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Abstract

In landreflectionseismic data analysis, reflectistaticcorrectionsareanalyticalsolutions
for resolving timing differences betweemeasuredand theoreticalarrival times of seismic
waves.Thesestatic corrections camake asubstantiatliifference inthe absence ofletailed near
surface informationand are dependent on assumptions associated with the normal moveout
(NMO) theory NMO is an analytical solution based on the assumption ttetmoveoutn
seismic data can be approximated bhyhgperbola This assumptionis valid when thenoveout
patternis nearhyperbolicbut fails whenit is not. Scenarios where moveout is not hyperbolic
include situations when the topography isot flat; when strong lateral velocity variatienare
present when there arestrong variations invelocity magnitudes andeismic weathering
thickness across the data.

A moveout velocity field can be created using raytraced traveltimes from the velocity
model instead of NMO. fesetraveltimesare calculatedrom each source and receiard can
be applied to the respectiveaces at the corresponding offseThis modelbased moveout
(MMO) correctionis coupled to depth migration aradlows for asymmetricnon-hyperbolic
moveoutcommonly associated witlstrong lateral velocity variations in tleibsurfaceThese
MMO derivedstaic correctionscanrendersharperdepth migratedmagesand lead to stronger

geologic representation of the depth imaging velocity model.
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Chapter 1. Introduction

The goal of seismic processing is to generate an image & ¢he tsubfugaceSeismic
energy propagatiofrom a source through the Earth and back sem@sorcan beapproximated
usinganalyticalsolutiors. The impact of the neaurface layer iglifficult to constrainbut canbe
approximatedvith first-break arrival times. Thedest breakarrival timesare used t@stimate
the nearsurface velocitystructureand generate anodel used taleterminerefracton statics
(Yilmaz, 2001) However,seismicarrival times can stillbe affeced by localizedirregularities
that are beyond the temporal and spatial resolution of the Bat@ausethese localized
irregularities are beyond theeismic resolution of theearsurface velocitynodel, smalkiming
errors are passed throughthe refraction staticsolution Idealized shot gathers have perfect
hyperbolic moveou{Cox, 1999)and any variation from this hgpbolic curve can beorrected
by shifting either the source or receiver traBeflections staticare commonly attributetb
nearsurface irregularities whictare not capturedin the neassurface velocity modeknd
resultingrefractions staticsBoth refaction and reflectiontatics correctionsallow for a close

approximatiorof theenergy propagationsing an analytical solution

Assumptionsaboutthe subsurfacesuch adateral velocity homogemity or flat geometry
allow for analytical solutions to be constructadd applied However, they areat universally
appropriate For example, foothills datasets can have strong lateral velocity variations that will
violate NMO assumptions. These strong lateral velocity variations argensated for by
applying larger static corrections to the seismic data. These larger static correctionst
associatedwith undetermined neaurface effects but are an attempt to accommodate the
assumptions of NMO theory. Traditionally, these NMQigexl reflection static correctiorare
appliedto input traces for depth migration. This method has laeeepéd as traces with these
corrections generally generate more coherent images in depth migration than whesmit
corrections However, the appach tends to cause depth velocity models to deviate from their
geologic representation, having introduced artefacts into the static corsaltition for the sole
purpose of compensating for assumptions in NMO theWien therarestrong lateral velaty

variations in the neasurface and subsurface, normal moveotitoduces anomalies in static



correctionsgn consequence dheory errorUsingraypathtraveltimetomographya modelbasel

stack can be generated by applyisgurce andreceivertraveltimesto the respective traces
(Sherwood, et al., 1976; Sherwood, Chen, & Wood, 1986; Landa, Thore, & Reshef, 1993)
Statics derivedfrom the modetbased stackyield trace shiftscoupled to deptimigration (Tjan,
Larner, & Audebert, 1994; Larner & Tjan, 1995)

1.1 Near-Surface Layer

The neatsurface lowvelocity layeris often referred to as the weathering layer. However,
the term Aweatheringo differs to a smal.|l degr
and carbe separatenhto seismic weatheringndgeological weathering Us i ng 2@Rer i f f 6
definition of sei s mi-surfaceel@amelaty layer,gusually the pertion s f a
where air rather than water fills the pore s|
velocity layer is defined by how seismcaves travel t h r-surtagehOftetnh e E ar
this lowvelocity layer is a sharp boundary, but it can also be gradational. Sometimes the sharp
boundary at the base of weathering is caused by a rapid change in rock prapetties
commonly associatl with the water table, where the pore spadéled with water rather than
air. As for geologic weathering, this refers to the physical decomposition of rocks.

