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Abstract

Prediction and removal of internal multiples, especially those caused by unknown gener-

ators and with insufficient subsurface information, remains a very high priority research

problem in seismic data processing. Inverse scattering series internal multiple predictions

are data-driven approaches to prediction in which lower-order reflected events are combined

nonlinearly according to well-defined ordering relationships in vertical travel time or pseudo-

depth. Implementations of instances of this algorithm in any one of the applicable transform

domains encounter computational challenges and challenges caused by the practicalities of

field data. In this thesis I systematically examine, develop and refine inverse scattering se-

ries internal multiple prediction algorithms and their computer implementations, introducing

new ideas concerning calculation domain, search parameter optimization, artifact suppres-

sion, and computational cost reduction. A key step in my strategy is to formulate the

computation in the horizontal slowness, plane-wave, domains, which is possible because of

the clear relationship between horizontal slowness and wavenumber. Numerical and analytic

arguments indicate that these domains, which tend to involve sparse representations input

events (e.g., primary reflections), is able to proceed with a relatively stationary search param-

eter value, producing predictions with little numerical noise, suppression of some common

high-angle prediction artifacts, and, importantly, at significantly lower computational cost.

I next formulate multidimensional internal multiple prediction in 2D in the coupled plane

wave domain, and examine its numerical behaviour using a benchmark synthetic dataset. In

particular I show a detailed input data preparation workflow. The application of the algo-

rithm to common-midpoint (CMP) gathers requires a modified version of the algorithm, and

this is also examined. This is important for efficient prediction of internal multiples caused

by dipping strata, because the so-called 1.5D formulation, nominally appropriate only for

layered media, can be applied with surprising accuracy to CMP gathers over dipping in-
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terfaces. I demonstrate and provide a rationale for this observation. The most significant

contribution of this thesis is to analyze and numerically implement the fully elastic form of

the inverse scattering series internal multiple algorithm. Theory for this has been in existence

since the 1990s, but to date neither implementation nor numerical analyses of any kind have

been published. Here the ordering of input data events in pseudo-depth/vertical-traveltime

and the relationships between these and the actual depths at which reflections took place is

key to obtaining accurate multicomponent predictions. After a full analysis, a plane-wave

formulation of the elastic multicomponent inverse scattering series internal multiple pre-

diction algorithm is also introduced. Three candidate approaches are considered for input

data preparation: pre-stack Stolt migration, vertical traveltime stretching, and incorpora-

tion of best-fit reference velocities. With numerical simulations and analysis, I conclude that:

(1) best-fit reference velocities produce the best approximate solution obeying the ordering

(travel-time monotonicity) requirement, but it requires a relative large search parameter to

be chosen in practice; (2) a combination of vertical traveltime stretching and best-fit ref-

erence velocities allows the search parameter to be the chosen with a size comparable to

those used in acoustic prediction, while correctly predicting all orders of internal multiples.

The first numerical examples of multicomponent elastic internal multiple prediction are then

presented.
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Ṕ Upgoing P-wave

P̀ Downgoing P-wave
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Chapter 1

Introduction

1.1 Motivations

In seismic records, special events, experiencing at least one downward reflection, are called

multiples which are classified as being either surface-related or interbed (internal), distin-

guished by their interaction (or lack of interaction) with the free-surface. The order of

internal multiples refers to the number of downward reflections it experiences. Prediction

and removal of internal or interbed multiples is an increasingly high priority problem in

seismic data analysis. One reason for the growth of its role and importance comes from the

increased sensitivity with which primary amplitudes in quantitative interpretation are now

analyzed. But the importance of accurate and robust prediction of internal multiples may

now be on the verge of an even greater upward jump, as full waveform methods come online.

This is counterintuitive at first, because the philosophy of full waveform methods (e.g.,

full waveform inversion, or FWI) is to treat the entire wave field at once, as a single, unified

entity, rather than as a collection of event types (e.g., surface waves, direct arrivals, primary

reflections, multiples). If we think of ourselves as working with one complex, undifferentiated

wave field, why might we still need to distinguish between primaries and multiples, or any

set of event types?

The behavior of FWI and least-squares algorithms tends to be determined through resid-

uals: differences between measured data and modeled data. Updates in the Earth model

(in the case of FWI) are decided based on the residuals, as are criteria for stopping the

iterations, and so on. One speaks of expending effort to shrink the residuals, but in a seismic

data set, where meaningful amplitude differences between modeled and measured waves can

exist over an enormous dynamic range, merely finding that the residuals have shrunk may
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not be enough to judge the value of an iteration or update. A reduction in residuals could

be really good news if it is associated with wave events whose propagation paths include

zones of interest, but it could also be close to irrelevant if associated with parts of the Earth

that are of less interest or if seismic data being inverted contain arrivals unrelated to Earth

properties (eg., wind noise, traffic noise, marine wave height, and so on). Furthermore, a

small reduction in residuals could be better than a large reduction in residuals if the former

is associated with events that have low amplitudes, and the latter is associated with events

with large amplitudes. The importance of a change in the residuals could depend critically

on the nature of the event in which the residual is reduced. No matter how full-waveform

the processing community becomes in the future, having (at least as auxiliary information)

detailed knowledge of what event type occurs in the data at specified time will be a critical

technology. I do not consider specific uses of internal multiples in this thesis, but it should

be emphasized that removal is just one possible approach. For instance, internal multiples

can in principle be used to form seismic images (Schuster et al., 2004; Malcolm and de Hoop,

2005; Malcolm et al., 2009; Slob et al., 2014; Zuberi and Alkhalifah, 2014b,a) in the context

of scattering theory.

1.2 Background

Given these motivations, what kind of internal multiple prediction/removal technology should

we focus on? First, a quick review. Multiples are classified as being either surface-related

or interbed, distinguished by their interaction (or lack of interaction) with the free-surface.

Surface-related multiples can be eliminated because of their periodic character and deter-

ministic predictability, especially in τ − p domain. Many innovative technologies have been

developed to do so, such as predictive deconvolution (Peacock and Treitel, 1969; Taner, 1980;

Treitel et al., 1982), inverse approach using feedback model (Verschuur, 1991; Verschuur

et al., 1992), invariant embedding technique (Liu et al., 2000), and inverse data processing
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(Berkhout and Verschuur, 2005; Berkhout, 2006).

Here I focus on the prediction/removal of interbed or internal multiples. In practice, this

remains a major challenge – especially on land data – even though considerable progress

has been made recently. Kelamis et al. (2002) introduced a boundary-related/layer-related

approach to attenuate internal multiples in the post-stack data (CMP domain). Berkhout

(2006) extended inverse data processing to attenuate internal multiples by considering them

to be effective surface-related multiples through the boundary-related/layer-related approach

in common-focus-point (CFP) domain. The same algorithm was applied by Luo et al. (2007),

through re-datuming the top of the multiple generators and transforming internal multiples

to be suppositional surface-related. However, these approaches, while powerful, all require

significant subsurface knowledge. Multiple prediction and/or removal without a complete

knowledge of the velocity structure will almost certainly be required to identify seismic event

types before the application of full waveform processing methods, however, the options to

perform multiple prediction and/or removal under such circumstances are limited.

1.3 Inverse scattering series internal multiple prediction

Inverse scattering series internal multiple technology leverages the fact that all internal mul-

tiples can be estimated through the correct combination of amplitudes and arrival times

of primary reflection subevents which satisfy a certain lower-higher-lower relationship in

pseudo-depth (Araújo, 1994; Weglein et al., 1997), with generators sought for in the data, in

a stepwise and automatic way. This means the primaries will remain intact and no subsur-

face information is required. In this section, to better understand the problems existing in

application of inverse scattering series internal multiple prediction, a theoretical brief review

is made.

The Born series states that the propagating wavefield G in an actual medium can be

expressed as a series expansion in terms of Green’s function G0 in the reference medium and
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scattering potential V which indicates the parameters’ difference between the actual and

reference medium. In matrix notation, it is written as

G = G0 + G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + . . . (1.1)

Consider the 2D Green’s function as a superposition of weighted plane-wave solution, by

multiplying a weighted factor i2νs with both sides of equation 1.1, the scattered wavefield of

an incident plane wave is delineated as

b1 = φ− φ0 = G0Vφ0 + G0VG0Vφ0 + G0VG0VG0Vφ0 + . . . (1.2)

where

φ0(xg, zg, ks, zs, ω) = i2νsG0(xg, zg, ks, zs, ω) (1.3)

with b1 = i2νs(G −G0) = i2νsD is the weighted scattered wavefield of point sources, and

D(zg, zs, ω) is the measured data on surface without direct waves.

Split the perturbation operator into series by orders,

V = V1 + V2 + V3 + . . . (1.4)

Substitute this change into scattering wavefield representation equation (1.2), equate like

orders, we have,

b1 = G0V1φ0, (1.5a)

0 = G0V2φ0 + G0V1G0V1φ0, (1.5b)

0 = G0V3φ0 + G0V2G0V1φ0 + G0V1G0V2φ0 + G0V1G0V1G0V1φ0, (1.5c)

...

By solving those series reversion, the certain order of scattering potential term can be

obtained in terms of weighted measured data b1(zg, zs, t). The 1st-order internal multiple

needs to be generated by at least 3 perturbations satisfying lower-higher-lower relationship
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in pseudo-depth (referred to as the depth in the reference medium). By analyzing 3rd order

in inverse scattering series (equation (1.5c)), we have,

G0V3φ0 = −(G0V2G0V1φ0 + G0V1G0V2φ0 + G0V1G0V1G0V1φ0)

= G0V31φ0 + G0V32φ0 + G0V33φ0

(1.6)

The first two terms in 3rd-order have no contribution to internal multiple (they only con-

tribute to primary energy, see analysis discussed by Araújo (1994)).The 3rd term G0V33φ0

represents several different wave propagations through three perturbations depending on the

variant depth relations between perturbations shown in Figure 1.1.

Figure 1.1: Contributions of G0V33G0 depending on variant depth relations between per-
turbations. (a) case of z1 < z2 < z3, (b) case of z1 < z3 < z2, (c) case of z3 < z1 < z2, (d)
case of z2 < z1 and z2 < z3, (e) case of z3 < z2 < z1.

Consider all possible wave propagations involved by G0V33φ0, only one certain wave

path, with perturbations satisfying lower-higher-lower relationship in pseudo-depth, has con-

tribution to 1st-order internal multiples, shown in Figure 1.1d.

Analogously, the 2nd-order internal multiple has at least 5 perturbations, which can be

contributed by G0V1G0V1G0V1G0V1G0V1φ0 if depth of perturbations meet the needs of

‘lower-higher-lower’ criterion.

5



By solving the related terms in inverse scattering series, a data-driven internal multiple

prediction algorithm can be achieved. The mathematical formula of the leading order internal

multiple prediction algorithm based on inverse scattering series was demonstrated by Araújo

(1994) and Weglein et al. (1997), written as,

b3(kg, ks, ω) =− 1

(2π)2

∫∫ +∞

−∞
dk1dk2e

iν1(zs−zg)eiν2(zg−zs)

∫ +∞

−∞
dz1e

i(ν1+νg)z1b1(kg, k1, z1)

×
∫ z1−ε

−∞
dz2e

−i(ν2+ν1)z2b1(k1, k2, z2)

∫ +∞

z2+ε

dz3e
i(νs+ν2)z3b1(k2, ks, z3)

(1.7)

where

νX =

√
ω2

c2
0

− k2
X (1.8)

with νX being the vertical wavenumber associated with the lateral wavenumber kX and a

homogeneous reference velocity c0. The integration variables z1, z2, and z3 are in units

of pseudo-depth, which is two-way vertical travel time scaled by the reference velocity; the

pseudo-depth integration limits impose the lower-higher-lower condition. The relationships of

kg, k1, k2, ks are delineated in Figure 1.2. The input b1 is a transformed and weighted version

of the measured scattering data set: b1(kg, ks, z) = −i2νsD(kg, ks, z), where D(kg, ks, z) can

be obtained using Stolt migration with a constant background velocity. The left hand side of

equation 1.7, i.e., bIM , which is a prediction of the internal multiples in D, is, next, inverse

Fourier transformed over all three Fourier variables. The result, now in the (xg, xs, t) domain,

is added to the original seismic record to attenuate the multiples. Mismatches between the

prediction and the data are managed through adaptive subtraction (Abma and Kabir, 2006).

1.4 Statement of the problem

However, challenges remain in the application of these methods, particularly for land data.

Luo et al. (2011) list many of the key problematic features encountered on land data, primar-

ily noise, statics, and coupling, each of which cause trouble for multiple prediction algorithms,

including those based on the inverse scattering series. Research is therefore active to address
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Figure 1.2: Wavenumber relations in sub-events combination of generating internal multiples

the theoretical and practical difficulties still faced by this algorithm. Herrera and Weglein

(2013a); Zou and Weglein (2013) proposed a reformulated version of the algorithm that pre-

dicts the exact amplitudes of the first-order internal multiples rather than the approximate

one, which was first discussed by Ramirez and Weglein (2005). To that list we would also

add the increased difficulty of selecting algorithm parameters that avoid the generation of

artifacts. The search parameter ε (Coates et al., 1996), which limits the proximity of events

combined to predict multiples, is normally a single number that is selected in an ad hoc fash-

ion, often guided by the dominant frequency of the experiment. However, wide distributions

of shallow generators and generators near zones of interest can make it very difficult to fix

on a suitable single value for ε. The use of unsuitable values can be very damaging: if chosen

too large, multiples will fail to be predicted; if chosen to small, artifacts correlated with

primaries appear in the prediction panel. To summarize, implementation domains, search

optimum parameter selection, and expensive computational expense are major challenges of

implementing inverse scattering series internal multiple prediction algorithm, which are a

few objectives to be solved in this thesis.

These approaches, though powerful, are based on the acoustic approximation, and so

inverse scattering series prediction technology, as it is normally implemented, is inconsis-

tent with multi-component acquisition in onshore and ocean-bottom environments. For the
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data-driven inverse scattering-based approach, wave-mode conversions in multi-component

seismic records will impact the wavenumber/slowness-dependent relationships employed in

the acoustic algorithm. Matson and Weglein (1996); Matson (1997) presented a 2D version

of the elastic inverse scattering series prediction algorithm in wavenumber-pseudo-depth

domain incorporating multicomponent data and wave-mode conversions. However, no nu-

merical analysis or examples of the algorithm applied to a seismic gather currently appear in

the literature. Unlike acoustic cases, the linear pre-processing of seismic data to achieve the

input for the prediction algorithm failed to hold the monotonicity condition between pseudo-

depth and actual depth. Undesired inputs would mislead the lower-higher-lower relationship

and deteriorates the predicted results.

1.5 Outline

In this thesis I summarize the formulation and analysis of several techniques based on inverse

series multiple prediction to address the problems listed above, and describe the algorithm

design, computer implementations, and data pre-processing workflows I have developed for

them. The organization of the thesis is as follows.

In Chapter 2, I briefly review inverse scattering series internal multiple prediction algo-

rithm in original domain, i.e., wavenumber/pseudo-depth related domain. To investigate the

ability of such an algorithm and observe the problems during its implementation, a three-

layer geological model was created to generate a synthetic shot gathers and then examine

its application on internal multiple prediction. Predicted results indicated that an inverse

scattering series attenuation algorithm can predict internal multiples caused by unknown

(or imperfectly known) generators in an unknown media. However, transform and aperture

related artifacts were also generated in prediction. Based on this, I point out the non-

compaction of the wavenumber/pseudo-depth domain prediction algorithm which increases

difficulties of search parameter selection and leads to a non-stationary ε implementation.
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Beyond that, multidimensional implementation of inverse scattering series internal multiple

prediction significantly suffers from the exponential increasing computational burden be-

cause of the “spread” distribution characteristics of (k, z) domain input. Motivated by this,

one of the objectives in this thesis is to seek an optimized prediction algorithm, which pre-

serves the data-driven properties, allows a relative stationary search parameter, and reduces

computational costs.

In Chapter 3, by taking advantage of the close relationships between wavenumber and

horizontal-slowness, I reformulate the prediction algorithm in slowness/pseudo-depth do-

main. Furthermore, considering the monotonic relationship between pseudo-depth and ver-

tical traveltime, the coupled plane-wave domain prediction formulation can also be achieved,

which was first introduced by Coates et al. (1996). I present an implementation of the in-

ternal multiple prediction in the coupled plane-wave domain, which requires a tailoring of

the prediction algorithm and a high fidelity τ -pg-ps transform. Predictions absent of almost

all transform/aperture related artifacts were achieved by implementing the prediction in

horizontal-slowness coherent domains. Comparing prediction inputs derived for a range of

calculation domains, I conclude that the horizontal slowness domain, by concentrating the

amplitudes of each sub-event, which in turn leads to a simpler and more stationary search-

parameter selection, is generally optimal since models of predictability are generally plane

wave models. The plane-wave domain algorithm leads to relatively stationary optimum ε

values, and produces fewer artifacts traceable to poor parameter selection. The plane-wave

domain inverse scattering series predictions appear to be well-suited to the problem of cleanly

separating primary and multiple events in a waveform consistent manner. Additionally, the

horizontal-slowness related input appears as a highly sparse matrix which significantly re-

duces its computational expense.

In Chapter 4, I propose a modified version of inverse scattering series internal multiple

prediction algorithm which adapts to common-midpoint gathers. Comparing to seismic data
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in source-receiver coordinates, a taper window is allowed during the CMP domain input

preparation to reduce the artifacts, caused by limited apertures, because of their symmetry.

Furthermore, the numerical analysis of implementing 1.5D prediction algorithm on dipping

strata indicates that the CMP domain prediction algorithm is much more independent of

dipping angles of generators, rather than the shot/receiver related coordinates domains. The

synthetic benchmark examples show that, for small dip-angle strata, internal multiples can

be predicted using 1.5D prediction algorithm with acceptable errors.

In Chapter 5, the elastic internal multiple prediction algorithm based on inverse scat-

tering series is extended from 2D to 3D theoretically, by considering an isotropic-elastic-

homogeneous reference medium. However, the prediction algorithm requires the input sorted

into monotonic function of actual depth, which remains to be a big challenge because of the

complexity and multiple wave-mode conversions. To achieve such an input for multicompo-

nent internal multiple prediction, I propose several possible approaches for input preparation,

such as prestack elastic Stolt migration, vertical traveltime stretching method, and incor-

poration of best-fit reference velocities. Their effectiveness and search optimum parameter

dependencies are analyzed quantitatively with numerical simulation. Several conclusions

are obtained and examined with synthetic benchmark examples. These implementations

of inverse scattering series internal multiple prediction is the first time to be presented on

multicomponent data.

In Chapter 6, I summarize the results obtained by the schemes and workflow proposed

in this thesis. Plans for further studies are also given at the end.
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Chapter 2

Inverse scattering series internal multiple prediction:

Review and discussion

2.1 Introduction

Multiple attenuation and identification remains an indispensable procedure in seismic data

processing and its quality will directly affect the accuracy of quantitative interpretation.

Multiples are categorized into two major classes, surface-related multiples and interbed mul-

tiples. Due to their periodicity and relatively straightforward predictability, surface-related

multiples can be eliminated using one of many innovative technologies, involving computa-

tions in different domains. Examples include predictive deconvolution (Taner, 1980), feed-

back models (Verschuur, 1991), embedding techniques (Liu et al., 2000), and inverse data

processing (Berkhout and Verschuur, 2005; Berkhout, 2006; Ma et al., 2009). However, the

attenuation of interbed, or internal multiples, remains a serious challenge, especially on land

data, even though much considerable progresses have been made recently.

Kelamis et al. (2002) introduced a boundary-related/layer-related approach to remove

internal multiples in post-stack data (CMP domain). Berkhout and Verschuur (2005) ex-

tended the inverse data processing to attenuate internal multiples by considering them as

notional surface-related multiples through the boundary-related/layer-related approach in

common-focus-point (CFP) domain. The same algorithm was applied by Luo et al. (2007)

through re-datuming the top of the multiple generators and transforming internal multiples

such that they became ‘surface-related’. The common ground of those algorithms is that,

as it were, extensive knowledge of subsurface is required; thus if the possibility exists that

multiple removal will have to take place with incomplete knowledge of the velocity structure
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and generators, the inverse scattering series approach will be optimal.

By analyzing the behaviour of the Born series in its construction of the events of a surface

reflection seismic data set, Araújo (1994) and Weglein et al. (1997, 2003) demonstrated

that all possible internal multiples can be estimated through the correct combination of

primary and/or lower order multiple events, in an automatic way, with generating horizons

and/or events sought in the data, rather than provided a priori. The processing is carried

out, in short, without any subsurface information required. Recently, research has been

particularly active in (1) reformulating the prediction so that its amplitudes are exact rather

than approximate (Zou and Weglein, 2013), and (2) applying the existing ISS algorithm in

complex environments, such as land (e.g., de Melo et al., 2014). In practical implementation,

the search parameter has been focused on as a key element (Hernandez and Innanen, 2014;

Innanen and Pan, 2015; Pan, 2015); in certain domains the non-stationarity of the optimum

parameter choice can be a source of artifacts. In this chapter, we will review inverse scattering

series internal multiple prediction both in theoretical and practical ways and investigate

current major problems of implementing inverse scattering series prediction algorithm.

