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Abstract 

Internal multiples are a form of noise in seismic data that degrades seismic image processing, 

leading to incorrect interpretations of the data.  One method with minimal assumptions to 

attenuate internal multiples uses the inverse scattering series.  Two key improvements with the 

method are developed.  First, a new tool is established referred to as the downward generator 

space.  This space used in combination with higher order terms and 2D adaptive subtraction 

improves the accuracy of the predicted internal multiples.  Second, a non-stationary search 

limiting parameter is utilized in the time-offset domain allowing for increased flexibility in 

algorithm implementation.  These new tools are applied to both synthetic and real data examples 

displaying the improvement in the prediction and attenuation of internal multiples. 



iii 

Acknowledgements 

I begin my thanking my family for their support, and specifically my partner and wife 

Steph Iverson for her support while I pursued my Masters.  I am certain through all her enquiring 

and listening that we both learned more about this topic than we ever expected too.  Graduate 

studies is something I had always wanted to undertake, and it would not have been possible 

without her. 

 

I would like to thank my supervisors Dr. Kris Innanen and Dr. Daniel Trad.  The topic 

that I studied was one I had significant interest in, but without their direction I would have 

struggled to pursue.  Kris guided me through the method of inverse scattering giving me the 

knowledge and understanding to take on this topic.  With Daniel’s ability to communicate and 

meet with me I could understand the details of the method and how to program the algorithm 

both successfully and efficiently.  After every meeting I had with Either Kris or Daniel I always 

found myself reinvigorated to try and test new ideas and concepts due to the enthusiasm they 

always showed. 

 

I would also like to thank all CREWES staff and students for the ideas, advice and 

support that I received specifically Scott Keating and Dennis Ellison.  Lastly, I would like to 

thank NSERC CGS M, SEG Foundation Scholarship, Queen Elizabeth II Graduate (Master's) 

Scholarships, Alberta Graduate Student Scholarships, SEG Travel Grant and CREWES for the 

financial support I received during my studies, and Devon Energy for the donated dataset. 

 

 



iv 

Dedication 

 

 

 

 

 

 

To my Dad, 

Steve Randall Iverson 

 



v 

Table of Contents 

Abstract ............................................................................................................................... ii 
Acknowledgements ............................................................................................................ iii 
Dedication .......................................................................................................................... iv 
Table of Contents .................................................................................................................v 
List of Figures and Illustrations ........................................................................................ vii 

List of Symbols, Abbreviations and Nomenclature .......................................................... xii 

CHAPTER ONE: BACKGROUND INFORMATION AND THEORY ............................1 
1.1 The seismic method and multiples .............................................................................1 
1.2 Attenuation methods for seismic multiples ...............................................................3 
1.3 The Inverse Scattering Series and derivation of algorithms ......................................4 

1.3.1 The forward and inverse scattering series .........................................................5 
1.3.2 Reduction to 1.5D offset-time and 1D time domain .......................................11 

1.3.3 Reduction to 1.5D tau-p domain .....................................................................12 
1.3.4 Reduction to 1D Pseudo-depth domain ...........................................................13 

1.4 Analytic example in 1D ...........................................................................................14 
1.5 Short vs. long path multiples ...................................................................................18 
1.6 Adaptive subtraction ................................................................................................20 

1.6.1 Autoconvolution of a wavelet .........................................................................21 
1.6.2 Theory ..............................................................................................................22 

1.7 Thesis Overview ......................................................................................................23 

CHAPTER TWO: THE DOWNWARD GENERATOR SPACE .....................................25 
2.1 Numerical example with 1.D synthetic data ............................................................25 

2.1.1 Modeling parameters .......................................................................................25 

2.1.2 Internal multiple prediction .............................................................................26 
2.2 Downward Generator Space ....................................................................................27 
2.3 Adaptive subtraction in 2D ......................................................................................29 

2.3.1 Theory ..............................................................................................................30 
2.3.2 Application to 1D numerical example .............................................................30 

2.4 Pseudo-depth variant scalar .....................................................................................32 

2.4.1 Scalar calculation .............................................................................................34 
2.5 Numerical example with synthetic data in 1.5D ......................................................36 

2.5.1 Modeling Parameters .......................................................................................37 
2.5.2 internal multiple prediction .............................................................................37 
2.5.3 Downward Generator Space with a spatial dimension ....................................39 

2.6 Conclusions ..............................................................................................................41 

CHAPTER THREE: HIGHER ORDER TERMS .............................................................42 

3.1 Residual amplitude mismatch ..................................................................................42 
3.2 Second order internal multiples ...............................................................................42 
3.3 Inverse scattering series terms .................................................................................45 

3.3.1 Implementation of higher order terms .............................................................46 
3.4 Numerical example with 1D synthetic data .............................................................47 
3.5 Numerical example in 1D with a destructively interfered primary .........................51 



vi 

3.6 Conclusions ..............................................................................................................55 

CHAPTER FOUR: OFFSET-TIME DOMAIN ALGORITHM .......................................56 

4.1 Non-stationary seismic data .....................................................................................56 
4.2 Non-stationary epsilon .............................................................................................56 
4.3 Implementing the time domain algorithm ...............................................................57 

4.3.1 Masking operators and pseudocode .................................................................58 
4.3.2 Differences between time and frequency domain ...........................................62 

4.4 Numerical example with 1.5D synthetic data ..........................................................63 
4.4.1 Internal multiple prediction .............................................................................64 

4.5 Numerical example with 1.5D synthetic data and irregular spatial sampling .........67 
4.5.1 Random sampling numerical test ....................................................................68 
4.5.2 Orthogonal 3D survey geometry numerical test ..............................................71 

4.6 Conclusions ..............................................................................................................76 

CHAPTER FIVE: DEVON SYNTHETIC DATA ............................................................77 

5.1 Donated dataset ........................................................................................................77 
5.2 Vertical Seismic Profile ...........................................................................................78 

5.3 Synthetic data modeling ...........................................................................................80 
5.3.1 Modeling algorithm .........................................................................................80 
5.3.2 Synthetic VSP ..................................................................................................81 

5.4 Internal multiple prediction .....................................................................................87 
5.4.1 Error quantification .........................................................................................88 

5.5 Conclusions ..............................................................................................................96 

CHAPTER SIX: DEVON REAL DATA ..........................................................................98 

6.1 Application to recorded data ....................................................................................98 
6.2 Recorded VSP ..........................................................................................................98 

6.2.1 Processing ........................................................................................................99 
6.2.2 Corridor stacks ...............................................................................................101 
6.2.3 Internal multiple prediction ...........................................................................103 

6.3 3D PSTM stacked seismic data .............................................................................107 
6.3.1 Well tie ..........................................................................................................108 
6.3.2 Internal multiple prediction ...........................................................................111 

6.3.3 Crossline internal multiple prediction ...........................................................115 
6.4 3D PSTM prestack seismic data ............................................................................118 

6.4.1 Time offset internal multiple prediction ........................................................120 
6.5 Conclusions ............................................................................................................122 

CHAPTER SEVEN: CONCLUSIONS ...........................................................................123 
7.1 Conclusions ............................................................................................................123 
7.2 Recommendations for future work ........................................................................124 

REFERENCES ................................................................................................................126 
 



vii 

List of Figures and Illustrations 

Figure 1.1 a) Primary events for a three-layer model plus half-space, b) First order internal 

multiples for the three-layer model plus half-space, c) First order surface multiples, d) 

Short and long path multiples ................................................................................................. 2 

Figure 1.2 Modified from (Weglein et al., 1997) displaying various scattering options from  

𝐺0𝑉1𝐺0𝑉1𝐺0𝑉1𝐺0 where only far right example corresponds to an internal multiple ....... 9 

Figure 1.3 Schematic displaying how a multiple can be approximated with a combination of 

primaries through a convolution (*) and correlation (x) ....................................................... 10 

Figure 1.4 Tuning wedge for 3 layer model from (Widess, 1973) ............................................... 18 

Figure 1.5 Tuning wedge model for internal multiples Internal multiple prediction from ISS 

for tuning wedge model with variable epsilon ...................................................................... 19 

Figure 1.6 a) 40 Hz Ricker wavelet and autoconvolution of the wavelet, b) amplitude 

spectrum of the 40 Hz Ricker wavelet and autoconvolution of the wavelet......................... 21 

Figure 2.1 Velocity and depth model used for the 1D prediction. ................................................ 25 

Figure 2.2 Reflectivity series for primaries, internal multiples and resulting seismic trace ......... 26 

Figure 2.3 Input seismic trace and 1D internal multiple prediction ............................................. 27 

Figure 2.4 Downward generator space displaying individual internal multiples. Prediction 

time is on the horizontal axis and downward generator time on the vertical axis ................ 28 

Figure 2.5 Internal multiple prediction with 1D adaptive subtraction .......................................... 31 

Figure 2.6 Internal multiple prediction with 2D adaptive subtraction .......................................... 32 

Figure 2.7 a) Summing over wavenumber then depth, b) proposed order of operations 

alteration summing over depth then wavenumber with scalar applied to give scaled 

prediction .............................................................................................................................. 33 

Figure 2.8 Transmission loss scalar for internal multiple prediction............................................ 35 

Figure 2.9 a) Trace with both scaled and unscaled predictions, b) isolating two multiples 

M323 and M313 .................................................................................................................... 36 

Figure 2.10 Geologic model displaying velocities and depths used ............................................. 37 

Figure 2.11 (Left) Synthetic seismic shot record (Right) 1.5D tau-p multiple prediction ............ 38 

Figure 2.12 a) three dimensional view of the 3D DGS, b) a slice through zero offset similar 

to standard 2D DGS c). One DGS slice displaying the first order and higher order 

internal multiples, d) A deeper DGS slice displaying only higher order internal multiples . 40 



viii 

Figure 3.1 Displaying the algorithm computing second order multiples with convolution (*) 

and correlation (x) ................................................................................................................. 43 

Figure 3.2 Reflectivity series and trace for primaries, first and second order multiples .............. 44 

Figure 3.3 2D downward generator space displaying individual internal multiples, a) b3 term 

with first order multiples displayed with red box. b) b5PPI higher order multiples. c) 

b5PIP artifacts from the prediction ....................................................................................... 48 

Figure 3.4 2D downward generator space displaying individual internal multiples after 

including higher order terms ................................................................................................. 49 

Figure 3.5 Internal multiple prediction with higher order terms and 2D adaptive subtraction .... 50 

Figure 3.6 Velocity and depth model with additional layer used for 1D prediction. ................... 51 

Figure 3.7 a) Primaries and multiples trace b) Primaries only trace highlighting location of 

missing primary due to internal multiples ............................................................................ 52 

Figure 3.8 a) Internal multiple prediction with 1D adaptive subtraction b) Internal multiple 

prediction with 2D adaptive subtraction and higher order terms .......................................... 53 

Figure 3.9 Trace with internal multiple attenuation using a) the 1D adaptive subtraction Trace 

with internal multiple attenuation and b) 2D adaptive subtraction and higher order terms.. 54 

Figure 4.1, adapted from (Innanen, 2015), visual display of the calculation of convolutions 

and correlations for a given time t(j) through matrix multiplication, with the mask 

matrix applied to the convolution matrix MC. ...................................................................... 58 

Figure 4.2, adapted from (Innanen, 2015), displays the mask matrix applied to the 

convolution matrix where the shaded region is set to zero and the bounds are determined 

such that the lower-higher-lower criteria is met for the given t(j) ........................................ 59 

Figure 4.3 Display of the prediction algorithm for the (𝑥, 𝑡) case for a given time t(j) 

calculated for all offset with the convolution and correlation matrices, where the mask 

matrix is applied to each convolution matrix in the block matrix MC.  this is applied to 

the (𝑥, 𝑡) trace (s) which has been stacked into a single column vector.  Adapted from 

(Innanen, 2015). .................................................................................................................... 60 

Figure 4.4 Pseudo code displaying the implementation of the (𝑥, 𝑡) case with the use of 2D 

convolution functions for a stationary epsilon.  The mask is applied in a similar manner 

where all values are set to zero given that they are either below the calculation time (it) 

and epsilon number of samples above (it). ........................................................................... 61 

Figure 4.5 Pseudo code displaying the implementation of the (𝑥, 𝑡) case with the use of 2D 

convolution functions for a nonstationary epsilon in both time and space dimensions ........ 62 



ix 

Figure 4.6 Visual display for the mask matrix applied to the data (s) prior to the 2D 

convolution function, where the bounds are determined such that the lower-higher-lower 

criteria is met for the given t(j) for a) epsilon varying in time and constant with offset b) 

An example of epsilon varying in time and with offset with two epsilon values with a 

harsh cutoff ........................................................................................................................... 62 

Figure 4.7 a) offset-time multiple prediction with epsilon=30, b) offset-time multiple 

prediction with epsilon=30 ................................................................................................... 64 

Figure 4.8 a) offset-time multiple prediction with spatially varying epsilon, b) epsilon 

schedule used for prediction with harsh cutoff ..................................................................... 65 

Figure 4.9 a) offset-time multiple prediction with spatially varying epsilon, b) epsilon 

schedule used for prediction with linear taper ...................................................................... 66 

Figure 4.10 (Left) offset-time multiple prediction with spatially varying epsilon (Right) 

epsilon schedule used for prediction varying in both offset and time .................................. 67 

Figure 4.11 Velocity model with interface depths indicated by red lines .................................... 68 

Figure 4.12  Synthetic data with total trace count of a) 256, c) 128 and e) 64.  Internal 

multiple prediction for the given input data with trace count b) 256, d) 128 and f) 64 ........ 69 

Figure 4.13 a) Positive offset synthetic, b) Internal multiple prediction ...................................... 70 

Figure 4.14 a) Velocity model, b) synthetic, c) time offset prediction ......................................... 71 

Figure 4.15 a) Source (red) and receiver (blue) geometry with rays for a single cdp, b) Offset 

and azimuth distribution for the displayed cdp ..................................................................... 72 

Figure 4.16 a) Input seismic trace from 3D seismic geometry, b) Internal multiple prediction ... 73 

Figure 4.17 a) Input seismic trace from 3D seismic geometry with blank traces, b) Internal 

multiple prediction ................................................................................................................ 74 

Figure 4.18 a) Input seismic trace from 3D seismic geometry with 2D Spline interpolation, b) 

Internal multiple prediction, c) Input seismic trace from 3D seismic geometry, d) 

Internal multiple prediction with the original traces displayed............................................. 75 

Figure 5.1 Well logs including gamma ray, spontaneous potential, resistivity, neutron 

porosity, sonic and density .................................................................................................... 77 

Figure 5.2 VSP with upgoing and down going energy and internal multiples ............................. 79 

Figure 5.3 a) Recorded VSP with up and downgoing waves, b) Synthetic VSP with up and 

downgoing waves .................................................................................................................. 81 

Figure 5.4 a) calculated one way travel time and picked one way travel time, b) Smoothed 

difference between the two one way travel times ................................................................. 82 



x 

Figure 5.5 a) Synthetic VSP with first break pick displayed in blue with upgoing events, b) 

flattened synthetic VSP with first break pick displayed in blue with upgoing events .......... 83 

Figure 5.6 Full stack (primaries and multiples) and zero depth trace (primaries and multiples) . 85 

Figure 5.7 Outside corridor stack (primaries) and zero depth trace (primaries and multiples). ... 86 

Figure 5.8 The 2D Downward generator space for the zero depth trace prediction ..................... 87 

Figure 5.9 Internal multiples trace in red and internal multiple prediction in blue. ..................... 88 

Figure 5.10 a) Multiples trace in red and internal multiple prediction in blue taken as absolute 

value of the  multiples trace and difference with the multiples trace, b) a 50 point 

moving average window is used to smooth the traces c) a 50 point moving average 

window is applied to the input data trace for reference to the internal multiple trace .......... 90 

Figure 5.11 Displaying the 2D downward generator space for the synthetic VSP after 

stacking ................................................................................................................................. 91 

Figure 5.12 Multiples trace and internal multiple prediction from 2D adaptive subtraction. ...... 91 

Figure 5.13 Absolute value of multiple trace, and difference with the two predictions with 

rolling average window of 50. .............................................................................................. 92 

Figure 5.14 outside corridor stack (primaries) in blue, zero depth trace (primaries and 

multiples) in red and zero depth trace after internal multiple attenuation in black. ............. 94 

Figure 5.15 Outside corridor stack (primaries) in blue, zero depth trace (primaries and 

multiples) in red and zero depth trace after internal multiple attenuation in black. a) b3 

subtraction, b) 1D adaptive subtraction, c) 2D adaptive subtraction .................................... 95 

Figure 5.16 Using 37 Hz Ricker wavelet displaying outside corridor stack (primaries) in blue, 

zero depth trace (primaries and multiples) in red and zero depth trace after internal 

multiple attenuation in black for a) b3 subtraction, b) 1D adaptive subtraction, c) 2D 

adaptive subtraction .............................................................................................................. 96 

Figure 6.1 Figure from (Cova, et al., 2018) a) source locations in Easting and Northing, b) 

Receiver location in depth and in line with the sources ........................................................ 99 

Figure 6.2 Recorded VSP after processing with upgoing wave ................................................. 100 

Figure 6.3 a) Frequency content differences between full stack (Primaries and multiples) to 

outside corridor stack (primaries only) and b) using a decibel scale .................................. 101 

Figure 6.4 Full stack (Primaries and multiples) and outside corridor stack (primaries only) .... 102 

Figure 6.5 Internal multiple prediction and internal multiples trace .......................................... 103 

Figure 6.6 Downward generator space after stacking for 2D adaptive subtraction .................... 104 



xi 

Figure 6.7 Internal multiple prediction with 2D adaptive subtraction and internal multiples 

trace ..................................................................................................................................... 105 

Figure 6.8 Outside corridor stack (primaries) in blue, zero depth trace (primaries and 

multiples) in red and zero depth trace after internal multiple attenuation in black for a) 

b3 subtraction, b) 1D adaptive subtraction and c) 2D adaptive subtraction ....................... 106 

Figure 6.9 EBCDIC header displaying acquisition parameters and processing ......................... 107 

Figure 6.10 Frequency spectrum of PSTM Stack ....................................................................... 108 

Figure 6.11 Well tie to 3D PSTM stacked data with a) synthetic in blue and stacked data in 

red, b) well tie over the time window of 1550–1900ms and c) cross correlation window 

with a max coefficient of 0.665 .......................................................................................... 109 

