependent behaviour, when stress is loaded and unloaded. Such

a medium has both viscosity and elasticity. For viscoelastic medium, stress not only is a

function of strain but also time variation of strain (Flugge, 1967; Borcherdt, 2009).

To mimic the viscoelastic behaviour of medium, various combinations of springs and

dashpots are used. Springs display the elastic properties and dashpots simulate the viscous

characteristics. The simplest analogous model can by obtained by connecting springs and

dashpots in parallel or in series. The first one called Kelvin-Voigt model and the second one

Maxwell model. In Kelvin-Voigt, since the spring and dashpot are in parallel, the displace-

ment is the same throughout the system but different stresses are experienced. A Maxwell

model in which the spring and dashpot are in series, the stress is the same throughout the

system but different displacements are experienced.

Springs represents the elastic properties of the medium and dashpots simulates the fluid

behavior which are assumed to deform continuously. In the Maxwell model when stress

applied to the system spring deformation is finite but continuous so long as the stress is

maintained. Due to this the Maxwell model is said simulate a viscoelastic fluid. In contrast,

in Kelvin-Voigt model when stress is applied to the model, since the dashpot is in parallel

to the spring, the dashpot deformes as long as the spring keeps deforming. In other words,

the dashpot can not deform continuously. As a result Kelvin-Voigt model behaves as a

viscoelastic solid medium. Neither Kelvin-Voigt model nor Maxwell model represent a real

viscoelastic model, however in combination with additional springs in series or in parallel

can explain most properties of a viscoelastic medium. One example is referred to as the

standard linear model.

Let us consider a one-dimensional viscoelastic model. In this case the relation between

stress (σ) and strain(e) is given by a convolution (Borcherdt, 2009)

σ(t) = r ∗ ε̇ =

∫ t

−∞
r(t− τ)

[
dε

dt

]
t=τ

dτ, (3.1)

38



Figure 3.1: Quality factor Q for different numbers of relaxation mechanisms in the frequency
band from 0 to 120 Hz. The frequency band from 30 to 100 Hz, for which Q is constructed
to be approximately constant, is separated by vertical lines. Dot line is for Qp and dash line
for Qs

where r is relaxation function. Equation (3.1) implies that the stress at any time t is

determined by the entire history of the strain until time t. The inverse of this equation

which relates the strain to stress also can be written as a convolution

ε(t) = c ∗ σ,t =

∫ ∞
−∞

c(t− τ)

[
dσ

dt

]
t=τ

dτ, (3.2)

where c is the creep function and,t denotes the derivative respect to time. The complex

modulus M is next defined as

M(ω) = iωR(ω), (3.3)

where R(ω) is Fourier transform of the relaxation function. The fractional energy loss

expressed in terms of the ratio of the imaginary and real parts of the complex modulus

(Borcherdt, 2009) is then used to define the reciprocal of the Q factor

Q−1 =
=M
<M

=
MI

MR

. (3.4)

The relaxation and creep functions for standard linear model are given by (Flugge, 1967)

r(t) = Mr

[
1−

(
1− τε

τσ

)
e−t/τσ

]
H(t), (3.5)
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c(t) =
1

Mr

[
1−

(
1− τσ

τε

)
e−t/τε

]
H(t). (3.6)

Here H(t) is step function and τε and τσ stand for relaxation times for strain and stress

respectively

τσ =
η

k1 + k2

, τε =
η

k2

. (3.7)

In addition Mr refers to the relaxed elastic modulus

Mr =
k1k2

k1 + k2

, (3.8)

where k is a constant relating stress and strain in Hooke’s law for a spring and η is the

viscosity of the dashpot component. It can be seen that elastic limit is recovered by setting

τσ = τε. By applying the Fourier transform to (3.5) and inserting in (3.3) we obtain the

complex modulus

M(ω) = Mr
1 + iωτε
1 + iωτσ

. (3.9)

Unrelaxed or high-frequency modulus is an instantaneous elastic response of the viscoelastic

material which is given by

Mu = lim
ω→∞

M(ω) = Mr
τε
τσ
. (3.10)

On the other side, low-frequency or relaxed modulus is a long term equilibrium response

Mr = lim
ω→0

M(ω). (3.11)

Finally using the definition of quality factor in (3.4) we arrive at

Q−1 =
ω(τε − τσ)

1 + ω2τετσ
. (3.12)

We can see that for τσ = τε the attenuation factor goes to zero. The above analysis can be

generalized to the l-mechanism system. In this case complex modulus takes the following

form (Flugge, 1967)

M(ω) = Mr

(
1− L+

L∑
l=1

1 + iωτεl
1 + iωτσl

)
. (3.13)

Similar to the one-mechanism case, the unrelaxed modulus is

Mu = Mr +
L∑
l=1

Ml, (3.14)
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where

Ml = Mr

(
τεl
τσl
− 1

)
. (3.15)

In this case the quality factor is given by

Q(ω) =
1− L+

∑L
l=1

1+ω2τεlτσl
1+ω2τ2σl∑L

l=1
ω(τεl−τσl)
1+ω2τεlτσl

. (3.16)

There is a method to extract the desiredQ-constant model for given values of relaxation times

called τ -model (Blanch et al., 1995). To describe this method first we define a dimensionless

parameter τ

τ =
τεl
τσl
− 1. (3.17)

For real materials τ � 1, so we can approximate (3.16) as

Q−1(ω, τσl, τ) ≈
L∑
l=1

ωτσlτ

1 + ω2τ 2
σl

. (3.18)

Using the least-squares inversion, the optimization variables τσl and τ are determined.

The following function is minimized numerically in a least-squares sense

J(τσl, τ) =

∫ ωb

ωa

[
Q−1(ω, τσl, τ)−Q−1

0

]2
dω. (3.19)

In Figure 3.1, we plot the quality factor for P- and S-waves versus frequency for a two-

mechanism model. We observe that frequency in the range of 30Hz < f < 100Hz, quality

factor is nearly constant. In can be shown that a larger number of relaxation mechanisms

gives better constant-Q approximations, especially for higher frequencies.

3.3.1 Equation of Motion

In one dimension, say in x-direction, the particle velocity is given by

u̇x = vx = ε̇. (3.20)

where u is displacement in x-direction, v is the particle velocity. Now, the equation of motion

for 1-D viscoelastic medium is given by

ρv̇ = σ,x, (3.21)
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σ̇ = ṙ ∗ v,x, (3.22)

where ’, x’ denotes the partial derivative respect to x. To eliminate the convolution term in

Eq. (3.22), memory variables are defined (Carcione, 1993). Differentiating equation (3.1)

with respect to t

σ̇(t) =

({
Mr +

L∑
l=1

Mle
−t/τσl

}
δ(t) +

L∑
l=1

Ml

τσl
e−t/τσlH(t)

)
∗ v,x. (3.23)

By definition of the L-memory variable we have

ml =

[
Ml

τσl
e−t/τσlH(t)

]
∗ v,x (3.24)

In which case equation Eq.(3.23) reduces to

σ̇(t) = Muv,x +
L∑
l=1

ml. (3.25)

The only convolutional term that left is in equation (3.24). To remove that we take the time

derivative and obtain

ṁl =

[
Ml

τσl
e−t/τσlδ(t)− 1

τσl

{
Ml

τσl
e−t/τσl

}
H(t)

]
∗ v,x, (3.26)

finding that the memory variables satisfy in a first order differential equation

ṁl =
ml

τσl
+
Ml

τσl
v,x. (3.27)

Equations (3.21),(3.25), and (3.27) comprise a set of 2 + L equations, referred to 1-D vis-

coelastic wave propagation in a medium with L sets of standard linear solids.

3.4 Viscoelastic scattering amplitude

Allowing for inhomogeneity, there are three types of waves that propagate in a viscoelastic

medium. P and SI waves with elliptical motion in the plane defined by propagation and

attenuation directions, and SII with linear polarization perpendicular to that plane. If the

two half-space medium are very similar we can define the linearized reflectivity functions in

terms of changes in density, velocities and quality factors. The fractional perturbation in

property τ is defined as

Aτ =
∆τ

τ̄
, (3.28)
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where τ = ρ, α, β,Qp, Qs and

∆τ = τ2 − τ1, (3.29)

and

τ̄ =
τ2 + τ1

2
. (3.30)

Frequency independent scattering potential for scattering of P-wave to P-wave is given

by(Moradi and Innanen, 2013)

P
PVvisco =

(
P
PVα

e

)
Aα +

(
P
PVρ

e + iPPVρ
ane

)
Aρ +

(
P
PVβ

e + iPPVβ
ane

)
Aβ

+ i
(
P
PVQhs

ane

)
AQs + i

(
P
PVQp

ane

)
AQp . (3.31)

The term corresponds to the P-wave velocity is real and terms related to S-wave and density

are complex. In addition contributions for perturbation in quality factors of P- and S-wave

are purely imaginary. Scattering potentials for P to SI and SI to SI are give by

P
SIVvisco =

(
P
SIVρ

e + iPSIVρ
ane

)
Aρ +

(
P
SIVβ

e + iPSIVβ
ane

)
Aβ + i

(
P
SIVQhs

ane

)
AQs , (3.32)

SI
SIVvisco =

(
SI
SIVρ

e + iSISIVρ
ane

)
Aρ +

(
SI
SIVβ

e + iSISIVβ
ane

)
Aβ + i

(
SI
SIVQhs

ane

)
AQs . (3.33)

SI
P Vvisco =

(
SI
P Vρ

e + iSIP Vρ
ane

)
Aρ +

(
SI
P Vβ

e + iSIP Vβ
ane

)
Aβ + i

(
SI
P VQhs

ane

)
AQs . (3.34)

It can be seen from (3.32) and (3.34) that only relative differences in density, S-wave ve-

locity and it’s quality factor influence the scattered waves. On the other hand fractional

perturbations in P-wave velocity and it’s quality factor has no contributions in these cases.

In the next section we numerically examine the effects of changing in elastic and anelastic

properties of medium on the scattered wave.

3.5 Numerical implementation

In two dimensions we have 8 + 7L dynamic variables; three stress values σxx, σxy, σyy, and

corresponding 3L memory variables mxxl;myyl;mxyl, 4L relaxation times, τ pεl; τ
p
σl; τ

s
εl; τ

s
σl, two

components of particle velocity vx; vy and three material parameters µ; π; ρ. Where π is the
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relaxation modulus corresponding to P -wave analogues to λ+ 2µ in the elastic case where λ

and µ are Lame parameters. Stress, memory variables and velocity are the wave variables,

and relaxation times and material parameters define the and make-up of the viscoelastic

medium.

Figure 3.2 is a simple two layer model that uses 900× 200 grid with spacing Dx = Dy =

5m. We put the layer boundary at the depth of 400m to set up the contrasts in elastic and

anelastic properties of medium. In addition, we buried the source in depth 50m by injecting

a vertical displacement wavelet with a central frequency of 45Hz. We expect not only to see

P-to-P modes, but to record the SI-to-P and SI-to-SI modes as well as the surface effects.

Contributions of perturbations in elasic and anelastic properties to the scattered waves

are numerically examined as follows. First the viscoelastic code (Martin and Komatitsch

(2009a)) is run with the perturbations in density, velocities and quality factors on a homo-

geneous background model in place. Second, we isolate the upgoing scattered wave field

by re-running the code without the perturbations and subtracting the resulting direct wave

field. The results are displayed in figures 3.3 to 3.7.

Figures 3.3, 3.4 and 3.5 illustrate the reflections caused by ∆α, ∆β and ∆ρ. Similar

to the elastic medium changing in the P-wave velocity produced only PP scattered wave,

which is expected as we have one term in P-to-P scattering potential Eq. (3.31). However,

perturbation in density and S-velocity generate all modes (figures 3.4).

According to Eq.(3.16), in order to simulate the contrast in Q, we changed the corre-

sponding relaxation times of stress and strain for P- and S-waves, and left all other properties

constant. Figure 3.6 displays the scattering of P-to-P wave for contrast in Qp. As seen, there

is one reflection which corresponds to only one perturbation term in Qp in scattering poten-

tial. Figure 3.7 shows the influence of perturbation in Qs on scattered waves. Perturbation

in Qp only influence the P-to-P mode according to Eq. (3.31). However contribution of

perturbation in Qs exists in all modes in Eq.(3.31) to (3.34). The consistency of the de-

rived scattering potentials with numerical modeling of the radiation patterns generated by

perturbations in density, P- and S-wave velocities and quality factors is shown in figures

(3.8)-(3.11).
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Figure 3.2: Model description of two layer viscoelastic medium.
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Figure 3.3: Simulated seismic data corresponding to the contrast in P-wave velocity α. The
left figure is the x-component of displacement and right is the y-component of displacement.
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Figure 3.4: Simulated seismic data corresponding to the contrast in S-wave velocity β. The
left figure is the x-component of displacement and right is the y-component of displacement.
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Figure 3.5: Simulated seismic data corresponding to the contrast in density ρ.The left figure
is the x-component of displacement and right is the y-component of displacement.
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Figure 3.6: Simulated seismic data corresponding to the contrast in quality factor for P-wave
velocity Qp. The left figure is the x-component of displacement and right is the y-component
of displacement.
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Figure 3.8: Comparison of theoretical results for PP scattering potential with numerical
simulation of wave scattering from density scatter point in a) elastic background and b)
viscoelastic background medium. σ is the opening angle between the incident and reflected
(scattered) wave.

49



Figure 3.9: The same explanation as figure 3.8 for P-wave scatter point.

Figure 3.10: The same explanation as figure 3.8 for S-wave scatter point.
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Figure 3.11: The same explanation as figure 3.8 for P- and S-wave quality factor scatter
points.

3.6 Summary and future direction

In summary, the numerical analysis of scattering in viscoelastic medium in the context of

Born approximation is investigated. Scattering potential in the presence of anelasticity

has been studied in (Moradi and Innanen, 2013). There are two important features, first

the perturbation in the quality factors of P- and S-waves has contribution in scattering

potential. Second, scattering potential is a complex function in which the real part is elastic

scattering potential and imaginary part corresponds to anelasticity in medium. In this

report numerically we examine the first feature. We show that perturbation in quality

factor for P-wave between two layers generate only P-to-P reflection. The latter result is

concordance with the viscoelastic scattering potential, which indicate that there is one term

due to perturbation in Qp.

The consistency of our theoretical/scattering treatment with the numerical results ob-

tained by an independent modeling code (based on the framework of Carcione et al. (1988b))

is a significant step towards the development of several processing and inversion applications

for data with nonneglible P and S wave attenuation. These in include standard Q estimation

techniques, but also viscoelastic extensions of land seismic reflection full waveform inversion.

Additionally, we can investigate the second feature of scattering amplitude, which is

related to complex terms induced by anelasticity. From equation (3.31) to (3.34) we can

see that scattering potential elements corresponds to perturbation in density and S-velocity
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have imaginary parts. So comparing to the elastic case we expect the changes not only in

amplitude of scattered wave but also in the phase behaviour.
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Appendix B

Appendixe: 3-D viscoelastic medium

The constitutive equation for a 2-D(or 3D) linear isotropic homogeneous viscoelastic medium

is given by

σij = Λ̇ ∗ δijεkk + 2Ṁ ∗ εij, (B.1)

Time derivative of the strain tensor can be written as

ε̇ij =
1

2
(∂ivj + ∂jvi). (B.2)

Where v is particle velocity. For a standard linear model of viscoelastic medium we can

define

Π = Λ + 2M = πΓp(t)H(t), (B.3)

and

M = µΓs(t)H(t), (B.4)

where τ pεl is relaxation time of strain for P-wave, τ sεl is relaxation time of strain for S-wave

and τσl is relaxation time of stress for both P- and S-wave. In addition we define

Γk(t) = 1−
L∑
l=1

(
1− τ kεl

τσl

)
e−t/τσl , k = p, s (B.5)

After some algebra we arrive at

σ̇ij = (πΓp0 − 2µΓs0) ∂kvk + 2µΓs0∂ivj +
L∑
l=1

mijl, i = j (B.6)

and

σ̇ij = µΓs0(∂ivj + ∂jvi) +
L∑
l=1

rijl, i 6= j (B.7)

Where Γ0 = Γ(t = 0) and mijl is a memory tensor for mechanism-l, which satisfies in the

following differential equation

ṁijl = − 1

τσl

[
mijl +

{
π

(
τ pεl
τσl

)
− 2µ

(
τ sεl
τσl

)}
∂kvk + 2µ

(
τ sεl
τσl

)
∂ivj

]
, i = j (B.8)
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for diagonal terms, and

ṁijl = − 1

τσl

[
rijl +

(
τ sεl
τσl

)
(∂ivj + ∂jvi)

]
, i 6= j (B.9)

The linearized equation for wave propagation in absence of body forces is given by

ρüi = σij,j i = x, y. (B.10)

Where , j is spacial derivative, ρ is density, u denotes the displacement and σ refers to the

stress.
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Chapter 4

Viscoelastic amplitude variation with offset equations

with account taken of jumps in attenuation angle

4.1 Abstract

Anelastic properties of reservoir rocks are important and sensitive indicators of fluid satura-

tion and viscosity changes due (for instance) to steam injection. The description of seismic

waves propagating through viscoelastic continua is quite complex, involving a range of unique

homogeneous and inhomogeneous modes. This is true even in the relatively simple theoreti-

cal environment of amplitude-variation-with-offset (AVO) analysis. For instance, a complete

treatment of the problem of linearizing the solutions of the low-loss viscoelastic Zoeppritz

equations, to obtain an extended Aki-Richards equations (one that is in accord with the

appropriate complex Snell’s law) is lacking in the literature. Also missing is a clear analyti-

cal path allowing such forms to be reconciled with more general volume scattering pictures

of viscoelastic seismic wave propagation. Our analysis, which provides these two missing

elements, leads to approximate reflection and transmission coefficients for the P-, types-I

and II S-waves. These involve additional, complex, terms alongside those of the standard

isotropic-elastic Aki-Richards equations. The extra terms are shown to have a significant

influence on reflection strengths, particularly when the degree of inhomogeneity is high. The

particular AVO forms we present are finally shown to be special cases of potentials for volume

scattering from viscoelastic inclusions.

4.2 Introduction

Recently a volume scattering picture of viscoelastic seismic waves has been developed for

the purposes of modeling, processing and inversion of seismic data exhibiting non-negligible

intrinsic attenuation (Moradi and Innanen, 2015b). That work, which culminates in the

derivation of the mathematical form of the viscoelastic scattering potential, can be under-
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stood as the extension of the exact layered-medium result of (Borcherdt, 2009) to a linearized

but fully multidimensional framework. It adds, to the toolbox for the quantitative analysis

of homogeneous and inhomogeneous anelastic waves, a perturbation-based approach, to sit

alongside complex ray-based techniques (Hearn and Krebes, 1990) and numerical techniques

(Carcione et al., 1988a,b; Carcione, 1993; Robertsson et al., 1994; Carcione, 2007).

From the point of view of practical exploration and monitoring geophysics, the conse-

quences of the scattering result are twofold. First, all direct inverse scattering target iden-

tification/inversion methods are formulated beginning with the framing of an appropriate

scattering potential (Weglein et al., 2003, 2009). So, the new framework permits a range of

viscoacoustic inverse scattering results (Innanen and Weglein, 2007; Innanen and Lira, 2010)

now to be posed for the more complete attenuating elastic case. Second, the scattering po-

tential is also a useful starting point in the construction of Frechet kernels for full waveform

inversion (Fichtner, 2010; Fichtner and van Driel, 2014). If it is desirable to include some

particular observable viscoelastic phenomenon (e.g., inhomogeneous wave modes) in a full

waveform inversion procedure, the Frechet kernel must be general enough to admit that

phenomenon. So, the new viscoelastic result also makes possible the derivation of general

full waveform inversion formulas for attenuating media.

There remain several outstanding questions regarding the relationship between the newer

viscoelastic volume scattering picture and the older stratified medium picture. The purpose

of this paper is to address those questions.

In exploration and monitoring geophysics, backscattered seismic amplitudes from strat-

ified media fit into processing flows through AVO/AVA technology (Castagna and Backus,

1993; Foster et al., 2010). The workhorse formula within this technology is the Aki-Richards

approach (Aki and Richards, 2002), wherein exact displacement reflection coefficients RPP,

RPS, RSP and RSS are linearized with respect to perturbations in elastic properties across a

reflecting boundary. Stolt and Weglein (2012) have shown that there is a close relationship

between the isotropic-elastic scattering potentials and the Aki-Richards equations, the former

reducing to the latter for small contrasts and small opening angles. It follows that a similar

reduction of the viscoelastic case should lead to formulas corresponding to a viscoelastic-

type Aki-Richards equations. A confirmation of this expectation, and the detailed process
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by which it occurs, are outstanding issues.

Anelastic reflection coefficients have been discussed analytically (White, 1965; Krebes,

1984; Ursin and Stovas, 2002; Zhao et al., 2014) and numerically (Samec and Blangy, 1992),

and in the context of a variety of linear approximations, both in isotropic and anisotropic

settings (Behura and Tsvankin, 2009b,a; Innanen, 2011). These latter formulas are exam-

ples of anelastic Aki-Richards equations, and so they belong to the same class of formulas

in which we expect the reduced version of the general viscoelastic scattering potential to

belong. Formulas of this kind can be used to drive anelastic inversion procedures, both

linear and nonlinear (Innanen, 2011); or, alternatively, via examination of the frequency

rate of change of reflection coefficients (Innanen, 2012). Techniques of this kind become

increasingly relevant as evidence accrues that anelastic amplitude signatures provide direct

information about reservoir fluids (Ostrander, 1984; Chapman et al., 2006; Odebeatu et al.,

2006; Schmalholz and Podladchikov, 2009; Ren et al., 2009; Wu et al., 2014)

The general process of an inhomogeneous viscoelastic plane wave interacting with a planar

horizontal boundary is quite complicated. Thus far no linearization of the exact equations

for this reflection and transmission problem has been presented in the literature wherein

general inhomogeneity is accommodated. A key result in this paper is the provision of such

a linearization (i.e., viscoelastic Aki-Richards equations), and the demonstration that the

viscoelastic volume scattering model reduces to it.

A full linearization procedure must take into account in detail both specialized anelas-

tic Zoeppritz equations and the complex ray parameter/vertical slowness vector as input

to those equations. We begin with the latter wave quantities, determining the relationship

between perturbations in elastic P- and S-wave velocities and quality factors across a reflect-

ing boundary and the resulting perturbations in the P- and S-wave attenuation angles (i.e.,

the angles between planes of constant phase and planes of constant amplitude). We then

write down the Zoeppritz equations, formulated for reflection, transmission and conversion

of plane anelastic P and type-I S waves (see Borcherdt, 2009 for a complete discussion of

P, SI and SII modes). These lead to exact, though rather complicated, expressions for all

requisite reflection and transmission coefficients. Next, the P-P, P-SI, and SI-SI coefficients

are linearized by considering the effect of weak contrasts on both the complex Snell’s law and
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the Zoeppritz equations. Finally we demonstrate the consistency between the linearized vis-

coelastic reflection coefficient expressions and the viscoelastic scattering potentials as derived

in the general volume scattering framework (Moradi and Innanen, 2015b).

4.3 Viscoelastic ray parameters and slownesses

Linearized AVO analysis requires the definition of polarization and slowness vectors. In a

viscoelastic medium, the wavenumber vector is a complex vector whose real part characterizes

the direction of wave propagation and imaginary part characterizes the attenuation of the

wave. The wavenumber vector of an inhomogeneous wave is represented by

K = P− iA. (4.1)

Here P is the propagation vector perpendicular to the constant phase plane P ·r = constant,

and A is the attenuation vector perpendicular to the amplitude constant plane A · r =

constant. The attenuation vector A is in the direction of maximum decrease of amplitude.

In the case that attenuation and propagation vectors are in the same direction, the wave is

said to be homogeneous. An elastic media is represented by A = 0. If we represent the angle

between P and A by δ, for inhomogeneous waves: 0 < δ < π/2. Throughout the paper we

assume the media is low-loss, which means that inverse of quality factors Q−1
P and Q−1

S are

much less than unity. In this case, complex P- and S-wave velocities in viscoelastic media

are generalized to the elastic P- and S-velocities VPE and VSE:

VP = VPE

(
1 + i

Q−1
P

2

)
, (4.2)

VS = VSE

(
1 + i

Q−1
S

2

)
. (4.3)

There are three types of waves in viscoelastic media, P-, Type-I and -II S waves. Inhomoge-

neous P- and SI- waves have the elliptical polarization which reduce to the linear in the limit

of homogenous wave. An SII wave is always linearly polarized. The displacement vectors for

P- and SI-waves are (Borcherdt, 2009)

UP = ξPΦ0 exp [−i(KP · r− ωt)] , (4.4)
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Figure 4.1: Diagram illustrating the complex ray parameter for various values of reciprocal
quality factor Q and attenuation angle δ.

US = ζSΨ0 exp [−i(KS · r− ωt)] , (4.5)

where Φ0 and Ψ0 are complex scalar constants and ξP and ζS are, respectively, the polar-

ization vectors for P- and SI-waves

ξP =
1

ω
VPKP =

VPE

ω

{
KP +

i

2
Q−1

P PP

}
,

ζS =
1

ω
VSKS × n =

VSE

ω

{
KS +

i

2
Q−1

S PS

}
× n,

(4.6)

where n is a unit vector orthogonal to the plane formed by PS and AS. Simple analysis

shows that the particle motion related to the displacement for P and SI waves is elliptical.

The above results apply for viscoelastic plane waves propagating in an isotropic homoge-

neous medium. What happens if an inhomogeneous wave with elliptical polarization hits the

boundary between two half-spaces? To answer this question we define two half-spaces with

different physical properties separated by a planar boundary. The analysis of the Zoeppritz

equations and the continuity of displacements and stresses across the boundary is similar to

the elastic case. The difference is that ray parameters and vertical slownesses are complex.
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Let us consider a wave number vector corresponding to an incident P-wave (figure 4.3):

PP =
ω

VPE

(z cos θP + x sin θP),

AP = Q−1
P

ω

2VPE

(z[cos θP + sin θP tan δP] + x[sin θP − cos θP tan δP]) .
(4.7)

The displacement for this wave field is

U↓P ' (ξxx + ξzz) exp {−iω(px+ qPz − t)} , (4.8)

where ↓ indicates the direction of the vertical component of the incident wave propagation

vector, and where the complex ray parameter p and vertical slowness qP are defined as

p =
1

ω
(Px − iAx) =

1

VPE

[
sin θP

(
1− iQ

−1
P

2

)
+
i

2
Q−1

P cos θP tan δP

]
,

qP =
1

ω
(Pz − iAz) =

1

VPE

[
cos θP

(
1− iQ

−1
P

2

)
− i

2
Q−1

P sin θP tan δP

]
.

(4.9)

In addition we define the x- and z-components of the polarization vectors as

ξx = pVP = sin θP +
i

2
Q−1

P cos θP tan δP,

ξz = qPVP = cos θP −
i

2
Q−1

P sin θP tan δP.
(4.10)

Analogous expressions hold for the case of an incident S-wave. We confirm our results by

observing that the complex ray parameter, vertical slowness and polarization components

satisfy the following relations

p2 + q2
P =

1

V 2
PE

(1 + iQ−1
P ) =

1

V 2
P

,

ξ2
x + ξ2

z = 1.

(4.11)

In Figure 4.1, we plot the complex ray parameter versus phase and attenuation angles for

various values of quality factor Q in the complex plane. It can be seen that the ray param-

eter for a viscoelastic medium is an ellipse whose eccentricity grows for smaller values of

attenuation angle.

