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Abstract

This thesis concerns seismic full-waveform inversion (FWI) techniques for estimating subsur-

face properties. FWI approaches promise to provide high-resolution estimates of subsurface

parameters using full wavefield information. However, FWI also suffers from a series of ob-

stacles including extensive computation requirements, slow convergence rate, cycle-skipping,

interparameter tradeoffs, etc. This thesis focuses on developing advanced phase-encoding

and optimizations methods for accelerating FWI, quantifying and reducing the interparam-

eter tradeoffs in multiparameter FWI.

Iteratively minimizing the objective function and updating the models gives rise to high

computational costs. In this thesis, I have developed phase-encoding approaches for con-

structing gradient and Hessian diagonals in the τ -p domain for accelerating FWI. Most of

FWI applications employ gradient-based methods for updating the models by assuming the

Hessian to be an identity matrix, which suffer from slow convergence rate. In this thesis,

advanced second-order optimizations (i.e., l-BFGS and Hessian-free methods) are developed

for improving the convergence rate. Different preconditioning strategies are examined for

accelerating Hessian-free Gauss-Newton FWI.

Simultaneously reconstructing multiple physical parameters suffers from parameter crosstalk,

a difficulty arising from inherent ambiguities among different physical parameters. Quantify-

ing the coupling effects of different physical parameters is an essential part of multiparameter

FWI. Most parameter resolution studies are based on scattering patterns. Ambiguities ap-

pear between different physical parameters if their scattering patterns overlap over a certain

range of scattering angles. Scattering patterns of isotropic-elastic parameters with various

parameterizations are derived in this thesis. The interparameter contamination kernels are

introduced to explain the origins of interparameter tradeoffs. A novel inversion strategy

with approximate contamination kernels is developed for providing more convincing density

estimations in isotropic-elastic FWI. Synthetic examples and realistic seismic dataset exam-

ples are given to verify the effectiveness of this inversion strategy. Performances of different

parameterizations for isotropic-elastic FWI are also examined.

This thesis also demonstrates that applying inverse multiparameter Hessian to precondi-
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tion the gradients is able to suppress the unwanted interparameter contaminations. 3D scat-

tering patterns of elastic constants in general anisotropic media are given. The second-order

term in multiparameter Hessian, which accounts for multiparameter second-order scatter-

ing, can be constructed with adjoint-state approach. Newton-based methods are applied to

reconstruct the elastic constants in anisotropic (HTI) media.
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Chapter 1

Introduction

Seismic inversion techniques (i.e., traveltime tomography, impedance inversion, etc.) are

longstanding and important issues in exploration geophysics. The main objective of seismic

inversion is to recover subsurface properties from the recorded seismic dataset for some

practical applied purpose, most often for oil and gas reservoir. In traditional traveltime

tomography methods, the traveltime information is picked from the first arrivals to estimate

the near-surface velocity structures (Zhu et al., 1992; Zhang and Toksöz, 1998; Zhu et al.,

2008). In impedance inversion methods, the estimated reflectivity section is transformed into

impedance section with trace integration tying to well log data (Waters, 1978; Russell, 1998;

Lloyd, 2013; Cui, 2015; Esmaeili, 2016). AVO (Amplitude-variation-with-offset) inversion

techniques are based on linear approximations of the reflection coefficients obtained from

the Zoeppritz equations (Aki and Richards, 2002; Krebes, 1987; Lines, 1999; Krebes and

Daley, 2007; Innanen, 2011, 2013; Lines et al., 2014; Mahmoudian et al., 2014).

Full-waveform inversion (FWI) techniques were initiated by Lailly (1983) and Tarantola

(1984) in the 1980’s. Compared to traditional inversion approaches mentioned above, FWI

methods employ full wavefield information (traveltime, phase, amplitude, etc.) for inversion

and are able to provide high-resolution estimations of model parameters (as shown in Figure

1.1). However, the inversion process involves a large number of numerical simulations of wave

equation, which significantly impeded its wide application in 1980’s. Benefiting from the

vast development of computer technologies in recent decades, full-waveform inversion (FWI)

methods have more recently become practical in global- and exploration-scale geophysics

for estimating subsurface (an) elastic and anisotropic properties (i.e., compressional wave

velocity, density and attenuation) (Pratt et al., 1998b; Sirgue and Pratt, 2004; Tromp et al.,

2005; Fichtner et al., 2006; Liu and Tromp, 2006; Virieux and Operto, 2009; Herrmann et al.,

2009; Warner et al., 2013; Herrmann et al., 2013).

The basic idea of FWI is to iteratively update the model properties by minimizing a l-2

norm misfit function Φ which measures the differences between seismic observations dobs and
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Figure 1.1: (a) and (b) show the 3D slices of velocity models built by ray-based reflection
tomography in Valhall filed; (c) and (d) show the 3D slices of the velocity models built by
full-waveform inversion method. The inversion results are obtained by L. Sirgue and O. I.
Barkved. This figure is adapted from Virieux and Operto (2009).

the synthetic modelled data dsyn, which can be obtained by numerically solving the wave

equation with different approaches (i.e., finite-difference method, spectral-element method,

etc). The objective of FWI is to find the model which makes the synthetic data match the

observed seismic data. The misfit function Φ is classically solved with local optimization

methods (Nocedal and Wright, 2006), in which the gradient ∇mΦ, the first derivative of the

misfit function, needs to be calculated during the process of iteratively updating the model

parameters. The gradient can be calculated by correlating the Fréchet derivative wavefields

(Jacobian matrix) with the complex conjugate of data residuals (Virieux and Operto, 2009).

However, it is computationally impractical to construct the Jacobian matrix explicitly for

large-scale inverse problems. With the adjoint-state method and the Born approximation,

the gradient can be calculated by zero-lag crosscorrelating the forward modelled wavefields

with the backward propagated data residual wavefields efficiently (Tromp et al., 2005; Plessix,

2006; Fichtner et al., 2006; Geng et al., 2017b,a). Furthermore, the gradient in FWI can also
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be calculated using one-way wave equation migration method by extrapolating the wave-

fields downward using phase-shift method (Margrave et al., 2011a). In different non-linear

optimization methods, various inverse Hessian approximations are applied to precondition

the gradient for improving the convergence rate (Nocedal and Wright, 2006).

1.1 Issues and inversion strategies in FWI

Full-waveform inversion techniques are promising but also suffer from a number of well-

defined obstacles: chief amongst these are extensive computation requirements, slow conver-

gence rate, the phenomenon of cycle-skipping, interparameter tradeoff issue in multiparam-

eter FWI. These challenges make successful FWI applications very difficult. In this section,

these problems in FWI are discussed and the potential strategies to overcome them are

presented.

1.1.1 Extensive computation requirements

Lailly (1983) and Tarantola (1984) showed that the gradient of the least-squares objective

function, when computed with the adjoint-state method (Plessix, 2006), is formed by the

zero-lag crosscorrelation between the forward modelled wavefields and the backpropagated

wavefields. Unfortunately, what remains still represents a very significant computational

burden, especially for large 2D or 3D velocity models. With traditional shot-profile method,

the computation cost of calculating gradient is equivalent to 2 × Ns forward simulations

(Ns is the source number). Iterative solution of the seismic inverse problem with standard

multivariate optimization methods involves a large number of simulations, which make FWI

very expensive.

Phase-encoding (or simultaneous-source) strategies, first introduced in pre-stack migra-

tion (Morton and Ober, 1998; Romero et al., 2000; Zhang et al., 2005; Liu et al., 2006;

Dai and Schuster, 2013), can be employed to reduce the computational cost in gradient

calculation. Phase-encoding involves the formation of super-gathers from summation of in-

dividual shots (Vigh and Starr, 2008; Krebs et al., 2009; Herrmann et al., 2009; Gao et al.,

2010; Ben-Hadj-Ali et al., 2011; Guitton and Dı́az, 2012; Tao and Sen, 2013; Castellanos
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et al., 2015). Vigh and Starr (2008) originally performed the plane-wave domain FWI with

a steepest-descent method. Anagaw and Sacchi (2014) focused on simultaneous-source FWI

using random phase-encoding and showed that changing the encoding functions and source

positions at every iteration can suppress crosstalk noise effectively. However, the simulation

of simultaneous-sources introduces crosstalk artifacts, which negatively influence the inver-

sion results. For random phase-encoding, crosstalk noise becomes stronger with increasing

the number of encoded sources (Krebs et al., 2009; Berkhout, 2012). However, in the case

of linear phase-encoding strategy, which can be interpreted as a τ -p transform (Zhang et al.,

2005), when the sources are distributed densely and regularly over the whole acquisition

geometry, the encoded wavefields approach plane wavefields and limited amount of noise will

be present (Liu et al., 2006).

1.1.2 Non-linear optimization methods

Traditional optimization methods for FWI in exploration geophysics are gradient-based

methods (i.e., steepest-descent (SD) and non-linear conjugate-gradient (NCG) methods).

In the SD method, the search direction is simply the negative of the gradient and in NCG

method, the search direction is the linear combination of the current gradient and pre-

vious search direction (Fletcher and Reeves, 1964; Nocedal and Wright, 2006; Hu et al.,

2011). Gradient-based methods are computationally attractive for large-scale inverse prob-

lems. However, they suffer from slow convergence rates. The second-order partial derivative

of the misfit function (namely the Hessian operator) carries crucial information in the re-

construction process (Santosa and Symes, 1988). The search direction can be significantly

enhanced by multiplying the gradient with the inverse Hessian matrix, which serves as a “de-

convolution” operator for compensating the geometrical spreading effects and de-blurring the

gradient (Pratt et al., 1998b). However, explicit calculation, storage and inversion of the

Hessian at each iteration is computationally impractical for large-scale inverse problems.

Hence, various approaches have been proposed for approximating the Hessian (Shin et al.,

2001a; Plessix and Mulder, 2004; Tang, 2009) or inverse Hessian (Nocedal and Wright, 2006;

Demanet et al., 2012).

Instead of constructing the Hessian explicitly, quasi-Newton methods approximate the in-
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verse Hessian iteratively by storing the model and gradient changes from previous iterations

(Nocedal and Wright, 2006). One popular quasi-Newton method is the BFGS method (Broy-

den, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). However, the storage requirement

of the inverse Hessian approximation and computational cost of preconditioning for large-

scale inverse problems is still very high. To mitigate this difficulty, a limited-memory BFGS

(l-BFGS) method is developed by storing information from a limited number l (l < 10) of

previous iterations (Nocedal, 1980; Byrd et al., 1995; Nocedal and Wright, 2006). Compared

to gradient-based methods, l-BFGS methods provide faster convergence rates for large-scale

inverse problems (Brossier et al., 2010; Ma and Hale, 2012).

Hessian-free (HF) optimization methods (truncated-Newton or inexact-Newton method)

represent attractive alternatives to the above-described optimization methods (Nash, 1985;

Santosa and Symes, 1988; Nash, 2000; Akcelik et al., 2002; Métivier et al., 2014; Li and

Demanet, 2016). At each iteration, the search direction is computed by approximately

solving the Newton equations using a matrix-free scheme of the conjugate-gradient (CG)

algorithm, which is an optimal method for solving a positive definite system (Nash, 1985; Hu

et al., 2009). This linear iterative solver only requires the Hessian-vector products instead

of forming the Hessian operator explicitly (Métivier et al., 2014). In this thesis, the full

Hessian is replaced with the Gauss-Newton Hessian, which is always symmetric and positive

semi-definite and which equals to the Hessian when the system is linear. One issue of the HF

optimization method is that obtaining the search direction approximately requires a large

number of CG iterations, which is still very expensive. Effective preconditioning strategy

can be employed to accelerate HF full-waveform inversion (Nash, 2000; Sainath et al., 2013).

1.1.3 Cycle-skipping problem

Another big challenge of FWI is cycle-skipping, which originates from the nonlinearity of

the seismic inverse problem. The seismic data relates to the model parameters non-linearly.

However, the inversion process is classically solved with local Newton optimization framework

and is therefore strongly dependent on the starting model definition. It only locates the global

minimum if the starting model is close to the true model. If the initial model is far away

from the true model, the solution will tend to become trapped at the local minimum (as
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shown in Figure 1.2). One key assumption and criteria in the localized inversion is that the

modelled and observed waveforms must be within half a wave-cycle to converge iteratively

in the right direction. Theoretically, at low frequencies, there is a high chance that the

modelled and observed data match within half a wave-cycle. Hence, the low frequencies

are crucial to successful FWI applications (as shown in Figure 1.3). Multiscale approaches

were proposed by expanding the frequency bands from low to high (Pratt and Chapman,

1992; Bunks et al., 1995; Sirgue and Pratt, 2004; Vigh and Starr, 2008; Boonyasiriwat et al.,

2009). Low frequencies are responsible for recovering long-wavelength components of the

model. However, in standard seismic data sets, which are naturally bandlimited, the low

frequencies are always missing, which results in the failure of FWI applications.

𝒇(x) 

Local minimum  

Global minimum  

Figure 1.2: The cycle-skipping problem in non-linear inverse problem for minimizing
quadratic function f (x) with variable x. The red and black circles indicate local minimum
and global minimum.

Different strategies have been proposed to overcome cycle-skipping in FWI. Because

traveltime is more linearly related to the velocity structures, crosscorrelation based wave

equation traveltime inversion methods can be used to build initial models for full-waveform

inversion (Luo and Schuster, 1991; van Leeuwen and Mulder, 2010; Zhang et al., 2011;

Ma and Hale, 2013). Xu et al. (2012) developed reflection full-waveform inversion method

(RFWI), which uses reflected waves to recover deep parts of background model. Chi et al.

(2015) combined RFWI with crosscorrelation based traveltime inversion method to recover

long-wavelength of the velocity model. Shin and Cha (2008) proposed a robust waveform

inversion algorithm, which is not sensitive to initial model by exploiting the wavefield in

the Laplace domain. Wu et al. (2014) developed envelope waveform inversion to estimate
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Figure 1.3: (a) and (b) show the true and initial models; (c), (d), (e) and (f) show the
inverted models with the frequency bands of [1Hz, 25Hz], [3Hz, 25Hz], [6Hz, 25Hz] and [8Hz,
25Hz].

the long-wavelength velocity structure using the ultra-low frequency carried by envelope

fluctuation and decay of the seismic records. Li and Demanet (2015) proposed to use high

frequencies in the seismic records to synthesize the low frequencies, which are then used

for full-waveform inversion. Esser et al. (2016) and Peters and Herrmann (2017) proposed

constrained waveform inversion, which is able to reduce the cycle-skipping problem and

build salt structures. Recently, Métivier et al. (2016) measured the FWI misfits between

seismograms using an optimal transport distance, which has been proved to be less prone to

cycle-skipping.

1.1.4 Interparameter tradeoff (or parameter crosstalk) in multiparameter FWI

Elastic and anisotropic parameters are important for reservoir characterization. Simultane-

ously reconstructing multiple physical parameters suffers from parameter crosstalk problem

arising from the inherent ambiguities among these parameters, which increases the nonlin-

earity and uncertainty of the inverse problems significantly (Tarantola, 1986; Köhn et al.,

2012; Operto et al., 2013; Alkhalifa and Plessix, 2014; Innanen, 2014a). Resolving abilities
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of different parameterizations within FWI, even within fundamentally the same model (e.g.,

P-wave impedance, S-wave impedance and density versus P-wave velocity, S-wave velocity

and density in isotropic- elastic FWI) are quite different. In recent years, researchers have

devoted intensive efforts to the parameter resolution studies based on analytic solutions of

Fréchet derivative wavefields (“scattering” or “radiation” patterns) for different parameter

classes (Tarantola, 1986; Gholami et al., 2013b; Alkhalifa and Plessix, 2014; Podgornova

et al., 2015). Coupling effects appear between two different physical parameters, if the scat-

tered wavefileds due to the model perturbations overlap at certain range of scattering angle

(Tarantola, 1986). These analyses are important for determining optimal parameterization,

acquisition geometry and inversion strategies for multiparameter FWI. A high-resolution

parameterization should have scattering patterns as different as possible and posterior un-

certainties as uncorrelated as possible (Tarantola, 1986). Gholami et al. (2013b) investigated

the scattering patterns of parameters resulting from various parameterizations of multipa-

rameter acoustic FWI. Alkhalifa and Plessix (2014) emphasized the power of horizontal

P-wave velocity in reducing the number of parameters for VTI FWI. Podgornova et al.

(2015) analyzed the resolution limits of multiparameter anisotropic FWI based on the singu-

lar value decomposition of far-field linearized inversion operator. Overlapping the scattering

patterns due to different physical parameters only represents an asymptotic approximation

of Gauss-Newton Hessian (Operto et al., 2013; Alkhalifa and Plessix, 2014), which means

that they do not provide complete information from which to understand the features of the

interparameter contaminations (i.e., finite-frequency effects).

Reducing the uncertainties introduced by the interparameter tradeoffs is becoming es-

sential for multiparameter FWI. Mode decomposition is potential strategy for mitigating

the interparameter tradeoffs by isolating P and S wavefields but may also be limited in re-

ducing the contaminations in density updates and multiparameter acoustic FWI (Wang and

Cheng, 2017). Subspace optimization methods mitigate the interparameter tradeoffs by scal-

ing different physical parameters but do not prevent their occurrence (Kennett et al., 1988;

Bernauer et al., 2014). Newton-based optimization methods are promising for the capabilities

of inverse multiparameter Hessian in suppressing the unwanted parameter crosstalk artifacts

(Innanen, 2014a; Wang et al., 2016; Yang et al., 2016). Explicitly constructing and invert-

8



ing multiparameter Hessian for large-scale inverse problems is in practice computationally

impracticable. Truncated-Newton (or Hessian-free) optimization methods represent afford-

able strategies for multiparameter FWI, in which the Newton equation is solved iteratively

with matrix-free scheme of conjugate-gradient algorithm (Métivier et al., 2013; Boehm and

Ulbrich, 2014; Métivier et al., 2015; Liu et al., 2015). However, with small number of inner

iterations, the effectiveness of removing interparameter mappings may also not be obvious

(Baumstein, 2014).

1.2 Thesis objectives and organization

The objectives of this thesis are: investigating efficient phase-encoding approaches for ac-

celerating FWI, developing advanced non-linear optimization methods for improving the

convergence rate of FWI, and quantifying and reducing the interparameter tradeoffs (or

parameter crosstalk) in multiparameter FWI. The thesis is organized as follows:

Chapter 2 presents an efficient τ -p domain waveform inversion method aiming at re-

ducing the computational burden of FWI with phase-encoding techniques. It was published

in Geophysics in 2015 (Pan et al., 2015a). The gradient is constructed using linear phase-

encoding and a slant update strategy is introduced to further reduce the computational

burden. Poorly scaled and blurred gradient updates can be enhanced using exact or approx-

imate versions of the inverse Hessian, which leads to a faster convergence rate. It is also

revealed that preconditioning the gradient with diagonal pseudo-Hessian resembles a decon-

volution imaging condition. The phase-encoding approach is also employed to construct

diagonal Hessian, which serves as effective preconditioner for accelerating FWI.

Chapter 3 presents various non-linear optimization methods for full-waveform inversion.

It was published in Geophysics in 2017 (Pan et al., 2017a). Most FWI applications employ

gradient-based optimization methods by assuming the Hessian as an identity matrix, which is

computationally attractive for large-scale inverse problems but suffer from slow convergence

rates. Newton-based methods provide quadratic convergence but involve the computationally

intractable problem of calculating and inverting the Hessian matrix explicitly in large-scale

inverse problems. Instead of constructing the Hessian explicitly, the limited-memory BFGS
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(l-BFGS) approximates the inverse Hessian iteratively using the gradient and model changes

from a limited number l (l < 10) of previous iterations. In Hessian-free (HF) optimization

methods (truncated-Newton or inexact-Newton method), the search direction is obtained by

approximately solving the Newton equations using linear conjugate-gradient (CG) algorithm.

I develop different preconditioning strategies for the inner CG algorithm and found that the

l-BFGS inverse Hessian preconditioner works best for accelerating the Hessian-free Gauss-

Newton FWI. Different non-linear optimization methods are finally applied to reconstruct

velocity and density parameters in multiparameter acoustic FWI for comparison.

Chapter 4 focuses on the interparameter tradeoff issue in isotropic-elastic FWI. The

material in this chapter has recently been submitted for publication. When simultaneously

inverting multiple physical parameters, perturbation of one parameter will be mapped into

the update of another, which presents unwanted parameter crosstalk artifacts in the inverted

models. In this chapter, I give the scattering patterns within various parameterizations

for interparameter tradeoff analysis in isotropic-elastic FWI and also define interparame-

ter contamination kernels, which measure the parameter leakage among different physical

parameters directly. Products of the multiparameter Hessian with an arbitrary vector can

be calculated with adjoint-sate approach efficiently. To reduce interparameter contamina-

tions in the inversion process, I develop a novel inversion strategy based on approximate

contamination kernels, which is able to provide more convincing density estimations. Both

synthetic data examples and realistic example with Hussar seismic dataset are given. I also

examine the performances of three parameterizations (velocity-density, modulus-density and

impedance-density parameterizations) in isotropic-elastic FWI. I found that the velocity-

density parameterization still represents a better choice to reconstruct isotropic-elastic pa-

rameters than modulus-density and impedance-density parameterizations.

Chapter 5 presents the Newton-based (Gauss-Newton and full-Newton) methods for

recovering elastic constants in anisotropic HTI media. This was published in Geophysics in

2016 (Pan et al., 2016). I derive the 3D scattering patterns for elastic constants in general

anisotropic-elastic media for interparameter tradeoffs analysis. It is shown that by applying

inverse multiparameter Hessian to precondition the gradient updates is able to suppress

the interparameter contaminations effectively. The second-order term of multiparameter
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Hessian, which accounts for multiparameter second-order scattering effects, can be calculated

with adjoint-state method more efficiently. Furthermore, numerical examples are given to

show that the second-order term of multiparameter Hessian is able to suppress the artifacts

due to multiparameter second-order scattering effects in the gradient updates.

In Chapter 6, I summarize the thesis’ contributions and innovations in phase-encoding

approaches, non-linear optimization methods, interparameter tradeoffs analysis and reduc-

tion in multiparameter FWI. Plans for further studies on multiparameter 3D FWI are given

at the end.

1.3 Thesis contributions

Contributions of this thesis are summarized as follows:

• Developing an efficient full-waveform inversion strategy with phase-encoding approaches

in τ -p domain. I reveal that diagonal pseudo-Hessian is equivalent to source illumina-

tion and preconditioning the gradient with diagonal pseudo-Hessian resembles decon-

volution imaging condition

• Developing various non-linear optimization methods including steepest-descent (SD),

non-linear conjugate-gradient (NCG), l-BFGS and (preconditioned) Hessian-free Gauss-

Newton methods.

• Analyzing the interparameter tradeoffs of isotropic-elastic parameters within various

parameterizations in isotropic-elastic FWI based upon scattering patterns and multi-

parameter Hessian-vector products. Developing inversion strategy with approximate

contamination kernels to reduce the influences of interparameter contaminations in the

inversion process. The coupling effects of isotropic-elastic parameters within various

parameterizations are studied. The inversion performances of various parameteriza-

tions are also evaluated with numerical examples.

• The 3D scattering patterns of elastic stiffness coefficients in general anisotropic-elastic

media for analyzing the coupling effects of different parameters in anisotropic media

are derived. Numerical examples are given to verify the role of multiparameter Hessian
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in reducing the unwanted parameter crosstalk artifacts. The second-order term in

multiparameter Hessian is able to removed the artifacts due to multiparameter second-

order scattering effects. Newton-based methods are finally applied to inverted elastic

constants in a 2D HTI media.
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Chapter 2

Phase-encoding strategies

2.1 Summary

In this chapter, an efficient τ -p domain waveform inversion with a phase-encoding (or

simultaneous-source) technique is developed aiming at reducing the computational burden

of FWI. The gradient is constructed in the τ -p domain using linear phase-encoding, and a

slant update strategy further reduces the computational burden. Poorly scaled and blurred

gradient updates can be enhanced using exact or approximate versions of the inverse Hes-

sian, which leads to a faster convergence rate. I develop a new chirp phase-encoding strategy

for diagonal Hessian construction. Preconditioning the gradient using the diagonal phase-

encoded approximate Hessian forms what I refer to as a pseudo-Gauss-Newton (PGN) step.

To test the effectiveness of the τ -p domain FWI, the strategies were enacted on a modified

Marmousi model. The effectiveness of the proposed phase-encoding strategies in frequency

domain is also examined.

2.2 Introduction

In full-waveform inversion (FWI), one seeks to iteratively estimate subsurface properties by

minimizing the difference between observed and numerically modelled seismic data (Lailly,

1983; Tarantola, 1984; Pratt et al., 1998b; Virieux and Operto, 2009; Herrmann et al., 2013;

Warner et al., 2013). Industrial applications of FWI suffer from a series of well-defined

obstacles: chief amongst these are extensive computation requirements per iteration, slow

convergence rate, and the phenomenon of cycle-skipping. Aiming at reducing the computa-

tional burden, a pseudo-Gauss-Newton method carried out in the τ -p domain is proposed in

this chapter.

For the traditional shot-profile method, iterative solution of the seismic inverse problem

with standard multivariate optimization methods involves an impractical number of simu-
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lations. Lailly (1983) and Tarantola (1984) showed that the gradient of the least-squares

objective function, when computed with the adjoint-state method (Plessix, 2006), is formed

by the zero-lag correlation between the forward modelled wavefields and the backpropagated

wavefields. Unfortunately, what remains still represents a very significant computational

burden, for large 2D or 3D velocity models. Strategies based on phase-encoding, first intro-

duced in pre-stack migration (Morton and Ober, 1998; Romero et al., 2000; Zhang et al.,

2005; Liu et al., 2006; Dai and Schuster, 2013), can be employed to reduce the computa-

tional cost of the gradient calculation. The phase-encoding technique involves the formation

of super-gathers from summation of individual shots (Vigh and Starr, 2008; Krebs et al.,

2009; Herrmann et al., 2009; Gao et al., 2010; Ben-Hadj-Ali et al., 2011; Guitton and Dı́az,

2012; Tao and Sen, 2013; Castellanos et al., 2015). However, the simulation of simultaneous-

sources introduces crosstalk artifacts, which negatively influence the inversion results. For

random phase-encoding, crosstalk noise becomes stronger with increasing the number of

encoded sources (Krebs et al., 2009; Berkhout, 2012). Anagaw and Sacchi (2014) focused

on simultaneous-source FWI using random phase-encoding and showed that changing the

encoding functions and source positions at every iteration can suppress crosstalk noise effec-

tively. However, in the case of linear phase-encoding strategy, which can be interpreted as a

τ -p transform (Zhang et al., 2005), when the sources are distributed densely and regularly

over the whole acquisition geometry, the encoded wavefields approach plane wavefields and

limited amount of noise will be present (Liu et al., 2006). Plane-wave migration still suf-

fers from undesired artifacts due to the simultaneous extrapolation of multiple shots (Tang,

2009), which can be mitigated by stacking a set of ray parameters. Vigh and Starr (2008)

originally performed the plane-wave domain FWI with a steepest-descent method. This

chapter focuses on constructing the gradient for FWI using a linear phase-encoding strategy.

To reduce the computational cost further, a slant update strategy is introduced, in which

the model is updated using the slant gradient with one single ray parameter, but the p value

is changed as the iteration proceeds. Thus, the bias in any update can be balanced during

later iterations; this allows the mitigation of artifacts and aliasing. This strategy enables a

similar quality inversion result, but with a considerably reduced computational burden. To

illustrate these aspects of the candidate strategy, the computational cost of the τ -p domain
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method with traditional methods are compared and the quality of the inversion results are

evaluated.

Given sparsely sampled sources, the linear phase-encoding technique generates strong

crosstalk noise, arising from the undesired interactions between unrelated source and receiver

wavefields. It is important therefore to analyze the influence of source spacing on τ -p domain

FWI as carried out with the slant update strategy. Generally, different ray parameters are

responsible for illuminating and updating of subsurface layers with different dip angles. The

ray parameter range could potentially be determined by the geological structures in the

target area. So, a proper ray parameter range should be designed to balance the updates

and guarantee the convergence rate. The sensitivity of τ -p domain FWI to the ray parameter

range setting is discussed.

The gradient in FWI is equivalent to a reverse time migration (RTM) image constructed

using a crosscorrelation imaging condition. This means a steepest-descent update is blurred

and poorly-scaled, having neglected amplitude loss during forward and backward propaga-

tion (Shin et al., 2001a,b). Poor scaling increases the number of updates needed to attain

the global minimum. This can be significantly improved by multiplying the gradient with

the inverse Hessian. The Hessian operator acts like a nonstationary “deconvolution” oper-

ator to compensate for geometrical spreading and de-blur the gradient (Pratt et al., 1998b;

Pan et al., 2014a). The resulting improvement in scaling increases the convergence rate,

but, unfortunately, the calculation, storage and inversion of the Hessian greatly increases

the per iteration computational burden, tending to reverse any savings. Shin et al. (2001a)

introduced the pseudo-Hessian, which allows one to compute an approximate diagonal Hes-

sian at the same cost as the gradient by replacing the partial derivative wavefields with the

virtual sources during the autocorrelation process. Tang (2009) introduced a receiver-side

phase-encoded Hessian by constructing the receiver-side Green’s functions using random

phase-encoding. In this chapter, a chirp phase-encoding method is introduced, which com-

bines the linear and random phase-encoding strategies, for diagonal Hessian construction

within the Gauss-Newton approximation. This chirp phase-encoding strategy is similar to

the mixed shot-encoding scheme for wave equation migration by Perrone and Sava (2012).

Preconditioning the gradient with the diagonal phase-encoded approximate Hessian in τ -p
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domain forms what I refer to as pseudo-Gauss-Newton (PGN) method. The phenomenon

of cycle-skipping originates from the nonlinearity of the seismic inverse problem and the use

of an inaccurate initial velocity model. This, coupled with the lack of low-frequency data,

results in the global minimum being missed in favour of some nearby local minimum. In

this chapter, to improve the chance of avoiding cycle-skipping and attaining the global min-

imum, a multi-scale approach in time domain is implemented by low-pass filtering the data

residuals (Pratt and Chapman, 1992; Bunks et al., 1995; Sirgue and Pratt, 2004; Vigh and

Starr, 2008; Boonyasiriwat et al., 2009).

This chapter is organized as follows. First, the basic theory for least-squares inverse prob-

lem is reviewed and the slant update strategy with phase-encoding and varied p values is

introduced. Then, the construction of diagonal Hessian using phase-encoding method com-

bining with several numerical examples in the numerical section is explained. The proposed

strategies are then practiced on a modified Marmousi model to verify the slant update strat-

egy, to analyze the influences of ray parameter range and source spacing, and to compare

different preconditioning strategies. I then implement the proposed phase-encoding strate-

gies in frequency domain and numerical examples based on Marmousi model are also given

for illustration.

2.3 Theory and Methods

In this section, the basic principle of forward modelling and least-squares inverse problem

with linear phase-encoding are reviewed, and the slant update strategy with varied p values

is introduced. Then how to construct the diagonal Hessian using phase-encoding method is

described.

2.3.1 Forward modelling in τ -p (or frequency-ray parameter) domain

Forward modelling of wave propagation is one important step for FWI. The acoustic wave

equation with constant-density in the time domain is (Marfurt, 1984):

∇2ū(x,xs, t)−m(x)
∂2ū(x,xs, t)

∂t2
= f̄s(xs, t), (2.1)
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where x = (x, y, z) denotes the subsurface location with Cartesian coordinates, ∇2 is the

Laplace operator, m(x) is the square of the slowness, and ū(x,xs, t) denotes the pressure

wavefields at position x and time t due to the source f̄s(xs, t) excited at position xs. To

obtain the forward solution ū(x,xs, t) of equation (2.1), an explicit finite-difference method

with fourth-order accuracy in space and second-order accuracy in time is used (Virieux, 1986;

Levander, 1988). The perfectly matched layer (PML) boundary condition is applied on all of

the boundaries of the model (Berenger, 1994). In frequency domain, equation (2.1) becomes

the Helmholtz equation which can be written as (Marfurt, 1984)

L (x, ω; m) u (x,xs, ω) = fs(ω)δ (x− xs) , (2.2)

where m is the model parameter vector, u(x,xs, ω) is the discrete pressure wavefield vector.

L (x, ω; m) = [∇2 + ω2m(x)] is the discretized impedance matrix. ω is angular frequency

and δ (x− xs) is the Dirac delta function. Note that the FWI algorithms are implemented

in both of time domain and frequency domain. The notations in the following part of this

section are expressed in frequency domain for sake of compactness. The Green’s function

G (x,xs, ω) is defined as the solution of equation (2.2) due to a point source:

L (x, ω; m)G (x,xs, ω) = δ (x− xs) . (2.3)

The solution of equation (2.2) can be written as:

u (x,xs, ω) = fs (ω)G (x,xs, ω) . (2.4)

Traditional shot-profile RTM can provide high quality images but typically at high com-

putational cost (Romero et al., 2000). Plane-wave source migration with slant stacking (or

delayed-shot migration) has been introduced to reduce the computational burden by apply-

ing different phase shifts at densely distributed sources (Morton and Ober, 1998; Romero

et al., 2000; Zhang et al., 2005; Dai and Schuster, 2013). Godwin and Sava (2013) compared

different phase-encoding schemes for wave equation migration. The linear phase-encoding

is performed by applying linear phase shifts (or time delays in the time domain) at densely

distributed sources (see Figure 2.1). The phase shift function γ (xs, p, ω) = ωp (xs − x0
s) is

associated with ray parameter (or slant parameter) p and source location xs. A common-
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Figure 2.1: Linear phase-encoding strategy. The phase shift ωp(xs− x0
s) is controlled by ray

parameter p and source position xs. The ray parameter p is a function of take-off angle θ
and top surface velocity c.

receiver gather can be transformed into ray parameter super-gather from a line source wave-

field, through a τ -p transform (Zhang et al., 2005; Trad et al., 2002, 2003):

ũ (xg, p, ω) =
∑
xs

u (xg,xs, ω) exp
(
iωp(xs − x0

s)
)
, (2.5)

where x0
s indicates the location of the initial source and xg indicate the receiver locations.

The synthetic ray parameter gather in frequency domain is generated with a line source by

applying phase shifts at the source locations. The corresponding wave equation is given by:

L (x, ω) ũ(x, p, ω) =
∑
xs

exp (iωp (xs − x̂s)) fs(ω)δ (x− xs) , (2.6)

when p ≥ 0, x̂s indicates the location of initial source x0
s, if p < 0, x̂s indicates the location of

the right most source xend
s . The solution of equation (2.6) with a line source can be written

as:

ũ(x, p, ω) =
∑
xs

fs(ω)G (x,xs, ω) exp (iωp (xs − x̂s)) . (2.7)

In frequency domain, the linear equation (2.6) is solved with a direct solver based on multi-

frontal Lower Upper (LU) decomposition (Davis and Duff, 1997), which is efficient for a

multi-source problem with forward and backward substitutions (Tao and Sen, 2013). In

equation (2.6), because the number of ray parameters is generally much smaller than the

number of sources, the number of backward substitutions is considerably reduced (Wu et al.,

2015).
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2.3.2 Formulating non-linear least-squares inverse problem

As a non-linear least-squares optimization problem, FWI seeks to estimate the subsurface

parameters through an iterative process by minimizing the difference between the synthetic

data d̃syn and observed data d̃obs (Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009).

In frequency-ray parameter domain, the misfit function Φ with least-squares norm can be

written as:

Φ (m) =
1

2

∑
p

∑
xg

∑
ω

‖d̃obs (xg, p, ω)− d̃syn (xg, p, ω; m) ‖2, (2.8)

where ‖ · ‖means the `-2 norm, p is the ray parameter vector and observed data d̃obs (xg, p, ω)

can be obtained with τ -p transform:

d̃obs (xg, p, ω) =
∑
x′
s

dobs (xg,x
′
s, ω) exp (iωp(x′s − x̂s)) , (2.9)

where dobs (xg,x
′
s, ω) is the observed data in source-receiver domain corresponding to source

position x′s. The Newton optimization approach is developed based on the second-order

Taylor-Lagrange expansion of the misfit function Φ:

Φ (m + ∆m) ≈ Φ (m) + g†∆m +
1

2
∆m†H∆m, (2.10)

where the symbol “†” means transpose, ∆m is the search direction, g = ∇mΦ (m) and

H = ∇m∇mΦ (m) indicate gradient and Hessian respectively. To minimize the quadratic

approximation of the misfit function, the updated model at the (k + 1)th iteration can be

written as the sum of the model at the kth iteration and the search direction ∆mk:

mk+1 = mk + µk∆mk, (2.11)

where µk is the step length, a scalar constant calculated through a line search method

(Gauthier et al., 1986; Pica et al., 1990; Nocedal and Wright, 2006). Within a Newton

optimization framework, the search direction ∆mk is the solution of the Newton linear

system:

Hk∆mk = −gk. (2.12)

The gradient is the first-order partial derivative of the misfit function with respect to the

model parameter and it indicates the direction in which the misfit function is increasing most

19



rapidly (Pratt et al., 1998b). Gradient vectors can be constructed by zero-lag correlation

between the Fréchet derivative wavefield with complex conjugate of the data residuals. The

gradient vector for square of slowness m can be written as:

g (x) =
∑
p

∑
xg

∑
ω

<
(
∇m(x)d̃

†
syn (xg, p, ω; m) ∆d̃

∗
(xg, p, ω)

)
, (2.13)

where the symbol “∗” means complex conjugate, < (·) denotes the real part, and d̃ (xg, p, ω)

denotes the data residual vector with ray parameter p:

∆d̃ (xg, p, ω) =
∑
x′
s

(dobs (xg,x
′
s, ω)− dsyn (xg,x

′
s, ω; m)) exp (iωp(x′s − x̂s)) ,

=
∑
x′
s

∆d (xg,x
′
s, ω) exp (iωp(x′s − x̂s)) ,

(2.14)

where ∆d (xg,x
′
s, ω) can be considered as the data residual vector in source-receiver domain.

In equation (2.13), ∇m(x)d̃syn (xg, p, ω; m) represents the Fréchet derivative wavefield due to

perturbations of model parameter m at position x. With the Born approximation, it can be

expressed as:

∇m(x)d̃syn (xg, p, ω; m) ≈ −ω2
∑
xs

fs(ω)G (xs,x, ω)G(x,xg, ω)exp (iωp (xs − x̂s)) . (2.15)

Inserting equations (2.14) and (2.15) into equation (2.13), the gradient vector is obtained as:

g̃ (x) =−
∑
pg

∑
xg

∑
ω

<

(
ω2
∑
xs

fs(ω)G (xs,x, ω)G(x,xg, ω)exp
(
iωpgj (xs − x̂s)

)
×
∑
x′
s

|A (ω) |2∆d∗ (xg,x
′
s, ω) exp

(
iωpgj (x̂s − x′s)

) ,

(2.16)

where A (ω) represents a weighting function depending on angular frequency ω (Liu et al.,

2006), pg indicates the ray parameter vector for gradient calculation and pgj indicates one

single ray parameter with index of j. This expression for gradient calculation in ray pa-

rameter domain can also be derived by crosscorrelating forward modelled wavefields D with

backward propagated data residual wavefields U:

D
(
x, pgj , ω

)
=
∑
xs

fs(ω)G (x,xs, ω)A (ω) exp
(
iωpgj (xs − x̂)

)
, (2.17)
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U∗
(
x, pgj , ω

)
=
∑
x′
s

G (x,xg, ω) ∆d∗ (xg,x
′
s, ω)A∗ (ω) exp

(
−iωpgj (x′s − x̂)

)
. (2.18)

When pgj ≥ 0, x̂ = x0
s, with x0

s being the position of the initial source. When pgj < 0,

x̂ = xend
s , with xend

s being the position of the right most source. The gradient with slant

parameter pgj can be expressed as:

g̃
(
x, pgj

)
= −

∑
ω

<
(
ω2D(x, pgj , ω)U∗(x, pgj , ω)

)
,

= −
∑
xs

∑
x′
s

∑
ω

<
(
ω2fs(ω)G (x,xs, ω)G (x,xg, ω) ∆d∗ (xg,x

′
s, ω)

× | A (ω) |2 exp
(
iωpgj (xs − x′s)

))
,

(2.19)

where the factor ω2 comes from the time differentiation (Sirgue and Pratt, 2004; Margrave

et al., 2010). In equation (2.19), when xs = x′s, the slant gradient g̃(x, pgj ) is equal to the

conventional shot-profile gradient g (x). When xs 6= x′s, the slant gradient g̃
(
x, pgj

)
becomes

the crosstalk term gcross. The slant gradient with ray parameter pgj can be written as the

sum of the conventional shot-profile gradient and the crosstalk term:

g̃
(
x, pgj

)
= g (x) + gcross. (2.20)

To suppress the crosstalk term in the above equation, the phase-encoded gradient is con-

structed by summing over a set of ray parameters:

g̃ (x) =
∑
xs

∑
x′
s

∑
ω

∑
p̃g

<
(
ω2fs(ω)G (x,xs, ω)G (x,xg, ω) ∆d∗ (xg,x

′
s, ω)

× | A (ω) |2 exp (iωp̃g · (xs − x′s))
)
,

(2.21)

where p̃g represents the ray parameter vector for phase-encoding. Reorganizing equation

(2.21) gives:

g̃ (x) =−
∑
xg

∑
x′
s

∑
xs

∑
ω

<
(
ω2fs(ω)G (xs,x, ω)G(x,xg, ω)∆d∗ (xg,x

′
s, ω)ψ (xs,x

′
s, ω)

)
,

(2.22)

where ψ (xs,x
′
s, ω) is the encoding function:

ψ (xs,x
′
s, ω) =

∑
p̃g

A2 (ω) exp (iωp̃g · (xs − x′s)) . (2.23)
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If the number of ray parameters in vector p̃g is sufficient large, integrating over ray param-

eters yields a Dirac delta function in space (Liu et al., 2006; Tang, 2009):

ψ (xs,x
′
s, ω) =

A2 (ω)

ω2
δ (xs − x′s) . (2.24)

Plugging equation (2.24) into equation (2.22) gives:

g̃ (x) =−
∑
xg

∑
x′
s

∑
xs

∑
ω

<
(
ω2fs(ω)G (xs,x, ω)G(x,xg, ω)∆d∗ (xg,x

′
s, ω)

A2 (ω)

ω2
δ (xs − x′s)

)
.

(2.25)

Making use of the sifting property of the delta function and setting | A (ω) |2 satisfy to

| A (ω) |2=| ω |2, the phase-encoded gradient is equivalent to the shot-profile gradient:

g̃ (x) = g (x) =
∑
xs

∑
ω

<
(
ω2fs(ω)G (x,xs, ω)G (x,xg, ω) ∆d∗ (xg,xs, ω)

)
. (2.26)

Generally, 2N g
p simulations are required in one FWI iteration with slant stacking, where

N g
p is the number of the ray parameters for calculating the gradient. To reduce the compu-

tational cost further, I propose a slant update strategy. In this approach, the slant gradient

with single slant parameter is used in place of the phase-encoded gradient with slant stack-

ing. But, the slant parameter is changed iteration by iteration. This reduces the required

number of simulations to 2 per iteration, while allowing us to mitigate bias by scheduling p

values as updating proceeds.