Figure 6.12 a) Synthetic outside corridor stack (Primaries) and trace from 3D PSTM Stack, 

b) Synthetic zero depth trace (Primaries and multiples) and trace from 3D PSTM Stack . 110 

Figure 6.13 Internal multiple prediction and trace from 3D PSTM Stack .................................. 112 

Figure 6.14 Downward generator space after stacking for 2D adaptive subtraction .................. 113 

Figure 6.15 Outside corridor stack (primaries) in blue, PSTM trace (primaries and multiples) 

in red and PSTM trace after internal multiple attenuation in black for a) b3 subtraction, 

b) 1D adaptive subtraction, c) 2D adaptive subtraction ...................................................... 114 

Figure 6.16 Crossline displaying 3D PSTM stack data a) input data, b) internal multiple 

prediction and c) internal multiple prediction with 2D adaptive subtraction ..................... 116 

Figure 6.17 a) Crossline through PSTM stack. b) Crossline through PSTM stack after internal 

multiple attenuation, with red ovals highlighting significant areas of change due to 

internal multiple attenuation. .............................................................................................. 117 

Figure 6.18 Well tie cross correlation a) before and b) after internal multiple attenuation ........ 118 

Figure 6.19 a) offset (ft) and azimuth acquisition distribution for the given CMP, b) seismic 

gather with the displayed acquisition before 5D interpolation ........................................... 119 

Figure 6.20 a) offset (ft) and azimuth acquisition distribution for the given CMP after 5D 

interpolation, b) seismic gather with the displayed acquisition after 5D interpolation ...... 120 

Figure 6.21 a) seismic gather after 5D interpolation, b) Time offset internal multiple 

prediction of seismic gather after 5D interpolation ............................................................ 121 

 

 

 



xii 

List of Symbols, Abbreviations and Nomenclature 

Symbol Definition 

AVO Amplitude Variation with Offset 

𝛼 Compressional velocity 

𝑏1 Recorded wavefield 

𝑏𝑛 Internal multiple prediction term n 

cmp Common mid point 

𝑐0 Reference velocity 

CREWES Consortium for Research in Elastic Wave 

Exploration Seismology 

DGS 

EPSI 

Downward generator space 

Estimating Primaries by Sparse Inversion 

𝛿 Delta function 

𝜀 Search limiting parameter 

𝜖 Depth below free surface 

FWI Full Waveform Inversion 

f-k Frequency-wavenumber 

𝑓 Filter 

𝐺 Greens Function 

𝐺0 Reference greens function 

𝐺𝑠 Scattered field 

H Heaviside step function 

IM Internal Multiple 

ISS Inverse Scattering Series 

𝑖 Complex number 

k Fourier conjugate variable 

𝐿 Differential operator 

𝐿0 Reference Differential operator 

L1 L1 norm 

L2 L2 norm 

MCG Multiple Contributing Gather 

P Primary 

𝜌 Density 

𝜙 Minimization term 

𝑞𝑥 Vertical wavenumber 

R Reflection coefficient 

𝑟 Location 

𝑟𝑠 Source location 

T Transmission Coefficient 

tau-p Intercept time-ray parameter 

𝜏 Time 

VSP Vertical Seismic profile 

𝑉 Perturbation operator 

𝜔 Angular Frequency 

𝑧𝑛 Depths of layer n 



 

  1  

Chapter One: Background Information and Theory  

 

1.1 The seismic method and multiples 

Seismic waves can be utilized to obtain subsurface information and properties.  This 

begins with an active source such as dynamite or a seismic vibrator to generate the seismic 

waves.  When the waves travel into the subsurface and cross an interface with varying elastic 

properties a portion of the energy is reflected, and the majority is transmitted.  By recording and 

processing the reflections an image of the subsurface is created which is used to identify 

structure, faulting, fracturing and elastic properties.  The reflections from the interface will 

ideally have amplitudes representative of the contrasting layer properties with no additional 

noise.  The reflections can be used to estimate the layer properties through inversion methods 

such as Full Waveform Inversion (FWI), pre-stack joint or post stack inversion, amplitude 

variation with offset (AVO) analysis and other amplitude dependent techniques.  

 

When recording land seismic data there are various types of noise sources that degrade 

the image.  Random noise sources for land seismic data can include wind, vehicles, machinery, 

animals, and numerous other sources on the surface.  Other land seismic specific issues often 

involve the near surface due to topography changes, relatively unconsolidated material, and the 

potential for heterogeneity.  An ongoing issue in seismic imaging and interpretation is the 

removal of unwanted noise in the data.  For this project the type of noise targeted for removal is 

due to multiple reflections in the subsurface specifically long path internal multiples. 
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When seismic waves reflect off multiple interfaces or boundaries below the surface these 

can obstruct the desired primary reflections (Iverson, 2014; Hilterman, et al., 2018; Zhang, et al., 

2018).  This degrades the seismic image which can lead to errors in interpretation of the data.  

The naming convention used to describe specific primaries and multiples is displayed (Figure 

1.1).  Multiples can be grouped into different categories, there are surface, internal, short and 

long path multiples.  Surface multiples have at least one of the downward reflections occurring at 

the surface where internal multiples have all the multiple reflections occurring in the subsurface.  

Long path multiples arrive as a separate event whereas short path multiples occur so quickly 

after the primary they impact the wavelet shape (SEG wiki, 2019).  First order multiples will 

have the three reflections where higher order multiples have an increased number of reflections 

in the subsurface (e.g. 2nd order have 5 reflections, 3rd order have 7 reflections …). 

  
Figure 1.1 a) Primary events for a three-layer model plus half-space, b) First order internal 

multiples for the three-layer model plus half-space, c) First order surface multiples, d) 

Short and long path multiples 
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1.2 Attenuation methods for seismic multiples 

Numerous methods have been utilized to attenuate multiples.  These methods can be 

grouped into the three broad categories of deconvolution, filtering and wavefield prediction 

(Xiao, et al., 2003).   

 

Deconvolution uses the periodic nature of multiples to develop an operator to attenuate 

them, with several assumptions such as the data is zero offset, the horizons are flat and there is 

no lateral variation (Xiao, et al., 2003).  This is done by creating a deconvolution filter which 

includes the multiples to be predicted.  Which multiples are predicted and attenuated is 

controlled through the choice of the prediction distance and filter length to attenuate short or 

long path multiples, equivalently referred to as short and long path reverberations (Peacock & 

Treitel, 1969). As the prediction distance decreases high frequency noise can be introduced so 

the parameter much be chosen purposefully (Peacock & Treitel, 1969).  Various domains have 

also been implemented to attempt to overcome the zero offset requirement and apply to gathers 

(Perez & Henley, 2000).  This is done by transforming the data into various domains where the 

data’s periodic nature is more constant with offset such as the radial domain or after the 

application of normal move out to flatten the data (Perez & Henley, 2000). 

 

Filtering methods rely on separating the primary and multiple events by transforming the 

data into various domains including f-k, tau-p or RADON (Kabir & Marfurt, 1999; Xiao, et al., 

2003).  Once transformed a mute is created in the chosen domain which ideally will only remove 

the multiples.  Filtering can be successful given sufficient moveout differences between primary 
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and multiple reflections.  When the moveout difference is small, the multiple energy is difficult 

to isolate from the primary.  These methods will only attenuate long path multiples. 

 

There are a number of wave equation based techniques (Verschuur, et al., 1992; Berkhout 

& Verschuur, 1997).  This project implements the inverse scattering series (Weglein, et al., 

1997) which falls under the wavefield prediction category and is fully data driven.  These 

methods use some form of the wave equation to create a dataset which only includes multiples.  

An alternative method which uses similar mathematical techniques but requires an input 

subsurface model generally taken to be the migrated section uses this model to predict the 

resulting internal multiples (Pica & Delmas, 2008).  Partial versions have been implemented of 

wavefield prediction methods such as XIMP (Wu & Dragoset, 2011) which require subsurface 

information inputs such as multiple generator horizons.  A separate approach directly estimates 

primaries by sparse inversion (EPSI) using full waveform inversion (Groenestijn & Verschuur, 

2009).  This method attenuates multiples by inverting directly for primaries using the data which 

contains both primaries and multiples. 

 

1.3 The Inverse Scattering Series and derivation of algorithms  

The inverse scattering series method of multiple attenuation was developed by Weglein et 

al in the 1990’s.  The method predicts internal multiples using the recorded seismic data with no 

prior subsurface information requirements.  By creating a prediction of the internal multiples this 

is used to directly remove them from the data.  In theory what is desired is an algorithm which 

predicts the multiples exactly so the prediction can be subtracted directly from the data.  The 

inverse scattering series correctly predicts the time the multiples occur, with small errors in the 
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predicted amplitudes.  The amplitude errors have been recently improved upon with internal 

multiple elimination algorithms (Zou & Weglein, 2015; Zou, et al., 2016).  In practice multiple 

attenuation is completed in two steps, first the internal multiples prediction is made followed by 

an adaptive subtraction step to remove them from the data.  Any amplitude errors between the 

predicted and actual multiples in the data attempt to be rectified by the process of adaptive 

subtraction (Guitton & Verschuur, 2004; Keating, et al., 2015). 

 

The issues addressed in this thesis involve the amplitudes of the predicted events and 

artifacts that can arise from the prediction.  As the method is data driven and utilizes the data 

itself to make the prediction, any losses present in the data will be used in the prediction.  How 

the amplitude errors arise in the inverse scattering series method is discussed.  These amplitude 

errors can vary significantly at similar temporal locations making the designing of a filter 

through adaptive subtraction difficult.  This leads to difficulty in using the prediction and trying 

to analyze if the algorithm is possibly damaging the primaries in the data.  There can be 

difficulties with implementation of the method including parameterization of the search limiting 

parameter epsilon.  Recently the algorithm has been applied in various domains with increased 

success (Sun & Innanen, 2014; Sun & Innanen, 2016). 

 

1.3.1 The forward and inverse scattering series 

The scattering series describes the relationship between the physical properties of an 

actual and reference medium and the impulse response of that reference and actual medium 

(Weglein, et al., 1997).  First forward scattering will be shown and discussed.  Scattering begins 

by describing the response in terms of a reference medium and a perturbation from this medium.  
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This will be done for a single frequency and assuming the source signature has been 

deconvolved (Weglein, et al., 1997) where, 

𝐿𝐺 = −𝛿(𝑟 − 𝑟𝑠)      (1.1) 

L is the differential operator for wave propagation in the actual medium G is the wavefield and r 

is the location relative to 𝑟𝑠.  The equation for the reference medium is given by 

𝐿0𝐺0 = −𝛿(𝑟 − 𝑟𝑠)      (1.2) 

Where, 𝐿0 is the differential operator for wave propagation in a reference medium and  𝐺0 

function.  For example, an acoustic wave equation with the source term being an impulsive point 

source (Weglein, et al., 1997) from Equation 1.2 gives, 

(
𝜔2

𝜅0
+ 𝛻 ∙ (

1

𝜌0
𝛻))𝐺0 = −𝛿(𝑟 − 𝑟𝑠)        (1.3) 

From Equation 1.1 and 1.2 these can be combined to give the perturbation operator V defined as, 

𝑉 = 𝐿 − 𝐿0             (1.4) 

And the scattered field as, 

𝐺𝑠 = 𝐺 − 𝐺0               (1.5) 

With the perturbation operator and scattered field using the Lippmann-Schwinger equation, 

which is the foundation for scattering theory gives, 

𝐺𝑠 = 𝐺 − 𝐺0 = 𝐺0𝑉𝐺           (1.6) 

Which now relates the reference and actual wavefields through a perturbation operator.  Then 

rearranging Equation 1.6 gives 

𝐺(1 − 𝐺0𝑉) = 𝐺0         (1.7) 
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And then solving for 𝐺 

𝐺 =  𝐺0
1

1−𝐺0𝑉
       (1.8) 

Recognizing this is an infinite geometric series that can equivalently be expressed as the 

following 

𝐺 =  𝐺0(1 + 𝐺0𝑉 + 𝐺0𝑉𝐺0𝑉 +⋯)         (1.9) 

Putting this back into Equation 1.6 gives the forward scattering series as a function of only V and 

𝐺0 

𝐺𝑠 =  𝐺 − 𝐺0 = 𝐺0𝑉𝐺0 + 𝐺0𝑉𝐺0𝑉𝐺0 +⋯                      (1.10) 

Where 𝐺𝑠 is equivalent to the data recorded on the surface now noted as D.   

 

We now have an equation that can describe through perturbations and a reference 

wavefield the recorded seismic data.  What we would like is an equation that will use the 

recorded data to solve for certain perturbation subsets.  Inverse scattering series takes the 

recorded and reference wavefield to give the perturbation operator (Weglein, et al., 1997).  The 

forward infinite series (Equation 1.10) for 𝐷 can be equivalently written using the same 

geometric series reduction 

𝐷 =  𝐺0𝑉𝐺0 + 𝐺0𝑉𝐺0𝑉𝐺0 +⋯ = 
𝐺0𝑉𝐺0

1−𝑉𝐺0
           (1.11) 

Rearranging gives 

𝐷(1 − 𝑉𝐺0) =  𝐺0𝑉𝐺0        (1.12) 

and isolating for 𝑉𝐺0 gives 

𝐷 =  𝐺0𝑉𝐺0 + 𝐷𝑉𝐺0        (1.13) 
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And solving for 𝑉𝐺0 gives 

𝑉𝐺0 = 
𝐷

𝐷+𝐺0
              (1.14) 

And finally rearranging and expanding in the form of a geometric series gives 

𝑉 =
1

𝐺0
(
𝐷

𝐺0

1

1−(
−𝐷

𝐺0
)
) =

1

𝐺0
(
𝐷

𝐺0
(1 −

𝐷

𝐺0
+ (

𝐷

𝐺0
)
2

−⋯))      (1.15) 

Giving the inverse series for the perturbation operator 

𝑉 =  
1

𝐺0
(
𝐷

𝐺0
− (

𝐷

𝐺0
)
2

+ (
𝐷

𝐺0
)
3

−⋯) = 𝑉1 + 𝑉2 + 𝑉3 +⋯ = ∑ 𝑉𝑛
∞
𝑛=1       (1.16) 

Now by inserting this back into the forward series (Equation 1.10) gives 

𝐷 =  𝐺0∑ 𝑉𝑛
∞
𝑛=1 𝐺0 + 𝐺0∑ 𝑉𝑛

∞
𝑛=1 𝐺0∑ 𝑉𝑛

∞
𝑛=1 𝐺0 +⋯         (1.17) 

Then expanding out the series in V and collecting like order terms gives, 

𝐷 =  𝐺0𝑉1𝐺0 

0 =  𝐺0𝑉2𝐺0 + 𝐺0𝑉1𝐺0𝑉1𝐺0 

0 =  𝐺0𝑉3𝐺0 + 𝐺0𝑉2𝐺0𝑉1𝐺0 + 𝐺0𝑉1𝐺0𝑉2𝐺0 + 𝐺0𝑉1𝐺0𝑉1𝐺0𝑉1𝐺0            (1.18) 

From (Weglein, et al., 1997) it was stated that for the 3rd order component only one of the 

terms will correspond to internal multiples (𝐺0𝑉1𝐺0𝑉1𝐺0𝑉1𝐺0) as this is the response of a 

wavefield with three perturbations.  This equation can predict internal multiples from a recorded 

wavefield but at this stage it will also predict events that are not internal multiples.  This leads to 

the selection of a subset of this to ensure that the events predicted are only internal multiples 

(Figure 1.2).  This is accomplished by the selection of sub events that are initially deeper in the 

subsurface than shallower, than deeper referred to as the lower-higher-lower criteria (Weglein, et 

al., 1997). 
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Figure 1.2 Modified from (Weglein et al., 1997) displaying various scattering options from  

𝑮𝟎𝑽𝟏𝑮𝟎𝑽𝟏𝑮𝟎𝑽𝟏𝑮𝟎 where only far right example corresponds to an internal multiple 

 

The selection of the subevent which will predict internal multiples from the data is 

carried out through the integration limits in the combination of the three perturbations.  We now 

have a representation of internal multiples that can be solved for using only the input data, giving 

the equation for internal multiple prediction (Weglein, et al., 1997).  The main assumptions of 

the algorithm are that surface multiples have been removed and that the data only contains 

primaries and internal multiples. The only additional input required is a term epsilon which is 

used to account for the bandwidth of the data used for prediction. 

       𝑏3(𝑘𝑔, 𝑘𝑠, 𝜔) 

=
1

(2𝜋)2
∬ 𝑑𝑘1𝑒

−𝑖𝑞1(𝜖𝑔−𝜖𝑠)
∞

−∞
𝑑𝑘2𝑒

𝑖𝑞2(𝜖𝑔−𝜖𝑠) ∫ 𝑑𝑧1𝑒
𝑖(𝑞𝑔+𝑞1)𝑧1𝑏1(𝑘𝑔, −𝑘1, 𝑧1)

∞

−∞
  

× ∫ 𝑑𝑧2𝑒
−𝑖(𝑞1+𝑞2)𝑧2𝑏1(𝑘1, −𝑘2, 𝑧2) ∫ 𝑑𝑧3𝑒

𝑖(𝑞2+𝑞𝑠)𝑧3𝑏1(𝑘2, −𝑘𝑠, 𝑧3),
∞

𝑧2+𝜀

𝑧1− 𝜀

−∞
      (1.19) 

Where in Equation 1.19, 

 𝑞𝑥 = 
𝜔

𝑐0
√1 −

𝑘𝑥
2𝑐0
2

𝜔2
,     (1.20) 

𝑏3 is the internal multiple prediction, 𝑏1 is the prepared input data, 𝑞𝑥 is the vertical wavenumber 

and 𝜖 is the depth below free surface of the source (s) and receiver (g), k is the Fourier conjugate 

variable, 𝑧1, 𝑧2 and 𝑧3 are the depths chosen to satisfy lower-higher-lower relationship, 𝑐0 is the 
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reference velocity and 𝜀 is the search limiting parameter.  Epsilon sets a limit on the distance the 

multiple must have traveled to prevent the method from predicting multiples within the 

wavelength of a single wavelet. 

 

Equation 1.19 predicts internal multiples through multiplication in the Fourier domain.  

In time this is equivalent to a combination of convolutions and correlations of these specific 

events that satisfy the location criteria.  It is shown schematically how two deeper events can be 

convolved relative to a shallower event which is correlated to mimic the equivalent internal 

multiple (Figure 1.3). 