4.4 Viscoelastic Snell’s law in the low-contrast approximation

Consider two homogeneous viscoelastic half spaces separated by a plane interface. All prop-

erties and quantities related to the upper and lower half spaces are labeled respectively by
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subscripts 1 and 2. Snell’s law expresses the relationship between incident and transmitted

angles and velocities before and after the reflection or transmission of waves. The study of

Snell’s law in viscoelastic media is required for several reasons: first among them is that

we can analyze the homogeneity or inhomogeneity of the reflected and transmitted waves

relative to the homogeneity or inhomogeneity of the incident wave. Secondly, in the process

of linearization we need to obtain the perturbation in phase and attenuation angles in terms

of perturbations in physical properties. Snell’s law for viscoelastic materials is discussed by

Wennerberg (1985) and Borcherdt (2009). Since the ray parameter in a viscoelastic medium

is complex, the generalized Snell’s law has two parts, real and imaginary.

Snell’s law is based on the fact that the horizontal slowness (ray parameter) is conserved

during the reflection and transmission from a boundary. For a viscoelastic medium, the ray

parameter not only depends on the phase angle but also on the attenuation angle. Also it is

a complex quantity whose real part is the elastic ray parameter given by

pE =
sin θP1

VPE1

=
sin θP2

VPE2

=
sin θS1

VSE1

=
sin θS2

VSE2

, (4.12)

and whose imaginary part is:

pA =
Q−1
P1

2
(pE − qPE1 tan δP1) =

Q−1
P2

2
(pE − qPE2 tan δP2),

=
Q−1
S1

2
(pE − qSE1 tan δS1) =

Q−1
S2

2
(pE − qSE2 tan δS2),

(4.13)

where

qSE =
cos θS
VSE

, qPE =
cos θP
VPE

, (4.14)

are the elastic vertical slownesses. Here θP1 is the angle for incident P-wave, θP2 the angle

for transmitted P-wave, θS1 the angle of reflected S-wave and θS2 the angle of transmitted S-

wave. Using the imaginary part of Snell’s law we can analyze the conditions for homogeneity

and inhomogeneity of the reflected and transmitted waves (Borcherdt, 2009, 1982). For

example, for an incident P-wave, the angle of incidence is equal to the angle of the reflected

P-wave, which is confirmed using the real part of Snell’s law. In this case the imaginary part

of Snell’s law ensures that the attenuation angle for incident and reflected waves are equal. As

a result the reflected P-wave is homogeneous if and only if the incident wave is homogeneous.

Let us consider the case where we have an incident inhomogeneous P-wave. Using the first
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Figure 4.2: Diagram illustrating the transmitted attenuation angle δP2 versus incident angle
θP1 and incident attenuation angle δP1(a) contract in both velocity and quality factor (b)
contrast in quality factor with constant velocity (c) contrast in velocity with constant quality
factor.

two terms in (4.13) and equations (4.12) and (4.14), the transmitted attenuation angle for

the P-wave, in terms of incident attenuation angle and incident phase angle, is given by

tan δP2 =

(
VPE2

VPE1

)
sin θP1 − QP2

QP1
[sin θP1 − cos θP1 tan δP1]√

1−
(
VPE2

VPE1

)2

sin2 θP1

. (4.15)

For reflected and transmitted S-wave, respectively we have

tan δS1 =

(
VSE1

VPE1

)
sin θP1 − QS1

QP1
[sin θP1 − cos θP1 tan δP1]√

1−
(
VSE1

VPE1

)2

sin2 θP1

,

tan δS2 =

(
VSE2

VPE1

)
sin θP1 − QS2

QP1
[sin θP1 − cos θP1 tan δP1]√

1−
(
VSE2

VPE1

)2

sin2 θP1

.

(4.16)

For an incident P-wave, if VPE2 > VSE2 > VPE1, when θP1 → 90◦, the wave is refracted

rather than transmitted. In this case Snell’s law predicts two critical angles, one for the

refracted P-wave and the other for the refracted S-wave.

Let us consider the special case in which there is no contrast in P-wave quality factors
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QP1 = QP2. In this case

tan δP2 =

(
VPE2

VPE1

)
cos θP1√

1−
(
VPE2

VPE1

)2

sin2 θP1

tan δP1. (4.17)

This equation shows that even if there is no contrast in the P-wave quality factor, the incident

and transmitted attenuation angles are different. In other words, a P-wave velocity contrast

alone can cause a change in the attenuation angle. Figure 4.2, illustrates the transmitted

attenuation angle versus incident angle and incident attenuation angle. It can be seen that

for a contrast in P-wave velocity the incident and transmitted attenuation angles are not the

same. At normal incidence, θP1 = 0, we have

tan δP2 =

(
VPE2QP2

VPE1QP1

)
tan δP1, (4.18)

tan δS1 =

(
VSE1QS1

VPE1QP1

)
tan δP1, (4.19)

tan δS2 =

(
VSE2QS2

VPE1QP1

)
tan δP1. (4.20)

So at normal incidence, if the incident P-wave is an (in)homogeneous wave, the reflected or

transmitted S- and P-waves are (in)homogenous.

To analyze the contributions of the jumps in elastic and anelastic properties to the reflec-

tivities, in an environment familiar to AVO theorists and practitioners, we next linearize the

reflection amplitudes. To calculate the approximate reflectivities for a low contrast model,

and to write the physical quantities in medium 1, and medium 2 in terms of fractional per-

turbations, we must express the phase and attenuation angles in perturbed form. This in

turn requires us to linearize the generalized Snell’s law in eqs. (4.12) and (4.13).

The main assumption required to extract the approximate form of the reflectivities is

that the physical properties in the two layers are only slightly different. In other words, we

can define fractional changes in properties as perturbations which are much smaller than

one. This procedure is straightforward for properties of the medium like density, velocities

and quality factors. For example the density of the layer above the reflector is given by

ρ1 = ρ̄

(
1− 1

2

∆ρ

ρ̄

)
, (4.21)
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while the density in the layer below the reflector is

ρ2 = ρ̄

(
1 +

1

2

∆ρ

ρ̄

)
. (4.22)

Similar expressions are valid for VP, VS, QP and QS. In the above relations, ∆ refers to the

difference in the lower and upper layers and bar indicates the average of the quantities. In

the final form of the linearized reflectivity we shouldn’t have any quantities related explicitly

to either the upper or lower medium. Hence we need to express the phase and attenuation

angles in terms of corresponding perturbations. This can be done by linearization of Snell’s

law. In the previous section we saw that Snell’s law has both real and imaginary parts. By

applying the linearization to the real part we obtain the perturbation in phase angle in terms

of the perturbation in the corresponding velocity, weighted by the average of the phase angle.

Using the linearization of the imaginary part, we obtain the perturbation in the attenuation

angle in terms of the perturbations in the corresponding velocities and quality factors. In

what follows any quantity related to the material property, slowness vector or angles without

subscripts 1 or 2, stands for the average of that quantity. The real part of Snell’s law for

P-wave results in:
sin θP1

VPE1

=
sin θP2

VPE2

. (4.23)

Using the expressions (4.21) and (4.22) for incidence phase angle for P-wave, θP1, and trans-

mitted phase angle θP2, we expand the sin functions as

sin θP1 = sin θP

(
1− 1

2

∆θP

tan θP

)
, (4.24)

sin θP2 = sin θP

(
1 +

1

2

∆θP

tan θP

)
. (4.25)

Inserting (4.24) and (4.25) and corresponding expressions for VPE1 and VPE2 in terms of

average and differences in the P-wave velocity, we obtain the difference in the incidence and

transmitted angles in terms of the fractional perturbation in the P-wave velocity

∆θP ≈
∆VPE

VPE

tan θP. (4.26)

A similar expression holds for the θS. Consider the imaginary part of the Snell’s law as

QP2

QP1

VPE2

VPE1

cos δP2

cos δP1

=
sin (θP2 − δP2)

sin (θP1 − δP1)
. (4.27)
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By expansion of the cosine functions in terms of differences and averages in attenuation angle

we arrive at

cos δP1 = cos δP

(
1 +

1

2
tan δP∆δP

)
, (4.28)

cos δP2 = cos δP

(
1− 1

2
tan δP∆δP

)
. (4.29)

Using the equations (4.24) and (4.25) for sin of δP1, δP2, θP1, θP2 and the corresponding

relation for velocities and quality factors in terms of perturbations we arrive at

∆δP =
1

2
sin 2δP

{
∆VPE

VPE

1

cos2 θP

+

(
1− tan θP

tan δP

)
∆QP

QP

}
, (4.30)

and similarly for the S-wave

∆δS =
1

2
sin 2δS

{
∆VSE

VSE

1

cos2 θS
+

(
1− tan θS

tan δS

)
∆QS

QS

}
. (4.31)

As a result, perturbation in attenuation angle can be expressed in terms of perturbation in

elastic velocities and quality factors. Also perturbation in attenuation angle depends to the

average angle θ.

4.5 Exact reflection/transmission coefficients

It has been shown that waves with elliptical polarization can not be converted to waves with

the linear polarizations (Borcherdt, 2009; Moradi and Innanen, 2015b). For example SII

wave that has a linear polarization does not convert to P or SI waves. As a result we can

write the reflection transmission for P- and SI-waves as a 4× 4 matrix given by

R =


↓PP↑ ↓SIP↑ ↑PP↑ ↑SIP↑

↓PSI↑ ↓SISI↑ ↑PSI↑ ↑SISI↑

↓PP↓ ↓SIP↓ ↑PP↓ ↑SIP↓

↓PSI↓ ↓SISI↓ ↑PSI↓ ↑SISI↓

 . (4.32)

In this notation, the first letter refers the type of incident wave, and the second letter de-

notes the type of reflected or transmitted wave. The downward arrow ↓ indicates a wave

traveling downward and ↑ indicates a wave traveling upward. So that a combination ↓↑

refers a reflection coefficient, and a combination ↑↑ indicates a transmission coefficient. The
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Figure 4.3: Schematic diagram showing definitions of the phase and attenuation angles of the
incident, reflected, and transmitted rays of an incident P-wave with non-normal incidence.
Medium 1 is defined by its P-wave velocity VP1, S-wave velocity VS1, P-wave quality factor
QP1, S-wave quality factor QS1 and its density ρ1; and for medium 2, by VP2, VS2, QP2, QS2 and
ρ2. Angles are defined as, θP1 for the incident and reflected P-wave in medium 1, θS1 for the
reflected SI-wave, and θP2 and θS2 respectively for transmitted P- and SI-waves. Attenuation
angle for incident and reflected P-wave is given by δP1, also attenuation angles for reflected
SI-wave, transmitted P- and SI-waves respectively are given by δS1, δS2 and δP2. ξPi, ξPr

and ξPt respectively denotes the complex polarization vectors for incident, reflected and
transmitted P-waves and ζSr and ζSt are the polarizations for the reflected and transmitted
SI-waves respectively.
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diagonal elements of the reflection-transmission matrix represents the reflections that pre-

serve the type of the waves. For example ↓PP↑ refers to the reflected upgoing P-wave from

downgoing incidence P-wave and similar explanations for other diagonal elements. On the

other hand some off-diagonal elements indicate converted waves. For instance, ↓SIP↑ denotes

a reflected upgoing P from incidence downgoing SI wave. Other off-diagonal elements refer

to transmitted waves either converted modes or preserved modes. For example ↓SISI↓ is re-

lated to the transmitted downgoing SI wave from a downgoing incidence SI wave and ↓SIP↓

is a downgoing transmitted P wave from a downgoing incidence SI wave. For non-normal

incidence, an incident P-wave generates reflected P- and SI-waves and transmitted P- and

SI-waves. The reflection and transmission coefficients depend on the angle of incidence and

attenuation as well as on the material properties of the two layers. Fig. 4.3, is a schematic

description of the reflection/transmission problem for an incident inhomogeneous P-wave.

The displacements for incident, reflected and transmitted waves are

U↓Pi ' ξPi exp (iKPi · r) = (ξP1xx + ξP1zz) exp {iω(px+ qP1z)} , (4.33)

U↑Pr ' (↓PP↑)ξPr exp (iKPr · r) = (↓PP↑)(ξP1xx− ξP1zz) exp {iω(px− qP1z)} , (4.34)

U↓Pt ' (↓PP↓)ξPt exp (iKPt · r) = (↓PP↓)(ξP2xx + ξP2zz) exp {iω(px+ qP2z)} , (4.35)

U↑Sr ' (↓PSI↑)ζSr exp (iKSr · r) = (↓PSI↑)(ξS1zx + ξS1xz) exp {iω(px− qS1z)} , (4.36)

U↓St ' (↓PSI↓)ζSt exp (iKSt · r) = (↓PSI↓)(ξS2zx− ξS2xz) exp {iω(px+ qS2z)} , (4.37)

Here the angle of incidence and reflection for the P-wave is defined by θP1, the angle of the

reflected SI-wave defined by θS1, and θP2, and θS2 are the angles respectively for transmitted

P- and SI waves. After solving the Zoeppritz equations, the reflection coefficients are given

by (Ikelle and Amundsen, 2005)

(↓PP↑) =
c1d2 − c3d4

d1d2 + d3d4

, (4.38)

(↓PSI↑) = −
(
VP1

VS1

)
c3d1 + c1d3

d1d2 + d3d4

, (4.39)

(↓SISI↑) = − c2d1 + c4d3

d1d2 + d3d4

, (4.40)
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where

d1 = −2p2∆M(qP1 − qP2) + (ρ1qP2 + ρ2qP1), (4.41)

d2 = −2p2∆M(qS1 − qS2) + (ρ1qS2 + ρ2qS1), (4.42)

d3 = −p
[
2∆M(qP1qS2 + p2)−∆ρ

]
, (4.43)

d4 = −p
[
2∆M(qP2qS1 + p2)−∆ρ

]
, (4.44)

c1 = −2p2∆M(qP1 + qP2)− (ρ1qP2 − ρ2qP1), (4.45)

c2 = −2p2∆M(qS1 + qS2)− (ρ1qS2 − ρ2qS1), (4.46)

c3 = p
[
2∆M(qP1qS2 − p2) + ∆ρ

]
, (4.47)

c4 = p
[
2∆M(qP2qS1 − p2) + ∆ρ

]
. (4.48)

We can write the differences in complex moduli M as a sum of the differences in elastic

shear modulus plus an imaginary part

∆M = ∆µE + i∆µA, (4.49)

where the real part is given by

∆µE = µE2 − µE1 = ρ2V
2
SE2 − ρ1V

2
SE1, (4.50)

and imaginary part by

∆µA = Q−1
S2µE2 −Q−1

S1µE1 = ρ2V
2
SE2Q

−1
S2 − ρ1V

2
SE1Q

−1
S1 . (4.51)

By having the exact reflection coefficients, and the linearization tools for viscoelastic prop-

erties, we are ready to calculate the AVO equations.

4.6 Linearization of reflectivity

In this section we derive the linearized form of the P-to-P, P-to-SI and SI-to-SI reflection co-

efficients. For a low-loss viscoelastic medium we follow the Aki and Richards (2002) approach

which is based on the assumption of low contrasts in both elastic and anelastic properties.
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For a viscoelastic medium, linearized coefficients are functions of the averages of elastic and

anelastic properties across the interface and fractional changes in properties. Amplitude

variation with offset (AVO) analysis is based on expressions for reflection coefficients in elas-

tic media. If anelasticity is present it is modified to a complex quantity whose real part is

the elastic reflection coefficients. The exact form of the reflectivities are too complicated

to provide much intuitive information about the physical properties of the subsurface and

their relationship with seismic amplitudes. Fortunately, for most reflecting interfaces in seis-

mology the change in the elastic and anelastic properties are small, so that we can linearize

the reflectivities in terms of perturbations of earth properties, defined as the ratio of the

difference to the average of the properties of the contiguous layers. The resulting equations

are much more straightforward to analyze, and form a stable platform for inversion.

4.6.1 P-to-P reflection coefficient

In this section we derive the first order approximation to the P-to-P reflection coefficient.

Let us consider the case that an inhomogeneous P-wave hits the boundary of a slightly

different low-loss viscoelastic medium (Figure 4.4). In this case the reflected P-wave is also

an inhomogeneous wave. All complex quantities and expressions we have defined thus far

include a first order contribution from the attenuation factor Q−1. As a result, in the low-

loss approximation any term in (4.38) which includes two imaginary parts in a product is

negligible.

From Eqs. (4.43), (4.44) and (4.47) we notice that c3d4 and d3d4 are in second order in

the perturbations, which can be ignored in the first order approximation. If we keep first

order terms only, the P-to-P reflection (4.38) reduces to

(↓PP↑) =
c1

d1

=
2p2∆M(qP1 + qP2) + (ρ1qP2 − ρ2qP1)

2p2∆M(qP1 − qP2)− (ρ1qP2 + ρ2qP1)
. (4.52)

From the above equation we can not determine intuitively the influence of the change in

a particular elastic or anelastic parameter on the reflectivity. We next linearize the above

reflection coefficient according to the low contrast approximation. First if we expand (4.52)

in terms of ∆M to first order we have

(↓PP↑) = (↓PP↑)FF + (↓PP↑)M, (4.53)
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Figure 4.4: Schematic diagram illustrating the terms in linearized P-to-P reflectivity. Inci-
dent, reflected and transmitted phase and attenuation angles can be expressed in terms of
averages and differences in angles. Same interpretation is valid for SI-wave.
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where the first term is related to the reflectivity of the fluid-fluid interface

(↓PP↑)FF =
1

2

(
∆ρ

ρ
− ∆qP

qP

)
, (4.54)

and the second term is related to the change in complex modulus M

(↓PP↑)M = −2p2 ∆M

ρ
. (4.55)

The linearization of the fluid-fluid reflectivity results

(↓PP↑)FF = (↓PP↑)FF
E + i(↓PP↑)FF

A , (4.56)

where the first term, which is the real part of the (↓PP↑)FF, is the reflectivity for a fluid-fluid

interface for a non attenuative medium

(↓PP↑)FF
E =

1

2

∆ρ

ρ
+

1

2 cos2 θP

∆VPE

VPE

, (4.57)

and the anelastic part which induced by the change in P-wave velocity and P-wave quality

factor is given by

(↓PP↑)FF
A =

1

2 cos2 θP

Q−1
P

(
tan θP tan δP

∆VPE

VPE

− 1

2

∆QP

QP

)
. (4.58)

Comparing the fluid-fluid reflectivity for elastic and viscoelastic media it can be seen that, in

the elastic case, when the contrast in P-wave velocity is zero, reflectivity depends only upon

the change in the density and is independent of the incidence angle. On the other hand for a

viscoelastic medium, even if the contrast in P-wave velocity is zero, the reflectivity is angle

dependent. Consider the term in equation (4.55), which is the contribution of the change of

complex moduli M to the reflectivity. The real and imaginary parts of the perturbation in

complex moduli are given by

∆µE = ρV 2
SE

[
∆ρ

ρ
+ 2

∆VSE

VSE

]
, (4.59)

∆µA = ρQ−1
S V 2

SE

(
∆ρ

ρ
+ 2

∆VSE

VSE

− ∆QS

QS

)
. (4.60)

Inserting the above relations in (4.55), we arrive at

(↓PP↑)M = (↓PP↑)M
E + i(↓PP↑)M

A . (4.61)
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Where the real part, which is related to the case where the attenuation is zero in the medium,

is given by

(↓PP↑)M
E = −2 sin2 θP

(
VSE

VPE

)2 [
∆ρ

ρ
+ 2

∆VSE

VSE

]
, (4.62)

and the imaginary part by

(↓PP↑)M
A =− 2 sin2 θP

(
VSE

VPE

)2

×{[
∆ρ

ρ
+ 2

∆VSE

VSE

](
Q−1

S −Q
−1
P

[
1− tan δP

tan θP

])
−Q−1

S

∆QS

QS

}
.

(4.63)

Evidently contrasts in complex moduli M affect the reflectivity only for nonzero offsets.

Finally, the P-to-P reflectivity can be rewritten into

(↓PP↑) = (↓PP↑)E + i(↓PP↑)A, (4.64)

where the imaginary part is given by

(↓PP↑)A = (↓PP↑)ρA + (↓PP↑)VPE
A + (↓PP↑)VSE

A + (↓PP↑)QP

A + (↓PP↑)QS

A , (4.65)

with the density component

(↓PP↑)ρA = −
(
VSE

VPE

)2 (
2(Q−1

S −Q
−1
P ) sin2 θP +Q−1

P tan δP sin 2θP

) ∆ρ

ρ
, (4.66)

the P-wave velocity component

(↓PP↑)VPE
A = Q−1

P

tan θP tan δP

2 cos2 θP

∆VPE

VPE

, (4.67)

the S-wave velocity component

(↓PP↑)VSE
A = −2

(
VSE

VPE

)2 (
2(Q−1

S −Q
−1
P ) sin2 θP +Q−1

P tan δP sin 2θP

) ∆VSE

VSE

, (4.68)

the P-wave quality factor component

(↓PP↑)QP

A = − 1

4 cos2 θP

Q−1
P

∆QP

QP

, (4.69)
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and the S-wave quality factor component

(↓PP↑)QS

A = 2 sin2 θP

(
VSE

VPE

)2

Q−1
S

∆QS

QS

. (4.70)

(4.71)

The real part is

(↓PP↑)E =
1

2

(
∆ρ

ρ
+

1

cos2 θP

∆VPE

VPE

)
− 2 sin2 θP

(
VSE

VPE

)2(
∆ρ

ρ
+ 2

∆VSE

VSE

)
. (4.72)

(↓PP↑)E is the P-to-P reflection coefficient for a low contrast interface between two isotropic

elastic layered media. The real part of the linearized P-to-P reflectivity for two slightly

different low-loss viscoelastic media is the P-to-P reflection coefficient induced by a contrast

in elastic properties. The imaginary part is caused by both elastic and/or anelastic contrasts

between the two layeres. As a consequence, even if the quality factors for P- and S-waves do

not change between the two layers, the contrasts in elastic properties can still contribute an

imaginary part. At normal incidence,

(↓PP↑) =
∆ρ

2ρ
+

∆VPE

2VPE

− i

4
Q−1

P

∆QP

QP

. (4.73)

So, at normal incidence the reflectivity is affected by the by contrast in the P-wave quality

factor. The relative change in density and P-wave velocity have similar influence on the

normal incidence reflection coefficient.

4.7 Linearized P-to-SI reflection

In this section we derive the converted P-to-SI reflection coefficient for a two-layered low-

loss viscoelastic medium with small contrast in material properties across the boundary. For

an isotropic viscoelastic medium, the converted P-to-SI wave amplitude variation patterns

reveal the changes in density, S-wave velocity and quality factor. When the incidence wave is

an inhomogeneous P-wave, the reflected wave can be either an inhomogeneous P- or SI-wave.

In contrast to the elastic case, the linearization is more complicated and the linearized result

includes the terms related to the change in S-wave quality factor. Under the low-contrast and

low-loss medium assumptions, the P-to-SI reflection coefficient in equation (4.39) reduces to

(↓PSI↑) = −
(
VP1

VS1

)
c1d3 + c3d1

d1d2

= −
(
VP1

VS1

)
p

qS

[2(qPqS − p2)∆M + ∆ρ]

2ρ
. (4.74)
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In the low-loss approximation we have

p

qS

= tan θS

(
1 + iQ−1

S

tan δS
sin 2θS

)
, (4.75)

where qS, is the average of the vertical slowness for S-wave. To produce a form of the

reflectivity that explicitly shows its dependency upon medium property perturbations, we

first consider the multiplication of the P- and S-wave vertical slowness vectors

qPqS =
1

VPEVSE

[
cos θP cos θS

(
1− i

2
(Q−1

P +Q−1
S )

)
−

i

2
(Q−1

S tan δS cos θP sin θS +Q−1
P tan δP cos θS sin θP)

]
,

(4.76)

and square of the ray parameter

p2 =
1

VPEVSE

[
sin θP sin θS

(
1− i

2
(Q−1

P +Q−1
S )

)
+

i

2
(Q−1

S tan δS cos θS sin θP +Q−1
P tan δP cos θP sin θS)

]
.

(4.77)

Using the perturbation in complex moduli in equations (4.50) and (4.51), we arrive at the

linearized P-to-SI reflectivity function

(↓PSI↑) = (↓PSI↑)E + i(↓PSI↑)A, (4.78)

where the imaginary part is related to the change in S-wave quality factor, density and

S-wave velocity

(↓PSI↑)A = (↓PSI↑)ρA + (↓PSI↑)VSE
A + (↓PSI↑)QS

A , (4.79)

(4.80)

with the density component

(↓PSI↑)ρA =− 1

2
tan θS

[
1

2
(Q−1

P −Q
−1
S ) +Q−1

S

tan δS
sin 2θS

]
VPE
VSE

∆ρ

ρ

− tan θS cos(θP + θS)

[
Q−1
S

tan δS
sin 2θS

]
∆ρ

ρ

+
1

2
tan θS sin(θP + θS)(Q−1

S tan δS +Q−1
P tan δP )

∆ρ

ρ
,

(4.81)

74



the S-wave velocity component

(↓PSI↑)VSE
A =− 2 tan θS cos(θP + θS)

[
Q−1
S

tan δS
sin 2θS

]
∆VSE
VSE

+ tan θS sin(θP + θS)(Q−1
S tan δS +Q−1

P tan δP )
∆VSE
VSE

,

(4.82)

and the S-wave quality factor component

(↓PSI↑)QS

A = Q−1
S tan θS cos(θP + θS)

∆QS

QS

. (4.83)

In addition, (↓PSI↑)E is the reflectivity for non-attenuative medium or the P-to-SV reflectiv-

ity. It is given by

(↓PSI↑)E = − tan θS

(
cos(θP + θS) +

1

2

VPE

VSE

)
∆ρ

ρ
− 2 tan θS cos(θP + θS)

∆VSE

VSE

. (4.84)

In the above expressions, θP(θS) is the average of angles of incidence and transmission for

P(SI)-wave; θS can be calculated from θP using Snell’s law; ρ, VPE, VSE, QS, QP, δP and

δS are the average quantities. Unlike the P-to-P reflection coefficient, the P-to-SI reflection

coefficient does not depend on the contrasts in the P-wave velocity and its quality factor.

Similarly to the P-to-P reflection case, (↓PSI↑)E denotes the low contrast reflection coef-

ficient at an interface separating two elastic media. Equation (4.78) represents the P-to-SI

reflection coefficient for a low contrast interface separating two arbitrary low-loss viscoelas-

tic media. By inspecting the above equations, at normal incidence, the reflection coefficient

is evidently not affected by either elasticity or anelasticity. Approximate SI-to-P reflection

coefficient is similar to that of the P-to-SI coefficient; the only difference is that the exchange

of rule between P and SI waves.

4.8 SI-to-SI reflection

It has been shown that an SI-wave can be reflected or scattered to either P- or SI-waves, but

can not be converted to an SII-wave with a linear polarization. SI-to-P reflectivity is very

similar to the P-to-SI case, so we will not consider this case here. Let us consider the SI-to-SI

reflectivity. In the first order approximation the exact SI-to-SI reflectivity in equation (4.40)

reduces to

(↓SISI↑) =
c2

d2

=
2p2∆M(qS1 + qS2) + (ρ1qS2 − ρ2qS1)

2p2∆M(qS1 − qS2)− (ρ1qS2 + ρ2qS1)
. (4.85)
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Figure 4.5: Elastic and anelastic parts of linearized reflectivities versus incident angle for
ρ2/ρ1 = VSE2/VSE1 = VPE2/VPE1 = QP2/QP1 = QS2/QS1 = 1.35 and average attenuation
angles δS = δP = 60◦. Dash line is for anelastic part and solid line for elastic part.