Sheri ffdéos definition of seismic weathering
andis more of a characterization of the behaviour of seismic waves as they propagate down from
and back up to the surface of the earth. As much as the velocity of thielogity layer can
vary, so can its thicknesBigure1-1).

The assumptions made when modelling the sediace of the Earth are an attempt to
guantify variations in lowelocity layer thickness and tlgh-frequencyvelocity changes with
the intent to improve the quality of the final migrated image. As a result, there are many potential
geologic andechnology relatedssues in acquiring seismic data that make it difficult to image
the subsurface accurately. Neanface models that create static correctiaresconstantly being

tested, updatk and improved to increase the ability to image the subsurface of the earth.



For examplejf the velocity of the lowvelocity layer vi, is much slower relative to the
subweatering layer velocityy.0 for a large range on incidence angles in thewsahthering
layer, ¢, the angle of incidence in the levelocity layer g, is nearvertical (which is understood
to be within 15° of vertical (Cox, 1999) accor di n g law (Equabionell).l This

assumption brealkdownwhenhigh-velocity layers are athe surface

— (1-1)

Surface

Base of
weathering

* Datum

Reflector

(b}
Datum

Reflector

Figure 1-1 Ray-path schematic from source toreceiver and potential datum static
correction. (a) Acquired source (Sxeceiver (R) ray-path from surface (b) Source (S
receiver (R) ray-path corrected todatum, after Cox (1999)

1.2 Moveout

Moveout, in simplest terms, describes the time it takes for energy to travel from a source to
a subsurface boundary and then up to a receiserompared to a zedffset reflection Cecil
Greenwrote one of he first papesthat discsses the theory arapplicationof normal moveout



(Green, 1938)This moveout will nobe seeron a single trace, which is a record of the motion

of a single geophone over time, but an array of traces. This array will bees segeophones,
desirably separated by equal increments and commonly identical in length on either side of the
source. These traces from the mdistantgeophone on one side to the madistantgeophone on

the othersidewill make up a shot gathé&ran aray of geophones whose energy comes from the
same shot. When these geophones meas@energythat is refleced from a subsurface
boundary i has a certain appearance. Ofidralizedflat-layered earth is used to derive an
analytical solution for moveoyFigure 1-2a). However, the subsurface is significantly different

from anidealizedflat-layered erth with homogeneous velocifffigure1-2b).

distance (m) distance (m)

depth (m)

time (ms)

(c)

Figure 1-2 Ray fan schematic: (a) neaivertical rays at the nearsurface when velocities are
slower in the near surface and when seismic weathering is flat, arfjd) non-vertical rays in
the nearsurface when velocities are faster than the layer below and when seismic
weathering is complicated. (c) is the representativlRyperbolic moveout for flat geometries

similar to (a), (d) is the representative norhyperbolic move-out from complex geological
environments similar to (b).



An approachwas presentedhree different waydy Landa(1993) Schmid (1995) and
Newrick (2004) where tley use the raytracettaveltimesderived from a depth velocity model
and applied to raw traces asmdetbasedmoveout(MMO) correction.Landa usedMMO to
create anodetbased stackMBS) as an efficient tool for structural inversion probleiids also
remarled that theMMO corrected traces malge usedfor new rdlection static corrections.
Schmid gave some insightinto the value of usingraveltimesto replicate noshyperbolic
moveout.He also highlights thagtatics derived fronMMO corrected datavere successful in
revealingnew struatiral details yet thee were no published images with the comparisons

Newrick commented omow she apped MMO but does not discuss the value to the data

1.2.1 Normal moveout

For a flat homogeneous layered subsurf@eigure 1-2a), the geophones closest to the
source will capture the reflected energy signal first, and the geophones that are further away will
capture the energgter. On a shot gather the reflecteceggy on an array of traces will have the
shape of aymmetrichyperbolai approximated by parabolat small offsetsandby a lineat

far offsetswith the limbs pointing downwards and away from the gfégurel1-2c).