 

Figure 1.3 Schematic displaying how a multiple can be approximated with a combination 

of primaries through a convolution (*) and correlation (x) 

 

Equation 1.19 with three perturbations gives a prediction for all orders of internal 

multiples. This is because the algorithm does not distinguish between primaries and multiples 

and will use internal multiples from the input to predict higher order internal multiples.  The data 

with internal multiples fully attenuated is given by (Weglein, et al., 1997), 

𝐷𝐼𝑀(𝑘𝑔, 𝑘𝑠, 𝜔) = (−2𝑖𝑞𝑠)
−1∑ 𝑏2𝑛+1(𝑘𝑔, 𝑘𝑠, 𝑞𝑔 + 𝑞𝑠)

∞
𝑛=0                     (1.21) 

This is an infinite series which in practice is commonly truncated to only use the first 

term in the series (Equation 1.19).  A recursive relationship was developed to solve for the higher 
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order terms in the series (Weglein, et al., 1997).  There has been work recently showing the use 

of higher order terms in the series (Liang, et al., 2013), and this will be explored.  The input data 

and method can be altered so that the procedure is carried out in other domains which has shown 

increased prediction accuracy (Sun & Innanen, 2014; Innanen, 2017).  The derivation of these 

domains is shown. 

 

1.3.2 Reduction to 1.5D offset-time and 1D time domain 

The time offset is a domain which has been recently evaluated (Innanen, 2015b; Innanen, 

2017). Equation 1.19 can be simplified and reduced to a 1.5D domain by assuming a v(z) 

medium.  This is accomplished by assuming that the source and receiver wavenumbers are 

equivalent. 

𝑘𝑔 = 𝑘𝑠,                                (1.22) 

This assumption alters the vertical wavenumber from equation (1.17) to give the following 

𝑞𝑔 + 𝑞𝑠 = 2𝑞𝑔 = 𝑘𝑧 ,                                                  (1.23) 

Giving the 1.5D Version of the algorithm in frequency and pseudo-depth 

               𝑏3(𝑘𝑔, 𝜔) = ∫ 𝑑𝑧1𝑒
𝑖𝑘𝑧𝑧1𝑏1(𝑘𝑔, 𝑧1)

∞

−∞
∫ 𝑑𝑧2𝑒

−𝑖𝑘𝑧𝑧2𝑏1(𝑘𝑔, 𝑧2)
𝑧1− 𝜀

−∞
 

× ∫ 𝑑𝑧3𝑒
𝑖𝑘𝑧𝑧3𝑏1(𝑘𝑔, 𝑧3),

∞

𝑧2+𝜀
                                               (1.24) 

The first step is to replace 𝑏1 in terms of pseudo depth (𝑧) with 𝑆1 in terms of time (𝑡) and letting 

𝑆1(𝑘𝑔, 𝑡) be the Fourier transform of 𝑠1(𝑥, 𝑡) over the spatial dimension (Innanen, 2015a) gives, 

𝑏3(𝑘𝑔, 𝜔) = ∫ 𝑑𝑡𝑒𝑖𝜔𝑡𝑆1(𝑘𝑔, 𝑡)
∞

−∞
∫ 𝑑𝑡2𝑒

𝑖𝜔𝑡′𝑆1(𝑘𝑔, 𝑡′) ∫ 𝑑𝑡′′𝑒𝑖𝜔𝑡′′𝑆1(𝑘𝑔, 𝑡′′)
∞

𝑡′+𝜀

𝑡− 𝜀

−∞
,    (1.25) 

For this the output domain is (𝑘𝑔, 𝜔) as the convolutions and correlations are applied through 

multiplication in the frequency domain.  This can be equivalently rewritten so that the 
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convolutions and correlations are performed in the time domain.  Giving the (𝑘𝑔, 𝑡) version of 

the algorithm equation. 

𝑏3(𝑘𝑔, 𝑡) = ∫ 𝑑𝑡′𝑆1(𝑘𝑔, 𝑡′ − 𝑡) ∫ 𝑑𝑡′′𝑆1(𝑘𝑔, 𝑡′ − 𝑡′′)𝑆1(𝑘𝑔, 𝑡′′)
𝑡− 𝜀

𝑡′−(𝑡−𝜀)

∞

−∞
,         (1.26) 

Then by noting the remaining spatial convolutions applied in frequency can also be written in 

time gives the offset-time (𝑥, 𝑡) version of the algorithm (Innanen, 2017). 

𝐵3(𝑥, 𝑡) = ∫ 𝑑𝑥′
∞

−∞
∫ 𝑑𝑡′𝑠1(𝑥 − 𝑥

′, 𝑡′ − 𝑡)
∞

−∞
  

∫ 𝑑𝑥′′
∞

−∞
∫ 𝑑𝑡′′𝑠1 (x

′ − x′′, 𝑡′ − 𝑡′′)𝑠1(𝑥
′′, 𝑡′′),

𝑡− 𝜀

𝑡′−(𝑡−𝜀)
                          (1.27) 

Then by assuming there is no spatial component in Equation 1.26 

𝑘𝑔 =  0,                          (1.28) 

The algorithm can be written and reduced to a 1D time version. 

𝐵3(𝑡) = ∫ 𝑑𝑡′𝑠1(𝑡
′ − 𝑡) ∫ 𝑑𝑡′′𝑠1(𝑡′ − 𝑡′′)𝑠1(𝑡′′)

𝑡− 𝜀

𝑡′−(𝑡−𝜀)

∞

−∞
,                     (1.29) 

The inverse scattering series can now be implemented in either time or time and space 

depending on the required number of dimensions.  With the benefit of this being the data input 

and prediction output domains are identical. 

 

1.3.3 Reduction to 1.5D tau-p domain  

The tau-p domain has also been shown to have notable improvements (Sun & Innanen, 

2014).   Beginning with the previously reduced 1.5D version of the algorithm in frequency and 

pseudodepth (Equation 1.24) can be written in the tau-p domain as demonstrated in Coates & 

Weglein (1996) giving  

𝑏3(𝑝𝑔, 𝜔) = ∫ 𝑑𝜏1𝑒
𝑖𝜔𝜏1𝑏1(𝑝𝑔, 𝜏1)

∞

−∞
∫ 𝑑𝜏2𝑒

−𝑖𝜔𝜏2𝑏1(𝑝𝑔, 𝜏2) ∫ 𝑑𝜏3𝑒
𝑖𝜔𝜏3𝑏1(𝑝𝑔, 𝜏3)

∞

𝜏2+𝜀

𝜏1− 𝜀

−∞
 (1.30) 
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In the tau-p domain the data must be prepared to be input into the algorithm outlined 

below (Sun & Innanen, 2014).  For the 1.5D version the input data is prepared by first 

transforming to the tau-p domain. 

𝑑(𝑥𝑔, 𝑡)
𝜏𝑝
→  𝐷(𝑝𝑔, 𝜏)                                                         (1.31) 

Then 1D Fourier transformed over 𝜏 

𝐷(𝑝𝑔, 𝜏)
𝐹𝑝
→  𝐷1(𝑝𝑔, 𝜔)                                                       (1.32) 

Then scaled by −2𝑖𝑞𝑠 

𝐵1(𝑝𝑔, 𝜔) =  −2𝑖𝑞𝑠𝐷1(𝑝𝑔, 𝜔)                                                (1.33) 

Applying the inverse Fourier transform over 𝜔 to give the prepared data for the algorithm. 

𝐵1(𝑝𝑔, 𝜔)
𝑖𝐹𝑝
→  𝑏1(𝑝𝑔, 𝜏)                                                        (1.34) 

 

1.3.4 Reduction to 1D Pseudo-depth domain  

Equation 1.24 can also be reduced to a 1D prediction algorithm (Eaid, et al., 2016).  This 

1D version will be used to introduce how the method calculates multiples.  The 1D version of the 

algorithm assumes that there is no spatial dimension. 

𝑘𝑔 = 𝑘𝑠 = 0,                                   (1.35) 

Then 𝑞𝑔 reduces to 

𝑞𝑔 =  2
𝜔

𝑐0
,                             (1.36) 

The original 2D equation (Equation 1.19) then reduces to the following 1D equation 

𝑏3(𝜔) = ∫ 𝑑𝑧1𝑒
𝑖2
𝜔

𝑐0
𝑧1𝑏1(𝑧1)

∞

−∞
∫ 𝑑𝑧2𝑒

−𝑖2
𝜔

𝑐0
𝑧2𝑏1(𝑧2) ∫ 𝑑𝑧3𝑒

𝑖2
𝜔

𝑐0
𝑧3𝑏1(𝑧3)

∞

𝑧2+𝜀
,

𝑧1− 𝜀

−∞
      (1.37) 
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The data preparation for the 1D version of the algorithm is displayed. First by first Fourier 

transforming the input data 

𝑑(𝑡)
𝐹
→  𝐷(𝜔),                                  (1.38) 

Then using the follow change of variables from frequency to wavenumber  

𝑘𝑧 =
2𝜔

𝑐0
,                           (1.39) 

Then Inverse Fourier transformed to pseudo depth 

𝐷(𝑘𝑧)
𝑖𝐹
→ 𝑏1(𝑧),                                              (1.40) 

Where the pseudo-depth variable z is  

𝑧 =
𝑐0𝑡

2
,                      (1.41) 

When implementing the method numerically the 1D version of the algorithm can be 

further simplified using a Heaviside step function (Eaid, et al., 2016). This has not altered the 

effectiveness of the equation as no new assumptions have been made, it simply reduces 

computational expense. 

𝑏3(𝜔) = ∫ 𝑑𝑧1𝑒
−𝑖2

𝜔

𝑐0
𝑧1𝑏1(𝑧1)

∞

−∞
[∫ 𝑑𝑧2𝑒

𝑖2
𝜔

𝑐0
𝑧2𝑏1(𝑧2)

∞

𝑧1+𝜀
]
2

,                  (1.42) 

 

1.4 Analytic example in 1D 

A 1D analytic example is completed to demonstrate how the method predicts internal 

multiples from an input data set.  Using a geologic model that has two layers plus a half space 

the resulting seismic trace will contain two primary events and a multiple train with the first 
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order multiple referred to as M212 (Figure 1.1).  Giving the following amplitudes for the events 

in the seismic trace. 

𝑃1 =  𝑅1 

𝑃2 =   𝑇01𝑅2 𝑇10 

 𝑀212 =   𝑇01𝑅2(− 𝑅1)  𝑅2𝑇10,            (1.43) 

Where R is the zero-offset reflection coefficient with the subscript referencing the interface 

number, T is the transmission coefficient and P and M are the primary and multiple events.  With 

corresponding traveltimes, 

 𝑡1 = 2
𝑧1
𝑣1

 

 𝑡2 = 2
𝑧1
𝑣1
+ 2

𝑧2 − 𝑧1
𝑣2

 

 𝑡212 = 2
𝑧1

𝑣1
+ 4

𝑧2−𝑧1

𝑣2
,                  (1.44) 

The input data  𝑏1 is given as follows 

 𝑏1(𝑧) =  𝑃1𝛿(𝑧 −  𝑧1) + 𝑃2𝛿(𝑧 −  𝑧2) +𝑀212𝛿(𝑧 −  𝑧212) + 𝐻𝑖𝑔ℎ𝑒𝑟 𝑂𝑟𝑑𝑒𝑟 𝐼𝑀  (1.45) 

Inserting this into the innermost integral of Equation 1.42 where ẑ is used to denote the 

integration variable and distinguish from z for the pseudo-depths of the layers. 

𝐼1(ẑ1) = ∫ 𝑑ẑ2𝑒
𝑖2
𝜔

𝑐0
ẑ2[𝑃1𝛿( ẑ2 −  𝑧1) + 𝑃2𝛿( ẑ2 −  𝑧2) +𝑀212𝛿(ẑ2 −  𝑧212) 

∞

ẑ1+𝜀
  

+𝐻𝑖𝑔ℎ𝑒𝑟 𝑂𝑟𝑑𝑒𝑟 𝐼𝑀],                                                   (1.46) 

Solving the innermost integral gives the following result 

= {𝑃1𝑒
𝑖2
𝜔

𝑐0
𝑧1 , 𝑧1 > ẑ1 + 𝜀

0,              𝑧1 < ẑ1 + 𝜀
+ {𝑃2𝑒

𝑖2
𝜔

𝑐0
𝑧2 , 𝑧2 > ẑ1 + 𝜀

0,              𝑧2 < ẑ1 + 𝜀
+ {𝑀212𝑒

𝑖2
𝜔

𝑐0
𝑧212 , 𝑧212 > ẑ1 + 𝜀

0,                       𝑧212 < ẑ1 + 𝜀
+⋯ (1.47) 

Can also be written as followed with the use of Heaviside step function 
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𝐼1(ẑ1) = 𝑃1𝑒
𝑖2
𝜔
𝑐0
𝑧1𝐻[𝑧1 − (ẑ1 + 𝜀)] + 𝑃2𝑒

𝑖2
𝜔
𝑐0
𝑧2𝐻[𝑧2 − (ẑ1 + 𝜀)] 

+𝑀212𝑒
𝑖2
𝜔

𝑐0
𝑧212𝐻[𝑧212 − (ẑ1 + 𝜀)],                                      (1.48) 

Squaring Equation 1.48 will give the result to be used in the next integral from Equation 1.39 

𝐼2(ẑ1) = 𝑃1
2𝑒
𝑖2
𝜔
𝑐0
2𝑧1𝐻[𝑧1 − (ẑ1 + 𝜀)] + 2𝑃1𝑃2𝑒

𝑖2
𝜔
𝑐0
(𝑧2+𝑧1)𝐻[𝑧1 − (ẑ1 + 𝜀)] 

+𝑃2
2𝑒
𝑖2
𝜔

𝑐0
2𝑧2𝐻[𝑧2 − (ẑ1 + 𝜀)] + ⋯ ,                                       (1.49) 

Inserting Equation 1.49 into the outermost integral in Equation 1.42 integral gives 

𝑏3(𝜔) = ∫ 𝑑ẑ1𝑒
−𝑖2

𝜔

𝑐0
ẑ1[𝑃1𝛿( ẑ1 −  𝑧1) + 𝑃2𝛿( ẑ1 −  𝑧2) + 𝑀212𝛿(ẑ1 −  𝑧212)

∞

−∞
  

+ 𝐻𝑖𝑔ℎ𝑒𝑟 𝑂𝑟𝑑𝑒𝑟 𝐼𝑀] × [𝑃1
2𝑒
𝑖2
𝜔

𝑐0
2𝑧1𝐻[𝑧1 − (ẑ1 + 𝜀)]  

   +2𝑃1𝑃2𝑒
𝑖2
𝜔

𝑐0
(𝑧2+𝑧1)𝐻[𝑧1 − (ẑ1 + 𝜀)] + 𝑃2

2𝑒
𝑖2
𝜔

𝑐0
2𝑧2𝐻[𝑧2 − (ẑ1 + 𝜀)] + ⋯ ],         (1.50) 

Truncating this to only include the primary events 

𝑏3(𝜔) = ∫ 𝑑ẑ1𝑒
−𝑖2

𝜔

𝑐0
ẑ1[𝑃1𝛿( ẑ1 −  𝑧1) + 𝑃2𝛿( ẑ1 −  𝑧2)]

∞

−∞
× [𝑃1

2𝑒
𝑖2
𝜔

𝑐0
2𝑧1𝐻[𝑧1 − (ẑ1 + 𝜀)] +

2𝑃1𝑃2𝑒
𝑖2
𝜔

𝑐0
(𝑧2+𝑧1)𝐻[𝑧1 − (ẑ1 + 𝜀)] + 𝑃2

2𝑒
𝑖2
𝜔

𝑐0
2𝑧2𝐻[𝑧2 − (ẑ1 + 𝜀)]],                  (1.51) 

And rearranging for both primaries 

𝑏3(𝜔) = ∫ 𝑑ẑ1𝑒
−𝑖2

𝜔

𝑐0
ẑ1𝑃1𝛿( ẑ1 −  𝑧1) × [𝑃1

2𝑒
𝑖2
𝜔

𝑐0
2𝑧1𝐻[𝑧1 − (ẑ1 + 𝜀)] +

∞

−∞

                              2𝑃1𝑃2𝑒
𝑖2
𝜔

𝑐0
(𝑧2+𝑧1)𝐻[𝑧1 − (ẑ1 + 𝜀)] + 𝑃2

2𝑒
𝑖2
𝜔

𝑐0
2𝑧2𝐻[𝑧2 − (ẑ1 + 𝜀)]] +

∫ 𝑑ẑ1𝑒
−𝑖2

𝜔

𝑐0
ẑ1𝑃2𝛿( ẑ1 −  𝑧2) ×

∞

−∞
[𝑃1
2𝑒
𝑖2
𝜔

𝑐0
2𝑧1𝐻[𝑧1 − (ẑ1 + 𝜀)] +  

2𝑃1𝑃2𝑒
𝑖2
𝜔

𝑐0
(𝑧2+𝑧1)𝐻[𝑧1 − (ẑ1 + 𝜀)] + 𝑃2

2𝑒
𝑖2
𝜔

𝑐0
2𝑧2𝐻[𝑧2 − (ẑ1 + 𝜀)]],    (1.52) 

Then solving gives the following result 



 

  17  

𝑏3(𝜔) = 𝑃1
3𝑒
𝑖2
𝜔
𝑐0
𝑧1𝐻[𝑧1 − (𝑧1 + 𝜀)] + 2𝑃1

2𝑃2𝑒
𝑖2
𝜔
𝑐0
𝑧2𝐻[𝑧1 − (𝑧1 + 𝜀)] 

+𝑃1𝑃2
2𝑒
𝑖2
𝜔
𝑐0
(2𝑧2−𝑧1)𝐻[𝑧2 − (𝑧1 + 𝜀)] + 𝑃1

2𝑃2𝑒
𝑖2
𝜔
𝑐0
(2𝑧1−𝑧2)𝐻[𝑧1 − ( 𝑧2 + 𝜀)] 

+2𝑃1𝑃2
2𝑒
𝑖2
𝜔

𝑐0
𝑧1𝐻[𝑧1 − ( 𝑧2 + 𝜀)] + 𝑃2

3𝑒
𝑖2
𝜔

𝑐0
𝑧2𝐻[𝑧2 − ( 𝑧2 + 𝜀)],                (1.53) 

Now applying the Heaviside step functions as shown 

{
 

 
0, 𝐻[𝑧1 − (𝑧1 + 𝜀)]  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀                  

0, 𝐻[𝑧1 − (𝑧2 + 𝜀)]  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀                  

0, 𝐻[𝑧2 − (𝑧2 + 𝜀)]  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀                  

1, 𝐻[𝑧2 − (𝑧1 + 𝜀)]  𝑓𝑜𝑟 𝜀 < (𝑧2 − 𝑧1)

                        (1.54) 

Results in the final truncated solution in the Fourier domain 

𝑏3(𝜔) = 𝑃1𝑃2
2𝑒
𝑖2
𝜔

𝑐0
(2𝑧2−𝑧1),                                             (1.55) 

Then applying the inverse Fourier transform gives the internal multiple prediction. 

