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Abstract

A difficult challenge in seismic processing and imaging is to address insufficient and irregular

sampling. Most processing algorithms require well-sampled data, which involves small sam-

pling intervals with a regular distribution. This motivates us to find new techniques that

are more efficient in interpolating seismic data.

The primary objective of this thesis is to study Singular Spectrum Analysis (SSA) as a

tool for the reconstruction and denoising of seismic data. An overview of the methods of

seismic interpolation and the potential use of SSA in time series is described. SSA as a rank-

reduction method for 2-D and 3-D seismic data interpolation is studied. The rank-reduction

step of SSA is improved by proposing an adaptive rank-reduction method. To improve the

algorithm in denoising an adaptive weighting rank-reduction algorithm is proposed. SSA is

compared with the Minimum Weighted Norm Interpolation (MWNI) algorithm.

Results obtained in this work demonstrate that SSA is a promising method for simultaneous

denoising and reconstructing seismic data.

ii



Preface

This thesis is an original work by the author. No part of this thesis has been previously

published.

iii



Acknowledgements

[Don’t forget to thank someone.]

iv



To my beloved family.

v



Table of Contents

Abstract ii

Preface iii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Figures and Illustrations viii

List of Tables xii

List of Symbols, Abbreviations and Nomenclature xiii

Epigraph xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Seismic data interpolation methods . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Spatial prediction filter . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Wave equation based methods . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Signal processing based methods . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Machine learning based methods . . . . . . . . . . . . . . . . . . . . 5
1.2.5 Rank-reduction based methods . . . . . . . . . . . . . . . . . . . . . 6

1.3 Importance of Dimensionality: from 2-D to 5-D and beyond . . . . . . . . . 7
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Basics of Singular Spectrum Analysis 11
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The basic SSA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 First stage: Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Second stage: Reconstruction . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Potential applications for SSA . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



3 Background of SSA in seismic data processing 21
3.1 Basic SSA in seismic data processing . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Projections Onto Convex Sets method . . . . . . . . . . . . . . . . . 28
3.1.2 Reconstruction of missing traces . . . . . . . . . . . . . . . . . . . . . 29

3.2 Multichannel Singular Spectrum Analysis . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Synthetic data example . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Adaptive rank reduction 41
4.1 Adaptive rank reduction for the Hankel matrix . . . . . . . . . . . . . . . . . 42

4.1.1 Examples of adaptive rank-reduction for 2-D data . . . . . . . . . . . 46
4.2 Adaptive rank-reduction for the block Hankel matrix . . . . . . . . . . . . . 53
4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Application of weighting operator on rank-reduction step 61
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Weighting rank-reduction (WRR) . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Adaptive weighting rank-reduction . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.3 Optimally damped rank-reduction method . . . . . . . . . . . . . . . 81
5.3.4 Real field data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 SSA comparison with Minimum Weighted Norm Interpolation 92
6.1 The binning approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Conclusions and Recommendations 101
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 105

vii



List of Figures and Illustrations

1.1 Major types of seismic waves based on propagation characteristics. . . . . . . 2
1.2 Geometry of a seismic survey. The red star indicates source location and the

blue dots represent offset. a) Irregularly sampled seismic survey. b) The same
survey in a regular grid. c) the survey after interpolation. d) The highly
regularized and interpolated survey. . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Different ways in which seismic data are typically grouped for processing. The
stars indicate shots’ location and the triangles shows the location of receivers.
a) Common receiver gather. b) Common shot gather. c) Common offset
gather. d) Common mid point gather. e) Common depth point gather. f)
Common azimuth gather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Capability of SSA in finding trends with different resolutions: a) Rough trend.
b) Accurate trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Capability of SSA on smoothing time series: a) Initial series (blue) smoothed
series (red). b) Residuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Canada monthly live births. Initial series (blue), trend and cycle extracted
by SSA series (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 A 2-D data in a small window with a constant dip. . . . . . . . . . . . . . . 22
3.2 a) Singular values for noiseless data without decimated traces; b) singular

values for noiseless data with 51% decimated traces. . . . . . . . . . . . . . . 31
3.3 Schematic of generating a block Hankel matrix from a frequency slice. . . . . 35
3.4 Interpolation of a 3-D noiseless data containing four linear events. (a) Input

data with 51% gaped traces, (b) initial data, (c) interpolated data with MSSA
rank=4, (d) residual errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Slices of data in inline and cross-line directions. (a) input data in inline
direction, (b) input data in cross-line direction. (c) and (d) Initial data in
inline and cross-line direction respectively. (e) and (f) Interpolated data by
MSSA with rank=4 in inline and cross-line direction respectively. (g) and (h)
The result of subtracting initial data from the interpolated data in inline and
cross-line direction respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Interpolation of a 3-D data containing four linear events. (a) Input data with
SNR=1 and 51% missing traces, (b) initial data, (c) interpolated data with
MSSA rank=4, (d) residual errors. . . . . . . . . . . . . . . . . . . . . . . . 39

viii



3.7 Slices of data in inline and cross-line directions. (a) input data in inline
direction, (b) input data in cross-line direction. (c) and (d) Initial data in
inline and cross-line direction respectively. (e) and (f) Interpolated data by
MSSA with rank=4 in inline and cross-line direction respectively. (g) and (h)
The result of subtracting initial data from the interpolated data in inline and
cross-line direction respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Analyzing the distribution of the singular values for data containing one linear
flat event. a) Clean data. b) Normalized singular values of the Hankel matrix
for the clean data. c) Incomplete data contaminated with random noise. d)
Normalized singular values of the Hankel matrix for incomplete data. . . . . 43

4.2 Analyzing the distribution of the singular values for data containing one linear
inclined event. a) Clean data. b) Normalized singular values of the Hankel
matrix for the clean data in constant frequency 25 Hz. c) Incomplete data
contaminated with random noise. d) Normalized singular values of the Hankel
matrix for the incomplete data in constant frequency 25 Hz. . . . . . . . . . 44

4.3 Analyzing singular values distribution of data containing four linear events.
a) Clean data. b) Normalized singular values of the Hankel matrix for clean
data in a frequency slice of 25 Hz. c) Incomplete data contaminated with
random noise. d) Normalized singular values of the Hankel matrix for the
incomplete data in constant frequency 25 Hz. . . . . . . . . . . . . . . . . . 45

4.4 Comparing the interpolation results of SSA with TRR method and ARR
method. a) Desired result, b) input data with SNR = 100 and 40% missing,
c), e), g), and i) interpolated data with constant rank=4, 6, 8, 10, respectively.
k) Interpolated data with SSA using ARR. d), f), h), j), and l) residual errors
for c), e), g), i), and k), respectively. . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Comparison of interpolation results of SSA using TRR with SSA using ARR
method. a) Desired result, b) input data with SNR = 2 and 40% missing
traces, c), e), g), and i) interpolated data with constant rank=4, 6, 8, 10,
respectively. k) Interpolated data with SSA using ARR. d), f), h), j), and l)
residual errors for c), e), g), i), and k), respectively. . . . . . . . . . . . . . . 50

4.6 Comparing the interpolation results of SSA using TRR method and ARR. a)
Desired result, b) input data with SNR = 1 and 40% missing traces, c), e),
g), and i) interpolated data with constant rank=4, 6, 8, 10 respectively. k)
Interpolated data with SSA using adaptive rank reduction. d), f), h), j), and
l), residual errors for c), e), g), i), and k), respectively. . . . . . . . . . . . . 52

4.7 a) Cube of 3-D data having three linear events. Slice of data in b) inline
direction, c) cross-line direction. . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Block Hankel matrix for frequency slice of a) 20 Hz, b) 50 Hz. . . . . . . . . 54
4.9 a) Singular values spectrum, b) Zoomed singular values spectrum. . . . . . 55
4.10 Normalized singular values distribution of the block Hankel matrix of 3-D

data with three linear events in the frequency slice a) 20 Hz, b) 50 Hz. The
first 20 singular values of the same data for frequency slice of c) 20 Hz, d) 50
Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



4.11 Analysis of the frequency power for each singular value. The red line shows
power per frequency, and the blue line indicates the estimated mean frequency.
a) Power per frequency of data recovered by the first singular value. b), c), d),
e) f), g), h), I), j), k), and l) power per frequency recovered by the 2nd, 3rd,
4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, and 12th singular value, respectively. 58

5.1 a) Cube of 3-D synthetic clean and complete data, b) and c) inline and cross-
line sections of cube (a), respectively. d) Cube of 3-D synthetic data with
SNR = 2 and 51% missing traces, e) and f) inline and cross-line sections of
cube (d), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Block Hankel matrices for frequency of 20 Hz for a) clean and complete data,
b) data with SNR = 2 and 51% missing traces, c) recovered data by TSVD
rank-reduction after ten iterations, d) recovered data by WRR after ten iter-
ations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 The first 25 singular values spectrum of the block Hankel matrices for fre-
quency of 20 Hz for a) clean and complete data, b) data with SNR = 2 and
51% missing traces, c) The first 12 singular value of the data, d) singular
values spectrum of the data after applying the weighting operator. . . . . . 67

5.4 Block Hankel matrices for frequency of 50 Hz for a) clean and complete data,
b) data with SNR = 2 and 50% missing traces, c) recovered block Hankel
matrix by TRR rank=4 after ten iterations, d) recovered data by WRR after
ten0 iterations. e) Recovered data by applying the ARR method after ten
iterations, d) recovered data after applying AWRR after ten iterations. . . . 70

5.5 The first 25 singular values spectrum of the block Hankel matrices for fre-
quency slice of 50 Hz for, a) clean and complete data, b) data with SNR = 2
and 50% killed traces, c) recovered data by TRR, d) recovered data by WRR,
e) recovered data by ARR, f) recovered data by AWRR. . . . . . . . . . . . 72

5.6 Comparison of different methods of rank-reduction. a) Clean and complete
data, b) data with SNR = 100 and 60% missing traces. c), e), g), and i)
Interpolated data by TRR, ARR, WRR, and AWRR methods, respectively.
d), f), h), and j) Residual errors of TRR, ARR, WRR, and AWRR, respectively. 74

5.7 Comparison of different methods of rank-reduction. a) Clean and complete
data, b) input data with SNR = 2 and 60% missing traces, c), e), g), and i)
interpolated data by TRR, ARR, WRR, and AWRR, respectively. d), f), h),
and j) residual errors of TRR , ARR, WRR, and AWRR, respectively. . . . . 76

5.8 f − k spectra comparison of: a) clean and complete data, b) input data, c)
TRR result, d) WRR result, e) ARR result, f) AWRR result. . . . . . . . . 77