2.3.3 Source spacing: anti-aliasing and crosstalk noise

The number of ray parameters Np and ray parameter spacing ∆p for linear phase-encoding

have been studied by many researchers (Stork and Kapoor, 2004; Etgen, 2005; Zhang et al.,

2005; Gray, 2013). Assuming that the source sampling interval ∆xs is small enough and the

spread length is great enough, Zhang et al. (2005) gave the rule for determining Np, when

considering equation (2.5) as a Fourier transform. The anti-aliasing rule given by Zhang

et al. (2005) is independent of source spacing ∆xs. While recalling the anti-aliasing rule of

Radon transform:

∆xs ≤
1

Np∆pfmax
, (2.27)

22



where fmax is the maximum frequency in the seismic data. If the ray parameter range

Np∆p has been determined by the geological structures in the target area and the maximum

frequency fmax has also been defined for multi-scale FWI, the source spacing ∆xs should be

small enough to avoid aliasing (Vigh and Starr, 2008; Kwon et al., 2015).

Furthermore, considering the crosstalk artifacts in the gradient calculation, when the

sources are distributed densely and regularly across the whole acquisition geometry, the

linear phase-encoding technique generates only a limited amount of noise (Liu et al., 2006).

However, when the shots are sparsely sampled, the crosstalk noise arising from undesired

interaction between the unrelated source and receiver wavefields becomes very serious. Note

that this is different from the condition in random phase-encoding, in which the crosstalk

noise becomes stronger with increasing the number of encoded sources (Krebs et al., 2009;

Anagaw and Sacchi, 2014). If the ray parameter range in linear phase-encoding is fixed,

stacking over sufficient ray parameters at each iteration is required to reduce the artifacts

caused by sparse source experiments. On the other hand, for densely distributed sources,

sparse p sampling can be used to create high-quality image or gradient. Hence, it can be

concluded that to mitigate crosstalk artifacts, the source spacing ∆xs is proportional to the

number of ray parameters Ñp for stacking at each iteration:

∆xs ∝ Ñp. (2.28)

2.3.4 Hessian approximations

The full Hessian operator H(x,x′), which is the second-order partial derivative of the misfit

function with respect to the model parameters, can be written as the summation of a second-

order term H̄(x,x′) and a first-order term Ha(x,x
′):

H(x,x′) = H̄(x,x′) +Ha(x,x
′). (2.29)

The second-order term is a correlation between the complex conjugate of the data residuals

and the second-order partial derivative wavefields. This second-order term works as a de-

multiple operator to suppress the second-order scattering effects in the gradient. It can be

accounted for through truncated-Newton strategy by employing the second-order adjoint-

state method for computing Hessian-vector products (Métivier et al., 2013, 2014; Pan et al.,
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2017a, 2018). When assuming that the initial model is close to the real model, the second-

order term in the full Hessian operator can be neglected. The full Hessian under these

circumstances can be replaced by the approximate Hessian, the first-order term, which acts

as a preconditioner for the gradient in Gauss-Newton method. The approximate Hessian

Ha(x,x
′) is expressible as:

Ha(x,x
′) ≈

∑
xs

∑
xg

∑
ω

<
(
ω4G (xg,x

′, ω)G (x′,xs, ω)G∗ (xg,x, ω)G∗ (x,xs, ω)
)
. (2.30)

Each element in the approximate Hessian is the scalar product of two partial derivative

wavefields (Pratt et al., 1998b), which is equivalent to the zero-lag crosscorrelation compu-

tation in time domain. Within the Born approximation, the two partial derivative wavefields

can be simplified to four Green’s functions, which forms the approximate Hessian expression

in equation (2.30) (Plessix and Mulder, 2004). In the high-frequency limit and assuming

a reference model with relatively smooth impedance variations, the two partial derivative

wavefields are largely uncorrelated with each other but perfectly self-correlated (Pratt et al.,

1998b; Shin et al., 2001b; Tang, 2009), which means that the approximate Hessian is di-

agonally dominant. Off-diagonal elements of the approximate Hessian, the crosscorrelation

of the partial derivative wavefields, can for this reason be neglected. Thus, the diagonal

elements of the approximate Hessian, the autocorrelation between the source-side Green’s

functions and receiver-side Green’s functions, can act as a preconditioner for the gradient.

The diagonal approximate Hessian can be expressed as when setting x = x′:

Hdiag
a (x) =

∑
xs

∑
xg

∑
ω

<
(
ω4G (xg,x, ω)G (x,xs, ω)G∗ (xg,x, ω)G∗ (x,xs, ω)

)
. (2.31)

Under the assumption of infinite receiver coverage, the influence of the receiver-side Green’s

functions in the Hessian can be approximated as a constant scalar (Plessix and Mulder, 2004).

This approximation to Hessian matrix is equivalent to the pseudo-Hessian proposed by Shin

et al. (2001b). The faint gradient or image can be enhanced effectively by multiplying the

inverse of the diagonal pseudo-Hessian (Jang et al., 2009), which can be written as:

Hdiag
pseudo (x) =

∑
xs

∑
ω

<
(
ω4G (x,xs, ω)G∗ (x,xs, ω)

)
. (2.32)
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It is also observed that the diagonal pseudo-Hessian is actually equivalent to the source

illumination (as shown in Appendix A) and the gradient preconditioned by the diagonal

pseudo-Hessian resembles a deconvolution imaging condition.

2.3.5 Phase-encoded Hessian

The Green’s functions in approximate Hessian (equation (2.30)) can also be constructed

using phase-encoding technique, which reduces the computational cost considerably, but un-

fortunately also introduces strong crosstalk artifacts. The crosstalk artifacts can be reduced

with sufficient source and receiver ray parameters. The receiver-side linear phase-encoded

Hessian can be written as:

H̃a (x,x′) =
∑
xs

∑
ω

<
(
ω4G(x′,xs, ω)G∗(x,xs, ω)

)
×
∑
x′
g

∑
ω

∑
pH
g

<
(
G(x′,x′g, ω)Ag (ω) exp

(
iωpH

g ·
(
x′g − x̂g

)))
×
∑
xg

∑
ω

∑
pH
g

<
(
G∗(x,xg, ω)A∗g (ω) exp

(
−iωpH

g · (xg − x̂g)
))
,

(2.33)

where pH
g indicates the receiver-side ray parameters vector for diagonal Hessian construction,

Ag (ω) is the weighting function for receiver-side phase-encoding, the subscript g means

receiver and x̂g means the position of initial receiver (pHg,j ≥ 0) or right most receiver (pHg,j <

0). Extracting the encoding function ψ(x′g,xg, ω) from equation (2.33):

ψ(x′g,xg, ω) =
∑
pH
g

| Ag (ω) |2 exp
(
iωpH

g ·
(
x′g − xg

))
. (2.34)

It is noticed that the crosstalk noise arises from undesired interactions between the receiver-

side Green’s functions corresponding to different receiver positions xg and x′g. Note that

the crosstalk production regime is a little different from that in the phase-encoded gradient

(equation (2.21)). So, in equation (2.33), when x′g = xg , the phase-encoded Hessian becomes

the non-encoded approximate Hessian Ha. When x′g 6= xg, crosstalk artifacts term Hcross

remains. Thus, equation (2.33) can be written as the summation of the non-encoded Hessian

and crosstalk artifacts (Tang, 2009; Tao and Sen, 2013):

H̃a = Ha + Hcross. (2.35)
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Considering three dimensions and stacking over sufficient receiver-side ray parameters, the

encoding function ψ(x′g,xg, ω) can be reduced to:

ψ(x′g,xg, ω) =
| Ag (ω) |2

| ω |2
δ(x′g − xg). (2.36)

Making | Ag (ω) |2=| ω |2, the crosstalk term in equation (2.35) can be dispersed completely

(Tang, 2009).

In this research, a chirp phase-encoding strategy is introduced, which is a combination

of linear phase-encoding and random phase-encoding, to calculate the receiver-side Green’s

functions. A random factor is added into the phase delay term of equation (2.33), which

gives:

H̃a (x,x′, ε) =
∑
xs

∑
ω

<
(
ω4G(x′,xs, ω)G∗(x,xs, ω)

)
×
∑
xg

∑
x′
g

∑
ω

<
(
G(x′,x′g, ω)G∗(x,xg, ω)

)
×
∑
xg

∑
x′
g

∑
ω

∑
pH
g

<
(
| Ag (ω) |2 exp

(
iω(pH

g + ε∆pg) ·
(
x′g − xg

)))
,

(2.37)

where ε is the parameter used to control phase shift dither and ∆pg is the ray parameter

dithering vector and its element is defined as:

∆pg,j = ζpHg,j, (2.38)

where pHg,j is the jth ray parameter element in pH
g and ζ is small random value in [−1, 1].

Chirp phase-encoding strategy is expected to reduce the crosstalk noise more efficiently than

the linear phase-encoding, with the same computational cost. The explicit expressions for

the diagonal approximate Hessian with both source-side and receiver-side phase-encoding

and diagonal pseudo-Hessian with only source-side encoding are written as:

H̃diag
a (x, ε) =

∑
xs

∑
x′
s

∑
ω

∑
pH
s

<
(
ω4G(x,x′s, ω)G∗(x,xs, ω)

× | As (ω) |2 exp
(
iω(pH

s + ε∆ps) · (x′s − xs)
))

×
∑
xg

∑
x′
g

∑
ω

∑
pH
g

<
(
G(x,x′g, ω)G∗(x,xg, ω)

× | Ag (ω) |2 exp
(
iω(pH

g + ε∆pg) · (x′g − xg)
))
,

(2.39)
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H̃diag
pseudo (x, ε) =

∑
xs

∑
x′
s

∑
ω

∑
pH
s

<
(
ω4G(x,x′s, ω)G∗(x,xs, ω)

× | As (ω) |2 exp
(
iω(pH

s + ε∆ps) · (x′s − xs)
))
,

(2.40)

where pH
s is the source-side ray parameter vector, ∆ps is the source-side dithering vector

and As (ω) is the weighting function for source-side phase-encoding. If the parameter ε

in equations (2.39) and (2.40) is equal to zero, the chirp phase-encoding becomes linear

phase-encoding.

2.3.6 Pseudo-Gauss-Newton step

As mentioned above, to reduce the computational cost further, updating the velocity model

using the slant gradient with varied p values as the iteration proceeds is proposed. Pre-

conditioning the gradient using the phase-encoded diagonal approximate Hessian forms one

pseudo-Gauss-Newton step, as indicated by equation (2.41):

∆m (x) = −
g̃
(
x, pgj

)
H̃diag
a (x, ε) + λ̆I

, (2.41)

where λ̆I is the damping term, λ̆ is a small constant value and I is an identity matrix. The

relative least-squares error (RLSE) ε is used to evaluate the quality of the inverted model

(Moghaddam et al., 2013):

ε =
‖mk −mtrue ‖2

‖m0 −mtrue ‖2
, (2.42)

where mk, mtrue and m0 indicate the inverted model, true model and initial model respec-

tively. If the model is inverted completely, RLSE ε approaches 0. The RLSE ε of the inversion

result can be normalized by RLSE ε0 of the initial model, which gives normalized RLSE ε̃.

2.3.7 Comparison of computational cost

The computational cost for a traditional Gauss-Newton (TGN) method is compared with

that of a source encoded Gauss-Newton method (SEGN), and that of a pseudo-Gauss-Newton

(PGN) method, in Table 2.1. Note that for SEGN method, I focus on gradient construction

with linear phase-encoding and in each SEGN iteration, stacking over a set of ray parameters

is required to get the gradient comparable to that from shot-profile method. The PGN

method is more efficient than TGN and SEGN methods for gradient calculation, because
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Methods Gradient Ĥa (x,x′) Ha (x,x′) Hdiag
a (x) Computational Cost

TGN Nm or 2Ns Nm Ns +Ng \ Nm or (2Ns +Ng)
SEGN 2Ng

p \ \ NH
ps +NH

pg

(
2Ng

p +NH
ps +NH

pg

)
PGN 2 \ \ NH

ps +NH
pg NH

ps +NH
pg + 2

Table 2.1: Computational cost comparison for different strategies.

it only requires 2 simulations to calculate the gradient in one iteration. The number of

simulations needed to construct the gradient in TGN and SEGN methods are 2Ns and 2Ng
p

respectively, where Ns and Ng
p are the number of sources and ray parameters.

The approximate Hessian within a Gauss-Newton framework consists of two first-order

partial derivative wavefields. In this research, it is named as original approximate Hessian

Ĥa (x,x′) in Table 2.1. To calculate the partial derivative wavefields directly, Nm simula-

tions are needed, where Nm is the number of model parameters. The gradient can also

be obtained directly using equation (2.13). Thus, for the TGN method, Nm simulations

are needed for each iteration, which is extremely expensive. When constructing the non-

encoded approximate Hessian Ha (x,x′) in equation (2.30), number of Ns + Ng simulations

considering reciprocity is needed. In this situation, for each TGN step, 2Ns + Ng simula-

tions are needed when storing the source-side Green’s functions in gradient calculation for

approximate Hessian construction. Preconditioning the gradient using diagonal approximate

Hessian in TGN method requires the same computational cost with the latter case. In SEGN

and PGN methods, only NH
ps +NH

pg simulations are needed to calculate the diagonal part of

the phase-encoded Hessian, where NH
ps and NH

pg are the numbers of source-side and receiver-

side ray parameters respectively. For SEGN method, the phase-encoded Green’s functions

can also be stored for diagonal Hessian construction if NH
ps = Ng

p .

2.4 Numerical Experiments

In this section, I first illustrate with numerical examples the possibility of constructing di-

agonal Hessian using phase-encoding technique. Then the proposed strategies on a modified

Marmousi model are applied to verify the slant update strategy. Computational cost of
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different encoding schemes is compared. The influence of source spacing and different pre-

conditioning strategies are analyzed. Numerical examples with proposed phase-encoding

strategy in frequency domain are also illustrated.

2.4.1 Constructing Hessian approximations with phase-encoding technique

In this section, the possibility of constructing the approximate Hessian and its diagonal com-

ponents using phase-encoding method is examined. A homogeneous model with a constant

velocity of 2500 m/s is used for Hessian calculation. It consists of 50× 50 = 2500 grid cells

with 5 m grid interval in both horizontal and vertical dimensions. The source function is a

Ricker wavelet with a 25 Hz dominant frequency. Nine sources are arranged from 25 m to

255 m with a source interval of 25 m departing from the top surface 5 m. A number of 27

receivers with an interval of 25 m along the left, right and bottom boundaries of the model

are deployed.

Figures 2.2a and b illustrate the non-encoded approximate Hessian (equation (2.30))

and its diagonal part (equation (2.31)) constructed by the shot-profile method. First, it is

noticed that the approximate Hessian is diagonally dominant. The high-amplitude points

in Figure 2.2b correspond to sources and receivers’ locations, which was also discussed by

Virieux and Operto (2009). Figure 2.2c shows the receiver-side linear phase-encoded Hessian

contaminated by crosstalk artifacts (equation (2.33)). It can be observed that its energy is

concentrated in the center part of the matrix. Figure 2.2d is the receiver-side linear phase-

encoded approximate Hessian (equation (2.33)) with ray parameter range [−0.3 s/km, 0.3

s/km] and spacing ∆p = 0.05 s/km. Comparison between Figures 4a and d shows that the

receiver-side linear phase-encoded Hessian matches closely the non-encoded one. So, the

phase-encoding method can reduce the crosstalk noise and re-distribute the energy along the

diagonal band of the matrix.

I next turn to the question of to what extent the phase-encoding method can disperse

crosstalk artifacts in the diagonal Hessian. The velocity model is 2 km in width and 1 km

in depth with a constant velocity of 2500 m/s. A single source is placed at (1 km, 0 km)

and four receivers are deployed on both sides of the source. It is shown that the diagonal

part of the non-encoded approximate Hessian (equation (2.31)) arising from this model in
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Figure 2.3a. Figure 2.3b shows the diagonal Hessian constructed using single receiver-side

ray parameter p = 0 s/km and it is contaminated by the crosstalk artifacts, as indicated by

the vertical stripes. Figure 7c illustrates the diagonal receiver-side phase-encoded Hessian

(equation (2.39)), constructed using 7 simulations with ray parameter range [−0.3 s/km, 0.3

s/km] and spacing ∆p = 0.1 s/km. Figure 2.3d illustrates the diagonal receiver-side phase-

encoded Hessian constructed using 13 simulations with ray parameter range [−0.3 s/km,

0.3 s/km] and spacing ∆p = 0.05 s/km. Therefore it is concluded that with increasing the

number of simulations, the crosstalk artifacts can be dispersed effectively.
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Figure 2.2: (a) shows the non-encoded approximate Hessian (equation (2.30)) corresponding
to the full survey; (b) shows the diagonal part of the non-encoded approximate Hessian
(equation (2.31)); (c) shows the receiver-side linear phase-encoded Hessian contaminated by
crosstalk artifacts (equation (2.33)); The receiver-side Green’s functions are constructed with
p = 0 s/km. (d) shows the receiver-side linear phase-encoded approximate Hessian (equation
(2.33)).

2.4.2 Applying τ -p domain FWI on modified Marmousi model

In this numerical section, I consider inversion for one portion of the Marmousi model using

τ -p domain FWI. The Marmousi model is modified by introducing a water layer with a

30



a)

D
e

p
th

 (
k
m

) 0

0.5

1

b)

c)

Distance (km)

D
e

p
th

 (
k
m

)

0 1 2

0

0.5

1

d)

Distance (km)
0 1 2

Figure 2.3: Phase-encoded diagonal Hessian. (a) is the non-encoded diagonal Hessian (equa-
tion (2.31)); (b) is the phase-encoded diagonal Hessian contaminated by crosstalk noise;
(c) is the phase-encoded diagonal Hessian (equation (2.33)) using 7 simulations; (d) is the
phase-encoded diagonal Hessian (equation (2.33)) using 13 simulations. The values have
been normalized and amplitudes decrease from red to white and blue.

thickness of 70 m and a velocity of 1500 m/s. The model subset has 180 × 767 grid cells

with a grid interval of 5 m in horizontal and vertical dimensions. A number of 380 sources

from 10 m to 3800 m on the surface are distributed with a source interval of 10 m. A total

of 765 receivers are deployed from 5 m to 3825 m on the surface, with a receiver interval

of 5 m. The source function is a Ricker wavelet with a dominant frequency of 30 Hz. The

ray parameter range used for linear phase-encoding method is [−0.3 s/km, 0.3 s/km] with

∆p = 0.1 s/km. The multi-scale approach is implemented starting with a frequency band of

[1 Hz, 5 Hz] and the frequency band increases by 2 Hz every 10 iterations. The parameter ε

for chirp phase-encoding in the following examples is 0.05. Figure 2.4a and Figure 2.4b show

the exact P-wave velocity model and initial velocity model, which is obtained by smoothing

the true model using a Gaussian function.

2.4.2.1 Variation of the ray parameter

To verify the effectiveness of the slant update strategy, the FWI results are illustrated with

PGN method after 50 iterations, calculated using fixed ray parameter and varied ray pa-

rameter during each iteration in Figure 2.5. Figures 2.5a, b and c show the inversion results

when updating the model using slant gradient (equation (2.19)) with the ray parameter p

fixed at 0 s/km, −0.2 s/km and 0.2 s/km respectively. The source spacing ∆xs used for

these experiments is 10 m.
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Figure 2.4: The modified Marmousi model. (a) is true P-wave velocity model; (b) is the
initial P-wave velocity model.

For the extremely sparse p sampling, the inversion results suffer from aliasing due to

limited wavenumber coverage in the model space and crosstalk noise according to equation

(2.20). As seen that, the inversion results are biased and contaminated with noise or anoma-

lies. For dense source arrangement (∆xs = 10 m), the encoded wavefields approach plane

wavefields and limited amount of crosstalk noise shows up (Liu et al., 2006). So, the arti-

facts in Figures 2.5a, b and c mainly result from inappropriate sampling of the wavenumber

spectrum of subsurface. In Figure 2.5d, the inversion result is given when varying p values

from −0.3 s/km to 0.3 s/km with an interval of 0.1 s/km for every 7 iterations. It can be

seen that the inversion result becomes much better for denser p sampling and the noise has

been mitigated as iteration proceeds. Figure 2.6 shows the RLSE calculated using equation

(2.42) for different ray parameter arrangements. The values have been normalized by the

RLSE of the initial model. The slant update strategy can provide a better quality of the

inversion result, as indicated by the black-solid line in Figure 2.6.

Next it is shown that an appropriate ray parameter range for PGN method should be

determined to balance the updates and guarantee the convergence rate. Because the ray

parameter is controlled by the take-off angle and top surface velocity, different ray parameters

are responsible for illuminating or updating subsurface layers with different dip angles (Wang
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Figure 2.5: PGN FWI results for different ray parameter settings. (a) the ray parameter is
fixed at p = 0 s/km; (b) the ray parameter is fixed at p = −0.2 s/km; (c) the ray parameter
is fixed at p = 0.2 s/km; (d) the ray parameter varies from −0.3 s/km to 0.3 s/km with an
interval of 0.1 s/km for every 7 iterations.

et al., 2006). Hence, the maximum p values should be determined to update steep dip

layers properly (Vigh and Starr, 2008). Figure 2.7 shows the inversion result when the ray

parameter range is [−0.1 s/km, 0.1 s/km] with ∆p = 0.05 s/km. The preconditioning and

multi-scale strategies applied are the same as those of the experiment for the inversion result

in Figure 2.5d. Comparing Figure 2.7 with Figure 2.5d, it is seen that if the ray parameter

range becomes smaller, the bandwidths of the scattering angles and subsurface wavenumber

are also narrowed and the subsurface layers with steep dip angles cannot be recovered very

well, as indicated by the dashed cycle in Figure 2.7 and the model updating is imbalanced.

The normalized RLSE ε̃ for the inverted model is 0.8623.

2.4.2.2 Sensitivity to source spacing

Next the influence of source spacing on τ -p domain FWI with slant update strategy is

considered. From equation (2.27), it is known that source spacing ∆xs should be small

enough to avoid aliasing. The ray parameter range used in this experiment is 2× 0.3 s/km
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Figure 2.7: The inversion result when the ray parameter range is [−0.1 s/km, 0.1 s/km] with
a spacing of 0.05 s/km.

= 0.6 s/km and the maximum frequency used for 50 iterations is 13 Hz. To avoid aliasing,

the source spacing should ∆xs < 111 m. So, the inversion results are compared when source

spacing ∆xs = 100 m, 50 m and 10 m respectively.

The inversion results for the source spacings ∆xs of 100 m, 50 m and 10 m are illustrated

in Figures 2.8a, c and Figure 2.5d respectively. For the inversion results in Figures 2.8a and

c, the ray parameter range is [−0.3 s/km, −0.3 s/km] with ∆p = 0.1 s/km. In Figure 2.8a,

when the sources are sparsely distributed (∆xs = 100 m), the inversion result is seen to be

seriously contaminated by crosstalk artifacts, especially in its reconstruction of shallow layers.

Its normalized RLSE ε̃ > 1, which indicates non-valuable inversion result. By decreasing

source spacing, as shown in Figure 2.8c (normalized ε̃ = 0.8803) and Figure 2.5d (normalized

ε̃ = 0.8107), the noise becomes weaker and the convergence rate also increases. The well

logs at 0.5 km and 3.0 km for different source spacings are compared in Figures 2.9a and b.

By decreasing the source spacing, the inversion result more closely approximates the true

velocity model, especially for the deep layers. According to equation (2.28), to mitigate the
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crosstalk noise shown in Figure 2.8a, more ray parameters Ñp for stacking at each iteration

are needed. Figure 2.8b is the inversion result (normalized ε̃ = 0.9016) when the source

spacing is also 100 m, but wherein a stacking over ray parameter from −0.2 s/km to 0.2

s/km with a step of 0.1 s/km in each iteration (Ñp = 5) is applied. Compared to Figure 2.8a,

the artifacts are suppressed and inversion result is de-blurred to some extent. It is concluded

that τ -p domain FWI with slant update strategy is sensitive to source spacing. For sparsely

sampled experiments, stacking densely sampled ray parameters should be performed at each

iteration to create a high quality inversion result. This will incur greater computational cost,

and should be considered part of the cost/inversion quality trade-off.
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Figure 2.8: Sensitivity of the FWI results to the source spacing. (a) ∆xs = 100 m; (b)
∆xs = 100 m with stacking over ray parameters from −0.2 s/km to 0.2 s/km with a spacing
of 0.1 s/km at each FWI iteration; (c) ∆xs = 50 m.

2.4.2.3 Comparison of different preconditioning methods

Next the effects of several preconditioning methods are examined. In Figure 2.10, diagonal

Hessian approximations constructed using the initial velocity model are illustrated. Figures

2.10a and b illustrate the diagonal approximate Hessian and diagonal pseudo-Hessian with

shot-profile method using equations (2.31) and (2.32), respectively. The diagonal pseudo-

Hessian overestimates the illumination energy. Figures 2.10c and d illustrate the diagonal

parts of receiver-side linear and chirp phase-encoded Hessian, constructed with 13 simula-
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Figure 2.9: Well data comparison at 0.5 km (a) and 3 km (b) for different source spacings.
The black-bold-solid and black-thin-solid lines indicate the true velocity and initial veloc-
ity respectively. The gray-bold-dash lines, black-bold-dash lines and gray-bold-solid lines
indicate the inversion results when source spacing ∆xs is 100 m, 50 m and 10 m respectively.

tions. The diagonal receiver-side linear and chirp phase-encoded Hessian can be obtained

from equations (2.33) and (2.37) (ε = 0.05) when x = x′. The receiver-side ray parameter

change is [−0.3 s/km, 0.3 s/km] with ∆p = 0.05 s/km. In Figure 2.10c, the vertical stripes

are still be observed slightly and moreover, the effects caused by the heterogeneity of the

initial velocity model also remain. While in Figure 2.10d, these effects have been reduced

and the vertical stripes are dispersed. So, the chirp phase-encoding method reduces the

crosstalk artifacts more efficiently than the linear phase-encoding method, at the same com-

putational cost. In Figure 2.10e, the diagonal part of the receiver-side chirp phase-encoded

Hessian with 61 simulations, which approaches the non-encoded diagonal Hessian, is illus-

trated. The receiver-side ray parameter range is [−0.3 s/km, 0.3 s/km] with ∆p = 0.01

s/km. A τ -p domain full-waveform inversion is then carried out for 200 iterations using

the steepest-descent method, the diagonal pseudo-Hessian preconditioning method, and the

diagonal phase-encoded approximate Hessian preconditioning method (PGN). The results

are illustrated in Figure 2.11a, b and c respectively. The frequency band increases from [1

Hz, 5 Hz] to [1 Hz, 43 Hz] by 2 Hz every 10 iterations for 200 iterations. The deeper parts

of the steepest-descent inversion result are not recovered well. In comparison, the inversion

results generated using the diagonal pseudo-Hessian, and the diagonal phase-encoded Hes-

sian preconditioning are both significantly improved. The well logs from these reconstructed
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Figure 2.10: Phase-encoded diagonal Hessian comparison using the initial velocity model.
(a) is the non-encoded diagonal Hessian (equation (2.31)); (b) is the non-encoded diagonal
pseudo-Hessian (equation (2.32)); (c) and (d) are the receiver-side linear and chirp phase-en-
coded diagonal Hessian with 13 simulations; (e) shows the receiver-side chirp phase-encoded
diagonal Hessian with 61 simulations.

models at 0.5 km and 3 km are extracted for comparison, as illustrated in Figures 2.12a and

b respectively. The inversion result obtained using the PGN method (the gray-bold-solid

lines) matches the true velocity model more accurately than those generating using other

two methods. This is particularly noticeable in the deeper parts of the inversion results.

2.4.3 Examining phase-encoding strategies in frequency-ray parameter domain

In this section, numerical examples of FWI with proposed phase-encoding strategies in

frequency-ray parameter domain are given. The effectiveness of proposed strategies in re-

constructing the velocity model and the importance of partial overlap-frequency strategy

are examined. Furthermore, inverted models with random slant update (SU) and sequential

slant update (SU) strategies are given in comparison with traditional shot-profile method.

The Marmousi-II model has 244 × 681 grid cells with a grid interval of 10 m in both

horizontal and vertical directions. I deploy 67 sources from 100 m to 6700 m with a source

interval of 100 m and a depth of 20 m. A total of 681 receivers are distributed from 10 m

to 6810 m with a receiver interval of 10 m and a depth of 20 m. A Ricker wavelet with a

30 Hz dominant frequency is used as the source function. Figures 2.13a and 2.13b show the

true Marmousi-II P-wave velocity model and initial P-wave velocity model respectively. The

initial velocity model is obtained by smoothing the true model with a Gaussian function.

Two different frequency selection strategies are used for comparison. In the mono-
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Figure 2.11: FWI results after 200 iterations for different preconditioning methods. (a)
steepest-descent method; (b) Phase-encoded diagonal pseudo-Hessian preconditioning; (c)
Phase-encoded diagonal approximate Hessian preconditioning.

frequency strategy, the frequency is increased sequentially from 1 Hz to 36 Hz by 1 Hz

every 11 iterations. In the partial overlap-frequency selection strategy, a group of 3 frequen-

cies are used for inversion simultaneously and the frequency band expands every 11 iterations

with overlapping 2 frequencies. For the slant update strategy, two different ray parameter

selections are compared. The random slant update is implemented by randomly selecting

the ray parameter in the range of [−0.5 s/km, 0.5 s/km] at each iteration. While for the

sequential slant update, the ray parameter is sequentially changed from −0.5 s/km to 0.5

s/km with an interval ∆p = 0.1 s/km for each frequency group.

First, the shot-profile gradient is compared with the slant gradient and phase-encoded

gradient. Figure 2.14a shows the shot-profile gradient with f = 10 Hz. Figures 2.14b, 2.14c,

and 2.14d show the slant gradients with ray parameter p = 0 s/km, −0.1 s/km and−0.3 s/km

respectively. Figures 2.14e and 2.14f show the phase-encoded gradients with Np = 7 and

Np = 11. Varying the ray parameters for different iterations with the slant update strategy

can provide balanced model updates iteratively. Phase-encoded gradients give better model

updates but need higher computational cost. Furthermore, it is noticed that with stacking

more ray parameters, the phase-encoded gradient (Figure 2.14f) approaches the shot-profile
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Figure 2.12: Well data comparison at 0.5 km (a) and 3 km (b) for different precondition-
ing methods. The black-bold-solid and black-thin-solid lines indicate the true velocity and
initial velocity respectively. The gray-bold-dash lines, black-bold-dash lines and gray-bold–
solid lines indicate the inversion results of steepest-descent method, phase-encoded diagonal
pseudo-Hessian preconditioning method and phase-encoded diagonal approximate Hessian
preconditioning method.
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Figure 2.13: (a) the true Marmousi-II P-wave velocity model; (b) the initial P-wave velocity
model.

gradient (Figure 2.14e) better.

The slant update strategy with fixed ray parameters p = −0.1 s/km and p = −0.3 s/km is

then practiced, as shown in Figures 2.15a and 2.15b respectively. The inversion results with a

single fixed ray parameter for all iterations are contaminated by artifacts seriously. The main

geological structures of the model are obscured. This is because one ray parameter provides

insufficient illumination given subsurface layers with varying dip angles. Figures 2.15c and

2.15e show the inversion results obtained using the random and sequential slant update

mono-frequency strategies. The inversion results become much better in comparison with

Figures 2.15a and 2.15b, however, they are still contaminated by strong crosstalk artifacts.
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Figure 2.14: (a) Shot-profile gradient; (b) Slant gradient with p = 0 s/km; (c) Slant gradient
with p = −0.1 s/km; (d) Slant gradient with p = −0.3 s/km; (e) Phase-encoded gradient
with p = [−0.3 s/km, 0.3 s/km] and ∆p = 0.1 s/km (Np = 7); (f) Phase-encoded gradient
with p = [−0.5 s/km, 0.5 s/km] and ∆p = 0.1 s/km (Np = 11).

Next the partial overlap-frequency strategy is considered for inversion. Figures 2.15d and

2.15f show the inversion results by random and sequential SU with partial overlap-frequency

strategy. Compared to Figures 2.15c and 2.15e, the artifacts are effectively suppressed. This

demonstrates the importance of inverting multiple frequencies simultaneously when applying

a slant update strategy. Furthermore, the sequential SU strategy appears to provide a better

inversion result than random SU strategy.

Next the inversion results obtained using traditional linear phase-encoding (TLPE) and

shot-profile (SP) methods are compared, considering in particular the computational effi-

ciency of the slant update strategy. The TLPE method is examined with two ray parameter

settings. First, the ray parameter is varied from −0.3 s/km to 0.3 s/km with an interval of

0.1 s/km (Np = 7). Second, the ray parameter is varied from −0.5 s/km to 0.5 s/km with

the same ray parameter interval (Np = 11).

Figures 2.16a and 2.16c show the inverted velocity models obtained using the mono-

frequency TLPE method with Np = 7 and Np = 11 respectively. Comparing with Figures

2.15c and 2.15e, the stacking of ray parameters has led to improved results at each iter-
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Figure 2.15: (a) Mono-frequency slant update with p = −0.1 s/km; (b) Mono-frequency
slant update with p = −0.3 s/km; (c) Mono-frequency random slant update; (d) Partial
overlap-frequency random slant update (ε̃ = 0.4862); (e) Mono-frequency sequential slant
update; (f) Partial overlap-frequency sequential slant update (ε̃ = 0.4596).

ation with mono-frequency strategy. The SP method provides the best result, as shown

in Figure 2.16e, but at the cost of extensive computation. Figures 2.16b, 2.16d and 2.16f

are the inverted models using TLPE (Np = 7), TLPE (Np = 11) and SP methods with

partial overlap-frequency strategy. An improvement in those obtained with mono-frequency

strategy. It is noticed that with partial overlap-frequency strategy, SU methods can obtain

results (Figures 2.15d and 2.15f) comparable to those by TLPE and SP methods (Figures

2.16b, 2.16d and 2.16f).

The RLSE vs. iterations for different encoding methods are plotted, using the mono-

frequency strategy and partial overlap-frequency strategy in Figures 2.17a and 2.17b re-

spectively. In Figure 2.17a, it is seen that the random and sequential SU methods fail to

converge. The SU methods with partial overlap-frequency strategy converge efficiently, as

shown in Figure 2.17b. Figure 2.18 show the RLSE vs. number of forward modelling prob-

lems solved for different encoding methods with partial overlap-frequency strategy. Figure

2.18b is the enlarged view of Figure 2.18a. In obtaining comparable inversion results, se-

quential SU strategy reconstructs the velocity model most efficiently, compared to TLPE
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Figure 2.16: (a) Mono-frequency TLPE with Np = 7 (ε̃ = 0.5305); (b) Partial over-
lap-frequency TLPE with Np = 7 (ε̃ = 0.4251); (c) Mono-frequency TLPE with Np = 11
(ε̃ = 0.4472); (d) Partial overlap-frequency TLPE with Np = 11 (ε̃ = 0.3598); (e) Mono-fre-
quency SP (ε̃ = 0.3777); (f) Partial overlap-frequency SP (ε̃ = 0.3064).

and SP methods.

2.4.3.1 Sensitivity to random noise

Another major challenge of FWI with phase-encoding technique is the sensitivity of the

method to noisy data (van Leeuwen et al., 2011). To test the robustness of the proposed

strategies to random noise, Gaussian noise is added to the seismic data set with SNR = 3

and SNR = 5. SNR means signal to noise ratio and smaller SNR indicates stronger random

noise.

The models reconstructed using the partial overlap-frequency SP with SNR = 3 and

SNR = 5 are presented in Figures 2.19a and 2.19b respectively. Figure 2.20a shows the

RLSE vs. iterations for the SP method with noisy data. Noise effects are not obvious in

the inverted models for SP method, however the final inversion results have been affected,

compared to Figure 2.16f. Figures 2.19c and 2.19d are the inverted models by TLPE (Np = 7)

method with SNR = 3 and SNR = 5. The models reconstructed using the SU method with

SNR = 3 and SNR = 5 are shown in Figures 2.19e and 2.19f. Figure 2.20b and 2.20c show the
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Figure 2.17: RLSE vs. Iteration for different encoding methods with mono-frequency strat-
egy (a) and partial overlap-frequency strategy (b). The black-solid, black-dash, grey-dash,
grey-bold and grey-thin lines indicate the RLSE as iteration proceeds for SP, random SU,
sequential SU, TLPE (Np = 7) and TLPE (Np = 11) methods.

corresponding RLSE as iteration proceeds for TLPE and SU methods respectively. For TLPE

and SU methods, the artifacts caused by random noise become more obvious, compared to

the inversion results with noise-free data (Figure 2.16b and Figure 2.15f). At early iterations

when using low frequencies for inversion, the inversion results are less sensitive to random

noise, compared to iterations involving high frequencies. Furthermore, it is noticed that

SU method is relatively insensitive to noisy data, especially when using low frequencies. It

is concluded that the proposed slant update strategy is more robust than TLPE method

(Np = 7).

2.5 Discussion

The numerical experiments verify that the velocity model can be reconstructed very well

by slant update strategy with single p value at each iteration. Maximum p values can be

determined by the dip angles of the subsurface layers, as discussed in delayed-shot migration

(Wang et al., 2006). Narrowing the ray parameter range means narrowing the bandwidths

of the scattering angles and subsurface wavenumber, which results in the subsurface layers

with steep dip angles not being recovered very well. The inversion result is influenced by

the ray parameter interval, which can be examined in further research. This slant update

strategy is also very sensitive to source spacing. For linear phase-encoding, sparse source
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Figure 2.18: RLSE vs. Number of forward modelling problems solved. The black-solid,
black-dash, grey-dash, grey-bold and grey-thin lines indicate the RLSE for SP, random SU,
sequential SU, TLPE (Np = 7) and TLPE (Np = 11) methods. (b) Enlarged view of (a).

arrangement will result in strong crosstalk artifacts and then non-valuable inversion result,

as indicated in Figure 2.8a. This is different from random phase-encoding FWI, in which

crosstalk noise becomes stronger with increasing the number of encoded sources.

For diagonal Hessian construction, the proposed chirp phase-encoding can disperse the

crosstalk artifacts more efficiently, compared to the linear phase-encoding. It can also be

employed for constructing the second-order term in full Hessian. No regularization technique

is applied for gradient and diagonal Hessian calculation and the smoothing regularization

technique can be used to remove crosstalk noise further. For the numerical experiments

in this research, the diagonal Hessian is calculated at each iteration and for reducing the

computation further, the diagonal Hessian can be reused for a group of iterations. The

advantage of diagonal approximate Hessian preconditioning method will be more obvious

for transmission survey.

The initial model presented in Figure 2.4b is obtained by smoothing the true model

using a Gaussian function. Hence, discussing the sensitivities of the strategies to initial

model is also necessary. A 2D model is used to practice the proposed strategies. The PGN

method used in this research is expected to reduce the computational burden greatly for 3D
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Figure 2.19: Inversion results obtained by different encoding methods with partial over-
lap-frequency strategy and noisy data. (a) SP method with SNR = 3 (ε̃ = 0.3064); (b) SP
method with SNR = 5 (ε̃ = 0.3251); (c) TLPE (Np = 7) method with SNR = 3 (ε̃ = 0.5503);
(d) TLPE (Np = 7) method with SNR = 5 (ε̃ = 0.4675); (e) SU method with SNR = 3
(ε̃ = 0.5078); (f) SU method with SNR = 5 (ε̃ = 0.4705).

FWI. The traditional simultaneous-source technique and the proposed slant update strategy

in this research are applicable for fixed-spread acquisition (land or ocean bottom survey).

Incorporating the water layer in the modified Marmousi model makes the model update op-

eration easier for numerical modelling. For dealing with land data in real application, more

complex near surface effects, such as topography and weathering layer, should be taken into

consideration. For nonfixed spread acquisition (marine-streamer survey), the inconsistent ac-

quisition geometries between the observed data and modelled data can cause strong artifacts

in the inversion results. To apply the proposed strategies for marine-streamer acquisition, a

correlation-based method or missing data completion method should be performed to remove

the unwanted information in the data residuals (Routh et al., 2011; Choi and Alkhalifah,

2012; Son et al., 2014).
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Figure 2.20: RLSE vs. Iterations for partial overlap-frequency SP (a), TLPE (Np = 7) (b)
and SU (c) methods with noisy data. The black, red, and blue lines indicate the RLSE for
noise-free data, noisy data with SNR = 3 and SNR = 5 respectively.

2.6 CONCLUSION

In this chapter, which is aimed at addressing obstacles to the practical implementation of

full-waveform inversion, I have described a range of strategies, which, assembled, I refer to

as efficient τ -p domain pseudo-Gauss-Newton FWI. In this approach, the gradient is con-

structed using a linear phase-encoding technique, which reduces the computational expense

significantly. To reduce computation further, I introduce a slant update strategy, in which

the model is updated using the slant gradient with single ray parameter. By varying the

ray parameter regularly, the model update can be balanced through a set of iterations. A

similar quality inversion result can be obtained using this strategy with reducing the com-

putational burden considerably. An appropriate ray parameter range and schedule must be

determined to obtain an optimal convergence rate; geological information such as prevalent

dips can be used to guide this choice. Our strategy is sensitive to source spacing; for sparsely

sampled sources, a stack over a set of ray parameters, should be carried out at each iteration

to suppress crosstalk artifacts. Finally, this chapter introduces an additional chirp phase-

encoding strategy, which appears to attenuate crosstalk artifacts more efficiently than other

approaches to diagonal Hessian construction. The proposed pseudo-Gauss-Newton approach

appears to converge to the true velocity model faster than the steepest-descent and diagonal

pseudo-Hessian preconditioning methods, which is consistent with the observations by ans
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S. Treitel (1984). In frequency domain, the proposed phase-encoding approach is also able

to obtained high quality inverted models with reducing the computation cost.
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Appendix A

Proof of the equivalence between source illumination

and diagonal pseudo-Hessian

Equivalence between source illumination and diagonal pseudo-Hessian can be proved using a

non-perturbation approach. Taking partial derivative with respect to the model parameter

m(x) on both sides of equation (2.2) yields:

L (x, ω)
∂u (x,xs, ω)

∂m(x)
= −∂L (x, ω)

∂m(x)
u (x,xs, ω) . (A.1)

Equation (A.1) underlines the fact that the scattered wavefields due to the perturbation in

the model parameter at position x can be interpreted as the wavefields propagating in the

reference medium generated by a secondary body force. The right hand side of equation (A.1)

is always considered as “scattered source” or “virtual source” due to the model perturbation

at x (Shin et al., 2001a,b; Virieux and Operto, 2009):

f̃s(x,xs, ω) = −∂L (x, ω)

∂m(x)
u (x,xs, ω)

= −ω2u (x,xs, ω) .

(A.2)

Recalling the wavefields solution with Green’s function (equation (F.1)), the virtual source

becomes:

f̃s(x,xs, ω) = −ω2fs (ω)G (x,xs, ω) . (A.3)

The pseudo-Hessian is defined as the correlation of two virtual sources:

Hpseudo(x,x
′) =

∑
xs

∑
ω

f̃s(x,xs, ω)f̃ ∗s (x′,xs, ω)

=
∑
xs

∑
ω

<
(
ω4|fs(ω)|2G(x,xs, ω)G∗(x′,xs, ω)

)
,

(A.4)

where x′ is the neighboring point around the imaging point x in subsurface (Valenciano,

2008). When x′ 6= x, the off-diagonal elements of the pseudo-Hessian, the crosscorrelation of
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the two virtual sources, can be obtained. When x = x′, diagonal part of the pseudo-Hessian,

the autocorrelation of the two virtual sources, can be obtained:

Hdiag
pseudo(x) =

∑
xs

∑
ω

<
(
ω4|fs(ω)|2G(x,xs, ω)G∗(x,xs, ω)

)
, (A.5)

where the factor ω4 is equivalent to double second-order time-derivative operations in time

domain and for single frequency inversion, it is of no consequence, as discussed by Sirgue and

Pratt (2004). So, equation (A.5) is equivalent to the source illumination, the autocorrelation

of down-going wavefields (Pan et al., 2014b). It can also be obtained by removing the two

receiver-side Green’s functions in equation (2.31) with the assumption of infinite receiver

coverage. Tarantola (1984) found that the gradient calculation in least-squares wave equation

inversion resembles the migration process with a crosscorrelation imaging condition. Here,

it is seen that preconditioning the gradient using one portion of the Hessian resembles a

deconvolution imaging condition (Pan et al., 2014b).
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Chapter 3

Non-linear optimization methods for full-waveform

inversion

3.1 Summary

The Hessian-free (HF) optimization method represents an attractive alternative to Newton-

based and gradient-based optimization methods. At each iteration, the HF approach obtains

the search direction by approximately solving the Newton linear system using a matrix-free

conjugate-gradient (CG) algorithm. The main drawback with HF optimization is that the

CG algorithm requires many iterations. In this chapter, I develop and compare different

preconditioning schemes for the CG algorithm to accelerate the HF Gauss-Newton (GN)

method. Traditionally, preconditioners are designed as diagonal Hessian approximations. I

additionally use a new pseudo diagonal GN Hessian as a preconditioner, making use of the

reciprocal property of Greens function. Furthermore, an l-BFGS inverse Hessian precondi-

tioning strategy with the diagonal Hessian approximations as an initial guess is developed.