2.2 Internal multiple prediction algorithm in wavenumber-pseudodepth do-

main

2.2.1 Prediction algorithm in dipping layer cases

Weglein et al. (2003) asserts that all processing objectives of surface seismic data may be

achieved directly from the data and source wavelet, using the inverse scattering series, with-

out any subsurface information provided as input. Internal multiple removal is one of these

objectives. The inverse scattering series internal multiple prediction algorithm was first

introduced by Araújo (1994) and Weglein et al. (1997). It predicts the traveltimes and

approximate amplitudes of all possible internal multiples by combining triplets of events

satisfying an ordering relationship in pseudo-depth referred to as the lower-higher-lower cri-
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terion. Here, the pseudo-depth is a monotonic function of actual depth (to be discussed in

detail below). The algorithm as originally derived in the wavenumber-pseudo depth domain,

is

bIM(kg, ks, ω) =− 1

(2π)2

∫∫ +∞

−∞
dk1dk2e

iν1(zs−zg)eiν2(zg−zs)

∫ +∞

−∞
dz1e

i(ν1+νg)z1b1(kg, k1, z1)

×
∫ z1−ε

−∞
dz2e

−i(ν2+ν1)z2b1(k1, k2, z2)

∫ +∞

z2+ε

dz3e
i(νs+ν2)z3b1(k2, ks, z3),

(2.1)

where

νX =

√
ω2

c2
0

− k2
X

with νX being the vertical wavenumber associated with the lateral wavenumber kX and a

homogeneous reference velocity c0. The integration variables z1, z2, and z3 are in units

of pseudo-depth, which is two-way vertical travel time scaled by the reference velocity; the

pseudo-depth integration limits impose the lower-higher-lower condition. The relationships of

kg, k1, k2, ks are delineated in Figure 1.2. The input b1 is a transformed and weighted version

of the measured scattering data set: b1(kg, ks, z) = −i2νsD(kg, ks, z), where D(kg, ks, z) can

be obtained using Stolt migration with a constant background velocity. The left hand side of

equation 2.1, i.e., bIM , which is a prediction of the internal multiples in D, is, next, inverse

Fourier transformed over all three Fourier variables. The result, now in the (xg, xs, t) domain,

is added to the original seismic record to attenuate the multiples. Mismatches between the

prediction and the data are managed through adaptive subtraction (Abma and Kabir, 2006).

2.2.2 Prediction algorithm in layered media

Equation 2.1 indicated the combined subevents in prediction algorithm are coherent through

their horizontal wavenumber components of source and receiver sides. Therefore, for layered

cases, the prediction algorithm may be simplified because of an equal horizontal wavenumber

at source and receiver coordinates, i.e., kg = k1 = k2 = ks. Using the characteristics of

horizontal wavenumber components in layered cases and assuming all sources and receivers
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are located at the same depth (zg = zs), equation 2.1 can be rewritten as

b3(kg, ω) =
−1

(2π)2

∫ +∞

−∞
dz1e

ikzz1b1(kg, z1)

∫ z1−ε1

−∞
dz2e

−ikzz2b1(kg, z2)

∫ +∞

z2+ε2

dz3e
ikzz3b1(kg, z3)

(2.2)

where, kz = νg+νs, represents the summation of vertical wavenumbers at source and receiver

sides. The horizontal component of wavenumber, here, is related to varying offsets. The

epsilon ε is indicated as searching parameter which is a key for identifying lower-higher-lower

relationship and separating subevents. Equation 2.2 demonstrated that, for layered media,

internal multiples of a shot gather can be predicted by itself using inverse scattering series

prediction algorithm. Beyond that, compared to 2D prediction algorithm (equation 2.1), the

implementation of equation 2.2 significantly reduces memory and computational cost since

is simply repeated trace-by-trace at the same kg.

2.3 A simple numerical example

To set out some of the issues and challenges associated with the practical computation of the

inverse series multiple predictions, in this section, a synthetic example based on a three-layer

acoustic model is illustrated.

The geological model with velocity varying in depth only was illustrated in Figure 2.1.

The source was located at the middle of geological model at a depth of 20m, and all receivers

are located at surface with an interval of 20m. Four absorbing boundaries were applied for

shot gather collection. Therefore, free-surface multiples were suppressed, i.e., only primaries

and internal multiples were included in shot gathers. Figure 2.2 shows a generated shot

gather with two primary events labeled in yellow (shown in Figure 2.2a) and two internal

multiples indicated in red at zero-offset traveltime (shown in Figure 2.2b).

The input data of implementing prediction algorithm was achieved by Fourier transfor-

mation of original shot gathers over offset and travel time and then multiplied by a weighting
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Figure 2.1: A geological model with constant density. Velocities vary from top to bottom:
1500m/s, 2800m/s, and 4200m/s.

factor. In Figure 2.3, to reduce the computational cost, we only generated the input data at

the positive horizontal wavenumber kg range. The comparison of the zero-offset trace and

the stacked input trace were delineated in Figure 2.4. The lower-higher-lower criterion was

not only imposed by z1, z2, and z3 in equation 2.2, but also the epsilon ε value because of

the wavelet influence. The epsilon ε in equation 2.2 is to separate variant subevents and to

prevent aliasing generated by one single subevent, which is usually selected as the width of

wavelet. However, Figure 2.3 indicated the input data in wavenumber-pseudodepth domain

was spread out with increasing horizontal wavenumber. Therefore, compared to the width

of wavelet, a relative larger constant value (here, ε = 337m) is required.

The predicted internal multiples using wavenumber-pseudodepth domain inverse scat-

tering series prediction algorithm was illustrated in Figure 2.5b. It is apparent that all

internal multiples were well predicted at correct travel times, but, with waveform distor-

tion which may be resolved by performing deconvolution before prediction. The predicted

result demonstrated that inverse scattering series algorithm is able to predict all possible

internal multiples with no subsurface information required and may be the promising way
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Figure 2.2: Synthetic shot gather created using model in Figure 2.1. (a) Two primary events
marked in yellow; (b) 1st and 2nd order internal multiples marked in red.

to eliminate multiples in complex cases, such as land data.

2.4 Search parameter selection

The difficulties of successfully implementing inverse scattering series internal multiple pre-

diction algorithm arise on land data due to its unique complex features such as noise, poor

coupling, and thin bedding (Luo et al., 2011; Wu et al., 2011; de Melo et al., 2014). One key

challenge in land inverse scattering series internal multiple prediction derives from the combi-

nation of sub-events of finite duration in time or pseudo-depth (Weglein et al., 1997). A key

ingredient of separation of sub-events in pseudo-depth is the search parameter ε (e.g., Her-

nandez and Innanen, 2014), whose importance was first mentioned by Coates et al. (1996).

The parameter ε limits the proximity of events combined to predict multiples. It is normally

a single scalar number that is selected in an ad hoc fashion, often guided by the dominant

frequency of the experiment. However, wide distributions of shallow generators and gener-
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Figure 2.3: Input data for the inverse scattering series prediction algorithm; positive hori-
zontal wavenumbers shown.

ators near zones of interest can make it very difficult to fix on a suitable single value for ε.

The use of unsuitable values can be very damaging: if chosen too large, multiples will fail to

be predicted; if chosen too small, artifacts correlated with primaries appear in the prediction

panel.

A further complication is that what constitutes too large and too small may depend on

what parts of the data are being considered. Figure 2.3 illustrates the fact that combina-

tions of sub-events can become complex with increasing lateral wavenumber. Therefore, for

wavenumber-pseudodepth domain prediction algorithm, a fixed search parameter is not capa-

ble of separating subevents perfectly at arbitrary wavenumber. Beyond that, implementing

the internal multiple prediction using a fixed search parameter in wavenumber-pseudodepth

domain may lead to large dip artifacts occurred in predicted results, especially at far offsets

(Innanen and Pan, 2015). For example, we create a synthetic shot gather with far offsets

using the model shown in Figure 2.1. A same search parameter ε = 337m was employed to
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Figure 2.4: Comparison of zero-offset trace and stacked input trace. Two primaries are
labelled with red circles; two internal multiples are labelled with blue circles. (a) The
zero-offset trace extracted from original shot gather. (b) The input trace obtained by stacking
over horizontal wavenumber.

implement internal multiple prediction in wavenumber-pseudodepth domain.

In Figure 2.6, internal multiples were successfully predicted at correct travel times, but,

parts of primary events, specifically those intersecting internal multiples, are also observable

in the predictions. These are called large dip artifacts, which are visible intersecting the

bottom of panel at roughly -4km and 4km. Figure 2.7 shows the input for predicting internal

multiples from a far-offset shot gather. At large kg values, the sub-events are qualitatively

more “spread out” in pseudo depth, and they overlap significantly. In such situations, it is

impossible to find a fixed search parameter ε which separates the sub-events to be combined.

This gives rise to the artifacts.

To solve this and enhance the precision of internal multiple prediction, two approaches
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Figure 2.5: Comparison of original shot gather and internal multiple prediction. (a) The
original shot gather. (b) Predicted internal multiples.

can be taken: (1) employing a non-stationary search parameter, (2) formulate the prediction

algorithm in a domain in which stationarity in ε is appropriate. Innanen and Pan (2015)

proposed variable search parameter (ε), as a linear function of kg (see in Figure 2.8). However,

a variable ε(kg) cannot fix the problems arising from overlapping sub-events at high angle

(large kg). This observation has led me to follow the second approach in this thesis.

2.5 Conclusion

The inverse scattering series internal multiple attenuation algorithm predicts the exact trav-

eltimes and approximate amplitudes of multiples by combining data sub-events. The lack

of requirement for an accurate velocity model makes the approach extremely attractive as a

means to eliminate multiples in complex environments. This could be particularly important

for application on land data, but here many challenges remain. In this chapter, the essentials

of the algorithm were reviewed and a numerical implementation in the wavenumber/pseudo-
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Figure 2.6: Large dip artifacts caused by a fixed search parameter ε in (kg, z) domain. (a)
Synthetic data from a two-interface acoustic model. (b) Prediction generated using a fixed
search parameter ε = 337m . Large dip artifacts are visible intersecting the bottom of panel
at roughly -4km and 4km.

depth domain was discussed. A point central to the goals of the next chapters can then be

quickly established. Internal multiples are accurately predicted at near offsets with a con-

stant search parameter, but, large dip artifacts occurred in predicted results, especially at

far offsets, because of the tendency of the input to become less sparse in pseudo-depth as the

lateral wavenumber increases. This “non-compact” character of the wavenumber/pseudo-

depth domain algorithm also results in higher computational costs. In coming chapters,

the objective is to address the problems arising from the non-compact input through a re-

formulation which (1) suppresses overlap of subevents at all angles, (2) permits a relative

stationary search parameter to be selected, and (3) leads to a significantly reduced compu-

tational expense.
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Figure 2.7: The distribution of input b1(kg, z) at positive wavenumber obtained using far-off-
set data.

（  ）

Figure 2.8: Variable search parameter in (kg, z) domain (edited after Innanen and Pan,
2015). (a) Input b1(kg, z); (b) search parameter ε fixed at a size appropriate to kg = 0; (c)
approximate ε(kg), chosen to capture the “spread” of the sub-event.
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Chapter 3

Multidimensional inverse scattering series internal

multiple prediction in the coupled plane-wave domain

3.1 Summary

As I have pointed out, the inverse scattering series internal multiple prediction and atten-

uation algorithm predicts multiples using certain combinations of input seismic reflection

data events, which are computed in the wavenumber/pseudo-depth or plane-wave/vertical

travel-time (i.e., τ -p) domains. Significant differences can arise in the algorithms’ output and

computational expense depending on which domain is used. Many of these are traceable to

the response of the algorithm to the users’ choice of the search-limiting parameter ε. The

question of which domain is optimal can be addressed with benchmark synthetics. The com-

pactness of the input to the plane-wave domain algorithm leads to the expectation that it

will have a reduced computational expense. Also, the lack of increase in the dominant period

(i.e., “width”) of input events as the horizontal slowness increases leads to the expectation

that it will respond well to a constant ε. Both of these expectations are borne out with a 1.5D

benchmark example. A 2D plane-wave prediction requires the data to be transformed to the

τ -pg-ps, or coupled plane-wave, domain, involving both source-side and receiver-side horizon-

tal slownesses. An implementation of this transform leads to the first numerical examples

of full 2D inverse series τ -p prediction. The arrival times, relative amplitudes, and moveout

patterns of multiples from dipping horizons are seen in a benchmark synthetic example to

be faithfully determined in the plane-wave formulation; waveform mismatches are, however,

observed, which are traceable to the numerics of the forward and inverse transforms. High

resolution Radon transforms are a good candidate to improve the match.
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3.2 Introduction

A wide range of powerful and well-characterized methods exist for predicting internal mul-

tiples (e.g., Kelamis et al., 2002; Berkhout and Verschuur, 2005; Berkhout, 2006; Luo et al.,

2007; Ramirez et al., 2015; Löer et al., 2016). Of these, fully data-driven methods, in par-

ticular the internal multiple attenuation method derived from the inverse scattering series

(Araújo, 1994; Weglein et al., 1997, 2003), have many of the features needed to successfully

proceed in complex land environments (Luo et al., 2011)—lack of requirement for an ac-

curate velocity model or clear move-out differences, and lack of need for known generators

being important examples. Research is therefore active to address the theoretical and prac-

tical difficulties still faced by this algorithm. One of these is the approximate nature of the

prediction amplitude, discussed by Ramirez and Weglein (2005) and addressed by Herrera

and Weglein (2013a) and Zou and Weglein (2013). The difficulty of selecting the algorithm’s

internal parameter ε, which limits the proximity of events combined to create the predic-

tion, when its optimum value is not constant across experimental variables (Innanen, 2017),

and the computational complexity of its full multidimensional form, have also recently been

examined.

The domain in which the prediction’s nonlinear data operations takes place appears to

have a strong influence on the seriousness of some of these issues. One of the early forms

of the algorithm involves computation in the τ -p, or plane wave, domain (Coates et al.,

1996). The τ -p version of the algorithm has been used to theoretically analyze its behavior

(Nita and Weglein, 2009b), but to date questions about actually calculating in this domain

have not been broached. It has furthermore recently been pointed out that 1D and 1.5D

time- and offset-time domain versions of the algorithm, which have several useful features

(Innanen, 2017), properly extend to 2D and 3D only if a plane-wave/τ -p formulation is used.

Motivated by these facts, in this Chapter I present computational procedures for 1.5D and 2D

internal multiple prediction in the plane-wave domain and illustrate some of its key positive
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characteristics, the main one concerning the relative stationarity of optimum parameter ε.

These results were discussed in less detailed form by (Sun and Innanen, 2015, 2016c).

The 1.5D plane-wave algorithm, appropriate for data acquired over a layered, laterally-

invariant medium, requires, as input, data which have undergone a “standard” τ -p, or slant-

stack, transform. These transformed data, after weighting, are combined nonlinearly in

the prediction calculation. Insight into the benefits of prediction in this domain, especially

relative to issues like parameter selection for land data processing (Fu et al., 2010; Wu et al.,

2011; Sonika et al., 2012; Ras et al., 2012; de Melo et al., 2014, 2015), can be arrived at by

inspection of this pre-processed and transformed data.

In general multidimensional media, an incoming wave component with a certain hor-

izontal slowness scatters from a heterogeneity into outgoing waves with a wide range of

slownesses. In 2D, therefore, the plane-wave domain requires independently varying source-

side horizontal slownesses ps and receiver-side slownesses pg. Procedures for such transforms

are available for seismic data processing and inversion (Diebold and Stoffa, 1981; Stoffa

et al., 2006); here I base the numerical preparation of input data for internal multiple pre-

diction on these procedures. Thereafter (1) numerical examples of 1.5D prediction allow us

to exemplify the stationarity of optimal ε values, and (2) synthetic 2D coupled plane-wave

predictions may be produced, implementations and numerical examples of which have not,

to our knowledge, appeared in the literature before.

3.3 Internal multiple prediction algorithms: review

Araújo (1994) and Weglein et al. (1997) demonstrated that internal multiple predictions are

obtained by summing over triplets of events whose pseudo-depths or vertical travel-times

satisfy a lower-higher-lower relationship, wherein the phases of the lower (or deeper) two

events are added and the phase of the higher (or shallower) event is subtracted. This process

requires the knowledge of the source signature. Let d(xg, xs, t) represent a fully deghosted 2D
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seismic data set involving waves downgoing from the source and upgoing to the receiver, with

xg being the inline receiver coordinate, xs being the inline source coordinate, and t being

the two-way travel time. Let D(kg, ks, ω) represent the data set after Fourier transformation

across all three coordinates, with kg and ks being the wavenumbers conjugate to xg and

xs, respectively, and ω being the angular frequency. The standard formulation of inverse

scattering series internal multiple prediction is (Araújo, 1994; Weglein et al., 1997)

bIM(kg, ks, ω) =− 1

(2π)2

∫∫ +∞

−∞
dk1dk2e

iν1(zs−zg)eiν2(zg−zs)

∫ +∞

−∞
dz1e

i(ν1+νg)z1b1(kg, k1, z1)

×
∫ z1−ε

−∞
dz2e

−i(ν2+ν1)z2b1(k1, k2, z2)

∫ +∞

z2+ε

dz3e
i(νs+ν2)z3b1(k2, ks, z3),

(3.1)

where

νX =

√
ω2

c2
0

− k2
X

with νX being the vertical wavenumber associated with the lateral wavenumber kX and a

homogeneous reference velocity c0. The integration variables z1, z2, and z3 are in units of

pseudo-depth, which is two-way vertical travel time scaled by the reference velocity; the

pseudo-depth integration limits impose the lower-higher-lower condition. The input b1 is

a transformed and weighted version of the measured scattering data set: b1(kg, ks, z) =

−i2νsD(kg, ks, z). The left hand side of equation 3.1, i.e., bIM , which is a prediction of

the internal multiples in D, is, next, inverse Fourier transformed over all three Fourier

variables. The result, now in the (xg, xs, t) domain, is added to the original seismic record

to attenuate the multiples. Mismatches between the prediction and the data are managed

through adaptive subtraction (e.g., Abma and Kabir, 2006; Keating et al., 2016).

3.3.1 Slowness/pseudo-depth domain

In addition to obeying the lower-higher-lower relationship, any three events combined to

reconstruct the ray-path of an internal multiple (these events are called sub-events in the

context of prediction) are also related through their wavenumber components on source and
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Figure 3.1: Ray-path schematic of primaries (dashed line) and internal multiple (solid line)
with corresponding source and receiver locations. See also (Coates et al., 1996) and (Nita
and Weglein, 2009b).

receiver sides. Figure 3.1 illustrates the ray-path relationships between primaries and pre-

dicted internal multiples, which can be labeled according to their contributing wavenumbers,

i.e., kg, ks, k1, and k2 in equation 3.1.

The prediction algorithm in equation 3.1 can also be re-written in terms of slownesses by

taking advantage of the close relationships between k’s and p’s (k = ωp):

bIM(pg, ps, ω) =
−1

(2π)2

∫∫ +∞

−∞
dp1dp2e

iωq1(zs−zg)eiωq2(zg−zs)

∫ +∞

−∞
dz1e

iω(q1+qg)z1b1(pg, p1, z1)

×
∫ z1−ε

−∞
dz2e

−iω(q2+q1)z2b1(p1, p2, z2)

∫ +∞

z2+ε

dz3e
iω(qs+q2)z3b1(p2, ps, z3),

(3.2)

where

qX =

√
1

c2
0

− p2
X ,

and where qX is the vertical slowness associated with the horizontal slowness pX , and the

reference velocity c0. The input b1 is, again, a transformed and weighted version of the input

data b1(pg, ps, z) = −i2qsD(pg, ps, z), where in this case the data have been decomposed into

their source and receiver side horizontal slowness components, ps and pg respectively, and

pseudo-depth z as before.
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3.3.2 Coupled plane-wave domain

Pseudo-depth z and intercept time τ are related through depth wavenumber and angular

frequency (Nita and Weglein, 2009b):

kzz = ωτ, (3.3)

where the depth wavenumber is the sum of the vertical wavenumbers on the source and

receiver sides, kz = νg + νs. Because wavenumber and slowness are related by kz = ωq,

equation 3.3 can be re-written as

qz = τ, (3.4)

where q = qg + qs is the sum of the vertical slownesses on the source and receiver sides.

Equation 3.4 makes clear (see also Nita and Weglein, 2009b) that any comparative remarks

made between one pseudo-depth and another can also be made about the corresponding

intercept times, i.e.,

z1 > z2 ⇐⇒ τ1 > τ2. (3.5)

Substituting equation 3.4 into equation 3.2, the full plane-wave form of the prediction algo-

rithm is obtained (Coates et al., 1996):

bIM(pg, ps, ω) =
−1

(2π)2

∫∫ +∞

−∞
dp1dp2e

iω(τ1s−τ1g)eiω(τ1g−τ1s)

∫ +∞

−∞
dτ1e

iωτ1b1(pg, p1, τ1)

×
∫ τ1−ε

−∞
dτ2e

−iωτ2b1(p1, p2, τ2)

∫ +∞

τ2+ε

dτ3e
iωτ3b1(p2, ps, τ3),

(3.6)

where pg and ps are the source and receiver horizontal slownesses respectively (these are equal

in 1D and 1.5D calculations). The input is the 3D1 volume calculated by scaling the data after

double τ -ps-pg transformation: b1(pg, ps, τ) = −i2qsD(pg, ps, τ). As with equation 3.1, the

ray-path relationships between primaries and predicted internal multiples can be understood

through the scheme in Figure 3.1, this time according to their contributing slownesses, i.e., pg,

ps, p1, and p2 in equation 3.6. The quantities p1 and p2 represent horizontal slownesses at both

1This is a 3D data volume, not a 3D seismic acquisition being treated.
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source and receiver locations within the algorithm. This will be of practical computational

importance, as it requires that matching source and receiver slownesses must be available

either naturally through acquisition or through data reconstruction.