After applying the linearization procedure we arrive at

(↓SISI↑) = (↓SISI↑)E + i(↓SISI↑)A, (4.86)

(4.87)

where the elastic part is given by

(↓SISI↑)E =
1

2

(
1− 4 sin2 θS

) ∆ρ

ρ
+

1

2 cos2 θS

(1− 2 sin2 2θS)
∆VSE

VSE

, (4.88)

and the anelastic term is

(↓SISI↑)A = (↓SISI↑)ρA + (↓SISI↑)VSEA + (↓SISI↑)QSA , (4.89)

with the density component being

(↓SISI↑)ρA = −Q−1
S sin 2θS tan δS

∆ρ

ρ
, (4.90)

the S-wave velocity component

(↓SISI↑)VSEA = − tan θS
2 cos2 θS

(
1− 8 cos4 θS

)
tan δSQ

−1
S

∆VSE

VSE

, (4.91)
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Figure 4.6: The maps of imaginary part of density component of the linearized reflectivities.
The vertical axis indicates the attenuation angle and horizontal axis incident angle. Physical
proprieties of layers are the same as figure 4.5. We assumed that attenuation angles for P-
and S-waves are the same.

and the S-wave quality factor component being

(↓SISI↑)QSA =
1

4 cos2 θS
Q−1

S

(
2 sin2 2θS − 1

) ∆QS

QS

. (4.92)

Figure 4.5 shows the elastic (real) and anelastic (imaginary) parts of amplitude variation

with angle equations for P-to-P, P-to-SI and SI-to-SI modes. It can be seen that the anelac-

ticity has a greater influence on the converted wave P-to-SI than conserved modes P-to-P

and SI-to-SI. To display the effects of attenuation angles on AVO equations, the maps for

density component of P-to-P, P-to-SI and SI-to-SI reflectivities versus phase and attenuation

angles are plotted in figure 4.6.

4.9 The relationship between the reflectivity and the viscoelastic scattering

potential

Here we relate the linearized forms for viscoelastic reflection and conversion to recent results

concerning the general problem of scattering of viscoelastic waves. The reflectivity model
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and the volume scattering model are not precisely equivalent (see Figure 4.7); however under

the assumption of small angle and small contrasts across the reflecting boundary the two are

consistent, and indeed are mathematically equivalent.

The scattering potential (see, e.g., (Stolt and Weglein, 2012; Weglein et al., 2003; Beylkin

and Burridge, 1990)) enters into a modeling of wave interaction with heterogenous media

either through the Born approximation which neglects nonlinearity in the wave/medium re-

lationship, or through the full scattering series, in which amplitudes and phases of waves

accommodate large and extended perturbation (e.g.,(Weglein et al., 2003; Innanen, 2009)),

and events whose propagation histories have introduced more that one subsurface reflection,

like multiples are incorporated (Weglein and Dragoset, 2005). One instance of the scattering

potential arises in the Born approximation, thus analysis of the potential in isolation qual-

itatively ”feels like” analysis of the Born approximation. It can be this, but we emphasize

the potential is description of the full, nonlinear problem also.

Generally the relationship between the scattering potential and reflectivity function is

given by (Beylkin and Burridge, 1990)

(↓IR↑) = − 1

2V 2
RqR(qR + qI)

I
RV, (4.93)

where index I refers to the type of the incidence wave and R indicates the type of reflected

wave and VR is the wave velocity corresponding to the wave type R. A similar relation

applies to the vertical slownesses, qR and qI. Additionally I
RV, is the scattering potential for

the incidence wave type I and scattered type R. In the elastic case we have

(↓IR↑)E = − sin θI

2 cos θR sin(θI + θR)
I
RVE. (4.94)

Where θI is the phase angle for wave type I and θR is the phase angle for wave type R. For

example if the reflected wave is a P-wave, θR ≡ θP, which can be interpreted either as a

phase angle for the incidence P-wave or as a average of incidence and transmitted P-waves.

In the next section we obtain one-to-one relationships between the scattering potential and

reflectivity functions.
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Incident 

P-wave

Scattered 

P-wave
Scattered 

SI-wave
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(a) (b)

Figure 4.7: The reflectivity model vs volume scattering model. (a) The boundary is assumed
to involved welded contact between two media whose properties differ only slightly. Incident,
reflected and transsmited rays are related by Snell’s law;interface normal helps define ray
angles. (b) Reference medium is perturbed by one or more volume scattering inclusions;
ray angles are defined in terms of the opening angle between incident and scattered rays.
σPP = 2θP, is the opening angle between the incident and scattered P-waves, where θP is the
average of incident and transmitted angles. σPS = θP + θS, is the opening angle between the
incident P-wave and scattered SI-wave, where θS is the average of incident and transmitted
SI-waves.
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4.9.1 P-to-P scattering potential

In this case the incidence and reflected waves are P-type; as a result, θI = θR = θP. θP is

interpreted as the average of phase angles of the incident and transmitted P-waves. Since for

the low contrast there is only a small difference between the incident and transmitted angles,

we can say that θP is the phase angle of the incidence wave. However in the development of

linearization for the reflectivity we assumed that their difference is not zero. For elastic case

the relationship between reflectivity and scattering potential reduces to

(↓PP↑)E = − 1

4 cos2 θP

P
PVE. (4.95)

Let us now consider to the viscoelastic case, specifically one in which an inhomogeneous P-

wave reflects to an inhomogeneous P-wave. In this case the relation between the reflectivity

and scattering potential is given by

P
PV = −4V 2

P q
2
P(↓PP↑), (4.96)

or

P
PV = −4 cos2 θP(1− iQ−1

P tan θP tan δP)(↓PP↑). (4.97)

After doing some algebra we find that the reflectivity of P-to-P mode we derived, upon

substitution into equation (4.97), results in a scattering potential

P
PV = P

PVE + iPPVA, (4.98)

where the elastic scattering potential for PP-mode is

P
PVE =

[
−1− cosσPP + 2

(
VSE

VPE

)2

sin2 σPP

]
∆ρ

ρ

− 2
∆VPE

VPE

+ 4

(
VSE

VPE

)2

sin2 σPP
∆VSE

VSE

,

(4.99)
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and the anelastic part

P
PVA = Q−1

P sinσPP tan δP
∆ρ

ρ

+ 2

(
VSE

VPE

)2 [
sin2 σPP(Q−1

S −Q
−1
P ) +Q−1

P sin 2σPP tan δP

] ∆ρ

ρ

+ 4

(
VSE

VPE

)2 [
sin2 σPP(Q−1

S −Q
−1
P ) +Q−1

P sin 2σPP tan δP

] ∆VSE

VSE

− 2Q−1
S

(
VSE

VPE

)2

sin2 σPP
∆QS

QS

+Q−1
P

∆QP

QP

,

(4.100)

Where, σPP = 2θP, is the opening angle between the incidence and reflected waves. The above

expression is the same as that obtained using the volume scattering formalism (Moradi and

Innanen, 2015b). Thus our current linearization of reflectivity is consistent with the more

general scattering picture.

4.9.2 SI-to-SI scattering potential

Similar to the P-to-P case, the relation between the scattering potential for SI-to-SI wave

and its corresponding linearized reflection is given by

SI
SIV = −4 cos2 θS(1− iQ−1

S tan θS tan δS)(↓SISI↑). (4.101)

The scattering potential for the scattering of the SI-wave to SI-wave is determined to be

SI
SIV = SV

SVVE + iSI
SIVA. (4.102)

The real part is the elastic scattering potential for scattering of SV-wave to SV-wave

SV
SVVE = − (cos(2σSS) + cos σSS)

∆ρ

ρ
− 2 cos(2σSS)

∆VSE

VSE

, (4.103)

(4.104)

and the anelastic part is given by

SI
SIVA =Q−1

S (sinσSS + 2 sin(2σSS)) tan δS
∆ρ

ρ

+ 4Q−1
S sin(2σSS) tan δS

∆VSE

VSE

+ cos(2σSS)Q−1
S

∆QS

QS

,

(4.105)
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Where, σSS = 2θS, is the opening angle between the incidence and scattered waves, which is

the scattering potential obtained using the Born approximation.

4.9.3 P-to-SI scattering potential

First the relation between the reflectivity and scattering potential is given by

P
SIV = −2V 2

S qS(qS + qP)(↓PSI↑). (4.106)

The scattering potential for P-to-SI is, consequently

P
SIV = P

SIVE + iPSIVA. (4.107)

where the elastic part of the scattering potential P
SIVE is given by

P
SIVE = −

[
sinσPS +

(
VSE

VPE

)
sin 2σPS

]
∆ρ

ρ
− 2

[(
VSE

VPE

)
sin 2σPS

]
∆VSE

VSE

. (4.108)

and the anelastic part is given by

P
SIVA =− 1

2

(
VSE

VPE

)
sin 2σPS(Q−1

S −Q
−1
P )

∆ρ

ρ

− 1

2

(
VSE

VPE

)[
2 cos 2σPS +

(
VPE

VSE

)
cosσPS

]
(Q−1

S tan δS +Q−1
P tan δP)

∆ρ

ρ

−
(
VSE

VPE

)[
sin 2σPS(Q−1

S −Q
−1
P ) + 2 cos 2σPS(Q−1

S tan δS +Q−1
P tan δP)

] ∆VSE

VSE

+

(
VSE

VPE

)
Q−1

S sin 2σPS
∆QS

QS

.

(4.109)

Here, the opening angle between the incidence P-wave and reflected SI-wave is σPS = θP +θS.

Also, θP for a welded boundary is the average of the incidence P-wave and transmitted P-

wave; the same interpretation applies for θS.

4.10 Conclusion

Amplitude variation with offset (AVO) or amplitude variation with angle (AVA) analysis is

a study of the effects of changes in medium properties and incident angles on the reflection

coefficients as the contrast between two layer is weak. Even in the case of an isotropic
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elastic medium the exact equations for the reflection coefficients are sufficiently complicated

that the effects of changes in medium properties and dependency on the incidence angle is

not explicitly clear. When attenuation is added to medium as in a viscoelastic case, the

problem gets still more complicated. In this case, besides the elastic properties and phase

angle, reflectivity is sensitive to change in the anelastic quantities and attenuation angles.

Since in practical cases, attenuation is often weak, the reflection coefficient simplifies. In our

linearization, besides the assumption of weak contrasts in elastic and anelastic properties,

we applied the additional assumption of weak attenuation, i.e., what is termed a low-loss

medium, in both half spaces. P-to-P, P-to-SI and SI-to-SI wave reflection coefficients in

low-loss viscoelastic media for a weak contrast separating two isotropic viscoelastic media

have been derived. These coefficients linearly depend on the fractional changes in elastic and

anelastic properties. Our results indicate that the sensitivity of the reflected waves to change

in P- and S-wave quality factors, which is the essence of AVO analysis. Reflectivities are split

into two parts: a real part which is in terms of the elastic reflectivities, and an imaginary

part, related to the anelasticity in the medium. The anelastic part itself is composed of

two terms, one term being the anelastic-homogenous which is related to the case that waves

are homogenous, this term is sensitive to changes in both elastic and anelastic properties.

In the case that waves are inhomogeneous another term is added to the reflectivity, this

one is sensitive to changes in elastic properties; however for the homogenous case when

the attenuation angle is zero this term vanishes. Let us consider to the linearized P-to-P

reflectivity. It can be written as

RPP(θP, δP) = RE
PP(θP) + iRAH

PP (θP) + iRAIH
PP (θP, δP). (4.110)

The real part with superscript E refers to the elastic reflectivity, the second term is the

contribution of the elastic and anelastic contrasts, and the third term is the contribution

of the contrast in elastic properties in presence of an inhomogeneous wave. The anelastic

homogenous term is sensitive to the fractional changes in density, S-wave velocity, S- and

P-wave quality factors. The anelastic inhomogeneous term only depends on the change in

density, P- and S-wave velocity. At normal incidence the inhomogeneous term is zero.

There exist some techniques to invert the anelastic parameters from linearized reflection
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coefficients using such a model. However, these techniques neglect the possible inhomo-

geneity of the wave. Although the inhomogeneity angle is one of the characteristics of an

attenuative medium, the linearized AVO equations are not directly depend on the change

in it. However using the Snell’s law, we show that perturbations in the attenuation angle

can be expressed in terms of changes in velocity, quality factor and phase angle. Although

experimental measurements of inhomogeneity are very limited, and have, so far, only been

reported potentially on laboratory scales (Deschamps and Assouline, 2000; Huang et al.,

1994), our analysis points to significant effects may be visited on AVO in its presence.

4.11 Summary

Linearized forms of PP, PSI and SISI reflection coefficients for low contrast interfaces sep-

arating two arbitrary low-loss viscoelastic media were derived. The linearized viscoelastic

reflection coefficient we derived relate the AVO response to the anelastic parameters. It is

shown that the reflectivity not only depends upon the perturbations in elastic properties,

but also on perturbations in quality factors for P- and S-waves. Also using the viscoelastic

Snell’s law we show that the transmitted and reflected P- and S-waves attenuation angles

can be expressed in terms of incidence angle and incidence attenuation angles. To derive the

reflectivities, we linearized Snell’s law for a two layer viscoelastic media and show that in

the linearized reflectivity only the average of attenuation angle affects the reflectivity. Also

we showed that the linearized reflectivities can be transformed to the scattering potential

obtained using the Born approximation.

To model the anelasticity in a medium linear viscoelasticity is used. Plane waves are gen-

erally inhomogeneous, where the attenuation and propagation are not in the same direction.

The elastic reflectivity can be obtained in the limit that attenuation quantities Q go to zero.

If all parameters related to the anelasticity go to zero the viscoelastic reflections reduces to

the linearized elastic isotropic reflection coefficients obtained by Aki and Richards (2002).

The results we present are at present more theoretical than practical. Nevertheless the

significance of inhomogeneity to reflection amplitudes as predicted by our and others analysis

suggests that ultimately a real impact will be felt on AVO inversion in strongly attenuating
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geological volumes.
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Chapter 5

Significance and behaviour of the homogeneous and

inhomogeneous components of linearized viscoelastic

reflection coefficients

5.1 Abstract

In a recent paper (Moradi and Innanen, 2016), seismic amplitude-variation-with-offset (AVO)

equations describing P-to-P and P-to-S reflections from boundaries separating low-loss vis-

coelastic media, with account taken for variation in attenuation angle, have been derived.

We find that opportunities now present themselves to use these equations to expose a range

of relationships between measured amplitudes and subsurface elastic and anelastic proper-

ties. This has significant applicability in quantitative interpretation of seismic data in, for

instance, reservoir characterization. To facilitate the analysis we decompose the equations

into three parts: elastic, homogeneous and inhomogeneous. We show that, for PP modes,

the elastic part is sensitive to changes across a reflecting boundary in density and P- and

S-wave velocities; the homogeneous part is sensitive to changes in density, S-wave velocity

and the P- and S-wave quality factors; and the inhomogeneous part is sensitive to changes in

density, and P-and S-wave velocities. The latter term is seen to vanish when the attenuation

angle vanishes. For PP modes, elastic and homogeneous terms are linear with respect to

sin2 θP, where θP is the P-wave incidence angle, however the inhomogeneous term is similarly

linear only if normalized by dividing by tan θP. For PS modes, the elastic part is sensitive

to changes in density and S-wave velocity; the homogeneous part is sensitive to changes in

density, S-wave velocity and the S-wave quality factor; and the inhomogeneous part is sensi-

tive to changes in density and S-wave velocity. This term also vanishes for zero attenuation

angle, i.e., in the homogenous limit. For PS modes, the inhomogeneous terms are linear

with respect to sin2 θP, however the elastic and homogeneous terms are first and third order

in sin θP. A further and key result of this expansion of the wave types allowable in AVO
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analysis is that, for inhomogeneous PS scattering, the viscoelastic AVO equations predict

a non-zero reflectivity at normal incidence. This is a significant deviation from common

models of converted wave amplitude analysis.

5.2 Introduction

A primary aim of modern exploration and monitoring seismology is to determine geological

and engineering-relevant properties of subsurface hydrocarbon reservoirs from the travel

time, phase and amplitude information in seismic reflections. Amplitude-variation-with-

offset (AVO) analysis and inversion, in its various forms (Castagna and Backus, 1993; Foster

et al., 2010), is a key driving technology in this effort. The problem of robustly analyzing

and inverting reflected seismic amplitudes is complex and incompletely solved, requiring (1)

integrated seismic acquisition, data processing, and image-forming techniques to produce

seismic amplitudes of appropriate fidelity, and (2) accurate, robust, and intelligible formulae

and algorithms for modelling and inverting these amplitudes. In the latter domain, research

has been active in recent years to understand the limits of standard approximate solutions for

reflection amplitudes, connect them with auxiliary geological information to infer increasingly

specific reservoir engineering properties (Chopra and Marfurt, 2007), and incorporate more

complete physics, for instance the anisotropy and/or viscosity arising from the presence of

fractures and fluids. In this paper we continue to address the problem of accommodating

a maximal amount of the complexity and richness of viscoelastic wave propagation in AVO

theory and practice.

Including wave physics beyond the elasticity and isotropy of standard AVO analysis and

inversion brings benefit and difficulty. The benefit is an increase in the information derivable

from the data. If, for instance, attenuation due to changes in reservoir viscosity influences

seismic observations, an extended model will permit that information to be used and this

extra rock/fluid property will be at least in principle inferrable. The difficulty is that, for

each additional parameter we ask the seismic data to constrain, the more stress is placed

on the acquisition-processing-imaging chain to provide accurate data over a wider range of

angles and azimuths. As more “difficult” elastic properties are sought, examples of which
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are density and various anisotropic parameters, often the limits of our mathematical models

are reached, and the data variations needed to determine them increasingly tend to occur

near the limits of our experimental apertures.

Thus when we extend the reach of seismic amplitude analysis by including a more com-

plete model of wave physics, it is insufficient to simply write down new mathematics and

leave it at that. An extension of (say) the Zoeppritz equations to incorporate a viscoelastic

model, which is part of the work represented in this and the preceding papers, is a starting

point only. To activate new technologies wherein attenuative properties of the subsurface

can be inferred from seismic measurements requires (1) useable and interpretable approxi-

mations in addition to the complex exact equations, (2) an understanding of the behaviour

and accuracy of approximations and exact solutions as the quantities related to seismic ac-

quisition reach their limits (e.g., incidence angle and/or maximum source-receiver offset),

(3) an understanding of regimes in which data variations caused by new and/or additional

parameters are prevalent, and (4) an understanding of if, and how, these data variations can

be used to determine simultaneous changes in all of the rock properties as they generally

occur in the Earth. The mathematics of the viscoelastic AVO equations, exact and lin-

earized, with attenuation angle incorporated, have been discussed in previous work (Moradi

and Innanen, 2016); here we report on developments of these secondary but critical parts of

the full problem.

Approximate reflection coefficients for weak contrast interfaces separating elastic isotropic

media are well-established. These equations linearly depend on the fractional changes in

density, P-wave and S-wave velocities weighted by trigonometric functions of incident an-

gle (Aki and Richards, 2002). In the presence of anelasticity, in which the polarization

vector and the ray parameter are complex-valued, reflection coefficients are complex func-

tions (Ursin and Stovas, 2002; Moradi and Innanen, 2016, 2015a; Krebes, 1983, 1984). The

corresponding linearized AVO equations not only depend on the changes in elastic proper-

ties across the boundary but also depend on the changes in P- and S-wave quality factors

weighted by trigonometric functions of incident phase and attenuation angles. The problem

of determining exact and approximate reflection and transmission coefficients at a plane

interface between two viscoelastic media for homogenous waves was studied by (Ursin and
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Stovas, 2002). The authors concluded that the approximate PP and PS reflectivities are

very similar to the exact solutions of the associated Zoeppritz equations. The same authors

generalized the problem to incorporate transversely isotropic viscoelastic problems (Stovas

and Ursin, 2003). The effects of attenuation on PP- and PS-wave reflection coefficients for

anisotropic viscoelastic media with the main emphasis on transversely isotropic models with

a vertical symmetry axis has also been treated (Behura and Tsvankin, 2009a). These au-

thors allowed for inhomogeneity in the waves, assuming that the attenuation angles across

a reflecting boundary remain constant, but pointing out that the inhomogeneity angle can

make a substantial contribution to the AVO response for strongly attenuative media (Behura

and Tsvankin, 2009b).

The related but more general problem of scattering of seismic waves from viscoelastic in-

clusions in the context of Born approximation has also been recently investigated. A compre-

hensive mathematical framework for scattering, building from Borcherdt’s layered-medium

formalism has been developed for the purposes of modeling, processing, and inversion of seis-

mic data exhibiting non-negligible intrinsic attenuation (Moradi and Innanen, 2015b). It was

further shown that either independently or beginning from this scattering theory, linearized

forms of PP, PS, and SS reflection coefficients for low-contrast interfaces separating two

arbitrary low-loss viscoelastic media for arbitrary incident angle are derivable (Moradi and

Innanen, 2016, 2015a). These equations relate the AVO response to anelastic parameters. In

that work it was shown how the reflectivity depends upon perturbations in elastic properties

and on perturbations in quality factors for P- and S-waves. These equations are expected

to be of practical importance in the characterization of viscosity and viscosity changes in

unconventional reservoirs. One feature of our approach in deriving the linearized AVO equa-

tion is that Snell’s law and its linearized form is properly accounted for in the linearization,

which has typically been assumed to be constant (Behura and Tsvankin, 2009a,b). AVO

formulas of this kind represent physically more complete versions of those which underlie

anelastic inversion procedures (Innanen, 2011, 2012). Updates to these inversion procedures

making use of these more complete expressions is in progress.

In this paper we are concerned with a certain decomposition of the approximate viscoelas-

tic reflection coefficients, and a qualitative and quantitative analysis of the results. Specif-
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ically, effects of the attenuation angle and the quality factors will be focused on. We shall

see that the attenuation angle has very significant qualitative effect on the AVO responses,

and we offer some ideas of the relative importance of the AVO equations for homogeneous

and inhomogeneous waves. Another result of this paper is that some insight into common

alternative forms for the AVO equations (e.g., the Shuey approximation, (Shuey, 1985)),

adjusted for attenuative media, is provided. Again incorporating into these re-written equa-

tions the change in attenuation angle across the boundary is unexplored territory. Because

we develop results for P-to-S conversions as well as standard P-to-P reflections, our analysis

is applicable to linear and nonlinear inversion of multicomponent seismic data (Margrave

et al., 2001; Lehocki et al., 2014).

This paper is organized as follows. In section 5.3 we briefly introduce notation for the

complex ray parameter and slowness vector for inhomogeneous waves in low-loss viscoelastic

media. In section 5.4 we apply the Snell’s law to decompose the vertical slowness for re-

flected and transmitted waves. It is shown that the vertical slowness for P- and S-wave is a

function of incident attenuation angle. In section 5.5 we apply the method that we developed

in previous section to the decomposition of the exact solutions of the viscoelastic Zoeppritz

equations. In section 5.6 we lay out the viscoelastic version of the Shuey approximation for

PP-reflection coefficients, and compare the decomposed exact reflectivities with the approx-

imate ones for two reservoir rock models. Finally we produce some useful approximations

for converted PS-wave.

5.3 Preliminaries

In viscoelastic media there are three types of waves: P, Type-I S, and Type-II S. These may

be homogeneous or inhomogeneous, depending on whether their propagation and attenu-

ation vectors are, respectively, parallel or not (Borcherdt, 2009). Polarization vectors for

inhomogeneous P and SI-waves are elliptical; for homogeneous waves they are linear. The

elliptical motion reduces to linear motion in the homogeneous limit. The SI-wave is the

generalization of the elastic SV wave, and the SII-wave is the generalization of the elastic

SH wave, with the former reducing to the latter as attenuation goes to zero. The SII-wave
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involves linear particle motion perpendicular to the propagation-attenuation plane in both

homogeneous and inhomogeneous cases. In reflection problems, if the incident wave is an

inhomogeneous P-wave, the reflected wave can be an inhomogeneous P- or SI-wave. For an

inhomogeneous wave, the ray parameter and slowness vector not only depend to the phase

angle but also on the attenuation angle.

To properly compute linear solutions of the Zoeppritz equations, generalized to accom-

modate viscoelasticity, to facilitate AVO analysis in the presence of attenuation, we must

define polarization and slowness vectors with some care. In a viscoelastic medium, the

wavenumber vector is a complex vector whose real part characterizes the direction of wave

propagation and whose imaginary part characterizes the attenuation of the wave. This is

laid out by, e.g., (Borcherdt, 1971, 1973a,b, 1977, 1982; Borcherdt and Wennerberg, 1985;

Borcherdt et al., 1986; Borcherdt, 1988, 2009) who presents a complete theory for seismic

waves propagating in layered viscoelastic medium. Borcherdt’s formulation predicts a range

of transverse, inhomogeneous wave types unique to viscoelastic media (the Type I and II S

waves discussed above), including rules for conversion of one type to another during inter-

actions with planar boundaries. As a result of the complexity of the wavenumber vector,

slowness and polarization vectors are complex functions. The complex wave-number vector

is given by

K = P− iA, (5.1)

where the propagation vector P is perpendicular to the wavefront, and specifies the direction

of propagation, and the attenuation vector A is perpendicular to the plane of constant

amplitude, and specifies the direction of maximum attenuation. The angle between these

two vectors is always less that 90◦ and is referred to as the attenuation angle (figure 5.1).

If the attenuation and propagation vectors are parallel and δ = 0 the wave is homogenous;

otherwise it is inhomogeneous. In the case of low-loss viscoelastic media, in which the quality

factor Q−1 � 1, the propagation and attenuation vectors can be written (Borcherdt, 2009)

P =
ω

VE

(x sin θ + z cos θ),

A =
ω

VE

Q−1 sec δ [x sin(θ − δ) + z cos(θ − δ)] ,
(5.2)

where VE is either P-wave or S-wave velocity, θ is the phase angle and δ is the attenuation

91



z

x

Figure 5.1: Incident inhomogeneous wave (δ 6= 0). P is the propagation vector, A is the
attenuation vector, θ is the incident phase angle and δ is the incident attenuation angle.

angle. For an inhomogeneous wave, the ray parameter and the vertical slowness are complex

functions which depend on the quality factor and attenuation angles (Moradi and Innanen,

2016). These quantities can be split into elastic, homogeneous and inhomogeneous parts

p = pE + ipH + ipIH,

q = qE + iqH + iqIH,
(5.3)

where the components are given by

pE =
sin θ

VE

, qE =
√
V −2

E − p2
E,

pH = −1

2
Q−1pE, qH = −1

2
Q−1qE,

pIH =
1

2
Q−1qE tan δ, qIH = −1

2
Q−1pE tan δ.

In the above relations the indexes E, H and IH respectively refer to the elastic, homogeneous

and inhomogeneous parts. Reflected and transmitted angles can be obtained in terms of

the incident angle from Snell’s law. For a low-contrast, two layered medium, the deviation

of transmitted angle away from the incident angle is small. Consequently, we can linearize

Snell’s law to obtain a simple expression of the difference between the incident and trans-

mitted wave in terms of changes in velocity between the layers. Snell’s law for viscoelastic

materials is discussed by (Wennerberg, 1985) and (Borcherdt, 2009). Importantly for our

purposes, since the attenuation angle changes across the boundary, the linearized form of

Snell’s law also gives us in a simple form the difference in attenuation angle in terms of

changes in velocity and quality factor (Moradi and Innanen, 2016).
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Figure 5.2: Plots of the viscoelastic ray parameter p in the complex plane for Q = 10 over a
range of attenuation angles, from 0◦ to 70◦.