Several numerical examples are carried out. It is determined that the quasi-Newton l-BFGS

preconditioning scheme with the pseudo diagonal GN Hessian as the initial guess is most

effective in speeding up the HF GN FWI. Finally, in the case of multiparameter acoustic

FWI, it is proved that the l-BFGS preconditioned HF GN method can reconstruct velocity

and density models better and more efficiently in comparison with the nonpreconditioned

method.

3.2 Introduction

Traditional optimization methods for FWI in exploration geophysics are gradient-based (i.e.,

steepest-descent (SD) and non-linear conjugate-gradient (NCG) methods). In SD method,

the search direction is simply the negative of the gradient and in NCG method, the search

direction is the linear combination of the current gradient and previous search direction
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(Fletcher and Reeves, 1964; Nocedal and Wright, 2006; Hu et al., 2011). Within the adjoint-

state method, the gradient of the misfit function can be calculated efficiently by applying a

zero-lag crosscorrelation between the forward modelled wavefield and back-propagated data

residual wavefield (Pratt et al., 1998b; Tromp et al., 2005). Thus, gradient-based methods

are computationally attractive for large-scale inverse problems. However, they suffer from

slow convergence rates.

The second-order partial derivative of the misfit function (namely Hessian operator)

carries crucial information in the reconstruction process (Santosa and Symes, 1988; Pan

et al., 2016). The search direction can be significantly enhanced by multiplying the gradient

with the inverse Hessian matrix (Pratt et al., 1998b). Furthermore, the second-order term in

the Hessian matrix which accounts for non-linear scattering effects, can help to remove the

second-order scattering artifacts in the gradient (Pratt et al., 1998b; Métivier et al., 2013; Pan

et al., 2015b, 2016). However, explicit calculation, storage and inversion of the Hessian at

each iteration is computationally impractical for large-scale inverse problems. Hence, various

approaches have been proposed for approximating the Hessian (Shin et al., 2001a; Plessix

and Mulder, 2004; Tang, 2009) or inverse Hessian (Nocedal and Wright, 2006; Nammour and

Symes, 2009; Demanet et al., 2012). In Gauss-Newton method, an approximate Hessian is

introduced by involving only the first-order term and ignoring the second-order contributions

(Pratt et al., 1998b). Diagonal Gauss-Newton Hessian and diagonal pseudo-Hessian also

serve as good preconditioners, which have been discussed in chapter 2.

Instead of constructing the Hessian explicitly, quasi-Newton methods approximate the in-

verse Hessian iteratively by storing the model and gradient changes from previous iterations

(Nocedal and Wright, 2006). One popular quasi-Newton method is the BFGS method (Broy-

den, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). However, the storage requirement

of the inverse Hessian approximation and computation cost of preconditioning for large-scale

inverse problems is still very high. To mitigate this difficulty, a limited-memory BFGS (l-

BFGS) method is developed by storing information from a limited number l (l < 10) of

previous iterations (Nocedal, 1980; Byrd et al., 1995; Nocedal and Wright, 2006). Compared

to gradient-based methods, l-BFGS methods provide faster convergence rates for large-scale

inverse problems (Brossier et al., 2010; Ma and Hale, 2012). The convergence performance
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of l-BFGS method is closely related to the initial guess of inverse Hessian approximation

(Brossier et al., 2009; Guitton and Dı́az, 2012).

Hessian-free optimization methods (truncated-Newton or inexact-Newton method) rep-

resent attractive alternatives to the above-described optimization methods (Nash, 1985; San-

tosa and Symes, 1988; Nash, 2000; Akcelik et al., 2002; Epanomeritakis et al., 2008; Métivier

et al., 2012, 2014). At each iteration, the search direction is computed by approximately

solving the Newton equations using a matrix-free scheme of the conjugate-gradient (CG) al-

gorithm, which is an optimal method for solving a positive definite system (Nash, 1985; Hu

et al., 2009). This linear iterative solver only requires the Hessian-vector products instead

of forming the Hessian operator explicitly (Métivier et al., 2014). In this chapter, the full

Hessian is replaced with the Gauss-Newton Hessian, which is always symmetric and positive

semi-definite. One issue of the HF optimization method is that obtaining the search direc-

tion approximately requires a large number of CG iterations, which is still very expensive.

Our main goal in this chapter is to precondition the CG algorithm that accelerates the HF

Gauss-Newton full-waveform inversion (Nash, 2000; Sainath et al., 2013).

Preconditioning makes the CG problem well-conditioned, hence easier to solve, and it

reduces the number of CG iterations. The preconditioner for the CG algorithm is designed

by approximating the Hessian or its inverse (Nash, 2000). Different preconditioning schemes

are developed for comparison in this chapter. Traditional Hessian approximations, diagonal

pseudo-Hessian and diagonal Gauss-Newton Hessian, are first considered as preconditioners

for the CG algorithm. Based on the reciprocal property of the Green’s function, a pseudo di-

agonal Gauss-Newton Hessian approximation is used as the preconditioner for the CG solver

(Plessix and Mulder, 2004). Quasi-Newton l-BFGS inverse Hessian approximations also

serve as effective preconditioners for CG iterative solver (Nash, 1985; Métivier et al., 2013).

The initial guess of the inverse Hessian approximation is important to the performance of the

l-BFGS method. In this chapter, I propose to construct the l-BFGS inverse Hessian precon-

ditioners using the diagonal Hessian approximations as initial guess. It is demonstrated that

the proposed l-BFGS inverse Hessian preconditioning strategy with pseudo diagonal Gauss-

Newton Hessian as initial guess works best in accelerating the Hessian-free Gauss-Newton

FWI among these preconditioning strategies. Numerical examples are given to examine the
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sensitivity of this proposed preconditioning strategy to noisy data.

Inverting for multiple physical parameters simultaneously is a more challenging task

compared to monoparameter FWI. The coupling effects between different physical param-

eters (parameter crosstalk) make the inverse problem less well-determined (Operto et al.,

2013; Innanen, 2014b; Métivier et al., 2015). HF Gauss-Newton FWI is expected to miti-

gate parameter crosstalk for large-scale multiparameter FWI. In this chapter, the velocity

and density in acoustic media are reconstructed simultaneously with the preconditioned HF

Gauss-Newton FWI. It is observed that with the proposed l-BFGS preconditioning strat-

egy, HF Gauss-Newton method inverts the velocity and density models better than other

non-linear optimization methods.

The chapter is organized as follows. First, different non-linear optimization methods for

full-waveform inversion are presented and the CG-based Hessian-free optimization method

is introduced in detail. Then, different preconditioning schemes for the inner CG iteration in

HF method are discussed. In the numerical modelling section, the performances of different

non-linear optimizations for FWI are compared and different preconditioning strategies for

HF Gauss-Newton method with simple Gaussian-anomaly model and more complex Mar-

mousi model are examined. Then, the performances of preconditioned HF Gauss-Newton

method with noisy data are investigated. Finally, different non-linear optimization methods

are applied to reconstruct velocity and density parameters simultaneously. The numerical

modelling experiments demonstrate that the l-BFGS preconditioned Hessian-free Gauss-

Newton method works best to reconstruct the model parameters.

3.3 Methodology

In chapter 2, the expressions for gradient (equation (2.26)) and Hessian (equation (2.30))

with Green’s functions were presented. In this chapter, the non-linear least-squares inverse

problem is first reviewed. The gradient is derived with adjoint-state method. Expressions of

Hessian are given with matrix formulations. Then, various non-linear optimization methods

for FWI are described. The preconditioning strategies for accelerating Hessian-free Gauss-

Newton FWI are introduced.
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3.3.1 The non-linear least-squares inverse problem: review with matrix formulation

The common l-2 norm misfit function Φ is given by:

Φ (m) =
1

2
‖Pu− dobs‖2, (3.1)

which P is the receiver sampling operator dsyn = Pu. The gradient of the misfit function Φ

is given by correlating the Fréchet derivative wavefields with the complex conjugate of the

data residuals (Pratt et al., 1998b; Virieux and Operto, 2009):

g (x) = ∇m(x)Φ (m) =
∑
xs

∑
xg

∑
ω

<
(
∇m(x)d

†
syn (xg,xs, ω; m) ∆d∗ (xs,xg, ω)

)
, (3.2)

where the Jacobian matrix ∇m(x)dsyn can be expressed with matrices:

∇mdsyn = −PL (m, ω)−1∇mL (m, ω) u, (3.3)

where ∂L (m, ω) /∂m is written as ∇mL (m, ω) for sake of compactness. Inserting equation

(3.3) into equation (3.2) gives the gradient as:

g =
∑
xs

∑
xg

∑
ω

u† (xs,xg, ω)∇mL† (m, ω) L (m, ω)−1P†∆d∗ (xs,xg, ω) , (3.4)

where L† (m, ω)−1 is replaced with L (m, ω)−1 when considering reciprocity of Green’s func-

tion and L (m, ω)−1P†∆d∗ (xs,xg, ω) serves as backward propagated data residual wave-

fields.

The gradient expressions can also be derived based on adjoint-state method. Consider-

ing that misfit function Φ (equation (4.1)) subjects to L (m, ω) u = fs, FWI can thus be

formulated as a PDE-constrained inverse problem. The augmented Lagrangian functional χ

associated with this problem can be written as:

χ (m,u,Λ) =
1

2
‖Pu− dobs‖2 + Λ† (L (m, ω) u− fs) , (3.5)

where Λ is the Lagrangian multiplier. Perturbation of the Lagrangian functional χ due to

the perturbations of the quantities m and u is (Liu and Tromp, 2006; Métivier et al., 2013):

∆χ (m,u,Λ) = u†∇mL† (m, ω) Λ∆m + P† (Pu− dobs)
∗∆u− L† (m, ω) Λ∆u. (3.6)
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Equation (3.6) is stationary, when the coefficient of the perturbations of wavefields is zero,

which gives the following equation:

L (m, ω)† Λ = P† (Pu− dobs)
∗ . (3.7)

Solution of equation (3.7) Λ is defined as the adjoint wavefield: Λ =
(
L (m, ω)†

)−1

P† (Pu− dobs)
∗.

Taking partial derivative of the misfit function χ with respect to model parameter m:

∇mχ = u†∇mL† (m, ω) Λ. (3.8)

Inserting adjoint wavefield Λ into equation (3.8) gives the gradient of misfit function χ:

∇mχ = u†∇mL† (m, ω)
(
L (m, ω)†

)−1

P†∆d∗. (3.9)

Equation (3.9) is equivalent to equation (3.4). The full Hessian represents the second deriva-

tive of misfit function:

H (x,x′) = ∇m(x)∇m(x′)Φ (m) = ∇m(x)d
†
syn∇m(x)d

∗
syn +∇m(x)∇m(x′)d

†
syn∆d∗, (3.10)

where the first term is the Gauss-Newton Hessian approximation Ha:

Ha = ∇md†syn∇md∗syn,

= u†∇mL† (m, ω)
(
L† (m, ω)

)−1P†PL∗ (m, ω)−1∇mL∗ (m, ω) u∗.
(3.11)

The second term of the full Hessian indicating the second-order scattering effects is formed by

correlating the data residual vector ∆d with the second-order partial derivative wavefields:

∇m∇mdsyn = −L (m, ω)−1P (2∇mL (m, ω)∇mu +∇m∇mL (m, ω) u) . (3.12)

Inserting equation (3.3) into equation (3.12) gives:

∇m∇mdsyn = −L (m, ω)−1P
(
2∇mL (m, ω) L (m, ω)−1∇mL (m, ω) u +∇m∇mL (m, ω) u

)
.

(3.13)

Then substituting equation (3.13) into the second term of the full Hessian (equation (3.10)):

H̄ = −2u†∇mL† (m, ω)
(
L† (m, ω)

)−1∇mL† (m, ω) v− u†∇m∇mL† (m, ω) v, (3.14)

where v is the adjoint wavefield obtained by v =
(
L† (m, ω)

)−1P†∆d∗. When considering

linearized inverse problem, the second-order scattered wavefields is very small and the second-

order term of full Hessian is always ignored.
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3.3.2 Full-Newton and Gauss-Newton methods

Newton-based optimization methods (e.g., full-Newton (FN) and Gauss-Newton (GN) meth-

ods) use the quadratic search direction and exhibit fast convergence given a limited number

of unknown parameters. The FN search direction is formed by preconditioning the gradient

with the full Hessian H (equation (3.10)):

∆mk = −H−1
k gk, (3.15)

where the full Hessian H is actually inverted. The Gauss-Newton approximate Hessian Ha

only accounts for the first-order scattering effects, as indicated by the first term of equation

(3.10). For these Newton-based methods, explicit evaluation and inversion the Hessian

matrix H and Gauss-Newton Hessian Ha at each iteration are required. Though Newton-

based methods benefit from fast convergence rate, the computation, storage and inversion

of Hessian at each iteration are prohibitively expensive, which limits their applications for

large-scale inverse problems in exploration geophysics.

3.3.3 Gradient-based methods

Gradient-based methods (e.g., steepest-descent (SD) and non-linear conjugate-gradient (NCG)

methods) approximate the Hessian matrix H as an identity matrix I and they are compu-

tationally more attractive than the Newton-based ones when inverting a large number of

unknown model parameters. The SD method simply determines the search direction to be

the negative of the gradient:

∆mk = −gk. (3.16)

In mathematics, conjugate-gradient (CG) method seeks the solution of a linear system. The

non-linear conjugate-gradient (NCG) method generalizes the conjugate-gradient method to

non-linear optimization and obtain the local minimum of a non-linear function using its

gradient alone (Nocedal and Wright, 2006). The search direction in NCG method is just a

linear combination of current gradient and previous search direction:

∆mk = −gk + βk∆mk−1, (3.17)
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where βk is a scalar selected such that ∆mk and ∆mk−1 are conjugate. There are many

approaches for determining parameter βk including “Fletcher-Reeves (FR)”, “Polak-Ribière

(PR)”, “Hestenes-Stiefel (HS)” and “Dai-Yuan (DY)” method:

βFRk =
g†kgk

g†k−1gk−1

, (3.18)

βPRk =
g†k
(
gk − gk−1

)
g†k−1gk−1

, (3.19)

βHSk = −
g†k
(
gk − gk−1

)
∆m†k−1

(
gk − gk−1

) , (3.20)

βDYk = − g†kgk

∆m†k−1

(
gk − gk−1

) . (3.21)

In this research, the “Fletcher-Reeves” method (Fletcher and Reeves, 1964) is used to obtain

the parameter βk. The gradient-based methods are known to converge globally, but possibly

very slowly. In most cases, preconditioning is necessary to ensure the fast convergence of the

NCG method (Hu et al., 2011).

3.3.4 Quasi-Newton methods

Quasi-Newton methods provide an attractive alternative to Newton-based and gradient-

based methods by approximating the inverse Hessian iteratively instead of constructing the

Hessian matrix explicitly (Nocedal and Wright, 2006; Brossier et al., 2009; Ma and Hale,

2012). BFGS method, named after Broyden (1970), Fletcher (1970), Goldfarb (1970) and

Shanno (1970), is one popular quasi-Newton strategy to approximate the inverse Hessian

iteratively using the changes of the model and gradient (Nocedal and Wright, 2006).

In the BFGS updating formula, a symmetric and positive definite matrixHk that approx-

imates the inverse of the Hessian, and a pair of vectors sk = mk+1−mk, and yk = gk+1−gk

that indicates the model and gradient changes and satisfies the condition s†kyk > 0 are given.

Using these vectors, the inverse Hessian approximation Hk+1 can be computed with the

following formula:

Hk+1 = v†kHkvk + wksks
†
k, (3.22)

where wk = 1/y†ksk, vk = I − wkyks
†
k and I is the identity matrix. The initial inverse

Hessian approximation H0 is important to BFGS method and it is usually set as an identity
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1. Given initial inverse Hessian approximation H0 = I;
2. ∆m = g;
3. For i = n− 1, n− 2, ...., n−M
4. xi=s†i∆m/y†isi;
5. ∆m=∆m-xiyi;
6. v = H0∆m;
7. End
8. For i = n−M,n−M + 1, ...., n− 1

9. z=y†ix/y
†
isi;

10. v=v− si (xi − z);
11. End
12. Hngn = v;
13. ∆mn=gn.

Table 3.1: Two-loop recursion scheme for l-BFGS FWI.

matrix to make sure that the updated matrix maintains positive definiteness (Wu et al.,

2015). A limited-memory BFGS (l-BFGS) method was developed by storing the model and

gradient changes from a limited number l of previous iterations (typically l < 10) (Nocedal,

1980). The stored information is then used to construct an approximated inverse Hessian. A

“two-loop recursion” scheme (Table 3.1) is implemented in this research to obtain the search

direction using the information of previous updates (Nocedal and Wright, 2006; Métivier

et al., 2016).

3.3.5 Hessian-free optimization method

Instead of constructing Hessian or inverse Hessian approximations, the Hessian-free (HF)

optimization method, also known as truncated-Newton or inexact-Newton method, obtains

the search direction by solving the Newton linear system (equation (2.12)) approximately

using a conjugate-gradient (CG) method with matrix-free scheme (Saad, 2003; Anagaw and

Sacchi, 2012; Métivier et al., 2014). The CG method is an optimal algorithm for solving a

symmetric positive definite system Wx=b and it only requires computing the Hessian-vector

products Hυ instead of forming the Hessian matrix explicitly, where υ is an arbitrary vector

in model space. The Hessian-vector products can be calculated via finite-difference method

(Nocedal and Wright, 2006) or the adjoint-state method (Métivier et al., 2014, 2016).
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Notations: W is a symmetric and positive definite matrix;

q is the residual; k̃ is the iteration index; M is the preconditioner;

γmin is the relative residual tolerance; k̃max is the maximum iteration.

Input: W, b, k̃max, M, γmin

Output: x, γ

Initialization: q0 = b−Wx0, z0 =M−1q0, p0 = z0, k̃ = 0;

While γk̃ > γmin & k̃ < k̃max

αk̃ =
q†
k̃
zk̃

p†
k̃
Wpk̃

;

xk̃+1 = xk̃ + αk̃pk̃;

qk̃+1 = qk̃ − αk̃Wpk̃;

zk̃+1 =M−1qk̃+1;

βk̃+1 =
z†
k̃+1

qk̃+1

z†
k̃
qk̃

;

pk̃+1 = zk̃+1 + βk̃pk̃;

γk̃ =
‖b−Wxk̃+1‖

‖b‖ ;

k̃ = k̃ + 1;

End

Table 3.2: Pseudo-code of the preconditioned conjugate-gradient (PCG) method.
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The formulas of computing Hessian-vector products have been given by Pratt et al.

(1998a). Fichtner and Trampert (2011a) calculated the products of full Hessian with Gaus-

sian shape perturbation vectors with second-order adjoint-state approach in time domain

for resolution analysis. Métivier et al. (2013) gave the general framework of the first-order

adjoint-state method for gradient calculation and the second-order adjoint-state method for

Hessian-vector product calculation. The full Hessian H (equation (3.10)) arising from the

second-order partial derivative is not guaranteed to be positive definite (Nash, 2000). Thus,

CG method is no longer appropriate for solving an indefinite linear system. In this research,

instead of using the Hessian H, Gauss-Newton Hessian Ha is used, which is always symmetric

and positive semi-definite: (
Ha,k + ε̂Âk

)
∆mk = −gk, (3.23)

where ε̂Âk is the damping term ensuring that Ha,k + ε̂Â is positive definite, ε̂ is a small

constant value and Âk indicates a diagonal matrix consisting of the diagonal elements of the

Gauss-Newton Hessian. The resulting algorithm becomes a Levenberg-Marquardt method

(Levenberg, 1944; Marquardt, 1963). In this chapter, the HF Gauss-Newton FWI is im-

plemented in a double-iterative scheme: the outer loop is to iteratively update the model

parameters for the non-linear optimization problem, and the inner loop is to solve the linear

system (equation(3.23)) iteratively with the CG algorithm. The inner iteration is typically

stopped or “truncated” before the solution of the Newton equation is obtained.

Now, a review of the adjoint-state method for calculating the products of an arbitrary

vector υ with Gauss-Newton Hessian Ha in frequency domain following Métivier et al. (2013)

is given. I start from minimizing the following Lagrangian function:

χ̃ (m) = d†synν + Λ̃† (L (m, ω) u− fs) , (3.24)

where ν is an arbitrary vector and Λ̃ is a new Lagrangian multiplier. Following the process

of deriving gradient from equation (3.5) to equation (3.9), the first derivative of the misfit

function with respect to model parameter is given by:

∇mχ̃ (m) = u†∇mL† (m, ω) Λ̃, (3.25)

where the new Lagrangian multiplier satisfies L† (m, ω) Λ̃ = −P†ν. Replacing ν with
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Jacobian-vector product ∇md∗synυ gives the new Lagrangian multiplier as:

Λ̃ = −
(
L† (m, ω)

)−1∇md∗synυ. (3.26)

Inserting equation (3.3) into equation (3.26) and then equation (3.25) gives the Gauss-

Newton Hessian-vector product as:

Haυ = u†∇mL† (m, ω)
(
L† (m, ω)

)−1P†P (L∗ (m, ω))−1∇mL∗ (m, ω) u∗υ. (3.27)

To obtain the Gauss-Newton Hessian-vector product, one needs to solve two forward mod-

elling problems for getting u and ν and another adjoint modelling for getting Λ, which is

1.5 times more expensive than calculating gradient.

A Hessian-free optimization method can be made more competitive with further enhance-

ments, such as, an effective preconditioner for the linear system and appropriate stopping

criteria for the inner iterative algorithm (Métivier et al., 2013). With these enhancements,

Hessian-free optimization method is a powerful tool for large-scale inverse problems.

3.3.5.1 Preconditioning

The CG iterative algorithm requires many iterations to obtain the approximate solution

of a linear system Wx = b. The convergence rate of the CG method depends on the

spectral properties (e.g., its eigenvalues) of the coefficient matrix W (Nash, 2000). It is often

convenient to transform the equation system into one which has the same solution but more

favorable spectral properties. This can be achieved by applying a suitable preconditionerM

on the linear system: M−1Wx =M−1b. Thus, the preconditioned Newton system for the

HF Gauss-Newton FWI is given by:

M−1
k

(
Ha,k + ε̂Âk

)
∆mk = −M−1

k gk. (3.28)

The solution of equation (3.28) can be obtained by the preconditioned conjugate-gradient

(PCG) method. Pseudo-code of the PCG method is given in Table 3.2. The PCG method

is expected to reduce the number of inner iterations, improve the convergence rate and

accelerate the HF Gauss-Newton FWI. This chapter focuses on developing efficient and

stable preconditioning schemes for inner iterative algorithm.
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The preconditioner for the CG method is always devised to approximate the Hessian or

the inverse Hessian. The traditional Hessian approximations (e.g., diagonal pseudo-Hessian

and diagonal Gauss-Newton Hessian) are first considered as the preconditioners for the CG

inner iteration. In chapter 2, the pseudo-Hessian is constructed by replacing the Fréchet

derivative wavefield with the virtual source in the correlation process (Shin et al., 2001b).

Pseudo-Hessian can also be expressed in terms of matrices:

Hpseudo = u†∇mL† (m, ω)∇mL∗ (m, ω) u∗. (3.29)

Diagonal pseudo-Hessian Hdiag
pseudo can be used as effective preconditioner for inner CG algo-

rithm in HF Gauss-Newton FWI. Calculating diagonal pseudo-Hessian at each iteration does

not involve any additional cost. When employing the diagonal Gauss-Newton Hessian as a

preconditioner, more computation cost is required for constructing the receiver-side Green’s

functions (Tao and Sen, 2013).

In this chapter, a pseudo diagonal Gauss-Newton Hessian approximation is used as the

preconditioner for the CG algorithm in the inner loop. Furthermore, considering reflection

survey and assuming that the sources and receivers are co-located, the receiver-side Green’s

function can be replaced by the source-side Green’s function, leading to a new diagonal

Hessian approximation. This diagonal Hessian approximation was employed by Plessix and

Mulder (2004) and Choi et al. (2008) to precondition the gradient. In this chapter, it is used

to precondition the Newton system and referred to as pseudo diagonal Gauss-Newton Hessian

H̃
diag

a . It can be constructed at no additional cost. This approximation is valid for reflection

survey but invalid for transmission or VSP (Vertical Seismic Profile) survey. Summarily,

the diagonal pseudo-Hessian, diagonal Gauss-Newton Hessian and pseudo diagonal Gauss-

Newton Hessian preconditioners are given by:

MDPH
k = Hdiag

pseudo,k + λ̂Bk,MDGH
k = Hdiag

a,k + λ̂Ck,MPDGH
k = H̃

diag

a,k + λ̂Dk, (3.30)

where λ̂Bk, λ̂Ck and λ̂Dk are the stabilization terms, λ̂ is a small constant value, Bk, Ck
and Dk indicate diagonal matrices consisting of the maximum values of the diagonal pre-

conditioners. These three different preconditioning strategies are referred to as DPH-GN,

DGH-GN and PDGH-GN here. When the parameter λ̂ is very large, these preconditioning

methods approach the non-preconditioned HF Gauss-Newton (CG-GN) method.
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Furthermore, this thesis develops an l-BFGS preconditioning scheme for the HF opti-

mization method (Nash, 1985, 2000; Métivier et al., 2012; Sainath et al., 2013), namely

l-BFGS-GN method for H0 = I. The l-BFGS approximated inverse Hessian H can also be

used as a preconditioner for the CG iterative method:

Hk

(
Ha,k + ε̂Âk

)
∆mk = −Hkgk. (3.31)

Traditionally, an identity matrix I is usually set as the initial guess H0. In this chapter, I

consider using the stabilized diagonal pseudo-Hessian, diagonal Gauss-Newton Hessian and

pseudo diagonal Gauss-Newton Hessian (equation (3.30)) as the initial guess for constructing

the l-BFGS preconditioners. These methods are referred to as l-BFGS-GN-DPH, l-BFGS-

GN-DGH and l-BFGS-GN-PDGH methods respectively. Similarly, when parameter λ̂ is

very large, these three methods approach l-BFGS-GN method (H0 = I). Allowing the

diagonal approximations to vary throughout the iterations can also enhance the l-BFGS

inverse Hessian approximation, which has been used in preconditioned l-BFGS methods by

Métivier et al. (2014). The use of this strategy in constructing l-BFGS preconditioner is a

match of ongoing study.

3.3.5.2 Stopping criteria

Newton’s method is based on the Taylor series approximation (equation (2.10)). If this

approximation is inaccurate then it may not be suitable to solve the Newton equations

accurately and “over-solving” the Newton equation will not produce a better search direction

(Nash, 2000). The CG algorithm should be terminated with an appropriate stopping criteria.

The maximum inner iteration number k̃max is given and the relative residual γk̃ is defined

as:

γk̃ =
‖H̃k̃∆mk̃ + gk̃‖

‖gk̃‖
, (3.32)

where k̃ indicates the CG inner iteration index. The inner iteration is stopped when γk̃ <

γmin, where γmin indicates the relative residual tolerance. The stopping criterion for the CG

algorithm used in this research is relative basic. Eisenstat and Walker (1996) and Métivier

et al. (2014) used a more advanced adaptive stopping criteria, within which the CG iterations

are stopped, when a negative curvature direction is calculated during solving the Newton

system.
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Notations: kmax is the maximum outer iteration; φ is the normalized misfit;
φmin is the minimum normalized misfit; Nω is the multi-frequency group.

Input: m0, φmin, ε̂, kmax, M , Nω, λ̂, dobs, k̃max, γmin
Output: m, φ
Initialization: k = 0;
For k < kmax & φk > φmin

1. Calculate dsyn

(
mk,N

k
ω

)
and ∆d

(
mk,N

k
ω

)
= dobs

(
Nk
ω

)
− dsyn

(
mk,N

k
ω

)
;

2. Construct gk
(
mk,N

k
ω

)
← ∆d

(
mk,N

k
ω

)
with the adjoint-state method;

3. Construct Mk =MDPH
k ,MDGH

k ,MPDGH
k or M−1

k = Hk;

4. Call PCG method ← k̃max, γmin,Mk,gk,Ha,kυ and calculate ∆mk:

M−1
k

(
Ha,k + ε̂Âk

)
∆mk = −M−1

k gk;

5. Get µk with a line search method satisfying weak Wolfe condition;
6. mk+1 = mk + µk∆mk;
7. Calculate the normalized misfit φk;
8. k = k + 1;

End

Table 3.3: Pseudo-code of the HF Gauss-Newton FWI with PCG method.

3.3.6 Line search with Wolfe condition

A common inexact line search condition stipulates that step length µn should lead to sufficient

decrease in the objective function, as measured by the following inequality (Nocedal and

Wright, 2006):

Φ (mk + µk∆mk) ≤ Φ (mk) + µkc1∆m†k∇Φ (mk) , (3.33)

where c1 is one constant parameter satisfying 0 < c1 < 1. Equation (3.33) is the Armijo

condition, which ensures that the step length µk decreases the misfit function sufficiently

(Armijo, 1966). While, this sufficient decrease condition is not enough to ensure convergence

since this condition is satisfied for all small enough µ. To rule out unacceptably small steps,

a weak Wolfe condition (or curvature condition) is introduced:

∇Φ (mk + µk∆mk)
†∆mk ≥ c2∇Φ (mn)†∆mk, (3.34)

where c2 is constant parameter satisfying c1 < c2 < 1. Equation (3.34) ensures that the

slope has been reduced sufficiently (Nocedal and Wright, 2006). In practice, parameter c1

can be chosen as c1 = 10−4 and parameter c2 should be much larger c2 = 0.9 (Nocedal and

Wright, 2006). The initial step length µ0 is always chosen as 1 and then after a set of trial
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step lengths, the optimal one will be accepted to satisfy the above conditions. Pseudo-code

of the HF Gauss-Newton method with a PCG algorithm is provided in Table 3.3.

3.4 Numerical examples

In this section, first the preconditioned Hessian-free Gauss-Newton FWI is applied on a

Gaussian-anomaly model in comparison with steepest-descent (SD), non-linear conjugate-

gradient (NCG) and l-BFGS methods. Different non-linear optimization methods are also

applied on a modified Marmousi model. The preconditioning schemes for the HF Gauss-

Newton FWI described in the previous section are also examined. The inversion results

verify that the preconditioning strategies accelerate the HF Gauss-Newton FWI, improve its

convergence rate and reduce computation cost. At the end, different optimization methods

are applied to reconstruct velocity and density simultaneously.

3.4.1 The Gaussian-anomaly model

In this numerical example, the SD, NCG, l-BFGS and preconditioned HF Gauss-Newton

methods are applied to the reconstruction of a Gaussian-anomaly model. A Gaussian-

anomaly velocity model is constructed consisting of 50 × 100 grid cells with a grid interval

of 10 m in both horizontal and vertical directions. A total of 49 sources are deployed from

20 m to 980 m with a source interval of 20 m and a depth of 20 m. A total of 100 receivers

are distributed on the surface from 10 m to 1000 m with a receiver interval of 10 m and a

depth of 20 m. A Ricker wavelet with a 30 Hz dominant frequency is used as the source

function. In Figure 3.1, the true velocity model is illustrated. The initial velocity model is

homogeneous with a constant velocity of 2 km/s. Most of the energy in the data residuals

are scattered waves, which are used for inversion in this numerical example.

For comparison of different methods, the stopping criteria for inversion is set as: the

maximum outer iteration kmax = 101 and the minimum normalized misfit φmin = 2.0e-5.

The normalized misfit is defined to be the misfit of the inverted model divided by the misfit of

the initial model. To illustrate the performances of different preconditioning strategies, the

stopping criteria for the inner CG algorithm is also defined: the maximum inner iteration
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Figure 3.1: The true Gaussian-anomaly model.

k̃max = 100 and the minimum relative residual γmin = 1.0e-2. The parameters used for

stabilization are ε̂ = 2.0e-2 (equation (3.23)) and λ̂ = 5.0e-2 (equations (3.30)). From our

experience, overly small ε̂ and λ̂ values may result in artifacts in the inverted models and

the two stabilization factors should not be smaller than 1.0e-2.

Figure 3.2a shows the gradient update in SD method and Figure 3.2b shows the update in

Hessian-free Gauss-Newton method with 30 inner conjugate-gradient iterations. By apply-

ing Hessian iteratively to the gradient update, the gradient has been obviously de-blurred.

Next, the inverted models using different non-linear optimization methods are illustrated.

Figures 3.3a, 3.3b, 3.3c and 3.3d show the inversion results obtained with SD, NCG, l-BFGS

(H0 = I) and non-preconditioned CG-GN methods. Figure 3.4 shows the convergence his-

tory and RLSE (equation (2.42)) of the these different optimization methods. The SD, NCG

and l-BFGS methods undergo kmax = 101 iterations without reaching the minimum misfit

requirement of φmin = 2.0e-5. The non-preconditioned CG-GN method converges towards

the minimum misfit requirement quadratically with 8 outer iterations and in this sense has

clear advantages with respect to convergence rate. However, the CG-GN method is still very

expensive for solving the Newton equations iteratively. Effective preconditioning strategies

can be applied to improve its performance.

The diagonal Hessian approximations preconditioned HF Gauss-Newton methods: DPH-

GN, DGH-GN and PDGH-GN methods, are then applied. The diagonal pseudo-Hessian,

diagonal Gauss-Newton Hessian and pseudo diagonal Gauss-Newton Hessian are then used

as initial guesses to construct the l-BFGS preconditioners, which form the above-mentioned l-

BFGS-GN-DPH, l-BFGS-GN-DGH and l-BFGS-GN-PDGH methods. Because the inversion

results produced by these preconditioned HF Gauss-Newton methods are very close to the
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non-preconditioned one (Figure 3.3d), only the maximum iterations, normalized minimum

misfit (φ), number of forward problems solved and computation time for these different

preconditioning strategies are illustrated in Table 3.4. From Table 3.4, it can be seen that

the preconditioning strategies improve the convergence rate, reduce the computation cost

and accelerate HF Gauss-Newton method. Of the three diagonal Hessian approximations

preconditioning methods, the DGH-GN method provides the best inversion result with the

minimum normalized misfit of 1.58e-5. However, this method needs to solve more forward

modelling problems for constructing the receiver-side Green’s functions, which increases the

computational burden. Considering both inversion accuracy and computation efficiency

simultaneously, PDGH-GN method outperforms DPH-GN and DGH-GN methods. The

three l-BFGS preconditioning methods show better performances than the corresponding

diagonal Hessian approximations preconditioning methods. Furthermore, the proposed l-

BFGS-GN-PDGH method gives the best inversion result and is most efficient among these

preconditioning strategies. In comparison with the non-preconditioned CG-GN method, l-

BFGS-GN-PDGH method decreases the normalized misfit value by 12% and reduces the

computation cost by 28% approximately.
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Figure 3.2: (a) gradient update (b) Hessian-free Gauss-Newton update with 30 inner conju-
gate-gradient iterations.

3.4.2 The modified Marmousi model

A more complex modified Marmousi model is used to compare the performances of different

optimization methods and examine the efficiency of different preconditioning schemes for the

HF Gauss-Newton full-waveform inversion. The truncated Marmousi model has 100 × 100

grid cells with a grid interval of 10 m in both horizontal and vertical directions. A number

of 49 sources from 20 m to 980 m at depth of 20 m with a regular source spacing of 20
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Figure 3.3: Inversion results by (a) SD method; (b) NCG method; (c) l-BFGS method; (d)
CG-GN method.

Methods Iteration Minimum Misfit Problems Solved Time (s)
CG-GN 8 1.77e-5 619 683.46

DPH-GN 7 1.73e-5 600 672.63
DGH-GN 6 1.58e-5 631 700.23

PDGH-GN 6 1.59e-5 552 643.78
l-BFGS-GN-DPH 6 1.71e-5 482 532.34
l-BFGS-GN-DGH 6 1.56e-5 617 679.54
l-BFGS-GN-PDGH 6 1.56e-5 454 521.20

Table 3.4: Efficiency comparison for preconditioning strategies with the Gaussian-anomaly
model.

m are distributed. Fifty receivers are arranged from 10 m to 1000 m every 20 m at the

depth of 20 m. The source function is a Ricker wavelet with a dominant frequency of

30 Hz. Figures 3.5a and 3.5b show the true P-wave velocity model and initial P-wave

velocity model. The initial velocity model is obtained by smoothing the true model with

a Gaussian function. The inversion process is carried out with a multi-scale approach for

mitigating the cycle-skipping problem (Pratt and Chapman, 1992; Bunks et al., 1995; Sirgue

and Pratt, 2004). The frequencies used for inversion are increased from 5 Hz to 40 Hz with

a partial overlap-frequency selection strategy, in which a group of 3 frequencies are used for

inversion simultaneously. The frequency group increases from low to high with 2 frequencies

overlapped and for each frequency band, a number of 5 outer iterations are performed. The
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Figure 3.4: Comparison of the convergence history (a) and RLSE (b) for different optimiza-
tion methods. The black, green, red and blue lines SD, NCG, l-BFGS and non-preconditioned
CG-GN methods respectively.

stopping criteria for the inner iteration are k̃max = 10 and/or γmin = 2.0e-1. The stabilization

parameter ε̂ is 1.0e-2.
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Figure 3.5: (a) True P-wave velocity model; (b) Initial P-wave velocity model.

Figures 3.6a and 3.6b illustrate the inversion results obtained by SD and NCG methods.

Figures 3.7a and 3.7b illustrate the inversion results obtained by l-BFGS (H0 = I) and non-

preconditioned CG-GN methods. Figures 3.6c, 3.6d, 3.7c and 3.7d show the comparison of

well log data at 0.1 km and 0.6 km. The SD and NCG methods are limited in recovering the

deep parts of the model. The l-BFGS method (H0 = I) provides better inversion result but

the deep parts of the inversion result are still not satisfactory. Compared to SD, NCG, and

l-BFGS methods, the deep parts of the reconstructed model by non-preconditioned CG-GN

method have been enhanced obviously.
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Figure 3.6: (a) SD method (φ = 0.31); (b) NCG method (φ = 0.11). (c) and (d) are
the comparison of well log data at 0.1 km and 0.6 km. The black, gray, blue and red lines
indicate the true model, initial model, inverted models by SD and NCG methods.

The inversion results produced by diagonal Hessian approximations preconditioned HF

Gauss-Newton methods are then illustrated. Figures 3.8a, 3.8b and 3.8c are the inverted

models obtained by DPH-GN, DGH-GN and PDGH-GN methods respectively. Figures

3.8d, 3.8e, and 3.8f show the well log data comparison at 0.1 km and 0.6 km. For DPH-GN

method, the stabilization parameter λ̂ is 1.0e-2. Incorporating receiver-side Green’s functions

increases the instability of preconditioning. The stabilization parameter λ̂ for DGH-GN and

PDGH-GN methods is 5.0e-2. Compared to the model inverted by the non-preconditioned

CG-GN method (Figure 3.7b), the inverted model (Figure 3.8a) by diagonal pseudo-Hessian

preconditioned HF Gauss-Newton method (DPH-GN) is improved without any additional

cost. When employing diagonal Gauss-Newton Hessian for preconditioning, the inversion

result is improved further but at the cost of a greater computational burden for constructing

the receiver-side Green’s functions. In pseudo diagonal Gauss-Newton Hessian precondi-

tioned HF Gauss-Newton method, the receiver-side Green’s functions are approximated by

source-side Green’s functions. This preconditioning strategy provides comparable inversion

result with the diagonal Gauss-Newton Hessian preconditioning one but without involving
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Figure 3.7: (a) l-BFGS method (φ = 0.07); (b) CG-GN method (φ = 4.1e-3). (c) and
(d) are the comparison of well log data at 0.1 km and 0.6 km. The black, gray, blue and
red lines indicate the true model, initial model, inverted models by l-BFGS (H0 = I) and
non-preconditioned CG-GN methods.

additional cost. Hence, it is concluded that PDGH-GN method outperforms DPH-GN and

DGH-GN methods.

The second class of preconditioning scheme is l-BFGS inverse Hessian preconditioning

strategy with diagonal Hessian approximations as initial guesses. Figures 3.9a, 3.9b and 3.9c

show the inverted models by l-BFGS-GN-DPH (λ̂ = 1.0e-2), l-BFGS-GN-DGH (λ̂ = 5.0e-2)

and l-BFGS-GN-PDGH (λ̂ = 5.0e-2) methods. Figures 3.9d, 3.9e and 3.9f show the well

log data comparison at 0.1 km and 0.6 km. Compared to Figures 3.8a, 3.8b and 3.8c, it

is observed that the corresponding inverted models are further enhanced with the l-BFGS

preconditioning strategies as indicated by the normalized misfit values φ in figure captions.

Furthermore, l-BFGS-GN-DGH and l-BFGS-GN-PDGH methods obtain better inversion

results than l-BFGS-GN-DPH method for considering the contributions from receiver-side

Green’s functions. l-BFGS-GN-DGH method is more expensive for calculating the receiver-

side Green’s functions at each outer iteration. Thus, l-BFGS-GN-PDGH method becomes

the best choice among these preconditioning methods.
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Figure 3.8: Comparison of inversion results by diagonal Hessian approximations precon-
ditioned Hessian-free Gauss-Newton methods. (a) DPH-GN method (φ = 4.4e-3); (b)
DGH-GN method (φ = 2.5e-3); (c) PDGH-GN method (φ = 2.1e-3); (d), (e) and (f) show
the comparison of well log data at 0.1 km and 0.6 km. The blue, red and green lines indicate
the inverted models by DPH-GN, DGH-GN and PDGH-GN methods.

To further examine the proposed l-BFGS-GN-PDGH method, convergence history of non-

preconditioned CG-GN, PDGH-GN and l-BFGS-GN-PDGH methods are plotted in Figure

3.10. With preconditioning, the convergence rate of Hessian-free Gauss-Newton method is

significantly improved. Furthermore, the l-BFGS preconditioning strategy converges faster

than diagonal Hessian approximation preconditioning one. In Figure 3.11a, the Normalized

misfit vs. Number of forward problems solved is illustrated. Figure 3.11b shows the Normal-

ized misfit vs. Computation time (s). The proposed l-BFGS-GN-PDGH method improves

the convergence rate, reduces the computation cost and accelerates the HF Gauss-Newton

FWI. In this example, compared to non-preconditioned CG-GN method, the normalized

misfit value of the final inverted model is reduced by 27% approximately with the proposed

preconditioning strategy. To achieve the same normalized misfit valve (e.g., log (φ)=−6),

the computation cost is nearly reduced by 53%.