3.4 Preparation of τ -ps-pg domain prediction inputs

Multidimensional internal multiple prediction can be implemented in the coupled plane-wave

domain via equation 3.6. To do so requires that the seismic records be mapped into the

plane wave-domain and weighted to create the input. Traditional τ -p mapping, also known

as slant-stack, was introduced by Ocola (1972) and Diebold and Stoffa (1981) and is usually

implemented by considering travel times for varying offsets and fixed source locations,

t = pgx+
∑
i

zsi(qsi + qgi), (3.7)

or, varying offsets and fixed receiver locations,

t = psx+
∑
i

zgi(qsi + qgi), (3.8)

where t is the travel time of the event being described, and x is the offset. The variables qsi

and qgi are the vertical components of slowness in the ith layer for the source and receiver

respectively. The depths zsi and zgi are the thicknesses of the ith layer below the source and

receiver locations respectively. Diebold and Stoffa (1981) also introduced a reference point

M, located between source and receiver (M is the midpoint in the common midpoint gather),

and applied the τ -p transform based on this reference point location:

t = psxsM + pgxgM +
∑
i

zMi(qsi + qgi), (3.9)

where xsM and xgM are the distances between the source and geophone and the reference

point respectively. The quantity zMi represents the thicknesses of the ith layer below the

reference point. A schematic illustration of ray-paths is given in Figure 3.2.
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Figure 3.2: The ray-path geometry schematic of τ −p mapping with respect to the reference
point, after Diebold and Stoffa (1981).

In order to make use of the Diebold-Stoffa scheme to create input for multiple prediction,

an alteration is necessary to the algorithm in equation 3.6. Suppose the coordinate system

is so chosen that the offset is positive (i.e., x = xg − xs > 0) when the source is on the left.

From equation 3.9, I observe that the horizontal slowness has the opposite sign for the same

ray-path if the source and receiver locations are exchanged, i.e., p′s = −pg, p′g = −ps. To

account for this, I note that p1 and p2 in the integration over τ2 in equation 3.6 must be

multiplied by −1. The coupled τ -ps-pg transform is then carried out as follows. The origin

x = 0, which is located on the one side of source and receiver, is selected as the reference

point. Then

t = psxs + pgxg +
∑
i

zi(qsi + qgi), (3.10)

where xs and xg are the source and receiver locations respectively, and zi is the thickness of

ith layer below the origin. Equation 3.10 indicates that the coupled τ -ps-pg transform is a

variant of the single τ -p transform, with a particular phase shift carried out over source and
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receiver locations respectively (Stoffa et al., 2006). This can be expressed as

D(ps, pg, τ) =

∫∫
d(xs, xg, τ + psxs + pgxg)dxsdxg. (3.11)

Alternatively, the forward double τ -ps-pg transform for a fixed frequency can be expressed

as

D̂(ps, pg, ω) =

∫∫
d̂(xs, xg, ω)e+iω(psxs+pgxg)dxsdxg, (3.12)

and the inverse transform as

d̂(xs, xg, ω) =

∫∫
D̂(ps, pg, ω)e−iω(psxs+pgxg)dpsdpg, (3.13)

where as before d(xs, xg, t) represents a 2D seismic data set with respect to source and

receiver locations, and now d̂(xs, xg, w) represents the data set after Fourier transformation

over time, and finally D̂(ps, pg, ω) represents the coupled τ -ps-pg transformed data set for a

fixed frequency. For a full 3D case, the plane wave transformation must also be carried out

with respect to the second lateral dimension.

I assume a multi-shot 2D seismic data set is recorded over a three-layer model (containing

a shallow dipping reflector and a deeper flat reflector), with shots occupying each receiver

location (either through acquisition or regularization). Figure 3.3 illustrates the procedure

used for the double τ -pg-ps transform using gather extracted from a synthetic data set whose

details are set out in the next section. In Figure 3.3a, a common shot gather extracted from

a raw data volume d(xg, xs, t), at a particular location xs (specifically 636m in this example),

is illustrated. The data are next transformed across receiver coordinate into the horizontal

slowness domain (xg → pg), such that for the given shot point I obtain a gather in the

t-pg domain. This is illustrated in Figure 3.3b. Repeating this for all sources I create a

data volume in the (t,pg,xs) domain, from which common pg gathers can be extracted. In

Figure 3.3c the pg = 0 gather is illustrated. The complete double τ -pg-ps transform is finally

obtained by transforming the source coordinate into horizontal slowness. A common pg = 0

gather in the ps domain is extracted and illustrated in Figure 3.3d.
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One source of computational efficiency that is available to the plane-wave domain predic-

tion formulation is already apparent at this stage. The data in the xg-xs and pg-ps domains

at two fixed values of frequency (10 Hz and 20 Hz) are compared in Figure 3.4. The energy

in the pg-ps domain is more compactly represented than it is across the xg-xs coordinates.

Because the data are weighted and integrated in a computationally expensive manner once

for each output domain coordinate, domains in which the number of nonzero input values

is small are naturally more competitive. In this particular example the compactness is re-

lated to limited ranges of dips in the reflecting horizons. The slownesses and frequencies in

the double plane-wave domain can be quantitatively connected with the maximum dipping

angles of contributing interfaces (Liu et al., 2000). Therefore prior knowledge limiting the

maximum dip of contributing interfaces can be used to shrink the number of integrations

needed.

3.5 Prediction in 1.5D: compactness and stationarity

To examine the differences between predictions involving the horizontal slowness, wavenum-

ber, pseudo-depth and/or vertical time, I take the algorithms as set out earlier and reduce

them to reflect a 1.5D (point source, depth-varying medium) configuration, which I will ap-

proximate with 2D (line source/receiver) modeling. If the Earth is layered, the algorithms

in the horizontal slowness/pseudo-depth and plane-wave domains, p-z and p-τ respectively,

simplify to reflect the fact that pg = ps = p. If additionally all sources and receivers are at

the same depth, the plane wave domain prediction algorithm in equation 3.6 reduces to

bIM(p, ω) = − 1

(2π)2

∫ +∞

−∞
dτ1e

iωτ1b1(p, τ1)

∫ τ1−ε

−∞
dτ2e

−iωτ2b1(p, τ2)

∫ +∞

τ2+ε

dτ3e
iωτ3b1(p, τ3),

(3.14)

where p = 2ps is the horizontal slowness and τ is the intercept time. As before, the input

is a transformed and scaled version of the data: b1(p, τ) = −i2qsD(p, τ). The transformed

data D(p, τ) are in this case computed from a standard τ -p or slant-stack transformation
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Figure 3.3: Double τ -pg-ps transform workflow. (a) A shot gather (xs = 636m) extracted
from a synthetic volume d(t, xg, xs); (b) a common shot gather in t− pg domain obtained by
transforming xg → pg; (c) the common pg = 0 gather extracted from the (t, pg, xs) volume;
(d) the common pg = 0 gather extracted from the final double τ -pg-ps transformed data
volume.
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Figure 3.4: Comparison of data compactness at fixed frequencies. (a) Space domain data
(xg, xs) at 10 Hz; (b) space domain data (xg, xs) at 20 Hz; (c) plane-wave domain data at
10 Hz; (d) plane-wave domain data at 20 Hz.
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of a shot gather. Similarly, the internal multiple prediction algorithm in the horizontal

slowness/pseudo-depth domain (equation 3.2) reduces in the 1.5D case to

bIM(p, ω) =
−1

(2π)2

∫ +∞

−∞
dz1e

iωqz1b1(p, z1)

∫ z1−ε

−∞
dz2e

−iωqz2b1(p, z2)

∫ +∞

z2+ε

dz3e
iωqz3b1(p, z3),

(3.15)

where q = 2qs = 2 cos θ
c0

is the vertical slowness, and c0 is the velocity in the reference medium.

From equation 3.4, the pseudo-depth can be seen to be related to τ by z = c0τ
2 cos θ

. The input

is b1(p, z) = −i2qsD(p, z); computing this input is equivalent to carrying out a normal move-

out correction of a shot gather in plane wave domain, using the reference velocity. The input

data will therefore (deliberately) have events with different degrees of apparent over- or

under-correction: in other words, sub-events with root-mean-square (RMS) velocities lower

than the reference velocity would be over-corrected; sub-events with RMS velocity higher

than the reference velocity would be under-corrected. This over/under-correction is a natural

part of the algorithm, and does not lead to incorrect predictions. However, it does produce in

the input a characteristic p-dependence which should be monitored for its effect on optimum

choice of parameter ε (Innanen and Pan, 2015; Innanen, 2017).

A three-layer synthetic model with two flat reflectors is introduced from which to compute

a synthetic shot gather, which can then be used as input to the various forms of internal

multiple prediction algorithm. The model is illustrated in Figure 3.5. Density is held constant

throughout, and velocities in the geological model vary from 1500m/s in the top, to 2800m/s

in the middle layer, to 4200m/s in the bottom layer. Synthetic seismic data are generated

from the velocity model illustrated in Figure 3.5 using a fourth-order finite difference scheme

with four absorbing boundaries. A shot record with a source point at the center is shown

in Figure 3.6(a). With the top of the model also absorbing, no free-surface multiples are

created, only primaries and internal multiples. The analytically calculated arrival times at

zero offset of the two primaries are illustrated with white solid lines, and those of the first

and second orders of internal multiples are illustrated with white dashed lines. The τ -p
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P1 P2I1I2

Figure 3.5: Synthetic velocity model (density is held fixed). Velocities are 1500m/s in the
top layer, 2800m/s in the middle layer, and 4200m/s in the bottom layer.

transform of the shot gather is calculated and illustrated in Figure 3.6(b).

Properly weighted input to the prediction algorithms in both the plane wave domain

and the horizontal slowness/pseudo-depth domain are obtained by multiplying the data in

both the p-τ and p-z domains by the weight −i2qs, as shown in Figures 3.7(a) and 3.7(b),

respectively. The input b1(kg, z) for the wavenumber/pseudo-depth domain implementation

is also obtained for comparison and illustrated in Figure 3.7(c). The searching limiting

parameter ε is key to the proper combination of data variations in the prediction of internal

multiples. It is a constant in the original forms of the attenuation algorithm (i.e., equations

3.1, 3.2, and 3.6 in this Chapter). An optimal ε value will generate a complete prediction

of multiples without introducing artifacts. If ε is chosen too small, artifacts correlated

with primaries appear; if it is chosen too large, multiple predictions will be missed (Sun and

Innanen, 2016b; Innanen, 2017). In Figure 3.7(c), the energy in each sub-event is increasingly
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(a) (b)

Figure 3.6: Synthetic seismic data created from the velocity model illustrated in Figure 3.5:
(a) the shot gather; (b) the data in the τ -p transformation of the raw data.

distributed in pseudo-depth as the wavenumber kg increases. This means internal multiple

prediction in the kg-z domain will involve a non-stationary search parameter to separate the

certain sub-events in the combination. A key positive feature of the prediction input in the

plane-wave domain(s) is now visible: compared to the kg-z domain, the inputs plotted in

Figure 3.7(a) and Figure 3.7(b) exhibit compactness in the depth- and/or time-coordinate

direction, and, critically, a separation between sub-events which does not vary strongly with

p. These two facts together mean that an “aggressive” and nonstationary ε can be avoided

(Innanen, 2017). The input for p-z versus the p-τ domain inputs can also be compared.

In Figure 3.7(b) a greater degree of noise is evident, which is due to the effects of linear

interpolation used in the change of variables.

I then select the stationary search parameter ε to be slightly larger than the width of one

sub-event in a stacked trace, as illustrated in Figure 3.8. Here, a constant value of ε = 0.2s

is selected for implementation in p-τ domain, and ε = 150m is selected for implementation

in p-z domain. The same ε is used for the wavenumber/pseudo-depth example.

The three related predictions, computed from the raw data in Figure 3.6(a) transformed
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(a) (b) (c)

Figure 3.7: The three inputs to internal multiple prediction, plotted for positive p or kg
only: (a) the p-τ input for plane wave domain prediction, (b) the p-z input for horizontal
slowness/pseudo-depth domain prediction, (c) the kg-z input for wavenumber/pseudo-depth
domain prediction.

into the three domains as shown in Figure 3.7, are plotted together in Figure 3.9. As

expected, using a fixed search parameter in kg-z domain prediction produces spurious high-

angle artifacts into the prediction due to the spread-out energy of the input as the wavenum-

ber increasing. Innanen and Pan (2015) propose a nonstationary ε to mitigate this. However,

as visible in Figure 3.9(c), because of the constancy of the size of sub-events across the p

spectrum, the implementations both in the p-τ and the p-z domains generate clean results

despite having been computed with a single stationary ε value. The p-z domain prediction

is noisier, because of the background noise in the input shown in Figure 3.7(b). This can be

fixed with more sophisticated interpolation in the mapping to pseudo-depth, but, on balance,

I conclude that the full plane-wave domain naturally produces the most artifact-free output

of the three domains.

3.6 2D coupled plane-wave domain prediction

Next I consider the numerical characteristics of the full 2D coupled plane-wave domain

internal multiple prediction algorithm. I again create a benchmark 2D synthetic reflection

seismic data set, created using a fourth order finite difference simulation of waves in an
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Figure 3.8: Trace comparisons and choice of search-limiting parameter ε: (a) zero-offset trace
extracted from the raw data; (b) input b1(p, τ) stacked over p, (c) input b1(p, z) stacked over
p.
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(a) (b) (c)

Figure 3.9: Internal multiple prediction gathers as computed in the three different domains,
from the raw data as plotted in Figure 3.6(a): (a) prediction in p-τ domain with a constant
ε = 0.2s and the input shown in Figure 3.7(a), (b) prediction in the p-z domain with a
constant ε = 150m and the input shown in Figure 3.7(b), (c) prediction in the kg-z domain
with a constant ε = 150m and the input shown in Figure 3.7(c).

acoustic, constant density medium with absorbing boundaries. The velocity model contains

4-layers and three reflectors, two dipping and one flat, as shown in Figure 3.10. 160 geophones

at 20 m intervals were embedded just below the surface, and shot records were generated

with a 20Hz Ricker wavelet for source locations moving from left to right and occupying

each geophone location. An Ormsby filter of [5Hz, 10Hz, 30Hz, 40Hz] is applied on all shot

records. The source-receiver-time volume of multi-shot records is illustrated in Figure 3.11.

In Figure 3.12 three common shot gathers extracted from the 3D volume are illustrated,

corresponding to sources located at 780m, 1580m, and 2380m. Three primaries are identifi-

able and are indicated with arrows; the other five events in each shot gather are first-order

internal multiples. Some discretization noise and boundary reflections are visible but these

do not obscure the real arrivals or alter our interpretations. The 2D character of the data

due to the dipping layer is clearly visible, for instance in the lateral shift of the apexes of

the hyperbolas.

After the removal of any directly-arriving wave energy (Weglein et al., 1997), which I have

carried out through modeling and subtraction, the main pre-processing step is the double
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Figure 3.10: Four-layer velocity model for benchmark synthetic for the 2D internal multiple
prediction algorithm. A fourth order finite difference solution of the acoustic constant density
wave equation with absorbing boundaries is employed. The layer velocities are: 1500m/s in
the top layer, 2200m/s in the second layer, 4500m/s in the third layer, and 2200m/s in the
bottom layer.
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Figure 3.11: Illustration of the synthetic source-receiver-time data volume generated from
the velocity model in Figure 3.10.
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Figure 3.12: Three common shot gathers extracted from volume d(xg, xs, t),from left to right:
40th-shot, 80th-shot, and 120th-shot.
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τ -ps-pg transform (as in equation 3.12), which after being carried out on the data set leads to

a 3D volume in horizontal slowness (for source and receiver, separately) and intercept time.

Three common ps gathers extracted from this volume, at ps values of −0.3s/km, 0.0s/km,

and 0.3s/km, are plotted in Figure 3.13. I note that relative to the 1.5D case, the signals in

the double τ -ps-pg domain are less localized and exhibit some “butterfly” artifacts. These

are aperture effects which can be mitigated with muting or by invoking high-resolution

transforms (e.g., Sacchi and Porsani, 1999; Trad et al., 2003); here I apply muting only,

remarking (in the discussion section) about the possible role high-resolution transforms may

play in the future. Next, the data volume is scaled by the factor −i2qs to produce the final

form of the input for the prediction algorithm. In Figure 3.14 three common ps gathers

extracted from the algorithm input volume b1(pg, ps, τ) at the same values of ps used in

Figure 3.11 (-0.3s/km, 0.0s/km, and 0.3s/km) are illustrated.

The internal multiple prediction is then calculated on the transformed input for all of the

160 shot gathers via equation 3.6. An inverse τ -pg-ps transform is, lastly, applied to return

the prediction to source-receiver-time coordinates. The predicted internal multiple volume

is plotted in Figure 3.15. Extractions from this volume corresponding to three shot positions

(the same locations as those in Figure 3.12), are shown in Figure 3.16.

Comparing Figures 3.12 and 3.16, I conclude that the predicted internal multiples cor-

rectly capture the arrival times, moveout patterns, and relative amplitudes. For instance, the

brightening visible in the multiples at the right edge of shot 40 and the left edge of shot 120

is clearly captured in the prediction. However, the side lobes of the predicted multiples are

somewhat wider than those of the events in the input data. This is likely tied to our current

robust coupled τ -pg-ps transform algorithm and wavelet-dependent factor, which lowers the

resolution of the inverse-transformed results.
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Figure 3.13: Three common ps gather extracted from the double plane-wave transformed
data volume. From left to right: ps = −0.3s/km, 0s/km, 0.3s/km.
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Figure 3.14: Three common ps gather extracted from prediction input volume b1(pg, ps, τ).
From left to right: ps = −0.3s/km, 0, 0.3s/km.
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Figure 3.15: Predicted internal multiple source-receiver-time volume.
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Figure 3.16: Three common shot gathers extracted from the internal multiple prediction
volume in Figure 3.15; for comparison these are the same shot points as those of the raw
shot gathers illustrated in Figure 3.12.
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3.7 Conclusions

Internal multiples in complex and incompletely characterized media, caused by unknown or

imperfectly known generators, can be predicted with the inverse scattering series internal

multiple attenuation algorithm in an automatic manner. Implementation domain and pa-

rameter selection are important aspects of successful application of this method, especially

on land. I present an implementation of the internal multiple prediction in the coupled (or

double) plane-wave domain, which requires a tailoring of the prediction algorithm and a high

fidelity τ -pg-ps transform. Comparing prediction inputs derived for a range of calculation

domains, I conclude that the horizontal slowness domain, by concentrating the amplitudes

of each sub-event, which in turn leads to a simpler and more stationary search-parameter se-

lection, is generally optimal. The plane-wave domain algorithm leads to relatively stationary

optimum ε values, and produces fewer artifacts traceable to poor parameter selection.

These conclusions provide incentive to implement the 2D coupled plane-wave version of

the prediction algorithm, which has not been reported before in the literature (though the

formula itself dates back to the 1990s). The input in this domain appears as a highly sparse

matrix which significantly reduces its computational expense.

The coupled plane-wave domain is observed to cleanly separate primary and multiple

events, capturing relative amplitudes, travel times and event trajectories. Standard slant-

stack transforms of the type I have used to date tend to impose resolution restrictions,

however, and this can be observed to affect the waveform match between the prediction and

the actual multiples. Next steps in research branch from this observation. First, the pres-

ence in the literature of high-resolution Radon transform methodologies (e.g., Sacchi and

Porsani, 1999; Trad et al., 2003) suggests a natural next step in mitigating the resolution is-

sues arising from transform effects, and from many of the issues arising in prediction on field

data where data completeness is often a problem. And the high-resolution Radon transform

may significantly reduce the computational expense of 3D prediction, which is the subject of

48



current research. Second, elastic inverse scattering series prediction methods, which properly

incorporate and account for multiples involving elastic conversions, exist, but their imple-

mentation in the plane-wave domain (rather than the wavenumber/pseudo-depth) introduces

some difficulties. The fidelity of the plane-wave domain predictions illustrated in this Chap-

ter provides good reason to engage with those difficulties in extending to multicomponent

prediction. I will report on progress in this area in a future communication.
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Chapter 4

Inverse scattering series internal multiple prediction in

common-midpoint domain

4.1 Summary

Inverse scattering series internal multiple prediction accommodates fully multidimensional

subsurface geological structures and 3D seismic survey data, but the computational expense

of the algorithm makes its application on large 2D and small 3D data sets (even in the

coupled plane-wave domain) impractical. The 1D prestack (1.5D) version of the algorithm

is, in comparison, computationally quite cheap, and it is natural to ask whether using this

algorithm on data over structures with (say) shallow dip is possible without the introduction

of serious error. Here the difference between between data records over dipping strata sorted

into shot/receiver and common midpoint (CMP) gathers is important, and so this is the-

oretically analyzed. Numerical analysis of prediction error shows that the 1.5D prediction

algorithm has a much greater capacity for accommodating dipping generators in the CMP

domain than on shot/receiver gathers. In the CMP domain the 1.5D algorithm is remarkably

forgiving to dip, though it is not difficult to choose dipping angles large enough to cause the

1.5D prediction algorithm to fail in both CMP and shot/receiver domains (making the full

2D internal multiple prediction algorithm necessary). The key contribution I make in this

chapter is the introduction of a modified version of the prediction algorithm appropriate for

CMP gathers, which is derived based on the full 2D plane-wave theory.
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4.2 Introduction

Seismic records associated with individual sources (shot or source records) are often sorted

into common midpoint (CMP) gathers (e.g., Yilmaz, 2001). Multiple attenuation methods

have been formulated for application on CMP gathers, based on their periodicity or differ-

ence of velocity stacking between multiples and primaries, such as predictive deconvolution,

Radon transform (Foster and Mosher, 1992; VerWest, 2002; Trad, 2003) and velocity stack-

ing (Hampson, 1986; Lumley et al., 1995; Yilmaz, 2001) which works at near- or far-offsets,

respectively, for surface-related or layer-interbed multiples. However, in complex land data,

with no periodicity and unclear velocity discriminations, interbed multiples prediction en-

counters difficult challenges, and the inverse scattering series approach may be warranted.