5.9 The mean and standard error of the quality of reconstruction versus gap ratio
for different methods. These results are obtained by running each method on
20 realizations of different data set for different gap ratios and rank=9 for the
predefined rank methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.10 The mean and standard error of the reconstruction’s quality versus SNR for
different methods. These results are obtained by running each algorithm on
20 realizations of the different data set for a signal-to-noise ratio with the gap
ratio = 50%, and rank=9 for the predefined rank methods. . . . . . . . . . . 80

x



5.11 Diagram of the output Quality of interpolation using ORR with respect to
the selected rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.12 The quality of interpolation versus gap percent for ORR, and AWRR. . . . . 84
5.13 Comparison of the interpolation results for ORR method. a) Clean and com-

plete data, b) data with SNR = 2 and 50% missing traces, c) recovered data
by ORR (output QF = 11.12 dB), d) residual errors for ORR, e) interpo-
lated data by AWRR (output QF = 9.44 dB), f) residual errors for AWRR.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.14 Zoomed images of figure 5.13 from the time 0.4 s to 1.2 s and trace number 400
to 460. a) Clean and complete data, b) data with SNR = 2 and 50% missing
traces, c) recovered data by ORR, d) residual errors for ORR, e) interpolated
data by AWRR, f) residual errors for AWRR. . . . . . . . . . . . . . . . . . 86

5.15 Geometry of the field data. (a) Initial distribution of the traces. (b) Distri-
bution of traces after killing 41% of them. . . . . . . . . . . . . . . . . . . . 88

5.16 Cube of 3-D field data. a) The input data. b) Interpolation result of applying
TRR. c) Interpolation result of applying AWRR. . . . . . . . . . . . . . . . . 88

5.17 a) Input real data, b) interpolation result of applying TRR approach, c) in-
terpolation result of applying AWRR method. . . . . . . . . . . . . . . . . 89

5.18 Zooming area of figure 5.17 from time 1.35 (s) to 1.75 (s) and trace number
160 to 190. a) input data, b) TRR result, c) AWRR result . . . . . . . . . . 90

6.1 2-D data with irregular offset. a) Input data with 30% randomly missing
traces. b) f − k spectrum of the input data. c) Desired data. d) f − k
spectrum of the desired data. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Geometry distribution of traces with irregular offset and different binning
sizes. a) Bin size=18 (m), b) bin size=9 (m), c) bin size =6 (m), d) bin
size=4.5 (m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Results of MWNI interpolation on a 2-D data. a), d), g), and h) Regularized
and interpolated data for different bin size of 18, 9, 6, and 4.5(m), respectively.
b), e), h), and k) interpolated traces in their true coordinates. c), f), i), and
l) Residual errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 f − k spectrum of the MWNI interpolation. a) Bin size=18(m), b) 9(m), c)
6(m), and d) 4.5(m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Results of SSA interpolation a) Interpolated data in a rough grid of 18(m),
b) residual errors, c) f − k spectrum of the interpolated data. . . . . . . . . 100

7.1 Interpolating decimated traces by SSA or upsampling. a) Input data. b)Desired
data. c) Interpolated by SSA. d) Residual errors. e) f − k spectrum of input
data. f)f − k spectrum of desired data. g) f − k spectrum of interpolates data.104

xi



List of Tables

5.1 Mean and standard deviation of the quality of interpolation for each method
for different gap ratio inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Mean and standard deviation of the quality of interpolation for each method
for different SNR inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xii



List of Symbols, Abbreviations and
Nomenclature

Symbol or abbreviation Definition
ARMA Auto-Regressive Moving Average
ARR Adaptive Rank-Reduction
AWRR Adaptive Weighting Rank-Reduction
FFT Fast Fourier Transform
IHT Iterative Hard Threshold
MSSA Multichannel Singular Spectrum Analysis
MWNI Minimum Weighted Norm Interpolation
NMO Normal Move Out correction
POCS Projection Onto Convex Sets
SNR Signal to Noise Ratio
SSA Singular Spectrum Analysis
SVD Singular Value Decomposition
TRR Traditional Rank-Reductio method that uses SVD with predefined rank
TSVD Truncated SVD
WRR Weighting Rank-Reduction
A Amplitude of a waveform in the Fourier domain

B Hankelization operator to generate the block Hankel matrix in a slice
of frequency

D Dreamlet transform
F Fourier operator
F−1 Inverse Fourier Operator
H Hankelization operator
H Matrix in a form of Hankel
Hk A reduced rank Hankel matrix
K Number of lagged vectors
L Length of the window of a vector
M A block Hankel matrix
N Number of component of a vector
Nx Number of channels in x direction
Ny Number of channels in y direction
q Dip of a waveform
QF Quality factor of the interpolation result

xiii



R Rank-reduction operator
R Sampling operator
s(x, t) 2-D waveform in the time domain
s(x, y, t) 3-D waveform in the time domain
Sk(ω, x) 2-D waveform in the frequency domain
Sk(ω, x, y) 3-D waveform in the frequency domain
t time dimension
T (Σ, k) The operator that gives the rank of the Hankel matrix in each frequency
Tµn The Hard threshold operator given element-wise multiplication
U Matrix of eigenvectors
V Matrix of eigenvectors
W Wavelet
Ws Matrix of model weights

Ŵ
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Chapter 1

Introduction

1.1 Background

The seismic data exploration method provides data related to the physics of the earth.

The information obtained from the seismic data maps the subsurface geologic structure and

stratigraphic features. The fundamental procedure of seismic exploration consists of gener-

ating seismic waves and estimating the time expected for the waves to travel from the source

to a series of receivers. These receivers are generally distributed on a straight line or lines

(Yilmaz, 2001). With knowledge of travel times from the sources to the various receivers

and the velocity at which waves travel, one can reconstruct the paths of the seismic waves.

The energy produced by a source such as a seismic vibrator (on land) or an airgun (in water)

discharges seismic waves that travel into the earth’s layers and bounce back from different

rock layers. The reflected and refracted seismic waves are recorded by a geophone (on land)

or hydrophones (in water) and give the subsurface’s first image (Yilmaz, 2001). The seismic

method lets the ground underneath interpretation discover oil, gas, water, faults, folds etc.

The seismic exploration method’s power over other geophysical methods because of the high

accuracy, high resolution, and excellent penetration. Several waveforms in a normal land

seismogram can be classified to direct wave, refraction and reflection. Figure 1.1 shows a
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schematic of the major seismic waves. Reflections waves are the main target in the seis-

mic survey because they penetrate more into the subsurface than the other types of waves.

Therefore, seismograms are often processed and modified to improve the reflections’ signal,

providing a more clear image of the subsurface.

Figure 1.1: Major types of seismic waves based on propagation characteristics.

Seismic surveys are designed to keep a consistent grid of sources and receivers. In typical

real-life scenarios, because of logistic obstacles or economic constraints regularly sampled

seismic surveys are uncommon or rare. These limitations make large shot and receiver

sampling intervals producing poorly irregularly sampled seismic data along with spatial

coordinates with gaps without recorded traces.

Missing traces often have negative effects on many processing algorithms, producing

sampling artifacts or noise on the resulting data or images that lessen accuracy and resolu-

tion. There are many seismic processing techniques for noise attenuation or imaging such as

reverse-time migration, full waveform inversion, and surface-related multiple eliminations,

that demand high-quality regularly sampled data to work properly. These demands make

seismic data interpolation an important pre-processing step in the seismic data processing.

Figure 1.2 illustrates a typical land 3-D seismic survey. The red star is the source location,

and the blue dots are the offset values. Figure 1.2 (a) shows the geometry of an irregularly

sampled data survey. Figure (b) indicates the survey in figure 1.2 (a) after sitting in a
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regular grid. Figure 1.2 (c) is the survey after interpolation, and figure 1.2 (d) represents a

highly regularized and interpolated survey which is the desired survey for most of the seismic

processing tools.

a) b)

c) d)

Figure 1.2: Geometry of a seismic survey. The red star indicates source location and the
blue dots represent offset. a) Irregularly sampled seismic survey. b) The same survey in a
regular grid. c) the survey after interpolation. d) The highly regularized and interpolated
survey.

The main objective of this chapter is to present a background of different methods of

seismic data interpolation. The next section is a review of a few common techniques for

seismic data reconstruction, which leads to the motivation for this work.

1.2 Seismic data interpolation methods

Data reconstruction performs an important task in seismic data processing and imaging

workflows. We often need to interpolate and extrapolate data at missing spatial coordinates.

Some consequences of poorly sampled data without interpolation are degradation of ampli-

tudes and sampling artifacts. Seismic reconstruction methods can be divided into five main

classes:

3



1.2.1 Spatial prediction filter

Spitz (1991) proposed a method depending on the predictability of the linear events in the

f − x domain. The method considers linear events in a uniformly aligned traces section and

can decrease the original spatial interval by integer factors without being given the actual

dips. Porsani (1999) introduced a half-step prediction filter. The half prediction filter at fre-

quency f/2 is computed by least-squares, predicting data elements at the odd locations from

data at the even locations. Liu and Fomel (2011) interpolated aliased seismic data employing

a method based on adaptive prediction-error filtering (PEF) and regularized non-stationary

auto-regression. The proposed method includes an automatic selection of regularization pa-

rameters and fast iteration convergence. Liu and Chen (2018) developed a f −x regularized

non-stationary auto-regression interpolation method that can deal with the space-changing

dips events. The method assumes that the coefficients of f − x regularized non-stationary

auto-regression are evenly changing along with the space axis. The method employs shaping

regularization and its implementation in the frequency domain makes it efficient.

1.2.2 Wave equation based methods

Ronen (1987) introduced a trace-interpolation technique based on the wave equation with the

assumption of a smooth spatial spectrum. The method includes an iterative inversion of the

model linearly related to the Normal moveout (NMO) corrected seismic data. Fomel (2003)

introduced a finite-difference filter built from the offset-continuation differential equation.

The filter is employed on frequency slices in the log-stretch frequency domain and recon-

structs gaps efficiently by iterative least-squares optimization. Trad (2003) proposed an

extension of the hyperbolic Radon transform interpolating apex-shifted hyperbolic events.

This transformation is performed by applying a sparse least-squares conjugate gradient al-

gorithm in the time domain and a very efficient Stolt’s f − k domain operator.
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1.2.3 Signal processing based methods

Most of the methods in the signal processing category are based on transformations across

different domains. Sacchi et al. (1998) introduced an iterative non-parametric method to

spectral estimation. For line spectra, Duijndam et al. (1999) proposed Fourier transform

applying least squares estimation of Fourier components to reconstruct regularly sampled

band-limited seismic signals along one spatial coordinate. Liu and Sacchi (2004) proposed an

approach for spatially band-limited signals by solving an inverse problem with a f−k domain

regularization term. The method can be extended to multidimensional reconstruction in any

spatial domain. Wang et al. (2011) introduced an l1-norm constrained trust region method

for solving the compressive sensing problem based on the wavelet transform. The method

succeeds in the limitations of random sampling.