Figures 3.12a and 3.12b illustrate the inversion results generated using non-preconditioned

CG-GN method with noisy data when SNR (signal to noise ratio) are 10 and 6. Figures

3.12c and 3.12d are the inversion results obtained by l-BFGS-GN-PDGH method when SNR
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Figure 3.9: Comparison of inversion results by l-BFGS preconditioned Hessian-free
Gauss-Newton methods. (a) l-BFGS-GN-DPH method (φ = 1.1e-3); (b) l-BFGS-GN-DGH
method (φ = 8.4e-4); (c) l-BFGS-GN-PDGH method (φ = 8.3e-4); (d), (e) and (f) show the
comparison of well log data at 0.1 km and 0.6 km. The blue, red and green lines indicate the
inverted models by l-BFGS-GN-DPH, l-BFGS-GN-DGH and l-BFGS-GN-PDGH methods.

are 10 and 6. Figures 3.12e and 3.12f show the well log data comparison at 0.1 km and

0.6 km. When SNR is 10, the structures of the inverted models can still be recognized and

l-BFGS-GN-PDGH method gives a slightly better inversion result in comparison with non-

preconditioned CG-GN method. As increasing random noise when SNR=6, the deep parts

of the inverted models are contaminated by artifacts more seriously and the l-BFGS-GN-

PDGH inverted model appears to involve stronger artifacts compared to CG-GN inverted

model. This is because incorporating diagonal Hessian approximations for preconditioning

increases instability of the inverse problem. The preconditioned HF Gauss-Newton FWI is

more sensitive to random noise. Enlarging the stabilization parameters ε̂ and λ̂ is expected

to reduce the involved artifacts. The performances of different non-linear optimization meth-

ods for this Marmousi model example are compared by examining the RLSE vs. Iterations,

as indicated in Figure 3.13. Compared to SD, NCG, l-BFGS methods, non-preconditioned

CG-GN method will provide inverted model with higher quality. Furthermore, the l-BFGS

preconditioned HF Gauss-Newton method outperforms the non-preconditioned one.
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Figure 3.10: Comparison of the convergence history for the HF Gauss-Newton methods
with different preconditioning schemes. The black-solid, blue-dash and red-dash-dot lines
indicate the convergence history of CG-GN, PDGH-GN and l-BFGS-GN-PDGH methods
respectively. Note: here I plot the minimum normalized misfit of each frequency band.

3.4.3 Applying preconditioned Hessian-free Gauss-Newton method on multiparameter acous-

tic FWI

In this numerical example, different non-linear optimization methods are applied to recon-

struct velocity and density simultaneously in multiparameter acoustic FWI. Figures 3.14a,

3.14b, 3.14c and 3.14d show the true velocity, true density, initial velocity and initial den-

sity models respectively. The model and acquisition parameters are the same with previous

example. The frequencies used for inversion are increased from 8 Hz to 26 Hz. At each fre-

quency band, 2 frequencies are used for inversion simultaneously and 10 outer iterations are

performed. The maximum number of inner iteration k̃max is 5. Other inversion parameters

are the same with previous example.

Figure 3.15 shows the inverted velocity and density models using SD, NCG and l-BFGS

methods. It can be observed that the velocity models are better recovered than density

models. Deep parts in the inverted velocity models are very weak. Additionally, it shows

that the density models are either overestimated or underestimated, which may be caused

by the parameter crosstalk artifacts when inverting velocity and density simultaneously

(Operto et al., 2013). Figure 3.16 show the inverted velocity and density models by non-

preconditioned CG-GN and l-BFGS preconditioned HF Gauss-Newton (l-BFGS-GN-PDGH)

methods. Deep parts of the velocity model (Figure 3.16a) and density model (Figure 3.16b)
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Figure 3.11: (a) Normalized misfit (log) vs. Number of forward problems solved; (b) Nor-
malized misfit (log) vs. Computation time (s). The black-solid, blue-dash and red-dash-dot
lines indicate non-preconditioned CG-GN, PDGH-GN and l-BFGS-GN-PDGH methods re-
spectively. Note: here I plot the minimum normalized misfit of each frequency band.

by non-preconditioned CG-GN method are obscure and blurred. In Figures 3.16c and 3.16d,

l-BFGS-GN-PDGH method enhances and resolves the deep parts of the models further. This

means that the proposed l-BFGS preconditioner constructed using pseudo diagonal Gauss-

Newton Hessian can improve the capability of inverse Hessian in the inversion process. In

Figures 3.17a and 3.17b, the convergency history and Normalized misfit vs. Number of

forward problems solved for non-preconditioned CG-GN and l-BFGS-GN-PDGH methods

are plotted. With the proposed preconditioning strategy, the convergence rate is improved

by 17% and to achieve the same normalized misfit value (e.g., log (φ)=−4), the computation

cost is reduced by 20% approximately. Figure 3.18 plots the RLSE vs Number of Outer

Iterations for reconstructing velocity and density simultaneously, from which it is seen that

the l-BFGS preconditioned HF Gauss-Newton methods gives the best inverted models.

Newton-based methods are expected to suppress the parameter crosstalk artifacts in

multiparameter FWI. However, for Hessian-free optimization methods, only a few number

iterations in the inner loop is affordable for large-scale inverse problems (generally, k̃max ≤ 10)

(Eisenstat and Walker, 1996; Baumstein, 2014; Métivier et al., 2016). For complex models, if

the maximum number of inner iteration is very large (e.g., k̃max=30), the HF Gauss-Newton

FWI becomes unstable and the inverted models will be contaminated by artifacts. The

75



maximum number of inner iteration k̃max is set to be 5 in this multiparameter example.

In this condition, only partial Hessian at each outer iteration is applied to precondition

the gradient. The strong parameter crosstalk between velocity and density is difficult to

be eliminated completely by the approximate inverse Hessian. In this example, the initial

density model is pretty poor. At earlier iterations, when using low frequencies for inversion,

there are residual parameter crosstalk artifacts in the inverted density model. As the iteration

proceeds, the artifacts accumulate, which makes the density model quite difficult to be

reconstructed.

3.5 Discussion

It is known that multiparameter FWI suffers from parameter crosstalk because of the cou-

pling effects between different physical parameters (Operto et al., 2013). The Gauss-Newton

Hessian has the ability of suppressing these parameter crosstalk (Innanen, 2014b; Métivier

et al., 2015). Explicit construction of the Hessian matrix is extremely expensive. The

preconditioned Hessian-free Gauss-Newton method developed in this chapter represents an

attractive strategy for large-scale multiparameter FWI. However, Hessian-free optimization

methods only apply partial Hessian to precondition the gradient, which is controlled by the

stopping criteria of the inner loop. If k̃max is set to be very small (e.g., k̃max=5), Hessian-free

optimization methods may still be limited in mitigating parameter crosstalk especially when

the long wavelength components of the multiparameter models are deficient. The pseudo

diagonal Gauss-Newton Hessian used in this chapter only incorporates the diagonal elements

of diagonal blocks in multiparameter Gauss-Newton Hessian. Diagonal elements of the off-

diagonal blocks combined with the l-BFGS preconditioning strategy should be employed for

preconditioning in multiparameter FWI (Métivier et al., 2015). For better reconstructing

density model, the empirical relationship (e.g., Gardner’s rule) can be used to create the

initial density model or considered as constraints in the inversion process. Furthermore,

parameterization is considered to be important for managing the parameter crosstalk in

multiparameter FWI (Tarantola, 1986). In the numerical section, a simple multiparameter

acoustic FWI with velocity-density parameterization is given using the preconditioned HF
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Gauss-Newton method. For further studies, multiparameter FWI in more complex media

(e.g., elastic and anisotropic media) with different parameter classes will be examined with

the preconditioned HF Gauss-Newton method.

Inappropriate ε̂ (equation (3.23)) and λ̂ (equations (3.30)) selections may make the inverse

problems unstable and involve artifacts in the inversion results especially in the presence of

noisy data. In this research, these two damping coefficients are chosen according to our

personal experience and kept unchanged during the inversion process. A better strategy for

determining ε̂ and λ̂ values is to adapt them iteratively (Marquardt, 1963), which can ensure

the stability and quadratic convergence rate (Pratt et al., 1998b).

3.6 Conclusions

In this chapter, different non-linear optimization methods for full-waveform inversion are

described and their performances in reconstructing velocity and density parameters are eval-

uated. To accelerate the Hessian-free Gauss-Newton method, this research develops different

preconditioning schemes for the inner CG algorithm at each outer iteration. A pseudo diag-

onal Gauss-Newton Hessian is also used as preconditioner based on the reciprocal property

of the Green’s function. Furthermore, I propose a l-BFGS preconditioning strategy by em-

ploying the diagonal Hessian approximations as initial guess. Some numerical examples

are presented to compare the inverted models by different optimization methods and show

that the preconditioning schemes can improve the convergence rate of HF Gauss-Newton

FWI and reduce the computation cost. It is demonstrated that the l-BFGS precondition-

ing method with pseudo diagonal Gauss-Newton Hessian as initial guess can speed up the

HF Gauss-Newton FWI most efficiently but is more sensitive to noisy data compared to

non-preconditioned one. The l-BFGS preconditioned HF Gauss-Newton method can also

reconstruct velocity and density better and more efficiently compared to non-preconditioned

HF Gauss-Newton method. Different optimization methods are applied to reconstruct ve-

locity and density parameters simultaneously. Preconditioned HF Gauss-Newton method

provides the best inverted models.
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Figure 3.12: (a) and (b) show the non-preconditioned CG-GN inversion results with
noisy data when SNR=10 (φ=0.20) and SNR=6 (φ=0.22); (c) and (d) show the
l-BFGS-GN-PDGH inversion results when SNR=10 (φ=0.19) and SNR=6 (φ=0.26); (e) and
(f) show the well log data comparison at 0.1 km and 0.6 km. The blue-dash-dot and green–
dash-dot lines indicate the well log data by CG-GN method when SNR=10 and SNR=6.
The red-dot and magenta-dot lines indicate the well log data by l-BFGS-GN-PDGH method
when SNR=10 and SNR=6.
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Figure 3.13: RLSE (equation (2.42)) vs. Iterations for the monoparameter example. The
black, green, red, blue and cyan lines indicate the model errors for SD, NCG, l-BFGS,
non-preconditioned CG-GN and l-BFGS-GN-PDGH methods respectively.
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Figure 3.14: (a) and (b) show the true velocity and true density models; (c) and (d) show
the initial velocity and initial density models.
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Figure 3.15: (a) and (b) show the inverted velocity and density models using SD method;
(c) and (d) show inverted velocity and density models using NCG method; (e) and (f) show
inverted velocity and density models using l-BFGS method; (g) and (h) show the well log
comparison at 0.1 km and 0.6 km. The blue, red and yellow lines indicate the inverted
velocity models by SD, NCG, and l-BFGS methods. The green, magenta and cyan lines
indicate the inverted density models using SD, NCG and l-BFGS methods respectively.
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Figure 3.16: (a) and (b) show the inverted velocity and density models using non-pre-
conditioned CG-GN method; (c) and (d) show inverted velocity and density models using
l-BFGS-GN-PDGH method; (e) and (f) show the well log comparison at 0.1 km and 0.6 km.
The blue and green lines indicate the inverted velocity and density by non-preconditioned
CG-GN method. The red and magenta lines indicate the inverted velocity and density by
l-BFGS-GN-PDGH method.
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Figure 3.17: (a) Normalized misfit (log) vs. Iterations; (b) Normalized misfit (log) vs.
Number of forward problems solved. The black and red lines indicate non-preconditioned
CG-GN, and l-BFGS-GN-PDGH methods respectively. Note: here I plot the minimum
normalized misfit of each frequency band.
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Figure 3.18: RLSE (equation (2.42)) vs. Iterations for the multiparameter example. The
black, green, red, blue and cyan lines indicate the model errors for SD, NCG, l-BFGS,
non-preconditioned CG-GN and l-BFGS-GN-PDGH methods respectively.
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Chapter 4

Interparameter tradeoff quantification and reduction in

isotropic-elastic FWI: synthetic experiments and

Hussar dataset application

4.1 Summary

This chapter aims at evaluating and reducing the interparameter tradeoffs in isotropic-elastic

FWI with multiparameter Hessian matrix-vector products. It is revealed that products of

multiparameter Hessian off-diagonal blocks with model perturbation vectors, defined as in-

terparameter contamination kernels, mainly account for interparameter tradeoff. The multi-

parameter Hessian is applied to various vectors designed to provide information regarding the

strengths and characteristics of interparameter contaminations locally or within the whole

volume. Based on these findings, a novel strategy is developed to mitigate the influence of

interparameter tradeoffs with approximate contamination kernels. Furthermore, I propose to

quantify resolution of the inverted models with approximate eigenvalue volume and extended

multiparameter point spread functions (EMPSFs) by preconditioned conjugate-gradient al-

gorithm. Finally, the proposed inversion strategies are applied to invert isotropic-elastic

parameters with synthetic data and Hussar practical seismic dataset. Resolution of the

inverted models are also evaluated.

4.2 Introduction

Elastic parameters are important for reservoir characterization. Simultaneously reconstruct-

ing multiple physical parameters suffers from interparameter tradeoffs arising from the inher-

ent ambiguities among these parameters, which increases the nonlinearity and uncertainty of

the inverse problems significantly (Tarantola, 1986; Köhn et al., 2012; Innanen, 2013; Operto

et al., 2013; Alkhalifa and Plessix, 2014; Innanen, 2014b). This chapter aims at: (1) creating
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more complete tools for quantifying the interparameter tradeoffs (or parameter crosstalk)

than currently exist; (2) evaluating the strengths and characteristics of the interparameter

contaminations in isotropic-elastic FWI by applying the multiparameter Hessian to various

types of test vectors; (3) developing an effective way to reduce the influence of interparame-

ter tradeoffs based on approximate contamination kernels; (4) quantifying local spatial and

interparameter tradeoff of the inverted models with extended multiparameter point spread

functions (EMPSFs).

Researchers have devoted intensive efforts to the study of parameter resolution based on

analytic solutions of Fréchet derivative wavefields (“scattering” or “radiation” patterns) for

different parameter classes (Tarantola, 1986; Gholami et al., 2013b; Alkhalifa and Plessix,

2014; Kamath and Tsvankin, 2014; Podgornova et al., 2015; Oh and Alkhalifah, 2016). Cou-

pling effects appear between two different physical parameters, if the scattered wavefields due

to the model perturbations overlap at certain range of scattering angles (Tarantola, 1986).

A high-resolution parameterization should have scattering patterns as different as possible

(Tarantola, 1986). Gholami et al. (2013a) investigated the scattering patterns of parame-

ters resulting from various parameterizations of multiparameter acoustic FWI. Alkhalifa and

Plessix (2014) emphasized the power of horizontal P-wave velocity in reducing the number

of parameters for VTI FWI.

Amplitude variations of scattering patterns provide invaluable information for under-

standing the interparameter coupling effects but also ignore some important aspects due to a

series of assumptions including incident plane-wave, homogeneous and isotropic-elastic back-

ground, high-frequency approximation, etc (Podgornova et al., 2015). These assumptions are

regularly violated in seismic data sets, i.e., finite-frequency effects and traveltime informa-

tion are not negligible in their influence on parameter resolution; heterogeneities should be

considered; spatial correlations of different physical parameters are neglected (Alkhalifa and

Plessix, 2014). Overlapping the scattering patterns due to different physical parameters in

fact represents only an asymptotic approximation of the crosstalk quantification intrinsic to

the Gauss-Newton Hessian (Operto et al., 2013). These limitations of the scattering patterns

may result in misunderstandings concerning the interparameter tradeoffs. The problem of

isotropic-elastic FWI has been investigated by many researchers (Mora, 1987; Brossier et al.,
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2009; Köhn et al., 2012; Yuan and Simons, 2014; Borisov and Singh, 2015; Raknes and

Arntsen, 2015; Modrak et al., 2016; Pan and Innanen, 2016a,c,b), but many challenges and

open questions remain. Density structures are still poorly constrained, which may be caused

by the weak sensitivity of traveltime to density variations and strong contaminations from

velocity parameters. Some issues associated with the interparameter tradeoffs of isotropic-

elastic parameters are actually not explained completely and clearly. Further unanswered

questions include:

1. how do the interparameter tradeoffs affect the inversion process ?

2. how to evaluate the strengths and characteristics of the interparameter contaminations

quantitatively ?

3. how to assess the uncertainties of the inverted models due to the interparameter trade-

offs ?

The first objective of this chapter is to evaluate the relative strengths and character-

istics of interparameter contamination in isotropic-elastic FWI with multiparameter Hes-

sian, which describes geometry of the objective function in terms of curvature or convexity

(Fichtner and Trampert, 2011c; Fichtner and van Leeuwen, 2015). The diagonal blocks in

the multiparameter Hessian characterize spatial correlations of the same physical parameter.

Off-diagonal blocks measure correlations between different physical parameters (Fichtner and

Trampert, 2011a; Operto et al., 2013). Rows in the multiparameter Hessian are averaging

kernels (Backus and Gilbert, 1968) and columns are defined as multiparameter point spread

functions (MPSFs) (Valenciano et al., 2006; Fichtner and Trampert, 2011c; Trampert et al.,

2013; Tang and Lee, 2015; Zhu and Fomel, 2016). This chapter reveals that products of

multiparameter Hessian off-diagonal blocks with the model perturbation vectors, which I

will refer to as interparameter contamination kernels, account for the interparameter trade-

offs. For most large-scale inverse problems, explicitly constructing the Hessian matrix is

considered to be computationally unaffordable. However, characteristics of the Hessian can

be inferred via matrix probing techniques, which are useful when explicit representation of

a matrix are too expensive to be constructed (Trampert et al., 2013). A low rank approxi-

mation of the Hessian can be efficiently computed by applying it to various types of vectors
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(Halko et al., 2011; Demanet et al., 2012; An, 2012; Zhu et al., 2016; Rawlinson and Spak-

man, 2016). This chapter also examines the adjoint-state and finite-difference approaches

for multiparameter Hessian matrix-vector product calculation. The product of the Hessian

with a point-localized model perturbation vector preserves one Hessian column (Spakman,

1991). The MPSFs measure the relative strengths and finite-frequency features of the lo-

cal interparameter tradeoffs. Furthermore, it is also shown (see below in this chapter) that

S-wave velocity perturbations tend generally to produce strong contaminations into density

update and phase-reversed contaminations within the P-wave velocity update, which may

make density highly under- or overestimated and cancel the update for P-wave velocity.

To assess the interparameter tradeoffs within the whole volume of interest, MPSFs should

be computed for each type of model parameter at every spatial position, which also results

in prohibitive computation expense (Fichtner and Trampert, 2011c; Chen and Xie, 2015).

Assuming that the multiparameter Hessian matrix is diagonally dominant, I have adopted a

stochastic probing strategy by applying multiparameter Hessian to random vectors. Expec-

tation values of the correlations between the random vector with its Hessian-vector products

approximate Hessian diagonals (Sacchi et al., 2007; MacCarthy et al., 2011; Trampert et al.,

2013). Arranging different random probes, the diagonals of multiparameter Hessian off-

diagonal blocks, which measure the coupling strengths of different physical parameters in

the whole volume, can be estimated stochastically. Stochastic estimations of the Hessian

diagonals can also be used as preconditioners for acceleration (Modrak and Tromp, 2016).

Reducing the uncertainties introduced by the interparameter tradeoff is becoming essen-

tial for multiparameter FWI. Newton-based optimization methods are promising because

they incorporate the inverse multiparameter Hessian with its ability to suppress the un-

wanted parameter crosstalk artifacts (Innanen, 2014b; Métivier et al., 2015; Wang et al.,

2016; Yang et al., 2016). As stated in previous chapters, explicitly constructing and in-

verting multiparameter Hessian for large-scale inverse problems is, however, impracticably

expensive as I have mentioned. Truncated-Newton (or Hessian-free) optimization methods

represent affordable strategies for multiparameter FWI, in which the Newton equation is

solved iteratively with matrix-free scheme of conjugate-gradient algorithm (Métivier et al.,

2013; Boehm and Ulbrich, 2014; Métivier et al., 2015; Liu et al., 2015). However, itera-
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tively solving the Newton equation is also expensive. Furthermore, by increasing savings

through use of a small number of inner iterations, the effectiveness of removing interparam-

eter mappings is reduced (Baumstein, 2014). Mode decomposition is a potential strategy

for mitigating interparameter tradeoffs by isolating P and S wavefields but may also be lim-

ited in reducing the contaminations in density updates and multiparameter acoustic FWI

(Wang and Cheng, 2017). Subspace optimization methods mitigate interparameter trade-

offs by scaling different physical parameters but do not prevent their occurrence (Kennett

et al., 1988; Bernauer et al., 2014). In this chapter, based on a set of observations made

on synthetic examples of interparameter tradeoff, a novel strategy is developed to reduce

the interparameter tradeoff by approximating quantities I will refer to as interparameter

contamination kernels. This strategy approximates the parameter contamination in model

space by applying multiparameter Hessian off-diagonal blocks to estimated model vectors.

The result is a model estimate which is approximately free of parameter crosstalk, and which

has been created without iteratively solving large Newton systems, and which is in principle

applicable to any tomographic or FWI misfit function. Numerical examples are given to

illustrate that this new strategy is able to remove the contaminations from S-wave velocity

partially and provide more reliable density estimations in isotropic-elastic FWI.

In addition to suppressing interparameter contaminations, parameter resolution quantifi-

cation is key to a well-posed inverse scheme; it has been investigated by many researchers

(Backus and Gilbert, 1968; Spakman, 1991; Fichtner and Trampert, 2011c; Rawlinson et al.,

2014; Rawlinson and Spakman, 2016; Zhu et al., 2016). Within a Bayesian inference frame-

work, uncertainties of the maximum a posterior model are evaluated based on posterior

covariance operator which has a direct relationship with the (inverse) Hessian (Gouveia and

Scales, 1998; Tarantola, 2005; Dettmer et al., 2007; Fichtner and Trampert, 2011c; Flath

et al., 2011). In recent years, researchers have evaluated the local resolution of the inverted

model with point spread functions by applying multiparameter Hessian to Gaussian-shape

model perturbations (Fichtner and Trampert, 2011c; Rickers et al., 2013; Zhu et al., 2015;

Bozdağ et al., 2016). However, the point spread functions actually represent conservative

estimations of columns in resolution matrix by approximating inverse Hessian as an identity

matrix (Oldenborger and Routh, 2009; Fichtner and van Leeuwen, 2015). The similarities
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and differences of the Hessian matrix and resolution matrix in resolution analysis are inves-

tigated. Approximate eigenvalue volumes are used to evaluate resolution of inverted models

within the whole volume. Local spatial and interparameter tradeoffs of the inverted models

are quantified with extended multiparameter point spread functions (EMPSFs) by applying

the approximate inverse Hessian to the traditional MPSFs iteratively with preconditioned

conjugate-gradient algorithm. The approximate inverse Hessian will de-blur the MPSFs fur-

ther, balance the relative magnitudes by compensating geometrical spreading and mitigate

interparameter contaminations, which represent more accurate local measurements of spatial

and interparameter tradeoffs.

This chapter first reviews the basic principles of isotropic-elastic FWI. Benefits and lim-

itations of the parameter resolution studies based upon scattering patterns are explored.

Interparameter contamination kernels are then defined and how to evaluate the interparam-

eter tradeoffs with multiparameter Hessian-vector products is explained. An explanation

of the novel inversion strategy in reducing the interparameter tradeoffs with approximate

contamination kernels is then given. Strategies for quantifying the resolution of the inverted

models with approximate eigenvalue volumes and extended multiparameter point spread

functions (EMPSFs) are explained. In the numerical modelling section, the strengths and

characteristics of local interparameter tradeoffs are first examined with multiparameter point

spread functions. Proposed matrix probing techniques are applied on a complex Marmousi

model to assess the interparameter tradeoffs within the whole volume. The new inversion

strategy is also applied to invert isotropic-elastic parameters with synthetic data and the

low-frequency Hussar field seismic data set acquired by the CREWES Project and collabo-

rators in 2011 (Margrave et al., 2012). The approximate eigenvalue volumes and EMPSFs

are used to quantify resolution of the inverted models. The performances of various pa-

rameterizations for reconstructing subsurface isotropic-elastic properties are also examined

with synthetic examples. Note: in this chapter, the expressions of gradients, Hessian-vector

products, etc are given in time domain with integral formulas, whereas in previous chapters

for convenience discrete formulas were used.
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4.3 Methodology

4.3.1 Isotropic-elastic full-waveform inversion

The common l-2 norm misfit function in time domain can be expressed as:

Φ (m) =
∑
xs

∑
xg

∫ T

0

‖∆d (xs,xg, t; m) ‖2dt, (4.1)

where ∆d (xs,xg, t; m) = dsyn (xs,xg, t) − dobs (xs,xg, t; m) is the data residual, xs (s =

1, ..., S) and xg (g = 1, ..., R) indicate source and receiver locations, S and R are the max-

imum source and receiver indexes, and T represents maximum recording time. In order to

solve the inverse problem and find the model which minimizes the adopted cost function,

the model is updated iteratively. The gradient of the misfit function can be obtained by

correlating the Fréchet derivative wavefield with data residual:

∇mΦ (m) =
∑
xs

∑
xg

∫ T

0

∫
Ω(x)

∇m(x)u
? (xs,xg, t; m) ∆d (xs,xg, t; m) dxdt, (4.2)

where ∇m(x)u (xs,xg, t; m) indicates the Fréchet derivative wavefield, Ω indicates the whole

volume, and the symbol ?means complex conjugate transpose. Considering general anisotropic-

elastic media, based on Born approximation the perturbed nth displacement field due to

model perturbation ∆mρ and ∆mcijkl is expressed as:

∆un (xs,xg, t; ∆m) =−
∫

Ω(x)

∫ t

0

[∆mρ (x)Gni (x,xr, t− t′) ∂2
t ui (x,xs, t

′)

+ ∆mcijkl (x) ∂jGni (x,xr, t− t′) ∂kul (x,xs, t′)]dt′dx,
(4.3)

where ρ and cijkl (i, j, k, l take on the values of x, y, z) denote density and elastic constant

tensor with Einstein summation convention, Gni is the Green’s tensor, the nth displace-

ment response due to impulse source at the ith direction. For isotropic-elastic media, the

perturbation of elastic constants can be expressed in terms of the perturbations of bulk

modulus ∆mκ and shear modulus ∆mµ: ∆mcijkl (x) = (∆mκ (x)− 2/3∆mµ (x)) δijδkl +

∆mµ (x) (δikδjl + δjkδil). Wavefield perturbation due to the perturbations of isotropic-elastic
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parameters are expressed as:

∆un (xs,xg, t; ∆m) = −
∫

Ω(x)

∫ t

0

[∆mρ (x)Gni (x,xr, t− t′) ∂2
t ui (x,xs, t

′)

+

(
∆mκ (x)− 2

3
∆mµ (x)

)
δijδkl∂jGni (x,xr, t− t′) ∂kul (x,xs, t′)

+ ∆mµ (x) (δikδjl + δjkδil) ∂jGni (x,xr, t− t′) ∂kul (x,xs, t′)]dt′dx.

(4.4)

Substituting equation (4.4) into equation (4.5) gives the Fréchet derivative of the misfit

function:

∇mΦ (m) =

∫
Ω(x)

[Kκ (x) aκ (x) +Kµ (x) aµ (x) +Kρ (x) aρ (x)]dx, (4.5)

where Kκ, Kµ and Kρ represent sensitivity kernels with respect to bulk modulus κ, shear

modulus µ and density ρ, aκ = ∆mκ/mκ, aµ = ∆mµ/mµ and aρ = ∆mρ/mρ are relative

model perturbations. Explicit expressions of the sensitivity kernels for these isotropic-elastic

parameters can be written as (Tromp et al., 2005; Liu et al., 2006; Zhu et al., 2009; Luo

et al., 2013; Yuan and Simons, 2014):

Kκ (x) = −
∑
xs

∑
xg

∫ T

0

κ (x) ∂iũi (xg,x, T − t) ∂kuk (x,xs, t) dt, (4.6)

Kµ (x) =−
∑
xs

∑
xg

∫ T

0

µ (x) [∂jũi (xg,x, T − t) (∂iuj (x,xs, t) + ∂jui (x,xs, t))

− 2

3
∂iũi (xg,x, T − t) ∂kuk (x,xs, t)]dt,

(4.7)

Kρ (x) = −
∑
xs

∑
xg

∫ T

0

ρ (x) ũi (xg,x, T − t) ∂2
t ui (x,xs, t) dt, (4.8)

where ũi (xg,x, T − t) represents the ith component of the adjoint wavefield:

ũi (xg,x, T − t) =

∫ T−t

0

Gin (xg,x, T − t− t′) f̃n (x, t′) dt′, (4.9)

where f̃n (x, t′) is the adjoint source (Tromp et al., 2005; Bozdag et al., 2011):

f̃n (x, t′) =
∑
xg

∆dn (xg, T − t′) δ (x− xg) . (4.10)

With velocity-density parameterization, the corresponding sensitivity kernels for P-velocity

α, S-wave velocity β and density ρ′ are given by (Tromp et al., 2005; Köhn et al., 2012; Yuan
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et al., 2015):

Kα = 2

(
1 +

4

3

µ

κ

)
Kκ, Kβ = 2

(
Kµ −

4

3

µ

κ
Kκ

)
, Kρ′ = Kρ +Kκ +Kµ. (4.11)

For impedance-density parameterization, sensitivity kernels of P-wave impedance IP=αρ′′,

S-wave impedance IS=βρ′′ and density ρ′′ are given by:

KIP = 2

(
1 +

4

3

µ

κ

)
Kκ = Kα,

KIS = 2

(
Kµ −

4

3

µ

κ
Kκ

)
= Kβ,

Kρ′′ = −Kκ −Kµ +Kρ = −Kα −Kβ +Kρ′ .

(4.12)

Matrix multiplication of Newton equation system can be written with an integral formula-

tion:

∇mΦ (x) = −
∫

Ω(x′)

H (x,x′) ∆m (x′) dx′, (4.13)

where H (x,x′) denotes one Hessian element described by positions x and x′. In this chapter,

to update the isotropic-elastic parameters simultaneously, a quasi-Newton l-BFGS optimiza-

tion method is used. At each iteration, a line search approach is employed to obtain the step

length for updating the model (Nocedal and Wright, 2006; Yuan et al., 2015).

4.3.2 Physical interpretation of multiparameter Hessian

In multiparameter FWI, the multiparameter Hessian has a block structure. For general

anisotropic-elastic media, Hessian H can be expressed as:

H =

∫
Ω(x)

∫
Ω(x′)

[∆mρ (x)Hρρ (x,x′) ∆mρ (x′) + ∆mρ (x)Hρc (x,x′) ::∆mc (x′)

+ ∆mc (x) ::Hcρ (x,x′) ∆mρ (x′) + ∆mc (x) ::Hcρ (x,x′) ::∆mc (x′)] dxdx′,

(4.14)

where ∆mc indicates the perturbation of elastic constant tensor c and :: means sequential

contractions over the four nearest tensor indices (Luo, 2012). Because H is symmetric, then

Hρc = H†cρ. Explicit expressions of diagonal blocks Hρρ and Hcc and off-diagonal block Hcρ

are given by:

Hρρ (x,x′) =
∑
xs

∑
xg

∫ ∫
∂2
t′ui (x,xs, t

′)Gni (xg,x, T − t′)

×Gn′i′ (xg,x
′, t− t′′) ∂2

t′′ui′ (x′,xs, t
′′) dt′dt′′,

(4.15)
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Hcc (x,x′) =
∑
xs

∑
xg

∫ ∫
∂kul (x,xs, t

′) ∂jGni (xg,x, T − t′)

× ∂j′Gn′i′ (xg,x
′, t− t′′) ∂k′ul′ (x′,xs, t

′′) dt′dt′′,

(4.16)

Hcρ (x,x′) =
∑
xs

∑
xg

∫ ∫
∂kul (x,xs, t

′) ∂jGni (xg,x, T − t′)

×Gn′i′ (xg,x
′, t− t′′) ∂2

t′′ui′ (x′,xs, t
′′) dt′dt′′.

(4.17)

For velocity-density parameterization in isotropic-elastic FWI, the Newton equation system

for simultaneously updating P-wave velocity α, S-wave velocity β and density ρ′ can be

written as: 
Hαα Hαβ Hαρ′

Hβα Hββ Hβρ′

Hρ′α Hρ′β Hρ′ρ′




∆mα

∆mβ

∆mρ′

 = −


∇αΦ

∇βΦ

∇ρ′Φ

 , (4.18)

where ∇αΦ, ∇βΦ, and ∇ρ′Φ are gradient vectors of α, β and ρ′ respectively. Multiparameter

Hessian elements can be classified into 4 types: (A) diagonal elements of the diagonal blocks

account for geometrical spreading (i.e., Hαα (x,x)); (B) off-diagonal elements of the diagonal

blocks measure the spatial correlations of model parameters with the same physical signature

(i.e., Hαα (x,x′) with x 6= x′); (C) diagonals of off-diagonal blocks indicate the strength of

interparameter coupling at the same location (i.e., Hαβ (x,x)); (D) off-diagonal elements of

off-diagonal blocks describe both spatial and interparameter tradeoffs (i.e., Hαβ (x,x′) with

x 6= x′). One column of the multiparameter Hessian describes the blurring of an input delta

function by the inverse operator, which is defined as multiparameter point spread function

(MPSF) (Fichtner and Trampert, 2011c; Trampert et al., 2013; Fichtner and van Leeuwen,

2015; Tang and Lee, 2015; Zhu and Fomel, 2016). For example, the column Hβ (x,xN)

indicates the correlation model parameter β at position xN with model parameters α, β and

ρ′ at all positions in the whole volume.

4.3.3 Parameter resolution analysis with scattering patterns

In recent years, researchers have made great efforts to understand the resolving abilities of

different parameterizations in multiparameter FWI based on “scattering” (or “radiation”)

patterns (Tarantola, 1986; Gholami et al., 2013b; Operto et al., 2013; Alkhalifa and Plessix,

2014; Kamath and Tsvankin, 2014; Podgornova et al., 2015). Scattering pattern represents
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the amplitude variations of Fréchet derivative wavefields with varying scattering or azimuthal

angles. Parameter ambiguity appears when the scattering patterns duo to different physical

parameters overlap at a certain range of scattering angle. Inversion sensitivity studies play

a crucial role in characterizing interparameter tradeoffs, designing optimal parameterization

and acquisition geometry for multiparameter FWI (Tarantola, 1986; Gholami et al., 2013b;

Kamath and Tsvankin, 2014; Rusmanugroho et al., 2017).

4.3.3.1 Benefits and limitations of scattering patterns

Scattering patterns provide us with an efficient way to evaluate the coupling effects between

different physical parameters. In Appendix B, the scattering coefficients of isotropic-elastic

parameters within various parameterizations following the framework of scattering potentials

developed by Stolt and Weglein (2012) are given. Figure 4.1 shows the scattering patterns

due to the isotropic-elastic parameters, which provide important information for us to un-

derstand the parameter coupling effects with different wave modes. For example, subsurface

density heterogeneities are essentially important for fluid reservoir characterization but are

still poorly constrained in FWI, which may be caused by strong contaminations from velocity

parameters (Kuo and Romanowicz, 2002; Xu and McMechan, 2014; Yuan et al., 2015) and

the weak sensitivity of traveltime observations to density variations (Plonka et al., 2016).

From the scattering patterns, it is observed that the scattered waves due to density pertur-

bations propagate backward, which means that in transmission tomography, it will be very

challenging to recover density properties. Examining P-P scattering patterns informs us that

distinguishing P-wave velocity and density diffractors at near offset will be difficult.

However, scattering patterns may not be enough to evaluate the interparameter con-

taminations completely because of their oversimplification of the wave-medium interaction.

First, the scattering patterns are derived based on the assumption that an incident plane-

wave is scattered due to a local point heterogeneity or a horizontal reflector embedded in

an isotropic-elastic and homogeneous background. This means that the complex physical

background model and geometrical spreading effects are ignored. Second, scattering patterns

only represent the amplitude variations of the Fréchet derivative wavefields. The influences

of traveltime and finite-frequencies on interparameter tradeoffs should also be considered.
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Figure 4.1: Figures (a-e) show the SH-SH, P-P, P-SV, SV-P and SV-SV scattering patterns
due to the perturbations of isotropic-elastic parameters. Solid-grey and solid-black curves
indicate the scattering patterns due to perturbations of S-wave velocity and density. In (a),
the dash-black curve represents the P-P scattering pattern due the perturbation of P-wave
velocity.

Furthermore, analysis based on scattering patterns also neglect the spatial correlations of

different physical parameters (Alkhalifa and Plessix, 2014), which actually are very strong

when using low frequencies for inversion or in transmission tomography. These defects of

scattering patterns may result in misleading conclusions about the interparameter tradeoffs.

4.3.4 Quantifying interparameter tradeoffs via multiparameter Hessian probing

First this section shows that the unwanted interparameter tradeoff artifacts can be described

by interparameter contamination kernels defined as products of multiparameter Hessian off-

diagonal blocks with model perturbation vectors. Thus, the interparameter tradeoffs in

isotropic-elastic FWI can be quantified by probing the multiparameter Hessian with various

test vectors.

4.3.4.1 Interparameter contamination kernels

Interparameter contamination kernels may be first introduced starting from standard sensi-

tivity kernels. According to equation (4.11), the sensitivity kernel Kα (x) is written explicitly

as:

Kα (x) = −
∑
xs

∑
xg

∫ T

0

2ρ′α2∂kuk (xs,x, t)

∫ T−t

0

∂iGin (x,xg, T − t− t′) f̃n (x, t′) dt′dt,

(4.19)
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where the adjoint source f̃n can be decomposed into three parts due to perturbations of

∆mα, ∆mβ and ∆mρ′ respectively:

f̃n (x, t′; ∆m) = f̃n (x, t′; ∆mα) + f̃n (x, t′; ∆mβ) + f̃n (x, t′; ∆mρ′) . (4.20)

Ignoring multiple scattering components in the data residuals and following equations (4.4)

and (4.10), the three adjoint sources in equation (4.20) can be expressed as:

f̃n′ (x, t′; ∆mα) =〈2ρ′α2∂i′Gi′n′ (x′) ∆mα (x′) ∂k′uk′ (x′) δ (x− xg)〉, (4.21)

f̃n′ (x, t′; ∆mβ) =〈2ρ′β2 [∂j′Gn′i′ (x′) ∆mβ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))

−2∂i′Gn′i′ (x′) ∆mβ (x′) ∂k′uk′ (x′)] δ (x− xg)〉,
(4.22)

f̃n′ (x, t′; ∆mρ′) =〈ρ′
[(
Gn′i′ (x′) ∆mρ′ (x′) ∂2

t′ui′ (x′) + 2α2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′)
)

+2β2 (∂j′Gn′i′ (x′) ∆mρ′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))

−2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′))] δ (x− xg)〉,

(4.23)

where the symbol 〈·〉 indicates summation over sources, receivers, time and positions for sake

of compactness. Inserting equations (4.21), (4.22) and (4.23) into equation (4.19) partitions

the standard sensitivity kernel Kα into:

Kα = Kα↔α +Kβ→α +Kρ′→α, (4.24)

where the first term Kα↔α represents the correct update kernel for α, and the second and

third terms Kβ→α and Kρ′→α are defined as interparameter contamination kernels (Pan et al.,

2017d,b,c), which represent the contaminations from β and ρ′ to α:

Kα↔α (x) =− 〈2ρ′α2∂kuk (x) ∂iGin (x)
[
2ρ′α2∂i′Gi′n′ (x′) ∆mα (x′) ∂k′uk′ (x′)

]
〉, (4.25)

Kβ→α (x) =− 〈2ρ′α2∂kuk (x) ∂iGin (x) 2ρ′β2 [∂j′Gn′i′ (x′) ∆mβ (x′) (∂i′uj′ (x′)

+∂j′ui′ (x′)) − 2∂i′Gn′i′ (x′) ∆mβ (x′) ∂k′uk′ (x′)]〉,
(4.26)

Kρ′→α (x) =− 〈2ρ′α2∂kuk (x) ∂iGin (x) ρ′
[(
Gn′i′ (x′) ∆mρ′ (x′) ∂2

t′ui′ (x′) + 2α2∂i′Gn′i′ (x′)

×∆mρ′ (x′) ∂k′uk′ (x′)) +2β2 (∂j′Gn′i′ (x′) ∆mρ′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))

−2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′))]〉.

(4.27)
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Interparameter contamination kernels can also be explained and obtained with Newton equa-

tion (4.18). The gradient vector ∇αΦ (x) in equation (4.18) can be written as an integral

formulation:

∇αΦ (x) = −
∫

Ω(x′)

Hαα (x,x′) ∆mα (x′) dx′

−
∫

Ω(x′)

Hαβ (x,x′) ∆mβ (x′) dx′

−
∫

Ω(x′)

Hαρ′ (x,x′) ∆mρ′ (x′) dx′,

(4.28)

where model perturbation vectors ∆mβ and ∆mρ′ blurred by off-diagonal blocks Hαβ and

Hαρ′ in multiparameter Hessian are mapped into the update for parameter α. Equation

(4.28) is equivalent to equation (4.24). Products of multiparameter Hessian block matri-

ces with the model perturbation vectors are equivalent to the correct update kernel Kα↔α

and interparameter contamination kernels Kβ→α and Kρ′→α in equation (4.28). Similarly,

gradient vectors ∇βΦ and ∇ρ′Φ can be written as:

∇βΦ (x) = aβ (Kα→β (x) +Kβ↔β (x) +Kρ′→β (x))

= −
∫

Ω(x′)

Hβα (x,x′) ∆mα (x′) dx′

−
∫

Ω(x′)

Hββ (x,x′) ∆mβ (x′) dx′

−
∫

Ω(x′)

Hβρ′ (x,x′) ∆mρ′ (x′) dx′,

(4.29)

∇ρ′Φ (x) = aρ′ (Kα→ρ′ (x) +Kβ→ρ′ (x) +Kρ′↔ρ′ (x))

= −
∫

Ω(x′)

Hρ′α (x,x′) ∆mα (x′) dx′

−
∫

Ω(x′)

Hρ′β (x,x′) ∆mβ (x′) dx′

−
∫

Ω(x′)

Hρ′ρ′ (x,x′) ∆mρ′ (x′) dx′,

(4.30)

where Kβ↔β and Kρ′↔ρ′ are correct update kernels for β and ρ′, Kα→β and Kρ′→β described

by off-diagonal blocks Hβα and Hβρ′ indicate contaminations from α and ρ′ to β, Kα→ρ′ and

Kβ→ρ′ described by off-diagonal blocks Hρ′α and Hρ′β are contaminations from α and β to

ρ′. Explicit expressions of these correct update kernels and interparameter contamination

kernels are given in Appendix C.
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According to equations (4.28), (4.29) and (4.30), gradient updates are linear combina-

tions of correct model estimations and the contributions of the interparameter contamination

kernels, which are determined by both of model perturbations and multiparameter Hessian

off-diagonal blocks. In a generalized inversion framework, off-diagonal blocks of the mul-

tiparameter Hessian provide direct measurements of the parameter crosstalks, which are

influenced by different wave modes, source-receiver illumination, parameterizations, etc. In

large-scale inverse problems, it is always unaffordable to construct the whole Hessian matrix

explicitly. One objective of this paper is to infer the characteristics of Hessian with ma-

trix probing techniques by applying multiparameter Hessian to various types of vectors and

quantify the interparameter tradeoffs in isotropic-elastic FWI. Products of multiparameter

Hessian with an arbitrary vector can be calculated with adjoint-sate and finite-difference

approaches, as explained in Appendix D.