5.4 Homogeneous and inhomogeneous parts of the slownesses

To decompose the reflectivity into the contributions from inhomogeneity of wave, first we

need to split the slowness vector to elastic, homogeneous and inhomogeneous parts. Let

an inhomogeneous P-wave be incident in medium 1 on a horizontal interface. The P-wave

transmitted through the interface has vertical slowness

qP2 = qPE2 + iqPA2, (5.4)

where the elastic and anelastic parts, qPE2 and qPA2 respectively, are given by

qPE2 =
√
V −2

PE2 − p2
E, (5.5)

qPA2 = −Q
−1
P2

2
(qPE2 + pE tan δP2). (5.6)

In equation (5.6), subscript A labels the anelastic part of the vertical slowness. In the same

way, for the reflected S-wave we have

qSE1 =
√
V −2

SE1 − p2
E, (5.7)

qSA1 = −Q
−1
S1

2
(qSE1 + pE tan δS1), (5.8)

and for the transmitted S-wave

qSE2 =
√
V −2

SE2 − p2
E, (5.9)

qSA2 = −Q
−1
S2

2
(qSE2 + pE tan δS2). (5.10)

93



To separate the homogeneous and inhomogeneous components of these relations we must

invoke Snell’s law, because the transmitted and reflected attenuation angles are functions of

the incident attenuation angle (see appendix C). We have

tan δP2 =
1

qPE2

[
pE −

QP2

QP1

(pE − qPE1 tan δP1)

]
, (5.11)

where δP2 is the attenuation angle for the transmitted P-wave, and δP1 is the attenuation

angle for the incident P-wave. For the reflected S-wave, the attenuation angle δS1 is

tan δS1 =
1

qSE1

[
pE −

QS1

QP1

(pE − qSE1 tan δP1)

]
, , (5.12)

and for the transmitted S-wave the attenuation angle δS2 is

tan δS2 =
1

qSE2

[
pE −

QS2

QP1

(pE − qSE2 tan δP1)

]
, . (5.13)

By substituting equation (5.11) into (5.6), and (5.12) into (5.8), and finally (5.13) into

(5.10) we can decompose the transmitted P-wave slowness vector into homogenous and

inhomogeneous parts,

qPAH2 = −1

2
Q−1

P2

cos θP2

VP2

− 1

2

sin θP2

VP2

tan θP2(QP2 −QP1), (5.14)

qPAIH2 = −1

2
Q−1

P1

cos θP1

VP1

tan θP2 tan δP1. (5.15)

Similarly for the reflected S-wave we obtain

qSAH1 = −1

2
Q−1

S1

cos θS1

VS1

− 1

2

sin θS1

VS1

tan θS1(QS1 −QP1) (5.16)

qSAIH1 = −1

2
Q−1

P1

cos θP1

VP1

tan θS1 tan δP1, (5.17)

and for the transmitted S-wave

qSAH2 = −1

2
Q−1

S2

cos θS2

VS2

− 1

2

sin θS2

VP2

tan θS2(QS2 −QP1) (5.18)

qPAIH2 = −1

2
Q−1

P1

cos θP1

VP1

tan θS2 tan δP1. (5.19)

These relations separate the homogeneous from the inhomogeneous components of the slow-

nesses, in the sense that for a purely homogeneous P-wave, with zero attenuation angle

δP1 = 0, the components labelled inhomogeneous vanish. Let us next use this complex

Snell’s law decomposition procedure for viscoelastic ray parameters and vertical slownesses

to analyze the viscoelastic reflectivity.
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5.5 Decomposition of solutions of the viscoelastic Zoeppritz equations

Our interest is to be able to separately analyze and predict behaviour of the homogeneous

versus inhomogeneous components of viscoelastic waves having reflected from and transmit-

ted through a planar boundary. Consider two homogeneous viscoelastic half-spaces, in which

the upper half-space is characterized by the density ρ1, P-wave velocity VPE, S-wave velocity

VSE, P-wave quality factor QP and S-wave quality factor QS. Each of these experiences a

jump in transitioning to the lower half-space, where the parameters are labelled with the

subscript 2. A plane P-wave incident on the boundary between the two half-spaces generates

reflected and transmitted P- and S-waves. Solutions of the purely elastic-isotropic Zoeppritz

equations can be straightforwardly extended to correspond to exact PP and PS reflection

coefficients in this viscoelastic case. This is done by substituting the complex ray parameter,

slowness vector and velocities discussed in the previous section.

These solutions are complicated nonlinear functions of the changes in both elastic and

anelastic parameters (Aki and Richards, 2002; Ikelle and Amundsen, 2005; Moradi and In-

nanen, 2016):

RPP =
c1d2 − c3d4

d1d2 + d3d4

, (5.20)

RPS = −
(
VP1

VS1

)
c3d1 + c1d3

d1d2 + d3d4

(5.21)

where

d1 = −2p2∆M(qP1 − qP2) + (ρ1qP2 + ρ2qP1), (5.22)

d3 = −p
[
2∆M(qP1qS2 + p2)−∆ρ

]
, (5.23)

and where d2 = d1 (but with qP → qS), d4 = d3 (with qP ↔ qS), c1 = d1 (with qP2 → −qP2),

c2 = d2 (with qS2 → −qS2), c3 = d3 (with qP1 → −qP1), and c4 = d4 (with qS1 → −qS1).

In above equations ∆ρ = ρ2 − ρ1 is the difference between the density in lower and upper

media and ∆M = ∆µ+ i∆µA is the change in the complex modulus across the boundary:

∆µE = ρ2V
2
SE2 − ρ1V

2
SE1 = µE2 − µE1, (5.24)

and

∆µA = ρ2V
2
SE2Q

−1
S2 − ρ1V

2
SE1Q

−1
S1 = Q−1

S2µE2 −Q−1
S1µE1. (5.25)
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Shale Salt Limestone Limestone(gas)
VPE(km/s) 3.811 4.537 5.335 5.043
VSE(km/s) 2.263 2.729 2.957 2.957
ρ(gm/cm3) 2.40 2.005 2.65 2.49

Table 5.1: Density, P and S-wave velocity used in the numerical tests for shale, salt, limestone
and limestone(gas). For all models we assumed the P- and S-wave quality factors as QS1 = 5,
QS2 = 7, QP1 = 9 and QP2 = 11.
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Figure 5.3: Comparing the real part of the exact viscoelastic PP and PS-reflectivity for
δP = 0◦, 45◦, 70◦ for four selected models from table 5.1.

In figure 5.3 the real parts of reflection coefficients for PP and PS modes at boundaries be-

tween two viscoelastic half-spaces, with quality factors near and below 10, are plotted. The

elastic properties are selected to correspond with natural geological boundaries as discussed

below. The coefficients are plotted three times each, with attenuation angle varying from 0◦,

to 45◦, and to 70◦; and angles of incidence up to 40◦ are included. The solid line refers to the

homogeneous wave with zero attenuation angle; the dotted line is the inhomogeneous wave

with moderate incident attenuation angle δP = 45◦ and the dashed line is the highly attenua-

tive wave with δP = 70◦. The reflectivity curves for converted wave in the homogeneous and

moderate attenuation cases approach each other near normal incidence, but in general the

attenuation angle can be seen to have a significant impact on reflection amplitudes. For the

PP-reflection coefficients and shale/salt and shale/limestone models, the attenuation angle

has its largest influence for angles greater than 20◦.

96



The influence of anelastic parameters and attenuation angles on the reflection coefficients

in equations (5.20) and (5.21) is not easy to analyze in this unaltered form. To address this

we decompose the reflectivity into three components, elastic, anelastic homogeneous and

anelastic inhomogeneous. We insert the decomposed ray and slowness parameters calculated

in previous section into di and ci, obtaining

dj = dEj + idHj + idIHj, (5.26)

cj = cEj + icH4 + icIHj, j = 1, 2, 3, 4. (5.27)

The detailed form of d1, for instance, is

dE
1 =− 2p2

E∆µE(qE
P1 − qE

P2) + (ρ2q
E
P1 + ρ1q

E
P2)

dH
1 =− 2p2

E∆µE(qH
P1 − qH

P2)− 2(p2
E∆µA + 2pEpH∆µE)(qE

P1 − qE
P2) + ρ2q

H
P1 + ρ1q

H
P2

dIH
1 =− 2p2

E∆µE(qIH
P1 − qIH

P2)− 4pEpIH∆µE(qE
P1 − qE

P2) + ρ2q
IH
P1 + ρ1q

IH
P2.

More detail of dependency of this parameters to the medium properties can be found in

appendix A. To compute the decomposed reflectivity we note that in low-loss viscoelastic

media all terms involving the product of homogeneous and inhomogeneous terms are negli-

gible (for instance, dHdIH ≈ (dH)2 ≈ (dIH)2 ≈ 0). Taking into account the low-loss aspect

of the media, and inserting (5.26) and (5.27) into the (5.20) and (5.21), we arrive at

RPP = RE
PP + iRH

PP + iRIH
PP, (5.28)

RPS = RE
PS + iRH

PS + iRIH
PS, (5.29)

where RE
PP is the elastic reflectivity, i.e., the reflectivity in the absence of attenuation:

RE
PP =

cE1dE2 − cE3dE4

dE1dE2 + dE3dE4

,

RH
PP is the homogeneous anelastic term, i.e., the term which remains when the attenuation

angle is zero,

RH
PP =− RE

PP

dE2dH1 + dE1dH2 + dE3dH4 + dE4dH3

dE1dE2 + dE3dE4

− cE3dH4 + cH3dE4 − cH1dE2 − cE1dH2

dE1dE2 + dE3dE4
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and finally RIH
PP, the inhomogeneous term which appears with non-zero attenuation angle,

RIH
PP =− RE

PP

dE2dIH1 + dE1dIH2 + dE3dIH4 + dE4dIH3

dE1dE2 + dE3dE4

− cE3dIH4 + cIH3dE4 − cIH1dE2 − cE1dIH2

dE1dE2 + dE3dE4

.

In the same way three components of PS-reflectivity are

RE
PS = −

(
VPE1

VSE1

)
cE3dE1 + cE1dE3

dE1dE2 + dE3dE4

(5.30)

RH
PS =

1

2

(
Q−1
P1 −Q

−1
S1

)
RE

PS (5.31)

− RE
PS

dE1dH2 + dE3dH4 + dH1dE2 + dH3dE4

dE1dE2 + dE3dE4

(5.32)

−
(
VPE1

VSE1

)
cE3dH1 + cE1dH3 + cH3dE1 + cH1dE3

dE1dE2 + dE3dE4

(5.33)

RIH
PS = −RE

PS

dE1dIH2 + dE3dIH4 + dIH1dE2 + dIH3dE4

dE1dE2 + dE3dE4

(5.34)

−
(
VPE1

VSE1

)
cE3dIH1 + cE1dIH3 + cIH3dE1 + cIH1dE3

dE1dE2 + dE3dE4

. (5.35)

In summary, the viscoelastic reflection coefficients have real and imaginary parts, with the

real part being identical to the solutions of the elastic Zoeppritz equations, and the imaginary

part with a more complicated structure, depending on the elastic, anelastic terms as well as

the attenuation angle.

5.6 The viscoelastic Shuey approximation

Linearized approximate forms of the solutions to the Zoeppritz equations are typically used

in AVO analysis and inversion (Aki and Richards, 2002; Castagna and Backus, 1993; Foster

et al., 2010). A range of linearized forms are available, distinguished by their treatment of the

plane wave incidence angle and their parameterization of elastic properties and their variation

across the reflecting interface; amongst these the Shuey approximation (Shuey, 1985) is one

of the most frequently used. Ideally a linearized form (1) only differs from the exact solution

by a small amount in the regions (e.g., angle-range) it is employed, (2) provides an intuitive

interpretability , (3) leads to stable inversion algorithms, and (4) correctly predicts the main

reflection phenomena observed in seismic data. In this section we review and decompose
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the viscoelastic version of this approximation. There are two main assumptions made in

deriving the equations of linear AVO analysis, firstly, that the relative changes in properties

(elastic or anelastic) across the interface are small, and secondly, that the incident angle

is well below the critical angle. The small-offset linearized P-to-P reflection coefficient for

an inhomogeneous seismic wave reflected from boundary of two isotropic viscoelastic media

under the assumption of small contrast interface is given by (Moradi and Innanen, 2016)

RPPL = RE
PPL + iRH

PPL + iRIH
PPL, (5.36)

where the real part is

RE
PPL =

1

2

(
∆ρ

ρ
+

1

cos2 θP

∆VP

VP

)
− 2 sin2 θP

(
VS

VP

)2(
∆ρ

ρ
+ 2

∆VS

VS

)
(5.37)

the homogeneous-imaginary part RH
PP is

RH
PPL =− 2

(
VS

VP

)2

(Q−1
S −Q

−1
P ) sin2 θP

(
∆ρ

ρ
+ 2

∆VS

VS

)
(5.38)

− 1

4 cos2 θP

Q−1
P

∆QP

QP

+ 2 sin2 θP

(
VS

VP

)2

Q−1
S

∆QS

QS

. (5.39)

and the inhomogeneous-imaginary part RIH
PP is

RIH
PPL =−Q−1

P tan δP

[
sin 2θP

(
VS

VP

)2(
∆ρ

ρ
+ 2

∆VS

VS

)
− tan θP

2 cos2 θP

∆VP

VP

]
. (5.40)

Here ∆ρ/ρ is fractional change in density, with ∆ρ = ρ2−ρ1 and ρ = (ρ2 +ρ1)/2; ∆VP/VP is

fractional change in P-wave velocity, with ∆VP = VP2−VP1 and VP = (VP2+VP1)/2; ∆VS/VS is

fractional change in S-wave velocity, with ∆VS = VS2−VS1 and VS = (VS2+VS1)/2; ∆QP/QP is

fractional change in P-wave quality factor, with ∆QP = QP2−QP1 and QP = (QP2 +QP1)/2;

∆QS/QS is fractional change in S-wave quality factor, with ∆QS = QS2 − QS1 and QS =

(QS2 + QS1)/2. In addition θP = (θP2 + θP1)/2 where θP1 is the incident phase angle and

θP2 is the transmitted phase angle; δP = (δP2 + δP1)/2 where δP1 is the incident attenuation

angle and δP2 is the transmitted attenuation angle. Subscript 1 refers to the upper layer and

subscript 2 refers to the lower layer. It can be seen that the anelastic-inhomogeneous term

is a function of the fractional changes in density, P- and S-wave velocities.
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Figure 5.4: Comparing the two and three term AVO responses for the decomposed PP
reflectivity.
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Figure 5.6: Components of the PP-reflection coefficients versus incident angle θP for three
two layer mineral models introduced in table 5.1. Solid line represent the exact reflectivity
calculated from the Zoeppritz equation (Eq. 5.20), star and circle-dot lines respectively are
related to the two and three terms (Figures 5.6b and 5.6c). Reflectivity components corre-
sponding to the interface models of Shale/salt, Shale/Limestone(gas) and Limestone/Salt.

Equations (5.37-5.40) can be rearranged in powers of sin θP and tan θP

RPPL(θP, δP) = RE
PP(θP) + iRH

PPL(θP) + iRIH
PPL(θP, δP), (5.41)

with elastic, anelastic-homogenous and anelastic-inhomogeneous terms given by

RE
PPL(θP) = AE

PP +BE
PP sin2 θP + CE

PP(tan2 θP − sin2 θP ), (5.42)

RH
PPL(θP) = AH

PP +BH
PP sin2 θP + AH

PP(tan2 θP − sin2 θP ), (5.43)

RIH
PPL(θP, δP) = AIH

PP tan θP +BIH
PP tan θP sin2 θP + CIH

PP tan θP(tan2 θP − sin2 θP), (5.44)

where the elastic constants are

AE
PP =

1

2

[
∆ρ

ρ
+

∆VP

VP

]
,

BE
PP =

1

2

∆VP

VP

− 2

(
VS

VP

)2 [
∆ρ

ρ
+ 2

∆VS

VS

]
,

CE
PP =

1

2

∆VP

VP

,
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Figure 5.7: Components of the PP-reflection coefficients versus sin2 θP for three two layer
mineral models introduced in table 5.1. Solid line represent the exact reflectivity calculated
from the Zoeppritz equation (Eq. 5.20)and circle-dot lines corresponds to the two term
approximation. Reflectivity components corresponding to the interface models of Shale/salt,
Shale/Limestone(gas) and Limestone/Salt. Figure(5.6d) corresponds to the inhomogeneous
components normalized by dividing to tan θP
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the homogeneous constants are

AH
PP = −1

4
Q−1

P

∆QP

QP

,

BH
PP = −2

(
VS

VP

)2 [
(Q−1

P −Q
−1
S )

(
∆ρ

ρ
+ 2

∆VS

VS

)
+Q−1

S

∆QS

QS

]
− 1

4
Q−1

P

∆QP

QP

,

and the inhomogeneous constants are

AIH
PP = Q−1

P tan δP

[
1

2

∆VP

VP

− 2

(
VS

VP

)2(
∆ρ

ρ
+ 2

∆VS

VS

)]

BIH
PP = Q−1

P tan δP

[
1

2

∆VP

VP

+ 2

(
VS

VP

)2(
∆ρ

ρ
+ 2

∆VS

VS

)]

CIH
PP = Q−1

P tan δP
1

2

[
∆VP

VP

]
.

Equations (5.42)-(5.44) are arranged in such a way that successive terms grow in importance

as the angle of incidence grows. These equations are the generalization of the Shuey ap-

proximation to viscoelastic media. For each of the elastic, homogeneous and inhomogeneous

parts, the first term corresponds to reflection coefficient at normal incidence. The second

term is called the AVO gradient, and the third term, which becomes important for wide

angles of incidence (roughly θP > 30◦) is called the curvature. We note that the inhomoge-

neous term at normal incidence is zero, indicating that to leading order contributions from

the attenuation angle should not be expected in the PP-reflectivity at normal incidence.

The linearized forms also make qualitatively clear aspects of the dependence of the re-

flection strengths on the physical properties above and below the interface. The elastic part

of the reflectivity is sensitive to changes in density, P- and S-wave velocities and has a non

zero value for waves at normal incidence. The anelastic-homogeneous term is sensitive to

changes in density, S-wave velocity, P-wave quality factor and S-wave quality factor. At

normal incidence this term is not zero, but, only a change in P-wave quality factor influences

it. The inhomogeneous term is nonzero and sensitive to changes in density, P- and S-wave

velocities; it is zero at normal incidence. We show later that the inhomogeneous term is a

function of incidence angle, a property shared by the elastic and anelastic converted P-wave.

In Figure (5.4) we compare the relative importance of the three terms in the AVO re-

sponses expressed in equations (5.42) – (5.44). For elastic and homogeneous terms the
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Figure 5.8: Numerical modeling of elastic, homogeneous and inhomogeneous terms in lin-
earized P-to-P reflection coefficient for contrast in density.

contributions of the curvature at angles θP < 20◦ is negligible. Increasing the incidence an-

gle, this term becomes relevant beyond θP > 30◦. The three components of the PP-reflection

coefficient are illustrated in Figure (5.6). The elastic component shows a significant increase

in accuracy moving from the two-term approximation (intercept and gradient) to the three-

term approximation (including the curvature). The homogeneous component in isolation

deviates only slightly from the exact solution for angles up to 20◦ except in the case of

the limestone/salt model. In Figure (5.6c), we observe that the approximate form of the

inhomogeneous component of the reflection coefficient deviates significantly from the exact

result for all but the shale/salt model with incidence angles up to 20◦. Figure 5.8 is the nu-

merical comparison of elastic, homogeneous and inhomogeneous terms in P-to-P reflection

coefficients for contrast in density.

In Figure 5.7 we plot the exact versus linearized P-to-P reflectivity for the three single-

interface models in Table 1. For elastic and homogeneous parts of the reflectivity, the linearity

with respect to sin2 θP can be seen explicitly. The inhomogeneous term RIH
PP is not a linear

function of sin2 θP, but linearity can be enforced through the normalization

RIH
PPN =

RIH
PP

tan θP

, θP 6= 0. (5.45)

The exact and approximate inhomogeneous reflectivities, introduced in equation (5.45), are
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plotted in Figure (5.7d). The RIH
PPN term is evidently linear with respect to sin2 θP in the

range 0 ≤ θP ≤ 25◦. Using the decomposition defined in equation (5.36), and the terms

plotted in Figure 5.9, we can obtain the zero offset coefficients A and gradient terms B

from the exact reflectivity. Contour maps, illustrating the variability of the inhomogeneous

component of the P-to-P reflectivity versus phase and attenuation angles, are plotted in

Figure 5.5.

5.7 Converted wave approximations

By solving the Zoeppritz equation for two half-spaces involving low-loss viscoelastic media,

we can obtain exact expressions for the PP- and PS-reflection coefficients (Moradi and Inna-

nen, 2015a, 2016). To linearize the reflectivities in terms of changes in elastic and anelastic

properties, we assume the incidence angle to be smaller that 30◦, and also that the relative

change in all elastic/anelastic properties are much less than one. In this paper, to treat

the case of the converted wave, we use the appropriate version of Snell’s law to obtain an

expression for the S-wave attenuation angle, appropriate for small angles of incidence, which

is written as a function of the incident phase and attenuation angles (appendix C). The

weak-contrast converted-wave reflectivity is then given by

RPS = RE
PS + iRH

PS + iRIH
PS, (5.46)

where the real part is

RE
PS =− tan θS

1

2

VP

VS

∆ρ

ρ
− tan θS cos(θP + θS)

(
∆ρ

ρ
+ 2

∆VS

VS

)
, (5.47)

the homogeneous-imaginary part RH
PP is

RH
PS =− 1

4
tan θS(Q−1

P −Q
−1
S )

VP
VS

∆ρ

ρ
+Q−1

S tan θS cos(θP + θS)
∆QS

QS

, (5.48)

and the inhomogeneous-imaginary part RIH
PP is

RIH
PS =− 1

4
Q−1
S tan δS

1

cos2 θS

VP
VS

∆ρ

ρ
(5.49)

− 1

2
Q−1
S tan δS

cos(θP + θS)

cos2 θS

(
∆ρ

ρ
+ 2

∆VS

VS

)
(5.50)

+
1

2
tan θS sin(θP + θS)(Q−1

S tan δS +Q−1
P tan δP )

(
∆ρ

ρ
+ 2

∆VS

VS

)
. (5.51)
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This approximate PS-reflectivity is a function of density, S-wave velocity and S-wave quality

factors. Snell’s law relates the reflected and transmitted phase and attenuation angles to

the incident phase and attenuation angles. In order to analyze the converted-wave reflection

coefficient properly in the lowest order, using the Snell’s law the average S-wave attenuation

angle for small angles of incidence is written as a function of incident phase and attenuation

angles:

Q−1
S tan δS =

VS
VP
Q−1
P tan δP

+
VS
VP

(Q−1
S −Q

−1
P ) sin θP

− 1

2

VS
VP

[
1−

(
VS
VP

)2
]
Q−1
P tan δP sin2 θP

+
1

2

(
VS
VP

)3

(Q−1
S −Q

−1
P ) sin3 θP .

(5.52)

Then, using standard approximations for trigonometric functions for small angles, and col-

lecting the powers of sin θP, we obtain

RPS(θP, δP) = RE
PS(θP) + iRH

PS(θP) + iRIH
PS(θP, δP), (5.53)

where the elastic, homogenous and inhomogeneous terms are given by

RE
PS(θP) = AE

PS sin θP +BE
PS sin3 θP,

RH
PS(θP) = AH

PS sin θP +BH
PS sin3 θP,

RIH
PS(θP, δP) = AIH

PS +BIH
PS sin2 θP ,

with elastic constants

AE
PS =−

(
1

2
+
VS

VP

)
∆ρ

ρ
− 2

VS

VP

∆VS

VS

,

BE
PS =

VS

VP

[(
1

2
+

3

4

VS

VP

)
∆ρ

ρ
+ 2

[
1

2
+
VS

VP

]
∆VS

VS

]
,
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homogeneous constants

AH
PS =

VS

VP

{
Q−1
S

∆QS

QS

− 1

2
(Q−1

S −Q
−1
P )

(
∆ρ

ρ
+ 2

∆VS

VS

)}
,

BH
PS =− VS

VP

[
1

2
+
VS

VP

]
Q−1
S

∆QS

QS

− 1

4

(
VS

VP

)2

(Q−1
S −Q

−1
P )

∆ρ

ρ

+
1

4

VS
VP

(
1 + 4

VS

VP

)
(Q−1

S −Q
−1
P )

(
∆ρ

ρ
+ 2

∆VS

VS

)
,

and inhomogeneous constants

AIH
PS =− 1

2

VS
VP

[(
1 +

1

2

VP
VS

)
∆ρ

ρ
+ 2

∆VS

VS

]
Q−1
P tan δP ,

BIH
PS =

1

8

[
1− 3

(
VS
VP

)2
]

∆ρ

ρ
Q−1
P tan δP

+
VS
VP

(
1 +

3

2

VS

VP

)(
∆ρ

ρ
+ 2

∆VS

VS

)
Q−1
P tan δP .

The elastic term is seen to be sensitive to changes in density and S-wave velocity. The

anelastic-homogeneous term is likewise seen to be sensitive to changes in density, S-wave

velocity and its quality factor. These two terms are zero at normal incidence. The anelastic-

inhomogeneous term is affected only by changes in density and S-wave velocity. This term

also depends on the incident attenuation angle and is non zero at the normal incidence case;

we note that this makes it quite singular in the standard converted wave AVO problem,

wherein no contribution at normal incidence is ever predicted. Figure 5.10 is the numerical

comparison of elastic, homogeneous and inhomogeneous terms in P-to-S reflection coefficients

for contrast in density.

In Figure (5.9), we plot the exact versus linearized elastic, anelastic homogeneous and

anelastic inhomogeneous terms for converted wave for the three models in Table (5.1). We

observe that the elastic and homogenous terms are not linear in sin2 θP , and the inhomo-

geneous terms is. Thus we also define normalized elastic and homogeneous reflectivities by

dividing them by sin θP.
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Figure 5.9: Components of the PS-reflection coefficients versus incident angle and sin2 θP for
three two layer mineral models introduced in table 5.1. Solid line represent the exact reflec-
tivity calculated from the Zoeppritz equation (Eq. 5.21)and circle-dot lines corresponds to
the two term approximation. Reflectivity components corresponding to the interface models
of Shale/salt, Shale/Limestone(gas) and Limestone/Salt. Figures (5.9d,f) to corresponds to
the components normalized by dividing to sin θP

Figure 5.10: Numerical modeling of elastic, homogeneous and inhomogeneous terms in lin-
earized P-to-S reflection coefficient for contrast in density.
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5.8 Conclusions

The formulation of the amplitude-versus-offset equations for viscoelastic media is of increas-

ing interest and importance, with quantitative interpretation of seismic data being deployed

to characterize fluid presence, type, and viscosity in hydrocarbon reservoirs, CO2 injection

sites, and other exploration and monitoring settings. Properly formulated, these equations

also provide insights into the character of eventual viscoelastic full waveform inversion al-

gorithms. To date, investigations and analysis of anelastic reflection coefficients have been

constructed on the assumption that the attenuation angle is unchanged across the boundary,

which cannot be generally justified. We believe that a more fruitful approach approach is

to apply an appropriate version of Snell’s law in such way that transmitted and reflected

attenuation angles are expressed in terms of the incident attenuation angle. This approach

allows changes in attenuation angle to be expressed in terms of changes in velocity and

quality factors, leading to new terms in the relevant AVO equations with a wider capture of

anelastic reflection and transmission phenomena incorporated.