𝑏3(𝑡) =    𝑅1𝑇01𝑅2 𝑇10 𝑇01𝑅2 𝑇10δ(t − (2𝑡2 − 𝑡1)),                       (1.56) 

Comparing this back to the multiple defined in Equation 1.43 and 1.44 the inverse 

scattering series has predicted the time of the multiple exactly.  The amplitude prediction is off 

by the transmission coefficients from both the downgoing (𝑇01) and upgoing (𝑇10) transmission 

coefficients across the downward generating horizon (interface 1).  The error in the amplitude 

arises from the outermost integral and is a function of the “generator” depth ẑ1 in the analytic 

example, or z1 from Equation 1.42.  This is due to the 𝑃2 event having traveled through the 

downward generator.  Even given this analytic example with infinite bandwidth and no noise 

there are still a small amplitude errors present in the prediction.  This transmission loss error has 

been previously shown (Zhang & Shaw, 2010; Pan & Innanen, 2013; Ramirez, 2013).   
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How the method predicts internal multiples was displayed for P-wave only data.  

Considerable effort has recently been undertaken to predict and attenuate converted wave 

internal multiples.  Converted waves must be handled differently as great care must be taken 

when converting both P and S wave events to pseudo depth (Sun, et al., 2017a).  Both the 

preparation and prediction has been displayed successfully (Sun, et al., 2017b). 

 

1.5 Short vs. long path multiples 

The inverse scattering series prediction algorithm can only predict long path multiples.  If 

short path multiples present in the data this would need to be resolved with a different approach.  

To predict internal multiples from the data the events need to be sufficiently separated in time to 

be combined.  This can be thought similarly to the tuning effect that displays how two seismic 

reflections interact as the time between events varies (Widess, 1973).  This tuning thickness and 

the seismic response are often displayed with a wedge model (Figure 1.4). 

 
Figure 1.4 Tuning wedge for 3 layer model from (Widess, 1973) 
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Like the tuning wedge, a model is created with varying thickness to test the prediction 

algorithm for short vs long path multiples.  This is done using a zero offset assumption with 

velocities displayed and convolved with a 40Hz Ricker wavelet with the primaries and internal 

multiples.  Using the 1D inverse scattering series equation this model is solved for various layer 

thickness using the noted values of epsilon (Figure 1.5). 

       

 
Figure 1.5 Tuning wedge model for internal multiples Internal multiple prediction from 

ISS for tuning wedge model with variable epsilon 
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The image with epsilon equal to zero exaggerates the issue when epsilon becomes small 

and the primary reflection begins to predict itself.  A more reasonable epsilon value such as 15 

displays how the internal multiples can be predicted without predicting primaries.  With the 

larger epsilon once the two layers become sufficiently close and the multiples transitions from 

long to short path the multiple can no longer be predicted.  Through the choice epsilon an 

explicit definition is made for what is termed a short path or long path multiple.  As any sub 

events which are separated by a distance greater than epsilon are defined as long path where any 

sub events less than epsilon are considered short path. 

 

Even in this simple model the algorithm is unable to predict all internal multiples when 

the distance between the primaries becomes sufficiently small.  This then raises the question of 

how to judge the success of the algorithm.  It may not be reasonable for the algorithm to predict 

and remove all multiples in a dataset.  When using an increasingly complex model there will be 

an increased opportunity for internal multiples which consist of both short and long path 

multiples in quick succession of interfering. 

 

1.6 Adaptive subtraction 

It has been shown how small amplitude differences exist between the prediction and the 

actual internal multiples due to the downward generator.  In practice with real data there can also 

be other sources which impact the prediction.  If there are changes to the wavelet or 

nonstationary features this can cause a prediction with an amplitude mismatch.  Ideally the 

internal multiples would be kinematically separated from the primaries to build the filter, but this 

will generally not be the case. Due to amplitude mismatches a filter is built to match the 
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predicted internal multiples to the data.  This is a critical step as we want to correct for 

differences between the predicted and real internal multiples without damaging the primaries.  

Another cause for the requirement of a filter even for an ideal noise free synthetic is due to the 

way the method operates on bandlimited data show as the issue of the autoconvolution of a 

wavelet. 

 

1.6.1 Autoconvolution of a wavelet 

The main operations in the inverse scattering series prediction algorithm is convolution 

and correlation.  To understand the impact of these operations a simple test is completed by 

autoconvolving a 40Hz (Figure 1.6). 

 
Figure 1.6 a) 40 Hz Ricker wavelet and autoconvolution of the wavelet, b) amplitude 

spectrum of the 40 Hz Ricker wavelet and autoconvolution of the wavelet 

 

The result in the time domain is both the slight decrease in amplitude of the wavelet and 

the addition of the sidelobes.  In the amplitude spectrum, the dominant frequency has remained 

the same for the prediction but there are frequencies lost at both the high and low end of the 

spectrum. 
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1.6.2 Theory 

Adaptive subtraction is an approach to solve for a filter which will match two datasets by 

minimize a function.  An adaptive subtraction algorithm has been developed and has been 

previously tested on internal multiple attenuation (Keating, et al., 2015).  The tools utilized for 

this project are provided by CREWES.  In one-dimension adaptive subtraction is carried out by 

some form of the following, 

𝑎 = 𝑑 −𝑚 ∗ 𝑓 = 𝑑 −𝑀𝑓           (1.57) 

Where a is the minimizing term, d is the input data, m is the predicted multiples and f is the 

filter.  It is shown either by convolving with the filter or through matrix multiplication where M 

is the internal multiple prediction as a convolution matrix. How you minimize a can be 

completed using various normalizations.  This choice of minimization function will have an 

impact on the results and the effectiveness of the subtraction (Keating, et al., 2015).  Once choice 

of normalization is the L2 norm given by 

‖𝑎‖2 = ‖𝑑 −𝑀𝑓‖2 = ∑ 𝑎𝑛
2𝑁

𝑛=1       (1.58) 

This is minimizing the square root of the sum of the squares.  The filter can be solved with the 

least squares equation, 

𝑓 = (𝑀𝑇𝑀)−1𝑀𝑇𝑑        (1.59) 

Another choice of normalization is the L1 norm and is given by 

‖𝑎‖1 = ‖𝑑 −𝑀𝑓‖1 = ∑ |𝑎𝑛|
𝑁
𝑛=1      (1.60) 

For any of the minimization terms selected the filter design must be careful about how 

aggressive and nonstationary the filter can be.  This is largely controlled through choice of filter 

length (Keating, et al., 2015).  Since the goal of the objective function is to find a minimum, then 
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there can be an issue of the filter also minimizing primary energy. For synthetics this can be 

easier to manage as it is often known which events are primaries and multiples, but in practice 

this is not known.  It was displayed how using a hybrid norm of L1 and L2 assisted the internal 

multiple prediction and allowed for the subtraction of unwanted multiples from a trace and 

reduced the impact to primaries in the data (Keating, et al., 2015).   

 

1.7 Thesis Overview 

Two techniques with the inverse scattering series internal multiple attenuation algorithm 

are introduced, developed and discussed.  First, a proposed new dimension to the algorithm is 

developed.  The higher order terms in the series are also implemented.  These higher order terms 

were found through a different line of reasoning than the original mathematically rigorous proof.  

Also developed in this work is the importance of how the higher order terms are implemented.   

 

Second, a domain for the algorithm is also explored in time and offset which was recently 

developed (Innanen, 2015b).  The impact of this domain to the multidimensional problem with a 

nonstationary epsilon is explored for the first time and shown to be advantageous.  Irregular 

spatial sampling and the impact on internal multiple prediction in this time-offset domain is also 

explored. 

 

These changes to the implementation of the method are then brought together on both 

synthetic and real data.  The workflow to combine these additions to the method to produce an 

optimal prediction to attenuate internal multiples in a systematic way is outlined.  Much of the 

work that is shown in this thesis has been presented and shown in other reports and conference 
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abstracts.  The chapters 1-4 were largely described by CREWES reports (Iverson & Innanen, 

2017; Iverson, et al., 2017; Iverson, et al., 2018e) and Geoconvention abstracts (Iverson, et al., 

2018c; Iverson, et al., 2019) and seg abstracts (Iverson, et al., 2018b). Chapters 5 and 6 were 

shown in CREWES reports (Iverson, et al., 2018d; Iverson, et al., 2018a).  
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Chapter Two: The Downward Generator Space  

 

2.1 Numerical example with 1.D synthetic data 

The 1D version of the inverse scattering series internal multiple prediction algorithm is 

implemented on a simple geologic model where the velocities and depths are displayed below 

assuming a constant density (Figure 2.1).  Model parameters were chosen to produce internal 

multiples that have high amplitudes due to the large impedance contrasts and occur in distinct 

locations from the primary events. The 1D model was also chosen to strictly evaluate the zero 

offset case without any additional impacts from amplitude variations with offset. The goal is to 

evaluate the accuracy of the ISS prediction on a simple 1D model. 

 

Figure 2.1 Velocity and depth model used for the 1D prediction. 

2.1.1 Modeling parameters 

The primaries, first and second order internal multiples were computed using zero offset 

reflection and transmission coefficients to create a reflectivity series with sample rate 0.0001s, 

then convolved with a 40Hz Ricker wavelet and resampled to 0.002s to create the seismic trace 

(Figure 2.2). 
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Figure 2.2 Reflectivity series for primaries, internal multiples and resulting seismic trace 

 

2.1.2 Internal multiple prediction 

The internal multiple prediction is carried out on the synthetic trace and the results of the 

prediction are displayed in Figure 2.3.  This prediction was completed using an epsilon value of 

15 due to the bandwidth and sampling rate of the data.  At a minimum the output from the 

prediction requires a global scalar so the prediction has approximately the same amplitude as the 

input trace.  In this example the global scalar was calculated by matching the peak amplitudes of 

the internal multiple (M212).  This event was chosen to give a reasonable value for the global 

scalar.  In practice it would not be known which events are primaries and multiples, but an 

estimate for a single scalar would still be required. 
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Figure 2.3 Input seismic trace and 1D internal multiple prediction 

All internal multiples from the input data have been predicted correctly in time and the 

primaries have not been predicted.  The amplitudes for the predictions are reasonably matched to 

those of the input trace.  The wavelets on the prediction appear to be have been altered relative to 

the input trace and now contain additional sidelobes, due to the previously noted autocorrelation 

of band limited data. 

 

2.2 Downward Generator Space 

In practice the algorithm is implemented numerically by solving each frequency slice for 

all possible pseudo-depth locations which obey the lower-higher-lower criteria.  From Equation 

1.42 the pseudo-depth location of the outermost integral varies at the location of the downward 

generator.  The analytical example (Equations 1.43 - 1.56) displayed how the predicted 

amplitudes will be in error by the transmission loss across the downward generator.  What is 
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proposed is to store the prediction from Equation 1.42 for the given downward generator giving 

the output prediction with two variables.  To achieve the standard output the prediction is 

summed over all downward generators (𝑧1).  Then taking this two-dimensional output and 

inverse Fourier transform giving over the frequency direction gives 

𝑏3(𝑧1, 𝜔)
𝑖𝐹
→ 𝑏3(𝑧1, 𝑡) .         (2.1) 

This has been termed the downward generating space.  This space is displayed with time 

on the horizontal-axis and pseudodepth on the vertical-axis.  This space which is a function of 

pseudodepth and time was created for the previous prediction and is displayed (Figure 2.4).  This 

downward generator space is similar to the space created in the XIMP process referred to as 

multiple contributing gather (MCG) (Wu & Dragoset, 2011). 

 

Figure 2.4 Downward generator space displaying individual internal multiples. Prediction 

time is on the horizontal axis and downward generator time on the vertical axis   
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The predicted internal multiples can be viewed in this uncollapsed space.  Every two-

dimensional wavelet like event is an individual internal multiple.  For this input model there are 

only four first order multiples so the majourity of the events are higher order internal multiples.  

Also displayed is the resulting multiple train from each downward generator.  This space shows 

how at a given prediction time (all pseudo-depths at one time slice) there can be several internal 

multiples.  If the adaptive subtraction and matching is completed after the data has been summed 

over all downward generators then that information is lost, and these amplitude issues can no 

longer be rectified with a single filter. 

 

This space allows for two avenues to correct the amplitudes of the predict internal 

multiples.  The first is to apply a 2D adaptive subtraction in this downward generator space 

(Keating, et al., 2015).  Since the vertical axis is the dimension which causes amplitude errors 

this should be a more natural space for the adaptive subtraction to create the filter and minimize 

error.  This 2D adaptive subtraction is similar to the iterative adaptive subtraction used for each 

multiple model from a selected generator horizon from XIMP (Wu & Dragoset, 2011).  The 

second is to apply a scalar that varies with the vertical downward generator axis to account for 

the amplitude issues that arise such as transmission losses.  This is similar to the multiple 

elimination algorithm which calculates the transmission losses from the input data alone within 

the algorithm (Ramirez & Weglein, 2008; Zou & Weglein, 2015). 

 

2.3 Adaptive subtraction in 2D 

To create the standard prediction the entire length in the pseudo depth dimension is 

stacked.  The entire downward generator space could be input into the adaptive subtraction, but 
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in practice the space is partially stacked over the downward generator dimension.  This is done 

for two reasons.  First is to reduce the computational expense by reducing the number of traces, 

the second is to at a minimum stack over the width of the wavelet and to reduce the likelihood of 

overfitting.  There may be an epsilon relationship here which could assist in choosing a stack 

size. 

 

2.3.1 Theory 

The standard approach takes the 1D trace and prediction with some type of energy 

minimization (Chapter 1.6).  In the approach proposed here instead of solving for a single filter, 

now multiple filters are solved for over the downward generator direction and minimize the 

difference between the sum of the combination of these to the single dimension initial data trace. 

𝜙(𝑓) =  || 𝑏1(𝑡)  −  𝑏3(𝑧1, 𝑡)𝑓||𝑝
𝑝
,         (2.2) 

Where f is the filter and p is a chosen parameter.  To prevent overfitting in the downward 

generator dimension a penalty term is added and minimize the following 

𝜙(𝑓) =  || 𝑏1(𝑡)  −  𝑏3(𝑧1, 𝑡)𝑓||𝑝
𝑝 + 𝜙𝑅  ,         (2.3) 

Where 𝜙𝑅 is a term which penalizes variation in the vertical axis.  This gives a minimization 

function which will create a series of 1D filters.  Arranging these 1D filters into a matrix, we can 

use matrix multiplication with the DGS to produce the adaptive subtracted multiple trace. 

 

2.3.2 Application to 1D numerical example 

Using the previous one-dimensional numerical example and prediction both the standard 

approach of adaptive subtraction on the 1D predicted trace and the 2D space is implemented with 
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the 2D adaptive subtraction. First the standard approach with adaptive subtraction is displayed 

(Figure 2.5). 

 

Figure 2.5 Internal multiple prediction with 1D adaptive subtraction 

In general, the filter has been able to adjust the amplitudes and a reasonable prediction is 

made.  There is still an amplitude mismatch which occurs at approximately 0.65 seconds.  This is 

then put into the 2D adaptive subtraction and the result is displayed (Figure 2.6).    This 2D trace 

is partially stacked along the row direction to give 10 traces. 
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Figure 2.6 Internal multiple prediction with 2D adaptive subtraction  

It is displayed how utilizing the 2D downward generator space to carry out the adaptive 

subtraction can improve the prediction.  Adaptive subtraction in this space can attempt to 

account for the transmission losses due to the downward generator which the original algorithm 

does not account for.  The method also remains data driven as there are still no subsurface 

information requirements. 

 

2.4 Pseudo-depth variant scalar 

Another option to adjust the amplitudes of the prediction is to create and apply a scalar 

which will correct for the transmission losses. This can be done without using the downward 

generator space by making a slight addition to the standard algorithm.  A change to the order of 

operations for the numerical algorithm of the internal multiple prediction is done.  This produces 

a more natural location to alter the equation and account for the transmission loss at the 
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generator.  This is introduced into the last step where the prediction at a given depth z is 

multiplied by the scalar φ(z). The pseudo code for how this is implemented is shown ( 

Figure 2.7). 

 
 

Figure 2.7 a) Summing over wavenumber then depth, b) proposed order of operations 

alteration summing over depth then wavenumber with scalar applied to give scaled 

prediction 

 

Another option is to use the downward generator space and simply apply the scaler to all times 

for a given pseudo-depth.  Then to obtain the final prediction sum over all pseudo-depths.  This 

additional scalar can be displayed in either the frequency domain as 

𝑠𝑏3(𝑧1, 𝜔) = φ(𝑧1) × 𝑏3(𝑧1, 𝜔),    (2.4) 

Where 𝑠𝑏3 is the scaled version of 𝑏3.  Or applied in the time domain after inverse Fourier 

transforming gives 

𝑠𝑏3(𝑧1, 𝑡) = φ(𝑧1) × 𝑏3(𝑧1, 𝑡),             (2.5) 
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2.4.1 Scalar calculation 

One concern that immediately arises from applying a scalar to the prediction is that some 

subsurface information must be assumed.  As the scalar is a precalculated depth dependent value 

to account for losses.  One of the key benefits of the original inverse scattering series multiple 

attenuation method is that it is data driven.  If some prior knowledge of the subsurface is now 

assumed, then this may be considered too significant an alteration to the original method.  The 

internal multiple elimination algorithm has a similar goal to this and uses the data to predict the 

attenuation factor (Ramirez & Weglein, 2008; Zou & Weglein, 2015).  If there is noise in the 

data or a data driven attenuation factor calculation is struggling, then a pre-calculated scalar may 

still assist.  This can also be calculated to include any other losses such as those due to geometric 

spreading or attenuation. The goal of the addition of the scalar is to attempt to correctly calculate 

the amplitudes with the utilization of additional physics to reduce the load on adaptive 

subtraction. 