It turns out that a re-formulation of the 1D prestack (1.5D) version of the inverse series

method in the CMP domain has a greatly reduced sensitivity to small-to-moderate angle

dipping strata as compared to its standard form. In this chapter, I modify the algorithm to

accommodate CMP gather input. Considering computational burden of multidimensional

implementation, for some cases, internal multiples may be predicted using 1.5D prediction

algorithm with acceptable tolerances of prediction errors. The numerical simulated examples

allow us to exemplify the error analysis of implementing 1.5D algorithm on dipping strata

and examine the difference between CMP gathers and shot/receiver records.

4.3 Plane-wave domain inverse scattering series internal multiple prediction

review

Araújo (1994) and Weglein et al. (1997) originally presented the prediction algorithm in the

wavenumber/pseudo-depth (kg, ks, z̃) domain. Based on the close relationship of wavenumber

and horizontal slowness (k = ωp), Sun and Innanen (2018) re-wrote the algorithm in the

horizontal-slowness/pseudo-depth (pg, ps, z̃) domain, pointing out some advantages in this
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implementation. By taking advantage of the connection between pseudo-depth and vertical

traveltime (Nita and Weglein, 2009b; Sun and Innanen, 2015), Sun and Innanen (2018)

also formulated internal multiple prediction in the coupled plane-wave domain (pg, ps, τ),

which was first presented by Coates et al. (1996), and summarized some further significant

advantages of the algorithm, such as reduced computational burden, and the relative ease of

selection of the search parameter ε.

Let d(xg, xs, t) represent a fully deghosted 2D seismic data set involving waves downgoing

from the source and upgoing to the receiver, with xg being the inline receiver coordinate,

xs being the inline source coordinate, and t being the two-way traveltime. Let D(pg, ps, τ)

represent the data set after coupled plane-wave transformation across all three coordinates,

with pg and ps being the horizontal slowness conjugate to xg and xs, respectively, and τ being

the vertical traveltime coupling with pg and ps. The plane-wave domain inverse scattering

series internal multiple prediction algorithm is written as (Coates et al., 1996; Sun and

Innanen, 2018)

bIM(pg, ps, ω) =
−1

(2π)2

∫∫ +∞

−∞
dp1dp2e

iω(τ1s−τ1g)eiω(τ1g−τ1s)

∫ +∞

−∞
dτ1e

iωτ1b1(pg, p1, τ1)

×
∫ τ1−ε

−∞
dτ2e

−iωτ2b1(p1, p2, τ2)

∫ +∞

τ2+ε

dτ3e
iωτ3b1(p2, ps, τ3),

(4.1)

where

qX =

√
1

c2
0

− p2
X , (4.2)

with qX being the vertical slowness associated with the horizontal slowness pX , and the

reference velocity c0. The input is the 3D1 data volume calculated by scaling the data

after coupled τ -ps-pg transformation: b1(pg, ps, τ) = −i2qsD(pg, ps, τ). These three events

combined to reconstruct the ray-path of internal multiples are interrelated through their

horizontal slowness on source and receiver sides. Figure 4.1 shows the relationship scheme

between primaries and predicted internal multiple according to their contributing slownesses,

1This is a 3D data volume, not a 3D seismic acquisition being treated.
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Figure 4.1: Ray-path schematic of primaries (dashed line) and internal multiple (solid line)
with corresponding source and receiver locations. See also Coates et al. (1996).

i.e., pg, ps, p1, and p2 in equation 4.1. The quantities p1 and p2 represent horizontal slow-

nesses at both source and receiver locations within the algorithm. This will be of practical

computational importance, as it requires that matching source and receiver sides slownesses

must be available either naturally through acquisition or through data reconstruction. As

shown in Figure 4.1, the exact traveltime of internal multiple can be calculated by summing

over two primaries from lower reflector and then subtracting the one from upper interface.

4.4 Developments on the 1D prestack algorithm

The prediction algorithm in the coupled plane-wave domain (pg, ps, τ) can be simplified to

reflect the fact that pg ≡ p2 ≡ p1 ≡ ps ≡ p, if a layered Earth is assumed. With the

additional assumption that all sources and receivers are located at the same depth, the

plane-wave domain prediction algorithm in equation 4.1 reduces to

bIM(p, ω) = − 1

(2π)2

∫ +∞

−∞
dτ1e

iωτ1b1(p, τ1)

∫ τ1−ε

−∞
dτ2e

−iωτ2b1(p, τ2)

∫ +∞

τ2+ε

dτ3e
iωτ3b1(p, τ3),

(4.3)
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where p is the horizontal slowness whose physical meaning is related to the type of input. τ

is the vertical traveltime coupling with horizontal slowness p. As indicated before, the input

is a transformed and scaled version of the originally recorded data: b1(p, τ) = −i2qsD(p, τ).

The transformed data D(p, τ) are in this case computed from a standard τ -p or slant-stack

transformation of a shot/receiver gather, or CMP gather.

Equation 4.3 implies that, for layered media, all internal multiples in a common shot/receiver,

or CMP gather, can be reconstructed from that gather alone (this is an expected result, since

all shot and CMP records are identical over layered media). Compared to equation 4.1, the

1.5D prediction algorithm is much more efficient since the prediction can be looping over

trace-by-trace (common p trace) due to the independence of variant horizontal slowness

p. However, for dipping strata, predicting internal multiples using a 1.5D algorithm loses

accuracy.

4.4.1 1.5D prediction scheme on common shot/receiver gathers

Implementation of the 1.5D internal multiple prediction algorithm in the plane wave domain

requires a traditional slant-stack transform of the seismic record multiplied by a weighting

factor as input. Ocola (1972) and Diebold and Stoffa (1981) demonstrated that traditional

τ − p mapping can be performed by considering traveltimes for varying offsets in a common

shot gather,

t = pgx+
∑
i

zsi(qsi + qgi), (4.4)

or, varying offsets in a common receiver gather,

t = psx+
∑
i

zgi(qsi + qgi), (4.5)

where t is the two way traveltime of the event being described, and x is the offset. The

variables qsi and qgi are the vertical components of slowness in the ith layer for the source

and receiver respectively. The depths zsi and zgi are the thicknesses of the ith layer below

the source and receiver locations respectively.
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Figure 4.2: Combinations of events in a common shot gather for internal multiple prediction
using 1.5D algorithm. Both primaries and internal multiples shared the same horizontal
slowness corresponds to receiver side, i.e., pg.

Equation 4.4 and 4.5 indicate that the horizontal slowness is associated with the receiver

side (pg =
sinθg
c0

) when the τ−p transformation is performed to a shot gather; the horizontal

slowness is associated with the source side (ps =
sinθs
c0

) when the transformation is applied

to a receiver gather. Therefore, rather than the scheme illustrated in Figure 4.1, the 1.5D

prediction algorithm (equation 4.3), for a common shot gather, predicts internal multiples

based on lower-higher-lower ordering within traces with a common pg; for a common receiver

gather, it reconstructs internal multiples by combining sub-events within a common ps trace.

For example, Figure 4.2 illustrates common shot gather internal multiple prediction. The

traveltime of the internal multiple indicated in black is predicted by twice the traveltime

of the red primary reflection minus the traveltime of the green event. All primaries and

predicted multiples in Figure 4.2 share the same receiver side horizontal slowness pg.
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Figure 4.3: Combinations of events in a CMP gather for internal multiple prediction using
1.5D algorithm. All events in combination shared the same average horizontal slowness, i.e.,

pH =
pg + ps

2
=
pg1 + ps1

2
=
pg2 + ps2

2
.
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4.4.2 1.5D prediction scheme on common-midpoint gathers

To perform traditional τ−p transform on CMP gathers, Diebold and Stoffa (1981) also intro-

duced a reference point M, located between the source and receiver, where M is the location

of midpoint in the CMP gather. Based on this reference point location, the traditional τ − p

transform on a CMP gather can be written as

t = pHx+
∑
i

zMi(qsi + qgi), (4.6)

where pH is the average horizontal slowness, i.e., pH =
pg + ps

2
, with respect to varying

offsets x. The quantity zMi represents the thicknesses of the ith layer below the midpoint.

This implies that, with the weighted traditional τ − p transformed CMP gather as an input,

implementing internal multiple prediction using 1.5D algorithm is performed by looping over

common average horizontal slowness pH traces. For instance, for a common CMP gather, the

internal multiple shown in Figure 4.3 is predicted by doubling traveltime of the red primary

event and then subtracting traveltime of the green one. All these events in Figure 4.3 are

sorted in the CMP gather and have the equivalent average horizontal slowness pH .

4.5 Numerical analysis of 1.5D algorithm on 2D cases

Before implementing internal multiple prediction with 1.5D algorithm on dipping strata, it is

necessary to investigate the dipping angle dependency of the 1.5D algorithm and to discuss

the discrepancy of performance using variant input types. To do so, we numerically simulated

all ray-paths of primaries and 1st order internal multiples on a two-interface model, shown

in Figure 4.2 or 4.3. The shallower reflector dips with an angle α (here, α > 0 if depth of

interface increases from left to right) while the deeper one is flat.
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4.5.1 Shot gather error analysis

For a common shot gather, under a fixed source location and a fixed thickness of the 1st layer

below the source point (zs = 400m), ray-paths of three related events shown in Figure 4.2

were simulated with varying offsets x and dipping angles α. In addition to traveltimes of all

ray-paths, the receiver-side horizontal slowness was also calculated for a certain offset x with

a receiver angle θg, i.e., pg =
sinθg
c0

. Therefore, using equation 4.4, the vertical traveltime

(to distinguish with the one in CMP gather, here, it is indicated as τs) associated with a

fixed pg is τs = t− pgx.

The vertical traveltimes of three events extracted from common shot gathers in Figure 4.2

are plotted in Figure 4.4a. The top one represents vertical traveltimes of the first primary

reflection, indicated in green in Figure 4.2, with varying dipping angles and receiver-side

horizontal slownesses pg. The middle one delineates vertical traveltimes of the second primary

event, indicated in red in Figure 4.2. The bottom one are vertical traveltimes of internal

multiples shown in Figure 4.2.

With 1.5D algorithm, the vertical traveltimes of the internal multiples are predicted by

doubling vertical traveltimes of the second primary events and then subtracting vertical

traveltimes of the first primaries, i.e., τblack = 2τred − τgreen. Compared to recorded internal

multiples, the predicted errors with varying dipping angles α and horizontal slowness pg were

plotted in Figure 4.4b. Figure 4.4b demonstrated that, for shot gather internal multiple

prediction on dipping strata with 1.5D algorithm, the absolute values of prediction errors

dramatically raised (up to 0.2s) along increasing dipping angles and horizontal slownesses.

4.5.2 CMP gather error analysis

To analyze the behaviors of 1.5D prediction algorithm with CMP gathers on dipping layered

cases, we also modeled all ray-paths and calculated traveltimes of three reflection events in

Figrue 4.3 with varying offsets and dipping angles. With a fixed CMP location and a fixed
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Figure 4.4: Error analysis of 1.5D algorithm on 2D cases using common shot gathers. (a)
Vertical traveltimes of three events, shown in Figure 4.2, extracted from a common shot
gather with varying dipping angles α and horizontal slownesses pg, i.e., the top one represents
vertical traveltimes of 1st primary reflection, indicated in green in Figure 4.2; the middle one
shows vertical traveltimes of 2nd primary event, indicated in red i Figure 4.2; the bottom
one delineates vertical traveltimes of internal multiples shown in Figure 4.2. (b) Prediction
errors with shot gathers using 1.5D algorithm.
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thickness of 1st layer below CMP (zM = 400m), the obtained traveltimes were sorted into

common average horizontal slowness pH manner, i.e., τM = t−pHx. Here, τM represents the

relative vertical traveltime related to CMP location and average horizontal slowness pH .

Figure 4.5a shows vertical traveltimes τM of primaries and internal multiples extracted

from CMP gathers, which their relationships were shown in Figure 4.3. The top one corre-

sponds to the first primary indicated in green in Figure 4.3; the middle one represents the

second primary indicated in red in Figure 4.3; and the bottom one delineates vertical travel-

times of internal multiples, with varying dipping angles α and average horizontal slownesses

pH respectively. Based on equation 4.3, the vertical traveltimes of internal multiples can be

predicted by a lower-higher-lower combination over a fixed average horizontal slowness pH .

The prediction errors using CMP gather along varying dipping angles and average horizontal

slownesses were plotted in Figure 4.5b. As indicated in Figure 4.5b, except the condition of

around α = −20◦ and pH = 0.2s/km, the predicted errors remained in range of [−0.05, 0.06],

which were much smaller than prediction errors of common shot gathers.

The comparisons of prediction errors between common shot and midpoint gathers, to an-

alyzed instinctively, were extracted at fixed dipping angles and at fixed horizontal slownesses,

respectively. Figure 4.6a-c show predicted errors of common shot and midpoint gathers at

fixed dipping angle α = [−25◦, 0◦, 25◦], separately, where the error of shot gather prediction

is indicated in orange, and the prediction error of CMP gather is illustrated in dark-blue. In

Figure 4.6a, with a fixed dipping angle α = −25◦, the error of internal multiple prediction

using shot gather approximate linearly rises while the predicted error in CMP domain re-

mains in a relatively smaller range. Figure 4.6b shows the prediction error of shot and CMP

gathers with α = 0◦ , i.e., a layered case. As indicated previously, under layered cases, 1.5D

prediction algorithm can predict correct traveltime of internal multiples on both shot and

CMP gathers. In Figure 4.6c, the error of predicted traveltime of internal multiples is cal-

culated with α = 25◦. Similar with Figure 4.6a, comparing with the prediction error of shot
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Figure 4.5: Error analysis of 1.5D algorithm on 2D cases using CMP gathers. (a) Vertical
traveltimes of three events, shown in Figure 4.3, extracted from a CMP gather with varying
dipping angles α and average horizontal slownesses pH , i.e., the top one represents vertical
traveltimes of 1st primary reflection, indicated in green in Figure 4.3; the middle one shows
vertical traveltimes of 2nd primary event, indicated in red i Figure 4.3; the bottom one
delineates vertical traveltimes of internal multiples shown in Figure 4.3. (b) Prediction
errors with CMP gathers using 1.5D algorithm.

61



gathers, the implementation of 1.5D prediction algorithm in CMP domain input produces a

much stable and independent results with varying horizontal slownesses, even under a large

dipping angle condition.

The prediction errors of common shot and midpoint gathers at fixed horizontal slowness

p = [−0.1, 0.0, 0.1]s/km are also extracted and plotted in Figure 4.6d-f, respectively. All

predicted errors of common shot and midpoint gathers are zero at dipping angle α = 0◦ in

Figure 4.6d-f, which agrees with the fact in equation 4.3. However, at fixed horizontal slow-

nesses, the prediction errors of shot and CMP gathers does not show the linear relationship

with varying dipping angles and limited advantages may be found in CMP domain.

4.6 Example 1: 2D prediction with 1.5D algorithm

In this section, we created a three-layer model with velocity varies from top to bottom:

[2200,3500,2200]m/s. The dipping angle of the top interface is 10◦, and the lower one is flat.

640 shot gathers were generated to exact the CMP gather where the midpoint was located

at the middle of model indicated as a red dot in Figure 4.7. The extracted CMP gather is

shown in Figure 4.9a. To compare with prediction of CMP gather, a shot gather located at

the same location was also selected and plotted in Figure 4.8a, for implementing 2D internal

multiple prediction using 1.5D algorithm.

The internal multiple prediction of shot gather was shown in Figure 4.8b. Using 1.5D

algorithm on shot gather, the prediction lost accuracy due to the outlying horizontal slow-

ness caused by the dipping angle of reflector, especially at large offsets. For example, in

Figure 4.8b, the traveltime prediction of the 1st-order internal multiple at largest negative

offset was less than 0.7s, which was not agreed by the original shot record shown in Fig-

ure 4.8a. A non-stationary least-square subtraction was applied to remove the multiples

from shot records, shown in Figure 4.8c. After subtraction, multiples were attenuated at

near offsets, but failed at large offsets.
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Figure 4.6: Comparisons of predicted errors between common shot and midpoint
gathers at fixed dipping angle α = [−25◦, 0◦, 25◦] and at fixed horizontal slowness
p = [−0.1, 0.0, 0.1]s/km, respectively. The prediction errors of common shot gathers are
indicated in orange and the one of CMP gathers are illustrated in dark-blue. (a) Compar-
isons of prediction errors at α = −25◦ with varying p. (b) Comparisons of prediction errors
at α = 0◦ with varying p. (c) Comparisons of prediction errors at α = 25◦ with varying p.
(d) Comparisons of prediction errors at p = −0.1s/km with varying α. (e) Comparisons of
prediction errors at p = −0.0s/km with varying α. (f) Comparisons of prediction errors at
p = 0.1s/km with varying α. Note, for shot gathers, p represents pg; for CMP gathers, p
represents pH .
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Figure 4.7: Two-interface model with one dipping and one flat reflectors. The dipping angle
of the 1st interface is 10◦. Here, the red dot indicates the source location for a common shot
gather, and represents the CMP location for a CMP gather.
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Figure 4.8: 2D internal multiple prediction in a common shot gather using 1.5D algorithm.
(a) A shot gather created using velocity model shown in Figure 4.7 with source location
indicated as the red dot. (b) Internal multiple prediction using equation 4.3. (c) The shot
gather after least-square matching subtraction, i.e., c=a-factor*b.
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Figure 4.9: 2D internal multiple prediction in a CMP gather using 1.5D algorithm. (a) A
CMP gather created using velocity model shown in Figure 4.7 with CMP location indicated
as the red dot. (b) Internal multiple prediction using equation 4.3. (c) The CMP gather
after least-square matching subtraction, i.e., c=a-factor*b.

Figure 4.9b shows 2D internal multiple prediction on CMP gather using 1.5D algorithm.

The predicted traveltime of internal multiple was 0.6s at zero-offset and was around 0.69s at

largest offsets which are consistent with original shot record. Compared to the shot gather

prediction, internal multiples in CMP gather were well predicted both at near and far offsets.

Figure 4.9c indicates that internal multiples were well eliminated using prediction of CMP

gather and a non-stationary least square subtraction.

4.7 Plane-wave domain multidimensional internal multiple prediction algo-

rithm in CMP gather

The numerical analysis and implementation indicated that, for internal multiple prediction

on dipping strata, 1.5D inverse scattering algorithm has a comparatively tolerability on
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CMP gathers instead of shot/receiver gathers, which is benefited from the average horizontal

slowness. However, the accuracy of predicted internal multiples traveltime is significantly

reduced when the dipping angle of reflector is extremely large. The 2D prediction algorithm

on CMP gather is still necessary even though 1.5D implementation may handle most of

simplified cases in practice.

Let d̃(xm, xh, t) represents the sorted CMP gather of data d(xs, xg, t), with varying offsets

and CMP locations, and its coupled τ − pm − ph transformation across three variables is

delineated as D̃(pm, ph, τM) with pm and ph representing the horizontal slowness conjugate

to CMP location xm and half-offset xh/2, respectively, and τM being the vertical traveltime

coupling with pm and ph. Considering the usual variable changes

pm = pg + ps

ph = pg − ps
(4.7)

Substitute equation 4.7 into equation 4.1, the 2D inverse scattering series internal multiple

prediction algorithm on CMP gathers can be achieved. Its mathematical formulation is

written as

bIM(pm0, ph0, ω) =

−1

(2π)2

∫∫∫∫ +∞

−∞
dph1dph2dph3dpm3e

iω(τ1s−τ1g)eiω(τ1g−τ1s)

∫ +∞

−∞
dτ1e

iωτ1b1(pm1, ph1, τ1)

×
∫ τ1−ε

−∞
dτ2e

−iωτ2b1(pm2, ph2, τ2)

∫ +∞

τ2+ε

dτ3e
iωτ3b1(pm3, ph3, τ3),

(4.8)

where the relationships of pm0, pm1, pm2, pm3, ph0, ph1, ph2, ph3 are delineated as

pm2 = ph2 + ph3 + pm3

pm1 = ph1 + 2ph2 + ph3 + pm3

pm0 = ph1 + ph2 + pm3

ph0 = ph1 + ph2 + ph3

(4.9)

with the input b1 for inverse scattering series internal multiple prediction algorithm is cal-

culated as b1(pm, ph, τ) = −i2qsD(pm, ph, τ). Here, qs is the vertical slowness with respect to
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source side, which can be obtained as

qs =

√
1

c2
0

− (pm − ph)2

4
(4.10)

The implementation of equation 4.8 can be achieved by iterating all possible ph1, ph2,

ph3, and pm3 while pmX and phX (X = 0, 1, 2, 3) are in a reasonable range of [pminm , pmaxm ]

and [pminh , pmaxh ], respectively (See the pseudo-code in algorithm 1). Equation 4.8 has the

intact capabilities of predicting all possible internal multiples following the same criteria

as equation 4.1 does, but, requires the input as a weighted version of data sorted in CMP

locations and offsets instead of source-receiver coordinates.