We show how Snell’s law can be put to work in order to learn about the homogeneous

and inhomogeneous components of complex vertical slowness. We have presented a decom-

position of the exact and approximate viscoelastic reflection coefficients to expose the above

discussed of the attenuation angle, demonstrating the possibly significant errors resulting

from its neglect, in particular in cases of for highly attenuative media.

Linearization of reflection coefficients in viscoelastic media is more complicated than in

elastic media in two ways. First, because of seismic amplitude damping, the polarization

and slowness vectors are complex, and therefore so is the reflectivity. Second, we have as

discussed the perturbation of the attenuation angle across the boundary, as predicted by

the viscoelastic Snell’s law. Taking into account these facts, the linearized AVO equations

include the terms related to the changes in S-wave quality factors and the attenuation angle.

To to understand quantitatively and qualitatively the importance and influence of the

attenuation angle, we decompose the reflectivity into three terms, elastic, homogeneous and

inhomogeneous. Linearity of the elastic and homogeneous parts are visible; the inhomo-

geneous part must be normalized to share this feature. In terms of powers of sin θP, the
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converted PS-wave has four contributions, from zeroth to third order. The extra terms are

due to the inhomogeneity of the waves. We examine our AVO equation with three two-half

space models. Numerically, we find that the elastic and homogeneous terms are not linear

with respect to sin2 θP, however the inhomogeneous term for small angles (θP < 30◦) is per-

fectly linear for both exact and approximate cases. The most striking feature of this model

of reflections from viscoelastic targets is that a non-zero converted wave at normal incidence

is predicted, connected to the attenuation angle.

The result presented in this research indicate that linearized reflection coefficients for

inhomogeneous PP-wave match for most inverse schemes the exact reflection coefficients

with adequate accuracy. More important, the new approximations and the decomposition

of reflectivity into three terms indicate that intercepts and gradients can be used in future

research to determine the quality factor and attenuation angle in an appropriate inversion

strategy.
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Appendix C

Complex coefficients

Decomposition of the complex coefficients in reflection functions (5.20) and (5.21) are given

by

d1 =dE
1 + idH

1 + idIH
1 ,

where

dE
1 =− 2p2

E∆µE(qE
P1 − qE

P2) + (ρ2q
E
P1 + ρ1q

E
P2)

dH
1 =− 2p2

E∆µE(qH
P1 − qH

P2)− 2(p2
E∆µA + 2pEpH∆µE)(qE

P1 − qE
P2) + ρ2q

H
P1 + ρ1q

H
P2

dIH
1 =− 2p2

E∆µE(qIH
P1 − qIH

P2)− 4pEpIH∆µE(qE
P1 − qE

P2) + ρ2q
IH
P1 + ρ1q

IH
P2

also

d2 =dE
2 + idH

2 + idIH
2 ,

where

dE
2 =− 2p2

E∆µE(qE
S − qE

S2) + (ρ2q
E
S1 + ρ1q

E
S2)

dH
2 =− 2p2

E∆µE(qH
P1 − qH

P2)− 2(p2
E∆µA + 2pEpH∆µE)(qE

S1 − qE
S2) + ρ2q

H
S1 + ρ1q

H
S2

dIH
2 =− 2p2

E∆µE(qIH
S1 − qIH

S2 )− 4pEpIH∆µE(qE
S1 − qE

S2) + ρ2q
IH
S1 + ρ1q

IH
S2

also

d3 =dE
3 + idH

3 + idIH
3 ,

where

dE
3 =− pE

[
2∆µE(qE

P1q
E
S2 + p2)−∆ρ

]
dH

3 =− 2(pE∆µA + pH∆µE)(qE
P1q

E
S2 + p2

E)− 2pE∆µE(2pEpH + qH
P1q

E
S2 + qE

P1q
H
S2) + pH∆ρ

dIH
3 =− 2pIH∆µE(qE

P1q
E
S2 + p2

E)− 2pE∆µE(qIH
P1q

E
S2 + qE

P1q
IH
S2 ) + pIH∆ρ
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also

d4 =dE
4 + idH

4 + idIH
4 ,

where

dE
4 =− pE

[
2∆µE(qE

P2q
E
S1 + p2)−∆ρ

]
dH

4 =− 2(pE∆µA + pH∆µE)(qE
P2q

E
S1 + p2

E)− 2pE∆µE(2pEpH + qH
P2q

E
S1 + qE

P2q
H
S1) + pH∆ρ

dIH
4 =− 2pIH∆µE(qE

P2q
E
S1 + p2

E)− 2pE∆µE(qIH
P2q

E
S1 + qE

P2q
IH
S1 ) + pIH∆ρ

also

c1 =cE
1 + icH

1 + icIH
1 ,

where

cE
1 =− 2p2

E∆µE(qE
P1 + qE

P2) + (ρ2q
E
P1 − ρ1q

E
P2)

cH
1 =− 2p2

E∆µE(qH
P1 + qH

P2)− 2(p2
E∆µA + 2pEpH∆µE)(qE

P1 + qE
P2) + ρ2q

H
P1 − ρ1q

H
P2

cIH
1 =− 2p2

E∆µE(qIH
P1 + qIH

P2)− 4pEpIH∆µE(qE
P1 + qE

P2) + ρ2q
IH
P1 − ρ1q

IH
P2

also

c2 =cE
2 + icH

2 + icIH
2 ,

where

cE
2 =− 2p2

E∆µE(qE
S + qE

S2) + (ρ2q
E
S1 − ρ1q

E
S2)

cH
2 =− 2p2

E∆µE(qH
P1 + qH

P2)− 2(p2
E∆µA + 2pEpH∆µE)(qE

S1 + qE
S2) + ρ2q

H
S1 − ρ1q

H
S2

cIH
2 =− 2p2

E∆µE(qIH
S1 + qIH

S2 )− 4pEpIH∆µE(qE
S1 + qE

S2) + ρ2q
IH
S1 − ρ1q

IH
S2

also

c3 =cE
3 + icH

3 + icIH
3 ,
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where

cE
3 =pE

[
2∆µE(qE

P1q
E
S2 − p2) + ∆ρ

]
cH

3 =2(pE∆µA + pH∆µE)(qE
P1q

E
S2 − p2

E)− 2pE∆µE(2pEpH − qH
P1q

E
S2 − qE

P1q
H
S2) + pH∆ρ

cIH
3 =2pIH∆µE(qE

P1q
E
S2 − p2

E) + 2pE∆µE(qIH
P1q

E
S2 + qE

P1q
IH
S2 ) + pIH∆ρ

also

c4 =cE
4 + icH

4 + icIH
4 ,

where

cE
4 =pE

[
2∆µE(qE

P2q
E
S1 + p2) + ∆ρ

]
cH

4 =2(pE∆µA + pH∆µE)(qE
P2q

E
S1 − p2

E)− 2pE∆µE(2pEpH − qH
P2q

E
S1 − qE

P2q
H
S1) + pH∆ρ

cIH
4 =2pIH∆µE(qE

P2q
E
S1 − p2

E) + 2pE∆µE(qIH
P2q

E
S1 + qE

P2q
IH
S1 ) + pIH∆ρ
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Appendix D

Trigonometric functions for small angles

For small angle of incident θP we can write

1

cos2 θP

≈ 1 + sin2 θP (D.1)

cos θP ≈ 1− 1

2
sin2 θP (D.2)

1

cos θP

≈ 1 +
1

2
sin2 θP (D.3)

tan θP ≈ sin θP +
1

2
sin3 θP (D.4)

sin 2θP ≈ 2 sin θP − sin3 θP (D.5)

tan θP

cos2 θP

≈ sin θP +
3

2
sin3 θP (D.6)

sin θS =
VS

VP

sin θP (D.7)

cos θS ≈ 1− 1

2

(
VS

VP

)2

sin2 θP (D.8)

1

cos θS

≈ 1 +
1

2

(
VS

VP

)2

sin2 θP (D.9)

1

cos2 θS

≈ 1 +

(
VS

VP

)2

sin2 θP (D.10)

tan θS ≈
VS

VP

sin θP

(
1 +

1

2

(
VS

VP

)2

sin2 θP

)
(D.11)

cos(θS + θP) ≈ 1− 1

2
sin2 θP

[
1 +

VS

VP

]2

(D.12)

sin(θS + θP) ≈
[
1 +

VS

VP

]
sin θP

(
1 +

1

2

VS

VP

sin2 θP

)
(D.13)

tan θS cos(θS + θP) ≈ VS

VP

sin θP

(
1−

[
1

2
+
VS

VP

]
sin2 θP

)
(D.14)

cos(θS + θP)

cos2 θS

≈ VS

VP

[
1 +

VS

VP

]
sin2 θP (D.15)
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Appendix E

Linearization procedure in viscoelastic media

First consider to the perturbations in elastic and anelastic properties. Subscript 1 refers to

the upper layer(medium 1) and subscribe 2 refers to the lower layer (medium 2). ∆ means

difference between the properties in medium 2 and medium 1 and superscript L denotes the

linearized form. In the linearization procedure ∆2 = 0. Properties without index means the

average in properties.

Property Layer 1 Layer2

Density ρ− ∆ρ
2

ρ+ ∆ρ
2

P-wave velocity VPE − ∆VPE

2
VPE + ∆VPE

2

S-wave velocity VSE − ∆VSE
2

VSE + ∆VSE
2

P-wave quality factor QP − ∆QP

2
QP + ∆QP

2

S-wave quality factor QS − ∆QS

2
QS + ∆QS

2

P-wave phase angle θP − ∆θP
2

θP + ∆θP
2

S-wave phase angle θS − ∆θS
2

θS + ∆θS
2

P-wave attenuation angle δP − ∆δP
2

δP + ∆δP
2

S-wave attenuation angle δS − ∆δS
2

δS + ∆δS
2

Trigonometric functions in this procedures for attenuation angle are given by

cos δn = cos δP

(
1 + (−)n+1 tan δ

∆δ

2

)
, (E.1)

sin δn = sin δP

(
1− (−)n+1 1

tan δ

∆δ

2

)
, (E.2)

tan δn = tan δP

(
1− (−)n+1 1

tan δ
∆δ

)
, n = 1, 2 (E.3)

(E.4)

The real part of the Snell’s law for P-wave results

sin θP1

VP1

=
sin θP2

VP2

, (E.5)
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where θP1 is incident angle and θP2 is transmitted phase angle, using the perturbed term,

we obtain the change in P-wave phase angle across the boundary in terms of change in the

P-wave velocity

∆θP =
∆VP

VP

tan θP, (E.6)

Imaginary part of the Snell’s law for P-wave is given by

Q−1
P1

VP1

(sin θP1 − cos θP1 tan δP1) =
Q−1

P2

VP2

(sin θP2 − cos θP2 tan δP2) (E.7)

Using the perturbation terms in table (E), we obtain the changes in P-wave attenuation

angle across the boundary in terms of changes in phase angle, P-wave velocity and P-wave

quality factor

∆δP =
1

2
sin 2δP

{
∆VP

VP

1

cos2 θP

+

(
1− tan θP

tan δP

)
∆QP

QP

}
, (E.8)

Let us consider to the linearization of the vertical slowness

qP = qPE + iqPAH + iqPAIH,

where

qPE =
cos θP

VP

qPAH = −Q
−1
P

2

cos θP

VP

qPAIH = −1

2
Q−1

P tan δP
sin θP

VP

To obtain the linearized form of vertical slownesses we note that we have to linearize the

summation of homogeneous and inhomogeneous term

qPAH1 + qPAIH1 −→ qL
PAH1 + qL

PAIH1 (E.9)

In other words

qPAH1 6= qL
PAH1

qPAIH1 6= qL
PAIH1

116



Now the vertical slowness for incident P-wave is given by

qP1 = qPE1 + iqPAH1 + iqPAIH1,

where

qPE1 =
cos θP1

VP1

qPAH1 = −Q
−1
P1

2

cos θP1

VP1

qPAIH1 = −1

2
Q−1

P1 tan δP1
sin θP1

VP1

Using the linearized form of the angles and P-wave velocity and P-wave quality factor we

have

qL
PE1 = qPE

(
1 +

1

2 cos2 θP

∆VP

VP

)
qL

PAH1 = qPAH

(
1 +

1

2 cos2 θP

[
∆VP

VP

+
∆QP

QP

])
qL

PAIH1 = qPAIH

(
1− 1

2 cos2 θP

∆VP

VP

)

Transmitted P-wave

qL
PE2 = qPE

(
1− 1

2 cos2 θP

∆VP

VP

)
qL

PAH2 = qPAH

(
1− 1

2 cos2 θP

[
∆VP

VP

+
∆QP

QP

])
qL

PAIH2 = qPAIH

(
1 +

1

2 cos2 θP

∆VP

VP

)
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Incident S-wave

qL
SE1 = qSE

(
1 +

1

2 cos2 θS

∆VS

VS

)
qL

SAH1 = qSAH

(
1 +

1

2 cos2 θS

[
∆VS

VS

+
∆QS

QS

])
qL

SAIH1 = qSAIH

(
1− 1

2 cos2 θS

∆VS

VS

)

Transmitted S-wave

qL
SE2 = qSE

(
1− 1

2 cos2 θS

∆VS

VS

)
qL

SAH2 = qSAH

(
1− 1

2 cos2 θS

[
∆VS

VS

+
∆QS

QS

])
qL

SAIH2 = qSAIH

(
1 +

1

2 cos2 θS

∆VS

VS

)

The complex shear modulus can be written as a real and imaginary part

µ = µE + iµA, (E.10)

where µE = ρV 2
S and µA = ρ QSV

2
S . Now we linearized the shear modulus

µ1 =µE1 + iµA1

µ2 =µE2 + iµA2

where

µE1 =µE

(
1− 1

2

[
∆ρ

ρ
+ 2

∆VS

VS

])
µE2 =µE

(
1 +

1

2

[
∆ρ

ρ
+ 2

∆VS

VS

])
µA1 =µA

(
1− 1

2

[
∆ρ

ρ
+ 2

∆VS

VS

− ∆QS

QS

])
µA2 =µA

(
1 +

1

2

[
∆ρ

ρ
+ 2

∆VS

VS

− ∆QS

QS

])
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Now we have

∆µE =µE

[
∆ρ

ρ
+ 2

∆VS

VS

]
∆µA =µA

[
∆ρ

ρ
+ 2

∆VS

VS

− ∆QS

QS

]
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Chapter 6

Born scattering and inversion sensitivities in

viscoelastic transversely isotropic media

6.1 Abstract

We analyze the volume scattering of seismic waves from anisotropic-viscoelastic inclusions

using the Born approximation. We consider the specific case of Vertical Transverse Isotropic

(VTI) media with low-loss attenuation and weak anisotropy such that second- and higher-

order contributions from quality factors and Thomsen parameters are negligible. To ac-

commodate the volume scattering approach, the viscoelastic VTI media is broken into a

homogeneous viscoelastic reference medium with distributed inclusions in both viscoelastic

and anisotropic properties. In viscoelastic reference media in which all propagations take

place, wave modes are of P-wave type, SI-wave type and SII-wave type, all with complex

slowness and polarization vectors. We generate expressions for P-to-P, P-to-SI, SI-to-SI

and SII-to-SII scattering potentials, and demonstrate that they reduce to previously-derived

isotropic results. These scattering potential expressions are, we end by pointing out, sensitiv-

ity kernels related to the Fréchet derivatives which provide the weights for multi-parameter

full waveform inversion updates.

6.2 Introduction

Anisotropic and viscoelastic models of seismic wave propagation provide a link between mea-

sured amplitude/phase information and certain subsurface geological properties which are

unaccounted for with isotropic-elastic models. These include viscosity and viscosity changes,

stresses, fluid presence and type, and fracture density, weakness, and orientation. Such

links are particularly important for evaluating production in unconventional hydrocarbon

reservoirs (Fatti et al., 1994; Beretta et al., 2002; Tsvankin et al., 2010), and for environ-

mental applications such as detection of CO2 and monitoring of its storage (Bickle, 2009;
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Lumley, 2010), and monitoring of migration of shallow gas (Grasso and Wittlinger, 1990),

etc. Simultaneous determination of these properties (if and when it is practical to do so)

requires analysis of very subtle variations in seismic data. All current methods for such deter-

mination, including amplitude-variation-with-offset, or AVO (Castagna and Backus, 1993),

multi-parameter full waveform inversion, or FWI (Virieux and Operto, 2009), and inverse

scattering (Weglein et al., 2003; Stolt and Weglein, 2012), are founded on mathematical

expressions of the process of scattering, wherein an incoming wave is transformed into an

outgoing wave of altered character after interaction with a point- or plane-perturbation. Pa-

rameterization of scattering from simultaneous variations in both viscoelastic and anisotropic

properties, which has several somewhat complex features, is an important, and theoretically

incomplete, step in formulating seismic inverse problems applicable in the above settings.

In the AVO problem (and related problems such as amplitude-variation-with-azimuth,

or AVAz), scattering is expressed via linearized expressions for reflection coefficients. Weak

contrast linearized reflection coefficient expressions, once derived, play a major role in inver-

sion of seismic data as they contain unique information on sensitivity of the seismic data to

the changes in earth properties (Beylkin and Burridge, 1990; Burridge et al., 1998; Tarantola,

1986). The traditional way to compute these linearized reflection coefficients is via approx-

imate solution of the Zoeppritz equation in which it is assumed that properties across the

boundary vary only slightly and that illumination occurs only at small incidence angles (Aki

and Richards, 2002). Exact and approximate reflection and transmission coefficients have

been derived for layered isotropic-viscoelastic media, taking into account the changes in the

viscoelastic parameters but assuming that the incident plane wave is homogeneous (Ursin and

Stovas, 2002). The same problem but with allowance made for an inhomogeneous viscoelas-

tic plane wave interacting with a low-contrast variation in isotropic viscoelastic parameters,

wherein jumps in the inhomogeneity angle are included, have recently been derived (Moradi

and Innanen, 2016). A mapping between these linearized reflection coefficient expressions

and viscoelastic volume scattering potentials was also provided in that work (Moradi and

Innanen, 2015b). Earlier Cervený & Psenćık have studied homogeneous and inhomoge-

neous plane waves propagating in an anisotropic-viscoelastic medium (Cervený and Psenćık,

2005a,b, 2008). Linearized reflection coefficients for weak-contrast anisotropic-viscoelastic
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media, including the inhomogeneity angle of the incident wave, have been derived based

on the exact solutions of the Zoeppritz equations by Behura and Tsvankin (2009b,a). The

main result of the current paper concerns the mathematical details of volume scattering from

anisotropic-viscoelastic inclusions.

Understanding the scattering patterns induced by perturbations in medium properties

is prerequisite for AVO inversion (Castagna and Backus, 1993) and full waveform inversion

(FWI) (Virieux and Operto, 2009; Fichtner, 2010). This is particularly true for multiparam-

eter FWI, in which cross-talk between simultaneous variations in several elastic properties

produces issues comparable to those grappled with in AVO inversion (Innanen, 2014). Cur-

rent and future practical FWI will likely require multiple parameters to be robustly accounted

for, in spite of these issues. Specifically, multiple isotropic-elastic properties, P- and S-wave

impedances and density are known from the history of AVO (Castagna and Backus, 1993;

Foster et al., 2010) to be required to adequately describe precritical reflection amplitudes.

Also, anisotropic parameters have been demonstrated to be critical for FWI in velocity model

building (Warner et al., 2013), and also must play very important roles in FWI for charac-

terization of fracturing and stress in reservoirs. Finally, strong anelastic attenuation in near

surface environments, gas cloud environments, and many unconventional reservoir environ-

ments make simultaneous incorporation of attenuation parameters in FWI a major current

subject of research (Métivier et al., 2015; Operto et al., 2013; Prieux et al., 2013). From

a mathematical-geophysics point of view, quantitatively- and qualitatively-interpretable ex-

pressions of the quantities which relate weighting factors in seismic inversion with processes

of scattering of seismic waves from changes in such parameters is a critical step. The pur-

pose of this paper is to frame such expressions for quite general types of attenuating and

anisotropic elastic problems.

The Born approximation method, based on perturbation theory, is an efficient approach

to evaluate sensitivity kernels for many types of multi-parameter FWI (da Silva et al., 2016;

Plessix and Cao, 2011). In this approach, the actual medium is considered as a reference

medium (with slightly different properties from those of the actual medium) and randomly

distributed perturbations. In the cases described in this paper, the vertically-attenuative

isotropic medium perturbations are in: density, vertical P- and S-wave velocities, vertical P-
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and S-wave quality factors, three anisotropic Thomsen parameters and three Q-dependent

Thomsen parameters. Compared to elastic-isotropic versions of such approximations the

mathematical expressions generated are complicated, so to make the results more easily

interpretable we assume both weak anisotropy and low attenuation in the lower and upper

media.

The rest of the paper is organized as follow. In section 6.3 we discuss the complex stiffness

tensor for viscoelastic VTI media, then proceed assuming (a) the anisotropy is weak, and

(b) the media is low-loss attenuative. In view of (a) and (b) we introduce the Q-dependent

Thomsen parameters in terms of real stiffness tensor components and quality factor matrix

components. In section 6.4 we describe the perturbations in the stiffness tensor from which

we derive the approximate forms of the scattering potentials. In particular we will show how

the perturbed VTI stiffness tensor is decomposed into contributions from the isotropic and

anisotropic parameters. In section 6.5 we present the general form of scattering potential for

scattering of P-wave to P wave, P-wave to SI-wave, SI-wave to SI-wave and SII-wave to SII-

wave. We also describe the polarization and slowness vectors of the incident and scattered

P- and SI-waves, which are essential to the evaluation of the scattering potentials. The

results obtained for scattering potentials are discussed in more detail in section 6.6. There

we show in particular that scattering potentials can be decomposed into terms interpretable

as being contributions from isotropic-elastic, anisotropic-elastic, isotropic-viscoelastic and

anisotropic-viscoelastic components of the medium.

6.3 The stiffness tensor for VTI-viscoelastic media and complex Thomsen

parameters

A common and powerful anisotropic model often used in exploration seismology is that of

transversely isotropic media with horizontal (HTI) or vertical (VTI) symmetry axes (Rüger,

2002). A VTI medium with its axis of symmetry along the vertical or depth (z) direction is

for instance appropriate in geological media with thin, parallel bedding planes perpendicular
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to z. The stiffness tensor in the form of a symmetric 6×6 matrix is given by

CVTI =



C11 C11 − 2C66 C13 0 0 0

C11 − 2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C55 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (6.1)

The P-wave phase velocity along the z axis is given by VP =
√
C33/ρ, the S-wave velocity

for shear wave polarized the z-direction along the vertical axis is given by VS =
√
C55/ρ.

The stiffness tensor in subscript notation can be written as (Ikelle and Amundsen, 2005):

ĈVTI
ijkl = (Ĉ11 − 2Ĉ66)δijδkl + Ĉ66(δikδjl + δilδjk)

+ (2Ĉ66 − Ĉ11 + Ĉ13)(δijδk3δl3 + δklδi3δj3)

+ (Ĉ55 − Ĉ66)(δikδj3δl3 + δjkδi3δl3 + δilδj3δk3 + δjlδi3δk3)

+ (Ĉ11 − 2Ĉ13 + Ĉ33 − 4Ĉ55)δi3δj3δk3δl3.

(6.2)

The mark ’ˆ’ distinguishes the complex stiffness tensor Ĉijkl from the real elastic Cijkl. This

form of Ĉijkl in eq.(6.2) helps express the scattering potential in terms of inner products of

polarization and slowness vectors. It will also soon prove useful in the decomposition of the

scattering potential into contributions from isotropic and anisotropic terms. In a viscoelastic

medium, attenuation is often characterized by quality factors Q. The complex stiffness tensor

is such that the real part is related to the elastic and anisotropic properties of the medium,

and the imaginary part is related to the quality factors. Corresponding to each independent

component of the stiffness tensor there is a quality factor defined by Qmn = Cmn/C
I
mn, where

Cmn and CI
mn are real and imaginary parts of the complex stiffness tensor Ĉmn, using the

Voigt notation in which m = ij and n = kl. As a result Ĉmn can be written as a function of

the quality factor tensor

Ĉmn = Cmn
(
1 + iQ−1

mn

)
. (6.3)
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Thomsen’s notation then enables us to separate the influence of anisotropy from the other

properties (Thomsen, 1986). Complex Thomsen parameters are defined as

ε̂ =
Ĉ11 − Ĉ33

2Ĉ33

, (6.4)

γ̂ =
Ĉ66 − Ĉ55

2Ĉ55

, (6.5)

δ̂ =
(Ĉ13 + Ĉ55)2 − (Ĉ33 − Ĉ55)2

2Ĉ33(Ĉ33 − Ĉ55)
. (6.6)

Incorporating equation (6.3) into equations (6.4)-(6.6) and assuming the low-attenuation

condition Q−1
ij � 1, we obtain

ε̂ = ε+
i

2
Q−1

33 εQ, (6.7)

δ̂ = δ +
i

2
Q−1

33 δQ, (6.8)

γ̂ = γ +
i

2
Q−1

55 γQ, (6.9)

where ε, δ and γ are the standard elastic Thomsen parameters related to the phase velocities

in VTI media. The quantity ε, which is the P-wave anisotropy parameter measuring the

difference between the vertical and horizontal P-wave velocities, now refers to the elastic

aspects of anisotropy of rock, i.e., in the attenuation-free limit. Meanwhile the parameter δ,

the small-offset normal move-out (NMO) factor, controls the near-vertical anisotropy, and

γ, which is the difference between the vertical and horizontal SH-wave velocities, is related

to the SH-wave anisotropy (Thomsen, 1986). To these is added the Q-dependent Thomsen

parameters, as defined by (Zhu and Tsvankin, 2006b)

εQ =
Q33 −Q11

Q11

δQ = 2
C13(C13 + C55)

C33(C33 − C55)

Q33 −Q13

Q13

+
C55(C13 + C33)2

C33(C33 − C55)2

Q33 −Q55

Q55

,

γQ =
Q55 −Q66

Q66

.

(6.10)
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Now we write the components of Ĉij in terms of Thomsen parameters and quality factors.

Incorporating equations (6.7)-(6.9) we obtain

Ĉ33 =C33(1 + iQ−1
33 ),

Ĉ55 =C55(1 + iQ−1
55 ),

Ĉ11 =C33(1 + 2ε) + iQ−1
33 C33(1 + 2ε+ εQ),

Ĉ66 =C55(1 + 2γ) + iQ−1
55 C55(1 + 2γ + γQ),

Ĉ13 =C33(1 + δ)− 2C55 + iQ−1
33 C33(1 + δ + δQ)− 2iQ−1

55 C55.

(6.11)

Throughout the present work we will assume weak anisotropy |γ|, |δ|, |ε| � 1 and weak

attenuation Q−1
33 , Q

−1
55 � 1. In what follows for notational simplicity we will use QP for the

P-wave quality factor instead of Q33, and QS for the S-wave quality factor instead of Q55.