 

For the previous geologic model the scalar is calculated by using the velocities and 

depths from the model and calculating the transmission loss with depth.  In practice this could be 

implemented with a sonic and density log to calculate the transmission loss.  For this example, 

the first and last values were extrapolated to zero depth and final depth and the intermediate 

values were linearly interpolated (Figure 2.8).  A block model was not used so that there to 

prevent a step change at the location of the downward generator as this would significantly 

impact the amplitude across the width of the wavelet. 
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Figure 2.8 Transmission loss scalar for internal multiple prediction. 

The result from both the original prediction and the scalar applied prediction is displayed 

(

 

Figure 2.9).  Similarly, to the previous example both have a single global scalar applied 

to compare the differences.  This global scalar was computed by matching the amplitudes of the 

first multiple peak (M212).  Both versions of the method have accurately predicted all multiples 

in the data.  There exist small variations throughout the trace but in general both predictions are 
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comparable.  The minimal differences between the two reflect the small adjustment made to the 

amplitude of the prediction.  The largest impact of the depth dependent scalar should be located 

at the internal multiple M323. 

 

Figure 2.9 a) Trace with both scaled and unscaled predictions, b) isolating two multiples 

M323 and M313 

 

This internal multiple will have transmission effects due to the second interface not 

previously accounted for.  In 
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Figure 2.9 the peak amplitude of the multiple prediction for the scaled version has better 

accounted for extra transmission terms relative to the unscaled version.  In 

 

Figure 2.9 there is a slightly lower amplitude prediction for the multiple M313.  Thus, this 

depth dependent scalar has improved the prediction for one multiple and been detrimental to 

another.  Compared to the previous example with 2D adaptive subtraction (Figure 2.6) which 

could overcome this issue.  This variation in success is due to higher order multiples which will 

be scrutinized in Chapter 3. 

 

2.5 Numerical example with synthetic data in 1.5D 

The previous examples all used zero offset traces.  While this is a useful step both to 

understand the problem theoretically and could be applied to post stack or zero offset data there 

is a need to apply the method prestack.  The downward generator space is displayed with a 

spatial component by creating data which has both time and offset. Displayed is the velocity and 

depth model, again assuming constant density with the primaries and internal multiple shown 

(Figure 2.10). 
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Figure 2.10 Geologic model displaying velocities and depths used 

2.5.1 Modeling Parameters 

Using finite difference modeling a shot record was created (afd_shotrec in CREWES 

MATLAB toolbox).  Finite difference allowed for the modeling of all orders of multiples within 

the recorded window.  The 2D model was spatially sampled every 10m and a temporal sample 

rate of 0.002s, with a grid that is 512x256 samples.  The seismic shot record was created by 

convolving the result with a 30Hz Ricker wavelet. 

 

2.5.2 internal multiple prediction 

The 1.5D tau-p version of the algorithm (Equation 1.30) will be used to predict the 

internal multiples. The input data must be prepared prior to being put in the internal multiple 

prediction algorithm. From the CREWES Toolbox the first step involved applying a surface 

mute to ensure there are no erroneous values near the shot location.  Also, in the tau-p 

preparation function in the CREWES toolbox, is a spatial cosine taper that is applied to minimize 

artifacts at the edges of the data and prediction (Sun & Innanen, 2014).  The data is then 

transformed into the tau-p domain and a scale factor from Weglein ISS theory is applied.  Due to 

the medium only varying in the vertical direction the prediction will only be completed on the 
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positive slowness values. The resulting model and internal multiple prediction using an epsilon 

value of 30 is displayed (Figure 2.11). 

 

Figure 2.11 (Left) Synthetic seismic shot record (Right) 1.5D tau-p multiple prediction  

The internal multiples have been accurately predicted in the data set.  The chosen epsilon 

value appears to have been sufficiently small to allow for the prediction of the multiple but not 

so small as to predict energy from the primaries.   

 

2.5.3 Downward Generator Space with a spatial dimension 

The 1D problem had a two-dimensional DGS, now the 1.5D problem with time and offset 

has a three-dimensional DGS.  This has been completed by storing the individual slices and since 
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there is a time and space component this must be stored in a 3rd dimension.  This is displayed for 

all slices (Figure 2.12).  In practice, when adaptively subtracting or applying a scalar it may be 

computationally beneficial to store the data into stacks, as the size of the matrix goes from (Nt by 

Nx) to (Nt by Nt by Nx).  Displayed in the figure is the new dimension added to this 1.5D 

problem. 

 

 

 

Figure 2.12 a) three dimensional view of the 3D DGS, b) a slice through zero offset similar 

to standard 2D DGS c). One DGS slice displaying the first order and higher order internal 

multiples, d) A deeper DGS slice displaying only higher order internal multiples 
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Looking at the single zero offset slice this is comparable to the 1D case.  The individual 

multiples can be identified and the generator which caused the given multiple train is also 

identifiable.  It can be seen here how the at the pseudo-time of the first primary all multiples can 

be seen.  Then at the second primary pseudo-time the second order multiple is displayed.  

Looking at the single slice it does not appear to be identical to the final standard prediction.  

Again this must be summed over all pseudo-times to create the prediction wavelet. 

 

2.6 Conclusions 

This new dimension has been displayed for both the 1D and 1.5D case, with the goal of 

giving increased flexibility to correct amplitude errors that can not be rectified after the 

prediction is collapsed over this new dimension.  This new space gives numerous new insights 

into the way the prediction algorithm functions.  Both, from an increased understanding of the 

prediction and the ability to correct amplitude errors, either through some pre-calculated scalar or 

using a multidimensional adaptive subtraction. The addition of an extra dimension could also 

lead to the overpredicting of the data and the removal of primary energy.  Constraints must be 

placed with the adaptive subtraction to force the algorithm to be smoothly varying over the new 

dimension.  As real data propagates there are the effects of transmission loss, geometric 

spreading, attenuation, mode conversions all of these may affect the amplitudes at different 

points in the seismic trace.   Through processing the data many of these effects are attempted to 

be corrected for and other noise sources are attempted to be removed.  If there are any residual 

amplitude errors with the processed data, this space may also allow for the correction of these.  

This may assist in adding a new dimension to better fit the amplitudes of the resulting prediction. 
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Chapter Three: Higher Order Terms  

 

3.1 Residual amplitude mismatch 

Chapter two demonstrated how errors in the predicted amplitudes of internal multiples 

arise due to the downward generating horizon.  Two methods were displayed to account for these 

errors.  Using either the downward generator space and a 2D adaptive subtraction or a pre-

calculated scalar.  The two approaches improved the prediction, but amplitude mismatches 

remain compared with the input data.  The cause of the residual amplitude mismatch is higher 

order internal multiples.  The standard approach only uses the first term from the inverse 

scattering series.  To further assist the prediction of higher order internal multiples, higher order 

terms from the inverse scattering series are investigated. 

 

3.2 Second order internal multiples 

The first term in the inverse scattering series takes all events from the input data to predict 

internal multiples.  When internal multiples are present in the input data these events are also 

used in the algorithm.  When internal multiples are applied in the algorithm these combine in the 

same manner as primaries through convolutions and correlations to predict higher order internal 

multiples.  These higher order multiple predictions must still obey the lower-higher-lower 

relationship. This is another benefit of the algorithm as even the first term in the series uses the 

input data to predict all orders of multiples.  The problem that arises is the second order multiples 

are generally overpredicted (Zhang & Shaw, 2010).  This further complicates the issues with the 

predicted amplitudes as first order multiples are generally underpredicted and the second order 

multiples are overpredicted (Zhang & Shaw, 2010).  These second order and higher internal 
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multiples are overpredicted because a single multiple can be predicted from several combinations 

of sub events (Figure 3.1).   

 

Figure 3.1 Displaying the algorithm computing second order multiples with convolution (*) 

and correlation (x) 

 

The 1D analytic prediction in chapter one (Equations 1.43 - 1.56) was truncated to only 

include the primaries, which were combined to create the internal multiple prediction for the 

multiple M212.  Therefore, only the single internal multiple prediction was solved for and not 

the infinite number of higher order multiples.  Artifacts have also been shown to arise when 

using a multiple as the higher event in the lower-higher-lower criteria (Liang, et al., 2013; Ma & 

Weglein, 2015). 

 

Displayed in Figure 3.2 is the seismic trace using the geologic model from chapter two 

(Figure 2.2) with both first and second order multiples modeled. At the location of the 
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underpredicted M313 multiple from 

 

Figure 2.9 there is a second order multiple at this temporal location with opposite polarity 

compared to the first order multiple.   

 

Figure 3.2 Reflectivity series and trace for primaries, first and second order multiples  

In general, the amplitudes of the higher order internal multiples are small relative to the 

primaries and first order multiples.  The amplitude correction necessary to adjust the prediction 
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is more complex than a global scalar, even if it varies with pseudo-depth.  At the location of the 

multiple 313 there is a negative polarity first order multiple and positive polarity second order 

multiple, and this would require two different scalars at the same temporal location.  Using 

internal multiples from the input data in the algorithm will also be impacted by transmission 

losses.  The pseudo-depth varying scalar impacts this prediction as it is also applied to the 

multiples in the trace, though the scalar was designed from the primary transmission loss. 

Similarly, the 2D adaptive subtraction will attempt to account for the amplitude variations 

between first order and higher order internal multiples. The issue that is shown is that at a single 

temporal location there may be multiple scalars required due to coincident first order and higher 

order internal multiples. 

 

Since the higher order multiples require a different amplitude adjustment as they have been 

overpredicted, what is required is a means to decouple the higher order multiples from the first 

order multiples.  By isolating the higher order internal multiple predictions, the duplicate 

predictions of the same event can be removed. 

 

3.3 Inverse scattering series terms 

The original algorithm was derived by selecting a subset of the inverse scattering series 

which obeys the lower-higher-lower criteria.  The issue due to these overpredicted higher order 

multiples is addressed with higher order terms in the inverse scattering series.  The original 

algorithm calculates 𝑏3 from the input data 𝑏1 used in all portions of the algorithm (Equation 

3.1).  
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𝑏3(𝜔) = ∫ 𝑑𝑧1𝑒
𝑖2
𝜔

𝑐0
𝑧1𝑏1(𝑧1)

∞

−∞
∫ 𝑑𝑧2𝑒

−𝑖2
𝜔

𝑐0
𝑧2𝑏1(𝑧2) ∫ 𝑑𝑧3𝑒

𝑖2
𝜔

𝑐0
𝑧3𝑏1(𝑧3)

∞

𝑧2+𝜀
,

𝑧1− 𝜀

−∞
    (3.1) 

The higher order terms are calculated by taking the multiple prediction output (𝑏3) and 

using this as one of the inputs into the algorithm (Liang, et al., 2013).  The first higher order term 

to be used is referred to as b5PPI since it uses the two primary traces and then the internal 

multiple trace (Equation 3.2) (Liang, et al., 2013).   

𝑏5
𝑃𝑃𝐼(𝜔) = ∫ 𝑑𝑧1𝑒

𝑖2
𝜔

𝑐0
𝑧1𝑏1(𝑧1)

∞

−∞
∫ 𝑑𝑧2𝑒

−𝑖2
𝜔

𝑐0
𝑧2𝑏1(𝑧2) ∫ 𝑑𝑧3𝑒

𝑖2
𝜔

𝑐0
𝑧3𝑏3(𝑧3)

∞

𝑧2+𝜀
,

𝑧1− 𝜀

−∞
    (3.2) 

It should be noted that the primary trace contains both primaries and internal multiples.  

The internal multiple prediction from the first term in the series (𝑏3) must be accurate and should 

only contain internal multiples.  This is critical to ensure that only higher order multiples are 

predicted with the higher order terms.  By having one of the input traces being the predicted 

internal multiples there are theoretically no primaries in this trace.  The importance of how the 

primary and internal multiple traces (𝑏1and  𝑏3) are combined and scaled is discussed. 

 

There is also the potential for pure artifacts to arise in the prediction when only the first 

term is used.  To remove these artifacts the term referred to as b5PIP (Equation 3.3) (Liang, et 

al., 2013) is also implemented.  By using a similar approach but with the internal multiple trace 

used in a different portion of the algorithm these artifacts can be attenuated (Liang, et al., 2013). 

𝑏5
𝑃𝐼𝑃(𝜔) = ∫ 𝑑𝑧1𝑒

𝑖2
𝜔

𝑐0
𝑧1𝑏1(𝑧1)

∞

−∞
∫ 𝑑𝑧2𝑒

−𝑖2
𝜔

𝑐0
𝑧2𝑏3(𝑧2) ∫ 𝑑𝑧3𝑒

𝑖2
𝜔

𝑐0
𝑧3𝑏1(𝑧3)

∞

𝑧2+𝜀
,

𝑧1− 𝜀

−∞
      (3.3) 
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3.3.1 Implementation of higher order terms 

The higher order terms require the output from the original algorithm (𝑏3).  A critical step 

to successful implementation of the higher order terms (𝑏5
𝑃𝑃𝐼and 𝑏5

𝑃𝐼𝑃) is the scaling of the 

prediction prior to being used as input for the higher order terms.  It has been noted that the term 

𝑏5
𝑃𝑃𝐼 required a scalar of 2 to account for both the 𝑏5

𝑃𝑃𝐼and 𝑏5
𝐼𝑃𝑃 (Liang, et al., 2013).  It will be 

displayed for these tests that an initial scalar of one is used successfully.  This appears to be due 

to the attempting to remove just one of the additional predictions.  The amplitude corrections 

discussed in chapter two can be used to assist the higher order predictions.  If the higher order 

terms are to be applied successfully then an accurate estimate of the internal multiple trace must 

be known including the amplitudes of the internal multiples.  Some options to correct the 𝑏3 

trace is to use a single global scalar, use standard 1D or 2D adaptive subtraction or the pseudo-

depth varying scalar or the internal multiple elimination algorithm.  One advantage with using 

adaptive subtraction is that it will both correct the amplitudes and adjust the frequency content 

due to convolution process adding the additional sidelobes.  If the sidelobes are not accounted for 

then this effect will become compounded as the 𝑏3 trace is used again in the algorithm.  Once the 

terms are calculated the final internal multiple prediction can be made by summing the terms 

(Liang, et al., 2013), 

𝐼𝑀(𝑡) = 𝑏3(𝑡) + 𝑏5
𝑃𝑃𝐼(𝑡) + 𝑏5

𝑃𝐼𝑃(𝑡)     (3.4) 

This can be similarly done if in the downward generator space. 
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3.4 Numerical example with 1D synthetic data 

Using the 1D synthetic trace (Figure 3.2), the internal multiple prediction is made, and the 

downward generator space is used to display the resulting prediction of the 𝑏3 and the two 

𝑏5 higher order terms (Figure 3.3). 
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Figure 3.3 2D downward generator space displaying individual internal multiples, a) b3 

term with first order multiples displayed with red box. b) b5PPI higher order multiples. c) 

b5PIP artifacts from the prediction 
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The 𝑏3 space is shown with the four first order multiples outlined.  It shows that the first 

order internal multiples can be separated from both the higher order multiples and the events that 

are purely artifacts in the prediction.  Recalling that the final 1D trace is created by summing 

over all the rows, this highlights how numerous internal multiples can contribute at a single point 

in time.  There is also the option to use all three spaces to apply various scaling as required.  If 

there were any problems with scaling of the initial prediction of 𝑏3 prior to being put into higher 

order algorithm, then this could still be adjusted in this space. 

 

These spaces are summed (Equation 3.4) to create one 2D downward generator space to 

be used for the prediction (Figure 3.4).  By summing all these terms in the 2D space the result is 

a downward generator space which has been corrected for the overpredictions of higher order 

terms and pure artifacts have been removed.   

 

Figure 3.4 2D downward generator space displaying individual internal multiples after 

including higher order terms 
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This 2D space can now be used as previously shown with either the scalar or the 2D 

adaptive subtraction to obtain a final prediction.  By using the 2D adaptive subtraction the result 

is displayed (Figure 3.5). 

 

Figure 3.5 Internal multiple prediction with higher order terms and 2D adaptive 

subtraction 

 

By combining both higher order terms and the 2D space a significant improvement in the 

prediction is made.  Previously to correct these amplitudes a significantly non-stationary or harsh 

adaptive subtraction would be required.  Through the combination of both the 2D space and 

higher order terms these multiples can now be more accurately attenuated.  Ideally the method 

would not require adaptive subtraction and the amplitudes of all internal multiples would be 

predicted exactly from the original algorithm.  In practice what these alterations have done 

through the DGS and the higher order terms is given the adaptive subtraction an improved 
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opportunity to be successful as it is attempting to give both correct the amplitudes first and give a 

more natural space to calculate the filters. 

 

3.5 Numerical example in 1D with a destructively interfered primary 

To display the uplift of the additional terms and why the adjustments to the predicted 

amplitudes is required, a subtle variant of the 1D example is displayed.  This is done by adding 

an additional layer to the previous model with the new model displayed (Figure 3.6). 

 

Figure 3.6 Velocity and depth model with additional layer used for 1D prediction. 

The addition of the fourth layer was done to create a fourth primary which occurs at the 

same time with opposite polarity of an internal multiple (Figure 3.7).  The result is an input trace 

which has minimal evidence of the fourth primary as it has destructively interfered with the 

multiple. 
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Figure 3.7 a) Primaries and multiples trace b) Primaries only trace highlighting location of 

missing primary due to internal multiples 

 

For this example, the prediction is completed using the standard approach using the first 

term and the 1D adaptive subtraction and 2D adaptive subtraction in the downward generator 

space with the higher order terms.  Both results are displayed (Figure 3.8). 
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Figure 3.8 a) Internal multiple prediction with 1D adaptive subtraction b) Internal multiple 

prediction with 2D adaptive subtraction and higher order terms 

 

As shown previously both can predict the internal multiples without predicting primaries.  

The amplitudes for both appear reasonable with a slightly improved match with the additional 

terms and 2D adaptive subtraction.  The multiple attenuated trace is created for the first test with 

only the first term and 1D adaptive subtraction (Figure 3.9). 
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Figure 3.9 Trace with internal multiple attenuation using a) the 1D adaptive subtraction 

Trace with internal multiple attenuation and b) 2D adaptive subtraction and higher order 

terms 

 

The original method result shows the three prominent primaries and several small 

amplitude events which make it difficult to distinguish if any of these are primaries.  The 

multiple attenuated trace created with higher order terms and 2D adaptive subtraction has the 
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prominent three large primaries with the additional of the small fourth primary event now 

visible.  This display the importance of correcting for these amplitude issues.  Also giving 

increased confidence in the prediction to reduce potential harm to primary events. 