Algorithm 1 Pseudo-code for implementation of equation 4.8

1: for each pm3 ∈ [pminm , pmaxm ] do
2: for each ph3 ∈ [pminh , pmaxh ] do
3: for each ph2 ∈ [pminh , pmaxh ] do
4: for each ph1 ∈ [pminh , pmaxh ] do
5: pm2 = ph2 + ph3 + pm3

6: pm1 = ph1 + 2ph2 + ph3 + pm3

7: pm0 = ph1 + ph2 + pm3

8: ph0 = ph1 + ph2 + ph3

9: while pm2, pm1, pm0 ∈ [pminm , pmaxm ] and ph0 ∈ [pminh , pmaxh ] do
10: Implementing equation 4.8
11: end while
12: end for
13: end for
14: end for
15: end for

4.8 Example 2: 2D prediction with 2D algorithm

Next, implementation of the full 2D internal multiple prediction using CMP gathers in

coupled plane-wave domain is considered. A benchmark 2D synthetic reflection dataset is

created using a fourth-order finite-difference forward modeling with acoustic constant-density

and four absorbing boundaries. The velocity model contains three layers and two reflectors,

one flat interface and one dipping in 30 degree, as shown in Figure 4.10. From the top to
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Figure 4.10: Geological model with two interfaces, including one flat and one dipping reflec-
tors. The dipping angle of the second interface is 30◦. From the top to bottom, velocities
are [2200m/s, 2800m/s, 4200m/s].

bottom, velocities are [2200m/s, 2800m/s, 4200m/s]. 160 geophones at 2.5m intervals were

embedded at 10m below the surface, and shot records were generated with a 25 Hz Ricker

wavelet for source locations moving from left to right and occupying each geophone location.

The source-receiver-time volume of multishot records, after removing direct waves, is shown

in Figure 4.11.

The multishot records are resorted into CMP domain with CMP-offset-time coordinate

and illustrated in Figure 4.12. To observe the 2D character of the data in CMP domain, we

extracted three CMP gathers from the resorted CMP volume which are shown in Figure 4.13.

As shown in Figure 4.13, two primaries and the first order internal multiple are clearly visible.

Similar with the 2D internal multiple prediction in source-receiver coordinate related input,

the coupled plane-wave transform is applied to CMP data volume which leads to a 3D volume
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Figure 4.11: Multishot records sorted in source-receiver-time coordinate with velocity model
shown in Figure 4.10.
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Figure 4.12: Multishot records sorted in CMP-offset-time coordinate.

in horizontal slowness (related to CMP locations and half-offsets) and vertical traveltime.

Next, the transformed data volume is weighted by the factor −i2qs to generate the final

form of the input for the prediction algorithm. Three common pm gathers extracted from

this volume are plotted in Figure 4.14. Compare to the “butterfly” artifacts of the input

related to source-receiver coordinates (Sun and Innanen, 2018), the input of internal multiple

prediction using CMP gathers has a similar aperture effects delineated as the cross-hyperbolic

events in Figure 4.13.

The internal multiple prediction is carried on the transformed input with horizontal

slowness related to CMP location and half-offset for all 160 CMP gathers via equation 4.8.
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Figure 4.13: Three CMP gathers extracted from volume shown in Figure 4.12. (a) 40th
CMP gather. (b) 80th CMP gather. (c) 120th CMP gather.

Figure 4.14: Three common pm gathers extracted from τ−pm−ph transformed CMP volume.
(a) pm = −0.2s/km. (b) pm = −0s/km. (c) pm = 0.2s/km.
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Figure 4.15: Three predicted CMP gathers, which original data are shown in Figure 4.13,
using 2D prediction algorithm. (a) 40th CMP gather. (b) 80th CMP gather. (c) 120th CMP
gather.

Finally, an inverse coupled plane-wave transformed is applied to achieve the prediction in

CMP-offset-time coordinates. Three predicted internal multiples of CMP gathers extracted

from the predicted volume (the same CMP locations as those in Figure 4.13) are plotted in

Figure 4.15. Comparing Figure 4.13 and Figure 4.15 we conclude that the multidimensional

prediction may also be carried out in CMP domain which capture the correct arrival times

of all possible internal multiples.

To investigate the behavior of 1.5D prediction algorithm on large dipping strata and

compare with 2D prediction algorithm, we also implemented internal multiple prediction us-

ing 1.5D algorithm on shot records and CMP gathers, respectively. For these CMP gathers

in Figure 4.13, the predicted internal multiples carried via equation 4.3 are plotted in Fig-

ure 4.16. As expected in numerical analysis, the internal multiples in three CMP gathers are

predicted at incorrect traveltimes with 1.5D prediction algorithm. Next, we extracted three

shot gathers from data volume in Figure 4.11, which are at the same locations of CMP in
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Figure 4.16: Three predicted CMP gathers, which original data are shown in Figure 4.13,
using 1.5D prediction algorithm. (a) 40th CMP gather. (b) 80th CMP gather. (c) 120th
CMP gather.

Figure 4.13. Extractions of three shot gathers are plotted in Figure 4.17. Using equation 4.3,

prediction of internal multiples in shot gathers are illustrated in Figure 4.18. Figure 4.18

indicates that, for large dipping strata, 1.5D prediction algorithm also failed to predict the

correct traveltime of internal multiple in sense of shot gather.

4.9 Conclusions

Internal multiples caused by the unknown generators can be predicted by inverse scatter-

ing series internal multiple prediction algorithm in an automatic manner, which is usually

performed in source-receiver related coordinates. For dipping strata, the algorithm requires

many shots for each receiver location, and this significantly enhances the difficulty of input

preparation and increases the computational cost. In this chapter, I investigated the behav-

ior of the 1.5D prediction algorithm on dipping cases both for shot and CMP gathers. The

numerical analysis of prediction errors indicates that traveltime of internal multiples gener-

74



Figure 4.17: Three common shot gathers extracted from data volume in Figure 4.12, where
the shot locations are at the same locations of CMP in Figure 4.13. (a) 40th shot gather.
(b) 80th shot gather. (c) 120th shot gather.

Figure 4.18: Three predicted shot gathers, which original data are shown in Figure 4.13,
using 1.5D prediction algorithm. (a) 40th shot gather. (b) 80th shot gather. (c) 120th shot
gather.
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ated by dipping reflectors with small dipping angles, comparing to shot gather prediction,

may be predicted in the CMP domain using 1.5D prediction algorithm with relatively low

levels of error. This is then examined on a synthetic dataset. However, 1.5D prediction algo-

rithm will fail to predict the correct traveltime of internal multiples on dipping strata, both

in CMP domain and shot/receiver gathers, when the dipping angles of generators reach a

threshold value. To carry out 2D prediction on CMP gathers effectively in complex environ-

ments, we also proposed a modification of multidimensional inverse scattering series internal

multiple prediction algorithm which can be performed on CMP gathers. A simple synthetic

benchmark model is created to generate synthetic data and to validate the capacity of the

modified prediction algorithm in CMP domain.
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Chapter 5

A plane-wave formulation of elastic multicomponent

inverse scattering series internal multiple prediction

5.1 Summary

Land environments, which because of the increasing importance of unconventional reser-

voirs, are of particular importance in general for research in internal multiple prediction

and suppression. They present several challenges to the inverse scattering series predictions,

including accounting for elastic phenomena and making allowance for multicomponent data.

Elastic theory for inverse series internal multiple prediction was introduced several decades

ago, but no numerical analysis or practical discussion of how to prepare data for it currently

exist. This chapter summarizes efforts to address this gap. I extend the 2D theory to 3D

and analyze the properties of the input data as incorporated in the prediction in the existing

theory. Also, motivated by earlier research suggesting it has several practical advantages,

I simultaneously re-formulate the algorithm in the plane-wave domain. Analysis must then

be carried out to understand the ordering of input data events in these domains. In the

prediction process, data events which satisfy a certain ordering in either pseudo-depth or

vertical travel-time are combined to determine the arrival time of multiples. The success of

the approach relies on the ordering of events being the same as the ordering of the reflecting

interfaces in true depth. In the elastic case, it is difficult to guarantee that this holds true,

because the events to be combined may have undergone multiple conversions as they were

created. I introduce several variants of the prediction algorithms and examine them for their

tendency to create artifacts from violations of the ordering requirements. A plane-wave do-

main prediction, based on elastic data which have been prepared (1) using variable, “best-fit”
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velocities as reference velocities, and (2) with an analytically determined vertical travel-time

stretching formula, is identified as being optimal in the sense of generating artifact-free pre-

dictions with relatively small values of the search parameter ε. The search parameter limits

the proximity of events to be combined in the prediction, and if the user is forced to select

a large ε, important short-path multiples can be missed in the prediction. These analyses

are confirmed with synthetic 1.5D examples, which are to our knowledge the first numerical

(i.e., non-analytic) examples of elastic inverse scattering series internal multiple prediction

to be presented.

5.2 Introduction

Internal multiple prediction based on the inverse scattering series (Araújo, 1994; Weglein

et al., 1997), because it operates in the absence of a detailed velocity model and without

generator picking, has been the object of significant theoretical study and practical industrial

application (Fu et al., 2010; Wu et al., 2011; Sonika et al., 2012; Ras et al., 2012; de Melo

et al., 2014, 2015; Ramirez et al., 2015). In the former, extensions both towards generating

exact amplitude predictions, as discussed by (Ramı́rez and Weglein, 2005) and addressed

by (Herrera and Weglein, 2013b) and (Zou and Weglein, 2013), and towards optimizing

calculation domains and parameter selection (Innanen, 2017; Sun and Innanen, 2018), have

been recently reported.

All practical examples reported in the literature, and all recent extensions, have been

carried out within the acoustic approximation. At elastic interfaces, P-waves convert to

S-waves (SH- or SV-waves), and vice versa, and the propagation histories of even simple,

low-order internal multiples may involve a complex range of mode-conserved and mode-

converted interactions. Acoustic prediction, applied in marine environments in which down-

going and up-going waves at the measurement surface are purely compressional, can partially

account for multiples whose propagation histories below the water-bottom involve S-wave
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conversions (Coates et al., 1996). When sensors are embedded in solid media, however,

new theory is required. A fully elastic extension of the inverse scattering internal multiple

prediction algorithm, given as input multicomponent seismic data acquired during land or

ocean-bottom surveys as, has been formulated (Matson, 1997) and tested with fixed-angle

analytic data. But, no numerical analysis or examples of the algorithm applied to a seismic

gather currently appear in the literature. There are significant challenges in numerically

implementing elastic internal multiple prediction, which may partially explain this gap.

Strong motivations exist for developing stable and robust numerical implementations

of elastic as opposed to acoustic algorithms. A comprehensive treatment of problematic

interbed multiples on land (e.g., Luo et al., 2011; de Melo et al., 2014), for instance, demand

such algorithms. Additionally, elastic imaging relies on the availability of multiple estimation

based on comparable wave models: absent multiple removal false image structures may be

introduced (e.g. Berkhout, 2006; Behura et al., 2014; Zuberi and Alkhalifah, 2014b; Li et al.,

2016; Weglein, 2016). Internal multiples have been themselves incorporated in imaging,

to provide more stratigraphic information and to illuminate shadow zones where primaries

cannot reach (Liu et al., 2011; Malcolm et al., 2009, 2011; Slob et al., 2014). However, even

within these approaches, the need to be able to distinguish between primary and multiple

events remains, and for elastic imaging this requires elastic prediction. Motivations of this

kind have already led to the extension of interferometric formulations of internal multiple

prediction (Löer et al., 2016) to versions that admit elastic waves (da Costa Filho et al.,

2017).

In current seismic processing technology, data-driven prediction of internal multiple en-

ergy from primary events is carried out in one of two distinct ways. The first way involves

transforming internal multiples into surface-related multiples, and then predicting them with

surface-related methods. This boundary method, which requires layers overlying the gener-

ator to be stripped, has been implemented in different domains: post-stack (Kelamis et al.,
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2002); common-focal-point (Berkhout and Verschuur, 2005; Berkhout, 2006); and inverse-

data domain (Luo et al., 2007). The second way is based on the inverse scattering series,

and involves predicting internal multiples as the combination of triplets of data sub-events

combined based on their relative vertical travel-times (Weglein et al., 1997; Nita and We-

glein, 2009a). Which precise events are combined is dictated by vertical travel-time ordering:

when three events satisfy what is referred to as lower-higher-lower criterion (Weglein et al.,

1997), they are combined. The criterion is refined by the parameter ε (Coates et al., 1996;

Innanen, 2017), which accounts for the finite vertical extent (in time or pseudo-depth) of the

contributing sub-events.

The domain in which internal multiple predictions are calculated can have a major impact

on the fidelity of the result, because the vertical extent of sub-events, which drives the

selection of ε, can be simple in one domain and complex in another. In the standard form

of the algorithm, in which calculations occur in the wavenumber / pseudo-depth domain,

it has been pointed out that a constant ε will tend to lead to high-angle artifacts in the

prediction (Innanen and Pan, 2015); this and any other non-stationarity can be mitigated

by incorporating varable ε values. However, (Sun and Innanen, 2018) point out that sub-

events in a plane-wave formulation appear to be almost entirely stationary in their vertical

τ extent as the ray-parameter p varies. Empirically the plane wave domain appears to be

the least susceptible to large-angle artifacts.

These factors motivate us to implement and analyze elastic inverse scattering internal

multiple prediction, and to do so with a plane-wave (τ -p) formulation. In doing so I extend

the theory for elastic prediction from 2D to 3D, and then present the first numerical ex-

amples of fully elastic internal multiple prediction on synthetic seismic records beyond the

quasi-analytic single-trace examples of (Matson, 1997). A number of practical issues must

be addressed for this to happen. Wave-mode conversions in seismic records have an effect

on the ease with which the lower-higher-lower criterion can be applied, making, amongst
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other things, data pre-processing and preparation more complex. How to formulate elastic

prediction without the possibility of introducing artifacts from lower-higher-lower rule vi-

olations originating from converted-waves remains unknown (Sun and Innanen, 2017; Sun

et al., 2018a,b). However, relatively clean and well-formed predictions are possible as we

shall demonstrate, after examination of several possible approaches for multicomponent in-

put data preparation.

5.3 Multicomponent internal multiple prediction in three dimensions

To derive elastic multiple attenuation given multicomponent data, Matson (1997) decom-

posed the inverse scattering series into components related to the P- and SV-wave potentials

and adopting an isotropic-elastic-homogeneous background model. Here, I extend this pre-

diction algorithm into three dimensions and include the SH mode. Let dij(xg, xs, yg, ys, t)

represent a 3D seismic record involving a downgoing wave-mode j from the source and an

upgoing wave-mode i to the receiver, with xg and xs being inline receiver and source co-

ordinates, yg and ys being crossline receiver and source coordinates, and t being the time.

Let Dij(kixg , k
i
yg , k

j
xs , k

j
ys , ω) represent the data set Fourier transformed over source/receiver

coordinates and time, with kjxs and kjys being the x- and y-components of wavenumber con-

jugate to the source coordinate generating the jth mode, and kixg and kiyg being the x- and

y-components of wavenumber conjugate to the receiver coordinate sensing the ith mode, and

with ω being the angular frequency. The 3D algorithm for elastic internal multiple prediction
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is

bij3 (kixg , k
i
yg , k

j
xs , k

j
ys , ω)

= − 1

(2π)4

∫∫∫∫ +∞

−∞
dkmx1dk

m
y1

dknx2dk
n
y2
eiνm1 (z̃s−z̃g)e−iνn2 (z̃s−z̃g)

×
∫ +∞

−∞
dz̃1e

i(νm1 +νig)z̃1bim1 (kixg , k
i
yg , k

m
x1
, kmy1 , z̃1)

×
∫ z̃1−ε

−∞
dz̃2e

−i(νn2 +νm1 )z̃2bmn1 (kmx1 , k
m
y1
, knx2 , k

n
y2
, z̃2)

×
∫ +∞

z̃2+ε

dz̃3e
i(νjs+νn2 )z̃2bnj1 (knx2 , k

n
y2
, kjxs , k

j
ys , z̃3),

(5.1)

where

νIM =

√
ω2

(cI0)2
− (kIxM )2 − (kIyM )2 (5.2)

is the vertical component of wavenumber associated with the x- and y- components of

wavenumber kIxM and kIyM , and with the isotropic-elastic homogeneous reference velocity

cI0 of the wave-mode I ∈ {P, SH, SV }, and the source/receiver location M ∈ {g, s}. The

integration variables z̃1, z̃2, z̃3, following standard internal multiple theory, are in units of

pseudo-depth. The pseudo-depth integral limits enact the lower-higher-lower relationship,

i.e., z̃1 > z̃2 and z̃2 < z̃3. After an inverse Fourier transform over the source and receiver

lateral wavenumbers and frequency, the left hand side of equation 5.1 becomes the j → i

mode internal multiple prediction in the (xg, yg, xs, ys, t) domain. The transformed estimates

are then added to the mode-decomposed seismic records to attenuate multiples; normally

this also requires an adaptive subtraction step to manage amplitude mismatches.

The input bij1 is a mode-decomposed and weighted form of the measured seismic record

related to the jth downgoing and ith updoing wave mode:

bij1 (kixg , k
i
yg , k

j
xs , k

j
ys , z̃) = −i2νjsD

ij(kixg , k
i
yg , k

j
xs , k

j
ys , z̃), (5.3)

where Dij(kixg , k
i
yg , k

j
xs , k

j
ys , z̃) are the transformed data in the pseudo-depth domain. Pseudo-

depth is a nonlinear scaled version of vertical traveltime related to raypath, and as such

the pseudo-depth of a reflected seismic event is in general very different from the actual

depth at which the reflection occurs; for the internal multiple algorithm to work properly
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requires only that the ordering of reflections in pseudo-depth to be the same as in actual

depth. Understanding the degree to which this holds outside of a purely compressional wave

(acoustic) environment is one of the aims of our research.

5.4 Plane-wave domain formulation

The acoustic internal multiple prediction algorithm operates assuming that the ordering of

data events in pseudo-depth and/or vertical traveltime must be the same as that of the

interfaces in depth (e.g., Nita and Weglein, 2009a). Because the propagation legs of an

internal multiple in a solid medium can involve a complex series of mode-conserved and

mode-converted interactions, the elastic requirements are less straightforward. In order for a

plane-wave domain prediction algorithm to be formulated, I must examine the pseudo-depth

and/or vertical traveltime in some detail. Suppose three reflection ray-paths interact with

Figure 5.1: Ray-paths of PP-, PS- and SS-waves propagating in a reference medium through
one perturbation only. z̃ is the pseudo-depth.

the same scattering point perturbing a homogeneous isotropic-elastic (reference) medium

(Figure 5.1). The depths of these three primary reflection points would be assigned the same

pseudo-depth (during, say, the process of input data preparation for the multiple algorithm),

but different vertical traveltimes. This means integral limits for vertical traveltimes will have

to be selected with some care. What we will refer to as the pseudo-vertical traveltimes, i.e.,

vertical traveltimes associated with propagation at reference medium velocities, of these
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three reflections can be written in terms of pseudo-depth as

τ̃PP = τ̃Ps + τ̃Pg =
(
qPs + qPg

)
z̃ (5.4a)

τ̃SP = τ̃Ps + τ̃Sg =
(
qPs + qSg

)
z̃ (5.4b)

τ̃SS = τ̃Ss + τ̃Sg =
(
qSs + qSg

)
z̃, (5.4c)

where τ̃ Is is the pseudo-vertical traveltime of the down-going wave in the reference medium,

and τ̃ Ig is the pseudo-vertical traveltime of the up-going wave in the reference medium, for the

associated wave-type I ∈ {P, SH, SV }, z̃ is the pseudo-depth of the scattering perturbation

point, and qIM is the vertical component of slowness, with the superscript indicating wave

type, and the subscript indicating the source/receiver dependency:

qIM =

√
1

(cI0)2
− (pIxM)2 − (pIyM)2. (5.5)

Here cI0 represents the P- and S-wave reference medium velocities as needed, i.e., cP0 = α,

and cS0 = β. The quantities pIxM and pIyM are the horizontal slownesses for each wave type

and source versus receiver. Balanced expressions for the pseudo-vertical traveltimes of three

reflections scattered at identical pseudo-depths are therefore

τ̃PP

qPs + qPg
=

τ̃SP

qPs + qSg
=

τ̃SS

qSs + qSg
. (5.6)

By switching from wavenumber to horizontal slowness and substituting equation 5.6 into

equation 5.1, I obtain the plane-wave domain multicomponent internal multiple prediction

formula:

bij3 (pixg , p
i
yg , p

j
xs , p

j
ys , ω)

= − 1

(2π)4

∫∫∫∫ +∞

−∞
dpmx1dp

m
y1

dpnx2dp
n
y2
eiω(τ̃m1s−τ̃m1g)e−iω(τ̃n2s−τ̃n2g)

×
∫ +∞

−∞
dτ̃ im1 eiωτ̃ im1 bim1 (pixg , p

i
yg , p

m
x1
, pmy1 , τ̃

im
1 )

×
∫ Υ(τ̃mn

2 |τ̃ im1 )−ε

−∞
dτ̃mn2 e−iωτ̃mn

2 bmn1 (pmx1 , p
m
y1
, pnx2 , p

n
y2
, τ̃mn2 )

×
∫ +∞

Υ(τ̃nj
3 |τ̃mn

2 )+ε

dτ̃nj3 eiωτ̃nj
3 bnj1 (pnx2 , p

n
y2
, pjxs , p

j
ys , τ̃

nj
3 ),

(5.7)
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where

Υ(τ̃mn2 |τ̃ im1 ) =
qns + qmg
qis + qmg

τ̃ im1 , (5.8)

and where pIx and pIy are the x- and y- components of slowness for wave type I.