6.4 Perturbations in the stiffness tensor and the Born approximation

In this section we derive the main result of the paper, which is a form for the potential for scat-

tering of P-, SI and SII waves. In figure 6.1, a volume-scattering model of wave interaction in

anisotropic viscoelastic media is illustrated. The “actual” medium is divided into a homoge-

neous reference medium and perturbations in eleven medium properties. Here, the reference

medium is an additional component of the model specially required by the anisotropic as-

pects of the wave propagation is the definition of a preferential direction z, which we will

set as the vertical or depth axis, and the assumption that the incident wave approaches the

scatter points in the positive z-direction. In this way we may further define θIn as the angle

between the direction of incident wave and the z-direction, and set the coordinate system

in such a way that for non-converted waves θIn = θSc. In this coordinate system it will be

true that for converted wave θIn 6= θSc. In this way the opening angle between incoming and

outgoing wave vectors can be associated straightforwardly with both anisotropic medium

characteristics and sums and differences of incidence/reflection/conversion angles. For ex-

ample, for a P-to-P-scattered wave the opening angle can be expressed as θIn + θSc = 2θP ,

and for converted PS-wave as θIn + θSc = θP + θS.

Within the Born approximation, the term ∆ρ = ρ− ρ0 represents the difference between

the actual, or perturbed density ρ and the density of the reference medium ρ0. In this case,
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Figure 6.1: Schematic description of Born approximation based on the perturbation theory.
The reference medium is characterized by its three elastic parameters P-wave velocity VP0,
S-wave velocity VS0 and density ρ0; two viscoelastic parameters P-wave quality factor QP0

and S-wave quality factor QS0; three anisotropic Thomsen parameters (ε0, δ0, γ0) and corre-
sponding Q-dependent Thomsen parameters (εQ0, δQ0, γQ0). Perturbations are characterized
by 11 components represented by (∆ρ,∆VP,∆VS,∆ε,∆δ,∆γ,∆QP,∆QS,∆εQ,∆δQ,∆γQ).
Other quantities are defined in table F.1.
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fractional changes in properties can be represented by either ∆ρ/ρ0 or ∆ρ/ρ, as under the

single-scattering assumption both are much smaller than unity. In contrast, because in the

case of weak anisotropy the Thomsen parameters are much smaller than unity, we can use

the bare differences between the properties instead of the fractional changes. Consider first

the perturbations in anisotropic parameters. Changes in the complex Thomsen parameters

can be expressed in terms of changes in real and Q-dependent Thomsen parameters via

∆ε̂ =

(
ε+

i

2
Q−1

P εQ

)
−
(
ε0 +

i

2
Q−1

P0εQ0

)
, (6.12)

∆δ̂ =

(
δ +

i

2
Q−1

P δQ

)
−
(
δ0 +

i

2
Q−1

P0δQ0

)
, (6.13)

∆γ̂ =

(
γ +

i

2
Q−1

S γQ

)
−
(
γ0 +

i

2
Q−1

S0 γQ0

)
. (6.14)

Quantities without the subscript ‘0’ refer to the actual/perturbed medium. All quantities in

the actual medium are next expressed in terms of their values in the reference medium and

the perturbations. First, for the Thomsen parameters we have

ε = ε0 + ∆ε, εQ = εQ0 + ∆εQ,

δ = δ0 + ∆δ, δQ = δQ0 + ∆δQ,

γ = γ0 + ∆γ, γQ = γQ0 + ∆γQ.

(6.15)

For inverse P- and S-wave quality factors Q−1
P and Q−1

S we furthermore have

Q−1
P = (QP0 + ∆QP)−1 ≈ Q−1

P0

(
1− ∆QP

QP

)
,

Q−1
S = (QS0 + ∆QS)−1 ≈ Q−1

S0

(
1− ∆QS

QS

)
,

(6.16)

where we taken advantage of both the low-loss attenuation and weak contrast assumptions,

which are respectively given by
(
Q−1

P0 , Q
−1
P0

)
� 1 and (∆QP/QP,∆QS/QS)� 1. Incorporat-

ing equations (6.15) and (6.16) into equations (6.12)-(6.14) and considering terms up to first

order in the perturbations, we arrive at

∆ε̂ =∆ε+
i

2
Q−1

P0∆εQ, (6.17)

∆δ̂ =∆δ +
i

2
Q−1

P0∆δQ, (6.18)

∆γ̂ =∆γ +
i

2
Q−1

S0 ∆γQ. (6.19)
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For an elastic background, in which Q−1
P0 = Q−1

S0 = 0, the Q-dependent parameter vanishes

as expected. We next expand the changes in Ĉ33 and Ĉ55 (isotropic part of changes in

other components of the stiffness tensor can be expressed in terms of changes in these two

components). The change in the Ĉ33 component is

∆Ĉ33 = Ĉ33 − Ĉ(0)
33 = ρV̂ 2

P − ρ0V̂
2
P0, (6.20)

where the complex V̂P and V̂P0 are the P-wave velocities in the actual and reference media

respectively. These in turn can be written in terms of elastic P-wave velocity and P-wave

quality factors as

V̂ 2
P = V 2

P

(
1 + iQ−1

P /2
)2 ≈ V 2

P

(
1 + iQ−1

P

)
,

V̂ 2
P0 = V 2

P0

(
1 + iQ−1

P0/2
)2 ≈ V 2

P0

(
1 + iQ−1

P0

)
.

(6.21)

Inserting the expressions in (6.21) into equation (6.20) and using ρ = ρ0 + ∆ρ and V 2
P =

V 2
P0 + 2VP0∆VP we finally arrive at

∆Ĉ33

Ĉ
(0)
33

=

(
∆ρ

ρ
+ 2

∆VP
VP

)
− iQ−1

P0

∆QP

QP

, (6.22)

where Ĉ
(0)
33 = ρ0V̂

2
P0. The fractional perturbation in Ĉ33 is thus decomposed into two compo-

nents. The real part is influenced by perturbations in density and P-wave velocity, and the

imaginary part by changes in P-wave quality factor. In a similar manner we calculate the

fractional perturbation in C55 to be:

∆Ĉ55

Ĉ
(0)
55

=

(
∆ρ

ρ
+ 2

∆VS
VS

)
− iQ−1

S0

∆QS

QS
, (6.23)

where Ĉ
(0)
55 = ρ0V̂

2
S0. Subsequently changes in other components of the stiffness tensor are

∆Ĉ11 = Ĉ11 − Ĉ(0)
11 = ∆Ĉ33 + 2Ĉ

(0)
33 ∆ε̂,

∆Ĉ13 = Ĉ13 − Ĉ(0)
13 = ∆Ĉ33 − 2∆Ĉ55 + Ĉ

(0)
33 ∆δ̂,

∆Ĉ66 = Ĉ66 − Ĉ(0)
66 = ∆Ĉ55 + 2Ĉ

(0)
55 ∆γ̂.

(6.24)

Perturbations in the above components of the stiffness tensor are functions of changes in

elastic and anelastic parameters, Thomsen parameters and Q-dependent Thomsen parame-

ters. These are the basic elements from which scattering potentials will now be constructed

in terms of variations in medium properties. Finally, we observe that changes in ĈVTI
ijkl can be
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decomposed into isotropic and anisotropic terms. Such expressions will turn out to enable

comparisons between our results and previously-derived scattering potentials for elastic and

viscoelastic media (Stolt and Weglein, 2012; Moradi and Innanen, 2015b). Using equations

(6.2) and (6.24), it follows now that the changes in the complex stiffness tensor can be written

as

∆ĈVTI
ijkl = ∆ĈIso

ijkl + ∆Ĉε
ijkl + ∆Ĉδ

ijkl + ∆Ĉγ
ijkl, (6.25)

where the isotropic part of the perturbation is given by

∆ĈIso
ijkl = ∆Ĉ33δijδkl + ∆Ĉ55(δikδjk − 2δijδkl + δilδjk), (6.26)

and the perturbations related to the Thomsen parameters are

∆Ĉε
ijkl = 2Ĉ

(0)
33 ∆ε̂ (δijδkl)[1,2] ,

∆Ĉδ
ijkl = Ĉ

(0)
33 ∆δ̂(δijδk3δl3 + δklδi3δj3 − 2δi3δj3δk3δl3),

∆Ĉγ
ijkl = 2Ĉ

(0)
55 ∆γ̂(δikδjl + δilδjk − 2δijδkl)[1,2]

− 2Ĉ
(0)
55 ∆γ̂(δjkδi3δl3 + δjlδi3δk3 − 2δklδi3δj3).

(6.27)

By [1, 2] we mean that the subscripts only take on the values 1 and 2. This form will in

the next section be combined with definitions of the polarization and slowness vectors to

formulate the scattering potentials.

6.5 Scattering potentials

The Born approximation yields an expression for the scattered wave which is linear in frac-

tional changes in medium properties. In the previous section, perturbations in the complex

anisotropic-viscoelastic stiffness tensor were set out: in the isotropic-elastic limit we have

perturbations in density, P- and S-wave velocity, and to add in effects of attenuation and

anisotropy, perturbations in P- and S-wave quality factors, three elastic Thomsen parame-

ters and three Q-related Thomsen parameters are included. Within any realization of the

Born approximation appear forms for the scattering potential. The scattering potential is

a central concept both in FWI, being closely related to the sensitivity kernels which weight

data residuals in creating Gauss-Newton and Newton updates (Virieux and Operto, 2009),
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and in wave modelling in general, as all of the information of scattering radiation pattern

are contained therein.

Let us first consider the case that the reference medium and the perturbations are both

anisotropic-viscoelastic, with weak anisotropy and weak attenuation. All parameters related

to the reference medium are labelled with a subscript 0; unlabelled parameters are related to

the actual medium. The general expression for the scattering potential is given by (Beylkin

and Burridge, 1990)

S = (S · I)∆ρ− ηmn∆Ĉmn = (S · I)∆ρ− (SikSc
j IkkIn

l )∆Ĉijkl, (6.28)

where the Voigt notation m = ij and n = kl has been invoked and ∆Cijkl = Cijkl − C(0)
ijkl

is the difference between the non-zero components of the stiffness tensor in the actual and

the reference media. Additionally, S and I respectively are the polarization vectors of the

scattered and incident waves; kSc is the scattered slowness vector and kIn is the incident

slowness vector.

By incorporating equations (6.26) and (6.27) into (6.28) and rearranging the scattering

potential in terms involving isotropic versus anisotropic parameters, we obtain

S = SIso + SAni, (6.29)

with isotropic and anisotropic parts respectively given by

SIso =(S · I)∆ρ

− (S · kSc)(I · kIn)∆Ĉ33

−
{

(S · I)(kSc · kIn) + (S · kIn)(I · kSc)− 2(S · kSc)(I · kIn)
}

∆Ĉ55,

SAni =− 2Ĉ
(0)
33

{
(S · kSc)(I · kIn)

}
[1,2]

∆ε̂

− Ĉ(0)
33

{
(S · kSc)[1,2]Izk

In
z + (I · kIn)[1,2]Szk

Sc
z

}
∆δ̂

− 2Ĉ
(0)
55

{
(S · I)(kSc · kIn) + (S · kIn)(I · kSc)− 2(S · kSc)(I · kIn)

}
[1,2]

∆γ̂.

(6.30)

Superscripts ‘Sc’ and ‘In’ refer to the scattered and incident waves respectively. As before

the square brackets [1, 2] restrict consideration to certain directions, in this case the x and

y components in the expression; for example (S · I)[1,2] = S1I1 + S2I2. The unique decom-

position of the scattering potential into isotropic and anisotropic parts in equation (6.30) is

significant to our forthcoming discussions.
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To evaluate the scattering potential, we must next determine the slowness and polariza-

tion vectors for scattered and incident waves. In a viscoelastic medium, the wave number

vector is complex, in other words it is of the form K = P − iA, where P is the propa-

gation vector and A, the attenuation vector, further determines the direction of maximum

attenuation. If propagation and maximum attenuation point in the same direction, the wave

is called homogeneous, otherwise the wave is called inhomogeneous (Borcherdt, 2009). In

what follows we will consider the general case in which inhomogeneous incident waves are

scattered into inhomogeneous outgoing waves. In this case the polarization and slowness

vectors for scattered and incident P-waves are given by

IP = V̂P0k
In
P ,

SP = V̂P0k
Sc
P ,

kIn
P =

KIn
P

ω
=

1

ω

(
PIn

P − iAIn
P

)
,

kSc
P =

KSc
P

ω
=

1

ω

(
PSc

P − iASc
P

)
,

(6.31)

where IP and SP respectively are the incident and scattered P-wave polarization vectors,

and kIn
P and kSc

P respectively are the incident and scattered P-wave slowness vectors. The

incident P-wave propagation and attenuation vectors are defined by PIn
P and AIn

P respectively,

and the scattered wave vectors by PSc
P and ASc

P respectively (see Appendix F). The complex

P-wave velocity in the reference medium is defined by V̂P0 = VP0(1 + i
2
Q−1

P0) with elastic

P-wave velocity VP0 and P-wave quality factor QP0. For the SI-wave we have

IS = V̂S0

(
y × kIn

S

)
,

SS = V̂S0

(
y × kSc

S

)
,

kIn
S =

KIn
S

ω
=

1

ω

(
PIn

S − iAIn
S

)
,

kSc
S =

KSc
S

ω
=

1

ω

(
PSc

S − iASc
S

)
.

(6.32)

Here y is a unit vector in y-direction. IS and SS respectively are the incident and scattered

S-wave polarization vectors; kIn
S and kSc

S are the incident and scattered S-wave slowness

vectors respectively. The complex S-wave velocity in the reference medium is defined by

V̂S0 = VS0(1 + i
2
Q−1

S0 ) with elastic S-wave velocity VS0 and S-wave quality factor QS0 . The
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incident S-wave propagation and attenuation vectors are defined by PIn
S and AIn

S respectively,

and the scattered S-wave vectors by PSc
S and ASc

S respectively (see again Appendix F).

Inserting the polarization/slowness components in equations (6.31) into (6.30), the potential

for scattering of a P-wave to a P-wave is given by

SPP = (SP · IP)∆ρ

− (SP · kSc
P )(IP · kIn

P )∆Ĉ33

−
[
(SP · IP)(kSc

P · kIn
P )− 2(SP · kSc

P )(IP · kIn
P ) + (SP · kIn

P )(IP · kSc
P )
]

∆Ĉ55

− 2Ĉ
(0)
33 (SPxkSc

PxIPxkIn
Px)∆ε̂

− Ĉ(0)
33 (SPxkSc

PxIPzk
In
Pz + SPzk

Sc
PzIPxkIn

Px)∆δ̂,

(6.33)

The P-to-P scattering potential is thus sensitive to changes in all of the properties in this

model, except changes in γ and γQ. The potential for a conversion upon scattering from

P-wave to S-wave is

SPSI = (SS · IP)∆ρ

−
[
(SS · IP)(kSc

S · kIn
P ) + (SS · kIn

P )(IP · kSc
S )
]

∆Ĉ55

− 2Ĉ
(0)
33 (SSxkSc

SxIPxkIn
Px)∆ε̂

− Ĉ(0)
33 (SSxkSc

SxIPzk
In
Pz + SSzk

Sc
SzIPxkIn

Px)∆δ̂.

(6.34)

In contrast to the P-to-P mode, the ∆Ĉ33 terms does not appear here, and as a result changes

in the P-wave velocity and P-wave quality factors have no contribution in P-to-SI scattering

potential. For scattering of an SI-wave to another SI-wave the potential is

SSISI = (SS · IS)∆ρ

−
[
(SS · IS)(kSc

S · kIn
S ) + (SS · kIn

S )(IS · kSc
S )
]

∆Ĉ55

− 2Ĉ
(0)
33 (SSxkSc

SxISxkIn
Sx)∆ε̂

− Ĉ(0)
33 (SSxkSc

SxISzk
In
Sz + SSzk

Sc
SzISxkIn

Sx)∆δ̂.

(6.35)

The dependency of the potential for SI-to-SI scattering on parameter changes is the same as

that of P-to-SI scattering. Finally potential for scattering of an SII-wave to another SII-wave

is

SSIISII = ∆ρ− (kIn
S · kSc

S )∆Ĉ55 − 2C
(0)
55 (kSc

SxkIn
Sx)∆γ̂. (6.36)
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These expressions for scattering potentials demonstrate the roles played by changes in

anisotropic parameters in the scattering process. Changes in ε̂ and δ̂ affect the P-to-P,

P-to-SI and SI-to-SI scattering modes meanwhile changes in γ̂ occur only for SII to SII

scattering mode.

6.6 Anisotropic-viscoelastic scattering processes and inversion sensitivities

In this section we will analyze the scattering potentials, as derived in the previous section,

in greater detail. Our assumption of low-loss attenuation, in which the higher orders of

inverse quality factors Q−1
P and Q−1

S are negligible, will allow the scattering potential to be

decomposed into the following components:

• Isotropic Elastic (IE): terms which are sensitive to changes in density, and

P- and S-wave velocities. This term as a whole is consistent with the scattering

potential as derived for purely isotropic-elastic media.

• Anisotropic Elastic (AE): terms which are sensitive to changes in the elastic

Thomsen parameters. In the case that the medium under study is purely

isotropic this term goes to zero. The combined (IE+AE)-terms represent the

scattering potential for elastic waves in an anisotropic-elastic medium.

• Isotropic Viscoelastic (IV): terms which are sensitive to changes in den-

sity, P-and S-wave velocities, and P- and S-wave quality factors. In the non-

attenuating limit this term vanishes. The combined (IE+IV)-terms repre-

sent the scattering potential for viscoelastic waves in an isotropic-viscoelastic

medium.

• Anisotropic Viscoelastic (AV): terms which are sensitive to changes in Q-

dependent Thomsen parameters. In the case that the medium under study is

either isotropic or elastic this term is zero.

Quantitatively and qualitatively interpretable decompositions of this kind are of significance

in part because they lead directly to the sensitivities which weight multiparameter FWI
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algorithms, and permit characterization of issues such as parameter cross-talk (Plessix et al.,

2013; Innanen, 2014; Pan et al., 2016). Let us consider the reference medium to be a isotropic

viscoelastic medium perturbed by small (though possibly many) inclusions associated with

viscoelastic and anisotropic parameter changes. Let us furthermore define for convenience a

density-normalized scattering potential ρ−1
0 S. The scattering potential now decomposes into

four components:

[PP] = [PP]IE + [PP]AE + i [PP]IV + i [PP]AV , (6.37)

with elastic, anisotropic, viscoelastic and viscoelastic anisotropic changes and/or fractional

changes, weighted by sensitivities, being:

[PP]IE = [PP]ρIE
∆ρ

ρ
+ [PP]Vp

IE

∆VP
VP

+ [PP]Vs
IE

∆VS

VS

,

[PP]AE = [PP]εAE ε+ [PP]δAE δ,

[PP]IV = [PP]ρIV
∆ρ

ρ
+ [PP]Vs

IV

∆VS

VS

+ [PP]Qp
IV

∆QP

QP

+ [PP]Qs
IV

∆QS

QS

,

[PP]AV = [PP]εAV ε+ [PP]δAV δ + [PP]
εQ
AV εQ + [PP]

δQ
AV δQ,

(6.38)
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where the sensitivities are, explicitly,

[PP]ρIE = −2 + 2 sin2 θP + 2V 2
SP sin2 2θP,

[PP]Vp
IE = −2,

[PP]Vs
IE = 4V 2

PS sin2 2θP,

[PP]εAE = −2 sin4 θP,

[PP]δAE = −1

2
sin2 2θP,

[PP]ρIV = 2V 2
SP sin2 2θP(Q−1

S0 −Q
−1
P0) +Q−1

P0

(
sin 2θP + 2V 2

SP sin 4θP

)
tan δP,

[PP]Vs
IV = 4V 2

SP sin2 2θP(Q−1
S0 −Q

−1
P0) + 4Q−1

P0V
2

SP sin 4θP tan δP,

[PP]Qp
IV = Q−1

P0 ,

[PP]Qs
IV = −2Q−1

S0 V
2

SP sin2 2θP,

[PP]εAV = −2Q−1
P0 sin 2θP sin2 θP tan δP,

[PP]δAV = −1

2
Q−1

P0 sin 4θP tan δP,

[PP]
εQ
AV = −Q−1

P0 sin4 θP,

[PP]
δQ
AV = −1

4
Q−1

P0 sin2 2θP.

(6.39)

In the above equations, θP is the P-wave incident angle, the angle that the direction of the

incident P-wave makes with the z-axis; δP is the average of the incident attenuation angle

δIn
P and scatter attenuation angle δSc

P and VSP = VS0/VP0 is the reference medium reciprocal

ratio. The quantity [PP]IE is the potential for scattering from a P-wave to a P-wave in an

isotropic elastic medium. It has three components: [PP]ρIE is the sensitivity of the scattered

wavefield to a local density variation, [PP]Vp
IE is the sensitivity to variation of the P-wave

velocity and [PP]Vs
IE is the sensitivity to variation of the S-wave velocity.

The anisotropic component [PP]AE is a function of Thomsen parameters ε and δ. The

viscoelastic component is a function of the fractional changes in density, P- and S-wave

quality factors and the S-wave velocity. Viscoelastic anisotropic components are functions

of the Q-dependent Thomsen parameters εQ and δQ. In the limit of normal incidence,

where incident and reflected propagation vectors are in the opposite direction, contributions

from anisotropic and viscoelastic anisotropic parameters vanish. In the [PP]AE and [PP]AV

components no influence of changes in vertical P- and S-wave velocities and corresponding
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Figure 6.2: Sensitivity of the elastic part of the P-to-P scattering potential to the changes
in properties versus incident P-wave angle θP. The S- to P-wave velocity ratio for reference
medium is chosen to be 1/2.
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Figure 6.3: Sensitivity of the viscoelastic part of the P-to-P scattering potential to the
changes in properties versus incident P-wave angle θP. Top plots are the sensitivity of
the isotropic viscoelastic components and lower plots are the sensitivity of the anisotropic
viscoelastic components. Quality factor of P-wave for reference medium is to be 10 and for
S-wave is 7. Also the S- to P-wave velocity ratio for reference medium is chosen to be 1/2.
P-wave attenuation angle is chosen to be δP = π/6.
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Figure 6.4: Sensitivity of the isotropic elastic and isotropic viscoelastic parts of the P-to-SI
scattering potential to the changes in properties versus the average of incident P-wave angle
θP and scattered S-wave angle θS. S-to-P velocity ratio, quality factor and attention angle
same as figure 6.3.

quality factors is felt. For small incident angle only δ and δQ influence the anisotropic part

of the scattering potential. If the actual medium is anisotropic-viscoelastic, but with zero

ε and δ parameters, the scattering potential is seen to be nevertheless sensitive to the Q-

dependent Thomsen parameters. If the perturbed media is non-attenuative VTI-anisotropic,

the scattering potential is given by ([PP]IE + [PP]AE).

Our results are in agreement with previously-derived scattering potential expressions (i.e.,

for what are here special cases), namely isotropic-elastic and isotropic-viscoelastic media. For

instance, [PP]IE is the scattering potential for the case in which both the reference medium

and the perturbing inclusions are purely isotropic-elastic (Stolt and Weglein, 2012) and

([PP]IE + i [PP]IV) is the potential for scattering of an inhomogeneous P-wave to another

P-wave in isotropic viscoelastic media (Moradi and Innanen, 2015b).

In Figure 6.2 we plot the elastic isotropic and anisotropic sensitivities for scattering

of a P-wave to a P-wave versus the incident P-wave angle θP. The angle of incidence is

considered to range across (0◦, 360◦). The incident inhomogeneous P-wave propagates in an

isotropic viscoelastic reference medium, and can be scattered to either an inhomogeneous

P-wave or SI-wave. The sensitivity of the elastic scattering potential, [PP]ρIE, to the density

has two lobes reaching maximum absolute values at 0◦ and 180◦. The radiation pattern

of the sensitivity to P-wave velocity changes, [PP]Vp
IE , is circle independent of incidence

angle. A similar interpretation applies to the radiation patterns as plotted in Figure 6.3

for viscoelastic components of the P-to-P scattering potential. Figures 6.4-6.8 illustrate
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Figure 6.5: Sensitivity of the elastic part of the SI-to-SI scattering potential to the changes
in properties versus incident S-wave angle θS.

the radiation patterns for elastic and viscoelastic components of the P-to-SI, SI-to-SI and

SII-to-SII scattering potentials.

We next consider the converted wave, discussion of which can be carried out similar to

that of the P-wave to P-wave scattering potential. The potential for scattering of a P-wave

to an SI wave is given by

[PSI] = [PSI]IE + [PSI]AE + i [PSI]IV + i [PSI]AV , (6.40)

with the components defined by

[PSI]IE = [PSI]ρIE
∆ρ

ρ
+ [PSI]Vs

IE

∆VS

VS

[PSI]AE = [PSI]εAE ε+ [PSI]δAE δ

[PSI]IV = [PSI]ρIV
∆ρ

ρ
+ [PSI]Vs

IV

∆VS

VS

+ [PSI]Qs
IV

∆QS

QS

[PSI]AV = [PSI]εAV ε+ [PSI]δAV δ + [PSI]
εQ
AV εQ + [PSI]

δQ
AV δQ

(6.41)
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Figure 6.6: Sensitivity of the viscoelastic part of the SI-to-SI scattering potential to the
changes in properties versus incident S-wave angle θS. Top plots are the sensitivity of the
isotropic viscoelastic components and lower plots are the sensitivity of the anisotropic vis-
coelastic components. S-to-P velocity ratio, quality factor and attention angle same as figure
6.3.
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where

[PSI]ρIE = − sin(θP + θS)− VSP sin 2(θP + θS)

[PSI]Vs
IE = −2VSP sin 2(θP + θS)

[PSI]εAE = VPS sin 2θS sin2 θP

[PSI]δAE =
1

2
VPS cos 2θP sin 2θS

[PSI]ρIV = −1

2
VSP(Q−1

S0 −Q
−1
P0) sin 2(θP + θS)

− 1

2
[cos(θP + θS) + 2VSP cos 2(θP + θS)]

(
Q−1

S0 tan δS +Q−1
P0 tan δP

)
[PSI]Vs

IV = −VSP(Q−1
S0 −Q

−1
P0) sin 2(θP + θS)

− 2VSP cos 2(θP + θS)
(
Q−1

S0 tan δS +Q−1
P0 tan δP

)
[PSI]Qs

IV = VSPQ
−1
S0 sin 2(θP + θS)

∆QS

QS

[PSI]εAV = −1

2
VPS(Q−1

S0 −Q
−1
P0) sin 2θS sin2 θP

+ VPS

(
Q−1

S0 cos 2θS sin θP tan δS +Q−1
P0 sin 2θS cos θP tan δP

)
sin θP

[PSI]δAV = −1

4
VPS(Q−1

S0 −Q
−1
P0) cos 2θP sin 2θS

+
1

2
VPS

(
Q−1

S0 cos 2θS cos 2θP tan δS −Q−1
P0 sin 2θS sin 2θP tan δP

)
[PSI]

εQ
AV =

1

2
VPSQ

−1
P0 sin 2θS sin2 θP

[PSI]
δQ
AV =

1

4
VPSQ

−1
P0 cos 2θP sin 2θS.

(6.42)

Here we have defined θS as the S-wave incident angle and VPS = VP0/VS0. The elastic

and viscoelastic components of the scattering potential [PSI]IE , [PSI]IV are sensitive to the

fractional changes in the density, the vertical S-wave velocity and the S-wave quality factor.

Changes in the vertical P-wave velocity and the P-wave quality factor do not have any

effect on these two terms. ([PSI]IE + i [PSI]IV) is the potential for scattering of an incident

inhomogeneous P-wave into an inhomogenous SI-wave in an isotropic viscoelastic medium.