 

3.6 Conclusions 

It is displayed for a zero offset noise free synthetic how including the higher order terms 

and adaptive subtraction can accurately predict the internal multiples and their amplitudes.  In 

practice with real data the higher order terms may not be as large an issue depending on the noise 

level of the recorded data.  It is shown how the variation in predicted amplitudes between first 

order and higher order internal multiples can be detrimental to the predicted trace.  Using higher 

order terms in the series the higher order multiples and artifacts can be isolated from the first 

order multiples.  A critical step is how to scale the amplitudes prior to using the higher order 

terms.  By including higher order terms in the series and 2D adaptive subtraction an accurate 

internal multiple prediction can be made which as displayed can minimize damage to primary 

amplitudes.  A key question to be addressed is how practical this extra dimension will become 

with real data.  Once various amplitude recovery techniques have been used, or if there are other 

factors such as attenuation or other losses across the downward generator will this extra 

dimension be able to assist. 
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Chapter Four: Offset-Time Domain Algorithm  

 

4.1 Non-stationary seismic data 

When a seismic wave propagates through a medium, reflections and transmissions result at 

an interface with varying properties.  Another common outcome of a wave propagating through a 

medium are changes to the wavelet shape.  Various mechanisms can create a non-stationary 

wavelet.  One mechanism which will have this effect is attenuation which can be either intrinsic 

or extrinsic (Lv & Innanen, 2016).  Attenuation will generally cause a loss of frequency on the 

high end of the amplitude spectrum and the wavelet becomes wider due to the emphasis of the 

low end of the amplitude spectrum.  If intrinsic, this is an inherent property of the medium or if 

extrinsic the attenuation is caused by short path internal multiples (Lv & Innanen, 2016).  If there 

is extrinsic attenuation due to short path multiples this can not be resolved by the ISS method.  If 

a spatial dimension is used such as a shot gather the recording of a dipping wavefront can also 

cause an apparent broadening of the wavelet.  There are cases where a stationary epsilon has 

been shown to be insufficient (Innanen & Pan, 2014; Innanen, 2017).  When using the inverse 

scattering series internal multiple attenuation method, the epsilon term in the algorithm is used to 

account for the bandwidth of the data.  If the bandwidth of the input data changes in space or 

time, then the algorithm must also be flexible to vary with the input data. 

 

4.2  Non-stationary epsilon 

The original algorithm uses a single stationary epsilon value for all space dimensions and 

time.  There has been recent work to explore various calculation domains (Sun & Innanen, 

2016).  In some 1.5D domains epsilon can vary in the transformed spatial dimension such as 
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wavenumber (Innanen & Pan, 2014). These 1.5D transform domains allow for a variation of 

epsilon in the spatial direction (𝑘𝑔) due to the method utilizing the 1D version of the algorithm 

over every spatial step. Thus, for every spatial step epsilon can vary as there is no 

communication between wavenumbers. This variable epsilon has been limited to the spatial 

dimensions because the time variable in the input data is not shared with output which is 

frequency.  To allow for a variable epsilon the inverse scattering series equation for predicting 

internal multiples has been rewritten in the offset-time domain (Innanen, 2015b). Improvements 

in the 1D time prediction have been shown due to the nonstationary epsilon (Innanen, 2017). 

 

4.3 Implementing the time domain algorithm 

It was outlined in chapter one how the offset-time and time versions of the algorithms are 

derived from the original algorithm.  Implementation of the algorithm is shown including 

differences between the time domain and transformed domain calculation.  Beginning with the 

1D time (Equation 1.29) and applying the integration limits directly to the data with the use of 

two Heaviside step functions (Innanen, 2015b).   

𝐵3(𝑡) = ∫ 𝑑𝑡′𝑠1(𝑡
′ − 𝑡) ∫ 𝑑𝑡′′[𝑂(𝑡, 𝑡′, 𝑡′′)𝑠1(𝑡′ − 𝑡′′)]𝑠1(𝑡′′)

∞

−∞

∞

−∞
,                   (4.1) 

Where the mask 𝑂(𝑡, 𝑡′, 𝑡′′), effectively applies the lower-higher-lower criteria directly to the 

data. 

𝑂(𝑡, 𝑡′, 𝑡′′) = 𝐻[𝑡′′ − (𝑡′ − (𝑡 − 𝜀))]𝐻[𝑡 −  𝜀 − 𝑡′′],                              (4.2) 

To calculate numerical convolution there are multiple ways to carry out the operation.  It 

can be performed by careful tracking of indices for the set of multiplications and summations.  
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Convolution can also be carried out through the construction of a convolution matrix where the 

operation is then calculated through matrix multiplication. 

 

4.3.1 Masking operators and pseudocode 

Displayed in Figure 4.1 is the matrix multiplication approach of Equation 4.1 applying 

the convolution for the 1D time version of the algorithm (Innanen, 2015b).   

  

Figure 4.1, adapted from (Innanen, 2015), visual display of the calculation of convolutions 

and correlations for a given time t(j) through matrix multiplication, with the mask matrix 

applied to the convolution matrix MC. 

 

The correlation matrix (MR), convolution matrix (MC) and the input data (s) after matrix 

multiplication gives the prediction (im). Note the mask matrix applied to the convolution matrix 

by the shaded region of the being zeroed from Equation 4.2.  Figure 4.2 shows how the mask is 

applied to the convolution matrix. 
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Figure 4.2, adapted from (Innanen, 2015), displays the mask matrix applied to the 

convolution matrix where the shaded region is set to zero and the bounds are determined 

such that the lower-higher-lower criteria is met for the given t(j) 

 

The mask is a binary matrix applied to the convolution matrix where location of the 

change from zero to one ensure that the lower-higher-lower criteria is met.  The mask also 

includes the epsilon term controlling the minimum event travel distance.  Note that the internal 

multiple prediction is completed for each time step and the mask changes for each time step 

ensuring the lower-higher-lower criteria is obeyed for the given prediction time. 

 

For the offset-time case, with the addition of the spatial dimension, the process of 

applying the matrix multiplication is like in 1D time.  Now the equivalent of a 2D convolution in 

both offset and time is performed.  The correlation and convolution operators become block 

matrices which compute both the spatial and temporal convolutions (Innanen, 2015b) (Figure 

4.3).  The block matrix is a larger 2D matrix which is built with smaller 2D matrixes within to 

calculate the convolutions and correlations for all offsets.  The input trace (𝑠1(𝑥, 𝑡)) is altered 

and stacked into a 1D vector for all offsets.  This is also done for the prediction output vector 

(im).  The masking matrix is applied in a similar manner to the 1D case but for every subset 
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block in the convolution block matrix.  For the multidimensional case the prediction is calculated 

for a single time slice and across all offsets (Innanen, 2015b). 

 

Figure 4.3 Display of the prediction algorithm for the (𝒙, 𝒕) case for a given time t(j) 

calculated for all offset with the convolution and correlation matrices, where the mask 

matrix is applied to each convolution matrix in the block matrix MC.  this is applied to the 

(𝒙, 𝒕) trace (s) which has been stacked into a single column vector.  Adapted from 

(Innanen, 2015). 

 

With the addition of the spatial dimension relative to the 1D case these matrices become 

large, to the point where it becomes difficult to fully implement due to computer memory 

limitations. In practice these ideas of masking and convolution matrices can be equivalently 

completed with the use of a 2D convolution function (e.g. conv2 in MATLAB).  This is likely 

completed using careful indexing to carry out the calculations.  The Pseudo code of how this is 

implemented is displayed (Figure 4.4). 
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Figure 4.4 Pseudo code displaying the implementation of the (𝒙, 𝒕) case with the use of 2D 

convolution functions for a stationary epsilon.  The mask is applied in a similar manner 

where all values are set to zero given that they are either below the calculation time (it) and 

epsilon number of samples above (it). 

 

Since the mask matrix is calculated for every time slice and the input and output domains 

are both offset and time, epsilon can be nonstationary in both dimensions.  If epsilon is varied 

strictly in the time dimension, this is completed by having 1D epsilon schedule as a function of 

time for all offsets.  If epsilon is to vary in both time and space, then a 2D epsilon schedule is 

built and the mask, which was previously displayed, will now vary with respect to offset.  With 

the epsilon model matching the size of the input data.  This is applied directly to the input data 

for each time step shown (Figure 4.5). 
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Figure 4.5 Pseudo code displaying the implementation of the (𝒙, 𝒕) case with the use of 2D 

convolution functions for a nonstationary epsilon in both time and space dimensions 

 

The epsilon schedules either varying in time or time and offset are displayed (Figure 4.6). 

 

Figure 4.6 Visual display for the mask matrix applied to the data (s) prior to the 2D 

convolution function, where the bounds are determined such that the lower-higher-lower 

criteria is met for the given t(j) for a) epsilon varying in time and constant with offset b) An 

example of epsilon varying in time and with offset with two epsilon values with a harsh 

cutoff 

 

4.3.2 Differences between time and frequency domain 

The underlying algorithm for the method in any of the domains is the same.  By recasting 

the algorithm in different domains there have been variations in the prediction results.  A result 
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of the varying domains to note at this stage is how the calculation is carried out numerically.  In 

the previous transformed domains, the calculation was done one pseudo-depth at a time starting 

at zero and effectively predicting all internal multiples that would occur due to the given pseudo-

depth and below with the result in the frequency domain.  The time domain version is calculated 

differently as it is solved for a given output time.  Effectively this means that, for a given time, it 

is searching for events which occur above this time that could have an internal multiple 

occurring at the output time.  This results in either a top down approach for pseudo-depth or a 

bottom up approach for time.  The way the lower-higher-lower criteria is implemented also 

varies.  In the transformed domains it is done through varying the operating bounds of the 

algorithm.  In the time domain the events which do not obey the criteria are effectively zeroed 

out.  Another result of this, as I am solving for each time independently, is that if there is a given 

time interval of interest then this time could be isolated and solved for, without having to solve 

for all output times.  If this was done for a frequency domain version of the algorithm, then all 

pseudo-depth above the desired one would have to be solved for. 

 

4.4 Numerical example with 1.5D synthetic data 

To evaluate the offset-time domain version of the algorithm a simple geologic model is 

used. This is the same geologic model and synthetic that was used previously (Figure 2.10).  I 

create a shot record using finite difference modeling (afd_shotrec from the CREWES MATLAB 

toolbox) (Figure 2.11). 

 



 

  66  

4.4.1 Internal multiple prediction 

This geologic model has created a shot record which has a strong first order internal 

multiple.  For the initial test of the time-offset version of the algorithm an epsilon value of 30 

and 70 are tested (Figure 4.7). 

 
Figure 4.7 a) offset-time multiple prediction with epsilon=30, b) offset-time multiple 

prediction with epsilon=30 

 

The epsilon of 30 has successfully predicted both the first order multiple and the higher 

order multiples. There is also a steeply dipping artifact which has been predicted. This issue has 

been shown previously in the (𝑘𝑔, 𝑧) domain version of the algorithm (Innanen and Pan, 2014). 

The artifact was shown to be caused by the steeply dipping reflection from the input data 

becoming broad in the transformed spatial domain at larger 𝑘𝑔. Using an epsilon value of 70 has 
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diminished this artifact but epsilon has also become sufficiently large that it is not fully 

predicting the internal multiples, most notably at the near offsets.  It is shown in the (𝑘𝑔, 𝑧) 

domain how a 𝑘𝑔 varying epsilon removed the artifact.  This spatially varying epsilon is tested in 

the time-offset domain by combining the two epsilon values of 30 and 70 (Figure 4.8). 

 
Figure 4.8 a) offset-time multiple prediction with spatially varying epsilon, b) epsilon 

schedule used for prediction with harsh cutoff 

 

The internal multiple prediction has improved, but a new prediction artifact has been 

introduced. This 2D epsilon schedule was created with a sharp transition from the value of 30 to 

70.  This has assisted in removing the steeply dipping artifact but has appears to have introduced 

a diffraction off the edge of epsilon variation predicted on both sides of the first order internal 
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multiple. To mitigate this an epsilon schedule with a smooth linear trend from the 30 to 70 is 

implemented (Figure 4.9). 

 
Figure 4.9 a) offset-time multiple prediction with spatially varying epsilon, b) epsilon 

schedule used for prediction with linear taper 

 

This has improved the prediction of the internal multiples relative to the previously 

abrupt transition. The strong first order multiple along with the higher order multiples are 

predicted but with some artifacts remaining.  Next an epsilon schedule which varies in both 

space and time is tested. This was designed to overlap the steeply dipping event in the input data 

and taper to minimize any diffraction artifacts (Figure 4.10). 
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Figure 4.10 (Left) offset-time multiple prediction with spatially varying epsilon (Right) 

epsilon schedule used for prediction varying in both offset and time 

 

This final schedule which varies in both offset and time is capable of both predicting the 

multiples in the data and minimizing the artifacts. Though there is still some residual artifact 

present from the steeply dipping event.  

 

4.5 Numerical example with 1.5D synthetic data and irregular spatial sampling 

All previous examples shown have had regular sampling in the spatial dimension.  In 

practice, when recording 2D or 3D seismic data, the resulting spatial sampling will be irregular 

with offset.  The transformed domains will handle irregular sampling differently than the time-

offset version.  Transforms such as tau-p can be setup to handle and transform data with irregular 
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sampling.  Since the time offset version is all completed in the same domain, the irregular 

sampling will have to be handled in a different way, and how that sampling impacts the 

prediction is shown. 

 

4.5.1 Random sampling numerical test 

The first model to be tested is a two layer plus half-space (Figure 4.11).  The two 

primaries and first order internal multiple were calculated using ray tracing and convolved with a 

25 Hz minimum phase wavelet with 8ms sample rate.  For this model the amplitudes for the two 

primaries and internal multiple are initially set to one for all offsets followed by the application 

of a s spatial cosine taper. 

 

Figure 4.11 Velocity model with interface depths indicated by red lines 

The first test is with the original dataset that has 256 offset traces and 64 temporal 

samples.  This is displayed for both synthetic and prediction with the time-offset algorithm with 

two random decimation tests (Figure 4.12). 
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Figure 4.12  Synthetic data with total trace count of a) 256, c) 128 and e) 64.  Internal 

multiple prediction for the given input data with trace count b) 256, d) 128 and f) 64 
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The algorithm has predicted the first order internal multiple without artifacts.  There is an 

additional deeper event in the prediction that was not in the input data.  This extra predicted 

event is the second order multiple from the two interfaces, which was not initially modeled with 

the raytracing.  Note the amplitude of this higher order multiple is larger due to the previously 

noted feature of the algorithm overpredicting higher order events.  In this first decimation test the 

method is observed to produce a reasonable internal multiple prediction.  With the variations in 

input data the internal multiple can approximate the character of the decimated multiple.  With 

the more significant decimation and irregular spatial sampling the method is struggling to 

produce the prediction.  The result is poor relative to the final decimation test with 64 traces.  

The next test on this model is predicting all of the positive offsets from the original data with 

regular offset sampling (Figure 4.13). 

 

Figure 4.13 a) Positive offset synthetic, b) Internal multiple prediction  

With only the positive offsets, the algorithm in the time-offset domain is unable to predict 

the internal multiples.  The intercept time is incorrect, and the slope appears linear.  The 1.5D 

time-offset version appears to require a split spread input and struggles with only using half of a 

shot record. 
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4.5.2 Orthogonal 3D survey geometry numerical test 

When recording 3D seismic surveys, the offsets will not be regular, but also not perfectly 

random.  A common recording will contain a lack of near and far offset data and an abundance 

of mid offset traces.  To test how the algorithm functions on a model which is recorded with a 

3D survey geometry synthetic model is created.  The geologic model parameters were chosen to 

give significant time separation between primaries and internal multiples.  This is done to avoid 

any steeply dipping reflections and allow for the use of a single epsilon.  A spatial cosine taper 

has also been applied to the input data.  This model was designed to allow for the testing and 

understanding of the single variable of spatial sampling without confusing the results between 

sampling and time variant epsilon.  The model, synthetic and time offset prediction are displayed 

(Figure 4.14). 

 

Figure 4.14 a) Velocity model, b) synthetic, c) time offset prediction 

As intended by the model design, this single internal multiple is predicted without 

artifacts and is significantly separated from the primary events.  The 3D geometry has been 

designed as orthogonal geometry, with 100m source and receiver line spacing and 20m source 
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and receiver spacing.  This 3D geometry modeling was completed with PSDesign (Lawton., D. 

2014).  A single common mid point (cmp) location was chosen within this 3D geometry to be 

tested.  The offset azimuth and reflection rays are displayed (Figure 4.15). 

 

Figure 4.15 a) Source (red) and receiver (blue) geometry with rays for a single cdp, b) 

Offset and azimuth distribution for the displayed cdp 

 

To create the cmp gather from the original trace a subset of offsets from the full regularly 

sampled trace were taken.  Since the algorithm assumes a v(z) medium, all azimuths were 

assumed to be equal when creating the trace.  The results of taking this 3D trace and applying the 

time-offset prediction is displayed (Figure 4.16). 
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Figure 4.16 a) Input seismic trace from 3D seismic geometry, b) Internal multiple 

prediction 

 

The resulting prediction has been unsuccessful at predicting the internal multiple.  This 

appears to be due to the reflections from the irregular geometry being unrealistic.  To create a 

slightly more realistic gather blank traces are inserted to give an apparent regular sampling 

(Figure 4.17).  
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Figure 4.17 a) Input seismic trace from 3D seismic geometry with blank traces, b) Internal 

multiple prediction 

 

By creating a more regular dataset this has significantly improved the prediction result.  

Though the prediction is struggling with the near offsets, the mid and far offsets appear to have 

been reasonably predicted.  Note the method has predicted internal multiples at offsets where 

there was no data initially.  The predominant artifact appears to be numerous diffractions at the 

locations of the missing traces.  Like the previous test, as this is a wave equation-based method 

with minimal assumptions, it treats the input data as if this is what has been recorded on the 

surface, leading to the issues observed.  The next test will take the geometry with the blanked 

traces but use a spline interpolation to fill in the blank traces.  The result will be an 

approximately regular 2D line using a combination of the recorded traces and interpolated traces.  