4.3.4.2 Multiparameter point spread functions

The multiparameter Hessian is first applied to model perturbation vector ∆m:

∆m = [∆mα = 0 ∆mβ = Aβδ (x− z) ∆mρ′ = 0]† , (4.31)

where perturbations of P-wave velocity α and density ρ′ are zeros and perturbation of S-wave

velocity β is point located at position z with a strength of Aβ. According to equations (4.28),

(4.29) and (4.30), the correct update kernel for S-wave velocity Kβ↔β is given by:

Kβ↔β (x, z) = −a−1
β Aβ

∫
Ω(x′)

Hββ (x,x′) δ (x′ − z) dx′. (4.32)

According to the sifting property of delta function:

Kβ↔β (x, z) = −a−1
β AβHββ (x, z) . (4.33)

Similarly, interparameter contamination kernels Kβ→α and Kβ→ρ′ are given by:

Kβ→α (x, z) = −a−1
β Aβ

∫
Ω(x′)

Hαβ (x,x′) δ (x′ − z) dx′ = −a−1
β AβHαβ (x, z) (4.34)

Kβ→ρ′ (x, z) = −a−1
β Aβ

∫
Ω(x′)

Hρ′β (x,x′) δ (x′ − z) dx′ = −a−1
β AβHαβ (x, z) , (4.35)
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where Kβ→α (x, z) and Kβ→ρ′ (x, z) are local contaminations from β to α and ρ′. Multipa-

rameter Hessian-vector product preserves the column of multiparameter Hessian Hβ (x, z) =

[Hαβ (x, z) Hββ (x, z) Hρ′β (x, z)]†, which is referred to as a multiparameter point spread

function (MPSF) following the common convention in exploration geophysics (Hu et al.,

2001; Valenciano et al., 2006; Valenciano, 2008; Tang, 2009; Ren et al., 2011). Following

equations (4.25), (4.26) and (4.27), the multiparameter point spread function Hβ (x, z) can

be expressed explicitly as:

Hββ (x, z) =〈−2ρ′β2 (x) [∂jGni (x) (∂iuj (x) + ∂jui (x))

−2∂iGni (x) ∂kuk (x)]Jβ (z)〉,
(4.36)

Hαβ (x, z) = 〈−2ρ′α2 (x) ∂iGni (x) ∂kuk (x)Jβ (z)〉, (4.37)

Hρ′β (x, z) = 〈−ρ′ (x)
[(
Gni (x) ∂2

t ui (x) + 2α2∂iGni (x) ∂kuk (x)
)

+2β2 (∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x))
]
Jβ (z)〉,

(4.38)

where Jβ (z) represents the product of Jacobian matrix due to parameter β with the point-

localized model perturbation vector:

Jβ (z) =−
∫

Ω(x′)

2ρ′β2 (x′) [∂j′Gn′i′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))

−2∂i′Gn′i′ (x′) ∂k′uk′ (x′)]Aβδ (x′ − z) dx′.

(4.39)

Applying multiparameter Hessian to spike model perturbation ∆mα = Aαδ (x− z) or ∆mρ′ =

Aρ′δ (x− z) allows us to calculate the MPSFs Hβα (x, z), Hρ′α (x, z), Hαρ′ (x, z), and Hβρ′ (x, z),

which describe the local contaminations from α to β and ρ′ and the contaminations from ρ′

to α and β. With these MPSFs, the relative strengths, phase characteristics and spreading

widths of the local interparameter contaminations are evaluated by taking finite-frequency

effects and source-receiver illumination into consideration. Because it is used within the

context of the Born approximation, the amplitude of the spike model perturbation vector

should be chosen to be smaller than 10% of the background model.

4.3.4.3 Evaluating interparameter tradeoffs within the whole volume

Multiparameter point spread functions (MPSFs) are limited in their ability to characterize

the parameter resolution because they are spatially local. To evaluate the coupling effects
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of different physical parameters in the whole volume of interest, MPSFs would have to be

computed for each type of model parameter at every spatial position, which gives rise to ex-

tensive computation requirements. An efficient stochastic probing approach is introduced to

estimate the essential diagonals of subblock matrices in multiparameter Hessian. Diagonals

of multiparameter Hessian off-diagonal blocks measure the coupling strengths of different

physical parameters in the whole volume.

I first consider a function v (x), which satisfies v ∼ N (E [v] ,Σvv) (N means Gaussian

distribution). Expectation value E [v] and variance-covariance matrix Σvv satisfy:

E [v (x)] = 0, (4.40)

Σvv (v (x) , v (x′)) = E
[
(v (x)− E [v (x)]) (v (x′)− E [v (x′)])

†
]

= E [v (x) v (x′)]− E [v (x)] (E [v (x′)])
†

= δ (x− x′) .

(4.41)

Correlating this random function with its Hessian-vector product H = Hv gives:

v (x)� H (x) =

∫
Ω(x′)

v (x)H (x,x′) v (x′) dx′

= v (x)H (x,x) v (x) +

∫
Ω(x′)

v (x)Hx 6=x′ (x,x′) v (x′) dx′,

(4.42)

where � indicates element-wise multiplication, H (x,x) and Hx 6=x′ (x,x′) represents Hessian

diagonals and off-diagonals. Applying expectation operator E on both sides of equation

(4.42) gives (Sacchi et al., 2007; Trampert et al., 2013):

E [v (x)� H (x)] =

∫
Ω(x′)

H (x,x′)E [v (x) v (x′)] dx′

=

∫
Ω(x′)

H (x,x′)
(

Σvv (v (x) , v (x′)) + E [v (x)] (E [v (x′)])
†
)
dx′

=

∫
Ω(x′)

H (x,x′) δ (x− x′) dx′

= H (x,x) ,

(4.43)

where it can be seen that taking the expectation operation, the second term in equation

(4.42), which represents off-diagonal elements, vanishes (Hutchinson, 1990; Trampert et al.,
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2013). The theoretical expectation operation can be approximated by averaging the cross-

correlation results v�H with a finite number of independent zero-mean random vectors:

Hdiag ≈
NR∑
nr=1

vnr �Hvnr �
NR∑
nr

vnr � vnr (4.44)

where � represents element-wise division, nr is the index of random vector, NR indicates

the maximum number of random vectors and vnr � vnr is normalization term (MacCarthy

et al., 2011). In a multiparameter inverse problem, the random vector v can be partitioned

into Np subvectors and multiparameter Hessian is divided into Np ×Np subblock matrices,

as illustrated in equation (4.18). Applying multiparameter Hessian to the random vector

gives Np sub-Hessian-vector products. Diagonals of the Hessian subblock matrices can be

estimated by:

Hdiag
pq = E [vp �Hp] = E

[
vp �

Np∑
q=1

Hpqvq

]
, (4.45)

where p and q are indexes for subvectors representing different physical parameters, and Hp

is the sub-Hessian-vector product. Considering that zero-mean random vectors vp and vq

for two different physical parameters are independent, equation (4.45) becomes:

Hdiag
pq =

Np∑
q=1

HpqE [vpvq] = HpqE [vpvp] . (4.46)

Proof of equation (4.46) is given in Appendix E. With a series of random vectors, diagonals

of the Hessian subblock matrices can be obtained approximately by:

Hdiag
pq ≈

NR∑
nr=1

vp,nr �Hpqvp,nr �
NR∑
nr=1

vp,nr � vp,nr. (4.47)

In isotropic-elastic FWI, the random vector is given by v = [vα vβ vρ′ ]
†, where vα, vβ, and

vρ′ are independent zero-mean subvectors. Applying multiparameter Hessian to this random

vector gives three sub-Hessian-vector products Hα, Hβ and Hρ′ :

Hα = Hααvα + Hαβvβ + Hαρ′vρ′ , (4.48)

Hβ = Hβαvα + Hββvβ + Hβρ′vρ′ , (4.49)

Hρ′ = Hρ′αvα + Hρ′βvβ + Hρ′ρ′vρ′ . (4.50)
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With a series of independent zero-mean random vectors, diagonals of the Hessian subblocks

Hαα and Hβα can be estimated approximately by:

Hdiag
αα = E [vα �Hα]

= E [vα �Hααvα] + E [vα �Hαβvβ] + E [vα �Hαρ′vρ′ ]

≈
NR∑
nr=1

vα,nr �Hααvα,nr �
NR∑
nr=1

vα,nr � vα,nr,

(4.51)

Hdiag
βα = E [vα �Hβ]

= E [vα �Hβαvα] + E [vα �Hββvβ] + E [vα �Hβρ′vρ′ ]

≈
NR∑
nr=1

vα,nr �Hβαvα,nr �
NR∑
nr=1

vα,nr � vα,nr.

(4.52)

A similar approach can be used to estimate the diagonals of Hββ, Hρ′ρ′ , Hαρ′ and Hβρ′ . The

choice of maximum random vectors NR depends on the desired accuracy of the estimated di-

agonals, which can be evaluated by statistically examining repeated estimates with indepen-

dent random vectors (MacCarthy et al., 2011). Generally, more random probes give better

estimations. If the sublocks of multiparameter Hessian are diagonally dominant, much less

random probes are needed (Trampert et al., 2013). Sacchi et al. (2007) estimated the diago-

nal Hessian preconditioner with 5 random realizations using a phase shift approach. In this

chapter, we show that diagonals of multiparameter Hessian can be estimated stochastically

with 1 or 2 random Hessian-vector applications using spectral-element method. Stochastic

estimations of Hessian diagonals can also be used as effective preconditioners in the inversion

process.

4.3.5 Reducing interparameter tradeoffs with approximate contamination kernels

Non-uniqueness due to interparameter tradeoffs will increase nonlinearity and uncertainties

within multiparameter inverse problems significantly. Different strategies including Newton-

based optimization methods (Métivier et al., 2015; Liu et al., 2015), subspace optimization

methods (Kennett et al., 1988; Baumstein, 2014; Bernauer et al., 2014), and wave mode de-

composition strategies (Wang and Cheng, 2017), have been proposed to reduce the influences

of interparameter tradeoffs in multiparameter FWI. However, most of these strategies have
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some limitations, as discussed in introduction section. In the numerical modelling section,

with the proposed probing strategies, I find that S-wave velocity dominates the inversion pro-

cess and produces relatively strong contaminations into density and P-wave velocity updates

but suffers very weak contaminations from other parameters. Based on these observations,

a novel inversion strategy has been developed to reduce the contaminations from S-wave

velocity to other parameters especially density by approximating the contamination kernels.

From equation (4.30), it can be seen that the standard sensitivity kernel Kρ′ is just linear

summation of the correct update kernel Kρ′↔ρ′ with two contamination kernels Kα→ρ′ and

Kβ→ρ′ . The interparameter mappings from α and β to ρ′ can be removed completely by

simply summing the Hessian-vector products Hρ′α = Hρ′α∆mα and Hρ′β = Hρ′β∆mβ with

standard sensitivity kernel Kρ′ . However, true model perturbation vectors ∆mα and ∆mβ

are unknown variables. Because S-wave velocity suffers little contaminations from other

parameters, the model parameters can be updated simultaneously for a finite number of

k′ iterations and then the inverted P-wave velocity and density models are dropped. The

estimated S-wave velocity mk′

β is kept. The inversion is then started from initial models

by simultaneously updating three model parameters. At the k̃th iteration, the approximate

contamination kernels K̃ k̃
β→α and K̃ k̃

β→ρ′ are constructed:

K̃ k̃
β→α (x) = −

∫
Ω(x′)

H k̃
αβ (x,x′) ∆m̃k̃

β (x′) dx′, (4.53)

K̃ k̃
β→ρ′ (x) = −

∫
Ω(x′)

H k̃
ρ′β (x,x′) ∆m̃k̃

β (x′) dx′, (4.54)

where ∆m̃k̃
β = mk′

β −mk̃
β is the approximate model perturbation vector. Subtracting the

approximate contamination kernels from the standard sensitivity kernels K k̃
α and K k̃

ρ′ will

remove the contaminations partially and give the new update kernels for α, β and ρ′:

K̃ k̃
α (x) = K k̃

α (x)− K̃ k̃
β→α (x) , K̃ k̃

β (x) = K k̃
β (x) , K̃ k̃

ρ′ (x) = K k̃
ρ′ (x)− K̃ k̃

β→ρ′ (x) , (4.55)

in which the S-wave velocity kernel K̃ k̃
β is kept unchanged. A better approximation of the

model perturbation vector ∆m̃β removes the contaminations more completely but at the

cost of more computation requirements. Table 4.1 illustrates the basic work-flow for this

inversion strategy. In traditional simultaneous inversion strategy, the computational cost of
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Notations: k̃max is the maximum iteration; φ is the normalized misfit;

φmin is the minimum normalized misfit; Nf is the frequency band.

Input: ← m0 = [m0
α m0

β m0
ρ′ ]
†, φmin, k̃max,

˜̃kmax, k
′, Nf , dobs

Output: → mest, φ

Initialization: k̃ = 0

For k̃ < k̃max or φk̃ > φmin

1. ← mk̃, k′, Nf , dobs \\ Iteratively estimate β by k′ iterations → mk′

β ;

2. For ˜̃k < ˜̃kmax

2.1. ← mk̃, Nf , dobs \\ Calculate sensitivity kernels → K
˜̃
k
α, K

˜̃
k
β and K

˜̃
k
ρ′ ;

2.2. ← ∆m̃
˜̃
k
β = mk′

β −m
˜̃
k
β \\ Calculate approximate contamination kernels:

→ K̃
˜̃
k
β→α = −H

˜̃
k
αβ∆m̃

˜̃
k
β, K̃

˜̃
k
β→ρ′ = −H

˜̃
k
ρ′β∆m̃

˜̃
k
β

2.3. ← K̃
˜̃
k
β→α and K̃

˜̃
k
β→ρ′ \\ Calculate new update kernels:

→ K̃
˜̃
k
α = K

˜̃
k
α − K̃

˜̃
k
β→α, K̃

˜̃
k
β = K

˜̃
k
β , K̃

˜̃
k
ρ′ = K

˜̃
k
ρ′ − K̃

˜̃
k
β→ρ′

2.4. Apply stochastic estimations of diagonal Hessian preconditioners:

2.5. Get step length µ˜̃
k

with a line search method;

2.6. Update the model vector: m
˜̃
k+1 = m

˜̃
k + µ˜̃

k
∆m

˜̃
k;

2.7. Calculate misfit φ˜̃
k

and ˜̃k = ˜̃k + 1;

End

3. Update parameters: k̃ = k̃ + ˜̃kmax, φk̃ = φ˜̃
k
, mest = mk̃ = m

˜̃
kmax ;

End

Table 4.1: Work-flow of the new inversion strategy for isotropic-elastic FWI with approximate
contamination kernels.

k̃max iterations is equivalent to number of 2 × Ns × k̃max forward and adjoint simulations.

This new inversion strategy will be more expensive for obtaining mk′

β and constructing ap-

proximate contamination kernels. For k̃max iterations, the number of forward and adjoint

simulations is equivalent to
(

2×Ns × k′ ×Nk′ + 8×Ns × k̃max
)

, where Nk′ is number of

loops for obtaining mk′

β .

4.3.6 Resolution analysis

Resolution analysis is long lasting issue for geophysical inverse problems and have been stud-

ied by many researchers (Backus and Gilbert, 1968; Spakman, 1991; Rawlinson et al., 2014;
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Rawlinson and Spakman, 2016). Quantifying resolution and uncertainties of the inverted

models due to interparameter tradeoffs is a key aspect of for multiparameter FWI. Assum-

ing that an optimal model m has been obtained with least-squares optimization framework,

applying model perturbation ∆m gives perturbed model m′ = m + ∆m, which is close to

model m. The reconstructed model m̃ can be obtained by m̃ = m + ∆m + ∆m̃, where ∆m̃

represents the estimated model perturbation vector:

∆m̃ = −H−g∇mΦ = H−gH∆m = R∆m, (4.56)

where H−g is the generalized inverse of H and R = H−gH is the resolution matrix, which

describes how the estimated model perturbation ∆m̃ relates to the true model perturbation

∆m. Ideally R should be an identity matrix I meaning that the model is perfectly recovered

(Backus and Gilbert, 1968). However, if the resolution matrix deviates significantly from the

identity matrix, the inverted model suffers from tradeoffs (Luo, 2012). A column of R mea-

sures the local resolution and uncertainties of the inverted model (Oldenborger and Routh,

2009; Fichtner and Trampert, 2011c). However, explicitly constructing and inverting H are

computationally unaffordable for large-scale inverse problems. In recent years, researchers

evaluated the local resolution of the inverted model with point spread functions by approx-

imating H−g with an identity matrix I (Fichtner and Trampert, 2011c; Rickers et al., 2013;

Zhu et al., 2015; Bozdağ et al., 2016). Thus, the column of multiparameter Hessian (i.e.,

H (x, z) equation (4.33)) only represents an conservative estimation of the column in resolu-

tion matrix (i.e., R (x, z)) (Fichtner and van Leeuwen, 2015). In this section, the similarities

and differences between H (x, z) and R (x, z) in resolution analysis are investigated and the

potential benefits by applying approximate inverse Hessian operators to PSFs are explored.

The symmetric and positive semi-definite Hessian matrix H can be decomposed as:

H = ΞΠΞ−1, (4.57)

where Ξ = [a1, a2, a3, ..., aM ] is an orthogonal matrix consisting of M column eigenvectors

ak̇, k̇ = 1, 2, ....,M of H and Π is a diagonal matrix with corresponding eigenvalues λk̇. The

generalized inverse of H is given by:

H−g =
[
Ξ (Π + λ0I) Ξ−1

]−1
= Ξ (Π + λ0I)−1 Ξ−1, (4.58)
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where λ0I is the damping term added to the eigenvalues. The resolution matrix R can be

obtained by:

R = ΞΠ̃−1ΠΞ−1 = Ξ (Π + λ0I)−1 ΠΞ−1, (4.59)

where Π̃ = (Π + λ0I)−1 Π is diagonal matrix with eigenvalues of λ̃ = (1 + λ0/λk̇)
−1. The

Hessian matrix and resolution matrix have the same eigenvectors but different eigenvalues.

Because the orthogonal eigenvectors of H span the model space, the model perturbation

vector ∆m can also be written as a sum of M eigenvectors ak̇:

∆m =
M∑
k̇=1

hk̇ak̇ = h1a1 + h2a2 + ... + hMaM , (4.60)

where hk̇ are the model expansion coefficients. Combining equation (4.60) and equation

(4.57), Hessian-vector product H∆m can be expressed in terms of eigenvalues and eigenvec-

tors of H:

H∆m =
M∑
k̇=1

λk̇hk̇ak̇ = λ1h1a1 + λ2h2a2 + ... + λMhMaM . (4.61)

Substituting equations (4.60) and (4.59) into equation (4.56) gives:

m̃ =
M∑
k̇=1

(1 + λ0/λk̇)
−1 hk̇ak̇,

= (1 + λ0/λ1)−1 h1a1 + (1 + λ0/λ2)−1 h2a2 + ... + (1 + λ0/λM)−1 hMaM .

(4.62)

Assuming that the eigenvalues of H are constant λk̇ ≈ λ, equations (4.61) and (4.62) become:

H∆m ≈
M∑
k̇=1

λhk̇ak̇ = λ∆m,

m̃ ≈
M∑
k̇=1

(1 + λ0/λ)−1 hk̇ak̇ = (1 + λ0/λ)−1 ∆m.

(4.63)

Magnitudes of the PSFs directly measure the magnitudes of eigenvalues. Larger eigenvalues

mean well constrained eigenvectors. Smaller eigenvalues mean poorly constrained eigenvec-

tors. PSFs determine resolution of the inverted models with eigenvalues and mimic the

shape of the true model perturbation but have distinct magnitudes. Because λk̇ � λ0, then

(1 + λ0/λk̇)
−1 ≈ 1, the closer of eigenvalues of the resolution matrix approach 1, the better of

the resolution is. If the Hessian is diagonally dominant, eigenvalues of the resolution matrix
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within the whole volume can be approximated by diagonals of the resolution matrix (Luo,

2012; Zhu et al., 2015), referred to as approximate eigenvalue volume:

Eig =
[
Hdiag + ε̃×max

(
Hdiag

)]−1
Hdiag, (4.64)

where max
(
Hdiag

)
represents the maximum value of diagonal Hessian Hdiag and ε̃ is a small

constant value.

Here, this chapter proposes to quantify the local spatial and interparameter tradeoffs

of the inverted models with extended multiparameter point spread functions (EMPSFs) by

applying approximate inverse Hessian to MPSFs with conjugate-gradient algorithm precon-

ditioned by stochastic estimations of diagonal Hessian. Considering a point-localized model

perturbation vector ∆m = [∆mα = 0 ∆mβ = Aβδ (x− z) ∆mρ′ = 0]†, equation (4.56) can

be written as:

∆m̃β (z) =

∫
Ω(x)

∫
Ω(x′)

AβR̃β (x,x′) δ (x′ − z) dx′dx =

∫
Ω(x)

AβR̃β (x, z) dx, (4.65)

where R̃β (x, z) = H−1 (Hβ (x, z)) indicates the extended MPSF (EMPSF) and H−1 rep-

resents the approximate inverse Hessian by preconditioned conjugate-gradient algorithm.

Applying the inverse Hessian approximately will re-scale the magnitudes and de-blur the

MPSFs. Furthermore, approximate inverse multiparameter Hessian will also suppress the

interparameter contaminations to a certain extent (Innanen, 2014b; Métivier et al., 2015;

Pan et al., 2016; Wang and Cheng, 2017). Thus, the EMPSFs will provide more accurate

measurements of the local spatial and interparameter tradeoffs. To evaluate the interpa-

rameter tradeoffs of the inverted models obtained by new inversion strategy, the EMPSFs

with a variant of preconditioned conjugate-gradient approach are constructed following the

work-flow illustrated in Table 4.1.

4.4 Numerical examples

In the numerical modelling section, the proposed strategies are applied to quantify and reduce

the interparameter tradeoffs in isotropic-elastic FWI. Spectral-element methods are employed

for forward and adjoint simulations with the open-source software package SPECFEM2D

106



(Komatitsch and Tromp, 2005). Influences of surface waves are currently not considered in

the numerical examples presented in this chapter.

4.4.1 Spike probing test with MPSFs

The relative strengths and characteristics of the interparameter contaminations are first

investigated with multiparameter point spread functions (MPSFs) in isotropic-elastic FWI

using x-z component data. Inversion experiments with Gaussian-anomaly examples are

given to verify the predictions and examine the effectiveness of this new inversion strategy

in reducing the interparameter contaminations.

Figure 4.2 shows the 2D isotropic-elastic model with one spike model perturbation em-

bedded in a homogeneous background. P-wave velocity, S-wave velocity and density of the

background model are 2.0 km/s, 1.4 km/s and 1.2 g/cm3. A P-SV mode source with Ricker

wavelet (dominant frequency fdom=8Hz) is used for modeling. A total of 60 sources and 200

receivers are arranged along all boundaries of the model with a regular source spacing of 62.5

m and a regular receiver spacing of 20 m. I first apply a positive spike model perturbation

of P-wave velocity at position z (the model center): ∆mα (z) = 0.1 km/s. Multiparameter

point spread functions (MPSFs) Hαα (x, z), Hβα (x, z), and Hρ′α (x, z) are calculated with

x-z component data, where Hβα (x, z) and Hρ′α (x, z) describe the mappings from α to β

and ρ′. Then, spike model perturbations ∆mβ (z) = 0.1 km/s and ∆mρ′ (z) = 0.1 g/cm3

are applied respectively. MPSFs Hαβ (x, z), Hββ (x, z), Hρ′β (x, z), Hαρ′ (x, z), Hβρ′ (x, z),

and Hρ′ρ′ (x, z) are obtained. Hαβ (x, z) and Hρ′β (x, z) describe the mappings from β to α

and ρ′. Hαρ′ (x, z) and Hβρ′ (x, z) describe the mappings from ρ′ to α and β.

These MPSFs are plotted in model space and arranged in a block structure in consistent

with their positions in multiparameter Hessian, as shown in Figure 4.3a. Figure 4.3a is

also equivalent to a sparse representation of multiparameter Hessian with 3 columns, which

measure finite-frequency features of the interparameter tradeoffs. A positive α perturbation

produces a negative contamination in β described by Hβα (x, z) and vice versa. However,

both positive α and β perturbations result in positive contaminations in density ρ′ described

by Hρ′α (x, z) and Hρ′β (x, z) and vice versa. Furthermore, regards to spatial spreading, the

MPSFs representing contaminations to density (i.e., Hρ′α (x, z) and Hρ′β (x, z)) experience
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Figure 4.2: Acquisition geometry for spike probing test. Black stars and gray circles represent
sources and receivers positions. The 2D model is discretized into 50 and 50 uniform mesh
nodes in horizontal and vertical directions with 1 km in width and 1 km in depth. The black
square located at the center of the model indicates the spike model perturbation at position
z = (0.5 km, 0.5 km).

oscillatory side-lobes, which may distort the correct density updates.

As indicated by APSF in Figure 4.3a, magnitudes of the MPSFs, which describe relative

strengths of the eigenvalues, also differ significantly. Magnitude of Hββ (x, z) is larger than

the magnitudes of Hαα (x, z) and Hρ′ρ′ (x, z) meaning that the eigenvectors associated with

S-wave velocity will be better recovered than those associated with P-wave velocity and

density. To evaluate relative strengths of the interparameter contaminations, the contami-

nations are normalized with the MPSFs representing correct model updates. For example,

the MPSFs Hαβ (x, z) and Hαρ′ (x, z) are normalized by the maximum absolute value of

Hαα (x, z). Normalized MPSFs are shown in Figure 4.3b. Contaminations from α to β and

ρ′ appear to be relatively weak. Density ρ′ perturbations also produce moderate unwanted

artifacts in α and β. S-wave velocity β suffers from the least amount of contaminations but

produces strong mappings to α and ρ′, which may make density under- or overestimated and

cancel the updates for P-wave velocity. Geological features in the inverted P-wave velocity

and density models may be contaminations from the S-wave velocity, which increases the

uncertainties of the inverse problems significantly. These information helps us understand
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Figure 4.3: Multiparameter point spread functions (MPSFs) of isotropic-elastic parameters in
velocity-density parameterization. (a) shows the MPSFs Hαα (x, z), Hβα (x, z), Hρ′α (x, z),
Hαβ (x, z), Hββ (x, z), Hρ′β (x, z), Hαρ′ (x, z), Hβρ′ (x, z), and Hρ′ρ′ (x, z) with x-z compo-
nent data; (b) shows the corresponding normalized MPSFs. APSF indicate the maximum
magnitudes of the MPSFs.

how the interparameter tradeoffs affect the inversion process.

To verify our analysis and predictions with MPSFs, inversion experiments with a Gaussian-

anomaly model is carried out. Figures 4.4a, 4.4b, and 4.4c show the true P-wave velocity,

S-wave velocity and density models with 3 isolated Gaussian anomalies. The initial models

are homogeneous with α = 2.0 km/s, β = 1.2 km/s and ρ′ = 1.2 g/cm3. The acquisition ar-

rangement is the same with previous example. A l-BFGS optimization method is employed

for updating α, β and ρ′ simultaneously. This inversion experiment can be considered as an

extended version of spike probing test with 3 Gaussian model perturbation vectors. Relative

Figure 4.4: Figures (a-c) show the true P-wave velocity, S-wave velocity and density of the
Gaussian-anomaly model: mtrue

α , mtrue
β and mtrue

ρ′ .
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Figure 4.5: Figures (a-c) show the true S-wave velocity model perturbation vector ∆mtrue
β ,

true contamination kernels Kβ→α and Kβ→ρ′ respectively; Figures (d-f) illustrate the stan-
dard sensitivity kernels Kα, Kβ, and Kρ′ ; Figures (g-i) are the inverted models mest

α

(ε̃α=0.47), mest
β (ε̃β=0.15) and mest

ρ′ (ε̃ρ′=0.77) after 10 iterations with traditional simul-
taneous inversion strategy.

least-squares error (RLSE) (equation (2.42)) is used to evaluate the quality of the inverted

model. Figure 4.5a shows the true S-wave velocity model perturbation ∆mtrue
β . Figures 4.5b

and 4.5c show the true contamination kernels Kβ→α and Kβ→ρ′ calculated by multiplying

multiparameter Hessian off-diagonal blocks Hαβ and Hρ′β with true model perturbation vec-

tor ∆mtrue
β . Figures 4.5d, 4.5e and 4.5f show the standard sensitivity kernels Kα, Kβ and

Kρ′ in the first iteration. Strengths and characteristics of the interparameter contaminations

generally match our predictions using MPSFs shown in Figure 4.3. A negative S-wave veloc-

ity perturbation produces strong positive and negative contaminations into the updates for α

and ρ′, as indicated by the interparameter contamination kernels Kβ→α and Kβ→ρ′ . Figures

4.5g, 4.5h and 4.5i show the inverted P-wave velocity, S-wave velocity and density models

after 10 iterations using traditional simultaneous inversion strategy. S-wave velocity suffers

from limited contaminations and is best inverted. P-wave velocity and density suffer strong

contaminations from S-wave velocity. As iteration proceeds, S-wave velocity is estimated

110



fastest. The interparameter contaminations due to S-wave velocity perturbations are also

reduced iteratively and if a sufficient number of iterations are performed, the contaminations

are expected to be removed almost completely.

Figure 4.6a shows the estimated S-wave velocity model perturbation vector ∆mest
β after

k′ = 3 iterations. Figures 4.6b and 4.6c show the approximate contamination kernels K̃β→α

and K̃β→ρ′ calculated by multiplying multiparameter Hessian off-diagonal blocks Hαβ and

Hρ′β with estimated model perturbation vector ∆mest
β . The features of the approximate

contamination kernels match those of true contamination kernels (Figures 4.5b and 4.5c)

very well. Figures 4.6d, 4.6e and 4.6f are the new update kernels following equation (4.55).

Figures 4.6g, 4.6h and 4.6i show the inverted P-wave velocity, S-wave velocity and density

models with the new inversion strategy. As indicated by the arrows, contaminations from

S-wave velocity to P-wave velocity and density have been suppressed. Figure 4.7 shows the

convergence histories of traditional simultaneous inversion strategy and new inversion strat-

egy for the Gauss-anomaly example. The new inversion strategy provides faster convergence

compared to traditional simultaneous inversion strategy but it is 2.5 times more expensive.

4.4.2 Marmousi model example

The proposed stochastic probing strategy is first applied to evaluate the strengths of the

interparameter tradeoffs within the whole volume. The new inversion strategy with ap-

proximate contamination kernels is employed to invert the isotropic-elastic parameters in

comparison with traditional simultaneous inversion strategy. Approximate eigenvalue vol-

umes and extended multiparameter point spread functions (EMPSFs) are used to evaluate

resolution of the inverted models.

Figures 4.8a, 4.8b and 4.8c show the true P-wave velocity, S-wave velocity and density

models. Figures 4.8d, 4.8e and 4.8f show the initial P-wave velocity, S-wave velocity and

density models. Figure 4.8g, 4.8h and 4.8i show the corresponding true model perturbations.

The model is 3.4 km wide and 1.2 km deep. Number of 33 sources and 330 receivers are

deployed regularly with a source spacing of 100 m and a receiver spacing of 10 m along top

surface of the model. A Ricker wavelet with dominant frequency of 6 Hz is used for forward

modelling.
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Figure 4.6: Figures (a-c) show the estimated S-wave velocity model perturbation vector
∆m̃β (k′ = 3), approximate contamination kernels K̃β→α and K̃β→ρ′ respectively; Figures
(d-f) illustrate the new update kernels K̃α, K̃β, and K̃ρ′ ; Figures (g-i) are the inverted models
mest

α (ε̃α=0.32), mest
β (ε̃β=0.14) and mest

ρ′ (ε̃ρ′=0.61) after 10 iterations with new inversion
strategy.

Figure 4.7: Convergence histories comparison of traditional simultaneous inversion strategy
(red curve) and new inversion strategy (blue curve) for the Gaussian-anomaly inversion
example.
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Figure 4.8: (a-c) show true P-wave velocity, S-wave velocity and density models; (d-f) show
initial P-wave velocity, S-wave velocity and density models; Figures (g-i) show true P-wave
velocity, S-wave velocity and density model perturbations. The regularly distributed black
squares in (d) represent the vector v′ for interparameter tradeoffs analysis within the whole
model. The blue square in (e) indicates the location z1 = (0.515 km, 0.275 km) for quanti-
fying local spatial and interparameter tradeoffs of the inverted models.

4.4.2.1 Evaluating the strengths of interparameter tradeoffs within the whole volume

Diagonals of subblock matrices in multiparameter Hessian are first estimated with the

stochastic probing approach following equation (4.47). Figure 4.9a shows the Hessian di-

agonals Hdiag, aj
ρ′ρ′ calculated with adjoint-state method (Shin et al., 2001a). The computation

cost is equivalent to 363 forward simulations. Figures 4.9b and 4.9c show the stochastic

estimations of Hessian diagonals with 1 and 2 random vector applications respectively. Com-

putation costs are equivalent to 66 and 198 forward simulations. Energy distributions in the

stochastic estimations generally match those calculated with the adjoint-state method, which

verifies the effectiveness of stochastic probing approach. Figures 4.10a show the stochastic

estimations of the Hessian diagonals Hdiag
αα , Hdiag

ββ and Hdiag
ρ′ρ′ after normalization. Energy

distributions in these Hessian diagonals for different parameters differ significantly. Stronger

elements of the Hessian diagonals mean that the model parameters are well constrained.

However, energies of Hdiag
ββ are constrained in the shallow parts of the model. Maximum

magnitudes of Hdiag
ββ are approximately 11.0 times and 6.3 times stronger than those of Hdiag

αα

and Hdiag
ρ′ρ′ , which means that S-wave velocity will be better recovered than P-wave velocity

and density. The Hessian diagonals are also used as preconditioners in the inversion process.

Figures 4.10b show the stochastic estimations of the Hessian diagonals Hdiag
αβ , Hdiag

αρ′ and

113



Figure 4.9: (a) shows the Hessian diagonals Hdiag, aj
ρ′ρ′ calculated with adjoint-state method;

(b-c) show the stochastic estimation of Hessian diagonals Hdiag, 1
ρ′ρ′ and Hdiag, 2

ρ′ρ′ with 1 and 2
random vector applications respectively.

Figure 4.10: (a) shows the the stochastic estimations of Hessian diagonals Hdiag
αα , Hdiag

ββ and

Hdiag
ρ′ρ′ with 2 random vector applications; (b) shows the stochastic estimations of Hessian

diagonals Hdiag
αβ , Hdiag

αρ′ and Hdiag
βρ′ with 2 random vector applications. Ã mean the maximum

magnitude of the Hessian diagonals after normalization.

Hdiag
βρ′ which measure the coupling strengths of the isotropic-elastic parameters in the whole

volume. The coupling strengths change within the whole volume significantly, that is to

say, they are influenced by inhomogeneity of the model and source-receive illumination. In

earlier iterations, strong interparameter tradeoffs appear at the shallow parts of the model, as

indicated by the grey and white arrows. Magnitudes of the diagonals of off-diagonal blocks

associated with different physical parameters are quite different. Hdiag
βρ′ is much stronger

than Hdiag
αβ and Hdiag

αρ′ meaning that the interparameter tradeoffs among the isotropic-elastic

parameters mainly come from the coupling effects between S-wave velocity and density. Hdiag
βρ′

is very similar to Hdiag
ββ meaning that the coupling effects between S-wave velocity and density

are dominated by S-wave velocity.

In this research, a vector v′, which consists of regularly distributed spikes with a constant

magnitude of 0.2, is designed, as indicated by the black squares in Figure 4.8d. Products of

the multiparameter Hessian subblocks approximate row summations of the multiparameter
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Figure 4.11: Products of multiparmaeter Hessian with vector v′. The first column show the
multiparameter Hessian-vector products Hαα = Hααv

′, Hβα = Hβαv
′, and Hβα = Hβαv

′.
The second column show the multiparameter Hessian-vector products Hαβ = Hαβv

′,
Hββ = Hββv

′, and Hρ′β = Hρ′βv
′. The third column show the multiparameter Hessian-vec-

tor products Hαρ′ = Hαρ′v
′, Hβρ′ = Hβρ′v

′, and Hρ′ρ′ = Hρ′ρ′v
′.

Hessian, as illustrated in Figure 4.11. Strengths of interparameter contaminations generally

match our predictions with multiparameter Hessian diagonals. Areas with strong interpa-

rameter tradeoffs are indicated by the grey and white arrows in Figure 4.11. Furthermore,

comparing strengths of the off-diagonal Hessian-vector products (i.e., Hβα) with those of

diagonal Hessian-vector products (i.e., Hββ), it is concluded that the contaminations from

α to β and ρ′ are relatively weak and can be ignored. Contaminations from ρ′ to α and β

are also not very strong. However, the contaminations from β to α may degrade the update

for α. Contaminations from β to ρ′ may boost the density update by 1.8 times.

To verify these predictions and conclusions, the true interparameter contamination ker-

nels are calculated by applying multiparameter Hessian to the true model perturbation

vectors ∆mα, ∆mβ and ∆mρ′ as shown in Figures 4.8g, 4.8h and 4.8i. The first row in

Figure 4.12 show the standard sensitivity kernels Kα, Kβ and Kρ′ , which are contaminated

by mappings from other parameters. The second row in Figure 4.12 show the correct update

kernel Kα↔α and contamination kernels Kβ→α and Kρ′→α. In the third row of Figure 4.12,

the contamination kernel Kα→β, correct update kernel Kβ↔β, and Kρ′→β are illustrated from

left to right. In the forth row of Figure 4.12, contamination kernels Kα→ρ′ and Kβ→ρ′ and

115



Figure 4.12: (a-c) illustrate the standard sensitivity kernels Kα, Kβ, and Kρ′ ; (d-f) show
the correct update kernel Kα↔α and contamination kernels Kβ→α and Kρ′→α; (g-i) show the
contamination kernel Kα→β, correct update kernels Kβ↔β and contamination kernel Kρ′→β;
(j-l) show contamination kernels Kβ→ρ′ and Kα→ρ′ and correct update kernel Kρ′↔ρ′ . A
represent maximum magnitudes of the kernels.

correct update kernel Kρ′→ρ′ are given.

Since magnitudes of the true model perturbation vectors change within the whole volume

and the strengths of P-wave velocity perturbation are approximately 2 times and 4 times

larger than those of S-wave velocity and density perturbations, the contamination kernels are

not entirely consistent with the predictions by Hessian diagonals and Hessian-vector products

shown in Figures 4.10 and 4.11 exactly. I interpret this is an indication of the complexity of

the resolution problem in general. However, areas with strong elements in Kβ↔β generally

match those of Hessian diagonals Hdiag
ββ (Figure 4.10) and Hessian-vector product Hββ (Figure

4.11), as indicated by the black arrows. Examining the contamination kernels Kα→β and

Kβ→α tells us that Hessian diagonals (Hdiag
αβ in Figure 4.10) and Hessian-vector products

(Hαβ and Hβα in Figure 4.10) predict energy distributions of the interparameter tradeoffs,

as indicated by the grey arrows. White arrows in Kρ′→β and Kβ→ρ′ also indicate the areas

with strong interparameter tradeoffs between S-wave velocity and density.

Comparing magnitudes of the correct updates and interparameter contamination kernels,

it can be observed that Kβ→β is very close to Kβ meaning that the S-wave velocity suffers
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Figure 4.13: (a) shows the estimated model perturbation vector ∆m̃1
β, approximate contam-

ination kernels K̃1
β→α and K̃1

β→ρ′ ; (b) shows the estimated model perturbation vector ∆m̃2
β,

approximate contamination kernels K̃2
β→α and K̃2

β→ρ′ .

limited contamination from α and ρ′. Furthermore, the correct update kernel Kα↔α will be

degraded by the contamination kernel Kβ→α. Contamination kernel Kβ→ρ′ is approximately

1.7 times stronger than the correct update kernel Kρ′↔ρ′ , which will make density highly

under- or overestimated. The contaminations from β to ρ′ will dominate the estimated

density structures. Note: during the inversion process, the contaminations can be reduced

partially and the energy distributions of the interparameter contaminations may also change.

4.4.2.2 Mitigating the interparameter tradeoffs

To mitigate the contamination of S-wave velocity into other parameters, a novel inversion

strategy is proposed with approximate contamination kernels. I first carry out inversion ex-

periments by k′ = 8 and 15 iterations, which provide estimated model perturbation vectors

∆m̃1
β and ∆m̃2

β, as shown in Figures 4.13a and 4.13b. The estimated P-wave and density

perturbations are dropped. Contamination kernels K̃1
β→α, K̃1

β→ρ′ , K̃
2
β→α, and K̃2

β→ρ′ are

constructed by applying multiparameter Hessian off-diagonal blocks Hαβ and Hρ′β to the es-

timated model vectors, as shown in Figures 4.13a and 4.13b. Magnitudes and characteristics

of the approximate contamination kernels match the true contamination kernels K̃β→α and

K̃β→ρ′ shown in Figure 4.12 very well. Because ∆m̃2
β is more resolved and better recovered

than ∆m̃1
β, K̃2

β→α and K̃2
β→ρ′ represent better approximations than K̃1

β→α and K̃1
β→ρ′ .

The new updates kernels K̃1
α, K̃1

β, K̃1
ρ′ , K̃

2
α, K̃2

β and K̃2
ρ′ are calculated by subtracting the

approximate contamination kernels from the standard sensitivity kernels following equation

(4.55), as shown in Figure 4.14. Magnitudes of the new updates kernels K̃1
ρ′ and K̃2

ρ′ have been
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Figure 4.14: (a) show the new update kernels K̃1
α, K̃1

β and K̃1
ρ′ ; (b) show the new update

kernels K̃2
α, K̃2

β and K̃2
ρ′ .

Figure 4.15: (a-c) show inverted P-wave velocity (ε̃α=0.83), S-wave velocity (ε̃β=0.72) and
density (ε̃ρ′=1.04) models with traditional simultaneous inversion strategy; (d-f) show the
inverted P-wave velocity (ε̃α=0.76), S-wave velocity (ε̃β=0.67) and density (ε̃ρ′=0.83) models
using new inversion method with approximate contamination kernels.

reduced by approximately 38.2% and 56.8%. In particular, it is observed that the features of

new update kernel K̃2
ρ′ for density are very close to the characteristics of true update kernel

Kρ′↔ρ′ shown in Figure 4.12, which means that the contaminations from S-wave velocity to

density have been suppressed.

The P-wave velocity α, S-wave velocity β and density ρ′ are inverted with traditional

simultaneous inversion strategy. Multiscale approach is adopted for reducing the nonlinear-

ity by expanding the frequency band from [3 Hz, 5Hz] to [3 Hz, 8Hz]. With each frequency

band, 20 iterations are performed. Figures 4.15a, 4.15b and 4.15c show the inverted α, β

and ρ′ models after 40 iterations with traditional simultaneous inversion strategy. Following

the work-flow illustrated in Table 4.1, I first simultaneously update α, β and ρ′ models by

k′ = 15 iterations and the inverted models are dropped but only keep the estimated model

perturbation ∆m̃β. Then, model parameters α, β and ρ′ are inverted again from initial
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Figure 4.16: (a-c) show the well log data of P-wave velocity, S-wave velocity, and density
models at 0.5 km; (d-f) show the well log data at 3.0 km. The red and grey curves indicate the
true and initial models. The blue and green lines indicate the inverted models by traditional
simultaneous inversion strategy and new inversion strategy.
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Figure 4.17: Convergence history comparison of traditional simultaneous inversion strategy
(red curve) and new inversion strategy (blue curve) for Marmousi model example.

models by 10 iterations. In this inversion loop, at each iteration approximate contamina-

tion kernels are constructed and the models are updated with new kernels as indicated in

equation (4.55). This process is then repeated every 10 iterations. Figures 4.15d, 4.15e and

4.15f show the inverted P-wave velocity, S-wave velocity and density models with the new

inversion strategy after 40 iterations. The computation cost is 2.5 times more expensive than

traditional simultaneous inversion strategy.