The pseudo-vertical traveltime τ̃ is the vertical component of traveltime in the refer-

ence medium, which in elastic media is generally distinct from the vertical travel-time τ in

the actual medium (for acoustic cases, τ̃ ≡ τ). For example, two primary events, P̀ P̀ Ṕ Ṕ

and P̀ S̀Ṕ Ṕ (where accents represent downgoing (X̀) and upgoing (X́) waves respectively),

reflected at the same depth, must have different vertical travel-times τ in the actual seis-

mic record. In contrast, the algorithm proceeds assuming the pseudo-depths of these two

reflections are the same, because of the monotonicity condition between actual depth and

pseudo-depth. In reference medium, it leads to the equivalent pseudo-vertical traveltimes τ̃

(based on equation 5.4a) because both of two reflections are recorded in P-component.

5.5 Elastic vertical traveltime monotonicity

Preparation of the input data is critical to the proper prediction of elastic internal multi-

ples, either in the wavenumber-pseudodepth domain (equation 5.1), hereafter k-z, or the

plane-wave domain, hereafter τ -p (equation 5.7). By applying the algorithm I make the

assumption that the ordering of events in the relevant domain, pseudo-depth or pseudo-

vertical traveltime, is the same as the ordering in depth of the interfaces causing the primary

reflections; equivalently stated, the pseudo-vertical traveltime and pseudo-depth are mono-

tonic functions of true depth. In the elastic case I face the added complexity that, over the

propagation path of a single event, velocity variations can occur in the same layer due to

wave-mode conversion. This can affect prediction outcomes if care is not taken during data

preparation. In this section, I introduce several possible approaches to data preparation and

analyze them in the context of the various monotonicity assumptions.
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5.5.1 Pre-stack elastic Stolt migration

Matson (1997) derives input for the k-z domain prediction by performing a pre-stack elastic

Stolt migration with a constant reference velocity for each of the P- and SV-waves. I begin

with a brief review of this approach in order to develop a clear sense of the pseudo-depths it

determines. I will refer to the pre-stack Stolt migration pseudo-depths as Stolt-depths, and

distinguish between these depths and the z̃ in equation 5.1. The pre-stack Stolt-migration

scheme involves Fourier transforming the surface data, re-gridding ω to ω(kz), and inverse

Fourier transforming to depth (Stolt, 1978). Pre-stack elastic Stolt-migration formulas for

P-P and P-SV images were obtained by Etgen (1988):

RPP (km, z) =

∫
dkh

∫
dkPz

∣∣∣∣ dω

dkPz

∣∣∣∣P (km, kh, ω(kPz ))eik
P
z z (5.9a)

RSV P (km, z) =

∫
dkh

∫
dkSVz

∣∣∣∣ dω

dkSVz

∣∣∣∣P (km, kh, ω(kSVz ))eik
SV
z z, (5.9b)

where kPz is determined by the P-wave dispersion relation:

kPz =
ω

α

√1− α2k2
s

ω2
+

√
1−

α2k2
g

ω2

 , (5.10)

and kSVz is determined from the SV-wave dispersion relation:

kSVz =
ω

α

√
1− α2k2

s

ω2
+
ω

β

√
1−

β2k2
g

ω2
, (5.11)

and where km, kh are the wavenumbers conjugate to the mid-point and offset coordinates,

and ks, kg are the horizontal components of the wavenumbers conjugate to the source and

receiver coordinates. They are related by

ks =
km − kh

2
, (5.12a)

kg =
km + kh

2
. (5.12b)

As suggested by equation 5.9, the first step of pre-stack elastic Stolt-migration is to inter-

polate the angular frequencies on the ω-axis onto a regular grid of vertical wavenumber kz
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values for both P- and SV-components. The re-gridding requires ω to be evaluated as a

function of kz. For PP data, ω(kPz ) and its Jacobian expression

∣∣∣∣ dω

dkPz

∣∣∣∣ was introduced by

van Trier (1985). Etgen (1988) presented the P-SV extension, i.e., the formulas for ω(kSVz )

and the Jacobian

∣∣∣∣ dω

dkSVz

∣∣∣∣.
5.5.2 Stolt depths and the plane-wave transform

Stolt migration can be understood as reconstructing the reference medium propagation path

and reflection points which match the seismic data. For example, a wave scattering from

four perturbations at various lateral x and vertical z positions, illustrated in Figure 5.2a,

is interpreted in terms of the single interaction and propagation in the reference medium

with constant background velocities illustrated in Figure 5.2b. The raypaths generate equal

(b)(a)

Figure 5.2: The commons and differences of wave propagation path in actual and reference
medium. (a) Ray-path in actual medium with offset: x, horizontal slowness: ps and pg, and
reflection depth: z; (b) Ray-path in the reference medium with offset: x, horizontal slowness:
ps and pg, reflection depth: z̃.

vertical traveltimes, therefore I have

τmn =
N∑
i=1

qwi
i zi = (qns + qmg )z̃stolt, (5.13)

where τmn is the actual vertical traveltime with incident wave-type n and received wave-

type m, m,n ∈ {P, SH, SV }, qwi
i is the vertical slowness for each segment of ray-path with

associated wave type wi, N is the number of raypath segments, zi is the vertical component

of each raypath segment, and z̃stolt is the Stolt-depth in the reference medium.
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Equation 5.13 is suggestive that implementing internal multiple prediction with the input

created by elastic Stolt-migration in the pseudo-depth domain (equation 5.1) will be essen-

tially equivalent to predictions generated using equation 5.7 with input generated through

the plane-wave transform (as discussed by Sun and Innanen, 2018), provided the vertical

travel-time stretching described by equation 5.8 is invoked to accommodate wave conversion.

However, both elastic Stolt migration and plane-wave with time-stretching approaches allow

only for single wave-mode conversions at the reflection point. Both may produce inappro-

priate inputs (z̃ 6= z̃stolt, τ̃ 6= τ) if wave-mode conversions occur at transmission points in the

real path of the wave. This is particularly problematic in the layered medium approximation

(i.e., the 1.5D case), wherein source and receiver have identical horizontal slownesses, i.e.,

ps = pg.

5.5.3 Data preparation based on the high-resolution Radon transform

Sub-event ordering within the input to internal multiple prediction is a more complex issue

for solid media than it is in the acoustic approximation. In 1.5D, stacking velocities can

be effective guides to proper input data preparation. Each event in the input data in the

offset-time domain has an associated velocity vb, with a value decided such that its arrival

times best fit with

t2 = t20 +
x2

v2
b

, (5.14)

where x is offset. The vb for each reflection can be calculated by hyperbolic Radon transform

(Trad et al., 2002):

m(τ0, vb) =

∫ xmax

xmin

d

(
t =

√
τ 2

0 + x2/v2
b , x

)
dx, (5.15)

where m(τ0, vb) are the data in Radon space, τ0 is the two-way zero-offset travel time, i.e.,

the time axis in hyperbolic Radon space, d(t, x) is the data in offset-time domain. High

resolution Radon methods treat this transform as an inverse problem, solved with an iterative

re-weighted least squares algorithm. The best-fitting velocity model as retrieved in the
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hyperbolic Radon space can be transferred into input data space using elliptical Radon

transform:

d̂(τ, p) =

∫ vmax

vmin

m

(
τ0 =

τ√
1− p2v2

b

, vb

)
dvb, (5.16)

where p is the horizontal slowness; τ is the vertical travel time, i.e., the time axis in linear

Radon space, and vb is the best-fitting velocity for hyperbolic events. The relationship

between the vertical travel-time and the pseudo-depth using the best-fitting velocity model

z̃b can be written as

τmn = (q̃ns + q̃mg )z̃b, (5.17)

with what I will refer to as the pseudo-vertical slowness on the source side being

q̃ns =

√
1

(vmnb )2
− (pns )2, (5.18)

and likewise the pseudo-vertical slowness on the receiver side being

q̃mg =

√
1

(vmnb )2
− (pmg )2. (5.19)

The elastic internal multiple prediction algorithm in the plane-wave domain can be reformu-

lated in terms of these best-fit stacking velocity τ quantities as

bij3 (pig, p
j
s, ω) = − 1

(2π)2

∫∫ +∞

−∞
dpm1 dpn2e

iω(τm1s−τm1g)e−iω(τn2s−τn2g)

×
∫ +∞

−∞
dτ im1 eiωτ im1 bim1 (pig, p

m
1 , τ

im
1 )

×
∫ Γ(τmn

2 |τ im1 )−ε

−∞
dτmn2 e−iωτmn

2 bmn1 (pm1 , p
n
2 , τ

mn
2 )

×
∫ +∞

Γ(τnj
3 |τmn

2 )+ε

dτnj3 eiωτnj
3 bnj1 (pn2 , p

j
s, τ

nj
3 ),

(5.20)

with

Γ(τmn2 |τ im1 ) =
q̃ns + q̃mg
q̃is + q̃mg

τ im1 . (5.21)

The input is bij1 (pig, p
j
s, τ) = −i2qsDij(pig, p

j
s, τ); the weight qs is the same as that in equa-

tion 5.5. Dij(pig, p
j
s, τ) is the coupled plane wave transformation of the data set in its original

source-receiver-time coordinate system.
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5.5.4 Analysis of the altered plane-wave algorithm

I stated above that, in the layered-medium approximation, a τ -p input based on stacking

velocities goes some distance towards generating input which is less sensitive to complex

conversion histories within sub-events. This statement requires some justification. Consider

a P-wave incident on a two-interface elastic-isotropic layered medium. The ray-paths of all

primary reflections (neglecting Snell’s law) are illustrated in Figure 5.3. Consider further the

analytically-calculated vertical traveltimes of these events from the two interfaces, which are

plotted in Figures 5.4a and 5.4d. Because of wave-mode conversion, the vertical traveltimes

of primary events reflected from the same interfaces are significantly separated. Appropriate

input preparation would re-map reflections from one interface into the same pseudo-depth—

or, at any rate, proximal pseudo-depths, ones which are within one ε of each other.
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Figure 5.3: Ray paths of all primary events in multicomponent reflected by the two interfaces.
(a) P-P component. (b) P-SV component.

The Stolt-depths of the reflections, obtained using equation 5.13, are plotted in Fig-

ures 5.4b and 5.4e. In Figure 5.4b the two primaries reflected by the first interface are

re-mapped to the same pseudo-depth using prestack elastic Stolt-migration. However, the
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Figure 5.4: Comparison of vertical traveltimes, Stolt-depths, and pseudo-depths generated
using best-fit stacking velocity. (a) The vertical travel-times of two primary reflections
from the first interface. (b) Stolt-depths for the first interface primaries. (c) Best-fit pseu-
do-depths for the first interface primaries. (d) Vertical travel-times of primary reflections
from the second interface. (e) Stolt-depths for the second interface primary events. (f)
Best-fit pseudo-depths for the second interface primary events.

process spreads reflections caused by the second interface out into a wide range of pseudo-

depths, separated by much more than the maximum ε admitted by the internal multiple

prediction. The reflections P̀ P̀ Ṕ Ṕ and P̀ P̀ ŚŚ/P̀ S̀Ṕ Ś are migrated into similar depths,

whereas P̀ P̀ Ṕ Ś has been over-migrated, and others have been under-migrated. I expect,

based on this, Stolt-migrated/time-stretched inputs to create havoc within a multicompo-

nent internal multiple prediction. For comparison I next calculate the best-fitting stacking

velocity for each reflection, shown in Table 5.1; then, based on these, all reflection pseudo-

depths (via equation 5.17). These are plotted in Figure 5.4c and 5.4f. These are not correct

layer velocities, but are derived from basic data characteristics, and so they do not place all
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Ray-path in P-P model Best-fitting velocity vs (m/s)

P̀ Ṕ 2000

P̀ P̀ Ṕ Ṕ 2646

P̀ P̀ ŚṔ /P̀ S̀Ṕ Ṕ 2306

P̀ S̀ŚṔ 2000

Ray-path in P-SV model Best-fitting velocity vs (m/s)

P̀ Ś 1549

P̀ P̀ Ṕ Ś 2314

P̀ P̀ ŚŚ/P̀ S̀Ṕ Ś 2026

P̀ S̀ŚŚ 1756

Table 5.1: The best fitting velocity for each ray-path.

of the reflections from the second interface at the same pseudo-depths. However, compared

with the pre-stack elastic Stolt-migration depths, the reflections from the first interface, in

Figure 5.4c, and the reflections from the second interface, in Figure 5.4f, all cluster within

the bounds of a reasonably large ε value. Short-path internal multiples may be missed in

predictions with slightly inflated ε values (e.g., Innanen, 2017), but the problem of multiple

conversions along ray-paths should be significantly reduced.

5.6 Developing an elastic internal multiple prediction workflow

Possibly as the result of the difficulties described in the previous section, no numerical

examples of multichannel inverse scattering series internal multiple predictions, on synthetic

or field data, have to our knowledge been published. In this section I present and analyze

a synthetic example of the prediction algorithm embodied in equation (5.20), with detailed

discussion of the data preparation and required pre-processing.

5.6.1 Model parameters

A three-layer elastic model is built to create synthetic seismic records upon which elastic

multiples can be predicted, and the pre-processing and prediction response issues discussed
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above can be analyzed. The geological model and model parameters are plotted in Figure 5.5.

From top to bottom, the P-wave velocities are [2000, 3500, 2500]m/s, the S-wave (meaning

only SV-wave for all forthcoming numerical examples) velocities are [1200, 2000, 1300]m/s,

and the densities are [1.5, 2.25, 1.6]g/cm3. A P-wave source is located in the top and center

of the model, and receivers are laid out with a 4m interval at the same depth. With four

absorbing boundaries (dashed line in the model shown in Figure 5.5), the multi-component

shot gather is generated using elastic finite differences SOFI2D (Bohlen, 2002).

Figure 5.5: Geological model and model parameters. The left panel shows a three layers
geological model, the right panels indicate model parameters for P-, S-wave velocities, and
density. From top to bottom, vp = [2.0, 3.5, 2.5] in km/s, vs = [1.2, 2.0, 1.3] in km/s,
ρ = [1.5, 2.25, 1.6] in g/cm3.

5.6.2 Data events

In Figure 5.6 the radial and vertical components of the single shot gather generated from the

model illustrated in Figure 5.5. Prior to the main preprocessing, the data are transformed

into their P- and S-wave components by calculating their divergence and curl (Dougherty

and Stephen, 1988; Bohlen, 2002; Morse and Feshbach, 1953). The decomposed P- and S-

wave components of the data are illustrated in Figure 5.7, with all reflection events labelled.

The amplitude polarity is symmetric across zero offset in the P-wave record, and is reversed

in the S-wave record. In Figure 5.7, both for P- and S-wave components, solid lines and
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Figure 5.6: The multicomponent seismic records generated using model shown in Figure 5.5.
(a) the radial component of the recorded data, (b) the vertical component of the recorded
data.

the label Pr are used to indicate primaries, and the label IM is used to indicate internal

multiples (dashed lines indicating first order multiples, dash-dotted lines indicating second

order multiples, and dotted lines indicating third order multiples). Details of labels for all

reflection events are provided in Table 5.2.

In Table 5.2, the superscript delineates wave-type. For primaries (Pr), the first subscript

number represents the corresponding reflector. The second subscript is related to the number

of S-wave ray-path segments in the event. It equals to the number of S-wave ray-path

segments plus one in the P-wave mode, and equals to the number of S-wave ray-path segments

directly in the S-wave mode. For instance, PrP22 is the P-wave component of the primary

event that is reflected by the second reflector, and that is associated with two possible travel-

paths: P̀ P̀ ŚṔ and P̀ S̀Ṕ Ṕ , both of which involve a single S-wave propagation leg, and both

94



Figure 5.7: Synthetic displacement data in Figure 5.6 transformed to P- and S- components.
Pr denotes primary events, which are indicated by solid lines. IM represent the internal
multiples. All primaries are indicated in red solid lines. First-order internal multiples are
labelled with magenta dashed-dotted lines. Second-order multiples are labelled with cyan
dashed-dotted lines. Third-order multiples are labelled with yellow dashed-dotted lines.
Further event details are provided in Table 5.2. (a) P-wave component of the recorded data.
(b) S-wave component of the recorded data.

of which are recorded at the same time. For internal multiples (IM), the first subscript

number is the order of the event, and the second number of subscript is selected using same

system used for primaries. For example, IMS
22 includes all second order internal multiples

received as S-wave components, which involve S-wave travel-paths:

P̀ P̀ Ṕ P̀ Ṕ P̀ ŚŚ, P̀ P̀ Ṕ P̀ Ṕ S̀Ṕ Ś,

P̀ P̀ Ṕ P̀ ŚP̀ Ṕ Ś, P̀ P̀ Ṕ S̀Ṕ P̀ Ṕ Ś,

P̀ P̀ ŚP̀ Ṕ P̀ Ṕ Ś, P̀ S̀Ṕ P̀ Ṕ P̀ Ṕ Ś.

95



5.6.3 Preparation of input data for prediction

In this section we will set out the two procedures necessary to prepare input data for the

two prediction methods discussed in the previous section.

Pseudo-depth domain input via elastic Stolt migration

The inputs for the elastic prediction method described by Matson (1997) are pre-stack elas-

tic Stolt-migrations, generated using two constant background velocities for P- and S-waves.

The re-gridding of angular frequency and the calculation of the Jacobian of the coordinate

transform are the key elements of the creation of the input. In Figure 5.8, the re-gridding

from angular frequency to vertical wavenumber kz in terms of the wavenumber kx and the

horizontal slowness p are illustrated, for the P-P and P-S components, i.e., ω(kPz ) and ω(kSz ),

respectively. In Figure 5.9 the migrated images, generated (with reference P- and S-wave

velocities matching those of the top layer) using wavenumber and horizontal slowness vari-

ables for P-P and P-S components, are plotted. The input for internal multiple prediction

in the pseudo-depth domain are obtained by multiplying these data by the weight factor

−2iνPs (see Weglein et al., 1997, for a discussion of this factor in the context of acoustic

prediction).

Let us compare Figures 5.9a-b with 5.9c-d, i.e., inputs generated in the wavenumber

domain versus those generated in the slowness domain. The P-P panel in the wavenum-

ber domain exhibits a marked distribution or smearing of the events along the Stolt-depth

axis especially as |kx| increases; the P-S panel in addition to this exhibits strong aliasing.

Whereas, in the p domain both P-P and P-S map data events to forms which are com-

pact along the Stolt-depth axis across the full p range. However, issues remain: I observe

hyperbolic aliasing events in the P-P component and elliptical aliasing events in the P-S

component, which, though not as severe as the artifacts in the wavenumber domain, will

nonetheless have an impact on prediction.

Continuing, the final migrated image traces for the P-P and P-S components are plotted
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Figure 5.8: Re-gridding from angular frequency to vertical wavenumber ω(kz): (a) ω(kx, k
P
z ).

(b) ω(kx, k
S
z ). (c) ω(p, kPz ). (d) ω(p, kSz )..
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Figure 5.9: The pre-processed data inputs, ready for pseudo-depth domain prediction, gen-
erated using pre-stack elastic Stolt migration with two constant background velocities. (a)
The P-P migrated image R(kx, z) in the wavenumber domain. (b) The P-S migrated im-
age R(kx, z) in wavenumber domain. (c) The P-P migrated image R(p, z) in the horizontal
slowness domain. (b) The P-S migrated image R(p, z) in the horizontal slowness domain.
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Figure 5.10: Comparisons of elastic Stolt-migrated traces and zero-offset trace. Black in-
dicates zero-offset trace, red represents migrated traces with wavenumber, blue delineates
migrated traces using horizontal slowness (a) for P-P reflection. (b) for P-S reflection.

99



in Figure 5.10, those generated from the kx domain input and from the p domain input. The

zero-offset traces are plotted against z̃stolt = τ/(qPs + qSg ) for comparison. The elastic Stolt-

migrated traces generated using the horizontal slowness match almost exactly with vertical

travel-time results in equation 5.13; the migrated traces derived from the wavenumber gen-

erates significant issues, in particular in the P-S component. Implementing multicomponent

internal multiple prediction in the plane-wave domain with vertical travel-time stretching is

identical to implementation of prediction algorithm in the pseudo-depth domain, but with

fewer artifacts. However, both of these two approaches, for reasons described above, will

require impractically large ε values.