During seismic signal processing, it is necessary to apply an appropriate moveout
correction to flatten the reflected energy. Flattening this energy is necessary for the subsequent
processing steps, trasp a better visualization of the subsurface layers. The next processing step
is called stacking, the summation of the energy a@nssffset gathefor each shotocation If
the energy on the shot gathenot flat, the energy signature will be weaka the stack because
there will destructive interference of tleeherent signaihat is notat the same time across each
traceon the gatherin the idealized flatayered earth with laterally homogeneous veloeityl
small offsetsrelative to the deptkarget(Taner, Koehler, & Alhilali, 1974)moveoutwould be
easy to determine using analytical approaches, such asténen NMO equation presented by
Dix (1955)

) 0O — (1-2)



where X is the fuloffset, Vkus is the rootmeansquareof layer velocities above the reflectdy

is the zereoffset time andtwwo is the moveout corrected time.

1.2.2 Model-basedmoveout

The premiseof MMO is thatthe moveout velocity fieldan beapproximatedy raytracing
through thedepthvelocity model.In Kirchhoff depth migration, traveltimeare calculatedfrom
each source and receiviarcation prior to migratiores oneway seismic energy pregating
though the earthTogether, thessource andreceiver traveltimesre assumed to ap@ch the
true travel paths of seismic energlyat created the dafar each tracdrom the energy down
from the source to the reflector and up to the receinesectionsvhere thedepthvelocity model
is flat and lateralljhomogenousthe MMO will be hyperbolic.The sections that have lateral

velocity variation MMO will have norhyperbolic moeout.

The novelty of MMOQis in how the moveout velocity fielts calculated Instead of using
the NMO velocity correction that has the assumption of lateral velocity homogenaityveout
velocity field can bedetermined directly fromhe depth velocity modalsing thesource and
receivertraveltimes Equation 12 in hernetly assumes that the velocities at the zaffeet
location are laterally continuous and constamat for allX, the Vrus is the sameEquation1-3
shows how the MMQs calculatednotice that isvholly dependent on theaveltimesfrom the
source and receiver locatiofdMO for each traces the sum of the respectiemd symmetric
source and receiveraveltimes Therefore, lateral velocity heterogeneity dmnaccommodated
for through the depth velocity models measured by tke respectivetraveltimes Two
assumptions here are important to noéeiprocity and symmetryl.hereciprocityassumptiorof
source and receiver positioassumeshat the effect of downward and upward traveling waves
are equa(Knopoff & Gangi, 1959; Taner, Koehler, & Alhilali, 1974he symmetryassumption
of the contributingenergyto a traceassumes that tame from a source and receiver are equally

distant apart from the midpoint yet on opposite sides.

T T T (1-3)



A common practice in depth imaging is to smooth the velocity model before the
traveltimesare calculatedThis smoothingredu@s thepotential erroneousource and receiver
traveltimes createdy the traveltime algorithm breaking down in areas ahpid and large
changes in the velocity model. This smoothing is a source of uncertainty witouhee and

receivertraveltimesandaccordingly with MMO.

Once the riection statics from the MMGstackhave been calculatethey are appliedto
the depth input gathers and migrated with the same velocity field usedetonoe MMO.
Therefore each velocity model updateequiresa new MMO velocity deermined by the
traveltimeswhich are used toderive new reflection staticsthat are coupledto the updated

velocity model

The MMO appliedto the prestack gathers is derived from the depth velocity modals
moveoutt akes advantage of depth imagingbés abilit
the subsurface whicis ignoredwhen using NMO for ridection static correctiongFigure 1-2b).
Figure 1-2d illustratesthe nonsymmetricand norhypertlic nature of shogathersbelow the
leading edge of the velocity contrashe velocity on either side of the leading edgelifferent
andthe resulting moveout cannot be flattened with the NMO equatgause it usesa single
velocity term that inherently assumes lateralelocity homogeneity.This assumption causes

theory errorandis compensateth the rdlection static calculations.