The result and prediction are displayed (Figure 4.18). 
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Figure 4.18 a) Input seismic trace from 3D seismic geometry with 2D Spline interpolation, 

b) Internal multiple prediction, c) Input seismic trace from 3D seismic geometry, d) 

Internal multiple prediction with the original traces displayed 

 

The interpolation has significantly helped the prediction and again a reasonable internal 

multiple prediction is found.  The only negative aspect to this approach is the increased 

computational cost with the higher trace count due to interpolation.  The data decimated back to 

include only the original traces has given a reasonable prediction with minimal artifacts. 
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4.6 Conclusions 

The method using the inverse scattering series for internal multiple prediction has been 

adapted to compute in offset-time domain (Innanen, 2015b).  With this change in domain comes 

the ability to utilize a non-stationary epsilon.  Displayed was an example of how varying epsilon 

can improve the prediction.  This is completed on a model where a stationary epsilon will be 

insufficient.  Also displayed is the how a sharp epsilon boundary in the epsilon schedule can 

cause new artifacts to be present in the prediction.  The time-offset internal multiple prediction 

algorithm was also tested on two synthetic models with irregular sampling.  The two tests 

showed that the 1.5D time-offset internal multiple prediction algorithms can accommodate some 

amount of irregular sampling.  Once the variation between samples becomes significant and the 

wavefront is not smoothly varying, issues with the prediction begin to arise.  Uplift was found 

both by regularizing spatial sampling either by inserting blank traces or by interpolation.  The 

downside of this approach is the increase in computational cost. 
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Chapter Five: Devon Synthetic Data  

 

5.1 Donated dataset 

A dataset which includes pre and post stack 3D seismic, a vertical seismic profile (VSP) 

and a well with various well logs (gamma ray, porosity, sonic, density, …) was donated to 

CREWES.  Numerous research goals have been identified for the dataset, which is being 

assessed with tools such as FWI (Cova, et al., 2018).  The primary purpose for the dataset 

donation was due to the presence of significant internal multiples in the seismic data.  The 

substantial work on internal multiples that has occurred at CREWES led to the donation of data 

to test the algorithms.  The first step to evaluate the inverse scattering series internal multiple 

attenuation effectiveness will be on synthetic data created from the well logs.  A subset of the 

well logs is displayed (Figure 5.1).  

 

Figure 5.1 Well logs including gamma ray, spontaneous potential, resistivity, neutron 

porosity, sonic and density 
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The various well logs display rapid variability with depth.  Both the sonic and density logs 

show variations in properties which cause significant impedance contrasts.  These impedance 

contrasts could cause the noted issues with internal multiples.  To this end, synthetic seismic is 

created using the well logs to both confirm the noted issue of internal multiples in the seismic 

data sets and to assess the applicability of the inverse scattering series internal multiple 

prediction algorithm to the dataset.  Various domains, methods, issues and solutions have been 

outlined for the inverse scattering series internal multiple prediction.  Here these methods are 

stressed beyond the simple models that were analyzed in the preceding chapters. 

 

5.2 Vertical Seismic Profile 

A vertical seismic profile (VSP) is acquired by placing geophones in a wellbore and 

initiating a seismic source on the surface. A VSP can have various source geometries including 

zero offset, walk away to obtain offset information or walk around to obtain azimuthal 

information.  A critical advantage of VSP surveys is the ability to separate the acquired data into 

a primaries only and primaries plus multiples dataset.  The setup for a zero offset VSP is 

displayed with commonly recorded wave types (Figure 5.2). 
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Figure 5.2 VSP with upgoing and down going energy and internal multiples 

When the seismic source is initiated the direct downgoing wave is the first event recorded 

giving the first break.  When an interface is crossed a reflection occurs and is recorded as an 

upgoing wave shortly after the direct downgoing wave.  As the wavefronts continue, both 

primaries and multiples occur, and both the upgoing and downgoing wavefields are recorded.  

The result is a dataset which contains all the mentioned waveforms.  Through processing steps to 

be discussed the upgoing and downgoing wavefields can be separated to give a dataset which 

contains only upgoing or downgoing waves.  By stacking restricted portions of the wavefield 

separated VSP, primaries and multiples can also be separated.  This is the benefit of a VSP and 

why it is an essential tool to evaluate seismic multiples. 
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5.3 Synthetic data modeling  

The modelling utilizes the sonic and density logs sampled at 0.5ft intervals with an 

approximate length of 11000ft.  The logs were not recorded to the surface, so a single 

replacement value is used for both the sonic and density to fill in the data from the surface to the 

top of the logged interval.  Two sets of synthetic seismic data are generated to model the seismic 

from the VSP and the 3D seismic data.  The two sets are required due to frequency content 

variations between the VSP and 3D seismic.  The central frequency of the VSP is approximately 

30 Hz, while for the PSTM data is 37 Hz.  The workflow for synthetic VSP generation and 

multiple prediction analysis is shown for the 30Hz case, where only the results for the higher 

frequency synthetic data approximating the 3D seismic is shown. 

 

5.3.1 Modeling algorithm 

Layer propagator matrices, using the CREWES MATLAB toolbox (function vspq) are 

used to create the synthetic seismic VSP (Margrave & Daley, 2014).  The method allows for fast 

calculations of a trace that includes all orders of internal multiples by creating propagator 

matrices as a function of the number of layers in the input geologic model.  The propagator 

matrices method has the flexibility to create primaries only, primaries and internal multiples, 

surface multiples and various other combinations (Margrave & Daley, 2014).  The VSP synthetic 

generated for this work only includes primaries and internal multiples, as the internal multiple 

prediction algorithm assumes these are the only events in the input trace.  The function can also 

output the upgoing and downgoing wavefields directly so for the synthetic data the processing 

step of separating the wavefields is not required. 
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5.3.2 Synthetic VSP 

The synthetic VSP was created using a zero phase 30 Hz Ricker wavelet, sampled at 

0.002ms with a record length of 6 seconds and outputting displacement.  The well data which 

was originally sampled at 0.5ft intervals was resampled to 5ft intervals and a geophone is placed 

at every layer.  Though the well depth is only 11000ft with a total two-way travel time of 

approximately 2 seconds, the longer recording time is required to record the additional multiples.  

The resulting synthetic VSP with upgoing and downgoing waves is displayed and compared to 

the real VSP (Figure 5.3). 

 

Figure 5.3 a) Recorded VSP with up and downgoing waves, b) Synthetic VSP with up and 

downgoing waves 
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The synthetic VSP shares similarities with the recorded VSP such as the slope of the first 

break and location of many of the reflections and upgoing waves.  This method of modeling the 

data, input wavelet and blocking length chosen appears reasonable to give meaningful 

conclusions through the analysis of the data to later be applied to this real data.  For the synthetic 

VSP the only processing step required is to flatten the data to create the corridor stacks.  Since 

this is synthetic data and the velocities are known, a traveltime relationship can be calculated to 

flatten the data.  When internal multiples are included in the synthetic modeling, the first break 

traveltimes no longer match with the calculated value.  This is due to the short path internal 

multiples causing dispersion in the wavefront altering the arrival time of the direct wave (Figure 

5.4). 

 

Figure 5.4 a) calculated one way travel time and picked one way travel time, b) Smoothed 

difference between the two one way travel times 

 

To flatten the data the calculated traveltime from the sonic log is used and the smoothed 

difference between the calculated and picked travel time is added to include the effects of 

dispersion.  This combination of calculated traveltimes and first break picks gives an accurate 

time shift which is applied to the upgoing wavefield synthetic VSP to flatten the data (Figure 

5.5).  The following analysis was done on the upgoing wavefield which can be obtained directly 
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when creating synthetic data, this removes the requirement of separating the wavefields with 

processing.  This was done to get an exact upgoing wavefield with no concerns of the 

effectiveness of the wavefield separation processing step.  This upgoing wavefield is also 

comparable to what would be recorded for a land surface seismic recording.   

 

Figure 5.5 a) Synthetic VSP with first break pick displayed in blue with upgoing events, b) 

flattened synthetic VSP with first break pick displayed in blue with upgoing events  

 

Creating this flat VSP is critical because any deviations from this will cause errors in the 

calculation of the corridor stacks.  There are three traces that will be created from the flattened 

VSP and used in the internal multiple prediction analysis, the outside corridor stack, zero depth 

trace and full stack.   

 

The outside corridor stack is created by stacking the outside traces (25 traces near blue 

line).  These outside traces are comprised of the upgoing reflected seismic energy recorded 
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shortly after downgoing direct wavefront from the source.  The resultant outside corridor stack 

approximates a primaries only stack.  Since the stack is limited soon after the direct arrival there 

is insufficient time for long path multiples to occur.  It is noted that short path internal multiples 

may be included.   

 

The zero depth trace is the recording of the waves on the surface and is identical to a 

standard reflection survey.  This trace will contain both primaries and internal multiples as is 

recorded on the surface. 

 

The full corridor stack is created by stacking all the data to give another estimate of the 

primaries and internal multiples trace.  In practice, when there is noise present in the data, the 

full stack can assist in removing noise through the stacking process resulting in an approximation 

of the primaries and multiples trace.  For a noise free synthetic the full stack is not necessary as 

the zero depth trace serves the same purpose. 

 

The full stack and zero depth trace are compared (Figure 5.6).  This is a useful plot to see 

how accurate of an assumption the full stack is as this will be used to approximate the zero depth 

trace.   It shows that some internal multiples are not properly estimated with the full stack.   
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Figure 5.6 Full stack (primaries and multiples) and zero depth trace (primaries and 

multiples) 

 

This is due to approximating the multiple energy from several geophone depths.  But this 

is a reasonable estimate to use if the zero depth trace is not feasible.  The next comparison is 

between the zero depth trace and outside corridor stack to assess how the internal multiples have 

degraded the seismic response (Figure 5.7).  The outside corridor stack ends at approximately 1.9 

seconds which corresponds to where the well log data ends.  After this there are no longer any 

primaries and the subsequent data is all internal multiples because the model was only created to 

the depth where the well logs end. 
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Figure 5.7 Outside corridor stack (primaries) and zero depth trace (primaries and 

multiples). 

 

The resulting zero depth trace has similar character to the outside corridor stack but with 

drastically different amplitudes due to the inclusion of internal multiples.  The locations with 

significant separation between the two traces such as between 1.5 and 1.9 seconds displays 

significant damage to the primaries.  The higher amplitude portions of the trace could be 

incorrectly interpreted to be higher impedance contrasts in the subsurface.  Within the time 

where there are primaries there are no locations of isolated internal multiples.  The overlapping 

primary and multiple energy can make the application of adaptive subtraction challenging.  By 

subtracting these two traces an estimate of the internal multiple trace as recorded on the surface 

is created. 
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5.4 Internal multiple prediction 

The internal multiple prediction is carried out on the zerodepth trace using the 1D 

frequency domain version of the algorithm (Equation 1.42) with an epsilon value of 15.  The 

epsilon value was chosen based on the sampling rate and frequency content to prevent artifacts.  

The prediction results are displayed in the downward generator space (Figure 5.8).  Also 

displayed is the blue line along the outlining how the predicted internal multiples only reside in 

the upper right half of the space. 

 

Figure 5.8 The 2D Downward generator space for the zero depth trace prediction 

The downward generator space displays the complexity of the prediction when the input 

synthetic is also complex.  For a given prediction time (vertical slice) there is a significant 

number of internal multiples which all contribute to the final multiple trace once stacked over all 

pseudodepths.  This space does not contain the isolated internal multiples seen on previous 

synthetic examples.  First the standard 1D prediction approach is done by summing over the all 

pseudo-depths.  To determine the success of the prediction the multiples trace is created by 
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subtracting the zero depth trace and the outside corridor stack and compared to the prediction 

(Figure 5.9). 

 

Figure 5.9 Internal multiples trace in red and internal multiple prediction in blue. 

Overall the method has been able to predict the internal multiples of this example with an 

extremely complex multiple train.  The largest errors occur early in the trace until approximately 

0.6 seconds.  After this the predicted trace shares similar character to the multiple trace with 

some issues in the amplitudes of the predictions. 

 

5.4.1 Error quantification 

To quantify the accuracy of the prediction a moving average of the absolute value of the 

trace is calculated.  This is carried out on both the internal multiples trace and the subtraction of 

the internal multiples trace and the prediction.  If the multiple is overpredicted or incorrectly 

predicted in terms of polarity then the plot will be higher than the baseline multiple trace.  The 

plot of the difference will only reduce to zero if the multiple is predicted exactly.  This plot also 
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displays the locations of significant prediction error with crossover between the two averaged 

traces.  If the multiple is slightly under or overpredicted this will display as a reduction in the 

value.  This again raises the question of what successful multiple attenuation is.  Ideally the 

internal multiples would be predicted exactly but that will rarely be the case.  Often there is the 

concern of damaging primary energy when removing multiples.  If a multiple is underpredicted 

than it is thought to have been partially attenuated.  If the multiple is overpredicted than there are 

concerns that you are damaging primaries.  Is more detrimental to have partially attenuated 

multiples which obscure the primaries then overpredicted multiples and attenuate some of the 

primaries.  If there are concerns about attenuating primaries, then the multiple prediction can 

simply be scaled back to the point that all multiples are underpredicted.  This rolling average is 

displayed for the internal multiples trace and internal multiples trace minus the prediction 

(Figure 5.10). 
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Figure 5.10 a) Multiples trace in red and internal multiple prediction in blue taken as 

absolute value of the  multiples trace and difference with the multiples trace, b) a 50 point 

moving average window is used to smooth the traces c) a 50 point moving average window 

is applied to the input data trace for reference to the internal multiple trace 

 

The prediction algorithm appears capable of successfully attenuating some of the internal 

multiples in the data.  The amount of multiple energy is shown to have decreased due to multiple 

attenuation except for a few locations which display crossover.  The amount of multiple energy 

relative to the input trace is also displayed.  Early in the trace the majority of the events are 

primaries, but at later times beginning around 1 second the amount of internal multiples energy 

relative to the total input trace amplitude increases significantly.  Next the 2D adaptive 

subtraction is applied to the downward generator space.  The number of traces in the 



 

  93  

pseudodepth dimension is reduced through stacking prior to 2D adaptive subtraction (Figure 

5.11). 

 

Figure 5.11 Displaying the 2D downward generator space for the synthetic VSP after 

stacking 

 

The result of applying 2D adaptive subtraction is compared to the internal multiple trace 

(Figure 5.12). 

 

Figure 5.12 Multiples trace and internal multiple prediction from 2D adaptive subtraction. 
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There is a reasonable match to the internal multiple trace with the bulk of the mismatch 

occurring early in the trace.  For this plot it is difficult to see the uplift due to the 2D adaptive 

subtraction as there are still amplitude mismatches between the predicted result and the 

multiples.  The same moving average numerical plots are created to compare the prediction and 

prediction with 2D adaptive subtraction (Figure 5.13). 

 

Figure 5.13 Absolute value of multiple trace, and difference with the two predictions with 

rolling average window of 50. 

 

In both cases the multiple energy has been diminished.  The 2D adaptive subtraction has 

improved the prediction at mostly later times in the trace with some locations throughout where 

it has been slightly detrimental.  Note that there are no primaries after approximately 1.9 

seconds.  This may have assisted the adaptive subtraction as there are some locations with 
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isolated internal multiples.  This may not be possible for recorded data cases as there will 

continually be primary energy. 

 

All traces are compared qualitatively by viewing in conventional wiggle plot display 

(Figure 5.14).  Included is the outside corridor stack which is the primaries only trace and goal to 

return to after internal multiple attenuation.  The zero depth trace which is the input into the 

algorithm and includes primaries and internal multiples, and finally the result of attenuating 

internal multiples applying the prediction to the zero depth trace. 
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Figure 5.14 outside corridor stack (primaries) in blue, zero depth trace (primaries and 

multiples) in red and zero depth trace after internal multiple attenuation in black. 

 

The result is analyzed near the base of the trace where the initial internal multiple 

modeling shows significant internal multiples (Figure 5.15).  For all images in the figure the blue 

and red traces remain constant, only the black trace changes as noted. 
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Figure 5.15 Outside corridor stack (primaries) in blue, zero depth trace (primaries and 

multiples) in red and zero depth trace after internal multiple attenuation in black. a) b3 

subtraction, b) 1D adaptive subtraction, c) 2D adaptive subtraction 

 

All versions of the subtraction have improved the dataset by taking the input trace which 

was significantly contaminated with multiples at this level and return the traces to a state where it 

resembles the primaries only trace.  There are several locations with polarity reversals and events 

previously obscured events can now be imaged.  Below 1.6 seconds there are two peaks that are 

only visible with the use of the 2D adaptive subtraction.  Displayed is the result of following all 

the previously outlined steps but with a 37Hz Ricker wavelet (Figure 5.16). 
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Figure 5.16 Using 37 Hz Ricker wavelet displaying outside corridor stack (primaries) in 

blue, zero depth trace (primaries and multiples) in red and zero depth trace after internal 

multiple attenuation in black for a) b3 subtraction, b) 1D adaptive subtraction, c) 2D 

adaptive subtraction 

 

A significant improvement is seen on the trace with an enhanced similarity between the 

primaries only trace and the result of attenuating the multiple contaminated trace.  For this higher 

frequency case the difference between the standard, 1D and 2D adaptive subtraction methods is 

more subtle.  Though all options have improved the input dataset through internal multiple 

attenuation. 

 

5.5 Conclusions 

There were two main objectives for the synthetic test.  To see how the algorithm preformed 

on a significantly complex synthetic and to determine if the method is applicable for real data 

cases.  The results showed it can succeed in this complex scenario.  The direct subtraction and 
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the adaptive subtraction versions all displayed improvements due to multiple attenuation.  This 

success gives confidence moving forward to apply the inverse scattering series internal multiple 

prediction method to real data.  
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Chapter Six: Devon Real Data 

 

6.1 Application to recorded data 

A continuing goal of CREWES is the application of the inverse scattering series to land 

seismic data.  To this end the tools and workflows that have been developed are applied to 

several real datasets.  The synthetic modeling from the well log data displayed the potential for 

significant internal multiples and it was shown how the ISS method could attenuate and improve 

the dataset.  This improvement occurred deeper in the section where the internal multiples were 

more significant.  This improvement was displayed both qualitatively and quantitatively.  Given 

the success of the synthetic tests the algorithm is applied to the real datasets.  This includes the 

VSP, the pre and post stack 3D seismic data. 

 

6.2 Recorded VSP 

The VSP was recorded both at zero offset and walkaway for a single azimuth, with 43 

three component geophones and a geophone spacing of 49.34ft.  The geophone array was moved 

six times to give the final dimensions of the survey with a top depth of 55ft and a bottom depth 

of 11304.52 ft from KB.  The geometry of the source and receiver locations in the wellbore is 

displayed (Figure 6.1).   