The anisotropic and anisotropic viscoelastic terms, for small angles of incidence, are sensitive

only to δ and δQ. For large incidence angles, the effects of P-wave Thomsen parameters ε

and εQ become influential. The scattering potential for SI to SI waves is

[SISI] = [SISI]IE + [SISI]AE + i [SISI]IV + i [SISI]AV , (6.43)
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Figure 6.7: Sensitivity of the elastic part of the SII-to-SII scattering potential to the changes
in properties.

where

[SISI]IE = −(cos 2θS + cos 4θS)
∆ρ

ρ
− 2 cos 4θS

∆VS

VS

,

[SISI]AE =
1

2
sin2 2θS(δ − ε),

[SISI]IV = Q−1
S0 cos 4θS

∆QS

QS

+Q−1
S0 tan δS(sin 2θS + 2 sin 4θS)

∆ρ

ρ
+ 4Q−1

S0 sin 4θS tan δS
∆VS
VS

,

[SISI]AV =
1

4
Q−1

S0 sin2 2θS(δQ − εQ) +
1

2
Q−1

S0 sin 4θS tan δS(δ − ε).
(6.44)

Here [SISI]IE is the potential for scattering of an SV-wave to another SV-wave in an isotropic

elastic background, i.e., where neither attenuation nor anisotropy is present. This term is

sensitive to changes in density and S-wave velocity only; in other words to leading order a per-

turbation in the P-wave velocity does not scatter an incident SV-wave. ([SISI]IE + i [SISI]IV)

describes scattering of inhomogeneous SI-waves in an isotropic viscoelastic background. In

the presence of attenuation, an incident SI-wave not influenced by changes in the P-wave

quality factor QP. In total, in viscoelastic anisotropic media, to leading order, changes in

seven parameters can cause scattering, (ρ, VS, QS, δ, ε, δQ, εQ).

Finally, the scattering potential for SII-to-SII scattering is

[SIISII] = [SIISII]IE + [SIISII]AE + i [SIISII]IV + i [SIISII]AV , (6.45)
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Figure 6.8: Sensitivity of the viscoelastic part of the SII-to-SII scattering potential to the
changes in properties versus incident S-wave angle θS. S-to-P velocity ratio, quality factor
and attention angle same as figure 6.3.

where

[SIISII]IE = (1 + cos 2θS)
∆ρ

ρ
+ 2 cos 2θS

∆VS
VS

,

[SIISII]AE = −2 sin2 θSγ,

[SIISII]IV = −Q−1
S0 sin 2θS tan δS

(
∆ρ

ρ
+ 2

∆VS
VS

)
−Q−1

S0 cos 2θS
∆QS

QS

,

[SIISII]AV = −Q−1
S0 sin2 θSγQ −Q−1

S0 sin 2θS tan δSγ.

(6.46)

In the absence of anisotropy the above expression reduces to the potential for the scattering

of a standard inhomogeneous viscoelastic SII waves into another inhomogeneous SII wave.

6.7 Conclusion and summary

In this paper a detailed analysis has been performed to expose how seismic wave scattering

radiation patterns depend on fractional and absolute changes in the anisotropic and viscoelas-

tic properties of the medium. In particular we have shown how to decompose the P-to-P,

P-to-SI, SI-to-SI and SII-to-SII scattering potentials into isotropic-elastic, anisotropic-elastic,

isotropic-viscoelastic and anisotropic-viscoelastic components.

In an anisotropic medium when attenuation is included (by, for instance, adding an

appropriately parameterized imaginary part to the stiffness tensor) there arise additional

terms associated with the quality factors and anelastic Thomsen parameters. In calculations

made assuming that the medium is weakly anisotropic and weakly attenuative, all inverse

quality factors and Thomsen parameters are much smaller than unity, so that orders of
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scattering in the fractional changes in all properties can be neglected, and relatively simple

forms for scattering potentials emerge. In our formulation the complex Thomsen parameters

are so written that the real part separately characterizes the medium anisotropy and the

imaginary part characterizes the combined anisotropy-viscoelasticity of the medium. We also

assumed that reference medium in which all wave propagation take place is a homogeneous

isotropic viscoelastic. In this case, we can use the isotropic polarization and slowness vectors

for reference medium. This greatly simplifies the analytical expressions, which is complicated

by using the analytical form of the polarization and slowness vectors in anisotropic media.

These results have the benefit of accommodating multidimensional geological structures,

and providing the key quantity needed compute seismic full waveform inversion sensitivities

for multi-parameter anisotropic-viscoelastic models. The sensitivity analysis for scattered

waves can using these results be carried out in detail, suggesting, for instance, optimal

model parametrizations for FWI. This is a key step in developing and appraising the FWI

problem in anisotropic-viscoelastic media.
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Appendix F

Propagation and attenuation vectors

Propagation and attenuation vectors for incident P-wave are

PIn
P =

ω

VP

(z cos θP + x sin θP), (F.1)

AIn
P =

ω

2VP

Q−1
P0 sec δIn

P (z cos(θP − δIn
P ) + x sin(θP − δIn

P )), (F.2)

scattered P-wave

PSc
P =

ω

VP

(x sin θP − z cos θP), (F.3)

ASc
P =

ω

2VP

Q−1
P0 sec δSc

P (x sin(θP − δSc
P )− z cos(θP − δSc

P )), (F.4)

incident S-wave

PIn
S =

ω

VS

(z cos θS + x sin θS), (F.5)

AIn
S =

ω

2VS

Q−1
S0 sec δIn

S (z cos(θS − δIn
S ) + x sin(θS − δIn

S )), (F.6)

scattered S-wave

PSc
S =

ω

VS

(x sin θS − z cos θS), (F.7)

ASc
S =

ω

2VS

Q−1
S0 sec δSc

S (x sin(θS − δSc
S )− z cos(θS − δSc

S )). (F.8)
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Table F.1: Notation
Symbol Explanation Symbol Explanation
PIn

P Incident P-wave propagation vector AIn
P Incident P-wave attenuation vector

PIn
S Incident S-wave propagation vector AIn

S Incident S-wave attenuation vector

PSc
P Scattered P-wave propagation vector ASc

P Scattered P-wave attenuation vector

PSc
S Scattered S-wave propagation vector ASc

S Scattered S-wave attenuation vector

KIn
P Incident P-wave wavnumber vector KIn

S Incident S-wave wavnumber vector

KSc
P Scattered P-wave wavnumber vector KSc

S Scattered S-wave wavnumber vector

kIn
P Incident P-wave slowness vector kIn

S Incident S-wave slowness vector

kSc
P Scattered P-wave slowness vector kSc

S Scattered S-wave slowness vector

IP Incident P-wave polarization vector SP Scattered P-wave polarization vector

IS Incident S-wave polarization vector SS Scattered S-wave polarization vector

θP Incident/Scattered P-wave phase angle θS Incident/Scattered S-wave phase angle

δIn
P Incident P-wave attenuation angle δIn

S Incident S-wave attenuation angle

δSc
P Scattered P-wave attenuation angle δSc

S Scattered S-wave attenuation angle

VP P-wave velocity VS S-wave velocity

QP P-wave quality factor QS S-wave quality factor

146



Chapter 7

Compressional wave scattering potentials and

linearized reflection coefficients in elastic and low-loss

viscoelastic orthorhombic media

7.1 Abstract

Amplitude variation with offset is usually described using the approximate solutions of Zoep-

pritz equation for a low contrast medium. Calculations require determination of slowness

and polarization vectors. Exact solutions yield complicated functions in terms of medium

properties in upper and lower medium as well as incident and transmitted phase angles.

Similar results hold using the Born approximations based on the first order perturbation

theory. In this paper taking advantages of using Born approximation, scattering potential

and linearized reflection coefficients for a weak anisotropic, low-loss viscoelastic orthorhombic

media are derived for P-to-P, P-to-SV and P-to-SH waves. An elastic orthorhombic stiffness

tensor is described by nine real independent parameters including vertical P- and S-wave

velocities and seven generalized Thompson parameters characterize the weak anisotropy in

medium. If attenuation taken into account, the stiffness tensor components become complex

whose imaginary parts are connected to the quality factors and Q-Thompson parameters. In

deriving our results we assume that the reference medium is isotropic (visco)elastic however

the perturbations are both in anisotropic and isotropic-(visco)elastic properties.

Comparing to the previously derived converted wave AVAz equations our derivations are

new in two ways. Firstly, we avoid the complications of solution of Zoeppritz equations

by using the Born approximation based on the first order perturbation theory. Secondly,

we obtained the extra terms in AVAZ equations due to both anelasticity in medium and

inhomogeneity of the wave.
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7.2 Introduction

Amplitude variation with offset (AVO) and amplitude-variation-with-azimuth (AVAz) play

a key role in exploration seismology, particularly in reservoir characterization, parameter

imaging and migration/inversion (Tsvankin et al., 2010; Castagna and Backus, 1993). The

generalization of the AVO equations to encompass volume/point scattering (Stolt and We-

glein, 2012) connects them, furthermore, to multi-parameter sensitivity calculations in full

waveform inversion, or FWI (Innanen, 2014). The management and use of seismic atten-

uation in both AVO-AVAz (Chapman et al., 2006; Innanen, 2011; Wu et al., 2014; Behura

and Tsvankin, 2009b) and elastic-anisotropic FWI (Causse et al., 1999; Charara et al., 2000;

Fichtner, 2010; Fichtner and van Driel, 2014; Hak and Mulder, 2011; Métivier et al., 2015;

Yang et al., 2016; Kamei and Pratt, 2013; Keating and Innanen, 2017) is an important and

complicating issue. Media which exhibit both viscoelastic and anisotropic features simul-

taneously are significantly more challenging to quantitatively describe than their elastic-

anisotropic counterparts, and are only beginning to receive the attention they warrant (Car-

cione et al., 1998; Bai and Tsvankin, 2016; Bai et al., 2017).

Analysis of the seismic compressional wave (P-wave) in isolation, as opposed to the full

multicomponent problem, while approximate, captures a significant fraction of the informa-

tion content of the seismic signal (Ostrander, 1984). Approximate compressional wave-to-

compressional wave (hereafter PP) reflection coefficients for weak-contrast interfaces separat-

ing elastic, weakly transversely isotropic media for vertical and horizontal axis of symmetry

were derived by Rüger (1997, 1998, 2002). These results were obtained through linearization

of exact reflection coefficient expressions in parameter perturbations and angle quantities,

and by assuming weak anisotropy. Rüger (1997) modified linearized PP reflection coefficients

previously derived by Thomsen (1993), admitting larger angles of incidence. PP reflection co-

effients for weak-contrast interfaces separating two weakly, but arbitrarily, anisotropic media

were derived by Cervený and Psenćık (1998).

In isotropic viscoelastic media, reflection/transmission coefficients have been widely ex-

pressed and analyzed (Hearn and Krebes, 1990; Krebes, 1983, 1984; Ursin and Stovas, 2002;

Stovas and Ursin, 2003; Borcherdt, 2009). For isotropic-over-anisotropic viscoelastic media,
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linearized reflection coefficients based on exact solutions of the plane-wave Zoeppritz equa-

tions are generally adopted to carry out the associated AVO-type inversion/modelling. An

effort has recently been made to generate practical linearized forms for reflection coefficients

in viscoelastic-anisotropic media. This is a relatively complicated undertaking, primarily

because of the complexity of the slownesses and polarizations in the presence of anisotropy.

Moradi and Innanen (2016) derived AVO equations taking into account jumps across the

reflecting boundary in the attenuation angle for inhomogeneous waves. The value of these is

quantitive, but also qualitative, in our view, as a means of interpreting the expected impact

on AVO signatures of perturbations in the five viscoelastic parameters.

In the presence of both anelasticity and anisotropy, PP reflections near and beyond the

critical angle are affected by attenuation. Both quality factors and anisotropic parameters

has no effect on the zero offset P-wave reflection coefficients and anisotropy has more influence

on small angle reflectivity than the attenuation (Carcione et al., 1998). The reflection and

transmission problem in viscoelastic transversely isotropic media for a homogeneous incident

wave was studied by Carcione (1997) and Stovas and Ursin (2003). The effect on the AVO-

VTI equations of incorporating inhomogeneity within the incident wave has subsequently also

been comprehensively analyzed (Zhu and Tsvankin, 2006b; Behura and Tsvankin, 2009b,a).

The research summarized in this paper is part of an effort to derive interpretable and

useable formulas for both AVO-AVAz and full waveform inversion (FWI) sensitivity analysis,

in the presence of anisotropy and attenuation. The FWI and AVO goals can be accomplished

more or less simultaneously because of the close connections that can be found between lin-

earized reflection coefficients, e.g., the Aki-Richards approximation (Aki and Richards, 2002),

scattering potentials (Stolt and Weglein, 2012), and FWI sensitivity kernels (Tarantola, 1986;

Fichtner, 2010). The problem of volume scattering from viscoelastic-anisotropic inclusions

alone is of interest, and contains some almost entirely unexplored features, but it lends itself

well to the double task of AVO/FWI sensitivity determination. We begin by setting up a

scattering framework to describe the interaction of seismic waves with arbitrary perturba-

tions in viscoelastic orthorhombic media. We consider two cases. First, we assume that

the reference wave field propagates in an isotropic-elastic reference medium, and is scattered

by general viscoelastic-orthorhombic perturbations. The planar interface/specular reflection
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analog of this involves an isotropic-elastic upper half-space and an orthorhombic lower half-

space. Second, we assume that the reference medium is isotropic-viscoelastic, and that waves

scatter from viscoelastic-orthorhombic perturbations. In both cases we analytically examine

the relationship between the scattering potentials and the results of linearization of the exact

anisotropic-viscoelastic Zoeppritz equations. We show that the former reduce to the latter.

7.3 Viscoelastic orthorhombic media

The most common model of orthorhombic symmetry involves parallel vertical fractures em-

bedded in a vertical transversely isotropic (VTI) background (figure 7.1). The stiffness

matrix for an elastic orthorhombic medium is given by (Ikelle and Amundsen, 2005)

Corth =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (7.1)

If the medium is attenuative, the stiffness tensor is complex, with an imaginary part related to

attenuation. The imaginary part is parameterized by a set of quality factors, Qij = Cij/C
I
ij,

where Cij and CI
ij are real and imaginary parts of the stiffness tensor components; each

independent component of the stiffness tensor has a corresponding quality factor. Model

parametrization has a strong influence on full waveform inversion (Prieux et al., 2013; Gho-

lami et al., 2013; Oh and Alkhalifah, 2016; Masmoudi and Alkhalifah, 2016). Orthorhombic-

viscoelastic models can be expressed through at least three different parameterizations, each

with between 15 and 18 independent parameters. Which, and how many, of these parameters

can be practically constrained in FWI or AVO settings is presently unclear. But, in both

cases, quantification of scattering, whether from point or planar perturbations, is the first

step in providing answers to such questions.

The first of the three directly involves the real and imaginary parts of the stiffness tensor

in equation (7.1). This parameterization is useful primarily for forward modelling of the
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Figure 7.1: Schematic representation of orthorhombic media.

wave propagation.

The second involves 15 parameters in total, including the real part of the stiffness tensor,

which can be described by 6 P- and S-wave velocity parameters with different polarizations,

three off-diagonal elements, C12, C13 and C23, and 6 attenuation terms. The P-wave phase

velocity along the vertical axis z is given by VP =
√
ρ−1C33, the horizontal P-wave velocity

along the x-direction is given by
√
ρ−1C11 and along the y-direction by

√
ρ−1C22. The

vertical S-wave velocity polarized in the x-direction is given by VS =
√
ρ−1C55, and the same

velocity polarized in the y direction is given by
√
ρ−1C44. The horizontal S-wave velocity

polarized in x-direction is given by
√
ρ−1C66. Rather than through the imaginary parts of

the stiffness tensor, attenuation is characterized by the components of a quality factor tensor

(Červenỳ and Pšenč́ık, 2008). The components of this tensor are the quality factors emerging

from the forms of the complex P-wave velocities. Q11, Q22 and Q33 are the P-wave quality

factors related to the P-wave velocities in the x, y and z-directions respectively. Similarly,

Q44 can be interpreted as the SV-wave quality factor, and Q55 and Q66 are the SH-wave

quality factors for velocities polarized in the z- and y-directions respectively. The full details

of the phase velocity and quality factor scheme is summarized in Table 7.1.

The anisotropic-viscoelastic components deponed to the nine velocity parameters and
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Table 7.1: Phase velocity for P-, SV and SH waves in terms of diagonal componenets of
stiffness tensor.
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Table 7.2: Generalized Thomsen parameters for orthorhombic media in terms of VTI pa-
rameters in xz, xy and zy planes.
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nine quality factors based on the assumption of both weak anisotropy and attenuation(Zhu

and Tsvankin, 2006a).

7.4 Scattering potential

The scattering potential is a complete description of the difference between a background,

or reference medium, and a perturbed medium (Sato et al., 2012). It is a core quantity in all

scattering descriptions of waves, including the linearized single-scattering or Born approxima-

tion. Alone it bears a close connection with linearized reflection coefficient approximations,

and within the Born approximation it leads directly to forms for FWI sensitivities. We sup-

pose that the values of density and stiffness tensor components change slightly from their

reference values, ρ(0) and C
(0)
ijkl, to their perturbed values (the viscoelastic model remains

embedded in the complex stiffness components in this section):

ρ = ρ0 + ∆ρ, (7.2)

Cijkl = C
(0)
ijkl + ∆Cijkl, (7.3)

where reference medium properties are labelled with the superscript ‘(0)’. Wave propaga-

tion is described by the Green’s function or propagator. The scattered wave, which is the

difference between the waves propagating in the reference and perturbed media, is expanded

as a series. The first term of the series describes the sum of all instances of single scattering

from the given by (Beylkin and Burridge, 1990):

S = (S · I)∆ρ− ηmn∆Cmn = (S · I)∆ρ− (SikSc
j IkkI

l)∆Cijkl, (7.4)

where S and I are the scattered and incident polarizations, and kSc and kIn are the scattered

and incident slowness vectors. In addition, m = ij and n = kl are the Voigt indices, with

11→ 1, 22→ 2, 33→ 3, (23, 32)→ 4, (13, 31)→ 5, (12, 21)→ 6.

To expose the effects of anisotropy on scattering radiation patterns, we express the pertur-

bation in the stiffness tensor in terms of the perturbations in both viscoelastic and anisotropic

parameters. In the case of a reference medium that is isotropic and elastic (Figure 7.2) we

153



have

∆C11 = ∆C33 + 2C
(0)
33 ε

(2),

∆C22 = ∆C33 + 2C
(0)
33 ε

(1),

∆C66 =
1

2
(∆C55 + ∆C44) + C

(0)
55

[
γ(1) + γ(2)

]
,

∆C23 = ∆C33 − 2∆C44 + C
(0)
33 δ

(1),

∆C13 = ∆C33 − 2∆C55 + C
(0)
33 δ

(2),

∆C12 = ∆C33 − (∆C55 + ∆C44) + C
(0)
33

[
δ(3) + 2ε(2)

]
− 2C

(0)
55

[
γ(1) + γ(2)

]
.

(7.5)

Inserting equation (7.5) into equation (7.4), we obtain the general form of the scattering

potential in terms of the inner products of polarization and slowness vectors:

S = [ρ]∆ρ− [C33]∆C33 − [C44]∆C44 − [C55]∆C55 −
∑
A

[A]A, (7.6)

where A refers to the anisotropic parameters. In addition sensitivities are

[ρ] =S · I,

[C33] =(S · kSc)(I · kI),

[C55] =− (S1kSc
1 I2kI

2 + S2kSc
2 I1kI

1)− 2(S1kSc
1 I3kI

3 + S3kSc
3 I1kI

1)

+ (S1kSc
3 + S3kSc

1 )(I1kI
3 + I3kI

1) +
1

2
(S1kSc

2 + S2kSc
1 )(I1kI

2 + I2kI
1)

[C44] =− (S1kSc
1 I2kI

2 + S2kSc
2 I1kI

1)− 2(S2kSc
2 I3kI

3 + S3kSc
3 I2kI

2),

+ (S2kSc
3 + S3kSc

2 )(I2kI
3 + I3kI

2) +
1

2
(S1kSc

2 + S2kSc
1 )(I1kI

2 + I2kI
1),

[γ(1)] =[γ(2)] = V2
S0

[
(S1kSc

2 + S2kSc
1 )(I1kI

2 + I2kI
1)− 2S1kSc

1 I2kI
2 − 2S2kSc

2 I1kI
1

]
,

[ε(1)] =2V2
P0S2kSc

2 I2kI
2,

[ε(2)] =2V2
P0

(
S1kSc

1 I1kI
1 + S1kSc

1 I2kI
2 + S2kSc

2 I1kI
1

)
,

[δ(1)] =V2
P0

(
S2kSc

2 I3kI
3 + S3kSc

3 I2kI
2

)
,

[δ(2)] =V2
P0

(
S1kSc

1 I3kI
3 + S3kSc

3 I1kI
1

)
,

[δ(3)] =V2
P0

(
S1kSc

1 I2kI
2 + S2kSc

2 I1kI
1

)
.

(7.7)

As anisotropy vanishes, the above equation reduces to the scattering potential for an elastic

wave traveling in an isotropic elastic medium interacting with perturbations in density and

P- and S-wave velocities.
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We have now seen that it is not too hard to measure the sensitivity of the scatter wave

to the changes in stiffness tensor components. This simplicity and the high efficiency are

the main reasons why Born approximation appear more attractive than the approach based

on the solution of the Zoeppritz equation. Table 7.1 is an illustration of parametrization

for the model of viscoelastic-orthorhombic media that we used for volume scattering versus

low-contrast reflection. We divide the medium parameters into four parts: isotropic-elastic

properties including density, vertical P- and S-wave velocities;isotropic-viscoelastic properties

including vertical P- and S-wave quality factors; anisotropic-elastic properties characterized

by seven weak Thomsen parameters and anisotropic-viscoelastic parameters characterized by

seven Q-Thomsen parameters. We assumed that in volume scattering model, actual medium

is anisotropic with isotropic reference medium which is equivalent to a low-contrast medium

with isotropic upper(incident) layer above an anisotropic medium.

7.5 Scattering of P-wave to P-wave

First we restrict ourselves to the case of isotropic elastic background filled with perturba-

tions in both elastic and anisotropic properties (Figure 7.2a), i.e., use the results of the

previous section neglecting imaginary components of the stiffness tensor. The isotropic

reference medium is described by (ρ0, VP0, VS0) and the anisotropic perturbed medium by

(ρ, VP, VS, δ
(1), δ(2), δ(3), ε(1), ε(2), γ(1), γ(2)). The perturbations in isotropic parameters that

cause scattering are, then, fractional changes in density ∆ρ/ρ = (ρ − ρ)/ρ, P-wave veloc-

ity ∆VP/VP = (VP − VP0)/VP and S-wave velocity ∆VS/VS = (VS − VS0)/VS. Because the

reference medium is isotropic, the anisotropic parameters themselves act as perturbations.

The angle between the incident and scattered wavefield, referred to as the opening angle,

is denoted 2θP. From the results that we obtained in previous section, it follows that the

scattering potential for PP-wave is given by

SE
PP = ρ−1

0 S =SIE
PP + SAE

PP , (7.8)

where the isotropic-elastic (IE) and anisotropic-elastic (AE) parts are

SIE
PP = −(1 + cos 2θP − 2V 2

SP sin2 2θP)Aρ − 2AVP + 4V 2
SP sin2 2θPAVS , (7.9)
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SAE
PP =

[
4V 2

SP cos2 ϕ(γ(1) − γ(2))− 2−1(sin2 ϕδ(1) + cos2 ϕδ(2))
]

sin2 2θP

− 2
[
cos2 ϕ sin2 ϕδ(3) + sin4 ϕε(1) +

(
cos2 ϕ+ cos2 ϕ sin2 ϕ

)
ε(2)
]

sin4 θP.
(7.10)

Here Aρ is the fractional perturbation in density, AVP is the fractional perturbation in

the P-wave velocity, and AVS is the fractional perturbation in the S-wave velocity. It is

apparent that: (1) the anisotropic parameters do not influence the scattered wave for a

vertically-incident wave, and (2) to recover the isotropic scattering potential, one may set

the anisotropic parameters to zero.

By inspection of (7.10), the scattered wave is observed to be sensitive to the difference

γ(S) = γ(1) − γ(2) rather than γ(1) and γ(2) individually. For VTI media, ε(1) = ε(2) = ε,

δ(1) = δ(2) = δ and γ(S) = δ(3) = 0, and as a result the anisotropic part of the scattering

potential reduces to

SAE
PP,VTI = −2 sin2 θPδ − 2 sin4 θP(ε− δ). (7.11)

In fact, for small angles of incidence, the second term is negligible compared to the first

term, that is, the effect of δ dominates over that of ε. For HTI media, ε(1) = 0, ε(2) = ε(V ),

δ(1) = δ(2) = δ(V ) and γ(S) = γ, δ(1) = 0, δ(2) = δ(V ) and δ(3) = δ(V )− 2ε(V ) so the anisotropic

part of the scattering potential reduces to

SAE
PP,HTI =2 sin2 θP cos2 θP cos2 ϕ

[
8V 2

SPγ − δ(V )
]

− 2 cos2 ϕ
[
sin2 ϕδ(V ) + cos2 ϕε(V )

]
sin4 θP.

(7.12)

More details regarding the anisotropic parameters in HTI and VTI media and their connec-

tion to the parameters in orthorhombic media can be found in (Tsvankin, 1997, 1996).

In figures 7.4 and 7.3 the sensitivities of the scattered P-wave to perturbations in anisotropic

parameters versus incident phase angle are plotted.

Specular scattering or reflection (involving two homogeneous half-spaces separated by

a plane boundary) and volume scattering from a point perturbation from a homogeneous

background, are asymptotically equivalent with diminishing contrast and opening angle. In

our case the corresponding system of isotropic/anisotropic half-spaces involves a low con-

trast medium with boundary separating an isotropic elastic half-space from an anisotropic

elastic medium with weak anisotropic properties. In Figure 7.2b such a low contrast, two

layer medium is illustrated. The upper layer is an isotropic-elastic medium defined by
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b) Low contrast reflectiona) Volume scattering

Figure 7.2: The low contrast model vs volume scattering model. (a) The boundary is
assumed to involved welded contact between two media whose properties differ only slightly.
Upper layer is isotropic elastic media defined by its P-wave velocity VP1, S-wave velocity
VS1, and its density ρ1. Lower layer is elastic orthorhombic media, by VP2, VS2, ρ2 and seven
Thompson parameters ε

(1)
2 , ε

(2)
2 , δ

(1)
2 , δ

(2)
2 , δ

(3)
2 , γ

(1)
2 , γ

(2)
2 . Incident and reflected propagation

vectors are denoted by Pi and Pr respectively and θP is the incident phase angle. (b)
Reference medium is perturbed by volume scattering perturbations; Back ground medium
is isotropic elastic characterized by VP0, VS0, ρ0 and perturbations are ∆VP,∆VS,∆ρ and in
anisotropic parameters ε(1),ε(2), δ(1),δ(2),δ(3),γ(1),γ(2)
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Figure 7.3: The maps of sensitivity of PP-scatter wave to the Thomsen parameters. Vertical
axis is azimuth angle and horizontal axis is incident phase angle.