1.3 Reflection Static Corrections

Land seismic surveys commonly regustatics corrections to reduce or remove the effects
of the lowvelocity layer by assuming vertical time shifts on reflection daigufe 1-1). These
time-invariant shifts or static correctionare often referreds statics. Sheriff2002) defines
statics as, Aficorrections applied to seismic

elevation, weathering thickness, weatherg v el oci ty, or reference da

These staticaire a calculated time shift that will compensate for the uncertainties of the

seismic weathering layer. The assumption is that the-swetace model is underdetermined



which causes small inaccuracies ire geismicd at a . Cont i nuidafigitiof af o m Sh ¢

static corrections:

A[ Refl ection statics] assume that patterns
result from neasurface variations and hence statigrection trace shifts should beckuas to
minimize such irregularities. Most automatic statiesermination programs employ statistical
met hods t o achi ed BherifffR@02)mi ni mi zati on. 0

Reflection staticaire calculatethecause often the lack détailed neasurface information
leads to inaccuracig€ox, 1999) In preparation of féection statics an NMO velocity field is
applied to correct fomoveoutand stack the data. NMO velocisyapproximatedby a hyperbola
and assumes lateral homogeneRig(re 1-2c). The hyperbolic assumptiaos violatedwhen the
topographyis notflat, strong lateral heterogeneity oélecity is present, andthen there are

variations in the seismic weathering thickness and velocRigsie1-2d). (Marsden, 1993)

Genaeally, the static corrections from the time processing ftwer appliedo the traces for
depth migration. Improvements have focussed on corrections specific to the time migration
image and relatively little researchnd resources havéeen allocatedo the development,
enhancement, and application of nearface modelling and weathering corrections specific to
the depth migration imag&omel & Kazinnik, 2013; Koren & Ravve, 2018)

Reflection static corrections (Egtion 1-3), have four components to determine the total
time shift on the stacked trace.iRthe receiver static at the ith receiver positigns $he source
static at the jth source positiong € time shift for the kthcommondepth point(CDP) gather,
this is sometimes callethe structure static, Mis the residual NMO component at kth CDP

gather, and {j) is the sourceeceiver distanc€laner, Koehler, & Alhilali, 1974)
Y Y Y O 0 Q Q (1-3)

The G parameter identifies trends in the data determine if incorrect event times are part of

the actual data and not removed through a static correction. Thmafdmeter optimizes the



moveout velocity taninimize the amount of statics shift that could haeen appliediue to a

velocity estimation error.

1.4 ThesisObijectives

The objective of this thesis ie formulate, apply, and teatmethodology that derives static
correctionsthat are coupledto depthimaging This work appies conventional time and depth
processing workflows on synthetic datasets and a test field ddtasetmparingthe final image
results, the only differences are the method in which moveayplied NMO vs MMO.

Chapter 2 provides the bekgroundand scenario whemrdMO theoryfails. The presence
of strong lateral velocity variatiocannotbe replicatedvith the symmetric and analytical NMO
equation Using asynthetic velocity model that has no nesurface lowvelocity layer no
topographyand a known velocity structuréhere should beno need forstatic corrections
However static shifts are generated to compensatd MO6s i nabi l ity to comp

lateral velocity variation.

Chapter 3 compares the results of NMO cected data and MMO corrected datatwo
synthetic datasetdAn idealized wedge velocity model arad subset of thé8P 1994 Statics
BenchmarkModel Each case compares dltdstrates the impact of the moveout correction used

on the final depth image.

Chapter 4 is an overview of the time processing steps of the field dafBilsistdatasetvas
taken through to thprestack time migrationRSTM) image to ensure that the static corrections

applied enhanced thimal image.