Plane-wave domain input via Radon transform

In the plane-wave domain, inverse series internal multiple predictions can be implemented

by exchanging the standard integral limits with the appropriate weighted time quantity; for

instance, with the vertical-traveltime stretching condition (equation 5.8) or the best-fitting

condition (equation 5.21). Let us next compare inputs derived in this domain to the standard

domains discussed in the previous section.

In Figure 5.11, the traditional plane-wave transformations of the P-P and P-S compo-

nents of the data are plotted. Best-fitting velocity models are next determined. Following

(Trad et al., 2002), a high-resolution hyperbolic Radon transform is performed for each data

component. To locate the maxima which imply best-fitting velocities, in particular for the

larger vertical travel-times, I apply a gain filter along the time-axis proportional to tα. A

non-uniform velocity interval ∆v would tend to enhance the sparseness of the Radon panel,

however, this non-uniformity is empirically found to introduce scatter in the best-fitting ve-

locity picking. Hence, a small uniform interval (∆v = 20m/s) was chosen for the velocity

grid used in the hyperbolic Radon transform. The Radon panel with the best-fit velocity

picks are plotted in Figure 5.12; I find that there is no need to obtain a best-fitting velocity

for every reflection, particularly at large vertical travel-times, where changing the details
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of wave mode conversions produces less distinct outcomes. In Figure 5.13, the best-fitting

velocity models for the synthetic P-P and P-S components are plotted.

Figure 5.11: Linear Radon transform of the data plotted in Figure 5.7. (a) P-wave component
in the linear Radon space. (b) S-wave component in the linear Radon space.

5.6.4 Numerical predictions of elastic internal multiples

Because all of the inputs I have examined in the pseudo-depth domain exhibit significant

aliasing, all numerical predictions of multicomponent internal multiples in this section are

computed in the plane-wave domain. Here I examine and compare elastic internal multiple

predictions generated using both vertical travel-time stretching (i.e., equation 5.8) and best-

fit velocities (i.e., equation 5.21).

Predictions with vertical travel-time stretching

Analysis of vertical travel-time stretching was suggestive that large values of the search

parameter ε would be needed (which put the prediction in jeopardy of missing important
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Figure 5.12: Hyperbolic Radon transforms of the data plotted in Figure 5.7, with best-fitting
velocity picks overlain. Yellow circles indicate the maxima picked for each reflection. (a) The
P-P component in the hyperbolic Radon space. (b) The P-S component in the hyperbolic
Radon space.

multiple events). Therefore, ε = 200ms was selected, which is twice the dominant period

of the source wavelet (96ms). In Figure 5.15 the predicted results for the P-P and P-S

components are plotted, using the same event labeling as Figure 5.7. I observe that most

of the elastic internal multiples are correctly predicted in this panel, but, several undesired

events or artifacts appear also. For instance, predictions at the arrival times of two primary

reflections are present at near-offsets in the P-P component prediction, and one primary

appeared in prediction of P-S component. These artifacts correspond to event combinations

satisfying the lower-higher-lower condition incorrectly, because the vertical time-stretching

method was unable to organize primaries such that their actual depths increase monotonically

with their pseudo-vertical traveltimes. This is exemplified in Figure 5.16, in which the ray-

path combinations causing one of the artifacts in Figure 5.15 are illustrated.
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Figure 5.13: Best-fitting velocity models in the linear Radon space picked from Figure 5.12.
(a) P-wave component velocity. (b) S-wave component velocity.

Prediction with best-fit reference velocities

A relatively large ε is also expected to be necessary for multicomponent internal multiple

prediction using velocities derived from the best-fit approach. Hence, I again employed

ε = 200ms in this case. The P-P and P-S component predictions are plotted in Figure 5.17.

Unlike the prediction with vertical traveltime-stretching method, however, using this same

value for ε, no artifacts correlated with primary events appear in either the P-P and P-S com-

ponent predictions, and all elastic internal multiples at different orders are predicted at their

correct traveltimes. I conclude that prediction using best-fit reference velocities produces

much better results than with either vertical-traveltime-stretching or prestack elastic Stolt-

migration. However, this still took place in the context of large search parameter values,

which increase the danger of missing prediction of the shorter-path internal multiples.

Mixed stretching / best-fit velocities

A combination of vertical travel-time stretching and best-fit reference velocities when com-

bined appear to optimize the elastic predictions. By mixing the two, I find I am able
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to produce the predictions plotted in Figure 5.18 using a much smaller search parameter

(ε = 96ms) in both the P-P and P-S panels. Once again, no artifacts are introduced, and in

this case a more inclusive search for sub-events is permitted.

5.7 Conclusion

Accurate onshore internal multiple prediction and removal in the absence of clearly iden-

tifiable generators and velocity models is an increasingly high priority problem in seismic

data processing especially in unconventional reservoir characterization where sophisticated

quantitative interpretation is apt to be applied. The inverse scattering series internal multi-

ple attenuation approach in principle addresses these needs. A full practical solution of this

problem using the inverse series approach requires that (1) multicomponent acquisition, and

(2) the possibility of events undergoing one or more elastic conversions, both be admitted.

Elastic theory for internal multiple prediction was set out in the 1990s and examined with

analytic data, but no numerical examples or analysis of the methodology, on even simple

synthetics, have ever appeared in the literature. Here I extend the theory from 2D to 3D,

implement it numerically, and examine the challenges of its numerical implementation, which

are significant.

The algorithm formulation is in the plane-wave domain, which requires the relative or-

dering of reflected seismic events in true depth, pseudo-depth, and pseudo vertical-traveltime

to be considered. It appears that all possible elastic internal multiples can be estimated by

appropriate nonlinear calculations on weighted, P- and S- decomposed seismic records, with

no subsurface information provided. However, the bar for input preparation, in which all

data events must appear at vertical travel-times or pseudo-depths that are monotonic func-

tions of actual reflection depths, is exceedingly high. Multiple wave-mode conversions within

events which are treated with linear elastic pre-processing (which allow for single mode con-

versions only) greatly increase the chance of input events violating the lower-higher-lower
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relationship, and introducing artifacts.

I propose and examine several possible methods for multicomponent input preparation,

such as pre-stack elastic Stolt-migration, vertical travel-time stretching, and incorporation

of best-fit stacking velocities. Their effectiveness, and search parameter dependencies are

analyzed, leading to several conclusions: (1) neither pre-stack elastic Stolt-migration nor

vertical travel-time stretching appropriately honour the requirement for monotonicity; (2)

input prepared with best-fit reference velocities is closer to obeying the monotonicity re-

quirements, but in practice must be allowed a relatively large searching parameter, and this

suppresses prediction of all shorter-path multiples. A combination of vertical travel-time

stretching and best-fit reference velocities allows the search parameter to be chosen with a

size comparable to those used in acoustic prediction, while correctly predicting all orders of

multiple. These expectations are borne out with synthetic elastic data examples, which are

the first elastic inverse series predictions to be presented.
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Label-P Primaries in P-mode Label-S Primaries S-mode

PrP1 P̀ Ṕ PrS1 P̀ Ś

PrP21 P̀ P̀ Ṕ Ṕ PrS21 P̀ P̀ Ṕ Ś

PrP22 P̀ P̀ ŚṔ & P̀ S̀Ṕ Ṕ PrS22 P̀ P̀ ŚŚ & P̀ S̀Ṕ Ś

PrP23 P̀ S̀ŚṔ PrS23 P̀ S̀ŚŚ

Label-P 1st-order IMs in P-mode Label-S 1st-order IMs in S-mode

IMP
11 P̀ P̀ Ṕ P̀ Ṕ Ṕ IMS

11 P̀ P̀ Ṕ P̀ Ṕ Ś

IMP
12 P̀ P̀ Ṕ P̀ ŚṔ IMS

12 P̀ P̀ Ṕ P̀ ŚŚ

IMP
13 P̀ P̀ Ṕ S̀ŚṔ IMS

13 P̀ P̀ Ṕ S̀ŚŚ

IMP
14 P̀ P̀ ŚS̀ŚṔ IMS

14 P̀ P̀ ŚS̀ŚŚ

IMP
15 P̀ S̀ŚS̀ŚṔ IMS

15 P̀ S̀ŚS̀ŚŚ

Label-P 2nd-order IMs in P-mode Label-S 2nd-order IMs in S-mode

IMP
21 P̀ P̀ Ṕ P̀ Ṕ P̀ Ṕ Ṕ IMS

21 P̀ P̀ Ṕ P̀ Ṕ P̀ Ṕ Ś

IMP
22 P̀ P̀ Ṕ P̀ Ṕ P̀ ŚṔ IMS

22 P̀ P̀ Ṕ P̀ Ṕ P̀ ŚŚ

IMP
23 P̀ P̀ Ṕ P̀ Ṕ S̀ŚṔ IMS

23 P̀ P̀ Ṕ P̀ Ṕ S̀ŚŚ

IMP
24 P̀ P̀ Ṕ P̀ ŚS̀ŚṔ

IMP
25 P̀ P̀ Ṕ S̀ŚS̀ŚṔ

Label-P 3rd-order IMs in P-mode

IMP
31 P̀ P̀ Ṕ P̀ Ṕ P̀ Ṕ P̀ Ṕ Ṕ

IMP
32 P̀ P̀ Ṕ P̀ Ṕ P̀ Ṕ P̀ ŚṔ

Table 5.2: The meaning of symbols used in Figure 5.7. Pr labels primary events and IM
labels internal multiples. The superscript represents the wave mode at the receiver. In the
primary subscripts, the first number labels the related reflector, and the second number is
the number of S-wave legs between the fist and last path plus one. In the internal multiple
subscripts, the first number labels the multiple order, and the second number again represents
the number of S-wave legs of the event.
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Figure 5.14: Three inputs of elastic internal multiples prediction using plane wave domain
ISS algorithm for a P-wave source in positive p range. (a) The input bṔ P̀1 , (b) the input bŚP̀1 ,

(c) the input bṔ S̀1 .

Figure 5.15: Plane wave domain multicomponent internal multiple prediction using the
vertical traveltime-stretching condition with ε = 200ms. (a) P-wave component; (b) S-wave
component.
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Figure 5.16: Examples of false sub-event combinations leading to artifacts in Figure 5.15.
The first row is one false combination for generating P̀ P̀ ŚṔ . The second row is one false
combination for reconstructing P̀ S̀ŚṔ . The 3rd row is one false combination for predicting
P̀ S̀ŚŚ.
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Figure 5.17: Plane wave domain multicomponent internal multiple prediction using the
best-fit reference velocities, with ε = 200ms. (a) P-wave component prediction; (b) S-wave
component prediction.

Figure 5.18: Plane wave domain multicomponent internal multiple prediction using a mixed
vertical travel-time stretching and best-fit reference velocity approach, with ε = 96ms. (a)
P-wave component prediction; (b) S-wave component prediction.
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Chapter 6

Conclusions and future study

Prediction of internal multiples in complex media, caused by unknown generators, is an

increasingly high-priority problem, because of the growing roles of quantitative amplitude

analysis and inversion in complex reservoir environments. Inverse scattering series internal

multiple prediction algorithm is a powerful tool and data-driven method to predict internal

multiples in such environments. However, implementation of the algorithm encounters great

challenges, such as optimizing and formulating algorithms in a range of domains, selection

of ad hoc parameters, suppression of various (e.g., high-angle) artifacts, and computational

costs. In this thesis, to address these issues, I present an implementation of the inverse

scattering series internal multiple prediction algorithm in the coupled plane-wave domain.

Comparing prediction inputs obtained from a range of calculation domains, the analysis

shows that the horizontal-slowness-related inputs allow a relatively stationary optimum ε

value by concentrating the amplitude distribution of each sub-event, which gives traceable

parameter selection and successfully eliminate the high-angle artifacts in the prediction.

Moreover, the input in the coupled plane-wave domain appears as a highly sparse matrix

which significantly reduces its computational expense.

Based on the plane-wave inverse scattering series prediction algorithm, the input of mul-

tidimensional internal multiple prediction can be obtained by the couple plane-wave trans-

formed dataset which requires shots occupying each receiver’s location. The high-resolution

Radon transform, as a proven well-established interpolation method, reduces this depen-

dency. To accommodate internal multiple prediction in common-midpoint (CMP) domain, I

proposed a modified version of the algorithm appropriate for this domain. Numerical analysis

indicates that, in contrast to the shot/receiver gather prediction, the CMP domain internal
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multiples prediction algorithm is relatively dip-angle independent. Therefore, for dipping

strata with small dipping angles, multidimensional (dipping-reflector related) internal mul-

tiples can be predicted using the simplified 1.5D algorithm with what are likely acceptable

error levels. Beyond that, the symmetry of CMP gathers also supports practical numerical

features, such as taper windows for elimination of aperture artifacts, which are not available

in the shot/receiver gather algorithms.

To further support the use of inverse scattering series methods in onshore internal multi-

ple prediction, I extend elastic inverse scattering series internal multiple prediction algorithm

from 2D to 3D, accommodating multicomponent acquisition and the possibility that reflected

events undergo more than one elastic wave-mode conversion during their propagation histo-

ries. The linear pre-processing for elastic prediction in the presence of multiple wave-mode

conversions greatly increases the chance of input events violating the “lower-higher-lower”

event ordering rules of the inverse series approach, thereby introducing artifacts. Its im-

plementation was numerically examined and analyzed along with the investigation of the

ordering rules, which are based on elastic monotonicity conditions amongst actual depths,

pseudo-depths, and pseudo-vertical traveltimes. Several possible approaches are proposed

and analyzed to produce elastic prediction input which honours the same relative ordering

of events as those produced in actual depth. Numerical examples on a synthetic benchmark

dataset indicates all possible elastic internal multiples are estimated with best-fit reference

velocities, but that a relatively large search parameter is required. A combination of vertical

traveltime stretching and best-fit reference velocities allows the search parameter to be cho-

sen with a size comparable to those used in acoustic prediction, while correctly predicting

all orders of multiple.

The inverse scattering series internal multiple algorithm still needs to be examined more

closely in the context of field seismic records, even though many challenges of its imple-

mentation have been solved and optimized in this thesis. Full waveform inversion (FWI)
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and least-squares reverse time migration (RTM) are powerful and promising techniques to

achieve high-resolution estimation of subsurface properties and images by minimizing the

residuals between measured data and modeled data. Understanding the behaviour of pri-

maries and multiples in reduction of residuals may provide valuable information of optimum

direction; so, even in methods in which in principle multiples should not be removed from

data, accurate predictions and the ability to discriminate is likely very important. Further-

more, the separate calculation of FWI sensitives involving direct events (standard FWI) and

primary events (within the relatively recent advances in reflection FWI) could potentially be

augmented with sensitivity calculations associated with multiples in isolation; such future

endeavours based on careful prediction may lead to high-resolution delineation of reservoir

target zones.
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Appendix A

Diagonalization and rotation of elastic wave operator,

Green function, and scattering potential

A.1 Elastic wave operator and scattering potential

Start with the stress-strain relation for an isotropic elastic medium,

σij = λDδij + 2µeij (A.1)

where, i, j = 1, 2, 3, λ and µ are knowns as Lamé constants, D =
∑3

k=1 ekk = ∇ · u is the

dilatation.

Euler’s equation of motion will reduce to Cauchy’s equation of motion if the infinitesimal

theory of elasticity is considered,

∂~σ

∂~r
+F + ρω2u = 0 (A.2)

Considering stress-strain relation, the first term in the equation of motion can be ex-

panded as, in vector notation,

∂~σ

∂~r
= (λ+ µ)∇(∇ · ~u) + (∇λ)∇ · ~u + µ∇2~u + (∇~u + ~u∇) · (∇µ) (A.3)

Reword the Cauchy’s equation of motion by substituting the expansion (equation A.3)

and leaving out the body forces,

(λ+ µ)∇(∇ · ~u) + (∇λ)∇ · ~u + µ∇2~u + (∇~u + ~u∇) · (∇µ) + ρω2u = 0 (A.4)

Based on Eq. (A.4), the wave equation in frequency domain for an elastic isotropic

medium can be derived and expressed in terms of propagating operator,

L(r, ω)u(r, ω) = 0 (A.5)
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where,

Lii = ∂i[(λ+ µ)∂i] +
∑
k

∂k(µ∂k) + ρω2,

Lij = ∂i(λ∂j) + ∂j(µ∂i), i, j, k = x, y, z and j 6= i.

u = [ux, uy, uz]
T .

(A.6)

By adding a delta function as source term, Green’s function obeys a similar form, in

frequency domain, it can be expressed as,

L(r, ω)G(r, rs, ω) = −δ(r− rs) (A.7)

Consider an elastic isotropic homogeneous medium as the background medium (which

means, λ and µ do not vary with space locations), therefore, wave equation (Eq. A.7) can

be simplified as,

L0(r, ω)G0(r, rs, ω) = −δ(r− rs) (A.8)

where,

L0ii = (λ0 + µ0)∂i∂i + µ0

∑
k

∂k∂k + ρ0ω
2,

L0ij = λ0∂i∂j + µ0∂j∂i, i, j, k = x, y, z and j 6= i.

(A.9)

with γ = λ + 2µ = ρα2 and µ = ρβ2 (α and β denote the P- and S-wave velocities in

background medium), perturbations can be defined as,

aρ =
ρ− ρ0

ρ
=

ρ

ρ0

− 1 ≈ 4ρ
ρ

aγ =
γ − γ0

ρ
=

γ

γ0

− 1 ≈ 4γ
γ

aµ =
µ− µ0

µ
=

µ

µ0

− 1 ≈ 4µ
µ

(A.10)

An elastic isotropic scattering potential is the difference of wave operator in real and

reference mediums, which can be expressed as,

V = L− L0 =


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

 (A.11)
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where,

Vii = ρ0

[
ω2aρ + α2

0∂i(aγ∂i) + β2
0

∑
j 6=i

∂j(aµ∂j)
]
, i, j = x, y, z;

Vij = ρ0

[
α2

0∂i(aγ∂j)− 2β2
0∂i(aµ∂j) + β2

0∂j(aµ∂i)
]
, j 6= i.

(A.12)

A.2 Diagonalization of wave operator and Green Function

In background (elastic, isotropic, and homogeneous) medium, with body force F included,

Eq.(A.4) can be simplified as,

(λ+ µ)∇(∇ · ~u) + µ∇2~u +F + ρω2u = 0 (A.13)

Helmholtz’s theorem states that any well-defined vector can be decomposed as the sum

of a curl-free component and a divergence-free component. Therefore, we can rewrite the

particle displacement u and the body force F as,

u = ∇φ+∇×ψ

F = ∇Φ +∇×Ψ

(A.14)

where, φ and Φ are scalar potentials, ψ and Ψ are vector potentials.

Substitute decompositions of displacement and body force into equation (A.13) and do

the math, we have,

∇[(λ+ 2µ)∇2φ+ Φ + ρω2φ] +∇× [µ∇2ψ + Ψ + ρω2ψ] = 0 (A.15)

P- or S-wave equation can be obtained, by taking a divergence or a curl of equation (A.15),

respectively. Therefore, if we define a partial derivatives matrix Π (following the notation

demonstrated by Stolt and Weglein (2012)), including a divergence and a curl, which is

expressed as,

Π =

∇·
∇×

 =



∂x ∂y ∂z

0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0


(A.16)

115



Then P- and S-wave components can also be separated by acting the derivatives matrix

on the particle displacement,

ϕP
ϕS

 = Πu =

∇ · u
∇× u

 =



∂xux + ∂yuy + ∂zuz

∂yuz − ∂zuy

∂zux − ∂xuz

∂xuy − ∂yux


=



∇ · u

(∇× u)x

(∇× u)y

(∇× u)z


(A.17)

Beyond that, the inverse of diagonal matrix can be calculated by its transpose by pre-

multiplied an inverse Laplacian operator (See in Appendix B). In equation, it’s shown as,

Π−1 = ∇−2ΠT (A.18)

Stolt and Weglein (2012) also indicated that the wave operator can be diagonalized into P-

and S-wave operators by pre-multiplying the partial derivatives matrix and post-multiplying

its inverse. Formally,

L0D = ΠL0Π
−1 =



L0P 0 0 0

0 L0S 0 0

0 0 L0S 0

0 0 0 L0S


(A.19)

where, LP and LS are P- and S-wave operators, written as,

L0P = (λ+ 2µ)∇2 + ρω2

L0S = µ∇2 + ρω2

(A.20)

With the diagonalized wave operator L0D, the wave equation for an isotropic elastic

medium becomes,

L0DΠu =

LPϕP

LSϕS

 = 0 (A.21)
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Similar equations included diagonalized Green’s function for real and reference medium

can be expressed as,

LD(r, ω)GD(r, rs, ω) = −δ(r− rs) (A.22a)

L0D(r, ω)G0D(r, rs, ω) = −δ(r− rs) (A.22b)

where,

GD = ΠGΠ−1 =



GPP GPSx GPSy GPSz

GSxP GSxSx GSxSy GSxSz

GSyP GSySx GSySy GSySz

GSzP GSzSx GSzSy GSzSz


(A.23a)

G0D = ΠG0Π
−1 =



G0P 0 0 0

0 G0Sx 0 0

0 0 G0Sy 0

0 0 0 G0Sz


(A.23b)

Equations A.23 indicate that,the Green’s function can be rewritten into 4×4 matrix with

respect to P- and S-wave components, by applying the transformation ΠGΠ−1, which also

works for the propagating operator (euqation A.19). For inhomogeneous isotropic elastic

(real) medium, the diagonal elements of GD correspond to Green’s functions of PP and

x−, y−, z− components of SS waves, and off-diagonal terms relate to Green’s functions of

converted waves from one to another. For homogeneous isotropic elastic (reference) medium,

the upper left diagonal term of G0D is the Green’s function for PP-wave, and other diagonal

terms correspond to x−, y−, z− components of Green’s function for SS wave, and off-diagonal

terms are zeros.
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A.3 Rotation of wave operator, Green Function, and elastic scattering po-

tential

One of the disadvantage of the diagonal matrix Π is that it maps a 3D vector into a 4D space

with only three independent dimensions present. It does separate P-wave successfully from

S-wave components, but it does not work for SV- and SH-waves. To decompose the elastic

scattering potential into P-, SH-, SV-modes, Stolt and Weglein (2012) introduced rotation

matrices by rotating S-wave components to a local system in which the third (longitudinal)

S-wave component is zero. Before the rotation, we have to rewrite the diagonal matrix in

terms of P- and S-wave wavenumbers, which is expressed as,

Π→ Πr = i



kPrx kPry kPrz

0 −kSrz kSry

kSrz 0 −kSrx

−kSry kSrx 0


= i

kPr·T
kSr×

 (A.24)

and

Π−1 → (Π−1)i =
−i

ω2


α2

0kPix 0 β2
0kSiz −β2

0kSiy

α2
0kPiy −β2

0kSiz 0 β2
0kSix

α2
0kPiz β2

0kSiy −β2
0kSix 0


=
−i

ω2

[
α2

0kPi· β2
0(kSi×)T

] (A.25)

where,

kPr = kPi =
ω

α0

kSr = kSi =
ω

β0

(A.26)

Correspondingly, 4× 4 rotation matrices can be defined for incident and reflected waves,

Ei =


1 0 0 0

0 eSV ix eSV iy eSV iz

0 −eSHx −eSHy −eSHz

 =


1 0T

0 êTSV i

0 −êTSH

 (A.27)
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and

Er =


1 0 0 0

0 eSV rx eSV ry eSV rz

0 −eSHx −eSHy −eSHz

 =


1 0T

0 êTSV r

0 −êTSH

 (A.28)

also, we have,

EET =


1 0 0

0 1 0

0 0 1

 (A.29)

and

ETEΠ = Π (A.30)

which states that the inverse of E equals to its transpose.