1.2.4 Machine learning based methods

In recent years, machine learning has attracted much attention in geophysical studies. Deep

learning (DL) has had a great impact on signal and image processing. However, Machine

learning for geophysical problems is new and needs more development. Jin et al. (2018)

introduced a novel denoising approach that utilizes deep residual networks (ResNets) learning

framework. Wang et al. (2018) proposed a framework designed using ResNets block to

interpolate anti-aliased seismic data. Generative Adversarial Networks (GANs) explained

by Siahkoohi et al. (2018) can reconstruct heavily sub-sampled seismic data by giving up

linearity and using an adaptive non-linear model. Convolutional Neural Networks (CNNs) is

a novel strategy for the reconstruction of missing traces in pr-stack seismic images (Mandelli

et al., 2018). A new framework for training Artificial Neural Networks (ANNs) was presented

by Mikhailiuk and Faul (2018) to restore corrupted multidimensional seismic signals. Wang

et al. (2019) utilized an eight-layer residual learning networks (ResNets) with a better back-

propagation property for interpolation. Shi et al. (2020) proposed a regularization method

using the random-initialized convolutional neural network (CNN) that parameterizes the
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model. A method based on imaging techniques from single-image super-resolution (SISR)

proposed by Greiner et al. (2019) that consist of a deep (CNN) and a periodic resampling

layer for upscaling to the non-aliased wavefield.

1.2.5 Rank-reduction based methods

In rank-reduction-based methods, the linear events in a clean seismic data set are low rank

data. However, the rank of data is increased by noise and missing traces (Trickett, 2008).

The rank-reduction algorithm in the frequency domain is carried out in frequency slices by

generating Hankel/Toeplitz matrix and applying a low-rank reduction method on the gen-

erated matrix. The singular spectrum analysis (SSA) method proposed by (Sacchi, 2009;

Trickett and Burroughs, 2009; Oropeza and Sacchi, 2011) works by rank-reduction of the

Hankel matrix with an iterative algorithm in the frequency domain. Gao et al. (2013) ex-

tended the SSA method to higher seismic data dimensions and called a multichannel singular

spectrum (MSSA). Interpolating regularly missing traces with a de-aliased MSSA method

was proposed by Naghizadeh and Sacchi (2013). Kreimer et al. (2013) answered the compli-

cation of non-linear events in pre-stack data via low rank tensor completion. Kreimer and

Sacchi (2012) used the higher order SVD for rank-reduction of the pre-stack seismic data

tensor. Ely et al. (2015) used a statistical test to control the complexity of regularization

by tuning a single regularization parameter. Interpreting the interpolation in the context

of matrix completion (MC), Kumar et al. (2015) developed rank-reduction techniques to

seismic data reconstruction. Carozzi and Sacchi (2021) proposed a method called (I-MSSA)

that interpolates seismic data in its exact data coordinates which overcome the problem of

vertical errors in rough binning.
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1.3 Importance of Dimensionality: from 2-D to 5-D

and beyond

Although seismic interpolation is not a new method of reconstructing data, using multi-

dimensional interpolation simultaneously along all directions was not common until a few

years ago (Trad and Cheadle, 2005). The potential use of several dimensions for interpola-

tion brings many new questions like:

1-How to choose the best output geometry design (figure 1.3)?

Trad (2009) classified interpolation geometries in basically two types, each type with its

variations. One type is acquisition-guided or surface-consistent geometry. In this group, by

creating new shots and new receivers we make the output geometry similar to a real data

acquisition geometry which consistent shot and receiver groups. This new geometry could fol-

low the original design, preserving original traces and just adding more shots and receivers,

making it better sampled and reducing gap sizes. Preserving original seismic traces pro-

vides opportunities for better quality control and prevents losing information not captured

by the interpolation model. Alternatively, the output geometry could be completely new,

which permits further improvements in sampling. Either way, these acquisition-guided ge-

ometries permit processing, migration and inversion with standard modules and algorithms.

This is important because many migration tools like Reverse Time Migration require the

geometries with shot/receiver consistent gathers. The second type of geometry design is

midpoint-consistent data which is ideal for Kirchhoff and beam migrations. This design cre-

ates perfect common vectors that have advantages for creating multi azimuth angle gathers

and multi-component processing. However, they also produce coarse offset/azimuth or inline

crossline offset sampling and forbids techniques based on shots/receivers.

2- Which algorithms are more capable in terms of preserving/capturing signal in the presence

of noise and poor sampling?

For 5-D interpolation, the algorithm should be capable of working with a large number of
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input traces simultaneously. Minimum weighted norm interpolation (MWNI) was the first

algorithm applied to 5-D interpolation (Liu and Sacchi, 2004; Trad, 2009). Although not a

requisite, MWNI is typically applied on regular grids after binning in the 4 spatial dimensions

with multidimensional Fast Fourier Transforms (FFTs). MSSA is another algorithm that

is capable of using the information of the 4 spatial dimensions simultaneously. 5-D MSSA

generates an order 4 Hankel matrix from the 4 spatial dimensions in each slice of frequency.

3- What is the behaviour of aliasing in multidimensional interpolation?

Due to the 5 dimensional nature of seismic data sets, it is usually the case that at least

one or more of these dimensions are poorly sampled and also irregularly sampled. However,

we can take advantage of the well-sampled dimensions to help constraint the interpolation

model. Because non-aliased signal can be recorded along these directions, they can help to

overcome the aliasing uncertainty along with the other dimensions. This is the main reason

why simultaneous high-dimensional interpolation is more capable than lower-dimensional

interpolations applied in sequence (Trad, 2009).
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a) b) c)

d) e) f)

Figure 1.3: Different ways in which seismic data are typically grouped for processing. The
stars indicate shots’ location and the triangles shows the location of receivers. a) Common
receiver gather. b) Common shot gather. c) Common offset gather. d) Common mid point
gather. e) Common depth point gather. f) Common azimuth gather.

1.4 Organization of the thesis

The structure of this thesis is as follows:

Chapter 2 explores the basics of SSA. It presents the main steps of the algorithm and its

implementation on a simple one-dimensional time series. This chapter analyses the potential

applications of the algorithm, such as finding the trend or denoising a time series.

Chapter 3 explains the application of SSA in the seismic data processing. This chapter

shows how the linear coherent events determine the rank of the Hankel matrix formed from

the seismic traces. First, the chapter explains the application of the algorithm to 2-D data,

and it shows the expansion of the algorithm to the 3-D data. It also explains an iterative

algorithm and presents the capability of SSA for seismic data interpolation. I show some

synthetic data 3-D interpolation examples by the multidimensional SSA algorithm.
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Chapter 4 introduces a method of rank-reduction to apply to the rank-reduction step of

the SSA algorithm. The method is called adaptive rank-reduction (ARR). Examples in this

chapter demonstrate how ARR selects the rank without prior information about the number

of linear events in each processing window.

Chapter 5 explains a weighting operator used in the rank-reduction step that helps to reduce

residual noise from the data. The operator is a diagonal weighting matrix that reduces the

effect of noise projection on the signal projection in each slice of frequency. The chapter in-

troduces an adaptive weighting rank-reduction (AWRR) method that interpolates the data

while removing the residual noise in the recovered data simultaneously. Several examples

compare different methods of rank-reduction in the SSA algorithm.

Chapter 6 presents the MWNI method and compares it with SSA using several 2-D data.

Chapter 7 presents the conclusions and recommendations for further work.
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Chapter 2

Basics of Singular Spectrum Analysis

2.1 Background

Singular spectrum analysis (SSA) is a common technique for the analysis and forecasting of

time series. SSA can combine both model-free and parametric methods, which makes it a

helpful method for a wide range of problems in different areas of study. It has been employed

in various fields such as physics, economics, and business research. Depending on the field

of study, the purpose of applying SSA varies (Golyandina and Korobeynikov, 2014).

One of the most important contributions to the development of SSA was made by Broom-

head and King (1986), who used the method of delay vectors proposed by Takens (1981)

to study dynamical systems using multivariate statistical analysis. Vautard et al. (1992)

proposed SSA as a denoising algorithm. It identifies oscillatory components by selecting

subsets of eigenvalues and eigenvectors and related principal components.

Read (1992) studied baroclinic processes by SSA. In the economic sciences, it has been ap-

plied to study and forecast time-series like daily market rate (Hassani et al., 2010). One

of the advantages of SSA is that it can be extended to multiple dimensions. Read (1992)

applied SSA on multiple time series simultaneously, called multichannel singular spectrum
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analysis (MSSA). MSSA uses all the information of the time series in the trajectory matrix.

Hsieh and Wu (2002); Ghil et al. (2002) applied MSSA to study the climate. MSSA is applied

to signal reconstruction and forecasting of time series by Golyandina et al. (2001). Broom-

head and King (1986) proposed SSA as a powerful noise attenuation method by recovering

data from the largest singular values. Elsner and Tsonis (2013) demonstrated that the large

singular values after the decomposition of the trajectory matrix could represent the signal

while the small ones are related to the contaminated noise. Cody et al. (2018) studied SSA

to extract leak detection components on an acoustic signal in a water pipeline with leakage.

This chapter studies the main principles and ideas of SSA for one-dimensional data. The

basic SSA algorithms can be divided into two stages of decomposition and reconstruction.

In the decomposition stage, a time series is divided into a sequence of lagged vectors. Then

these lagged vectors are embedded in a trajectory matrix in the form of a Hankel matrix,

and the matrix is decomposed to its singular values and singular vectors using SVD. In the

decomposition stage, the trajectory matrix is recovered by the remaining few singular values

and zeroing the small ones. The recovered low-rank matrix is a symmetric matrix where the

recovered time series can be reconstructed by diagonal averaging.

2.2 The basic SSA algorithm

Low-rank approximations are often applied to data modelling and data compression. Since

the rank of the model depends on the complexity of the generated model, low-rank approxi-

mations are useful as a method to simplify information, that is to extract the most important

components of a matrix. Rank reductions are often applied to intermediate mathematical

constructions using truncated SVD. A Hankel structure is one of such common mathematical

constructs. The rank reduction theories are closely related to principal component analysis

(PCA), matrix factorization, data compression, and feature selection.

Assume a time series X = XN = (x1, ..., xN) containing N components and N > 2 . Let find
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L, (1 < L < N) as the window length and K = N − L+ 1 as the number of lagged vectors.

This algorithm consists of two stages of decomposition and reconstruction where there are

four steps for each of these two stages.

1. Decomposition

� First, the elements of a time series become entries of a trajectory matrix with the

window length of L and K lagged vectors.

� Second, using the singular value decomposition (SVD) of the trajectory matrix

to decompose the matrix into singular matrices.

2. Reconstruction

� The third step is the rank reduction step by passing the large singular values and

zeroing the small ones.

� The last step refers to recovering the rank-reduced series.