Chapter 5 descibes the interptieve depth processing workflawrhe final image stacks
with statics derived from NMO corrected data and statics derived Mii@ected dataare
comparedA preliminary investigation in applying titemographic neasurface velocity model
to the depth velocity modéd presented

Chapter 6 summarizes the work presented in this thesid comments on the valué

using statics coupled to depth imaging.
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1.5 Data

1.5.1 Wedge model

cdp
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w
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o
(=]
[w]

6000

Figure 1-3 Wedge thrust model.

The wedge thrust velocity moddfigure 1-3) is a 20 m x 20 m grid that is 10 km long
requiring no statics becauserad lowvelocity layer and no elevation change. The intent was to
determine the effectiveness of normal NMO and MMO on a synthetic thrust environment with

strong lateral velocity variation.

Using Accel ewareds acoustic moskeohdiecemey sof t
station using &80 Hz source Ricker wavelet. The acquisition geometry for the wedge thrust
model was 80 m source spacing and 40 m receiver speguajinga max fold of 63 while the

BP 94 model was 40m source spacing and 1a X8ceiver spacing producing a max fold of 126.

1.5.2 1994BP statics benchmark model.

The 1994 BP statics benchmarkodel (BP 94)is a5 m x 5 m grid that is 60 km line in
total length.l focussed on the®km on the right end of the line shownRigurel-4. The B° 94
velocity model not only contains lewelocity layers but this section of the synthetic modsl
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also a suitable example for classic complex foothills environmeris modelling wasshot

everyfourthreceiver station using a 30 Hz source Ricker wavele

cdp

500 1000 1500 2000 2500 3000 3500

0
1000
700
~ 2000
E o
3 ®
S 3000 § E
Q.
[}

6000 l
Figure 1-4 1994 BP statics benchmark model, createédly O 06 BL89%4)e n

1.5.3 Canadian foothills dataset
The foothills field dataset is from the Canadian foothills and was publicly released in 1995
at the SEG AGM Workshop #6 in Houston as a foothills imaging benchmark foprdagssing
(Stork, Welsh, & Skuce, 1995) Thi s dataset is known as the oI
a lot of geologic complexity and excellent signal qualdy the workshop, the presenters

provided many insights and gertise imaging the foothills dataset.

1.6 Software

Accel ewareds AxWave software was used exte
models. SeisSpaceas used fortime processing and conditioning the input traces or depth
migration. Techc@ s ELANAL software allowedfor userfriendly, interpretive velocity
analysis.Thr ust Belt | magingébs proprietarywasoftwar
usedf or depth i maging. GeoTomobs TomoPlus softw

nearsurface veloity model and refraction statics. MATLAR/as usedor data analysis and
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regression. Python, Unix and SeismicUnix, were used the mdke imandlingof the seismic
data.
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Chapter 2: Normal M oveoutTheory Error

2.1 Introduction

This chapteshows how NMO theorgrror may be quantifiedy exploring the impact of
the offset distancased to determine the NMO velocity ati magnitude o¥elocity variation
The offset and velocity are variabldbat determinethe appropriate NMO correctioriPoor
convergace on an appropriateNMO velocity field will resultin greater static correction to
compensatéo flatten thedata. The WedgeThrust Model (Figure 1-3) is used toexamine the
limits of NMO theory. This model is suitable becaustasno topographic relieand has no
nearsurface weatheringpyer. Becauseof these two features)o static corrections should be
necessarynd the consequence applying NMO in a strong velocity variatiorscenario care

evaluated

2.2 Theory

In Cecil Greeb s  p(29B883 hediscusses the theory amagbplicationnormal moveout.
Even though he presented the simple and generally used form for moveout (Egu3tiothers
still recognized the theory error with lateral velocity variatigiiédess, 1952) Dix (1955)
discussed hovdeepetayers with higher velocities will not have straighypathsrom source to
reflector toreceiver(Figure 2-1) if NMO velocities are usednstead the rootmeansquare
(RMS) velocites can be usedn place of NMO velocites (Equation 2-2) to more closely
approximatethe timing of the seismic wavesot only to the reflector of interest but also the
reflectors above the targddix also presented higher ordéght-handterms to equatiog-2 that

allow for greater accuracy tbevelocityin layers above the target reflection

0 0O — (21 0 0O — (22
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distance (m)

time (ms)