S-wave velocity is best inverted and more resolved than P-wave velocity. P-wave velocity

is poorly recovered but limited interparameter contamination artifacts can be observed.

With traditional simultaneous inversion strategy, the S-wave velocity structures are mapped

into the estimated density model as indicated by the arrows in Figures 4.15c, 4.16c and

4.16f. Positive S-wave velocity perturbations make density overestimated and negative S-

wave velocity perturbations make density underestimated. With the new inversion strategy,

the imprints in the inverted density model have been suppressed effectively, as indicated by

arrows in Figures 4.15f, 4.16c and 4.16f. Furthermore, the inverted P-wave velocity (Figure

4.15d) and S-wave velocity (Figure 4.15e) are also enhanced. The new inversion approach is

also able to provide faster convergence, as shown in Figure 4.17.
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4.4.2.3 Resolution analysis

Approximate eigenvalue volume (equation (4.64)) and extended multiparameter point spread

functions (EMPSFs) are used to quantify resolution of the inverted models with different

inversion strategies. Figures 4.18a, 4.18b and 4.18c show the approximate eigenvalue volumes

obtained with 2 random Hessian-vector applications. The approximate eigenvalue volumes

of S-wave velocity (Eigββ) are closer to 1 than those of P-wave velocity and density, which

means that S-wave velocity is better recovered than P-wave velocity and density. Magnitudes

of the approximate eigenvalue volumes decrease with increasing depths meaning that shallow

parts of models are better recovered than deep parts.

Spike model perturbations ∆mα = 0.2 km/s, ∆mβ = 0.2 km/s and ∆mρ′ = 0.2 g/cm3

are applied at local position z1 = (0.515 km, 0.275 km) (as shown in Figure 4.8e) respectively,

which are used to measure the local spatial and interparameter tradeoffs of the inverted

models. The traditional MPSFs are plotted in Figure 4.19a. The MPSFs representing inter-

parameter contaminations are normalized with those representing correct model estimations.

Strong contaminations from S-wave velocity to P-wave velocity and density are observed as

indicated by the grey arrows. The spike model perturbations are then reconstructed with

10 conjugate-gradient iterations, which gives the EMPSFs, as presented in Figures 4.19b.

Contaminations from S-wave velocity to P-wave velocity and density are reduced by ap-

proximately 23.8% and 47.1%, as indicated by the grey arrows. Furthermore, compared to

MPSFs, EMPSFs are more de-blurred. This is strongly suggestive that the local spatial

and interparameter tradeoffs provided by traditional MPSFs may not be accurate and the

inverted models by traditional simultaneous inversion strategy suffer strong interparameter

tradeoffs. In Figures 4.19c, the EMPSFs obtained with conjugate-gradient method follow-

ing the work-flow with approximate contamination kernels are given. The contaminations

from S-wave velocity to P-wave velocity and density are reduced effectively, as indicated by

grey arrows. This means that the inverted models (Figures 4.15a, 4.15b and 4.15c) by new

inversion strategy suffer little interparameter contaminations.
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Figure 4.18: Approximate eigenvalue volumes of the inverted models. Figures (a-c) show
approximate eigenvalue volumes Eigαα, Eigββ, and Eigρ′ρ′ for inverted P-wave velocity,
S-wave velocity and density by traditional simultaneous inversion strategy; Figures (d-f)
show the corresponding approximate eigenvalue volumes by the new inversion strategy.

Figure 4.19: (a) show the traditional MPSFs after normalization at position z1; (b) show the
normalized EMPSFs with 10 conjugate-gradient iterations; (c) show the normalized EMPSFs
constructed with new inversion work-flow (Table 4.1).
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Figure 4.20: The location of seismic line and well (14-35) in Hussar experiment (Margrave
et al., 2012). Note: I have reset the coordinate of the seismic line for FWI. I assume that
initial location of the seismic line starts at x0=0 km and ends at xend=4.5 km, as indicated
by the blue circles.

4.4.2.4 Hussar dataset application

At the end, the proposed strategies are applied to invert isotropic-elastic parameters with

Hussar practical seismic dataset and quantify resolution of the inverted models. In September

2011, CREWES (Consortium for Research in Elastic Wave Exploration Seismology) initiated

a seismic experiment in Hussar area, which is about 100 km east of Calgary, Alberta, Canada.

The objective of this experiment was to maximize the low frequency content of the seismic

data (Margrave et al., 2012), and to acquire a land dataset maximally suitable for full-

waveform inversion methods. The 2D seismic survey line is 4.5 km in length. Figure 4.20

show the locations of the seismic line and well log 14-35. The seismic experiments were carried

out with dynamite and vibroseis sources and different receiver types. In this research, I use

the multicomponent data recorded by 10 Hz 3C (three-component) geophones with dynamite

sources for inversion. A total of 269 sources (2 kg charge at 15 m in depth) are arranged

regularly with a spacing of 20 m. A total of 448 geophones are distributed with a spacing of

10 m.
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Figure 4.21: (a) and (b) show the preprocessed vertical (z) and radial (x) component shot
gathers at position of 0.6 km in horizontal distance; (c) shows the amplitude spectrum of
the data. The shaded area means frequency band of [3Hz, 10Hz]. (d) shows the estimated
minimum phase wavelet with dominant frequency of 25 Hz.
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Figure 4.22: (a-c) show the initial P-wave velocity, S-wave velocity and density models; (d-f)
show the inverted P-wave velocity, S-wave velocity and density models using traditional
simultaneous inversion strategy; (g-i) show the inverted P-wave velocity, S-wave velocity
and density models using new inversion method. The black line in (a) indicates the position
of well log 14-35. The blue square in (a) indicates the location z1=(2.0 km, 1.2 km) for local
spatial and interparameter tradeoffs analysis.

The raw seismic shot gathers are preprocessed with a series of steps. Automatic gain

control (AGC) is first applied for amplitude recovery. Surface waves and monochromatic

noise are suppressed with F-K filtering. Elevation statics and residual statics are applied to

compensate the topographic variations and near-surface lithological variations. The seismic

data is finally band-pass filtered within the frequency band of [3Hz, 60Hz]. Figures 4.21a and

4.21b show the preprocessed vertical (z) and radial (x) component data. Figure 4.21c shows

the amplitude spectrum of the data. Frequency band of [3Hz, 10Hz] is used for inversion,

as indicated by the shaded area. A minimum phase wavelet with dominant frequency of 25

Hz is estimated from seismic data and used for forward modelling, as illustrated in Figure

4.21d.

Figures 4.22a, 4.22b and 4.22c show the linear initial P-wave velocity, S-wave velocity and

density models. The well log (14-35) is located at about 1.29 km in horizontal distance, as

indicated by the black line in Figure 4.22a. I first simultaneously update P-wave velocity, S-

wave velocity and density by expanding the frequency band from [3Hz, 5Hz] to [3Hz, 8Hz] and

then [3Hz, 10Hz] with 10 iterations for each frequency band. The inverted P-wave velocity,

S-wave velocity and density models using this traditional inversion strategy are illustrated
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Figure 4.23: (a-c) show the well log data comparison of P-wave velocity, S-wave velocity and
density respectively. Black and gray curves are true well log data and initial models. Red
and blue curves are the inverted models by traditional simultaneous inversion method and
new inversion method respectively.

in Figures 4.22d, 4.22e and 4.22f. I then carry out inversion experiments using new inversion

strategy with approximate contamination kernels following the work-flow shown in Table

4.1. At each frequency band, I need to simultaneously update the model parameters by

k′=15 iterations for estimating the approximate S-wave velocity perturbation vector ∆m̃β.

Figures 4.22g, 4.22h and 4.22i show the inverted P-wave velocity, S-wave velocity and density

models using the new inversion method. Some artifacts appear in the inverted models. The

geological layers are resolved and most of them are flat, which are consistent with the previous

studies of impedance inversion (Lloyd, 2013; Cui, 2015; Esmaeili, 2016). Figures 4.23a, 4.23b

and 4.23c show the well log data comparison of P-wave velocity, S-wave velocity and density

models respectively. The inverted P-wave velocity and S-wave velocity models generally

match the well log data. However, it appears that the shallow parts of inverted density

model (Figure 4.22f) by traditional simultaneous inversion strategy are underestimated, as

indicated by the shaded area in Figure 4.23c. Furthermore, artifacts appear in the deep

parts of the inverted density model as indicated by the arrows in Figures 4.22f and 4.23c.

In the inverted density model (4.22i) by new inversion method, the shallow parts are better

recovered and the artifacts in deep parts are suppressed. The new inversion method also

provides faster convergence as shown in Figure 4.24.

For resolution analysis, in Figure 4.25a, approximate eigenvalue volumes Eigαα, Eigββ
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Figure 4.24: Convergence history comparison of traditional simultaneous inversion method
(red) and new inversion method (blue) for Hussar seismic dataset.

and Eigρ′ρ′ of the inverted P-wave velocity, S-wave velocity and density models by traditional

simultaneous inversion method are plotted. In Figure 4.25b, the approximate eigenvalue vol-

umes of the inverted models generated using the new inversion method are given. Both of

these methods are able to recover amplitudes of the model parameters very well. The spatial

and interparameter tradeoffs of the inverted models at location of z1=(2.0 km, 1.2 km) are

evaluated, as indicated by blue square in Figure 4.22a. Figure 4.26a show the normalized

EMPSFs with 10 conjugate-gradient iterations. Figure 4.26b show the normalized EMPSFs

with 10 conjugate-gradient iterations following the work-flow of new inversion method. In

Figure 4.26a, it is observed that the EMPSFs Rαβ (x, z) and Rρ′β (x, z) representing the

contaminations from S-wave velocity to P-wave velocity and density are still strong, which

means the inverted P-wave velocity and density models (Figures 4.22d and 4.22f) by tradi-

tional simultaneous inversion method still suffer interparameter contaminations. In Figure

4.26b, the EMPSFs Rαβ (x, z) and Rρ′β (x, z) are very weak, which means that with the

new inversion method, the interparameter contaminations from S-wave velocity to P-wave

velocity and density have been reduced. These numerical experiments show that the new

inversion method is able to provide high resolution P-wave velocity and S-wave velocity
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Figure 4.25: (a) illustrate the approximate eigenvalue volumes Eigαα, Eigββ and Eigρ′ρ′ of
the inverted models by traditional simultaneous inversion method; (b) illustrate the approx-
imate eigenvalue volumes Eigαα, Eigββ and Eigρ′ρ′ of the inverted models generated using
the new inversion method.

Figure 4.26: (a) show the collection of EMPSFs at local position z1 = (2.0 km, 1.2 km) with
conjugate-gradient algorithm; (b) show the collection of EMPSFs at z1 with conjugate-gra-
dient algorithm following the work-flow of new inversion method (Table 4.1).
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Figure 4.27: (a-e) show the SH-SH, P-P, P-SV, SV-P and SV-SV scattering patterns due to
the perturbations of isotropic-elastic parameters. Solid-grey and solid-black curves indicate
the scattering patterns due to perturbations of shear modulus µ and density ρ. In (a), the
dash-black curve represents the P-P scattering pattern due the perturbation of bulk modulus
κ.

models. Furthermore, the interparameter contaminations from S-wave velocity to P-wave

velocity and density can be suppressed, which will provide more convincing isotropic-elastic

parameters for reservoir characterization.

4.4.3 The influence of different parameterizations in isotropic-elastic FWI

In this section, the inverted isotropic-elastic models with another two types of parameteri-

zations: modulus-density parameterization (bulk modulus κ, shear modulus µ and density

ρ) and impedance-density parameterization (P-wave impedance IP=αρ′′, S-wave impedance

IS=βρ′′ and density ρ′′) are given. Figures 4.27 and 4.28 show the scattering patterns of

isotropic-elastic parameters within modulus-density and impedance-density parameteriza-

tions. It can be seen that for modulus-density parameterization, the scattering patterns

of different parameterizations overlap significantly, which means that the coupling effects

between different parameters are strong. The coupling effects will decrease the convergence

rate for inverting the model parameters. For impedance-density parameterization, the scat-

tered wavefields due to density perturbations are mostly forward propagated, which means

that when using reflection survey, it will be very difficult to recover density structures with

impedance-density parameterization.

Inversion experiments with velocity-density, modulus-density and impedance-density pa-

rameterizations are then carried out for comparison. The true models and initial models are

shown in Figure 4.8. Figure 4.29 show the standard sensitivity kernels and true interparam-

eter contamination kernels among bulk modulus κ, shear modulus µ and density ρ within
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Figure 4.28: (a-e) show the SH-SH, P-P, P-SV, SV-P and SV-SV scattering patterns due to
the perturbations of isotropic-elastic parameters. Solid-grey and solid-black curves indicate
the scattering patterns due to perturbations of S-wave impedance IS and density ρ′′. In (a),
the dash-black curve represents the P-P scattering pattern due the perturbation of P-wave
impedance IP.

modulus-density parameterization. It can be seen that the standard sensitivity kernel Kρ

is quite different from the correct update kernel Kρ↔ρ. However, the contamination ker-

nel Kµ→ρ is very similar to the standard sensitivity kernel Kρ. This is strongly suggestive

that the update for density ρ is dominated by the contaminations from shear modulus µ to

density ρ. Figure 4.30 shows the standard sensitivity kernels and true interparameter con-

tamination kernels among P-wave impedance IP, S-wave impedance IS and density ρ′′ within

impedance-density parameterization. Similarly, the standard update kernel for density ρ′′ is

dominated by the contamination from S-wave impedance to density ρ′′.

The inversion experiments are carried out using three frequency bands of [3Hz, 5Hz], [3Hz,

8Hz] and [3Hz, 10Hz] with 60 iterations at each frequency band. The same true models and

initial models are used for inversion with the 3 different parameterizations. Figures 4.31, 4.32

and 4.33 show the corresponding true models, initial models and inverted models after 180

iterations. Note: here I use non-linear conjugate-gradient method for inversion. In Figure

4.34, the convergence histories at frequency band of [3Hz, 5Hz] are plotted for comparison.

In Figure 4.31, P-wave velocity and S-wave velocity are well reconstructed. The density

structures are also reconstructed even though there are still some interparameter contami-

nations. In Figure 4.32, the shear modulus µ is recovered best. The inverted density model

is distorted, which may be caused by the contaminations from shear modulus. Magnitudes

of the recovered bulk modulus model are very weak. In Figure 4.33, the reconstructed den-

sity structures are distorted significantly, which may be caused by the strong interparameter

contaminations from S-wave impedance. This observation also verifies our analysis with scat-
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Figure 4.29: (a-c) illustrate the standard sensitivity kernels Kκ, Kµ, and Kρ; (d-f) show
the correct update kernel Kκ↔κ and contamination kernels Kµ→κ and Kρ→κ; (g-i) show
the contamination kernel Kκ→µ, correct update kernels Kµ↔µ and contamination kernel
Kρ→µ; (j-l) show contamination kernels Kκ→ρ and Kµ→ρ and correct update kernel Kρ↔ρ. A
represent maximum magnitudes of the kernels.

Figure 4.30: (a-c) illustrate the standard sensitivity kernels KIP, KIS, and Kρ′′ ; (d-f) show
the correct update kernel KIP↔IP and contamination kernels KIS→IP and Kρ′′→IP; (g-i) show
the contamination kernel KIP→IS, correct update kernels KIS↔IS and contamination kernel
Kρ′′→IS; (j-l) show contamination kernels KIP→ρ′′ and KIS→ρ′′ and correct update kernel
Kρ′′↔ρ′′ . A represent maximum magnitudes of the kernels.
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Figure 4.31: (a-c) show the true P-wave velocity, S-wave velocity and density models; (d-f)
show the corresponding initial P-wave velocity, S-wave velocity and density models; (g-i)
show the corresponding inverted P-wave velocity, S-wave velocity and density models.

tering patterns in Figure 4.28. Because the scattered wavefields due to density perturbations

in impedance-density parameterization mostly forward scattered, recorded data on surface is

mainly caused by P-wave impedance and S-wave impedance perturbations, which makes it

more difficult to recover density structures. In Figure 4.34, velocity-density parameterization

provides the fastest convergence rate. Hence, velocity-density parameterization is still the

best choice to recover isotropic-elastic parameters among these three parameterizations.

4.5 Discussion

Interparameter tradeoffs are strongly influenced by source-receive illumination (or acquisition

geometry). In this chapter, the interparameter tradeoffs with perfect acquisition geometry

are studied using a simple Gaussian-anomaly model and reflection acquisition geometry us-

ing Marmousi model. In transmission tomography (i.e., cross-well survey or earthquake

seismology), the strengths and characteristics of the interparameter contaminations may be

different from the conclusions and results presented in this chapter. Hence, for inverse prob-

lems with different models and acquisition geometries, the interparameter tradeoffs should

be reevaluated following the strategies presented in this chapter.

Various misfit functions (i.e., envelope, instantaneous phase and traveltime misfit func-

tions) based on different measurements have been studied for full-waveform inversion (Bozdag
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Figure 4.32: (a-c) show the true bulk modulus κ, shear modulus µ and density ρ models; (d-f)
show the corresponding initial bulk modulus κ, shear modulus µ and density ρ models; (g-i)
show the corresponding inverted bulk modulus κ, shear modulus µ and density ρ models.

Figure 4.33: (a-c) show the true P-wave impedance IP, S-wave impedance IS and density
ρ′′ models; (d-f) show the corresponding initial P-wave impedance IP, S-wave impedance IS
and density ρ′′ models; (g-i) show the corresponding inverted P-wave impedance IP, S-wave
impedance IS and density ρ′′ models.
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Figure 4.34: Convergence rates comparison for various parameterizations in isotropic-elastic
FWI ([3Hz, 5Hz] frequency band). The red, blue and black curves indicate velocity-density,
modulus-density and impedance-density parameterization respectively.

et al., 2011). Different physical parameters are sensitive to different measurements (i.e., am-

plitude and traveltime). The interparameter tradeoffs with the common waveform difference

based misfit function are studied. It is also necessary to assess the interparameter tradeoffs

in isotropic-elastic FWI for different misfit functions.

4.6 Conclusions

Origins of interparameter tradeoffs in isotropic-elastic FWI have been revealed with inter-

parameter contamination kernels. Strengths and characteristics of the interparameter con-

taminations in isotropic-elastic FWI are quantified locally or within the whole volume by

applying multiparameter Hessian to various types of probes. Two approaches (adjoint-state

and finite-difference) are examined to construct the multiparameter Hessian matrix-vector

products. This chapter reveals that S-wave velocity perturbations produce relatively strong

contaminations into density updates and phase-revered contaminations into P-wave velocity

updates. These contaminations make density structures highly under- and overestimated.

A novel inversion strategy has been recommended to reduce the contaminations from

S-wave velocity to other parameters based on approximate contamination kernels. Numeri-

cal examples are given to illustrate that this new inversion strategy is able to provide more
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convincing and reliable density estimations in isotropic-elastic FWI. Approximate eigen-

value volume is employed to evaluate resolution of inverted models within the whole volume.

Both of local spatial and interparameter tradeoffs of the inverted models are evaluated with

extended multiparameter point spread functions (EMPSFs), which provide more accurate

measurements of the local resolution compared to traditional MPSFs. The proposed strate-

gies are finally applied on Hussar practical seismic dataset. According to the inverted models

with different parameterizations, it is concluded that the velocity-density parameterization

is still a better choice than modulus-density and impedance-density parameterizations.
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Appendix B

Scattering patterns of isotropic-elastic parameters with

various parameterizations

Scattering coefficients are derived based on the assumption that an incident plane-wave is

scattered due to a local heterogeneity embedded in an isotropic-elastic background. Scatter-

ing potential is defined as the difference between the wave operators in the perturbed and

unperturbed medium and always reside inside Born approximation integral (Matson, 1997;

Stolt and Weglein, 2012; Innanen, 2012):

dn (xr,xs, t) ≈
∫ t

0

∫
Ω(x)

Gnj (xr,x, t)Vjk (x) fi (xs, t
′)Gki (x,xs, t− t′) dxdt′, (B.1)

where fi indicates the source function at the ith direction and Vjk (x) is the scattering poten-

tial: Vjk (x) =
∑

p Á
p

jap (x) À
p

k, where ap (x) is the relative perturbation of model parameter

p at x, À
p

k and Á
p

j are weighting coefficients associated with time and spatial derivatives for

incident and scattered waves respectively. With integration by parts, derivatives in À
p

k and

Á
p

j can be applied on the Green’s functions:

dn (xr,xs, t) ≈ −
∑
p

∫ t

0

∫
Ω(x)

(
Á
p

jGnj (xr,x, t)
)
ap (x) fi (xs, t

′)
(

À
p

kGki (x,xs, t− t′)
)
dxdt′.

(B.2)

Equation of motion in isotropic-elastic medium is given by: L (x, t) u (x,xs, t) = 0, where

u = [ux, uy, uz]
† is the displacement vector and wave operator L is a 3× 3 matrix containing

spatial and time derivatives:

Lij =∂i

(
κ+

4

3
µ

)
∂j − δij∂2

t ρ+ δij
∑
q

∂qµ∂q − 2∂iµ∂j + ∂jµ∂i, (B.3)

where q also takes on the value of x, y and z. The isotropic-elastic scattering potential

operator V can be expressed in terms of wavenumbers in displacement space (Moradi and

Innanen, 2015):

Vij = Lij − L̃ij

= −κ̃ḱiaκk̀j −
4

3
µ̃ḱiaµk̀j + ρ̃δijω

2aρ + µ̃δij
∑
q

ḱqaµk̀q + 2µ̃ḱiaµk̀j + µ̃ḱjaµk̀i.
(B.4)
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where Lij and L̃ij indicate the wave operators in the perturbed and reference medium. k̀

and ḱ are wavenumbers describing incident and scattered waves respectively.

The displacement domain scattering potential operator V (equation (B.4)) can be diago-

nalized into P-wave and S-wave components by pre-multiplying the partial derivative matrix

Λ and post-multiplying its inverse Λ−1 = ∇−2Λ†: VE = ΛVΛ−1, where Λ is a 4× 3 matrix

containing divergence and curl operations:

Λ = i
[

ḱα · ḱβ×
]†
, (B.5)

where ḱα and ḱβ represent wavenumber vectors of scattered P-wave and S-wave. Inverse of

the partial derivative matrix can be written as:

Λ−1 = ∇−2Λ† = −i

[
α̃2

ω2
k̀
†
α ·

β̃2

ω2
k̀
†
β×
]
, (B.6)

where k̀α and k̀β represent wavenumber vectors of incident P-wave and S-wave. The P-S

decomposed elastic scattering potentials VE can be subdivided into SV and SH components

by pre-multiplying È and post-multiplying the transpose of É (Stolt and Weglein, 2012):

Ṽ = ÉVEÈ
†

= ÉΛVΛ−1È
†
, where È and É are rotation matrices for incident and scattered

waves respectively:

È =


1 0

0 p̀SV

0 −p̀SH

 , É =


1 0

0 ṕSV

0 −ṕSH

 , (B.7)

where 0 is a zero vector, p̀SV and ṕSV are unit vectors describing particle motions of incident

SV-wave and scattered SV-wave, p̀SH and ṕSH are unit vectors describing particle motions of

incident SH-wave and scattered SH-wave respectively. The right term Λ−1È
†

and left term

ÉΛ of the displacement space scattering potential matrix V are expressed as:

Λ−1È
†

= −i
[
ω

α̃
p̀P

ω

β̃
p̀SH

ω

β̃
p̀SV

]
, (B.8)

ÉΛ = −i
[
ω

α̃
ṕ†P

ω

β̃
ṕ†SH

ω

β̃
ṕ†SV

]†
, (B.9)

where p̀P and ṕP are unit vectors indicating particle motions of incident P-wave and scattered
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P-wave. The transformed scattering potentials are finally obtained as:

Ṽ =


ṼPP ṼPSH ṼPSV

ṼSHP ṼSHSH ṼSHSV

ṼSVP ṼSVSH ṼSVSV

 =


ṼPP 0 ṼPSV

0 ṼSHSH 0

ṼSVP 0 ṼSVSV

 , (B.10)

where diagonal elements of Ṽ describe scattering that preserves wave type and off-diagonal

elements describe scattering that convert wave type. Furthermore, in isotropic-elastic media,

the terms associated with P-SH, SV-SH, SH-P and SH-SV scatterings are zeros. The elements

of scattering potential matrix Ṽ are obtained as:

ṼSHSH = ρ̃ω2 (aκRκ
SHSH + aµRµ

SHSH + aρRρ
SHSH)

= ρ̃ω2 (0 + aµ cosσ + aρ) ,
(B.11)

ṼPP = ρ̃ω2 (aκRκ
PP + aµRµ

PP + aρRρ
PP)

= ρ̃ω2

(
−aκ + 2aµ

µ̃

κ̃
sin2 σ − aρ cosσ

)
,

(B.12)

ṼPSV = ρ̃ω2 (aκRκ
PSV + aµRµ

PSV + aρRρ
PSV)

= ρ̃ω2

(
0 + 2aµ

µ̃

κ̃
| sinσ| cosσ + aρ

√
µ̃

κ̃
| sinσ|

)
,

(B.13)

ṼSVSV = ρ̃ω2 (aκRκ
SVSV + aµRµ

SVSV + aρRρ
SVSV)

= ρ̃ω2 (0− aµ cos 2σ − aρ cosσ) ,
(B.14)

ṼSVP = ρ̃ω2 (aκRκ
SVP + aµRµ

SVP + aρRρ
SVP)

= ρ̃ω2

(
0− 2aµ

µ̃

κ̃
| sinσ| cosσ − aρ

√
µ̃

κ̃
| sinσ|

)
,

(B.15)

where σ indicates the opening angle between incident wave and scattering wave and R repre-

sents the frequency-independent scattering coefficient depending on opening angle σ. Scat-

tering coefficients of velocity parameters α, β and ρ′ can be obtained by replacing the relation

perturbations aκ, aµ and aρ with: aκ = aα+aρ′ , aµ = aβ +aρ′ and aρ = aρ′ . The correspond-

ing frequency-independent scattering coefficients for velocity-density and impedance-density

parameterizations are given in Table B.1.
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Appendix C

Explicit expressions of interparameter contamination

kernels in isotropic-elastic FWI

In this appendix, explicit expressions of correct update kernels and interparameter contami-

nation kernels in equations (4.29) and (4.30) are given. Kβ↔β and Kρ′↔ρ′ are correct update

kernels for β and ρ′:

Kβ↔β = −a−1
β

∫
Ω(x′)

Hββ (x,x′) ∆mβ (x′) dx′

= −〈2ρ′β2 [∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x)]

× 2ρ′β2 [∂j′Gn′i′ (x′) ∆mβ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))

−2∂i′Gn′i′ (x′) ∆mβ (x′) ∂k′uk′ (x′)]〉,

(C.1)

Kρ′↔ρ′ (x) = −a−1
ρ′

∫
Ω(x′)

Hρ′ρ′ (x,x′) ∆mρ′ (x′) dx′

= −〈ρ′
[(
Gni (x) ∂2

t ui (x) + 2α2∂iGni (x) ∂kuk (x)
)

+2β2 (∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x))
]

× ρ′
[(
Gn′i′ (x′) ∆mρ′ (x′) ∂2

t′ui′ (x′) + 2α2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′)
)

+2β2 (∂j′Gn′i′ (x′) ∆mρ′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))

−2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′))]〉.

(C.2)

Interparameter contamination kernels Kα→β and Kρ′→β represent the mappings from α and

ρ′ to β respectively:

Kα→β = −a−1
β

∫
Ω(x′)

Hβα (x,x′) ∆mα (x′) dx′

= −〈2ρ′β2 [∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x)]

×
[
2ρ′α2∂i′Gi′n′ (x′) ∆mα (x′) ∂k′uk′ (x′)

]
〉,

(C.3)
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Kρ′→β = −a−1
β

∫
Ω(x′)

Hβρ′ (x,x′) ∆mρ′ (x′) dx′

= −〈2ρ′β2 [∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x)]

× ρ′
[(
Gn′i′ (x′) ∆mρ′ (x′) ∂2

t′ui′ (x′) + 2α2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′)
)

+2β2 (∂j′Gn′i′ (x′) ∆mρ′ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))

−2∂i′Gn′i′ (x′) ∆mρ′ (x′) ∂k′uk′ (x′))]〉.

(C.4)

Interparameter contamination kernels Kα→ρ′ and Kβ→ρ′ represent the mappings from α and

β to ρ′ respectively:

Kα→ρ′ = −a−1
ρ′

∫
Ω(x′)

Hρ′α (x,x′) ∆mα (x′) dx′

= −〈ρ′
[(
Gni (x) ∂2

t ui (x) + 2α2∂iGni (x) ∂kuk (x)
)

+2β2 (∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x))
]

×
[
2ρ′α2∂i′Gi′n′ (x′) ∆mα (x′) ∂k′uk′ (x′)

]
〉,

(C.5)

Kβ→ρ′ = −a−1
ρ′

∫
Ω(x′)

Hρ′β (x,x′) ∆mβ (x′) dx′

= −〈ρ′
[(
Gni (x) ∂2

t ui (x) + 2α2∂iGni (x) ∂kuk (x)
)

+2β2 (∂jGni (x) (∂iuj (x) + ∂jui (x))− 2∂iGni (x) ∂kuk (x))
]

× ρ′β2 [∂j′Gn′i′ (x′) ∆mβ (x′) (∂i′uj′ (x′) + ∂j′ui′ (x′))

−2∂i′Gn′i′ (x′) ∆mβ (x′) ∂k′uk′ (x′)]〉.

(C.6)
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Appendix D

Multiparameter Hessian-vector product calculation in

time domain

Constructing Hessian-vector products is an essential step for implementing Hessian-free opti-

mization methods and quantifying uncertainties of the inverse problems (Santosa and Symes,

1988; Fichtner and Trampert, 2011a; Métivier et al., 2012; Pan et al., 2017a). One popular

approach for Hessian-vector product construction in time domain is known as adjoint-state

method. To understand the mechanism of the adjoint-state method for Hessian-vector cal-

culation, I first consider minimizing the misfit function (Métivier et al., 2013):

Ψ (m) =
∑
xs

∑
xg

∫ T

0

u∗n (xg,xs, t
′)νdt′, (D.1)

where ν is an arbitrary function and the gradient is given by ∇mΨ = ∇mu∗ν. Minimiz-

ing this misfit function subject to that wavefield u satisfies the wave equation gives the

augmented Lagrangian functional (Liu et al., 2006; Métivier et al., 2013):

χ (m,u,λ) =
∑
xs

∑
xg

∫ T

0

[u∗n (xg,xs, t
′)ν

−λi
(
ρ∂2

t′ui (xg,xs, t
′)− ∂j (cijkl∂luk (xg,xs, t

′))− fi
)]
dt′,

(D.2)

where fi is the source term and λi is the Lagrangian multiplier. Variation of functional due

to the perturbations of model parameter ∆m and wavefield ∆u is given by (Liu et al., 2006):

∆χ (m,u,λ) =
∑
xs

∑
xg

∫ T

0

−
[
∆ρλi∂

2
t′ui (xg,xs, t

′) + ∆cijkl∂jλi (∂luk (xg,xs, t
′))
]

+
[
ν −

(
ρ∂2

t′λi − ∂j (cijkl∂lλk)
)]

∆undt
′.

(D.3)

Equation (D.3) is stationary with respect to wavefield perturbation ∆u when its coefficient

is zero, which gives the adjoint-state equation: ρ∂2
t′λi − ∂j (cijkl∂lλk) = ν, where ν serves

as the adjoint source. Thus, gradients of the misfit function with respect to density ρ and

elastic constants c become:

∇ρχ = ∇ρu
∗ν = −〈ũi∂2

t′ui〉,∇cχ = ∇cu
∗ν = −〈∂jũi∂luk〉, (D.4)
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where ũi (xg,x, T − t′) = λi (xg,x, T − t′) = Gni (xg,x, T − t′)ν is the adjoint wavefield.

Product of Jacobian matrix with an arbitrary vector v is given by:

J = ∇muv = −〈Gn′i′ (x′) v (x′) ∂2
t′′ui′ (x′) + ∂j′Gn′i′ (x′) v (x′) ∂l′uk′ (x′)〉, (D.5)

Replacing ν in equation (D.4) with Jacobian-vector product J gives the multiparameter

Gauss-Newton Hessian-vector product:

H = ∇mu∗∇muv

= 〈
(
Gni (x) ∂2

t′ui (x) + ∂jGni (x) ∂luk (x)
)

×
(
Gn′i′ (x′) v (x′) ∂2

t′′ui′ (x′) + ∂j′Gn′i′ (x′) v (x′) ∂l′uk′ (x′)
)
〉.

(D.6)

For example, product of off-diagonal block Hcρ in multiparameter Gauss-Newton Hessian

with an arbitrary perturbation vector vρ due to density can be written explicitly as:

Hcρ (x) =

∫
Ω(x′)

Hcρ (x,x′) vρ (x′) dx′

=
∑
xs

∑
xg

∫
Ω(x′)

∫ ∫
∂kul (x,xs, t

′) ∂jGni (xg,x, T − t′)

×Gn′i′ (xg,x
′, t− t′′) vρ (x′) ∂2

t′′ui′ (x′,xs, t
′′) dt′dt′′dx′,

(D.7)

where Jacobian-vector product Jρ is:

Jρ (xg,x
′, t) =

∑
xs

∫
Gn′i′ (xg,x

′, t− t′′) vρ (x′) ∂2
t′′ui′ (x′,xs, t

′′) dt′′, (D.8)

where interaction of the indicate wavefield ui′ (x′,xs, t
′′) with the perturbation vector vρ (x′)

serves as the “secondary scattered source” f ′i (x′,xs, t
′′):

f ′i (x′,xs, t
′′) = vρ (x′) ∂2

t′′ui′ (x′,xs, t
′′) . (D.9)

Convolution of this scattered source with the Green’s function Gn′i′ (xg,x
′, t− t′′) gives the

first-order scattered wavefield:

∆un′ (xg,x
′, t) =

∑
xs

∫
Gn′i′ (xg,x

′, t− t′′) f ′i (x′,xs, t
′′) dt′′. (D.10)

Recorded scattered wavefield at the receiver locations can be considered as adjoint source

f̃ ′n (x,x′, t):

f̃ ′n (x,x′, t) =
∑
xg

∆un (xg,x
′, T − t) δ (x− xg) . (D.11)
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Inserting equation (D.11) into equation (D.7) gives the Hessian-vector product as:

Hcρ (x) =
∑
xs

∑
xg

∫
Ω(x′)

∫
∂kul (x,xs, t

′) ∂jũi (xg,x,x
′, T − t′) dt′dx′, (D.12)

where ũi (xg,x,x
′, T − t′) is the adjoint wavefield:

ũi (xg,x,x
′, T − t′) =

∫ T−t′

0

Gni (xg,x, T − t′ − t′′′) f̃ ′n (x,x′, t′′′) dt′′′. (D.13)

Calculating Gauss-Newton Hessian-vector product with the adjoint-state approach needs

to construct forward wavefield ui′ (x′,xs, t
′′), Born modelling wavefield ∆un′ (xg,x

′, t) and

adjoint wavefield ũi (xg,x,x
′, T − t′), The computational cost is 1.5 times than that of cal-

culating gradient (Métivier et al., 2013).

Another approach for Hessian-vector calculation is finite-difference method. Recalling

that Hessian operator represents the Fréchet derivative of the gradient vector, with Taylor

series expansion:

∇mΦ
(
m0 + ∆m

)
≈ ∇mΦ

(
m0
)

+ H∆m, (D.14)

where m0 denote current model. Replacing the model perturbation vector ∆m with an

arbitrary vector v scaled by a small constant value ε̄ gives:

∇mΦ
(
m0 + ε̄v

)
≈ ∇mΦ

(
m0
)

+ ε̄Hv. (D.15)

An approximate Hessian-vector product solution can be obtained by:

H ≈ ∇mΦ (m0 + ε̄v)−∇m0Φ (m)

ε̄
. (D.16)

Two additional pairs of forward and adjoint simulations are required for calculating this

Hessian-vector product approximation, which is affordable for large-scale inverse problems.

Even this approximation may suffer from rounding errors, the accuracy can be improved with

high-order finite-difference approaches at the cost of more computation requirements and for

very small coefficient ε̄, its accuracy will be very high. For example, if the multiparameter

Hessian is applied to vector v = [vc = 0 vρ 6= 0]†, the Hessian-vector product Hcρ = Hcρvρ

can be obtained by:

Hcρ ≈
∇cΦ (ρ0 + ε̄vρ)−∇cΦ (ρ0)

ε̄
. (D.17)
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Figure D.1: Panel (a) shows vector vρ with 9 isolated spikes; Figures (b) and (c) are the
multiparameter Hessian-vector products Hκρ = Hκρvρ calculated with second-order adjoin-
t-state and finite-difference methods respectively.

Next, the two approaches with a multiparameter acoustic example are examined for com-

parison. Figure D.1a shows the vector vρ with 9 isolated spikes. A homogeneous model

with bulk modulus κ = 13.5 GPa and density ρ = 1500 kg/m3 is used as the background

model. A set of sources and receivers are distributed regularly along the top boundary of

the model. Multiparameter Hessian-vector product Hκρ = Hκρvρ is calculated with adjoint-

state and finite-difference methods, as shown in Figures D.1b and D.1c respectively. The

Hessian-vector products by these two methods match very well. In this chapter, I adopt

the adjoint-state approach for calculating the multiparameter Hessian-vector products in

isotropic-elastic media.
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Appendix E

Stochastically estimating diagonals of multiparameter

Hessian off-diagonal blocks

This Appendix explains how to efficiently estimate the diagonals of multiparameter Hes-

sian off-diagonal blocks with stochastic probing approach. Zero-mean random vector v is

divided into Np independent subvectors corresponding to Np different physical parameters:

v =
[
v1,v2, ....,vNp

]
. vp ∼ N

(
E [vp] ,Σvpvp

)
and vq ∼ N

(
E [vq] ,Σvqvq

)
are independent

subvectors within v. Expectation values and variance-covariance matrices of the subvectors

satisfy:

E [vp (x)] = 0,E [vq (x)] = 0, (E.1)

Σvpvp (vp (x) , vp (x′)) = E [vp (x) vp (x′)] = δ (x− x′) , (E.2)

Σvqvq (vq (x) , vq (x′)) = E [vq (x) vq (x′)] = δ (x− x′) . (E.3)

Cross-covariance between vp and vp can be obtained as:

Σvpvq (vp (x) , vq (x′)) = E
[
(vp (x)− E [vp (x)]) (vq (x′)− E [vq (x′)])

†
]

= E [vp (x) vq (x′)]− E [vp (x)] (E [vq (x′)])
†

= 0.

(E.4)

Thus, expectation value of the correlation result between subvector vp and the sub-Hessian-

vector product Hp is given by:

E [vp � Hp] =

Np∑
q=1

vp �Hpqvq

=

∫
Ω(x′)

Hpq (x,x′)E [vp (x) vp (x′)] dx′

= Hpq (x,x) .

(E.5)
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Chapter 5

Gauss-Newton and full-Newton methods for estimating

elastic constants in 2D HTI media

5.1 Summary

This chapter focuses on the problem of estimating the elastic constants of a fractured

medium using multiparameter FWI and modeling naturally fractured reservoirs as equiv-

alent anisotropic media. Multiparameter FWI, although promising, remains exposed to the

challenge of parameter crosstalk problem, which is strongly influenced by the form of the

scattering pattern for each parameter. I have derived 3D radiation patterns associated with

scattering from a range of elastic constants in general anisotropic media. Then, scattering

patterns specific to a horizontal transverse isotropic (HTI) medium are derived to draw con-

clusions about parameter crosstalk in FWI. The role of the multiparameter Gauss-Newton

(GN) Hessian in suppressing parameter crosstalk is revealed. I found that the second-order

term in the multiparameter Hessian can be constructed with the adjoint-state technique.

The analytic scattering patterns for HTI media are examined with a 2D numerical example.

The roles played by the first- and second-order terms in multiparameter Hessian to suppress

parameter crosstalk and second-order scattering artifacts are also verified numerically. The

multiparameter GN and FN methods are applied for determining the elastic constants in

HTI media with a two-block-layer model.

5.2 Introduction

Naturally fractured reservoirs play an important role in current hydrocarbon production

(Nelson, 1985). Fracture properties are amongst the most valuable data for reservoir charac-

terization. The influence of fractures/cracks in a geological medium on the seismic response

can be modelled via an equivalent anisotropic solid and the associated elastic stiffness coeffi-

cients (Hudson, 1981; Schoenberg, 1983). For transverse isotropy with a horizontal symmetry
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axis (HTI media), the simplest azimuthal anisotropic model for describing vertical cracks,

reflection seismic signatures can be described by five independent elastic constants (Rüger,

1997; Tsvankin, 1997b,a). In reflection seismology, most current methods for estimating

fracture properties focus on amplitude and traveltime methods (Thomsen, 1988; Tsvankin,

1997b). This chapter considers the problem of estimating elastic constants in anisotropic

media using multiparameter full-waveform inversion (FWI).

Inverting multiple parameters using multiparameter FWI has also, however, received in-

creased attention in recent years, though it is a very challenging task. As discussed in chapter

4, involving several parameters increases the nonlinearity of the inversion process and further-

more introduces the interparameter tradeoff issue (or parameter crosstalk), the conflation of

the influence of one physical property on the data with another (Operto et al., 2013; Prieux

et al., 2013a; Innanen, 2014a; Oh et al., 2015; Métivier et al., 2015). Parameter crosstalk ar-

tifacts (or interparameter contaminations) are strongly present in steepest-descent method,

wherein update in each parameter proceed with no accounting for the multiparameter charac-

ter of the problem. However, even when the multiparameter character of a system is properly

included in a FWI update, crosstalk persists if the wavefield variation caused by one param-

eter is similar to that caused by another physical parameter. Hence, the Fréchet derivative

wavefields associated with different physical parameters are crucial to understand the param-

eter crosstalk problem in multiparameter FWI. Scattering patterns represent the analytic

solutions of Fréchet derivative wavefields. In chapter 4, I used the scattering patterns to

analyze the coupling effects of isotropic-elastic parameters within various parameterizations

for isotropic-elastic FWI.

Multiparameter Hessian in FWI is a square and symmetric matrix with a block structure.

It carries more information than a single-parameter Hessian. Within the approximate Hes-

sian associated with a multiparameter Gauss-Newton update, off-diagonal blocks measure

correlation of Fréchet derivative wavefields with respect to different physical parameters,

and they act to mitigate the coupling effects between these parameters (Operto et al., 2013).

Innanen (2014a) showed that the diagonal elements internal to the off-diagonal blocks sup-

press crosstalk, in precritical reflection FWI, in a manner consistent with AVO inversion

and linearized inverse scattering. Detailed introduction of multiparameter Hessian has been
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given in chapter 4 of this thesis.

The gradient vector is also known to be contaminated by second-order scattered energy

in the data residuals. Pratt et al. (1998b) discussed and analyzed the second-order term

in the single-parameter Hessian, which accounts for the second-order scattering effects. In

previous chapters, this term is ignored for sake of compactness. However, this term becomes

important when the data residuals or the second-order scattered energy are very strong

(Margrave et al., 2011b; Métivier et al., 2014). Incorporating this second-order term can

eliminate the second-order scattering effects in the gradient vector (Pratt et al., 1998b).

This term in a multiparameter Hessian becomes more complex and the second-order partial

derivative wavefields can be caused by the perturbations of different physical parameters.