(ρ1,VP1,VS1) in contact with a plane interface separating the top layer from the anisotropic

elastic lower layer defined by
(
ρ2, ,VP2,VS2, δ

(1)
2 , δ

(2)
2 , δ

(3)
2 , ε

(1)
2 , ε

(2)
2 , γ

(1)
2 , γ

(2)
2

)
. Fractional changes

in isotropic properties are given by the fractional change in P-wave velocity, AVP
= ∆VP/V̄P

where ∆VP = VP1 − VP2 and V̄P = (VP1 + VP2)/2 are respectively the difference and aver-

age of the the P-wave velocity in the lower and upper media; fractional changes in S-wave

velocity, AVS
= ∆VS/V̄S where ∆VS = VS1 − VS2 and V̄S = (VS1 + VS2)/2, and fractional

changes in density, Aρ = ∆ρ/ρ where ∆ρ = ρ2 − ρ1 and ρ = (ρ2 + ρ1)/2. Linearizations are

performed based on the anisotropic parameters in the lower layer rather than the differences

in anisotropic parameters.

The scattering potentials that we obtained in the previous section can be used to obtain

the amplitude variation with offset equations previously derived using the linearization of the

Zoeppritz equations (Rüger, 1997). This can be seen intuitively from the fact that reflection

coefficient is related to the scattering potential by

RE
PP = −ρ−1

0 (2 cos θP )−2SE
PP = RIE

PP + RAE
PP ,
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Table 7.3: A table illustrating the perturbation terms used in volume scattering and low-con-
trast reflectivity. Medium properties are classified into isotropic-elastic, isotropic-viscoelas-
tic, anisotropic-elastic and anisotropic-viscoelastic. In volume scattering scheme, the actual
medium which is anisotropic-viscoelastic splits into the isotropic reference medium filled by
the perturbations in medium properties. Since the reference medium is isotropic, anisotropic
parameters in actual medium act as perturbations.
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Figure 7.4: Sensitivity of the PP-scatter wave to the Thomsen parameters for azimuth angles
0◦, 45◦, 60◦, 90◦. Horizontal axis is opening angle 2θP .

where the isotropic-elastic reflection coefficient is

RIE
PP = 2−1AZp +

(
2−1AVp − 2V2

SPAµ

)
sin2 θP + 2−1AVp tan2 θP sin2 θP

and anisotropic elastic reflection coefficient is

RAE
PP =2−1

{
δ

(2)
2 + sin2 ϕ

[
δ

(1)
2 − δ

(2)
2 − 8V2

SPγ
(S)
2

]}
sin2 θP

+ 2−1
{

cos2 ϕ sin2 ϕ
[
δ

(3)
2 + ε

(2)
2 − ε

(1)
2

]
+ sin2 ϕ

[
ε

(1)
2 − ε

(2)
2

]
+ ε

(2)
2

}
tan2 θP sin2 θP , ,

(7.13)

and where ZP = ρVP is the P-wave impedance, µ = ρV 2
S is the shear modulus, with the

corresponding fractional changes AZP
and Aµ. Equation (7.13) is the linearized reflection

coefficient as commonly expressed in the literature (Rüger, 1997; Cervený and Psenćık, 1998;

Rüger, 2002) for weak contrast interfaces separating two weakly orthorhombic media. As the

incident half-space (i.e., the upper layer) is anisotropic, these authors used the complicated

form of the polarization and slowness vectors for incident and reflected waves. After solving of

the Zoeppritz equations, the amplitude of the reflected wave is linearized, obtaining equation
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a) Volume scattering b) Low contrast reflection

Figure 7.5: The low contrast model vs volume scattering model. (a) The boundary is as-
sumed to involved welded contact between two media whose properties differ only slightly.
Upper layer is isotropic viscoelastic media defined by its P-wave velocity VP1, S-wave velocity
VS1, P-wave quality factor QP1, S-wave quality factor QS1 and its density ρ1; Lower layer is
viscoelastic orthorhombic media, by by VP2, VS2, QP2, QS2 and ρ2, seven anisotropic Thomp-
son parameters ε

(1)
2 , ε

(2)
2 , δ

(1)
2 , δ

(2)
2 , δ

(3)
2 , γ(1), γ(2) and seven anisotropic-viscoelastic Thompson

parameters ε
(1)
Q2, ε

(2)
Q2, δ

(1)
Q2, δ

(2)
Q2, δ

(3)
Q2, γ

(1)
Q2 , γ

(2)
Q2 . Incident and reflected attenuation angles are the

equal by applying the Snell’s law denoted by δi.(b) Reference medium is perturbed by vol-
ume scattering perturbations; Back ground medium is isotropic viscoelastic characterized
by VP0, VS0, QP0, QS0, ρ0 and perturbations are ∆VP,∆VS,∆ρ and in anisotropic parameters
ε(1),ε(2),δ(1),δ(2),δ(3),
γ(1),γ(2) and anisotropic viscoelastic parameters ε

(1)
Q ,ε

(2)
Q ,δ

(1)
Q ,δ

(2)
Q ,δ

(3)
Q ,γ

(1)
Q ,γ

(2)
Q . PPi is the in-

cident propagation vector; PPr is the reflected(scattered) propagation vector; APi is the
incident attenuation vector; APr is the reflected(scattered) attenuation vector and δP is the
attenuation angle which is the same for incident and reflected wave.
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(7.13). In our derivation, we used the incident half-space as an isotropic reference medium

and used the polarizations and velocities for an isotropic media and obtained the same

results. We conclude that for a low-contrast medium with two weakly-anisotropic half-spaces

the linearized reflection coefficients are the same as those for which the incident half-space

is isotropic.

For an isotropic upper half-space over a VTI medium, the anisotropic part of the re-

flectivity reduces to 2−1(sin2 θP tan2 θP ε2 + sin2 θP δ2) (Rüger, 1997). For HTI media, the

anisotropic part of the reflectivity reduces to (Rüger, 2002)

RAE
PP,HTI =2−1

(
δ

(V )
2 cos2 ϕ− 8V2

SP sin2 ϕγ2

)
sin2 θP

+ 2−1 cos2 ϕ
(

sin2 ϕδ
(V )
2 + cos2 ϕε

(V )
2

)
tan2 θP sin2 θP .

(7.14)

The result in equation (7.10), which embodies our formulation of the anisotropic scatter-

ing potential, is therefore consistent with the previously-derived reflection coefficients for a

boundary separating an isotropic medium from an anisotropic medium. In our derivation

we have assumed that the actual medium is anisotropic-elastic and decomposable into an

isotropic background with perturbations in both elastic and anisotropic parameters for ac-

tual medium. This is (within the linearized Zoeppritz solution framework) equivalent to the

case of a low contrast planar boundary between an isotropic medium over an anisotropic

medium. However, we saw that the linearized reflection coefficients are the same as those for

which an anisotropic medium overlies an anisotropic medium, i.e., the case that background

medium is also anisotropic. If we replace the anisotropic parameters in the lower medium

with fractional differences in properties, the linearized reflection coefficient for an orthorhom-

bic medium is obtained. To obtain the first order reflection coefficients in anisotropic media,

in other words, we do not need to consider the anisotropic form of the polarizations and

slowness vectors.

We have thus far considered only an elastic background. Let us now explicitly include

the viscoelastic component of the stiffness tensor components. In figure 7.5a, a viscoelastic-

orthorhombic medium, broken up into an isotropic-viscoelastic reference medium with per-

turbations in both viscoelastic and anisotropic parameters, is illustrated. Perturbations in

isotropic parameters are, as in the non-attenuating cases, are expressed in terms of frac-

tional changes in density, and P- and S-wave velocities, but now additionally with P- and
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S-wave quality factors; perturbations in anisotropic parameters are the values of anisotropic

and viscoelastic-anisotropic parameters. A key aspect of the viscoelastic extension of the

scattering potential is the inclusion of the attenuation angle, which is the angle between the

propagation and attenuation angle (Borcherdt, 2009).

The anelasticity of the medium supports two classes of waves: those with parallel propa-

gation and attenuation vectors, called homogeneous waves, and those with a non-zero angle

between the attenuation and propagation vectors, called inhomogeneous waves. For an

isotropic viscoelastic background, we have Q440 = Q550 = QS0 and Q330 = Q110 = QP0. For a

homogeneous incident wave we furthermore have SPP = SE
PP + iSH

PP, where SH
PP is the contri-

bution of the anelasticity to the scattering potential (superscript H refers to the homogeneity

of the incident wave). This contribution is, in detail,

SH
PP =2(Q−1

S0 −Q−1
P0)V 2

SP sin2 2θPAµ + Q−1
P0AQP

− 2Q−1
S0 V

2
SP sin2 2θPAQS

+ 2Q−1
S0 V

2
SP sin2 2θP cos2 ϕ(γ

(1)
Q − γ

(2)
Q )−Q−1

P0 sin2 θP cos2 θP(sin2 ϕδ
(1)
Q + cos2 ϕδ

(2)
Q )

−Q−1
P0 sin4 θP

[
cos2 ϕ sin2 ϕδ

(3)
Q + sin4 ϕε

(1)
Q +

(
cos2 ϕ+ cos2 ϕ sin2 ϕ

)
ε

(2)
Q

]
.

(7.15)

To examine how attenuation influences the scattered, or AVO, response, we consider the two

layer model in which the upper layer is isotropic-viscoelastic and lower layer is anisotropic-

viscoelastic (Figure 7.5b). The linearized PP reflection coefficient is RP = RE
P + iRH

P , where

the contribution due to attenuation is

RH
PP = −ρ−1

0 (2 cos θP )−2SH
PP = AH

PP + BH
PP sin2 θP + CH

PP sin2 θP tan2 θP (7.16)

where

AH
PP =− (4QP0)−1AQP

BH
PP =− 2(Q−1

S0 −Q−1
P0)V 2

SPAµ − (4QP0)−1AQP
+ 2Q−1

S0 V
2

SPAQS

− 2Q−1
S0 V

2
SP cos2 ϕ(γ

(1)
Q − γ

(2)
Q ) + 4−1Q−1

P0(sin2 ϕδ
(1)
Q + cos2 ϕδ

(2)
Q )

CH
PP =− (4QP0)−1

{
AQP

−
[
cos2 ϕ sin2 ϕδ

(3)
Q + sin4 ϕε

(1)
Q +

(
cos2 ϕ+ cos2 ϕ sin2 ϕ

)
ε

(2)
Q

]}
,

(7.17)

It has been shown that attenuation affects both the intercept and gradient of the lin-

earized PP reflection coefficients in viscoelastic-isotropic media (Moradi and Innanen, 2016;
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Figure 7.6: Sensitivity of the PP-scatter wave to the anisotropic-viscoelastic parameters for
azimuth angles 0◦, 45◦, 60◦, 90◦. Horizontal axis is opening angle 2θP .

Samec and Blangy, 1992). Analysis of the exact PP reflection coefficient near the critical an-

gle indicates that the attenuation and anisotropy do not affect the normal incident reflectivity

(Carcione et al., 1998). Our linearized reflection coefficient forms predict that only the P-

wave quality factor influences vertically-incident waves— there is no influence of anisotropic

and anisotropic-viscoelastic parameters on the reflection coefficient at normal incidence. The

parameter δ
(2)
Q only contributes in the small angle reflection coefficient, whereas ε

(2)
Q dicates

the large incident angle behaviour. There is no influence of the anisotropic Thompson pa-

rameters δ(2) and ε(2) on the imaginary parts of reflection coefficients. In the case that

anisotropy goes to zero, our results reduce to the AVO equations PP-waves in low-loss vis-

coelastic media, for homogeneous incident wave (Moradi and Innanen, 2016).

In Figure 7.6 the sensitivity of the scattered wave into the anisotropic parameters for

inhomogeneous wave is plotted versus incident wave for different values of azimuth angles.

For azimuth angle ϕ = 90◦, the inhomogeneous part of the scattering potential is sensitive

only to δ(1) and ε(1). However the later two parameters have no effect on SVIH
PP for azimuth

angle ϕ = 0◦.

For incident inhomogeneous waves, the reflectivity formula is RPP = RE
PP + iRH

PP + iRIH
PP,
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where the contribution of the inhomogeneity of the wave is

RIH
PP =−Q−1

P0 tan δPV2
SP sin 2θPAµ + 2−1Q−1

P0 tan δP tan θP (1 + tan2 θP )AVp

+ 4−1Q−1
P0 tan δP

(
δ

(2)
2 + sin2 ϕ

[
δ

(1)
2 − δ

(2)
2 − 8V2

SPγ
(S)
2

])
sin 2θP

+ 2−1Q−1
P0 tan δP

(
cos2 ϕ sin2 ϕ(δ

(3)
2 + ε

(2)
2 − ε

(1)
2 ) + sin2 ϕ(ε

(1)
2 − ε

(2)
2 ) + ε

(2)
2

)
tan3 θP .

At normal incidence, the inhomogeneity of the wave has no effect on the reflectivity. This

term is controlled by changes in density, P- and S-wave velocity and anisotropic parameters

δ(2), ε(2) and γ(S). It is not sensitive into the changes in P- and S-wave quality factors, nor

is it sensitive to changes in anisotropic-viscoelastic parameters.

7.6 Conclusion and summary

The Born approximation can be used to describe the various process in FWI and also helps

to visualize and understand qualitatively the coda waves. In some circumstances, volume

scattering behaves like low contrast reflection in a good approximation.

Scattering potentials for attenuative anisotropic media provides a simple tool to evalu-

ate the Fréchet kernels, and this is relevant to FWI applications where Fréchet kernels are

regarded as a sensitivity kernels. Moreover, the study of scattering potentials highlights

the dependency of linearized reflection coefficients to anisotropy and attenuation. Attenu-

ation and anisotropy are essential in amplitude variation with offset (AVO) trends as they

change the amplitude and phase of the scattered wave field from geological interfaces. In

this research, we derived the analytic forms of the components of the scattering potentials

for scattering of the homogeneous waves in attenuative orthorhombic media. These expres-

sions for scattering potentials which are the sensitivity kernels are involved in building the

framework for FWI. Furthermore we showed that how these scattering potentials reduce to

the linearized reflection coefficients. It can be seen that for normal incident or zero offset

only attenuation in medium affect the P-wave reflection coefficient. Anisotropic-viscoelastic

parameters affect the nonnormal incidence part of the reflectivity. Only gradient term is

sensitive to the changes in S-wave quality factor, however the changes in P-wave quality

factor affects the both intercept and curvature terms.
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We believe the results presented in this paper might be a very fruitful approach to devel-

opment of the theory of seismic modeling and inversion, especially in the new applications

of FWI, such as in identifying quality factors and anisotropic-viscoelastic parameters and

improving the imaging of subsurface materials.

There are also other avenues to pursue, including any inversion scenario where attenuation

presence in anisotropic media. It is useful to inspect the results of scattering potentials to

determine whether we can construct a framework for full waveform inversion for a medium

with both attenuation and anisotropy.

In our analysis we make use of volume scattering based on the first order perturbation

called Born approximation. The principle, which has made the formulations possible, is the

division of the actual medium to an isotropic reference medium filled by perturbations in

anisotropic properties.

One of the purpose of the this research is to provide a framework for the AVO/AVAZ

and Full waveform Inversion (FWI) in medium with both anisotropy and attenuation. One

would like to have some idea of the importance of the effects of attenuation and anisotropy

of the scattering potentials that technically are the sensitivity kernels for the FWI. Although

some works have been done on the linearized reflection coefficients in attenuative anisotropic

media, in the context of volume scattering is largely unexplained area. We will be concerned

here with orthorhombic media with weak anisotropic and attenuation properties. We derive

the scattering framework to describe the interaction of the seismic waves in a viscoelastic

orthorhombic media. We study two cases: first we assume that the wave propagates in

the isotropic elastic reference medium and scattered by the perturbations in anisotropic

orthorhombic media. This is equivalent to the two layer media model whose the upper layer

is isotropic elastic media and the lower layer is anisotropic orthorhombic media. In second

case it is assumed that the reference medium is isotopic viscoelastic media scattered by the

perturbations in attenuative anisotropic orthorhombic media. We shall examine analytically

the relationship between the results obtained from the linearization of the exact solutions.

We show that the derived scattering potentials reduced to the reflection coefficients from the

boundary separating an isotropic layer from anisotropic layer.

There is one important conclusion in the analysis of the converted P-wave in this paper.
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We show that there is no analytical distinction between the behaviour of the linearized re-

flection coefficients for incident isotropic layer and anisotropic incident layer. In the volume

scattering point of view, the scattering potentials and radiation patterings for either isotropic

or anisotropic reference media are the same. Whenever we deal with the first order pertur-

bation for weak anisotropy, we can use the isotropic polarization and slowness vectors for

reference medium. This greatly simplifies the analytical expressions, which is complicated

by using the analytical form of the polarization and slowness vectors in anisotropic media.

There are two important results of this development: The recognition of the significance of

the effects of both anisotropy and attenuation on linearized reselection coefficients and sensi-

tivity kernels in FWI. The development accomplished here is primarily a guide to sensitivity

analysis and model parametrization for FWI.
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Chapter 8

Summary and Future Work

In this thesis a comprehensive development of FWI sensitivity analysis and AVO/AVAz

in context of volume scattering theory for media with both anisotropy and attenuation is

presented. There are three types of waves in a viscoelastic media: Primary (P) waves,

Type-I Secondary (or SI) waves and Type II Secondary (or SII) waves. Within our frame-

work we developed a new set of canonical results set alongside those of layered media: for

viscoelastic-isotropic media, we showed that P- and SI-waves can be scattered into each

other, but SII-waves can only be scattered into other SII-waves. Five properties cause scat-

tering of waves: density, P- and S-velocities and attenuation quantities related to the P-

and S-waves. We showed in detail that, and how, small changes in each of these properties

scatter waves with specific radiation patterns in phase angle. We also for the first time

showed how to include the attenuation angle in a specific set of scattering equations referred

to as the AVO (Amplitude Variation with Offset) equations. The attenuation angle charac-

terizes the direction of maximum attenuation in the earth. To derive the AVO equations for

viscoelastic media we employed two approaches: the first is called the Born approximation.

The second approach is a traditional technique based on the linearization of exact solutions

of the wave equation, which is called the Aki-Richards approach. We proved that both

approaches are equivalent. We further carried out a detailed analysis of how in detail the

scattering radiation patterns depend on fractional and absolute changes in anisotropic and

attenuative properties of the medium. In particular we showed how to decompose the P-to-P,

P-to-SI, SI-to-SI and SII-to-SII scattering potentials into elastic, anisotropic, viscoelastic and

anisotropic-viscoelastic components. Elastic components included fractional changes in den-

sity, vertical P-wave velocity and vertical S-wave velocity; anisotropic components included

changes in the anisotropic Thomsen parameters; viscoelastic components included fractional

changes in vertical P- and S-wave quality factors and fractional changes in density, vertical

P-wave velocity and vertical S-wave velocity; anisotropic components included changes in

Q-dependent Thomsen parameters. The elastic and anisotropic components are the real part

168



of the scattering potential and viscoelastic and anisotropic-viscoelastic components are the

imaginary parts of the scattering potential.

With the volume scattering framework we have developed for the anisotropic-viscoelastic

media, we carry out the detailed sensitivity analysis for scattered waves to suggest optimal

model parametrization for FWI. This analysis is the first step in developing the FWI in

anisotropic-viscoelastic media.

We also modified the 2D finite difference code developed by Martin and Komatitsch

(2009a) to simulate wave propagation in a low contrast viscoelastic media. We examined

and confirmed the validity of the radiation patterns previously obtained from Born ap-

proximations using the numerical modeling of the scattering from variations in viscoelastic

parameters.

As a further step we can generalize the viscoelastic finite difference modeling to include

anisotropy. In this case, we have the attenuative slow and fast P- and S-waves. The same

approach for memory variables is applicable here, but more complicated forms are required.

After simulating viscoelastic waves in anisotropic media we also can carry out adjusted

sensitivity analysis as obtained using the Born approximation by generating the radiation

patterns generated by the perturbations in medium properties in a synthetic model.

Solution of the forward problem allows us to generate synthetic or simulated seismograms

as measured above an anisotropic-viscoelastic medium. A summation of the squares of the

differences between the generated waveforms and observed seismograms, called the misfit

function, characterizes the inverse problem treated by FWI. The objective of FWI is to find

the global minimum of the misfit function, i.e., find model parameters that minimize the

difference between observed and simulated data. A commonly used minimization technique

in FWI is based on the gradient or local slope of the misfit function. To calculate the

derivatives of the model parameters which make up this slope, we have to correlate forward-

modelled wave with the backward propagating (adjoint wave). Backpropagation of waves

in an attenuative medium itself is an open problem with tentative solutions found in the

literature, and proper inclusion of these in elastic/anisotropic FWI will form a significant

contribution in exploration geophysics.
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Weglein, A. B., Araújo, F. V., Carvalho, P. M., Stolt, R. H., Matson, K. H., Coates, R. T.,

Corrigan, D., Foster, D. J., Shaw, S. A., and Zhang, H. (2003). Inverse scattering series

and seismic exploration. Inverse Problems, pages R27–R83.

Weglein, A. B. and Dragoset, W. H. (2005). Multiple Attenuation. Society of Exploration

Geophysicists.

Weglein, A. B., Gasparotto, F. A., Carvalho, P. M., and Stolt, R. H. (1997). An inverse-

scattering series method for attenuating multiples in seismic reflection data. Geophysics,

62(6):1975–1989.

Weglein, A. B., Zhang, H., Ramirez, A. C., Liu, F., and Lira, J. (2009). Clarifying the

underlying and fundamental meaning of the approximate linear inversion of seismic data.

Geophysics, 74:WCD1–WCD13.

Wennerberg, L. (1985). Snell’s law for viscoelastic materials. Geophys. J. R. astr. Soc.,

81:13–18.

White, J. E. (1965). Reflections from lossy media. Journal of the Acoustical Society of

America, 38:604–607.

Wu, R. and Aki, K. (1985). Scattering characteristics of elastic waves by an elastic hetero-

geneity. Geophysics, 50:582–595.

Wu, X., Chapman, M., Li, X.-Y., and Boston, P. (2014). Quantitative gas saturation esti-

mation by frequency-dependent amplitude-versus-offset analysis. Geophysical Prospecting,

62(6):1224–1237.

Yang, P., Brossier, R., Métivier, L., and Virieux, J. (2016). A review on the systematic

formulation of 3-D multiparameter full waveform inversion in viscoelastic medium. Geo-

physical Journal International, 207(1):129–149.

Zhang, C. and Ulrych, T. J. (2007). Seismic absorption compensation: a least squares inverse

scheme. Geophysics, 72:R109–R114.

182



Zhao, H., Gao, J., and Liu, F. (2014). Frequency-dependent reflection coefficients in diffusive-

viscous media. Geophysics, 79:T143–T155.

Zhu, Y. and Tsvankin, I. (2006a). Plane-wave attenuation anisotropy in orthorhombic media.

Geophysics, 72(1):D9–D19.

Zhu, Y. and Tsvankin, I. (2006b). Plane-wave propagation in attenuative transversely

isotropic media. Geophysics, 71(2):T17–T30.

183



Copyright and Permissions

Dear Shahpoor Moradi,

RE. Shahpoor Moradi and Kristopher A. Innanen. Scattering of homogeneous and inho-

mogeneous seismic waves in low-loss viscoelastic media. Geophysical Journal International

(2015) 202 (3): 1722-1732

My apologies for the delay in responding to you and thank you for your email requesting

permission to reuse all or part of your article in a thesis/dissertation. As part of your copy-

right agreement with Oxford University Press you have retained the right, after publication,

to use all or part of the article and abstract, in the preparation of derivative works, extension

of the article into a booklength work, in a thesis/dissertation, or in another works collection,

provided that a full acknowledgement is made to the original publication in the journal. As

a result, you should not require direct permission from Oxford University Press to reuse you

article. Authors may upload a PDF of the accepted manuscript to institutional and/or cen-

trally organized repositories and/or in free public servers, upon acceptance for publication

in the journal. Authors may upload the version of record to institutional and/or centrally

organized repositories and/or in free public servers, upon publication in the journal.

Please Note: Inclusion under a Creative Commons License or any other Open-Access

License allowing onward reuse is prohibited. If you have any other queries, please feel free

to contact us.

Kind regards,

Permissions Assistant, Rights Department Academic and Journals Divisions—Global

Business Development Oxford University Press — Great Clarendon Street — Oxford —

OX2 6DP

184



Dear Shahpoor,

You are permitted to use the paper you reference in your PhD thesis. Such use is covered

under SEGs green open-access policy, available here:

http://seg.org/Publications/Policies-and-Permissions/Open-Access-Policy

Thank you for publishing in Geophysics.

Sincerely,

Associate Executive Director, Knowledge Management Society of Exploration Geophysi-

cists (SEG) 8801 South Yale Avenue, Suite 500 Tulsa, OK 74137-3575 USA

185


	Abstract
	Preface
	Acknowledgements
	Dedication
	Contents
	List of Tables
	List of Figures
	Introduction
	Amplitude Variation with Offset and Azimuth in attenuative media
	Model parametrization in Full Waveform Inversion
	Thesis overview

	Scattering of homogeneous and inhomogeneous seismic waves in low-loss viscoelastic media
	Abstract
	Introduction
	Mathematical formulation and review
	Homogeneous and inhomogeneous waves in viscoelastic wave theory
	Viscoelastic waves

	The viscoelastic scattering operator and potentials
	The scattering operator in displacement space
	The scattering operator in P, SI and SII space

	Elements of the P-SI-SII scattering matrix
	Viscoelastic P-P scattering
	Viscoelastic P-SI scattering
	Viscoelastic SI-to-SI scattering
	Viscoelastic scattering of SII-waves

	Summary and conclusion

	Perturbation in complex domain
	Numerical analysis of scattering in a viscoelastic medium 
	Abstract
	Introduction
	Review of common viscoelastic models
	Equation of Motion

	Viscoelastic scattering amplitude
	Numerical implementation
	Summary and future direction

	Appendixe: 3-D viscoelastic medium
	Viscoelastic amplitude variation with offset equations with account taken of jumps in attenuation angle
	Abstract
	Introduction
	Viscoelastic ray parameters and slownesses
	Viscoelastic Snell's law in the low-contrast approximation
	Exact reflection/transmission coefficients
	Linearization of reflectivity
	P-to-P reflection coefficient

	Linearized P-to-SI reflection
	SI-to-SI reflection
	The relationship between the reflectivity and the viscoelastic scattering potential
	P-to-P scattering potential
	SI-to-SI scattering potential
	P-to-SI scattering potential

	Conclusion
	Summary

	Significance and behaviour of the homogeneous and inhomogeneous components of linearized viscoelastic reflection coefficients
	Abstract
	Introduction
	Preliminaries
	Homogeneous and inhomogeneous parts of the slownesses
	Decomposition of solutions of the viscoelastic Zoeppritz equations
	The viscoelastic Shuey approximation
	Converted wave approximations
	Conclusions

	Complex coefficients
	Trigonometric functions for small angles
	Linearization procedure in viscoelastic media
	Born scattering and inversion sensitivities in viscoelastic transversely isotropic media
	Abstract
	Introduction
	The stiffness tensor for VTI-viscoelastic media and complex Thomsen parameters
	Perturbations in the stiffness tensor and the Born approximation
	Scattering potentials
	Anisotropic-viscoelastic scattering processes and inversion sensitivities
	Conclusion and summary

	Propagation and attenuation vectors
	Compressional wave scattering potentials and linearized reflection coefficients in elastic and low-loss viscoelastic orthorhombic media
	Abstract
	Introduction
	Viscoelastic orthorhombic media
	Scattering potential
	Scattering of P-wave to P-wave
	Conclusion and summary

	Summary and Future Work
	References
	Copyright and Permissions