Figure 2-1 Two-layer schematic for increasing velocities. Rays from source (S) to receiver
(R) from reflection point (1), Straight raypath will travel thought points A and B on the M-
V2 boundary. Minimum time paths will travel through points C and D on the same
boundary, after Dix (1955)

However, Taner and Koehlét969)record that equatio-2 is still accurate within two
percentage points without the higher order tewhen the offet is small relative tdepth of the
target which isgenerallysufficient for applied seismic pposes. Alspin this paper Taner and
Koehler proposed the semblance plot, which is a hyperbolic stack that generates stronger energy

at more appropriate velocities for moveout determination.

Once the appropriate NMO is determined, the assumption ianlgaemaining anomalies
which limit reflector coherencyre associated with velocity variations too insignificant to be

resolved by a more detailed NMO velocity but large enough to impact the stack.

Basic assumptions of NMO are reciprocity, symmetry, trad the velocity is laterally
homogemrous Reciprocity is the assumptions that raypaths from the source to the receiver are
the same raypaths if the source and receivers had switched positions. Symmetry is that the
subsurface image point is in the middiethe source and receiver distance. Lateral velocity
homogeneity is aembeddedassumption in equatiai+2 as there is a single velocity termgmé,

for the distance between the source and receiver, X.

These three assumptions are related to the potentaalthat carbe generated-igure 2-2

is an adaptation tBigure2-1. The red lines show how if one side of the raypath travels through a
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velocity different than the other side, and if the subsurii@agepointis fixed, that the source
location will need tdoe adjusted. The source location will need to move to the right if ke V
V1 and to the left if > V1. Reciprocityis maintainedbut symmetry and the ability to correct

for NMO with a single velocity becomes compromised.

In applied seismic exploratg it is acceptedhat NMO will not fully correct for the all the
subsurface variationsncountered bus a good approximatiowhen the model assumptions are
valid. Static corrections are then used to make up for the limitations of NMO applications to

enhance the subsurface image

distance (m)

V3 Vi

time (ms)

Figure 2-2 Two-layer schematic for increasing velocities and laterally varying velocity in
the first layer. Raypaths from source (S) to receiver (R) from reflection point (). The red
rays show the source position change needed to image (I) if the top layer velocity changes
laterally. If V 3 < V1the source will need to move to the rightif V3 > V1 the source will need

to move to the left.

2.3 Velocity Modelling

The wedgehrustmodelwasused to generate the synthetic data to test the impact of offset
distance on NMO velocitgletermination in the presencd strong lateral velocity variation
Although a velocity variatiorirom 3000 m/s to 5000 m/s mayese extremejt is common in
areas where &gid carbonate layarare thrustto the surfaceand overlaysofter, more ductile
lithology. This wedge thrust velocity model reqagno static correctionsAs there is no low
velocity layer and no elevation change any static generated will be solely due to theory error
associated with NMQOThe synthetic acquisition parameters of this madeldetailedn Section
1.5 of Chapter 1Four differentvelocitiesin the hanging walbf the wedge model @rechosen
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to investigateimpact of lateral velocity variatiomn the NMO correction The hanging wall
velocities used are 500@/s 4000 m/s 3600 m/s and3300 m/s. The relative change between
the first layerof the footwall and the hangingiall velocity is 67%, 33%, 20%and 10%

respectively.

2.4 Offset Testing

To investigate the impact that the offset range has on the NMO velocity optimized to
correct for moveout, | used folalf-offset windows, 0.5 km, 1.5 km, 3 km, and 5 kifigure
2-4). The average NMO veloa#ts chosen fothe longer offset windows will have a greater

variance irthe presence aftrong lateral velocityariations.l ran constant velocity paneg(s

Panel Velocity Panel Velocity Panel Velocity Panel Velocity Panel Velocity
(m/s) (m/s) (m/s) (m/s) (m/s)