The next section describes the four main steps of these two stages in the basic SSA

algorithm.

2.2.1 First stage: Decomposition

Embedding

We start with a sequence of lagged vectors with the length of L from the X series mentioned

in the previous section. As mentioned before, the number of the lagged vectors of the X

series is K. In other words; we will have Xi = (xi, ..., xi+L−1), (1 ≤ i ≤ K) with the

length of L. In fact, the embedding step allows us to go from a one-dimensional space to a

multidimensional series (Broomhead and King, 1986). The trajectory matrix generated from

the lagged vectors is in the form of a Hankel matrix. A Hankel matrix is a L × K matrix

in which each rising anti-diagonal from left to right is constant and symmetrical around the
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main diagonals. The process of Hankelization or embedding can be summed asXi,j = xi+j+1,

where 1 ≤ i ≤ K and 1 ≤ j ≤ L:

X =



x1 x2 ... xK

x2 x3 ... xK+1

...
...

. . .
...

xL xL+1 ... xN


, (2.1)

To simplify, let us call H the Hankelization operator; therefore, we will have X = Hx.

Singular Value Decomposition

In this step, we apply the singular value decomposition (SVD) of the trajectory matrix.

SVD is popular for low-rank approximations (Eckart and Young, 1936) and is common also

in linear algebra to decompose a matrix into its eigenvalues and eigenvectors.

To perform the SVD of the trajectory matrix of X, let’s set S = XXH and let us call

λ1, ...., λL the nonzero eigenvalues of S in descending order (λ1 > λ2 > ... > λL). The

eigenvectors (U1,U2, , ...,UL) of the matrix S are the orthonormal system corresponding to

eigenvalues. We thus have Vi =
XtU1√

λi
(i = 1, .., L). The SVD of the trajectory matrix X

can be written as:

X = X1 + ..+XL, (2.2)

whereXi =
√
λiUiVi

H . In equation 2.2,Xi have rank one and are called elementary matrices

(Golyandina and Zhigljavsky, 2013).

X =
√
λ1U1V

H
1 + ..+

√
λLULV

H
L , (2.3)

The number of non-zero eigenvalues (
√
λi) of X represents its rank. In other words, the

rank of matrix X corresponds to the maximum number of linearly independent columns of

X. This is equal to the dimension of the vector space spanned by its rows.
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In a more compact notation, the SVD of a matrix can be presented as:

X = UΣVH , (2.4)

where the columns of U represents singular vectors of XXH , the singular vectors of XHX

are the columns of V, and Σ is a diagonal matrix of singular values of X. The singular

values are the diagonal entries of the matrix S and are arranged in descending order. The

singular values are always real numbers. If the matrix X is a real matrix, then U and V are

also real (Van Loan et al., 1996). To find the SVD of the matrix S we will have:

S = XXH = UΣVHVΣUH = UΣ2UH = UΛUH , (2.5)

If we rewrite equation 2.5 for XHX it leads to XHX = VΣ2VH that explains how the

singular values and singular vectors of X are related to the eigenvectors of XHX and XXH .

2.2.2 Second stage: Reconstruction

Rank-reduction

So far, we have decomposed the trajectory matrix to its singular values and singular vectors,

but we still need to apply the rank-reduction process. As discussed earlier, the singular

values matrix of a Hankel matrix is a diagonal matrix containing singular values across its

diagonal in descending order. Therefore, in a full rank matrix, the greater singular values

relate to the signal while the small singular values represent the noise or the signals with less

energy or uncorrelated events. Recovering the Hankel matrix with a small subset of singular

values provides us with a rank-reduced matrix. In equation 2.2 the rank k is the maximum

number of the nonzero eigenvalues k = max{i, for λi > 0}. In other words, for a matrix

with size L ×M , the rank k = min{L,K}. The reduced rank matrix of X can be written
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as:

X = X1 + ..+Xk, (2.6)

where k is the desired rank for the trajectory matrix. In matrix notation we will have:

Xk = UkΣkV
H
k , (2.7)

The reduced rank matrix Xk is the recovered matrix with the desired rank k where performs

the lowest ∥X−Xk∥F . Denoting the rank-reduction operator as R, the rank reduction step

will be: Xk = RX.

Anti diagonal averaging

So far we generated a Hankel matrix of a series and applied SVD to reduce its rank. In

this step, we recover the time series from the rank reduced matrix, which is in a Hankel

form. Consequently, the result of this step is the desired recovered time series of length N .

Let us Xk be the reduced rank Hankel matrix with size L ×K and entries xi,j, 1 ≤ i ≤ L,

1 ≤ j ≤ K. The recovered series elements will be obtained along the secondary anti diagonal

of the recovered Hankel matrix.

xk(n) =


1
n

∑n
l=1Xk(l, n− l − 1) for 1 ≤ n ≤ L

1
L

∑L
l=1Xk(l, n− l − 1) for L+ 1 ≤ n ≤ K.

1
K+L−n

∑L
l=n−K+LXk(l, n− l − 1) for K + 1 ≤ n ≤ N

(2.8)

With considering A as the averaging diagonal operator, we will have xk = AXk.
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2.3 Potential applications for SSA

This section discusses potential uses of the SSA algorithm for denoising, trend observation,

smoothing, and period extraction of one-dimensional real data. To learn more on potential

applications of SSA see Golyandina et al. (2001).

Trends

To show how SSA can be used for extracting trends, we use a dataset of Alberta’s conven-

tional light crude oil from January 2000 to June 2020. The conventional light crude oil refers

to hydrocarbon produced from the Western Canadian Sedimentary Basin and is a common

source for most Canadian oil production. In this example, by selecting a window length of

L = 245 and two singular values, we can see a rough trend of the production. To observe

more details in the trend of the production, we reconstruct the signal with more singular

values. In this example selecting four singular values gives a more accurate trend.

Figure 2.1 shows two choices in the trend analysis. Figure 2.1 (a) represents the results of

selecting two singular values that give a rough trend in the series of conventional light crude

oil production rates. We can roughly see a decrease in the light crude oil production rate

from 2000 to 2010 and then a jump in the production rate by the start of 2010. However,

recovering data with four singular values represents the data’s behaviour more carefully.

Figure 2.1 (b) confirms a general decrease in the production rate by the end of 2010, while

there is a growth by the start of 2011 continuing to 2014. The production rate starts to drop

from 2014 until 2017 and then it starts to grow again in 2017.
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a)

b)

Figure 2.1: Capability of SSA in finding trends with different resolutions: a) Rough trend.
b) Accurate trend.

Smoothing

To show the use of SSA on smoothing and extracting the periodicities of data, we will

consider a data series containing tree rings information, taken from the International Tree

Ring Data Bank (http://www.ncdc.noaa.gov/paleo/treering.html).

The El Niño/Southern Oscillation (ENSO) is the principal mode of weather variability for

more than two years on Earth, fluctuating within irregularly warm (El Niño) and cold (La

Niña) conditions in the tropical Pacific at periods of 2-8 years.

Figure 2.2 (a) displays the initial series and the result of the application of SSA on smoothing.

The window size is set L = 365 and data is recovered with the first four singular values. The

record of ENSO variability is for over 950 years, which the smoothed series indicates that

ENSO amplitude presents a quasi-regular cycle of 50-90 years. Figure 2.2 (b) pictures the
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residuals and we cannot observe any special trend of the initial data.

a)

b)

Figure 2.2: Capability of SSA on smoothing time series: a) Initial series (blue) smoothed
series (red). b) Residuals.
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Extraction of period

The following example demonstrates the capability of SSA on extracting periods. The test

dataset contains the number of monthly births in Canada from 1991 to 2020 [Table 13-

10-0415-01 Live births, by month]. The window length of input data is set L = 100 and

recovered data is reconstructed with the first three singular values. The result shows the

extraction of a smooth trend and a cycle with the length of one year repeating over the

series. Figure 2.3 depicts a smooth trend for the number of births with a decrease in the

year 2000. It can be seen a one-year period with the increase of birth in June in each year

and a decrease of birth during December in each year.

Figure 2.3: Canada monthly live births. Initial series (blue), trend and cycle extracted by
SSA series (red).

2.4 Summary

This chapter introduced SSA for one-dimensional series and described the general structure

of its algorithm. There are different problems that SSA can solve. We apply SSA to three real

time series to evaluate its efficiency on some common problems such as denoising, trending or

periodicities extraction. The results showed that SSA can be used as a tool for periodicities

extraction, smoothing and trending algorithms in time series.
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Chapter 3

Background of SSA in seismic data

processing

Singular Spectrum Analysis (SSA) is a common time series analysis method. Multiple types

of research have demonstrated SSA’s ability to process the data contaminated with different

kinds of noises. In the previous chapter, the basic SSA algorithm and its application on time

series and its performance were discussed. However, as the geophysical field data processing

technique, SSA is a novel method. It is worthy of analyzing geophysical data in terms of the

Eigen features using SSA. In this chapter, I will study the application of SSA in geophysics.

One of the advantages of SSA is that it can be easily expanded to multiple dimensions and

also its predictability of time series in the frequency–space domain. SSA employs truncated

singular value decomposition (TSVD) as the rank-reduction method to decompose the noisy

signal into a signal subspace and a noise subspace. Using the basic SSA algorithm with the

weighted projection onto the convex sets (POCS) method lets us fill the gaps in a data set

with missing traces. SSA in the f − x domain, also known as f − x Cadzow filtering, was

proposed by Trickett and Burroughs (2009).

SSA’s application to seismic data processing has been originally introduced to signal denois-

ing and seismic trace reconstruction in the f − x− y domain (Oropeza, 2010; Oropeza and
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Sacchi, 2011; Chen and Sacchi, 2015).

3.1 Basic SSA in seismic data processing

The former chapter presented four main steps of the basic SSA algorithm. The four steps were

reviewed as embedding or Hankelization, singular value decomposition, rank-reduction and

anti-diagonal averaging. However, in seismic data processing, two more steps of transforming

data from the t− x domain to the f − x domain and reverse are required.

A 2-D data in a small window with a constant dip is depicted in figure 3.1.

Figure 3.1: A 2-D data in a small window with a constant dip.

Figure 3.1 can be described as:

s(x, t) = W (t− qx), (3.1)

where x is space, t is time, q is dip and W (t) is a wavelet.

Fourier transform

To change the data domain in equation 3.1, from the t − x domain to the f − x domain, a

Fourier transform is required. In the Fourier transform, an image is decomposed into its sine

and cosine components by converting the input data in the time domain to the frequency

domain. ”A Fourier transformation of a time series consists of a complex valued function of

frequency. The absolute value is the amplitude of the frequency, and the imaginary part is
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the phase offset of the basic sinusoid in that frequency (Bochner et al., 1949).”