It predicts the change in the gradient due to the multiparameter second-order non-linear

effects. In this chapter, this second-order term in multiparameter Hessian is calculated with

adjoint-state method following Pratt et al. (1998b). Involving both of the first-order and

second-order terms in the multiparameter Hessian for preconditioning the gradient is known

as the full-Newton method.

In this chapter, analytic expressions for the 3D scattering patterns of the elastic constants

in general anisotropic media are derived. Then, the scattering patterns of elastic constants in

a specific HTI medium are illustrated for interparameter tradeoffs (or parameter crosstalk)

analysis. Furthermore, the ability of the multiparameter approximate Hessian to suppress

parameter crosstalk is examined for HTI elastic constants inversion. Pratt et al. (1998b)

calculated the second-order term in single-parameter Hessian using an adjoint-state method.

This chapter shows that the second-order term in multiparameter Hessian associated with

multiparameter second-order scattering effects can also be constructed with the adjoint-state

technique.

This chapter is organized as follows. First, the basic theories for the forward modeling

problem in anisotropic media are reviewed. Then, the parameter crosstalk difficulty in

multiparameter FWI is discussed. The analytic expressions of 3D scattering patterns for

the elastic constants in general anisotropic media are derived. The physical interpretations

of the first- and second-order terms in multiparameter Hessian are explained. Their roles

in suppressing parameter crosstalk and second-order scattering effects are revealed. How to
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construct the second-order term using the adjoint-state method is described. In the numerical

modeling section, the analytic and numerical scattering patterns of the elastic constants for

parameter crosstalk analysis are examined. Several numerical examples are presented to

illustrate the role of multiparameter Hessian in mitigating parameter crosstalk and second-

order scattering artifacts. The GN and FN multiparameter FWI are finally applied on a

two-block-layer model for comparison.

5.3 Theory and Methods

This section first presents the basic principles of forward modelling in anisotropic media. In-

troduction for Newton-based optimization methods (Gauss-Newton and full-Newton meth-

ods) can be found in chapter 3. The issue of parameter crosstalk for inverting the elastic

constants in HTI media using multiparameter FWI is discussed. The roles of the multipa-

rameter Hessian in suppressing parameter crosstalk and second-order scattering effects are

revealed.

5.3.1 Forward modelling problem in anisotropic media

In reflection seismology, the wavelengths of seismic waves are typically much larger than the

fracture size. When considering that the fractures are closely spaced and parallel, the finite

fracture spacings and their detailed spatial distributions can be neglected and the fractured

medium can be replaced by effective anisotropic solids. The reflection seismic signatures are

associated with the elastic stiffness coefficients cIJ through the equation of motion in general

anisotropic media (Hudson, 1981; Schoenberg, 1983), which can be expressed as:

∂σij
∂xj

+ fi = ρ
∂2ui
∂t2

, (5.1)

where ui (x, t) indicates i component of the particle displacement at Cartesian coordinate

position x = (x, y, z) and time t, fi (xs) is the source term at position xs, ρ is the density

and σij denotes the stress tensor, which can be defined using Hooke’s law:

σij = cijklekl, (5.2)
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where cijkl indicates the elastic modulus tensor, ekl = 1
2

(
∂uk
∂xl

+ ∂ul
∂xk

)
is the strain tensor.

Thus, 81 elastic constants are required to characterize the elasticity of the medium. Because

the symmetry of the stress and strain tensors, only 21 elastic stiffness coefficients are inde-

pendent and the 3 × 3 × 3 × 3 tensor cijkl can be represented more compactly using 6 × 6

symmetric matrix cIJ following the Voigt recipe for indexes, where I and J range from 1 to

6 (Crampin, 1984; Tsvankin and Grechka, 2011).

Models containing parallel vertical fractures are equivalent to HTI media (transverse

isotropy with horizontal symmetry axis), which can be characterized by five independent

elastic constants c33, c55, c11, c13, c44. I extract the x-z plane with zero azimuth angle from

3D geometry, which forms the simplified 2D HTI model described by four elastic constants

(c33, c55, c11 and c13). Numerical solutions of the wavefields are calculated using an explicit

finite-difference method with fourth-order accuracy in space and second-order accuracy in

time (Virieux, 1986; Levander, 1988).

5.3.2 Parameter crosstalk (or interparameter tradeoff) problem and the role of scattering

pattern

To be separately constrained by seismic observations, the perturbation of each medium pa-

rameter type cause a unique variation in its Fréchet derivative wavefields over the observed

range of scattering and azimuthal angles. Identical or nearly identical variations are one of

the key mechanisms of parameter crosstalk in multiparameter FWI (Operto et al., 2013).

The interaction of the incident wavefield with the model perturbation serves as the “virtual

source” or “secondary scattered source”. The scattering pattern of the “virtual source” gov-

erns the amplitude variation of Fréchet derivative wavefield as a function of scattering angle

and azimuthal angle. An inversion sensitivity analysis taking these patterns into account

is important (Gholami et al., 2013a). Coupling effects between different elastic constants

to be examined, and proper parameterization and optimal acquisition geometry should be

calculated (Tarantola, 1986; Gholami et al., 2013b). Forgues and Lambaré (1997) stud-

ied different parameter classes in acoustic and elastic ray+Born inversion. In this chapter,

the 3D scattering patterns for elastic constants in general anisotropic media are derived in

Appendix F.
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Figure 5.1: The 3D geometry. ù indicates normal to the wavefront of the incident wave. ϑ
and ϕ are the inclination angle departing from z axis and azimuth angle departing from x
axis for describing the incident wave. The HTI inclusion is at the original point 0. x axis
parallel to the symmetry axis of the HTI inclusion and the y-z plane is perpendicular to the
axis of symmetry.

The 3D geometry for describing the scattering problem due to the local anisotropic

inclusion is presented in Figure 5.1. The inclination angle ϑ and azimuth angle ϕ are defined

for describing the incident wave and inclination angle θ and azimuth angle φ for describing

the scattered wave. For an HTI inclusion, I also define the symmetry axis to parallel to the x

axis and the isotropic plane to be consistent with the y-z plane. Neglecting the contribution

from density and considering the perturbation of the elastic constant matrix ∆č for HTI

media, the equivalent moment tensor source (equation (F.11)) caused by the perturbations

of the elastic constants can be obtained as (Ben-Menahem and Singh, 1981; Chapman, 2004):

∆M̌ =


∆c11ẽ11 + ∆c13 (ẽ22 + ẽ33) 2∆c55ẽ12 2∆c55ẽ13

2∆c55ẽ12 ∆c13ẽ11 + ∆c33ẽ22 + ∆νẽ33 2∆c44ẽ23

2∆c55ẽ13 2∆c44ẽ23 ∆c13ẽ11 + ∆νẽ22 + ∆c33ẽ33

 .
(5.3)

where the symbol “ˇ” means specification for HTI media, and ẽij indicate the strain com-

ponents of the incident wave. Considering an incident plane P-wave (equation (F.12)),

inserting the reduced equivalent moment tensor source ∆M̌ (see Appendix F) for HTI media
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Figure 5.2: (a), (b) and (c) show the P-P (equation (5.5)), P-SV (equation (5.6)) and P-SH
(equation (5.7)) scattering patterns due to the perturbation of c55.

into equation (F.18) yields the 3D scattering patterns of the elastic constants:

ŘP (ϑ, ϕ, θ, φ) = ĝ†∇mM̌r̂, (5.4)

where vectors ĝ and r̂ are defined in equation (F.17). Applying perturbation to one elastic

constant and keeping the perturbations of other elastic constants as zero, the scattering

pattern for the specified elastic constant can be obtained. For example, considering the

perturbation of elastic constant ∆c55, the P-P, P-SV and P-SH scattering coefficients due to

∆c55 can be obtained as:

ŘP-P (ϑ, ϕ, θ, φ,∆c55) = 4p̂1q̂2r̂1r̂2 + 4p̂1q̂3r̂1r̂3

= sin2 ϑ sin 2ϕ sin2 θ sin 2φ+ sin 2ϑ cosϕ sin 2θ cosφ,
(5.5)

ŘP-SV (ϑ, ϕ, θ, φ,∆c55) = 2p̂1q̂2θ̂2r̂1 + 2p̂1q̂3θ̂3r̂1 + 2p̂1q̂2θ̂1r̂2 + 2p̂1q̂3θ̂1r̂3

= sin2 ϑ sin 2ϕ sin θ cos θ sin 2φ+ sin 2ϑ cosϕ cos 2θ cosφ,
(5.6)

ŘP-SH (ϑ, ϕ, θ, φ,∆c55) = 2p̂1q̂2φ̂2r̂1 + 2p̂1q̂3φ̂3r̂1 + 2p̂1q̂2φ̂1r̂2 + 2p̂1q̂3φ̂1r̂3

= sin2 ϑ sin 2ϕ sin θ cos 2φ− sin 2ϑ cosϕ sinφ cos θ.
(5.7)

Figures 5.2a, 5.2b and 5.2c show the 3D P-P (equation (5.5)), P-SV (equation (5.6))

and P-SH (equation (5.7)) scattering patterns due to ∆c55 (ϑ = 135o and ϕ = 0o). Figures

5.3a, 5.3b and 5.3c show the P-P scattering patterns due to perturbations of c33, c11 and

c13 respectively. The scattered P-wave, SV-wave and SH-wave with incident plane SV-wave

and incident plane SH-wave can be obtained following the equations (F.23) and (F.24).

153



Figure 5.3: (a), (b) and (d) are the P-P scattering patterns due to the perturbations of c33,
c13 and c11 respectively.

The explicit expressions of the 3D scattering patterns for the elastic stiffness coefficients

in HTI media with incident P-wave, S-wave, and SH-wave are given in Appendix F. If the

scattering patterns associated with different elastic constants significantly overlap over a

range of scattering angle or azimuth angle, the parameter crosstalk between these physical

parameters will contaminate the update. If the update is not properly preconditioned, the

inversion process will be impacted negatively. This difficulty also raises the parameterization

issue for managing parameter crosstalk. In chapter 4, the parameterization issue in isotropic-

elastic FWI has been discussed. Determining a more proper parameterization for inverting

fracture properties using FWI is beyond the scope of this chapter. The 3D scattering patterns

of the elastic constants in general anisotropic media given in this chapter can be transformed

to the scattering patterns for any parameter class using the chain rule.

5.3.3 Gauss-Newton and full-Newton multiparameter full-waveform inversion

Chapter 3 has introduced the basic principles of Newton-based optimization methods (Gauss-

Newton and full-Newton methods) for FWI, which are able to provide quadratic convergence

rate but are limited due to extensive computation requirements. In this chapter, the Newton-

based optimization methods are applied on a small scale inverse problem for inverting elastic

stiffness coefficients in 2D HTI media, which helps reveal the roles of multiparameter Hessian

in suppressing parameter crosstalk artifacts and multiparameter second-order scattering ef-

fects. The role of the single-parameter Hessian has been discussed and analyzed in chapter 2.

The structure of multiparameter Hessian in multiparameter FWI has also been introduced

154



in chapter 4. For inverting the four elastic constants in 2D HTI media, the multiparameter

Hessian H has 16 block sub-matrices (Np = 4):

H =


H3333 H3355 H3311 H3313

H5533 H5555 H5511 H5513

H1133 H1155 H1111 H1113

H1333 H1355 H1311 H1313

 , (5.8)

where the subscripts of the block matrices in H are consistent with the subscripts of two

elastic constants. The multiparameter Hessian H can be written as the summation of the

first-order term Ha and second-order term H̄. The first-order term Ha is also known as

multiparameter approximate Hessian used in Gauss-Newton method. The elements in Ha

measure the correlations of two Fréchet derivative wavefields. For example, the element

Ha,m1m2 (x,x′) can be expressed as:

Ha,m1m2 (x,x′) =
∑
xs

∑
xg

∑
ω

<
(
∇m1(x)u

† (xg,xs, ω)∇m2(x′)u
∗ (xg,xs, ω)

)
, (5.9)

where when m1 = m2, it indicates the element in diagonal block, and when m1 6= m2, it

indicates the element in off-diagonal block. Note that in this chapter the receiver sampling

operator P is ignored for sake of compactness. The multiparameter approximate Hessian

Ha is essential in overcoming the crosstalk difficulty in multiparameter FWI (Operto et al.,

2013). As discussed in chapter 4, the similarity of the Fréchet derivative wavefields with

respect to different physical parameters gives rise to the crosstalk problem. The off-diagonal

blocks in multiparameter approximate Hessian, as indicated by the grey boxes in Figure 5.4,

predict the coupling effects and applying its inverse to the gradient can remove the parameter

crosstalk artifacts (or interparameter contaminations).

The space-type multiparameter Hessian approximation Ha,s given by Innanen (2014a)

neglects the contributions of the off-diagonal blocks and stresses the correlation of Fréchet

derivative wavefields with respect to the same physical parameter, as indicated by the 4 black

diagonal boxes in Figure 5.4. This approximation can scale the amplitudes of the gradient

and de-blur the gradient, but can not suppress parameter crosstalk. The parameter-type

multiparameter Hessian approximation Ha,p (as indicated by the white-dash lines in Figure

5.4) only keeps the diagonal elements of the blocks, which is also capable of mitigating
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Figure 5.4: The schematic diagram of the multiparameter approximate Hessian Ha associated
with the elastic constants c33, c55, c11 and c13.

parameter crosstalk but limited in resolving the gradient spatially. When correlating the

Fréchet derivative wavefields with the data residuals, the doubly-scattered energy in the

data residuals will result in artifacts or spurious correlations in the gradient. The second-

order term in the Hessian matrix is the correlation of the second-order partial derivative

wavefields with the complex conjugate of the data residuals and it works as a de-multiple

operator for suppressing the second-order scattering effects (Pratt et al., 1998b). The second-

order partial derivative wavefields for multiparameter Hessian become more complex. Figure

5.5 shows a schematic diagram for multiparameter second-order scattering effects. Fréchet

derivative wavefield ∇m1(x)u (xg,xs, ω) due to the perturbation of model parameter m1 (x),

is scattered secondly due to the perturbation of physical parameter m2 (x′), which yields

second-order partial derivative wavefields ∇m1(x)∇m2(x′)u (xg,xs, ω). Hence, the gradient

will be contaminated by artifacts due to the multiparameter doubly-scattered energy. These

artifacts can be suppressed by the second-order term in multiparameter Hessian. While it

is quite expensive to calculate this second-order preconditioner explicitly, this chapter will

show that it can be constructed using the adjoint-state method more efficiently.
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∆m1(𝐱) 

∆m2(𝐱
′) 

u 

Figure 5.5: Schematic diagram of multiparameter second-order scattering. The indicate
wavefields u is firstly scattered by the model perturbation ∆m1 at x and then scattered
again by model perturbation ∆m2 at x′.

5.3.4 Constructing multiparameter second-order preconditioner with the adjoint-state method

To calculate the second-order preconditioner for monoparameter FWI explicitly, (NxNz)
2 /2

forward modelling problems need to be solved, which is extremely expensive (Pratt et al.,

1998b). Considering the first-order partial derivative wavefield with respect to m at position

x:

∇m(x)u = −L (m, ω)−1∇m(x)L (m, ω) u. (5.10)

Taking partial derivative with respect to model parameter m (x′) on both sides of equa-

tion (5.10) gives the equation describing the propagation of second-order partial derivative

wavefield:

L (m, ω)∇m(x)∇m(x′)u (xg,xs, ω) = ˜̃fs (x,x′, ω) , (5.11)

where ˜̃fs (x,x′, ω) indicates the second-order virtual source:

˜̃fs (x,x′, ω) =−
∑
xg

∑
xs

<
(
∇m(x)L (m, ω)∇m(x′)u (xg,xs, ω)

−∇m(x′)L (m, ω)∇m(x)u (xg,xs, ω)

− ∇m(x)∇m(x′)L (m, ω) u (xg,xs, ω)
)
,

(5.12)

where the first term indicates the second-order virtual source constructed by the interaction

of Fréchet derivative wavefield ∇m(x′)u (xg,xs, ω) with model perturbation ∆m (x). Its
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second term is the interaction of Fréchet derivative wavefield ∇m(x)u (xg,xs, ω) with model

perturbation ∆m (x′). In monoparameter FWI, the third term in equation (5.12) is zero

when x 6= x′. Isolating the second-order partial derivative wavefield in equation (5.11) and

inserting it into the second term of full Hessian yields:

H̄ (x,x′) =
∑
xg

∑
xs

∑
ω

<
(
˜̃f†s (x,x′, ω) L (m, ω)−1 ∆d∗ (xg,xs, ω)

)
. (5.13)

It can be observed that equation (5.13) is similar to gradient calculation using the adjoint-

state technique and the term L (m, ω)−1 ∆d∗ (xg,xs, ω) serves as the backward propagated

residual wavefield. Thus, the second-order preconditioner can be constructed by multiplying

the backpropagated wavefield with the second-order virtual source using the adjoint-state

method, which only needs NxNz additional forward modelling problems (Pratt et al., 1998b).

It is more complex to construct the second-order preconditioner in multiparameter Hes-

sian because the second-order partial derivative wavefield can be caused by perturbations of

different physical parameters. Considering two different physical parameters m1 and m2 and

following equation (5.11), the wave equation describing the propagation of multiparameter

second-order scattered wavefield is given by:

L (m, ω)∇m1(x)∇m2(x′)u (xg,xs, ω) = ˜̃fm1m2 (x,x′, ω) . (5.14)

To construct the second-order partial derivative wavefield explicitly, (NpNxNz)
2 /2 forward

modelling problems need to be solved. ˜̃fm1m2 (x,x′, ω) in equation (5.14) is the multiparam-

eter second-order virtual source:

˜̃fm1m2 (x,x′, ω) =−
∑
xg

∑
xs

<
(
∇m1(x)L (m̃, ω)∇m2(x′)u (xg,xs, ω)

−∇m1(x′)L (m̃, ω)∇m2(x)u (xg,xs, ω)

− ∇m1(x)∇m2(x′)L (m̃, ω) u (xg,xs, ω)
)
,

(5.15)

where m̃ denotes all of the physical parameters considered. The first term in equation (5.15)

indicates the multiparameter second-order virtual source caused by the interaction of the

Fréchet derivative wavefield ∇m1(x′)u (xg,xs, ω) with ∆m2 (x). The second term is formed

by the interaction of the Fréchet derivative wavefield ∇m2(x′)u (xg,xs, ω) with ∆m2 (x′).

The value of the third term in equation (5.15) is determined by the parameterization for
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describing the subsurface media. If m1 and m2 are independent physical parameters, the

third term in equation (5.15) is zero. However, if m1 and m2 are not independent physical

parameters (e.g., P-wave velocity α and density ρ′), the third term is not zero (Fichtner and

Trampert, 2011b). In this research, this term is ignored because the four elastic constants

used to describe the 2D HTI media are independent.

It is also possible to calculate the second-order preconditioner for multiparameter FWI

using the adjoint-state technique. Similar to equation (5.13), the multiparameter second-

order preconditioner can be expressed as:

H̄m1m2 (x,x′) =
∑
xg

∑
xs

∑
ω

<
(
˜̃f†m1m2

(x,x′, ω) L (m̃, ω)−1 ∆d∗ (xg,xs, ω)
)
. (5.16)

Thus, additional NpNxNz forward modelling simulations are required for constructing the

multiparameter second-order preconditioner. For example, to inverse the four elastic con-

stants in HTI media, the off-diagonal block H̄c33c55 in the second-order preconditioner is

expressible as:

H̄c33c55 (x,x′) =
∑
xg

∑
xs

∑
ω

<
(
˜̃f†c33c55 (x,x′, ω) L (m̃, ω)−1 ∆d∗ (xg,xs, ω)

)
, (5.17)

where m̃ indicate all of the four elastic constants c33, c55, c11 and c13.

5.4 Numerical Examples

In this section, several numerical examples are provided to test the proposed methods. The

scattering patterns of the elastic constants in HTI media are first examined by comparing

analytic results with numerical results. The multiparameter Hessian using a 2D HTI model is

presented. The effectiveness of multiparameter Hessian in suppressing parameter crosstalk

and second-order scattering effects are verified. Finally, the GN and FN multiparameter

FWI are enacted on a two-block-layer model.

5.4.1 Scattering patterns of the elastic constants: analytic vs. numerical results

In this numerical example, the analytic and numerical scattering patterns of the elastic

constants are examined for parameter crosstalk analysis. The x-z plane with zero azimuth
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Figure 5.6: The 2D numerical model for examining the scattering patterns of elastic con-
stants. The black point at the center of the model indicates the HTI anomaly at position
x0 =(0 m, 0 m, 0 m). The source is located at xs =(−800 m, 0 m, 800 m). The receivers
(the black squares) are arranged along the top surface for a reflection survey.

angle in 3D geometry (Figure 5.1) is extracted, which forms the specified 2D HTI model.

The acquisition geometry is shown in Figure 5.6. The model consists of 320× 320 grid cells

with grid sizes ∆x = ∆z = 5 m. The background model is isotropic-elastic with elastic

constants c33 = 14.06 GPa, c55 = 6.32 GPa, c11 = 14.06 GPa and c13 = 1.42 GPa (P-wave

velocity α = 2651.4 m/s, S-wave velocity β = 1777.6 m/s, density ρ′ = 2.0 g/cm3). −10%

perturbations are applied to the elastic constants of the node located at the center of the

model, which forms the anisotropic anomaly (the black circle point in Figure 5.6). One

source is located at top-left corner of the 2D model, as indicated by the black star in Figure

5.6. When the incident P-wave (ϑ = 135o and ϕ = 0o) interacts with the HTI anomaly,

the scattered wave will propagate at all directions and its amplitudes change with varying

angle θ. The receivers are deployed along the top surface of the model for a reflection survey,

which means that only the scattered wave at the range of θ ∈ [315o, 360o] and θ ∈ [0o, 45o]

are recorded.

The x-z plane is extracted from the analytic 3D scattering patterns for these elastic con-

stants. The bold-black curves in Figures 5.7a, 5.7b, 5.7c and 5.7d show the P-P scattering

patterns due to ∆c33, ∆c55, ∆c11 and ∆c13 with incident P-wave (ϑ = 135o and ϕ = 0o).

Perturbations of different elastic constants serve as different types of secondary sources as-
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Figure 5.7: Analytic vs. numerical results of the scattering patterns for the elastic constants
in 2D HTI media. (a), (b), (c) and (d) show the scattering patterns due to elastic constants
∆c33, ∆c55, ∆c11 and ∆c13 respectively. The symbols ”+” and ”-” in (b) mean positive and
negative polarities of the scattered wave. The amplitudes have been normalized.

sociated with different scattering patterns. The P-SV scattering pattern due to ∆c33 is also

plotted, as indicated by the blue curve in Figure 5.7a. The analytic scattering patterns are

overlain by numerical modelling results for comparison. The amplitude variations of the

analytic scattering patterns are consistent with those of the numerical results.

In angle regimes where the scattering pattern of one parameter is indistinguishable from

that of another, the influences of the two parameters are not separable, and crosstalk appears.

Comparing the scattering pattern in Figure 5.7a with that in Figure 5.7d, for instance, it is

observed that the P-P scattering patterns due to ∆c33 and ∆c13 are significantly overlapped

at near offset, indicating strong crosstalk between c33 and c13 for this reflection survey.

Furthermore, parameter crosstalk between c55 and c13 is very strong at mid offset. In Figure

5.7c, it is seen that strong scattered wavefields response due to ∆c11 can only be recorded at

large offset. For inversing the elastic constants using FWI, the parameter crosstalk among

these parameters are strong and complex for this reflection acquisition survey, which will

undermine the inversion process without proper preconditioning.

5.4.2 Suppressing parameter crosstalk with multiparameter approximate Hessian

To examine the ability of the multiparameter approximate Hessian to suppress parameter

crosstalk, the Gauss-Newton update is enacted on a 2D HTI point scatterer model. The 2D

HTI model consists of 900 nodes (Nx = Nz = 30) with grid size of 5 m in both horizontal

and vertical dimensions and four elastic constants (c33, c55, c11 and c13) are used to describe

each node. The initial model is elastic and isotropic with elastic constants c33 = 14.06
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GPa, c55 = 6.32 GPa, c11 = 14.06 GPa and c13 = 1.42 GPa. The true model is built by

embedding one HTI point anomaly at the center position of the background model and

four elastic constants are all perturbed by −10% at this point scatterer. A 50 Hz Ricker

wavelet is used for forward modelling and the absorbing boundary condition is applied on

all of the boundaries of the model. In these numerical examples presented in this research,

multi-component data is used for inversion.

First, the multiparameter approximate Hessian Ha is constructed explicitly with one

source located at xs1 =(75 m, 0 m, 0 m). Thirty receivers are arranged along the top surface

of the model with a spacing of 5 m. As shown in Figure 5.8, the multiparameter approximate

Hessian is a 3600 × 3600 square and symmetric matrix with 4 diagonal blocks and 12 off-

diagonal blocks, which are consistent with the schematic diagram shown in Figure 5.4. Each

block matrix is a 900× 900 square matrix.

It can be seen that the sub-blocks in multiparameter approximate Hessian are banded

due to finite-frequency effects. Because elastic constant c33 directly relates to P-wave velocity

α (c33 = ρ′α2) and the Fréchet derivative wavefield caused by ∆c33 recorded at the receivers

are much stronger than those due to other elastic constants, the diagonal block Ha,3333

dominates the whole matrix. The 4 diagonal blocks Ha,3333, Ha,5555, Ha,1111 and Ha,1313 are

extracted, as shown in Figures 5.9a, 5.9b, 5.9c and 5.9d respectively (the amplitudes have

been re-normalized). These 4 diagonal blocks form the space-type multiparameter Hessian

approximation Ha,s given by Innanen (2014b). Furthermore, the energy distribution in the 4

diagonal blocks are quite different, which are determined by the scattering patterns of these

elastic constants.

The diagonal elements in the diagonal blocks Ha,3333, Ha,5555, Ha,1111 and Ha,1313 are

extracted and plotted in model space (as shown in Figures 5.10a, 5.10b, 5.10c and 5.10d) and

they mainly account for illumination compensation and removing the geometrical spreading

effects. The parameter crosstalk between different physical parameters are measured by the

12 off-diagonal blocks of Ha, as shown in Figure 5.8. Stronger amplitudes in the off-diagonal

blocks means stronger parameter crosstalk. Figures 5.10e, 5.10f, 5.10g, 5.10h, 5.10i, and

5.10j show the diagonal elements of the off-diagonal blocks Ha,3355, Ha,3311, Ha,3313, Ha,5511,

Ha,5513 and Ha,1113 respectively, which mainly account for removing the parameter crosstalk
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Figure 5.8: The multiparameter approximate Hessian Ha for elastic constants c33, c55, c11

and c13 with the 2D HTI model. The multiparameter approximate Hessian is a 3600× 3600
square and symmetric matrix (Np = 4 and Nx = Nz = 30).

(Innanen, 2014a).

A numerical example is presented to show that preconditioning the gradient with the mul-

tiparameter approximate Hessian Ha can suppress parameter crosstalk and resolve the gradi-

ent. The search direction ∆mk associated with the Gauss-Newton update can be obtained by

solving the Newton linear system (equation (2.12)) approximately using a conjugate-gradient

(CG) algorithm, which is known as truncated-Newton method (Métivier et al., 2013; Pan

et al., 2017a). In this chapter, the gradient is preconditioned by the pseudo-inverse of the

multiparameter approximate Hessian H−1
a , which is calculated using Singular Value Decom-

position (SVD).

First, the data residual vector ∆d33 caused by perturbation of c33 is used to construct
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and (d) show the diagonal elements of the diagonal block matrices Ha,3333, Ha,5555, Ha,1111

and Ha,1313 respectively. (e), (f), (g), (h), (i) and (j) show the diagonal elements of the
off-diagonal block matrices Ha,3355, Ha,3311, Ha,3313, Ha,5511, Ha,5513 and Ha,1113 respectively.
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the gradients of all elastic constants c33, c55, c11 and c13. Figures 5.11a, 5.11b, 5.11c and

5.11d show the gradient vectors ∇c33Φ, ∇c55Φ, ∇c11Φ and ∇c13Φ without multiparameter

approximate Hessian preconditioning respectively. Only the gradient vector ∇c33Φ is real

and the gradient vectors for other elastic constants are all artifacts caused by parameter

crosstalk. The multiparameter approximate Hessian Ha is then applied to precondition the

gradient vectors and the estimated model perturbations for the elastic constants c33, c55, c11

and c13 are illustrated in Figures 5.11e, 5.11f, 5.11g and 5.11h respectively. It can be observed

that the artifacts in Figures 5.11b, 5.11c and 5.11d have been obviously removed and the

estimated model perturbation for c33 in Figure 5.11a is resolved and de-blurred. Figures 5.11i,

5.11j, 5.11k and 5.11l show the gradient vectors calculated using the data residual vector

∆d55 due to ∆c55. Similarly, only the gradient vector ∇c55Φ in Figure 5.11j is real and

other gradient vectors in Figures 5.11i, 5.11k and 5.11l are all spurious correlations. Figures

5.11m, 5.11n, 5.11o and 5.11p show the model perturbation estimations with multiparameter

approximate Hessian preconditioning for the four elastic constants respectively. It can be

seen that the artifacts in Figures 5.11i, 5.11k and 5.11l are suppressed and the gradient vector

∇c55Φ in Figure 5.11j is resolved obviously. These two numerical examples show the ability

of the multiparameter approximate Hessian in suppressing parameter crosstalk artifacts and

resolving the gradient vectors.

Figures 5.12a, 5.12b, 5.12c and 5.12d show the gradient vectors obtained using the data

residuals ∆d due to the perturbations of four elastic constants with 3 sources. The three

sources are located at xs1 =(75 m, 0 m, 0 m), xs2 =(0 m, 0 m, 0 m) and xs3 =(150 m, 0

m, 0 m) respectively. Figures 5.12e, 5.12f, 5.12g and 5.12h show the estimated model per-

turbations with multiparameter approximate Hessian preconditioning. Figures 5.12i, 5.12j,

5.12k and 5.12l show the estimated model perturbations of the elastic constants using Gauss-

Newton multiparameter FWI after 3 iterations. It can be seen that the four elastic constants

can be inverted simultaneously very well with multiparameter approximate Hessian precon-

ditioning.
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Figure 5.11: (a), (b), (c), and (d) show the gradient vectors ∇c33Φ, ∇c55Φ, ∇c11Φ and ∇c13Φ
constructed by the data residual vector ∆d33. (e), (f), (g) and (h) show the perturbation
estimations after multiparameter approximate Hessian preconditioning for the corresponding
elastic constants. (i), (j), (k) and (l) show the gradient vectors constructed by data residual
vector ∆d55 for the corresponding elastic constants. (m), (n), (o) and (p) show the pertur-
bation estimations for the corresponding elastic constants with multiparameter approximate
Hessian preconditioning.
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Figure 5.12: (a), (b), (c), and (d) show the gradient vectors ∇c33Φ, ∇c55Φ, ∇c11Φ and
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estimations with multiparameter approximate Hessian preconditioning for the corresponding
elastic constants. (i), (j), (k) and (l) show estimated perturbations for elastic constants after
3 iterations. The amplitudes have been normalized.

5.4.3 Suppressing multiparameter second-order scattering effects

In this numerical example, the effectiveness of second-order preconditioner in suppressing

multiparameter second-order scattering effects is shown. The second-order term H̄ is con-

structed by correlating the second-order partial derivative wavefields with the data residuals.

When considering multiple physical parameters, the second-order partial derivative wave-

fields can be caused by different physical parameters. Furthermore, it is quite expensive to

calculate the second-order term directly. In this research, the adjoint-state method is used

to calculate the second-order term H̄ in the multiparameter Hessian H.

Considering the elastic and isotropic background model used in previous example, two

HTI point anomalies are embedded in the background model, as shown in Figure 5.13. The

two HTI points anomalies are located at x1 = (80 m, 0 m, 65 m) and x2 = (90 m, 0 m, 75 m).

At position x1, the elastic constants c33, c55, c11 and c13 are perturbed by +10%, +10%,

0% and +10% respectively. At position x2, the four elastic constants are perturbed by

−10%, −10%, −10% and 0% respectively. The normalized true model perturbations for
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Figure 5.13: True model perturbations of the two scatterers model. (a), (b), (c) and (d)
show the true model perturbations for elastic constants c33, c55, c11 and c13 respectively. The
amplitudes have been normalized.

elastic constants c33, c55, c11 and c13 are illustrated in Figures 5.13a, 5.13b, 5.13c and 5.13d

respectively.

Figure 5.14 shows the elements of first-order and second-order terms of the multiparam-

eter Hessian plotted in model space. Considering the model parameter position x2, the

correlation of the Fréchet derivative wavefield due to ∆c33 (x2) with the Fréchet derivative

wavefields due to ∆c33 (x̃) (x̃ indicate all positions in the model) forms the 555th row in diag-

onal block Ha,3333, as shown in Figure 5.14a. Figures 5.14b, 5.14c and 5.14d show the 555th

rows in the off-diagonal blocks Ha,3355, Ha,3311 and Ha,3313 respectively. Stronger amplitudes

mean stronger correlations of the Fréchet derivative wavefields.

The Fréchet derivative wavefield due to ∆c33(x2) can be further scattered due to ∆c33 (x̃)

or ∆c55 (x̃), ∆c11 (x̃) and ∆c13 (x̃). Correlating the multiparameter second-order scattered

wavefield with the data residuals forms the 555th rows of diagonal block H̄3333, off-diagonal

blocks H̄3355, H̄3311 and H̄3313, as shown in Figures 5.14e, 5.14f, 5.14g and 5.14h, which are

obtained using explicit perturbation method with additional 900 forward modelling simu-

lations (Pratt et al., 1998b). Stronger amplitudes mean stronger correlations between the

second-order scattered wavefields with the data residuals. Figures 5.14i, 5.14j, 5.14k and

5.14l show the 555th rows in blocks H̄3333, H̄3355, H̄3311 and H̄3313 calculated using the

adjoint-state method following equation (5.17) with additional 1 forward modelling simula-

tion. Constructing the multiparameter second-order preconditioner with the adjoint-state

method, an additional 3600 forward modelling simulations are required.

A numerical example is given to show the artifacts caused by the second-order scattering
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Figure 5.14: The multiparameter Hessian H plotted in model space. The green circle in
(a) shows parameter position x2. (a), (b), (c) and (d) show the 555th rows in the diagonal
block Ha,3333 and off-diagonal blocks Ha,3355, Ha,3311 and Ha,3313. (e), (f), (g) and (h) show
the 555th rows in the diagonal block H̄3333 and off-diagonal blocks H̄3355, H̄3311 and H̄3313.
(i), (j), (k) and (l) show the 555th rows in the blocks H̄3333, H̄3355, H̄3311 and H̄3313 using
adjoint-state method.

effects. Figures 5.15a, 5.15b, 5.15c and 5.15d show the Gauss-Newton updates for ∆c33

when the true model perturbation ∆c33 was increased from 10% to 20%, 30% and 40%

respectively. Larger model perturbation means stronger second-order scattered energy in the

data residuals. It can be seen that the artifacts become stronger with increasing the model

perturbation. Figures 5.15e, 5.15f, 5.15g and 5.15h show the Gauss-Newton updates for c55

when increasing the model perturbation ∆c33. It can be seen that the artifacts become very

strong in Figures 5.15g and 5.15h and it is difficult to recognize the anomalies at positions

x1 and x2. Figures 5.15i, 5.15j, 5.15k and 5.15l show the inverted model perturbations for

elastic constants of c33, c55, c11 and c13 using GN method and Figures 5.15m, 5.15n, 5.15o and

5.15p show the inverted model perturbations for the elastic constants using FN method after

5 iterations when model perturbation ∆c33 is 30%. For GN method, the elastic constants

c33 and c55 can be determined very well (Figures 5.15i and 5.15j). However, for c11 and c13

(Figures 5.15k and 5.15l), the artifacts are still very strong. While, FN method can suppress

the artifacts in estimated model perturbations ∆c11 and ∆c13 (Figures 5.15o and 5.15p)

obviously for incorporating the multiparameter second-order preconditioner.
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Figure 5.15: (a), (b), (c) and (d) show the estimated model perturbation ∆c33 with multipa-
rameter approximate Hessian Ha preconditioning when c33 is perturbed by 10%, 20%, 30%
and 40%; (e), (f), (g) and (h) show the estimated model perturbation ∆c55 with increas-
ing model perturbations of c33; (i), (j), (k) and (l) show the estimated model perturbations
∆c33, ∆c55, ∆c11 and ∆c11 after 5 iterations with GN method; (m), (n), (o) and (p) show
the estimated model perturbations for the corresponding elastic constants after 5 iterations
with FN method.
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5.4.4 Applying GN and FN multiparameter FWI on a two-block-layer model

Finally, the GN and FN multiparameter FWI are enacted on a two-block-layer model for

comparison. The model consists of 50 × 50 grid points with ∆x = ∆z = 10 m and a

20 Hz Ricker source wavelet is used for forward modelling. The initial model used in this

numerical example is elastic and isotropic and its properties are consistent with those used

in previous numerical examples. Two anisotropic block layers are embedded in the isotropic

background and the true perturbations for elastic constants c33, c55, c11 and c13 are shown

in Figures 5.16a, 5.16b, 5.16c and 5.16d. For the first block layer, the perturbations for

elastic constants c33, c55, c11 and c13 are −4.218 GPa (−30%), −0.632 GPa (−10%), −1.406

GPa (−10%) and 0 GPa (0%). For the second block layer, the perturbations for these

elastic constants are +4.218 GPa (+30%), +0.632 GPa (+10%), 0 GPa (0%) and +0.142

GPa (+10%). The doubly-scattered energy between the two block layers can cause artifacts

in the estimated model perturbations. A total of 10 iterations are applied for inversion

using GN and FN methods. A multi-scale approach is employed by increasing the frequency

band from [1 Hz, 10 Hz] to [1 Hz, 19 Hz] by 1 Hz every iteration (Pratt and Worthington,

1990; Sirgue and Pratt, 2004). To evaluate the quality of the inversion results, the relative

least-squares error (RLSE) (equation (2.42)) is used.

Figures 5.16e, 5.16f, 5.16g and 5.16h show the inverted model perturbations for elastic

constants c33, c55, c11 and c13 using GN multiparameter FWI. It can be seen that for elastic

constants c33 and c55, GN method can get acceptable results even though the two block layers

are not de-blurred very well. While for elastic constants c11 and c13, the estimated model

perturbations are contaminated by strong artifacts. Figures 5.16i, 5.16j, 5.16k and 5.16l

show the inverted model perturbations for these elastic constants using FN multiparameter

FWI. It can be observed that the two block layers for c33 are de-blurred better and the

artifacts for elastic constants c11 and c13 have been suppressed. Figures 5.17a, 5.17b, 5.17c

and 5.17d show the RLSE (equation (2.42)) ε̃33, ε̃55, ε̃11 and ε̃13 for elastic constants c33,

c55, c11 and c13 as the iteration proceeds. The solid lines and dash lines indicate the RLSE

obtained using GN and FN methods. FN method can estimate the model perturbations

more efficiently than GN method by incorporating the second-order term in multiparameter

Hessian. Furthermore, Figures 5.17c and 5.17d reveal that the effectiveness of FN method
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Figure 5.16: Inversion results comparison. (a), (b), (c) and (d) show the true model per-
turbations for the elastic constants c33, c55, c11 and c13 respectively. (e), (f), (g) and (h)
show the inversion results for the elastic constants c33, c55, c11 and c13 using GN FWI after
10 iterations. (i), (j), (k) and (l) show the inversion results for the corresponding elastic
constants using FN FWI after 10 iterations.

is more obvious in estimating elastic constants c11 and c13.

5.5 Discussion

This chapter develops FWI techniques for inverting the properties of naturally fractured

reservoirs. Robust technology of this kind is expected to have significant impact in areas

like reservoir characterization. Fractured reservoirs can be described using many different

parameters, such as fracture spacing, fracture density, fracture orientation, weakness, com-

pliance, etc. Our current study focuses on inverting for the elastic constants of equivalent

HTI media. Different parameterizations impact the inversion process greatly, in large part

because of parameter crosstalk. Comparison of the stability and efficiency given different

parameterizations is an important area of future research. The 3D scattering patterns for

elastic constants in general anisotropic media given in this paper can be used to analyze

the parameter crosstalk problem when inverting for the elastic constants. These can sub-

sequently be transformed to any parameterization following the chain rule. The analytic

3D scattering patterns have been examined using a 2D HTI numerical example. Three di-
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Figure 5.17: Comparison of the RLSE for different elastic constants using GN and FN
methods. (a), (b), (c) and (d) show the RLSE ε̃33, ε̃55, ε̃11 and ε̃13 for elastic constants c33,
c55, c11 and c13 as the iteration proceeds.

mensional examples for more complex media (such as orthorhombic media) can be carried

out in future studies. The detailed spatial features of the fractured reservoirs by using the

long wavelength approximation and describe the fractured media using anisotropic elastic

constants are ignored. It will be valuable to consider the fracture size when using FWI for

fractured reservoir characterization (Fang et al., 2013; Zheng et al., 2013; Pan and Innanen,

2013).

Full-waveform inversion is an ill-posed problem, which means that an infinite number of

models matches the data (Virieux and Operto, 2009). Regularization technique can alleviate

the non-uniqueness of the ill-posed inverse problem and make FWI better posed (Menke,

1984). In this paper, no regularization technique is employed. Hence, for further research,

introducing regularization technique, such as Tikhonov regularization (Asnaashari et al.,

2013) and Total-variation regularization (Lin, 2015), in the objective function is necessary

for improving the performance of the proposed strategies.

Most current inversion strategies for multiparameter FWI are hierarchical methods, with

parameterization and acquisition geometry having been selected to mitigate or avoid pa-

rameter crosstalk problem. Prieux et al. (2013b) considered visco-acoustic multiparameter
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FWI using the l-BFGS optimization method with simultaneous strategy, compared against a

hierarchical strategy. In this thesis, the GN and FN methods are used to invert for the elas-

tic constants simultaneously, with the multiparameter Hessian acting to suppress parameter

crosstalk. Métivier et al. (2014) applied a truncated-Newton method for single-parameter

FWI with matrix-free method, which can also be employed for simultaneous inversion strat-

egy of multiparameter FWI.

In the numerical section, I have restricted our selection to 2D numerical examples, for

examining the possibilities of inverting for the elastic constants. For large 2D or 3D practical

applications, it will be much more computationally expensive to carry out Gauss-Newton and

full-Newton optimization methods for multiparameter FWI. One possible recourse is target-

oriented FWI, in which only one portion of the multiparameter Hessian need to be calculated

aiming at the target area. Phase-encoding methods have been widely studied for calculating

the gradient (Vigh and Starr, 2008; Tang, 2009; Anagaw and Sacchi, 2014; Pan et al., 2014a)

or Hessian approximations (Castellanos et al., 2015). The phase-encoding methods can also

be used in multiparameter FWI to calculate the gradient and multiparameter Hessian for

reducing the computational burden.