After applied the rotation matrix, the x−, y−, z− components of S-wave are decomposed

into SH- and SV-modes. Invoking the orthogonality relations, the combined diagonal and

rotation matrices for incident wave,

(Π−1)iE
−1
i = −i

[
α2

0

ω2
kPi

β0

ω
êSH

β0

ω
êSV i

]
(A.31)

for reflected wave,

ErΠr = i


kTPr
ω

β0

êTSH

ω

β0

êTSV r

 (A.32)

Therefore, we have,

ErΠr(Π
−1)iE

−1
i = I (A.33)

where, I is an identity matrix.

In conclusion, the wave equation containing Green’s function in P-, SH-, SV-modes can

be expressed as,

L(r, ω)G(r, rs, ω) = −δ(r− rs) (A.34a)

L0(r, ω)G0(r, rs, ω) = −δ(r− rs) (A.34b)
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where,

L = ErLDE
−1
i = ErΠrL(Π−1)iE

−1
i (A.35a)

L0 = ErL0DE
−1
i = ErΠrL0(Π−1)iE

−1
i (A.35b)

and

G = ErGDE−1
i = ErΠrG(Π−1)iE

−1
i =


GPP GPSH GPSV

GSHP GSHSH GSHSV

GSV P GSV SH GSV SV

 (A.36a)

G0 = ErG0DE
−1
i = ErΠrG0(Π−1)iE

−1
i =


G0P 0 0

0 G0S 0

0 0 G0S

 (A.36b)

Also, for the scattering potential, a similar form can be achieved,

V = ErΠrV(Π−1)iE
−1
i =


VPP VPSH VPSV

VSHP VSHSH VSHSV

VSV P VSV SH VSV SV

 (A.37)
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Appendix B

Derivation of diagonalization operators and its

properties

Define a partial derivative matrix,

Π =

∇·
∇×

 =



∂x ∂y ∂z

0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0


(B.1)

By pre-multiplying its transpose, produces the Laplacian ∇2 times a 3D unit operator,

ΠTΠ =

(
∇T · −∇×

)∇·
∇×

 = [∇(∇·)−∇× (∇×)]I =


∇2 0 0

0 ∇2 0

0 0 ∇2

 (B.2)

If Π is post-multiplied by its transpose,

Π ΠT =

 ∇·
∇×

(∇T · −∇×
)

=

∇2 0

0 −∇× (∇×)



=



∇2 0 0 0

0 ∂2
y + ∂2

z −∂y∂x −∂z∂x

0 −∂x∂y ∂2
x + ∂2

z −∂z∂y

0 −∂x∂z −∂y∂z ∂2
x + ∂2

y


(B.3)
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Operating on the P- and S-wave components vector, we have,

Π ΠT

ϕP
ϕS

 =

∇2 0

0 −∇× (∇×)


ϕP
ϕS


=

 ∇2ϕP

∇2ϕS −∇(∇ ·ϕS)


(B.4)

Here, ϕS = ∇ × u, which means ∇(∇ · ϕS) = 0. Therefore, under this condition, the

equation (B.4) can be written as,

Π ΠT

ϕP
ϕS

 = ∇2

ϕP
ϕS

 (B.5)

This implies that, under some assumptions, the inverse of partial derivative matrix can

be written as the multiplication of its transpose with the inverse of the Laplacian,

Π−1 = ∇−2ΠT (B.6)

Define P- and S-wave operators, LP and LS satisfy,

L0P = (λ+ 2µ)∇2 + ρω2

L0S = µ∇2 + ρω2

(B.7)

Using P- and S-wave operators, the wave operator for a homogeneous isotropic elastic

medium L0(x, ω), which means derivatives of λ and µ can be neglected, can be rewritten as,

L0 =


(λ+ µ)∂2

x + L0S (λ+ µ)∂y∂x (λ+ µ)∂z∂x

(λ+ µ)∂x∂y (λ+ µ)∂2
y + L0S (λ+ µ)∂z∂y

(λ+ µ)∂x∂z (λ+ µ)∂y∂z (λ+ µ)∂2
z + L0S

 (B.8)

Therefore, we have,

ΠL0 =



∂xL0P ∂yL0P ∂zL0P

0 −∂zL0S ∂yL0P

∂zL0S 0 −∂zL0S

−∂yL0S ∂xL0S 0


(B.9)
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It is worth to note that, the right hand side of equation (B.9) can be considered as the

multiplication of the diagonalized matrix and the operator Π as follow,

∂xL0P ∂yL0P ∂zL0P

0 −∂zL0S ∂yL0P

∂zL0S 0 −∂zL0S

−∂yL0S ∂xL0S 0


= L0DΠ (B.10)

where,

L0D =



L0P 0 0 0

0 L0S 0 0

0 0 L0S 0

0 0 0 L0S


(B.11)

Combine equation (B.9) and equation (B.10), which indicates the wave operator L0 can

be diagonalizable into P- and S-wave operators,

L0D = ΠL0Π
−1 (B.12)

Therefore, by pre-multiplying a partial derivative matrix, wave equation for an elastic

isotropic homogeneous medium (equation A.5) is rewritten as,

ΠL0(Π−1Π)u = 0 (B.13)

Replacing the displacement into the P- and S-wave components, the above equation can

be expressed as,

L0D

ϕP
ϕS

 = 0 (B.14)

where, Πu =

ϕP
ϕS

.

One should note that the above transformation does not diagonalize the wave equation

(Stolt and Weglein, 2012). However, the interpretation of the elements in separated P- and
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S- wave components is still reasonable, where off-diagonal terms in L0D denote wave mode

conversion from one to another.
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Appendix C

3D Multicomponent (elastic) inverse scattering series

internal multiple prediction algorithm

C.1 Elastic inverse scattering series decomposition

For an isotropic elastic medium, the wave field can be expressed as a background field adding

perturbations. Considering the homogeneous isotropic elastic medium as the background,

the Born series for an isotropic elastic medium can be written as,

G = G0 + G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ... (C.1)

As discussed above, the Green’s Function can be devised into a 3×3 matrix corresponded

to P-, SV-, and SH-wave modes with pre- or post-multiplied diagonal matrix Π and rotation

matrix E. Therefore, replacing the Green’s function G and G0 in Eq. (C.1), Born series can

be rewritten into P-, SH-, and SV-modes,

(Π−1)iE
−1
i GErΠr = (Π−1)iE

−1
i G0ErΠr + (Π−1)iE

−1
i G0ErΠrV(Π−1)iE

−1
i G0ErΠr

+ (Π−1)iE
−1
i G0ErΠrV(Π−1)iE

−1
i G0ErΠrV(Π−1)iE

−1
i G0ErΠr

+ ...

(C.2)

Combining the relationship between diagonal matrix Π and rotation matrix E (Eq. A.33),

pre-multiplying ErΠr and post-multiplied by (Π−1)iE
−1
i , applying equation A.37 to trans-

form the elastic scattering potential into P-, SH-, SV-wave modes, equation C.2 can be

simplified as,

G = G0 + G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ... (C.3)
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Recall the wave equation for inhomogeneous isotropic elastic medium, containing source

term, which can be expressed as,

L(r, ω)u(r, ω) = f (C.4)

The displacement field will be decomposed into P-, SH-, SV-wave modes by pre-multiplying

ErΠr, 
ϕP

ϕSH

ϕSV

 = ErΠru = ErΠrGf = GErΠrf = GF (C.5)

where, F = ErΠrf = [1, 0, 0]T if the incidence is a spike of P-wave only.

Incorporating equation C.5 and equation C.3, the separated scattering wavefield can be

rewritten as, in terms of background and perturbations,

DF = (G−G0)F = G0VG0F + G0VG0VG0F + G0VG0VG0VG0F + ... (C.6)

with its matrix form,
DPP DPSH DPSV

DSHP DSHSH DSHSV

DSV P DSV SH DSV SV

F

=


G0P 0 0

0 G0S 0

0 0 G0S




VPP VPSH VPSV

VSHP VSHSH VSHSV

VSV P VSV SH VSV SV




G0P 0 0

0 G0S 0

0 0 G0S

F

+


G0P 0 0

0 G0S 0

0 0 G0S




VPP VPSH VPSV

VSHP VSHSH VSHSV

VSV P VSV SH VSV SV




G0P 0 0

0 G0S 0

0 0 G0S




VPP VPSH VPSV

VSHP VSHSH VSHSV

VSV P VSV SH VSV SV




G0P 0 0

0 G0S 0

0 0 G0S

F + ...

(C.7)
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In an effort to avoid confusion and awkward phrasing, we rewrite the equation C.7 using

subscripts,

Dij = Gi
0VijG0j + Gi

0VikGk
0VkjG0j + Gi

0VikGk
0VklG

l
0VljG0j + ... (C.8)

where, the subscripts denote P-, SH-, SV- components for wave propagation or scattering.

Dij is an specified element of decomposed measured data related to i, j. And i is the wave

mode for reflected wave or on receiver coordinate. j is the mode for incident wave, which

means j = P if the incidence is P-wave only. The wave propagation through perturbation

mode for an elastic medium is shown in Figure. C.1.

Figure C.1: Wave propagation in perturbation mode. The subscripts (i, j, k, l,m, n) denote
the wave mode, ∈ {P, SH, SV }.

Similar with acoustic inverse scattering, the scattering potential can be expanded into

series by orders,

V = V(1) + V(2) + V(3) + ... (C.9)

Substitute this expansion (Eq. C.9) into subscripted Born series (Eq. C.8), and equate
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like orders, we have,

Dij = Gi
0Vij

1 G0j, (C.10a)

0 = Gi
0Vij

2 G0j + Gi
0Vik

1 Gk
0Vkj

1 G0j, (C.10b)

0 = Gi
0Vij

3 G0j + Gi
0Vik

2 Gk
0Vkj

1 G0j + Gi
0Vik

1 Gk
0Vkj

2 G0j + Gi
0Vik

1 Gk
0Vkl

1 Gl
0Vlj

1 G0j, (C.10c)

...

C.2 Elastic internal multiple prediction algorithm

Based on Eq. (C.10a), the first-order of elastic scattering potential can be delineated by

the decomposed measured data Dij and Green’s function for pure P- or S-waves. Recall 3D

Green’s function for pure P- or S-wave,

Gi
0(kix1 , k

i
y1
, z1, x2, y2, z2, ω) =

e−i(kix1x2+kiy1y2)eiνi1|z1−z2|

i2νi1
(C.11a)

Gi
0(x1, y1, z1, k

i
x2
, kiy2 , z2, ω) =

ei(kix2x1+kiy2y1)eiνi2|z2−z1|

i2νi2
(C.11b)

with

νi1 =

√
ω2

(ci0)2
− (kix1)

2 − (kiy1)
2

where, kix1 and kiy1 are x and y components of wavenumber, νi1 is the vertical component

of wavenumber. The subscript 1 means the side of location, i.e., kix1 is the x component of

wavenumber corresponding to location (x1, y1, z1). ci0 is the velocity depending on the wave

mode i, and i ∈ {P, SH, SV }.

Therefore, take an inverse Fourier transform over kx and ky, the space-frequency domain

3D Green’s function from one location (x2, y2, z2) to another (x1, y1, z1) can be written as,

Gi
0(x1, y1, z1, x2, y2, z2, ω) =

1

(2π)2

∫∫ +∞

−∞

eikix2 (x1−x2)eikiy2 (y1−y2)eiνi2|z1−z2|

i2νi2
dkix2dk

i
y2

(C.12)

Further analysis of Eq. (C.12) indicates that Green’s function can be considered as a
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superposition of weighted plane wave solution, as follow,

Gi
0(xg, yg, zg, xs, ys, zs, ω)

=
1

(2π)2

∫∫ +∞

−∞

e−i(kixsxs+kiysys)

i2νis
φi0(xg, yg, zg, k

i
xs , k

i
ys , zs, ω)dkixsdk

i
ys

(C.13)

where,

φi0(xg, yg, zg, k
i
xs , k

i
ys .zs, ω) = ei(kixsxg+kiysyg+νis|zg−zs|) (C.14)

Then we have, φi0(xg, yg, zg, k
i
xs , k

i
ys .zs, ω) = i2νisG

i
0(xg, zg, k

i
xs , k

i
ys , zs, ω). Substitute this

change into the inverse scattering series using reversion (Eq.C.10),

bij1 = Gi
0Vij

1 φ
j
0, (C.15a)

0 = Gi
0Vij

2 φ
j
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0Vik
1 Gk

0Vkj
1 φ

j
0, (C.15b)

0 = Gi
0Vij

3 φ
j
0 + Gi

0Vik
2 Gk

0Vkj
1 φ

j
0 + Gi

0Vik
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0Vkj
2 φ

j
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0Vik
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0Vkl
1 Gl

0Vlj
1 φ

j
0, (C.15c)

...

where, bij1 is the weighted decomposed measured data, and can be calculated by

bij1 (kixg , k
i
yg , k

j
xs , k

j
ys , ω) = i2νjsDij(kixg , k

i
yg , k

j
xs , k

j
ys , ω) and νjs depends on the mode of wave

which is determined by j, and j ∈ {P, SH, SV }.

Substitute Green’s function into equation C.15a, the first-order of elastic scattering po-

tential Vij can be expressed in terms of the weighted decomposed measured data bij1 . Expand

equation C.15a, we have,

bij1 (kixg , k
i
yg , zg, k

j
xs , k

j
ys , zs, ω)

=

∫∫∫ +∞

−∞
dx1dy1dz1Gi

0(kixg , k
i
yg , zg, x1, y1, z1, ω)Vij

1 (x1, y1, z1)

× φj0(x1, y1, z1, k
j
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j
ys , zs, ω)

=

∫∫∫ +∞

−∞
dx1dy1dz1

e−i(kixgx1+kiygy1)eiνig |zg−z1|

i2νig
Vij

1 (x1, y1, z1)ei(kjxsx1+kjysy1)eiνjs |z1−zs|

=
e−iνigzge−iνjszs

i2νig

∫∫∫ +∞

−∞
dx1dy1dz1e

i(kjxs−kixg )x1ei(kjys−kiyg )y1ei(νjs+νig)z1Vij
1 (x1, y1, z1)

=
e−iνigzge−iνjszs

i2νig
V̂
ij

1 (kjxs − k
i
xg , k

j
ys − k

i
yg , ν

j
s + νig|z1)

(C.16)
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Therefore,

V̂
ij

1 (kjxs − k
i
xg , k

j
ys − k

i
yg , ν

j
s + νig|z1)

= i2νige
i(νigzg+νjszs)bij1 (kixg , k

i
yg , zg, k

j
xs , k

j
ys , zs, ω)

(C.17)

Figure C.2: Contributions of Gi
0Vij

33φ
j
0 depending on variant depth (z1, z2, z3) relations be-

tween perturbations. (a) case of z1 < z2 < z3, (b) case of z1 < z3 < z2, (c) case of
z3 < z1 < z2, (d) case of z2 < z1 and z2 < z3, (e) case of z3 < z2 < z1.

The 1st-order internal multiple can be generated at least 3 perturbations which satisfy

lower-higher-lower relationship in pseudo-depth (depth in reference medium). By analyzing

3rd order in inverse scattering series (Eq.C.15c), we have,

Gi
0Vij

3 φ
j
0 = −(Gi

0Vik
2 Gk

0Vkj
1 φ

j
0 + Gi

0Vik
1 Gk

0Vkj
2 φ

j
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0Vkl
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0Vlj
1 φ

j
0)

= Gi
0Vij

31φ
j
0 + Gi

0Vij
32φ

j
0 + Gi

0Vij
33φ

j
0

(C.18)

The first two terms in 3rd-order have no contribution to internal multiple (they only con-

tribute to primary energy, see analysis discussed by Araújo (1994)). The 3rd term Gi
0Vij

33φ
j
0

represents several different wave propagations through three perturbations depending on the

variant depth relations between perturbations (Figure C.2).

Consider all possible wave propagations involved by Gi
0Vik

1 Gk
0Vkl

1 Gl
0Vlj

1 φ
j
0, only one certain

wave path, with perturbations satisfying lower-higher-lower relationship in pseudo-depth, has
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contribution to 1st-order internal multiples, shown in Figure C.2d, can be expressed as,

Wij
33(kixg , k

i
yg , zg, k

j
xs , k

j
ys , zs, ω)

= −
∫∫∫ +∞
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1 (x1, y1, z1)

×
∫∫∫ z1

−∞
dx2dy2dz2Gk

0(x1, y1, z1, x2, y2, z2, ω)Vkl
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j
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(C.19)

Replacing the elastic scattering potential by the weighted decomposed measured data

based on their relations discussed above in equation C.17, the contributed calculation of

elastic internal multiple with three perturbations (Eq.C.19) can be reword as a function of
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weighted data, shown as,

Wij
33(kixg , k

i
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j
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(C.20)

An inverse Fourier transform is performed to transfer the weighted data bij1 into pseudo-

depth domain. Then, the 1st-leading-order elastic internal multiples prediction algorithm

can be obtained, and is written as,
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j
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j
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(C.21)

To reconstruct 2nd-order internal multiples, at least five perturbations have to be involved

to calculate the contributions for 2nd-order internal multiples. Simply expand equation C.20

into five perturbation mode, 2nd-order internal multiples prediction can be expressed as, in
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vertical wavenumber domain,
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(C.22)

Rewrite equation C.20 and equation C.22 as,
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k
1 + νjs |z1)
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where,
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Analogously, nth-leading-order elastic internal multiples prediction algorithm can be ex-

pressed as, in vertical wavenumber domain,
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(C.25)

where,
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(C.26)

Again, take an inverse Fourier transform to perform the input data into pseudo-depth

domain, nth-leading-order elastic internal multiples prediction algorithm can be written as,
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in pseudo-depth domain,
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where,

Akj3 (kkx1 , k
k
y1
, kjxs , k

j
ys , z1) =

∫∫ +∞

−∞
dklx2dk

l
y2
e−iνl2(zs−zg) (C.28a)

×
∫ z1

−∞
dz2e

−i(νl2+νk1 )z2bkl1 (kkx1 , k
k
y1
, klx2 , k

l
y2
, z2)

×
∫ +∞

z2

dz3e
i(νjs+νl2)z2blj1 (klx2 , k

l
y2
, kjxs , k

j
ys , z3)

Akj2n+1(kkx1 , k
k
y1
, kjxs , k

j
ys , z1) =

∫∫ +∞

−∞
dklx2dk

l
y2
e−iνl2(zs−zg) (C.28b)

×
∫ z1

−∞
dz2e

−i(νl2+νk1 )z2bkl1 (kkx1 , k
k
y1
, klx2 , k

l
y2
, z2)

×
∫ +∞

−∞
dkmx3dk

m
y3
eiνm3 (zs−zg)

×
∫ +∞

z2

dz3e
i(νm3 +νl2)z3blm1 (klx2 , k

l
y2
, kmx3 , k

m
y3
, z3)

× Amj2n−1(kmx3 , k
m
y3
, kjxs , k

j
ys , z3)

Here, the letter subscripts denote the modes of wave {P, SH, SV }, and the number subscripts

describe the locations.
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