Data in the f − x domain described as:

S(x, ω) = Aωe−iωqx, (3.2)

where ω is the temporal frequency and A is the amplitude. Let’s analyze the seismic data

with n number of channels with ∆x interval in x space. Therefore for data with n number

of channels, space x can be substituted by x = n∆x. Furthermore, we can write data for

the nth channel as S(xn, ω) = Sn.

Equation 3.2 for the nth can be revised as following:

Sn = Ae−iωqn∆x. (3.3)

For the n− 1th channel equation 3.2 will be as follow:

Sn−1 = Ae−iωq(n−1)∆x = Ae−iωqn∆xeiωq∆x. (3.4)

From equation 3.4, one can note that Sn is related to its previous channel (sn−1):

Sn−1 = Sne
iωq∆x. (3.5)

In the beginning, we assumed that we have a plane wave; accordingly, the dip is uniform (q =

constant), the algorithm is implemented in a constant frequency (ω = constant); moreover,

we assumed that the interval between each channel is (∆x = constant). Substituting the

fixed parts with X = e−iω∆x, equation 3.5 is described as:

Sn = XSn−1. (3.6)
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Equation 3.5 describes 2-D data containing one linear event with constant dip. However,

developing it for data with more than one event and different dips is quite straightforward.

Let’s consider a 2-D record displaying two events with different constant dips of (q1 and q2)

and amplitudes (A1 and A2).

Data in the f − x domain for the three channels next to each other will be explained as the

following expression:

Sn = A1e
−iωq1n∆x + A2e

−iωq2n∆x

Sn−1 = A1e
−iωq1(n−1)∆x + A2e

−iωq2(n−1)∆x = A1e
−iωq1n∆xeiωq1∆x + A2e

−iωq2n∆xeiωq2∆x.

Sn−2 = A1e
−iωq1(n−2)∆x + A2e

−iωq2(n−2)∆x = A1e
−iωq1n∆xe2iωq1∆x + A2e

−iωq2n∆xe2iωq2∆x.

(3.7)

Considering αk = eiωqk∆x and substituting it to equation 3.7 leads to:

Sn = Sn
(1) + Sn

(2),

Sn−1 = α1Sn
(1) + α2Sn

(2),

Sn−2 = α1
2Sn

(1) + α2
2Sn

(2).

(3.8)

Equation 3.8 can be written as::

Sn−1

Sn−2

 =

 α1 α2

α1
2 α2

2


S

(1)
n

S
(2)
n

 (3.9)

To solve equation 3.9, one can use Carmer’s rule method to solve a system of linear equations

applying determinants.

The matrix

 α1 α2

α1
2 α2

2

 will have an inverse

 α1 α2

α1
2 α2

2


−1

if and only if the determinant

of

 α1 α2

α1
2 α2

2

 is not equal to zero. It indicates that α1 ̸= α2, where points to eiωq1∆x ̸=

eiωq2∆x thus q1 ̸= q2. Solving equation 3.9 leads to a linear relation between Sn, Sn−1, Sn−2:
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Sn = Q1Sn−1 +Q2Sn−2. (3.10)

Embedding into a Hankel matrix structure

We continue our study by considering 2-D seismic data S(ω, x) in the frequency-space do-

main, assuming that the data are sampled regularly on the spatial dimension. At a given con-

stant frequency ω0, the frequency slice can be indicated as S(ω0, x) = [S1, S2, . . . , SNx], where

Nx is the total number of traces along the spatial dimension. Embedding the monochromatic

signal vector into a Hankel structured trajectory matrix leads to:

H =



S1 S2 ... SKx

S2 S3 ... SKx+1

...
...

. . .
...

SLx SLx+1 ... SNx


, (3.11)

where, as studied in chapter 2 the Hankel structured matrix generated from the lagged

vectors is a Lx ×Kx matrix and Kx = Nx −Lx +1. Considering equation 3.6 for a 2-D data

matrix with one linear event, the Hankel matrix will be:

H =



S1 XS1 ... XKx−1S1

S2 XS2 ... XKx−1S2

...
...

. . .
...

SLx XSLx ... XKx−1SLx


, (3.12)

Considering equation 3.12, for a data set in the f −x domain, it is apparent that the rank of

the Hankel matrix is equal to one. However, the presence of random noise or missing traces

will increase the rank of the Hankel matrix. For a data set presenting three linear events,

equation 3.12 changes to equation 3.13, where the Hankel matrix is formed by the linear

combination of the first three columns. Equation 3.13 can be extended to a record with k
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linear events, leading to an increase in the Hankel matrix’s rank to k. This indicates that

the minimum Hankel matrix’s rank can be established by identifying the number of linear

events in a record.

H =



S1 S2 S3 Q1S3 +Q2S2 +Q3S1 ... Q1Skx−1 +Q2Skx−2 +Q3Skx−3

S2 S3 S4 Q1S4 +Q2S3 +Q3S2 ... Q1Skx +Q2Skx−1 +Q3Skx−2

...
...

...
...

. . .
...

SLx SLx+1 SLx+2 Q1SLx+2 +Q2SLx+1 +Q3SLx ... Q1SNx−1 +Q2SNx−2 +Q3SNx−3


.

(3.13)

Determining the minimum rank by identifying the number of linear events could be one of

the advantages of SSA; nonetheless, in real data or complicated records, it is hard to choose

the exact number of linear events and, consequently, the Hankel matrix’s rank. In the next

chapter, I will discuss how to set the rank of the Hankel matrix automatically.

The next step is decomposing the Hankel matrix into its singular values and singular vector

matrices. The rank-reduction method is performed by truncated SVD. We can summarize

the embedding step as following:

H = HS(ω0). (3.14)

Singular value decomposition of the Hankel matrix

As discussed in chapter 2, the SSA algorithm’s second step is decomposing the trajectory

matrix into its singular value and singular vector matrices. The singular value decomposition

of the Hankel matrix implemented by TSVD can be written as follow:

H = UΣVH , (3.15)

where, U and V are the singular vector matrices and Σ is the singular value matrix of the

H matrix.
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The Hankel matrix’s rank-reduction

In theory, for any given finite-rank Hankel matrices, SVD produces a basic description that

explains the Hankel matrix’s fundamental properties. The SVD decomposition of the Hankel

matrix produces two orthogonal complex matrices, usually denoted U and V, and a diagonal

matrix denoted Σ that contains the singular values in descending order. The number of non-

zero singular values determines the Hankel matrix’s rank. As mentioned before, the presence

of uncorrelated noise and missing traces increase the Hankel matrix’s rank. Consequently, if

a record contains k linear events, a reduced Hankel matrix with information about only the

signal events can be recovered by keeping only the first k singular values.

Hk = UkΣkV
H
k , (3.16)

where Uk and Vk are the k first singular vectors of H and Σk is a diagonal matrix with k

largest singular values of H. The rank-reduced Hankel matrix Hk is in the form of Hankel;

therefore, the signal in the constant frequency can be recovered by averaging along the

anti-diagonals of its rank-reduced Hankel matrix. The rank-reduction step will be:

Hk = RH. (3.17)

Averaging along the anti-diagonals

The recovered Hankel matrix Hk calculated earlier has a Hankel structure; therefore, aver-

aging over the anti-diagonals leads to the recovered signal (Sacchi, 2009). Elements obtained

from the diagonal averaging can be connected with the signal, whereas the residual series

will be related mostly with noise or missing traces. The anti-diagonals averaging can be
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written as:

Sk =


1
n

∑n
l=1Hk(l, n− l − 1) for 1 ≤ n ≤ Lx

1
Lx

∑Lx

l=1Hk(l, n− l − 1) for Lx + 1 ≤ n ≤ Kx,

1
Kx+Lx−n

∑Lx

l=n−Kx+Lx
Hk(l, n− l − 1) for Kx + 1 ≤ n ≤ Nx

(3.18)

where Sk is the recovered signal in the constant frequency. Denoting A as the operator that

averages anti-diagonals; this step can be summed as:

Sk = AHk. (3.19)

Inverse Fourier transform

SSA is implemented in the f-x domain for seismic data, so, with the inverse Fourier transform

applying to each channel the rank-reduced data in the t − x domain will be obtained. The

F−1 is the inverse Fourier operator:

Sk(t, x) = F−1Sk(ω, x). (3.20)

3.1.1 Projections Onto Convex Sets method

The six steps studied in the previous section are the essential SSA steps for random noise

removal in seismic data. For data interpolation, we need to apply another algorithm that uses

SSA to iteratively retrieve and incorporate information into the data. One of such algorithms

is the Projection Onto Convex Sets (POCS), which can handle seismic data interpolation

and random noise attenuation simultaneously. The POCS method is a helpful technique for

domain transform-based interpolation methods. It was first proposed by Bregman (1965)

for obtaining a common point of a finite collection of sets in a metric space. The first time

Abma and Kabir (2006) introduced POCS for irregular seismic data interpolation. Gao et al.

(2010) interpolated seismic data by using a Fourier transform-based POCS method with an
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exponential threshold model. Oropeza and Sacchi (2011) used a weighted POCS method to

interpolate seismic data using the SSA method.

Observed seismic data are always incomplete, irregular and contaminated with random noise,

but the POCS-SSA algorithm can be used to alleviate these problems. One can connect the

observed data with complete clean seismic data as follow:

Sobs = R⊙ (S+ η), (3.21)

where, Sobs denotes the observed seismic data, S depicts the full noiseless data, η represents

the random noise and the residuals, and R indicates a sampling matrix formed of zero and

ones, given in equation 3.22.

R(i, j) =

 1, for S(i, j) ̸= 0,

0, for S(i, j) = 0,
(3.22)

where, R(i, j) = 1 is associated with observed traces, and R(i, j) = 0 matches to a missing

trace.

POCS iteratively replaces the result of the filtered data, which contains additional energy in

the locations of the missing samples, into the original data set. In this iterative algorithm,

the input data for the next iteration is the updated data from the last iteration. In each

iteration, the amplitude of data is partially recovered therefore traces will be recovered after

some iterations.

3.1.2 Reconstruction of missing traces

We discussed in the previous section that the random noise increases the rank of the Hankel

matrix. The same happens for data with missing traces since the abrupt amplitude change

on the zero traces requires additional data singular vectors to be represented. Therefore, it

follows that reducing the rank of the data can be used to infill missing traces. This section
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pays attention to the reconstruction of incomplete records. To reconstruct data with gaps,

we utilize a weighted algorithm presented by Oropeza and Sacchi (2011).

First, let us assume a noiseless gapped record with nine channels (Nx = 9) in the Fourier

domain in a constant frequency to begin the SSA algorithm for reconstructing the data with

missing traces. Missing traces in the Fourier domain will be presented as zero value:

S =



S(ω0, x1) 0 S(ω0, x3) S(ω0, x4) 0 0 S(ω0, x7) 0 S(ω0, x9)

S(ω1, x1) 0 S(ω1, x3) S(ω1, x4) 0 0 S(ω1, x7) 0 S(ω1, x9)

...
...