1 1800 11 2300 21 3100 31 4100 41 5200

2 1850 12 2350 22 3200 32 4200 42 5400

3 1900 13 2400 23 3300 33 4300 43 5600

4 1950 14 2450 24 3400 34 4400 44 5800

5 2000 15 2500 25 3500 35 4500 45 6000

6 2050 16 2600 26 3600 36 4600

7 2100 17 2700 27 3700 37 4700

8 2150 18 2800 28 3800 38 4800

9 2200 19 2900 29 3900 39 4900

10 2250 20 3000 30 4000 40 5000

Table 2-1) and used VELANALto pick the \kws for each stacligure 2-3 VELANAL
panel example. Green lines are controldimderestacking velocities can be fixédgure 2-3).

VELANAL loads multiple stacks at with various velocities (

Velocit Veloci Veloci Velocit Velocit
Panel (m/s) y Panel (m /S)ty Panel (m /S)ty Panel (mis) y Panel (mis) y

1 1800 11 2300 21 3100 31 4100 41 5200
2 1850 12 2350 22 3200 32 4200 42 5400
3 1900 13 2400 23 3300 33 4300 43 5600
4 1950 14 2450 24 3400 34 4400 44 5800
5 2000 15 2500 25 3500 35 4500 45 6000
6 2050 16 2600 26 3600 36 4600
7 2100 17 2700 27 3700 37 4700
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8 2150 18 2800 28 3800 38 4800
9 2200 19 2900 29 3900 39 4900
10 2250 20 3000 30 4000 40 5000
Table 2-1), and these stackgan be scanned through to identify the optimal stacking

velocity based on visual coherency and the sharpness of the refdmtgy thevelocity control
lines These velocity contrdines green lines irFigure 2-3, areevery 10th CDPAt a desired
time down the seismic sectipa control point can be addeallock in the desired velocity for a
target reflector.The velocityfield is linearly interpolated, first vadally along the velocity
controllinesbetween points, then horizontally between velocity contidiss aggregate velocity
field is used to stack the data in preparation for static calculations.

Velocit Veloci Veloci Velocit Velocit
Panel (nﬂs)y Panel (nﬂs;y Panel (nﬂs;y Panel (nﬂs)y Panel (nVs)y
1 1800 11 2300 21 3100 31 4100 41 5200
2 1850 12 2350 22 3200 32 4200 42 5400
3 1900 13 2400 23 3300 33 4300 43 5600
4 1950 14 2450 24 3400 34 4400 44 5800
5 2000 15 2500 25 3500 35 4500 45 6000
6 2050 16 2600 26 3600 36 4600
7 2100 17 2700 27 3700 37 4700
8 2150 18 2800 28 3800 38 4800
9 2200 19 2900 29 3900 39 4900
10 2250 20 3000 30 4000 40 5000

Table 2-1 Valuesused to create constant velocity panefsr velocity analysisfor each wedge
model. These values are used to create stacking velocities dimge migration velocities.
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Figure 2-3 VELANAL panel example. Green lines are control lins where stacking
velocities can be fixedBlue left pointing arrows indicate where picked velocities are slower
than the current constant velocity stack.Red right pointing arrows indicate where picked
velocities are faster than the currentonstant velocity stack.

cdp cdp

ﬂ) 50 100 150 200 250 300 350 400 450 b) 50 100 150 200 250 300 350 400 450

depth (m)

Velocity
(m/s)

Figure 2-4 Schematic illustrating the testing of ofset sensitivity of NMO centred at CDP
250. (a) 00.5 km, (b) 61.5 km, (c) B3 km, and (d) 05 km. The wider offset windows
encounter greater velocity variation that narrow offset windows.
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2.4.1 Offset dacksand velocities.

A qualitative review of theffsetstacks Figure 2-5) show that limiting the offsets allows
for a more coherent image going into reflection static corrections calculasemsheespective
variationson the stacks with the red rectanglEgjure 2-4c andFigure 2-4d are showing how

NMO is havingdifficulty correcting for thenoveoutwith a single velocity below CDP 300.

cdp cdp

100 150 200 250 300

time (ms)

1000 1000
—
g \
~ 2000 2000
Q
£
=)

3000 3000

4000 4000

Figure 2-5 Stacks prior to static corrections with same velocity model but varying offsets.
The largestsee the variations on the stacks are within the red rectangle@) offset, G0.5
km, (b) offset, 01.5 km, (c) offset, @ km (d) offset @5 km, full offset.