 

  101  

 

Figure 6.1 Figure from (Cova, et al., 2018) a) source locations in Easting and Northing, b) 

Receiver location in depth and in line with the sources 

 

For the internal multiple analysis only the zero offset data is analyzed.  This VSP used a 

Vibroseis source with a linear 16 second sweep from 2-140 Hz with 0.5 sec cosine tapers and 

two sweeps per vibe point had a 6 second recording length at 1ms sample rate. 

 

6.2.1 Processing 

The VSP was processed by Raul Cova at CREWES using the vertical component of the 

three-component geophone (Cova, et al., 2018).  Three key steps to prepare the data for analysis 

are; amplitude recovery, wavefield separation and flattening.  A gain of was applied to recover 

the amplitudes due to geometric spreading, transmission and other losses.  The downgoing direct 

arrival was picked to use the arrival times to flatten the data.  Next the upgoing and downgoing 

wavefields need to be separated as the demultiple analysis only requires the upgoing waves.  

This is done by flatting the data and using a trace median filter to remove the upgoing energy.  

Since the upgoing and downgoing waves have different kinematics, when the data is flattened on 

the downgoing and smoothed, any dipping energy gets attenuated.  This results in a dataset with 

only the downgoing wavefield.  Then the downgoing wavefield can be subtracted from the 
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original dataset to give the upgoing wavefield.  No deconvolution is applied to the VSP to avoid 

any impacts the deconvolution could have on the multiples, as certain types of deconvolution act 

as a multiple attenuator.  The result after processing is displayed (Figure 6.2). 

 

Figure 6.2 Recorded VSP after processing with upgoing wave 

The data quality is acceptable with distinct upgoing and downgoing wavefields.  At 

shallow wellbore depths, the data has significantly higher noise levels and the upgoing and 

downgoing waves can no longer be found.  This is thought to be caused by poor geophone 

coupling to the wellbore.  There are also a few traces with high amplitude noise through the 

VSP.  The best data quality in terms of signal to noise occurs deeper in the wellbore.  With the 

data processed the outside corridor stack (primaries only) and full stack (primaries and multiples) 

can be created.  It would be preferred to use the zero depth trace or a smaller stack from the 

shallower wellbore depth.  Due to the poor geophone coupling and high noise levels the results 

of the trace would not be reliable.  The synthetic modeling and tests shown in Figure 5.6 
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indicates that, for this dataset, the assumption of the full stack being used in place of the zero 

depth trace is reasonable.  The outside corridor stack was created u a sing a window of 25 traces 

from the direct arrival.  Displayed is the frequency spectrum of the full and outside corridor stack 

from the VSP where peak frequency is approximately 30 Hz (Figure 6.3). 

 

Figure 6.3 a) Frequency content differences between full stack (Primaries and multiples) to 

outside corridor stack (primaries only) and b) using a decibel scale 

 

The amplitude spectrum has significant notching and variation in amplitude through the 

bandwidth. 

 

6.2.2 Corridor stacks 

The outside corridor stack and the full stack are compared to assess the level of multiple 

contamination present in the recorded data (Figure 6.4). 
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Figure 6.4 Full stack (Primaries and multiples) and outside corridor stack (primaries only) 

There are significant variations between the two stacks.  Like the synthetic test most of 

the differences appear to be the amplitudes of the traces at a given time.  Some of this variation is 

due internal multiples present in the data.  With increasing time, the amplitudes of the two traces 

diverge.  The only scaling applied to these traces was done during the VSP processing.  At this 

stage it is unclear to what extent the difference between the two is due to multiples and 

understanding this is key, as the multiple trace is created by subtracting the two.  Note that it is 

assumed that all the difference between the two traces is due to multiples.  In practice, there 

could be other noise which is contributing to the difference between the two traces. It is proposed 

that some of this may be due to additional amplitude gain being required for the full stack. 
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6.2.3 Internal multiple prediction 

The full stack is used as the input into the internal multiple prediction algorithm.  This is 

compared to the multiples trace created by subtracting the outside corridor stack and the zero 

depth trace (Figure 6.5). 

 

Figure 6.5 Internal multiple prediction and internal multiples trace 

Although the prediction does not appear to match the internal multiple trace, the envelope 

between the two is approximately matching.  At a few locations the predicted amplitudes match 

well but there are other portions of the trace with a poor match to the multiples estimate, with 

either the amplitudes being incorrect or the polarity of the events not matching.  This variation 

from a reasonable to poor match occurs in quick succession.  Due to the concerns with the 

amplitudes and how quickly the mismatch can vary in time, uplift may be found with the 2D 

adaptive subtraction.  The dataset was stacked to give 8 traces as seen in Figure 6.6. 
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Figure 6.6 Downward generator space after stacking for 2D adaptive subtraction 

There appears to be significant variability between the different pseudo-depth.  As 

previously postulated, if there are any issues with the amplitudes or any scaling which was 

incorrectly done, it is possible that the 2D space of the downward generator may assist.  The 2D 

adaptive subtraction result is compared to the internal multiples trace (Figure 6.7).   
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Figure 6.7 Internal multiple prediction with 2D adaptive subtraction and internal multiples 

trace 

 

There appears to be an improved match to the internal multiples trace.  Compared to the 

standard approach, the trace appears to match in terms of polarity at significantly higher rate.  

The amplitude of the events has generally decreased.  Again, even the prediction envelope 

appears improved.  The outside corridor stack is compared to both the full stack and the multiple 

attenuated full stack (Figure 6.8).  
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Figure 6.8 Outside corridor stack (primaries) in blue, zero depth trace (primaries and 

multiples) in red and zero depth trace after internal multiple attenuation in black for a) b3 

subtraction, b) 1D adaptive subtraction and c) 2D adaptive subtraction 

 

For the real VSP the result is more variable compared to the synthetic case.  For the 

standard approach with no adaptive subtraction there is little uplift with multiple attenuation 

process.  The 1D adaptive subtraction has greatly reduced the internal multiple energy and there 

is a minimal difference between the input zero depth trace and the final internal multiple 

attenuated trace.  Lastly for the 2D adaptive subtraction, there are locations where it appears to 

have helped.  The primary below 1.8s appears to have been recovered from this multiple 

attenuation but other locations such as above 1.6 seconds appear to have been detrimental.  In the 

recorded data there are locations with improvements, but this is subjective. 
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6.3 3D PSTM stacked seismic data 

The post stack PSTM 3D seismic data is analyzed.  This has been processed through to 

anisotropic prestack time migration with steps including denoising, amplitude scaling, 

deconvolution and 5D interpolation (Figure 6.9). 

 

Figure 6.9 EBCDIC header displaying acquisition parameters and processing 

Specifics on the algorithms and parameters for the processing is unknown.  Applying a 

data driven multiple attenuation as the final step in the processing may not be an ideal stage in 

the sequence.  As there have been numerous processing steps leading up to this with several 

denoise and amplitude adjustment steps.  The multiple attenuation is tested at this processing 

stage both to attempt to improve this individual dataset and determine the applicability of the 

method to be applied to fully processed data.  If successful on this fully processed data, the 

internal multiple attenuation method can be easily applied to any data volume without requiring 

reprocessing.  For the 3D seismic data tests, the trace to be analyzed is the one which is 

coincident with the well and VSP.  Displayed is the frequency spectrum of the single PSTM 

stacked trace (Figure 6.10). 
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Figure 6.10 Frequency spectrum of PSTM Stack 

This shows central frequency around 37 Hz and a broader range of frequencies than the 

VSP.  The spectrum is not very white though there is less notching than the VSP amplitude 

spectrum. 

 

6.3.1 Well tie 

The well is tied to the seismic data to compare with the synthetic modeling and testing 

and is completed using Hampson-Russell software.  To tie the well the checkshot was used from 

the VSP which applied a slight stretch and a bulk shift and a 37Hz Ricker wavelet is used.  Also 

shown is the cross correlation of the synthetic seismic to the data (Figure 6.11).  This synthetic 

was created with primaries only in Hampson Russell. 
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Figure 6.11 Well tie to 3D PSTM stacked data with a) synthetic in blue and stacked data in 

red, b) well tie over the time window of 1550–1900ms and c) cross correlation window with 

a max coefficient of 0.665 

There appears to be a reasonable tie to the zero offset synthetic.  The three large 

reflectors at 1.6 1.75 and 1.85 all seem to tie the stacked data well.  Some of the dissimilarity 

between the two could be due to multiples as this synthetic does not include these events.  The 

3D stacked seismic data is also compared to the synthetic VSP.  This is displayed both over the 

entire well log interval and the deeper section where the significant internal multiples were 

displayed and successfully attenuated.  This is also compared by overlaying the traces directly 

(Figure 6.12).  
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Figure 6.12 a) Synthetic outside corridor stack (Primaries) and trace from 3D PSTM Stack, 

b) Synthetic zero depth trace (Primaries and multiples) and trace from 3D PSTM Stack 
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Due to the high levels of noise in the VSP at shallow depths the synthetic VSP data was 

used to tie to the stack data.  In a gross sense both the outside corridor stack and the zero depth 

trace match the stacked reflection data.  This suggests the issue with the real data is due to 

internal multiples as that is all that was modeled in the synthetic case.  Due to the similarity 

between the synthetic with multiples and the stacked trace this gives confidence that inverse 

scatter series method may be able to assist.  There appears to be some stretch required to match 

the synthetic exactly and this was also seen in the checkshot survey.  To match the real data to 

the synthetic the focus was deeper in the section.  This stretch or temporal drift is possibly due to 

the frequency content differences between the tool recording the sonic log data and the vibroseis 

seismic data.  Deeper in the section at approximately 1.8 seconds there is an improved amplitude 

match to the zero depth trace which contains both primaries and internal multiples, relative to the 

outside corridor stack. 

 

6.3.2 Internal multiple prediction 

Applying the multiple attenuation method to the stacked data becomes more difficult to 

judge the success of the algorithm.  With the both the real and synthetic VSP or any other 

synthetic tests there are simple methods to isolate the trace which contains only internal 

multiples.  With the stacked data this internal multiple trace does not exist.  The inverse 

scattering series internal multiple prediction algorithm is used with an epsilon value of 15.  The 

prediction is displayed and overlain with the input stacked data trace (Figure 6.13).   
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Figure 6.13 Internal multiple prediction and trace from 3D PSTM Stack 

The amplitudes are scaled to approximately match those of the input data.  The trace 

appears to largely overlay the input data with similar character.  As seen previously on the 

synthetic this may be encouraging as the impact the multiples have on the data is largely 

amplitude adjustments.  Displayed is the 2D Downward generator space for the prediction after 

stacking.  Again, even after stacking as the 2D generator space is viewed the resulting prediction 

in this space is complex (Figure 6.14). 
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Figure 6.14 Downward generator space after stacking for 2D adaptive subtraction 

The outside corridor stack from the synthetic VSP is used to judge the success of the 

algorithm.  This is compared to the primaries only synthetic to see if the attenuated trace is better 

tied to the synthetic with no multiples (Figure 6.15).   
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Figure 6.15 Outside corridor stack (primaries) in blue, PSTM trace (primaries and 

multiples) in red and PSTM trace after internal multiple attenuation in black for a) b3 

subtraction, b) 1D adaptive subtraction, c) 2D adaptive subtraction 

 

The results from the stack are also difficult to determine the success of the method in 

attenuating multiples. The results are also highly sensitive to the stack size used in the 2D 

adaptive subtraction.  It was shown that there is significant similarity between the synthetic zero 

depth trace which contained primaries and multiple and the tie to the PSTM stack trace.  There 

were encouraging results from this initial synthetic test as it appeared to display the ability to 

attenuate multiples with the inverse scattering series method for this dataset.  With the decreased 

success on the real data this may display just how critical some of the amplitude differences 

between the synthetic input trace and the PSTM trace to the algorithm. 
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6.3.3 Crossline internal multiple prediction 

Though the success at the control point is mixed, the internal multiple prediction method 

was then applied to a crossline from the data to compare the result on seismic section (Figure 

6.16).  The input data is relatively flat which can make it difficult to distinguish primaries from 

multiples as they will have similar structural patterns.  If the structure varied greatly with time 

then this could aid in distinguishing primaries from multiples.  In this case with the given flat 

data the resulting multiples will also be relatively flat.  This is where the amplitudes of the events 

and how the multiples are attenuated from the data becomes critical. 
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Figure 6.16 Crossline displaying 3D PSTM stack data a) input data, b) internal multiple 

prediction and c) internal multiple prediction with 2D adaptive subtraction 
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Displayed is the result of attenuating the internal multiples with the 2D adaptive 

subtraction in the downward generator space (Figure 6.17). 

 

Figure 6.17 a) Crossline through PSTM stack. b) Crossline through PSTM stack after 

internal multiple attenuation, with red ovals highlighting significant areas of change due to 

internal multiple attenuation. 

 

The results display minimal variation between the two but there are some small changes 

in coherency through the crossline.  The well tie is compared after the internal multiple 

attenuation (Figure 6.18).   
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Figure 6.18 Well tie cross correlation a) before and b) after internal multiple attenuation 

 

Comparing the cross correlation pre and post multiple attenuation the results show a 

negligible change in the tie.  Due to the minimal quantitative differences a qualitative 

comparison is needed to see if there are improvements in space. 

 

6.4 3D PSTM prestack seismic data 

Three sets of prestack gathers were made available to test the method.  The pre-

interpolation, post interpolation and the migrated data.  Displayed is the pre-interpolation data 

(Figure 6.19).  This has irregular sampling which can impact which depending on the domain 

used for internal multiple prediction will impact the results. 
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Figure 6.19 a) offset (ft) and azimuth acquisition distribution for the given CMP, b) seismic 

gather with the displayed acquisition before 5D interpolation 

 

After 5D interpolation offsets are regularized and there is a significant improvement to 

the signal to noise ratio in the data (Figure 6.20).  This will aid in the algorithm using these 

events and the increased signal to noise to produce and improved result.  The regular sampling 

also assists the algorithm as the method expects smoothly varying wavefronts. 
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Figure 6.20 a) offset (ft) and azimuth acquisition distribution for the given CMP after 5D 

interpolation, b) seismic gather with the displayed acquisition after 5D interpolation  

 

6.4.1 Time offset internal multiple prediction 

The time offset version of the internal multiple prediction algorithm is used on the 

prestack data.  As displayed in the Chapter 4.5.1 the algorithm requires a split spread input.  If 

the input data only contains positive offsets, then the result will contain artifacts.  The data is 

copied about the zero offset to give both positive and negative offsets prior to input to the 

internal multiple prediction algorithm.  Displayed is the input and prediction of the internal 

multiples using the time offset version of the algorithm (Figure 6.21). 
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Figure 6.21 a) seismic gather after 5D interpolation, b) Time offset internal multiple 

prediction of seismic gather after 5D interpolation  
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There are numerous distinct events that can be seen in the prediction.  There also appears 

to be linear events that have been predicted which can be seen in the input data.  The prestack 

data may require further processing prior to the application of the internal multiple prediction 

algorithm. 

 

6.5 Conclusions 

These real data tests of the method have been more difficult to determine their success.  

Most of the real data cases displayed some locations which improved due to the attenuation of 

multiples with other locations where it had possibly been detrimental.  The internal multiple 

attenuation results from the synthetic testing were encouraging.  The 3D PSTM stack tied the 

zero depth trace synthetic reasonably well, but subtle differences between the two remained.  The 

question that is raised is the possibility of additional processing that may assist in the prediction 

of internal multiples.  The method assumes that the only events that remain in the data are 

primaries and internal multiples.  It requires that these are both part of the input data as they will 

be used to predict events and the multiples must also be present for the subtraction.  Has the 

migration or other processing steps altered the multiples in the data.  If there is noise or other 

events in the data, these events will be used by the algorithm to predict the relevant internal 

multiples.  This potentially demonstrations how critical preserving amplitudes through 

processing can be to assist these data driven methods.  The next steps are to determine how to 

achieve this success with real data. 
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Chapter Seven: Conclusions  

 

7.1 Conclusions 

The inverse scattering series for internal multiple attenuation has been implemented with 

few assumptions and required inputs.  It has shown promise as a wave equation based multiple 

attenuation method.  The method is implemented in two parts, first part is the prediction and 

second part is the adaptive subtraction step to remove the multiples.  The issues addressed in this 

work are to improve the initial prediction and reduce the strain on the adaptive subtraction to 

correct for errors and artifacts and achieve a more reliable result.  This was accomplished 

through the development of the following tools and workflows. 

 

The main tools used and developed: first, the downward generating space, which can assist 

in accounting for any losses at the downward generator level, and corrections needed to apply it.  

This also allows for an improved understanding of the generated multiples, as the uncollapsed 

multiples from each generator can be examined.  Second, the use of higher order terms, which 

has been previously shown to assist but what was revisited in this work as an outline of how to 

use the higher order terms to improve the prediction.  This was done in combination with the 

downward generator space and 2D adaptive subtraction.  Third, a relatively new domain was 

tested, which show how a nonstationary epsilon can improve the result of the prediction and 

displayed its abilities to function in the case of irregular sampling.  The combined impact of 

these results is an improved prediction capability and new Q.C. tools to evaluate the prediction 

algorithm. 
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These tools were applied to a variety of synthetic and real data examples and showed 

significant improvement on the simple synthetic cases.  They displayed how correcting for these 

small amplitude mismatches can lead to increased seismic resolution in seismic data 

contaminated with internal multiples.  Even on the more complex synthetics, it was shown how 

the 2D adaptive subtraction can improve the result in some instances.  The real data tests were 

less conclusive. 

 

7.2 Recommendations for future work 

As is often the case, this work has potentially raised more questions than it has solved.  

The recommendations for future work are broken into two groups.   

 

First, is to better understand the nature of internal multiples.  It was shown how when 

multiples and primaries are sufficiently separated there can be a very accurate result and a high 

level of success.  Once there are more short path multiples, this starts to cause errors in the 

prediction.  I believe a more detailed method of how to determine the success of the method is 

required.  There may be cases where it is believed that the method is unsuccessful, but it is 

possible that we have set the method up to fail.  Some tests may be asking the method to resolve 

multiples that the inverse scattering series is not designed for.  Future work should include how 

to successfully merge solutions which attack both short period internal multiples possibly 

through deconvolution like methods and long path internal multiples. 

 

Second, to determine what must be done to the data to prepare it for this type of multiple 

removal.  Though some of the issues were touched on including sampling and noise, a more 
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rigorous study on the application of the method and how the processing steps impact the result is 

warranted. 
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