...
...

...
...

...
...

...

S(ωp, x1) 0 S(ωp, x3) S(ωp, x4) 0 0 S(ωp, x7) 0 S(ωp, x9)


, (3.23)

where p is the number of samples in the Fourier domain and zeros are the missing traces in

the seismic record. Considering the signal in a constant frequency (ωm), the data will be as

follow:

S(ωm, x1) = [S(ωm, x1), 0, S(ωm, x3), S(ωm, x4), 0, 0, S(ωm, x7), 0, S(ωm, x9)]. (3.24)

In the next step, we require to generate a sampling operator that has ones for the loca-

tions corresponding to recorded components and zeroes for locations of missing values. The

sampling operator of equation 3.22 now looks like:

R = [1, 0, 1, 1, 0, 0, 1, 0, 1]. (3.25)

In the embedding step for the constant frequency (ωm), the Hankel matrix becomes:
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S(ωm) =



S(ωm, x1) 0 S(ωm, x3) S(ωm, x4) 0

0 S(ωm, x3) S(ωm, x4) 0 0

S(ωm, x3) S(ω0, x4) 0 0 S(ωm, x7)

S(ωm, x4) 0 0 S(ωm, x7) 0

0 0 S(ωm, x7) 0 S(ωm, x9)


. (3.26)

The missing traces increase the Hankel matrix’s rank, which is similar to the presence of

random noise in the record shown in figure 3.2. The rank reduction step leads to gradually

reconstructing the missing traces and can be used together with an iterative algorithm to

replace the missing traces with the reconstructed traces.

a) b)

Figure 3.2: a) Singular values for noiseless data without decimated traces; b) singular values
for noiseless data with 51% decimated traces.

Equation 3.27 contains the six steps of SSA combined with the iterative algorithm. It is a

practical approach for random noise attenuation and seismic data amplitude reconstruction.

S̃n+1(ωm) = αnSobs+(I−αnR)F−1ARHF
(
Sn(ωm)

)
+(I−R)F−1ARHF

(
Sn(ωm)

)
, n = 1, 2, ..., N

(3.27)

where ωm is the frequency that SSA is applied on the signals, I is the matrix of ones,

αn ∈ (o, 1] is the weight factor and linearly changes with the number of iterations (Oropeza

and Sacchi, 2011). Sobs denotes the observed data, F indicates the Fourier transform, and

F−1 shows the inverse Fourier transform. H points to the Hankelization operator, R reveals
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rank reduction operator, and A gives the averaging anti-diagonal operator. The algorithm

converges when the maximum number of the iteration is reached or the energy of the change

in the recovered traces is less than a threshold and the missing traces will be interpolated

(Oropeza and Sacchi, 2011).

3.2 Multichannel Singular Spectrum Analysis

One of the advantages of SSA is its simplicity to extend to more dimensions (Oropeza and

Sacchi, 2011). In the previous section we explained how to use SSA for seismic interpolation;

in this section we will discuss multichannel singular spectrum analysis (MSSA) that permits

to apply SSA in multidimensions. For 2D data, we just needed to apply SSA to each

frequency slice; for 3D data we will apply MSSA to two spatial dimensions in each frequency

slice. MSSA is similar to SSA but two more steps are required to include the second spatial

dimension.

3.2.1 Methodology

Before studying the application of MSSA for 3-D interpolation, let us see how the algorithm

of MSSA works.

Consider S(t, x, y) a block of 3-D data in the t− x− y domain on Nt by Nx by Ny samples.

(t = 1, ..., Nt), (x = 1, ..., Nx), (y = 1, ..., Ny). In the frequency domain, the data are

represented as S(ω, x, y) and (ω = 1, ..., Nω). Each frequency slice of the data at a given
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frequency ωm, can be represented by the following matrix:

S(ωm) =



S(1, 1) S(1, 2) ... S(1, Nx)

S(2, 1) S(2, 2) ... S(2, Nx)

...
...

. . .
...

S(Ny, 1) S(Ny, 2) ... S(Ny, Nx)


. (3.28)

To avoid notational confusion, let’s ignore the argument ωm. Then, construct a Hankel

matrix from each inline of S; for the inline ith the Hankel matrix in the mth frequency slice

would be:

Hi =



S(i, 1) S(i, 2) ... S(i, l)

S(i, 2) S(i, 3) ... S(i, l + 1)

...
...

. . .
...

S(i, Nx − l + 1) S(i, Nx − l + 2) ... S(i, Nx)


. (3.29)

At this step, we have Ny Hankel matrices of each inline. Then MSSA constructs a block

Hankel matrix M from Hankel matrices Hi:

M =



H1 H2 ... Hn

H2 H3 ... Hn+1

...
...

. . .
...

HNy−n+1 HNy−n+2 ... HNy


. (3.30)

The size of M is I × J , where I = (Nx − m + 1)(Ny − n + 1) and J = mn. The integers

m and n are chosen to make the Hankel matrices of H and the block Hankel matrix of M

square matrices or close to square. As we see, including the two spatial dimensions of the

3-D cube for each frequency can make the block Hankel matrix very large.

To study how the block Hankel matrix columns are related to each other, let us consider

a 3-D record including a coherent event with a constant dip, that is a plane wave. The

33



waveform in the time domain with the spatial dimensions of x and y will be expressed as:

S(t, x, y) = w(t− pxx− pyy), (3.31)

where px and py are the constant dips in the x and y dimension, respectively. The waveform

in the f − x− y domain can be described as:

S(ω, x, y) = A(ω)e−iω(pxx+pyy), (3.32)

where ω is the temporal frequency, and A is the amplitude. Let’s consider data with n

number of channels in the x−direction and m number of channel in y−direction then we

will have x = n∆x, and y = m∆y. Then equation 3.32 can be written as S(ω, x, y) =

A(ω)e−iωpxn∆xe−iωm∆y. To avoid notational clutter, let’s assume that the waveform in the

channel nth and mth is in the form of Snm. The waveform for the adjacent channel of the

channel m is represented as:

Sn(m−1) = A(ω)e−iωpxn∆xe−iωpy(m−1)∆y = A(ω)e−iωpxn∆xe−iωpymeiωpy∆y, (3.33)

Simplifying equation 3.33 we obtain Sn(m−1) = A(ω)Snme
iωpy∆y where eiωpy∆y is a constant

term. Denoting R = A(ω)eiωpy∆y, we can write the relationship between the two neighbour-

ing channels as:

Sn(m−1) = RSnm. (3.34)

Similarly to the previous section, equation 3.34 presents a linear relationship between each

Hankel matrix and it’s adjacent Hankel matrix. (Hi = XHi−1). The block Hankel matrix
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in equation 3.30 can be substituted by:

M =



H1 XH1 ... Xn−1H1

H2 XH2 ... Xn−1H2

...
...

. . .
...

HNy−n+1 XHNy−n+1 ... Xn−1HNy−n+1


. (3.35)

Equation 3.35 shows that the block Hankel matrix’s rank for the given plane wave is equal

to one. Moreover, similar to SSA, it can be extended to k plane waves for a 3-D data cube.

The other steps of MSSA are the same as SSA. For the block Hankel matrix decomposition,

one can apply TSVD and decompose the block Hankel matrix to its singular values and sin-

gular vector matrices. After the rank-reduction step, the averaging along the anti-diagonals

is utilized to recover the data. The last step is to reverse the Fourier transformation to con-

vert the data back to the t−x−y domain. Figure 3.3 is a schematic of the MSSA algorithm

in generating block Hankel matrix step for a 3-D data set.

Figure 3.3: Schematic of generating a block Hankel matrix from a frequency slice.
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By applying MSSA, up to this point data have been denoised but not interpolated. To

reconstruct the missing traces, let’s go back to equation 3.28 and consider a 3-D data cube

with five traces in each spatial dimension. Let’s assume the frequency slice of the data in

ω = 0 as:

S(ω0) =



S(1, 1) 0 S(1, 3) S(1, 4) S(1, 5)

S(2, 1) S(2, 2) 0 S(2, 4) 0

0 S(3, 2) S(3, 3) 0 S(3, 5)

S(4, 1) S(4, 2) 0 S(4, 4) S(4, 5)

S(5, 1) 0 S(5, 3) 0 S(5, 5)


. (3.36)

The sampling matrix for the observed data in the frequency slice of the data ω = 0 is as

follow:

R =



1 0 1 1 1

1 1 0 1 0

0 1 1 0 1

1 1 0 1 1

1 0 1 0 1


. (3.37)

The same POCS algorithm discussed in the previous chapter can be applied to reconstruct

missing traces or gaps in a 3-D data cube for each frequency as follows:

S̃n+1(ωm) = αnSobs + (I− αnR)F−1ARBF
(
S̃n(ωm)

)
+ (I−R)F−1ARBF

(
S̃n(ωm)

)
,

n = 1, 2, ..., N

(3.38)

where ωm is the temporal frequency, I is a matrix of ones, αn ∈ (o, 1] is a weight factor

which decreases linearly with iterations, F indicates the Fourier transform, and F−1 shows

the inverse Fourier transform. B points to the Hankelization operator to generate the block

Hankel matrix, R reveals rank reduction operator, and A gives the averaging anti-diagonal

operator. For clean data without noise we consider α = 1, so equation 3.38 changes to the
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following:

S̃n+1(ωm) = Sobs + (I−R)F−1ARBF
(
S̃n(ωm)

)
. (3.39)

3.2.2 Synthetic data example

In this section, we test the MSSA method for a 3-D post-stack synthetic data. The first test

is a cube of 3-D noiseless data containing four linear events with 51% missing traces. Figure

3.4 (a) shows the cube of input data. Figure 3.4 (b) indicates the same 3-D cube without

missing data (ground-truth). The interpolated data applying the MSSA algorithm with ten

iterations is shown in figure 3.4 (c). The selected rank for the interpolation algorithm was

set rank=4. Figure 3.4 (d) is the cube of residual errors derived from subtracting initial

data from interpolated data. Figure 3.5 refers to the slices of the data in figure 3.4 in inline

direction and one in cross-line direction. Figure 3.5 (a) and (b) shows a slice of input data

in inline and cross-line directions respectively. Figure 3.5 (c) and (d) indicate slices of the

initial data in inline and cross-line directions respectively. Figure 3.5 (e) and (f) are the

result of interpolation with MSSA in inline and cross-line directions respectively. Figure 3.5

(g) and (h) are the slices of residual errors in inline and cross-line respectively.

a) b) c) d)

Figure 3.4: Interpolation of a 3-D noiseless data containing four linear events. (a) Input
data with 51% gaped traces, (b) initial data, (c) interpolated data with MSSA rank=4, (d)
residual errors.
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a) c) e) g)

b) d) f) h)

Figure 3.5: Slices of data in inline and cross-line directions. (a) input data in inline direction,
(b) input data in cross-line direction. (c) and (d) Initial data in inline and cross-line direction
respectively. (e) and (f) Interpolated data by MSSA with rank=4 in inline and cross-line
direction respectively. (g) and (h) The result of subtracting initial data from the interpolated
data in inline and cross-line direction respectively.