5.6 Conclusions

In this chapter, I have applied the Gauss-Newton and full-Newton multiparameter FWI

to invert for the elastic constants of a HTI media. The parameter crosstalk difficulty in

multiparameter FWI is introduced and I also derive the 3D scattering patterns for the

elastic constants in general anisotropic media for parameter crosstalk analysis. The roles

of the multiparameter Hessian in mitigating parameter crosstalk and reducing second-order

scattering effects have been revealed. I also explain how to construct the multiparameter

second-order preconditioner using the adjoint-state method. In the numerical section, I give

examples to testify the effectiveness of the multiparameter Hessian in suppressing parameter

crosstalk and second-order scattering effects. The Gauss-Newton and full-Newton FWI are

finally applied on a two-block-layer model for comparison. The full-Newton method gave

better inversion results for incorporating the multiparameter second-order preconditioner.
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Appendix F

3D Scattering Patterns of Elastic Constants in General

Anisotropic Media

In this Appendix, I first derive the 3D scattering patterns for the elastic stiffness coefficients

in general anisotropic media and then give the explicit expressions of the scattering patterns

of the elastic stiffness coefficients in HTI media. The solution of equation (5.1) can be

expressed using the integral form of the Green’s tensor vector in the frequency domain (Ben-

Menahem and Singh, 1981; Aki and Richards, 2002; Kamath and Tsvankin, 2014):

ūi (x, ω) =

∫
Ω(xs)

∫
ωs

fj(xs, ωs)Gij(x, ω; xs, ωs)dΩ(xs)dωs, (F.1)

where Gij(x, ω; xs, ωs) indicates the i component of the Green’s tensor vector at position x

due to a point source fj(xs, ωs) in j direction at position xs. Ω (xs) indicates the volume

including all of the sources.

Considering that a general anisotropic inclusion with density ρ and elastic constants

cijkl is embedded in an infinite isotropic-elastic background with properties ρ̃ and c̃ijkl, the

differences between the perturbed and unperturbed model properties are defined as (Stolt

and Weglein, 2012):

∆ρ = ρ− ρ̃,

∆cijkl = cijkl − c̃ijkl,
(F.2)

where ∆ρ and ∆cijkl denote the density and elastic constant perturbations. Assuming that

the size of the anisotropic obstacle is rather small compared to the wavelength of the incident

wave, the perturbed wavefields corresponding to these model variations can be written as:

∆u = u− ũ, (F.3)

where ũ and ∆u indicate the unperturbed wavefields and scattered wavefields respectively.

Plugging equations (F.2) and (F.3) into equation (5.1) and ignoring the high order terms
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based on the Born approximation, the equation of motion splits into two equations:

∂

∂xj

(
c̃ijkl

∂ũk
∂xl

)
− ρ̃∂

2ũi
∂t2

= −fi, (F.4)

∂

∂xj

(
c̃ijkl

∂∆uk
∂xl

)
− ρ̃∂

2∆ui
∂t2

= ∆ρ
∂2ũi
∂t2
− ∂∆Mij

∂xj
, (F.5)

where ∆M in equation (F.5) is the equivalent moment tensor source (Ben-Menahem and

Singh, 1981; Chapman, 2004) and it indicates the perturbations of the elastic constants:

∆Mij = ∆cijklẽkl, (F.6)

where ẽkl are the strain components of the incident wave. First it is noticed that equation

(F.4) is equivalent to equation (5.1), meaning that the unperturbed wavefield ũ propagates in

the isotropic background media. Further examination reveals that equation (F.5) describes

the propagation of the scattered wavefield ∆u in the isotropic background media. The right-

hand side of the equation (F.5) is referred to as “scattered sources”. It underlines the fact

that the scattered wavefields due to the perturbations of the model parameters (e.g ∆ρ or

∆cijkl), can be interpreted as the wavefields generated by a set of secondary body forces,

which propagate in the current (or unperturbed) medium (Dietrich and Kormendi, 1990).

According to equation (F.1), the solution of equation (F.5) can be written as an integral

formulation in the frequency domain:

∆ūn (x, ω) =

∫
Ω(x′)

∫
ω′

∆ρω2ũiG̃ni(x, ω; x′, ω′)dΩ(x′)dω′

+

∫
Ω(x′)

∫
ω′

∂∆Mij

∂x′j
G̃ni(x, ω; x′, ω′)dΩ(x′)dω′,

(F.7)

where G̃ij(x, ω; x′, ω′) indicates the Green’s tensor in the unperturbed background medium

due to the scattered source at position x′ = (x′, y′, z′). Ignoring the contribution from

density (Here, only the perturbations of the elastic constants are considered) and applying

integration by parts, the scattered wavefields can be obtained as:

∆ūn (x, ω) ≈ −
∫

Ω(x′)

∫
ω′
δMij

∂G̃ni(x, ω; x′, ω′)

∂x′j
dΩ(x′)dω′. (F.8)

or a more compact form:

∆ūn ≈ −∆MijG̃ni,j. (F.9)
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Taking the partial derivative of the scattered wavefields with respect to the variations of the

model parameters yields the Fréchet derivative wavefield:

∇mūn (x, ω) = −
∫

Ω(x′)

∫
ω′
∇mMij

∂G̃ni(x, ω; x′, ω′)

∂x′j
dΩ(x′)dω′, (F.10)

where m denotes elastic constants cijkl in general anisotropic medium. Equation (F.10)

is known as the Fréchet derivative (or inversion sensitivity kernel) which is widely analyzed

and utilized in the linearized inversion framework (Tarantola, 1984, 1986; Pratt et al., 1998b;

Virieux and Operto, 2009).

Applying Voigt recipe of indexes to the elastic constants perturbation matrix ∆c, equa-

tion (F.6) can be written in a matrix form:

∆M11

∆M22

∆M33

∆M23

∆M13

∆M12


=



∆c11 ∆c12 ∆c13 ∆c14 ∆c15 ∆c16

∆c22 ∆c23 ∆c24 ∆c25 ∆c26

∆c33 ∆c34 ∆c35 ∆c36

∆c44 ∆c45 ∆c46

∆c55 ∆c56

∆c66





ẽ11

ẽ22

ẽ33

2ẽ23

2ẽ13

2ẽ12


. (F.11)

Thus, the information of incident wave is encoded in the equivalent moment tensor source

∆M. First, an incident plane P-wave is considered:

ùP = Uexp [i(ωt− kα · n)] p̂, (F.12)

where U is the amplitude of the incident P-wave and n indicates the unit vector in Cartesian

coordinates. kα is the P-wave wavenumber vector in Spherical coordinates and p̂ is the

polarization vector indicating the positive direction of the particle motion:

kα = kαq̂ = kα (sinϑ cosϕx + sinϑ sinϕy + cosϑz) , (F.13)

p̂ = sinϑ cosϕx + sinϑ sinϕy + cosϑz, (F.14)

where ϑ is the inclination angle of incident wave, which departs from z axis and ϕ departing

from x axis indicates the azimuth angle of the incident wave. q̂ is the unit vector within

Spherical coordinates. Thus, the strain components can be obtained as:

ẽij = −ikαUp̂iq̂jexp [i(ωt− kα · n)] . (F.15)
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Inserting equation (F.15) and the far-field approximation of the Green’s function tensor in

3D isotropic-elastic media (Aki and Richards, 2002; Chapman, 2004) into equation (F.10),

the analytic expressions of the 3D Fréchet derivative wavefield with incident plane P-wave

can be obtained:

∇muP = −ω
2Uexp(−ikξr)

4πραξ3r

(
ĝ†∇mMr̂

)
, (F.16)

where ξ can be α or β for P-wave velocity or S-wave velocity respectively. kξ can be kα or kβ

for P-wave wavenumber or S-wave wavenumber. The vector ĝ can be r̂, θ̂ and φ̂ for scattered

P-wave, SV-wave and SH-wave:

r̂ = [sin θ cosφ, sin θ sinφ, cos θ]† ,

θ̂ = [cos θ cosφ, cos θ sinφ,− sin θ]† ,

φ̂ = [− sinφ, cosφ, 0]† ,

(F.17)

where θ indicates the inclination angle departing from z axis and φ indicates the azimuth an-

gle departing from x axis for describing the scattered wave. ∆M in equation (F.16) indicates

reduced moment tensor source by taking the terms of ikαU and exp [i (ωt− kα · n)] out of

∆M. In this research, the scattering coefficient (or scattering pattern) due to perturbation

of model parameter m is defined as (Chapman, 2004):

RP (ϑ, ϕ, θ, φ) = ĝ†∇mMr̂, (F.18)

where RP is associated with 4 angles, which are used to describe the incident wave and

scattered wave. Similarly, for incident plane SV-wave:

ùSV = USVexp [i(ωt− kβ · n)] p̂SV, (F.19)

where USV is the amplitude of the incident SV-wave, kβ = kβq̂ and p̂SV = cosϑ cosϕx +

cosϑ sinϕy− sinϑz. Its strain components can be expressed as:

ẽSV
ij = −1

2
ikβUSV

(
p̂SV
i q̂j + p̂SV

j q̂i
)

exp [i(ωt− kβ · n)] . (F.20)

For incident plane SH-wave:

ùSH = USHexp [i(ωt− kβ · n)] p̂SH, (F.21)
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where USH is the amplitude of incident SH-wave, p̂SH = − sinϕx + cosϕy and its strain

components can be expressed as:

ẽSH
ij = −1

2
ikβU

(
p̂SH
i q̂j + p̂SH

j q̂i
)
exp [i(ωt− kβ · n)] . (F.22)

Inserting the strain components in equations (F.20) and (F.22) into equation (F.11) and

then equation (F.10), the scattered wavefields with incident plane SV-wave and SH-wave are

given by:

∇muSV = −ω
2USVexp(−ikξr)

4πρβξ3r

(
ĝ†∇mMSVr̂

)
, (F.23)

∇muSH = −ω
2USHexp(−ikξr)

4πρβξ3r

(
ĝ†∇mMSHr̂

)
. (F.24)

The scattering patterns given in this research are consistent with the 3D scattering patterns

of isotropic parameters by Wu and Aki (1985).

In equations (5.5), (5.6) and (5.7), I give the explicit expressions of P-P, P-SV and P-SH

scattering patterns due to ∆c55 in HTI media. In this appendix, the explicit expressions of

the 3D scattering patterns of the 5 elastic constants in HTI media with incident P-wave,

SV-wave and SH-wave will be given. The P-P, P-SV and P-SH scattering patterns due to

∆c33 are given in equations (F.25), (F.26) and (F.27) and plotted in Figure F.1.

ŘP-P (ϑ, ϕ, θ, φ,∆c33) = r̂2
2 (p̂2q̂2 + p̂3q̂3) + r̂2

3 (p̂2q̂2 + p̂3q̂3)

=
(
sin2 θ sin2 φ+ cos2 θ

) (
sin2 ϑ sin2 ϕ+ cos2 ϕ

)
,

(F.25)

ŘP-SV (ϑ, ϕ, θ, φ,∆c33) = r̂2θ̂2 (p̂2q̂2 + p̂3q̂3) + r̂3θ̂3 (p̂2q̂2 + p̂3q̂3)

= −0.5 sin 2θ cos2 φ
(
sin2 ϑ sin2 ϕ+ cos2 ϕ

)
,

(F.26)

ŘP-SH (ϑ, ϕ, θ, φ,∆c33) = r̂2φ̂2 (p̂2q̂2 + p̂3q̂3) + r̂3φ̂3 (p̂2q̂2 + p̂3q̂3)

= 0.5 sin θ sin 2φ
(
sin2 ϑ sin2 ϕ+ cos2 ϕ

)
,

(F.27)

The P-P, P-SV and P-SH scattering patterns due to ∆c44 are given in equations (F.28),

(F.29) and (F.30) and plotted in Figure F.2.

ŘP-P (ϑ, ϕ, θ, φ,∆c44) = −2r̂2
2p̂3q̂3 + 4r̂2r̂3p̂2q̂3 − 2r̂2

3p̂3q̂3

= −2
(
sin2 θ sin2 φ+ cos2 θ

)
cos2 ϑ+ sin 2θ sinφ sinϑ sin 2ϕ,

(F.28)
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Figure F.1: The left, middle and right figures show the P-P (equation (F.25)), P-SV (equa-
tion (F.26)) and P-SH (equation (F.27)) scattering patterns due to the perturbation of c33

(ϑ = 135o and ϕ = 0o).

Figure F.2: The left, middle and right figures show the P-P (equation (F.28)), P-SV (equa-
tion (F.29)) and P-SH (equation (F.30)) scattering patterns due to the perturbation of c44

(ϑ = 135o and ϕ = 0o).

ŘP-SV (ϑ, ϕ, θ, φ,∆c44) = −2r̂2θ̂2p̂3q̂3 + 2r̂2θ̂3p̂2q̂3 + 2r̂3θ̂2p̂2q̂3 − 2r̂3θ̂3p̂3q̂3

= sin 2θ cos2 ϕ cos2 ϑ+ sinφ cos 2θ sin 2ϑ sinϕ.
(F.29)

ŘP-SH (ϑ, ϕ, θ, φ,∆c44) = −2r̂2φ̂2p̂3q̂3 + 2r̂2φ̂3p̂2q̂3 + 2r̂3φ̂2p̂2q̂3 − 2r̂3φ̂3p̂3q̂3

= − sin θ sin 2φ cos2 ϑ+ cos θ cosφ sin 2ϑ sinϕ.
(F.30)

The P-P, P-SV and P-SH scattering patterns due to ∆c11 are given in equations (F.31),

(F.32) and (F.33) and plotted in Figure F.3.

ŘP-P (ϑ, ϕ, θ, φ,∆c11) = r̂2
1p̂1q̂1 = sin2 θ cos2 φ sin2 ϑ cos2 ϕ, (F.31)

ŘP-SV (ϑ, ϕ, θ, φ,∆c11) = r̂1θ̂1p̂1q̂1 = 0.5 sin 2θ cos2 φ sin2 ϑ cos2 ϕ, (F.32)
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Figure F.3: The left, middle and right figures show the P-P (equation (F.31)), P-SV (equa-
tion (F.32)) and P-SH (equation (F.33)) scattering patterns due to the perturbation of c11

(ϑ = 135o and ϕ = 0o).

ŘP-SH (ϑ, ϕ, θ, φ,∆c11) = r̂1φ̂1p̂1q̂1 = − sin2 θ cosφ sin2 ϑ cos2 ϕ, (F.33)

The P-P, P-SV and P-SH scattering patterns due to ∆c13 are given in equations (F.34),

(F.35) and (F.36) and plotted in Figure F.4.

ŘP-P (ϑ, ϕ, θ, φ,∆c13) = r̂2
1 (p̂2q̂2 + p̂3q̂3) + r̂2

2p̂1q̂1 + r̂2
3p̂1q̂1

= sin2 θ cos2 φ
(
sin2 ϑ sin2 ϕ+ cos2 ϑ

)
+
(
sin2 θ sin2 φ+ cos2 θ

)
sin2 ϑ cos2 ϕ,

(F.34)

ŘP-SV (ϑ, ϕ, θ, φ,∆c13) = r̂1θ̂1 (p̂2q̂2 + p̂3q̂3) + r̂2θ̂2p̂1q̂1 + r̂3θ̂3p̂1q̂1

= 0.5 sin 2θ cos2 φ
(
sin2 ϑ sin2 ϕ+ cos2 ϑ

)
− 0.5 sin 2θ cos2 φ sin2 ϑ cos2 ϕ,

(F.35)

ŘP-SH (ϑ, ϕ, θ, φ,∆c13) = r̂1φ̂1 (p̂2q̂2 + p̂3q̂3) + r̂2φ̂2p̂1q̂1 + r̂3φ̂3p̂1q̂1

= 0.5 sin θ sin 2φ
(
sin2 ϑ cos 2ϕ− cos2 ϑ

)
,

(F.36)

The SV-P, SV-SV and SV-SH scattering patterns due to ∆c33 are given in equations

(F.37), (F.38) and (F.39) and plotted in Figure F.5.

ŘSV-P (ϑ, ϕ, θ, φ,∆c33) = r̂2
2

(
p̂SH

2 q̂2 + p̂SV
3 q̂3

)
+ r̂2

3

(
p̂SV

2 q̂2 + p̂SV
3 q̂3

)
=
(
sin2 θ sin2 φ+ cos2 θ

) (
0.5 sin 2ϑ sin2 ϕ+ sin2 ϑ

)
,

(F.37)
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Figure F.4: The left, middle and right figures show the P-P (equation (F.34)), P-SV (equa-
tion (F.35)) and P-SH (equation (F.36)) scattering patterns due to the perturbation of c13

(ϑ = 135o and ϕ = 0o).

Figure F.5: The left, middle and right figures show the SV-P (equation (F.37)), SV-SV
(equation (F.38)) and SV-SH (equation (F.39)) scattering patterns due to the perturbation
of c33 (ϑ = 135o and ϕ = 0o).

ŘSV-SV (ϑ, ϕ, θ, φ,∆c33) = r̂2θ̂2

(
p̂SV

2 q̂2 + p̂SV
3 q̂3

)
+ r̂3θ̂3

(
p̂SV

2 q̂2 + p̂SV
3 q̂3

)
= −0.5 sin 2θ cos2 φ

(
0.5 sin 2ϑ sin2 ϕ+ sin2 ϑ

)
,

(F.38)

ŘSV-SH (ϑ, ϕ, θ, φ,∆c33) = r̂2φ̂2

(
p̂SV

2 q̂2 + p̂SV
3 q̂3

)
+ r̂3φ̂3

(
p̂SV

2 q̂2 + p̂SV
3 q̂3

)
= 0.5 sin θ sin 2φ

(
0.5 sin 2ϑ sin2 ϕ+ sin2 ϑ

)
,

(F.39)

The SV-P, SV-SV and SV-SH scattering patterns due to ∆c55 are given in equations

(F.40), (F.41) and (F.42) and plotted in Figure F.6.

ŘSV-P (ϑ, ϕ, θ, φ,∆c55) = 2r̂1r̂2

(
p̂SV

1 q̂2 + p̂SV
2 q̂1

)
+ 2r̂1r̂3

(
p̂SV

1 q̂3 + p̂SV
3 q̂1

)
= 0.5 sin2 θ sin 2φ sin 2ϕ sin 2θ + sin 2θ cosφ sin 2ϑ cosϕ,

(F.40)
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Figure F.6: The left, middle and right figures show the SV-P (equation (F.40)), SV-SV
(equation (F.41)) and SV-SH (equation (F.42)) scattering patterns due to the perturbation
of c55 (ϑ = 135o and ϕ = 0o).

ŘSV-SV (ϑ, ϕ, θ, φ,∆c55) =
(
r̂1θ̂2 + r̂2θ̂1

) (
p̂SV

1 q̂2 + p̂SV
2 q̂1

)
+
(
r̂1θ̂3 + r̂3θ̂1

) (
p̂SV

1 q̂3 + p̂SV
3 q̂1

)
= 0.25 sin 2θ sin 2φ sin 2ϕ sin 2ϑ+ sin 2θ cosφ sin 2ϑ cosϕ,

(F.41)

ŘSV-SH (ϑ, ϕ, θ, φ,∆c55) =
(
r̂1φ̂2 + r̂2φ̂1

) (
p̂SV

1 q̂2 + p̂SV
2 q̂1

)
+
(
r̂1φ̂3 + r̂3φ̂1

) (
p̂SV

1 q̂3 + p̂SV
3 q̂1

)
= 0.5 sin θ sin 2φ sin 2ϕ sin 2ϑ− cos θ sinφ sin 2ϑ cosϕ,

(F.42)

The SV-P, SV-SV and SV-SH scattering patterns due to ∆c44 are given in equations

(F.43), (F.44) and (F.45) and plotted in Figure F.7.

ŘSV-P (ϑ, ϕ, θ, φ,∆c44) = −2r̂2
2p̂

SV
3 q̂3 + 2r̂2r̂3

(
p̂SV

2 q̂3 + p̂SV
3 q̂2

)
− 2r̂2

3p̂
SV
3 q̂3

=
(
sin2 θ sin2 φ+ cos2 θ

)
sin 2ϑ+ sin 2θ sinφ sin 2ϑ sinϕ,

(F.43)

ŘSV-SV (ϑ, ϕ, θ, φ,∆c44) = −2
(
r̂2θ̂2 + r̂3θ̂3

)
p̂SV

3 q̂3 +
(
r̂2θ̂3 + r̂3θ̂2

) (
p̂SV

2 q̂3 + p̂SV
3 q̂2

)
= (0.25 sin 2θ sin 2φ− 0.5 sin 2θ) sin 2ϑ+ sin 2θ sinφ sin 2ϑ sinϕ,

(F.44)

ŘSV-SH (ϑ, ϕ, θ, φ,∆c44) = −2
(
r̂2φ̂2 + r̂3φ̂3

)
p̂SV

3 q̂3 +
(
r̂2φ̂3 + r̂3φ̂2

) (
p̂SV

2 q̂3 + p̂SV
3 q̂2

)
= 0.5 sin θ sin 2φ sin 2θ − sin θ cosφ sin 2ϑ sinϕ.

(F.45)
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Figure F.7: The left, middle and right figures show the SV-P (equation (F.43)), SV-SV
(equation (F.44)) and SV-SH (equation (F.45)) scattering patterns due to the perturbation
of c44 (ϑ = 135o and ϕ = 0o).

Figure F.8: The left, middle and right figures show the SV-P (equation (F.46)), SV-SV
(equation (F.47)) and SV-SH (equation (F.48)) scattering patterns due to the perturbation
of c11 (ϑ = 135o and ϕ = 0o).

The SV-P, SV-SV and SV-SH scattering patterns due to ∆c11 are given in equations

(F.46), (F.47) and (F.48) and plotted in Figure F.8.

ŘSV-P (ϑ, ϕ, θ, φ,∆c11) = r̂2
1p̂

SV
1 q̂1 = 0.5 sin2 θ cos2 φ sin 2ϑ cos2 ϕ, (F.46)

ŘSV-SV (ϑ, ϕ, θ, φ,∆c11) = r̂1θ̂1p̂
SV
1 q̂1 = 0.25 sin 2θ cos2 φ sin 2ϑ cos2 ϕ, (F.47)

ŘSV-SH (ϑ, ϕ, θ, φ,∆c11) = r̂1φ̂1p̂
SV
1 q̂1 = −0.25 sin θ sin 2φ sin 2ϑ cos2 ϕ, (F.48)

The SV-P, SV-SV and SV-SH scattering patterns due to ∆c13 are given in equations
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Figure F.9: The left, middle and right figures show the SV-P (equation (F.49)), SV-SV
(equation (F.50)) and SV-SH (equation (F.51)) scattering patterns due to the perturbation
of c13 (ϑ = 135o and ϕ = 0o).

(F.49), (F.50) and (F.51) and plotted in Figure F.9.

ŘSV-P (ϑ, ϕ, θ, φ,∆c13) = r̂2
1

(
p̂SV

2 q̂2 + p̂SV
3 q̂3

)
+ r̂2

2p̂
SV
1 q̂1 + r̂2

3p̂
SV
1 q̂1

= −0.5 sin2 θ cos2 φ sin 2φ cos2 φ

+ 0.5
(
sin2 θ sin2 φ+ cos2 θ

)
sin 2ϑ cos2 ϕ,

(F.49)

ŘSV-SV (ϑ, ϕ, θ, φ,∆c13) = r̂1θ̂1

(
p̂SV

2 q̂2 + p̂SV
3 q̂3

)
+ r̂2θ̂2p̂

SV
1 q̂1 + r̂3θ̂3p̂

SV
1 q̂1

= −0.25 sin 2θ cos2 φ sin 2φ cos2 φ

− 0.5 cos2 φ sin 2θ sin 2ϑ cos2 ϕ,

(F.50)

ŘSV-SH (ϑ, ϕ, θ, φ,∆c13) = r̂1φ̂1

(
p̂SV

2 q̂2 + p̂SV
3 q̂3

)
+ r̂2φ̂2p̂

SV
1 q̂1 + r̂3φ̂3p̂

SV
1 q̂1

= 0.25 sin θ sin 2φ cos2 ϕ (sin 2ϕ− sin 2ϑ) ,
(F.51)

The SH-P, SH-SV and SH-SH scattering patterns due to ∆c33 are given in equations

(F.52), (F.53) and (F.54) and plotted in Figure F.10.

ŘSH-P (ϑ, ϕ, θ, φ,∆c33) = r̂2
2

(
p̂SH

2 q̂2 + p̂SH
3 q̂3

)
+ r̂2

3

(
p̂SH

2 q̂2 + p̂SH
3 q̂3

)
= −

(
sin2 θ sin2 φ+ cos2 θ

)
sin2 ϕ sinϑ,

(F.52)

ŘSH-SV (ϑ, ϕ, θ, φ,∆c33) = r̂2θ̂2

(
p̂SH

2 q̂2 + p̂SH
3 q̂3

)
+ r̂3θ̂3

(
p̂SH

2 q̂2 + p̂SH
3 q̂3

)
= −0.25 sin 2θ cos2 φ sin 2ϕ sinϑ,

(F.53)
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Figure F.10: The left, middle and right figures show the SH-P (equation (F.52)), SH-SV
(equation (F.53)) and SV-SH (equation (F.54)) scattering patterns due to the perturbation
of c33 (ϑ = 135o and ϕ = 30o).

ŘSH-SH (ϑ, ϕ, θ, φ,∆c33) = r̂2φ̂2

(
p̂SH

2 q̂2 + p̂SH
3 q̂3

)
+ r̂3φ̂3

(
p̂SH

2 q̂2 + p̂SH
3 q̂3

)
= 0.25 sin θ sin 2φ sin 2ϕ sinϑ,

(F.54)

The SH-P, SH-SV and SH-SH scattering patterns due to ∆c55 are given in equations

(F.55), (F.56) and (F.57) and plotted in Figure F.11.

ŘSH-P (ϑ, ϕ, θ, φ,∆c55) = 2r̂1r̂2

(
p̂SH

1 q̂2 + p̂SH
2 q̂1

)
+ 2r̂1r̂3

(
p̂SH

1 q̂3 + p̂SH
3 q̂1

)
= sin2 θ sin 2φ sin 2ϕ sinϑ− sin 2θ cosφ sinϕ cosϑ,

(F.55)

ŘSH-SV (ϑ, ϕ, θ, φ,∆c55) =
(
r̂1θ̂2 + r̂2θ̂1

) (
p̂SH

1 q̂2 + p̂SH
2 q̂1

)
+
(
r̂1θ̂3 + r̂3θ̂1

) (
p̂SH

1 q̂3 + p̂SH
3 q̂1

)
= 0.5 sin 2θ sin 2φ sin 2ϕ sinϑ− sin 2θ cosφ sinϕ cosϑ,

(F.56)

ŘSH-SH (ϑ, ϕ, θ, φ,∆c55) =
(
r̂1φ̂2 + r̂2φ̂1

) (
p̂SH

1 q̂2 + p̂SH
2 q̂1

)
+
(
r̂1φ̂3 + r̂3φ̂1

) (
p̂SH

1 q̂3 + p̂SH
3 q̂1

)
= sin θ sin 2φ sin 2ϕ sinϑ+ cos θ sinφ cosϑ cosϕ,

(F.57)

The SH-P, SH-SV and SH-SH scattering patterns due to ∆c44 are given in equations

(F.58), (F.59) and (F.60) and plotted in Figure F.12.

ŘSH-P (ϑ, ϕ, θ, φ,∆c44) = −2r̂2
2p̂

SH
3 q̂3 + 2r̂2r̂3

(
p̂SH

2 q̂3 + p̂SH
3 q̂2

)
− 2r̂2

3p̂
SH
3 q̂3

= sinφ sin 2θ cosϕ cosϑ,
(F.58)
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Figure F.11: The left, middle and right figures show the SH-P (equation (F.55)), SH-SV
(equation (F.56)) and SV-SH (equation (F.57)) scattering patterns due to the perturbation
of c55 (ϑ = 135o and ϕ = 30o).

Figure F.12: The left, middle and right figures show the SH-P (equation (F.58)), SH-SV
(equation (F.59)) and SV-SH (equation (F.60)) scattering patterns due to the perturbation
of c44 (ϑ = 135o and ϕ = 30o).

ŘSH-SV (ϑ, ϕ, θ, φ,∆c44) = −2
(
r̂2θ̂2 + r̂3θ̂3

)
p̂SH

3 q̂3 +
(
r̂2θ̂3 + r̂3θ̂2

) (
p̂SH

2 q̂3 + p̂SH
3 q̂2

)
= 0.5 sin 2θ sinφ sin 2ϕ sinϑ,

(F.59)

ŘSH-SH (ϑ, ϕ, θ, φ,∆c44) = −2
(
r̂2φ̂2 + r̂3φ̂3

)
p̂SH

3 q̂3 +
(
r̂2φ̂3 + r̂3φ̂2

) (
p̂SH

2 q̂3 + p̂SH
3 q̂2

)
= 0.5 cos θ cosφ sin 2ϕ sinϑ,

(F.60)

The SH-P, SH-SV and SH-SH scattering patterns due to ∆c11 are given in equations

(F.61), (F.62) and (F.63) and plotted in Figure F.13.

ŘSH-P (ϑ, ϕ, θ, φ,∆c11) = r̂2
1p̂

SH
1 q̂1 = −0.5 sin2 θ cos2 φ sin 2ϑ sinϕ, (F.61)

ŘSH-SV (ϑ, ϕ, θ, φ,∆c11) = r̂1θ̂1p̂
SH
1 q̂1 = −0.25 sin 2θ cos2 φ sin 2ϑ sinϕ, (F.62)
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Figure F.13: The left, middle and right figures show the SH-P (equation (F.61)), SH-SV
(equation (F.62)) and SV-SH (equation (F.63)) scattering patterns due to the perturbation
of c11 (ϑ = 135o and ϕ = 30o).

ŘSH-SH (ϑ, ϕ, θ, φ,∆c11) = r̂1φ̂1p̂
SH
1 q̂1 = 0.25 sinϑ sin 2ϕ, (F.63)

The SH-P, SH-SV and SH-SH scattering patterns due to ∆c13 are given in equations

(F.64), (F.65) and (F.66) and plotted in Figure F.14.

ŘSH-P (ϑ, ϕ, θ, φ,∆c13) = r̂2
1

(
p̂SH

2 q̂2 + p̂SH
3 q̂3

)
+ r̂2

2p̂
SH
1 q̂1 + r̂2

3p̂
SH
1 q̂1

= sin2 θ cos2 φ sin2 ϕ cosϕ− 0.5
(
sin2 θ sin2 φ+ cos2 θ

)
sin 2ϑ cos2 ϕ,

(F.64)

ŘSH-SV (ϑ, ϕ, θ, φ,∆c13) = r̂1θ̂1

(
p̂SH

2 q̂2 + p̂SH
3 q̂3

)
+ r̂2θ̂2p̂

SH
1 q̂1 + r̂3θ̂3p̂

SH
1 q̂1

= 0.5 sin 2θ cos2 φ cosϕ sin2 ϑ+ 0.25 cos2 φ sin 2θ sin 2ϕ sinϑ,
(F.65)

ŘSH-SH (ϑ, ϕ, θ, φ,∆c13) = r̂1φ̂1

(
p̂SH

2 q̂2 + p̂SH
3 q̂3

)
+ r̂2φ̂2p̂

SH
1 q̂1 + r̂3φ̂3p̂

SH
1 q̂1

= −0.5 sin θ sin 2φ cosϕ sin2 ϑ− 0.25 sin θ sin 2φ sin 2ϕ sinϑ,
(F.66)
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Figure F.14: The left, middle and right figures show the SH-P (equation (F.64)), SH-SV
(equation (F.65)) and SV-SH (equation (F.66)) scattering patterns due to the perturbation
of c13 (ϑ = 135o and ϕ = 30o).
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Chapter 6

Conclusions and Future Studies

6.1 Conclusions

As described in the introduction section, full-waveform inversion (FWI) techniques are pow-

erful and hold the promise of providing high-resolution estimations of subsurface properties.

However, FWI applications often fail in practice because of a series of difficulties including

extensive computation requirements, slow convergence rate, cycle-skipping, interparameter

tradeoffs (or parameter crosstalk), etc. This thesis aims at overcoming these problems in

FWI with phase-encoding strategies, advanced non-linear optimization methods and novel

inversion strategies to reduce the parameter crosstalk artifacts and inverting subsurface elas-

tic and anisotropic properties for reservoir characterization.

An efficient linear phase-encoding strategies in τ -p domain is described in chapter 2.

It has been shown that both of the gradient and diagonal Hessian preconditioner can be

constructed with this linear phase-encoding approach more efficiently. Numerical examples

are given to show that compared to traditional shot-profile method, the phase-encoding ap-

proach can provide inverted model with comparable quality and reduce the computational

cost at the same time. To improve the convergence rate of FWI, various non-linear op-

timization methods including steepest-descent, non-linear conjugate-gradient, l-BFGS and

(preconditioned) Hessian-free Gauss-Newton methods have been examined. Compared to

gradient-based methods, the second-order optimization methods are able to provide faster

convergence rate. To accelerate the Hessian-free Gauss-Newton method, various precondi-

tioning approaches for the inner conjugate-gradient algorithm are developed. It has been

shown that the l-BFGS inverse Hessian approximation works as best preconditioner for

Hessian-free Gauss-Newton FWI. The l-BFGS preconditioned Hessian-free Gauss-Newton

method is also applied to reconstruct P-wave velocity and density simultaneously in mul-

tiparameter acoustic media. In chapter 4, the coupling effects of isotropic-elastic parame-

ters are analyzed with scattering patterns and multiparameter Hessian-vector products for
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isotropic-elastic FWI. I found that S-wave velocity produces strong contaminations into den-

sity updates which makes density difficult to be recovered. A novel inversion strategy with

approximate contamination kernels is also proposed to reduce the influence of interparame-

ter tradeoffs in the inversion process. This new inversion strategy is applied to Hussar real

seismic dataset. Furthermore, coupling effects within various parameterizations are also in-

vestigated. In chapter 5, the Gauss-Newton and full-Newton FWI are investigated to invert

elastic stiffness coefficients in HTI media. The 3D scattering patterns of elastic stiffness

coefficients are first derived to analyze the coupling effects in HTI media. Furthermore,

numerical examples are given to show that the multiparameter Hessian is able to remove

the parameter crosstalk artifacts. The second-order preconditioner in multiparameter Hes-

sian constructed with adjoint-state approach is also able to suppress the artifacts due to

multiparameter second-order scattering effects.

6.2 Future Studies

In this thesis, various strategies have been proposed to overcome the difficulties in single

parameter and especially in multiparameter FWI. These strategies can be shown to positively

affect issues associated with the computational expense of FWI, and the types and character

of model features constructed in both synthetic and field data environments. However,

applying FWI techniques to realistic seismic dataset is still a very challenging task. I have

designed plans and strategies for FWI applications in future studies.

In the thesis, only synthetic examples are given to show the benefits and advantages of

phase-encoding approaches for monoparameter FWI. As further step in future studies, it

is expected to reconstruct multiple physical parameters (i.e., S-wave velocity, density, at-

tenuation, etc) using FWI with phase-encoding approaches. In other words, to merge the

techniques created in chapters 2 and 4. Furthermore, the effectiveness of phase-encoding

approaches should also be examined using real seismic dataset. Advanced second-order

optimization methods (l-BFGS and Hessian-free methods) are applied for multiparameter

acoustic FWI with velocity-density parameterization. Because different parameterizations

have different performances for inverting subsurface parameters. It is necessary to apply ad-
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vanced optimization methods to multiparameter acoustic FWI with different parameteriza-

tions (i.e., impedance-density parameterization) for comparison. Furthermore, the proposed

l-BFGS preconditioned Hessian-free Gauss-Newton FWI can in principle be applied to the

problem of inverting for isotropic- and anisotropic-elastic parameters.

Only synthetic examples of various parameterizations in isotropic-elastic FWI with non-

linear conjugate-gradient method are given in chapter 4. In future studies, I plan to ap-

ply isotropic-elastic FWI with various parameterizations to the Hussar field seismic dataset

and examine the performances of different parameterizations with second-order optimization

methods (i.e., preconditioned Hessian-free Gauss-Newton method). In chapter 5, Gauss-

Newton and full-Newton methods are applied to invert the elastic constants in 2D HTI

media. Because Gauss-Newton and full-Newton methods are both very expensive for con-

structing the Hessian matrix explicitly. One further research direction is to apply Hessian-free

optimization methods for inverting parameters in HTI media, in which only Hessian-vector

products are calculated. It is more meaningful to estimate the properties of 3D HTI media.

Fractured media can be described with many different parameters (i.e., fracture spacing, frac-

ture density, weakness, compliance, etc). Using full-waveform inversion methods to invert

these properties of fractured media will be studied.
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Rüger, A., 1997, P-wave reflection coefficients for transversely isotropic models with vertical

and horizontal axis of symmetry: Geophysics, 62, 713–722.

Rusmanugroho, H., Modrak, R., and Tromp, J., 2017, Anisotropic full-waveform inversion

titl-angle recovery: Geophysics, 82, R135–R151.

Russell, B., 1998, Introduction to Seismic Inversion Methods: Scoiety Exploration Geophysi-

cists, Tulsa.

Saad, Y., 2003, Iterative methods for sparse linear systems: SIAM.

Sacchi, M. D., Wang, J., and Kuehl, H., 2007, Estimation of the diagonal of the migration

blurring kernel through a stochastic approximation: SEG Expanded Abstracts, 2437–2441.

208



Sainath, T. N., Horesh, L., Kingsbury, B., Aravkin, A. Y., and Ramabhadran, B., 2013, Ac-

celerating Hessian-free optimization for Deep Neural Networks by implicit preconditioning

and sampling: IEEE Workshop on Automatic Speech Recognition and Understanding,

303–308.

Santosa, F., and Symes, W., 1988, Computation of the hessian for least-squares solutions of

inverse problems of reflection seismology: Inverse Problems, 4, 211–233.

Schoenberg, M., 1983, Reflection of elastic waves from periodically stratified media with

interfacial slip: Geophysical Prospecting, 31, 265–292.

Shanno, D. F., 1970, Conditioning of quasi-Newton methods for function minimization:

Mathematics of Computation, 24, 647–656.

Shin, C., and Cha, Y. H., 2008, Waveform inversion in the Laplace domain: Geophysical

Journal International, 173, 922–931.

Shin, C., Jang, S., and Min, D., 2001a, Improved amplitude preservation for prestack depth

migration by inverse scattering theory: Geophysical Prospecting, 49, 592–606.

Shin, C., Yoon, K., Marfurt, K. J., Park, K., Yang, D., Lim, H. Y., Chung, S., and Shin, S.,

2001b, Efficient calculation of a partial-derivative wavefield using reciprocity for seismic

imaging and inversion: Geophysics, 66, 1856–1863.

Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for

selecting temporal frequencies: Geophysics, 69, 231–248.

Son, W., Pyun, S., Shin, C., and Kim, H. J., 2014, An algorithm adapting encoded

simultaneous-source full-waveform inversion to marine-streamer acquisition data: Geo-

physics, 79, R183–R193.

Spakman, W., 1991, Delay-time tomography of the upper mantle below Europe, the

Mediterranean and Asia minor: Geophysical Journal International, 107, 309–332.

Stolt, R. H., and Weglein, A. B., 2012, Seismic Imaging and Inversion: Application of Linear

Inverse Theory: Cambriage University Press.

209



Stork, C., and Kapoor, J., 2004, How many p values do you want to migrate for delayed shot

wave equation migration?: SEG Technical Program Expanded Abstracts, 1041–1044.

Tang, Y., 2009, Target-oriented wave-equation least-squares migration/inversion with phase-

encoded Hessian: Geophysics, 74, WCA95–WCA107.

Tang, Y., and Lee, S., 2015, Multi-parameter full wavefield inversion using non-stationary

point-spread functions: SEG Technical Program Expanded Abstracts, 1111–1115.

Tao, Y., and Sen, M. K., 2013, Frequency-domain full waveform inversion with plane-wave

data: Geophysics, 78, R13–R23.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geo-

physics, 49, 1259–1266.

Tarantola, A., 1986, A strategy for nonlinear elastic inversion of seismic reflection data:

Geophysics, 51, 1893–1903.

Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation:

Society of Industrial and Appplied Mathematics.

Thomsen, L., 1988, Reflection seismology over azimuthally anisotropic media: Geophysics,

53, 304–313.

Trad, D. O., Ulrych, T. J., and Sacchi, M. D., 2002, Accurate interpolation with high-

resolution time-variant Randon transforms: Geophysics, 67, 664–656.

Trad, D. O., Ulrych, T. J., and Sacchi, M. D., 2003, Latest views of the sparse Radon

transform: Geophysics, 68, 386–399.

Trampert, J., Fichtner, A., and Ritsema, J., 2013, Resolution tests revisited: the power of

random numbers: Geophysical Journal International, 192, 676–680.

Tromp, J., Tape, C., and Liu, Q., 2005, Seismic tomography, adjoint methods, time reversal,

and banana-doughnut kernels: Geophysical Journal International, 160, 195–216.

210



Tsvankin, I., 1997a, Anisotropic parameters and p-wave velocity for orthorhombic media:

Geophysics, 62, 1292–1309.

Tsvankin, I., 1997b, Reflection moveout and parameter estimation for horizontal transverse

isotropy: Geophysics, 62, 614–629.

Tsvankin, I., and Grechka, V., 2011, Seismology of azimuthally anisotropic media and seismic

fracture characterization: SEG.

Valenciano, A., 2008, Imaging by wave-equation inversion: Ph.D. thesis, Stanford University.

Valenciano, A. A., Biondi, B., and Guitton, A., 2006, Target-oriented wave-equation inver-

sion. geophysics: Geophysics, 71, A35–A38.

van Leeuwen, T., Aravkin, A. Y., and Herrmann, F. J., 2011, Seismic waveform inversion by

stochastic optimization: International Journal of Geophysics, 1–18.

van Leeuwen, T., and Mulder, W. A., 2010, A correlation-based mifit criterion for wave-

equation traveltime tomography: Geophysical Journal International, 182, 1383–1394.

Vigh, D., and Starr, E. W., 2008, 3D prestack plane-wave, full-waveform inversion: Geo-

physics, 73, VE135–VE144.

Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Geophysics, 51, 889–901.

Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration

geophysics: Geophysics, 74, WCC1–WCC26.

Wang, B., Gao, F., Wheaton, D., and Dirks, V., 2006, Model-based decimation of input data

for delayed-shot/plane-wave migration for the purpose of subsalt velocity model building:

SEG Technical Program Expanded Abstracts, 2186–2190.

Wang, T., and Cheng, J. B., 2017, Elastic full-waveform inversion based on mode decompo-

sition: the approach and mechanism: Geophysical Journal International, 209, 606–622.

211



Wang, Y., Dong, L., Liu, Y., and Yang, J., 2016, 2D frequency-domain elastic full-waveform

inversion using the block-diagonal pseudo-Hessian approximation: Geophysics, 81, R247–

R259.

Warner, M., Ratclie, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Vinje, V., Stekl,

I., Guasch, L., Win, C., Conroy, G., and Bertrand, A., 2013, Anisotropic 3D full-waveform

inversion: Geophysics, 78, R59–R80.

Waters, K. H., 1978, Reflection seismology: a tool for energy resource exploration: John

Wiley and Sons Inc., New York.

Wu, R., and Aki, K., 1985, Scattering characteristics of elastic waves by an elastic hetero-

geneity: Geophysics, 50, 582–595.

Wu, S., Wang, Y., Zheng, Y., and Chang, X., 2015, Limited-memory bfgs based least-squares

pre-stack Kirchhoff depth migration: Geophysical Journal International, 202, 738–747.

Wu, W., Luo, J., and Wu, B., 2014, Seismic envelope inversion and modulation signal model:

Geophysics, 79, WA13–WA24.

Xu, K., and McMechan, G. A., 2014, 2D frequency-domain elastic full-waveform inversion

using time-domain modeling and a multistep-length gradient approach: Geophysics, 79,

R41–R53.

Xu, S., Wang, D., Chen, F., Zhang, Y., and Lambare, G., 2012, Full waveform inversion for

reflected seismic data: EAGE Technical Program Expanded Abstracts.

Yang, J., Liu, Y., and Dong, L., 2016, Simultaneous estimation of velocity and density

in acoustic multiparameter full-waveform inversion using an improved scattering-integral

approach: Geophysics, 81, R399–R415.

Yuan, Y. O., and Simons, F. J., 2014, Multiscale adjoint waveform-difference tomography

using wavelets: Geophysics, 79, WA79–WA95.
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