Figure 2-6 has the respective stacks but with static corrections apfolieclissed in more
detalil in sectior?.6). It is interesting to note that for the stacks with 3 and 5 km offsets, the static
corrections enhanced the part of the data that is erroneous due to the lateral velocity,variation

see theespectivevariations on the stacks with the megttangles
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Figure 2-6 Stacks after static corrections with same velocity model but varying offset$he
largest see the variations on the stacks are within the red rectangléa) offset, 30.5 km, (b)
offset, 31.5 km, (c) offset, 83 km (d) offset 35 km, full offset.
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Figure 2-7 Interval velocities for each offset range RMS velocities were picked using
VELANAL and then converted to interval velocities fo comparison with the geologic
representation of the synthetic wedge model(a) offset, 80.5 km, (b) offset, 81.5 km, (c)
offset, 33 km (d) offset @5 km, full offset.
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2.5 Velocity Testing

These modelgFigure 2-8) were used to test the impact of the strength of the lateral
velocity heterogeneity needed to break the NMO assumption. The hamaiingelocities are:
5000 m/s; 4000 m/s; 3600 m/s; and 3303. The relative change between the first lafdahe
footwall and the hangingwall velocity is 67%, 33%, 20%, and 10% respectively. The full offset

(5 km) is constant between each of these models.

The stackgrior to static corrections that had the 33®¢s hangingwall Kigure2-8a) and
the 3600 m/s hangingwalFigure 2-8b) shav that the NMO assumptions are holding sufficient
well and are not creating any artificial reflection in the imdggure 2-8c begins to show the
NMO assumption bré@ng down with a 33% velocity variation in hangingwall from the first
layer in the footwall(inside red rectangle)Figure 2-8d having a strong variation in veloctie

breaks down even mofmside red rectangle)
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c)o 50 100 150 200 250 300 350 400 450 d)o 50 100 150 200 250 300 350 400 450
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Figure 2-8 Velocity models used to test lateral velocity variation sensitivity with NMO.
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2.5.1 Stacksand velocities

The stacks irFigure 2-9 are prior to static corrections and the staElgure 2-10 have
static corrections appliedtigure 2-10c andFigure2-10d show the enhanced reflections that are
associated i the static corrections, but this is where the NMO assumptions breaks down and
create false reflectors are not representative of the geofogyre 2-10a and Figure 2-10b
indicates that an NMO correction will not introduce any extra or anomalous redlettbre
velocity variation is 20% or less. This suggest the feasibility of NMO in applied seismology as
perfect solution is difficult to determine or to know what aspect of a seismic processing
workflow has the biggest potential in the presence of nagigdeaa unknown geologic velocity.
This potential means that a strong lateral variation in velocity is between 20% and 33% relative

lateral difference in velocity.

cdp cdp

3)059100150200250300350400450 50 100 150 200 250 300 350 400 450

time (ms)

3000 -

2000

time (ms)

3000

4000

Figure 2-9 Stacks prior to static corrections with full offset but varying velocity models.
The largest see the variations on the stacks are within the red rectanglddanging wall
velocity, (a) 3300 m/s, (b) 3600 m/s, (c) 4000 m/s (d) 5000 m/s
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Figure 2-10 Stacks after static corrections applied with full offset but varying velocity
models.The largest see the variations on the stacks are within the red rectanglétanging
wall velocities, (a) 3300 m/s, (b) 3600 m/s, (c) 4000 m/s (d) 5000 m/s

Figure 2-11 Interval velocities for each offsetiteration of hanging wall velocity. RMS
velocities were picked using VELANAL and then converted to interval velocities for
comparison with the geologic represeiation of the synthetic wedge modelHanging wall
velocity, (a) 3300 m/s, (b) 3600 m/s, (c) 4000 m/s (d) 5000 m/s































































































































