To test the capability of the algorithm in simultaneous denoising and interpolating the

second example is 3-D data with additive random noise SNR=1 and 50% missing traces.

The algorithm converged after 15 iterations. Figure 3.6 (a) is the cube of input data with

SNR=1 and 50% missing traces. Figure 3.6 (b) is the 3-D cube of initial data. Figure 3.6

(c) shows the result of applying the MSSA algorithm with 15 iterations. Figure 3.6 (d) is

the cube of residual errors derived from subtracting the initial data from the interpolated

data. Figure 3.7 indicates the slices of the data in figure 3.6 in inline directions and one in

cross-line direction. Figure 3.7 (a) and (b) shows a slice of input data in inline and cross-line

direction respectively. Figure 3.7 (c) and (d) indicate slices of the initial data in inline and

cross-line directions respectively. Figure 3.7 (e) and (f) are the result of interpolation with

MSSA in inline and cross-line directions respectively. Figure 3.7 (g) and (h) are the slices of

residual errors in inline and cross-line respectively.
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a) b) c) d)

Figure 3.6: Interpolation of a 3-D data containing four linear events. (a) Input data with
SNR=1 and 51% missing traces, (b) initial data, (c) interpolated data with MSSA rank=4,
(d) residual errors.

a) c) e) g)

b) d) f) h)

Figure 3.7: Slices of data in inline and cross-line directions. (a) input data in inline direction,
(b) input data in cross-line direction. (c) and (d) Initial data in inline and cross-line direction
respectively. (e) and (f) Interpolated data by MSSA with rank=4 in inline and cross-line
direction respectively. (g) and (h) The result of subtracting initial data from the interpolated
data in inline and cross-line direction respectively.

3.2.3 Discussions

This chapter examined the efficiency of SSA (for 2-D seismic data) and MSSA (for 3-D

seismic data) on seismic data interpolation. It studied how the rank of Hankel matrices

depends on the number of linear events in the processing window. The drawback of this
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method of selecting rank for the rank-reduction step is that real data are too complicated

for us to decide the exact number of linear events in each processing window. Therefore, we

need to search for a data-dependent strategy that does not require our guessing. In the next

chapter, we will study an adaptive approach to choose a target rank in the rank-reduction

step of the SSA algorithm.
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Chapter 4

Adaptive rank reduction

SSA is a robust low-rank reduction method for simultaneous denoising and reconstruction.

However, one of its weaknesses is that it requires to satisfy the plane wave assumption.

For instance, complicated structures with large curvatures are not suitable for low rank-

reduction methods like SSA. One solution for the problem of curved events is using NMO

correction before applying the low rank-reduction methods. Another solution is using local

spatial windows to assume that the events are linear. Furthermore, it is challenging to find

the proper window size as it is not easy to determine whether the local window structure is

linear or not. Besides, it is hard to estimate the rank of each window separately. All the

above reasons make the estimation of the Hankel matrix’s rank complicated. On the other

hand, selecting the wrong rank will negatively affect the results: rank overestimation will

make residuals to increase; rank underestimation will distort the signal and create artifacts.

This section discusses a method that automatically chooses the rank for each local window

suggested by Wu and Bai (2018) for 2-D data and continues the expansion of the method

for 3-D data.
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4.1 Adaptive rank reduction for the Hankel matrix

In seismic data, the observed data can be indicated as Sobs = R(S0 + η). Where Sobs is

observed seismic data, S0 indicates the full noiseless data, η represents the random noise

and the residuals, and R indicates the sampling matrix formed of zeros and ones. Using the

SSA algorithm, we can write the Hankel matrix of observed data as:

M = S+N, (4.1)

where S represents low rank Hankel matrix of the desired signal and N denotes the noise

component which includes the gaps. In SSA, decomposition of the Hankel matrix in the

rank-reduction step using TSVD will be as follow :

M = UΣVH . (4.2)

If one knows the desired rank of the Hankel matrix, the estimated signal desired signal is

recovered by:

M̂ = UkΣkV
H
k , (4.3)

where M̂ is the estimated signal, and k is the predefined rank of the Hankel matrix equals

to the number of the linear events in each local window.

In this section, we are looking for an operator to choose the Hankel matrix’s rank automat-

ically without any information about the number of linear events of the processing window.

The rank of the Hankel matrix is related to the number of distinctly large singular values.

To prove this idea, figure 4.1 examines how the singular values are related to the number

of events by investigating the distribution of the singular values. The first data set contains

one flat linear event with 51 traces (figure 4.1 (a)). Figure 4.1 (b) presents the distribution

of the singular values of the Hankel matrix of the clean data in a constant frequency of 25

Hz. The largest non-zero singular value is related to the flat event’s energy. Figure 4.1 (c)
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represents data with random noise and missing traces. Figure 4.1 (d) shows the singular

value distribution of the Hankel matrix of incomplete data in 25 Hz. We can see that the

presence of missing traces and random noise has increased the Hankel matrix’s rank in the

frequency of 25 Hz; however, the flat event’s energy can be diagnosed with the first distinct

large singular value.

a) b)

c) d)

Figure 4.1: Analyzing the distribution of the singular values for data containing one linear
flat event. a) Clean data. b) Normalized singular values of the Hankel matrix for the clean
data. c) Incomplete data contaminated with random noise. d) Normalized singular values
of the Hankel matrix for incomplete data.

Figure 4.2 demonstrates the same test with different data including an inclined linear

event. Figure 4.2 (a) displays clean data. Figure 4.2 (b) shows the normalized singular value

distribution of its Hankel matrix in 25 Hz; the non-zero singular values are related to the

linear event’s energy. Figure 4.2 (c) shows the incomplete data, and figure 4.2 (d) refers to

the normalized singular values distribution of the incomplete data in 25 Hz that displays one

clear singular value with others being.
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a) b)

c) d)

Figure 4.2: Analyzing the distribution of the singular values for data containing one linear
inclined event. a) Clean data. b) Normalized singular values of the Hankel matrix for
the clean data in constant frequency 25 Hz. c) Incomplete data contaminated with random
noise. d) Normalized singular values of the Hankel matrix for the incomplete data in constant
frequency 25 Hz.

We repeat the test with a 2-D data set containing four linear events to explore the effect

of multi-event data. Figure 4.3 (a) represents clean data with four linear events. Figure 4.3

(b) shows the normalized singular value distribution of the Hankel matrix of clean data in a

constant frequency of 25 Hz, where the first four large singular values represent the energy

of events. Figure 4.3 (c) represents the data containing four linear events contaminated

with random noise and missing traces. Figure 4.3 (d) shows the normalized distribution of

singular values of the Hankel matrix for incomplete data in a constant frequency of 25 Hz.

One can see that although the presence of missing traces and random noise has increased

the Hankel matrix’s rank, the linear events’ energy can still be diagnosed with an abrupt

drop of energy between the fourth singular value and the fifth singular value.
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a) b)

c) d)

Figure 4.3: Analyzing singular values distribution of data containing four linear events. a)
Clean data. b) Normalized singular values of the Hankel matrix for clean data in a frequency
slice of 25 Hz. c) Incomplete data contaminated with random noise. d) Normalized singular
values of the Hankel matrix for the incomplete data in constant frequency 25 Hz.

In the adaptive rank reduction (ARR) method, we want to find the cutoff number that

indicates where the contribution from the signal becomes much less than the contribution of

the missing traces or random noise.

To determine the rank of the Hankel matrix, a rule of thumb is that the rank related to the

number of linear events equals to:

σi+1

σ1

≤ 1√
N

and
σi

σ1

>
1√
N
, i = 1, ..., k (4.4)

where N is the number of observations (linear events), σi is the ith singular value of the

Hankel matrix in each frequency (Aoki, 2013).

Equation 4.4) proves that the desired rank is related to the number of linear observations.

However from the tests in figures 4.1 to 4.3 , one can draw the conclusion that the number

of events in each local window equals the number of large singular values. It satisfies the
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rule that the desired rank of complete noiseless data is equal to the largest number of the

non-zero singular values. We can conclude that the distribution of the singular values is

divided into two clusters of the signal and residual energies. Wu and Bai (2018) proposed

that the cutoff where the energy ratio between two adjacent singular values is maximum

indicates the point where the signal is grouped from the residuals.

T (Σ, k) = maxi
σ2
i

σ2
i+1

, (4.5)

where σi is the ith singular value of the Hankel matrix in each frequency. T (Σ, k) indicates

the operator that finds the rank at the point where the two following singular values become

more scattered. k can be introduced as the optimal rank of the Hankel matrix for each

processing window in a constant frequency .

Using equation 4.5 by substituting Σk = T (Σ, k) we can improve the results of rank-

reduction step in equation 4.2 as follow:

M̂ = UkT (Σ, k)VH
k , (4.6)

Utilizing equation 4.6 on the rank-reduction step of SSA, the recovered Hankel matrix is

reconstructed. The next step is averaging anti-diagonals of the recovered Hankel matrix

that recover the signal in the Fourier domain for each frequency slice. Applying the iterative

algorithm will reconstruct the amplitude of missing traces.

4.1.1 Examples of adaptive rank-reduction for 2-D data

In this section, the performance of choosing constant rank and also applying the ARRmethod

in denoising and interpolation is shown by applying SSA to 2-D synthetic data.

To judge the reconstruction results numerically, we use Quality Factor (QF ) of interpolation

defined by:

QF = 10 log10(
∥d0∥22

∥df − d0∥22
), (4.7)
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where d0 is the clean and complete data, and df is the result after applying an interpolation

algorithm. This allows us to test the efficiency of the interpolation method.

Figure 4.4 (a) Shows the synthetic data containing nine hyperbolic events, which is the

desired output. Figure 4.4 (b) indicates input data with SNR = 100 and 40% of the muted

traces. To compare the traditional rank-reduction (TRR) with the ARR method the local

spatial window is set to 23 input traces with 11 traces overlap. The number of iterations

for each method is 25, and the SSA algorithm is applied for the frequency range of 1 to

100 Hz for all tests. Figure 4.4 (c), (e), (g), and (i) show the results of applying SSA with

constant rank k = 4, 6, 8, and 10, respectively. The calculated quality of interpolation is

QF = 8.15, 5.4, 3.11, 2.12 dB, respectively. Figures 4.4 (d), (f), (h), and (j) indicate the

residual errors of applying SSA with the predefined rank k = 4, 6, 8, and 10, respectively.

Figure 4.4 (k) represents the result of SSA interpolation using ARRmethod, the interpolation

quality is QF = 10.83 dB. Figure 4.4 (l) shows the residual error for the ARR method.

Comparing figures 4.4 (c), (e), (g), (i), and (k), the best reconstruction performance is when

the rank is selected k = 4. The performance of the results decreases by increasing the rank.

However, the best results come from the ARR method.
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a)

b)

c) d)

e) f)

g) h)

i) j)

k) l)

Figure 4.4: Comparing the interpolation results of SSA with TRR method and ARR method.
a) Desired result, b) input data with SNR = 100 and 40% missing, c), e), g), and i)
interpolated data with constant rank=4, 6, 8, 10, respectively. k) Interpolated data with
SSA using ARR. d), f), h), j), and l) residual errors for c), e), g), i), and k), respectively.
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In the presence of noise and missing traces, the behaviour of the distribution of singular

values of the Hankel matrix would change. The reason is the projection of the noise compo-

nent on the signal component. To understand the effect of noise on the rank, in this section

we run tests with different levels of signal to noise ratio.

Figure 4.5 (a) Shows the clean and complete synthetic data. Figure 4.5 (b) represents input

data with SNR = 2 and 40% of the traces were killed. Local spatial windows are set with

23 input traces each with an overlap of 11 traces. We run 25 iterations for each method in

the range of frequencies 1 to 100 Hz. Figure 4.5 (c), (e), (g), and (i) shows the results of

applying SSA with constant rank k = 4, 6, 8, and 10 where the interpolation quality factor

QF = 4.81, 3.39, 2.17, 1.46 dB, respectively. Figures 4.5 (d), (f), (h), and (j) indicate the

residual errors of applying SSA with the predefined rank k = 4, 6, 8, and 10, respectively.

Figure 4.5 (k) represents the result of interpolation where SSA is applied using ARR it’s

output interpolation quality is QF = 6.17 dB. Figure 4.5 (l) shows the residual errors for

ARR.

The results show that the ARR method works perfectly even when the signal quality is poor

in the presence of noise.
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a) b)

c)

d)

e)

f)

g) h)

i) j)

k) l)

Figure 4.5: Comparison of interpolation results of SSA using TRR with SSA using ARR
method. a) Desired result, b) input data with SNR = 2 and 40% missing traces, c), e), g),
and i) interpolated data with constant rank=4, 6, 8, 10, respectively. k) Interpolated data
with SSA using ARR. d), f), h), j), and l) residual errors for c), e), g), i), and k), respectively.
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Figure 4.6 shows the performance of SSA using ARR in the presence of a strong level

of noise SNR = 1. Figure 4.6 (a) demonstrates clean and complete synthetic data. Figure

4.6 (b) represents the input with SNR = 1 and 40% of the traces were killed. The local

spatial window is set to 23 input traces with 11 traces overlap. The number of iterations for

each method is set to 25, and the SSA algorithm is applied for the frequency range of 1 to

100 Hz. Figure 4.6 (c), (e), (g), and (i) represent the results of applying SSA with constant

rank k = 4, 6, 8, 10 and the output quality factor QF = 2.17, 1.64, 1.34, 0.99 dB,

respectively. Figures 4.6 (d), (f), (h), and (j) indicate the residual errors of applying SSA

with the predefined rank k = 4, 6, 8, 10 respectively. Figure 4.6 (k) represents the result of

interpolation employing SSA using ARR method the output quality factor QF = 3.11 dB.

Figure 4.6 (l) represents the residual errors for ARR.

Comparing the interpolation results of SSA using predefined rank selection with ARR for

different levels of noise in input data, we can conclude that the ARR method’s performance

in interpolation and denoising is more reliable than the TRR method.

51



a) b)

c) d)

e) f)

g) h)

i) j)

k) l)

Figure 4.6: Comparing the interpolation results of SSA using TRR method and ARR. a)
Desired result, b) input data with SNR = 1 and 40% missing traces, c), e), g), and i)
interpolated data with constant rank=4, 6, 8, 10 respectively. k) Interpolated data with
SSA using adaptive rank reduction. d), f), h), j), and l), residual errors for c), e), g), i), and
k), respectively.
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4.2 Adaptive rank-reduction for the block Hankel ma-

trix

Although the ARR method can be extended to 3-D or 5-D, the overall rank-reduction proce-

dure should be revised to some degree. For 3-D data, the rank-reduction selection is applied

to the block Hankel matrix. For 5-D data is applied to a level-four block Hankel matrix.

In this section, we test the procedure of ARR on the block Hankel matrix on a cube of data

containing three linear events with 31 inline and 31 cross-line. Figure 4.7 (a) shows the cube

of 3-D data. Figure 4.7 (b) indicates an inline of the data, and figure 4.7 (c) represents a

slice of data in cross-line direction.

a) b) c)

Figure 4.7: a) Cube of 3-D data having three linear events. Slice of data in b) inline direction,
c) cross-line direction.

We investigate the singular value distribution of the data by converting it to the (f, x, y)

domain. Next is generating the block Hankel matrix in each frequency slice. The size of

the generated block Hankel matrix in each constant frequency would be 256 × 256. Fig-

ure 4.8 (a) shows the block Hankel matrix for the frequency slice of 20 Hz. Figure 4.8 (b)

displays the block Hankel matrix generated in the frequency slice of 60 Hz. According to

figures 4.8 (a) and (b), it is clear that the block Hankel matrix for the frequency 20 Hz is
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smoother than the one for the frequency 50 Hz. It signifies that the block Hankel matrices

for the higher frequencies require a higher rank than those in the lower frequencies to recover.

a) b)

Figure 4.8: Block Hankel matrix for frequency slice of a) 20 Hz, b) 50 Hz.

The singular values spectrum of the data’s block Hankel matrices for its frequency range

is presented in figure 4.9. Figure 4.9 (b) represents a zoom into the first 15 singular values

spectrum. This figure illustrates how the number of nonzero singular values of the block

Hankel matrix at low frequencies is equal to the number of the linear events but increases

with frequency.
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a)

b)

Figure 4.9: a) Singular values spectrum, b) Zoomed singular values spectrum.

Similarly, Figure 4.10 (a) represents the bar plot of the normalized singular values for the

frequency slice of 20 Hz. Figure 4.10 (b) shows the zoomed image for the first 20 singular

values. Figure 4.10 (c) shows the bar plot of the singular values for the frequency slice of 50

Hz. Figure 4.10 (d) is the zoomed image for the first 20 singular values. From the figures,

one can see that for the frequency of 20 Hz the maximum difference of the energy between

two adjacent singular values occurs in the third singular value, and it is the same as the

number of the linear events. However, for the frequency slice of 50 Hz, there is a second

group of nonzero singular values. It means that we need to keep more singular values to

recover all the frequencies completely.
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a) c)

b) d)

Figure 4.10: Normalized singular values distribution of the block Hankel matrix of 3-D data
with three linear events in the frequency slice a) 20 Hz, b) 50 Hz. The first 20 singular values
of the same data for frequency slice of c) 20 Hz, d) 50 Hz.

To analyze the effect of each singular value on the power of each frequency for the data

presented in figure 4.7, data are decomposed into its singular matrices and recovered with

each singular value from one to 15 separately. Then, the power per frequency of the recov-

ered data with each singular value is calculated. In Figure 4.11 the red line represents the

graph of frequency power per frequency and the blue line shows the estimate of the mean

normalized frequency, of the power spectrum. Figure 4.11 (a) is the result of recovering

data with the first singular value. Figure 4.11 (b) shows the power per frequency for the

recovered data with the second singular value. Figure 4.11 (c) is the power per frequency for

the recovered data including just the third singular value. The estimated mean frequency

for these first three singular values is 77 Hz. Figures 4.11 (d), (e), and (f) represent the

power per frequency for the recovered data including just the 4th, 5th, and 6th singular val-

ues, respectively. The estimated mean frequency for these singular values is 90 Hz. Figure

4.11g), h), and i) indicates the power per frequency for the recovered data including just

the 7th, 8th and 9th singular values, respectively. The estimated mean frequency for these

singular values is 88 Hz. Figure 4.11 (j), (k), and (l) shows the power per frequency for
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the recovered data including just the 10th, 11th and 12th singular values, respectively. It

is clear that the most power of the useful signal is recovered with the first three singular

values. Nevertheless, the shift in the mean frequency from 77 Hz to 90 Hz states that there

is a leakage for the higher frequencies in the data. We conclude from this test that despite

the remaining residual errors in the presence of the additive noise, we need to choose the

rank of the block Hankel matrix greater than the number of linear events in each processing

window of frequency and space.
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 4.11: Analysis of the frequency power for each singular value. The red line shows
power per frequency, and the blue line indicates the estimated mean frequency. a) Power
per frequency of data recovered by the first singular value. b), c), d), e) f), g), h), I), j),
k), and l) power per frequency recovered by the 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th,
11th, and 12th singular value, respectively.

To find the best rank of data that minimizes the residual errors, we tested different kinds

of data containing various numbers of events with different slopes and amplitudes. The best

result is when we choose the rank from the second cutoff of singular values instead of the
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first cutoff .

In all tested data, it is possible to see the first cutoff with a distinct change of the energy

of singular values. However, sometimes there is no abrupt change in the amplitude of the

singular values for the second cutoff, especially in the presence of a high level of random

noise. Finding the second cutoff could be a challenge when the quality of the signal is poor.

With a careful look at where the first and the second cutoff in clean and complete data

happen, we conclude that there is a linear relationship between the first and second cutoff.

The best estimate for the second cutoff can be estimated as follows:

B(Σ, k̃) = 3× T (Σ, k), (4.8)

where T (Σ, k) is the operator that finds the point where the two following singular values

become more scattered, B(Σ, k̃) indicates the second cutoff of the singular values spectrum

of the block of Hankel matrix in each frequency slice. k̃ can be introduced as the optimal

rank of the block Hankel matrix that minimizes the Frobenius-norm difference between the

approximated and the exact signal components.

Substituting equation 4.8 to the rank-reduction step will give us:

M̃ = Uk̃B(Σ, k̃)VH
k̃
, (4.9)

Applying equation 4.9 on the rank-reduction step of MSSA, the rank reduced block Hankel

matrix is reconstructed. The next step is averaging anti-diagonals of the recovered block

Hankel matrix. It recovers the signal in the Fourier domain for each frequency slice. Ap-

plying the iterative algorithm will reconstruct the amplitude of missing traces. Selecting

the rank using equation 4.9 makes the estimated signal contains all the signal components.

However, the estimated signal contains all the signal components of the originally observed

data including the noise component projection. The next chapter is a study on different
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methods of rank reduction for adjusting the singular values so that the predicted signal can

best approximate the correct signal.

4.3 Discussions

In this chapter, I proposed an adaptive rank-reduction method to deal with complex struc-

tures for interpolation and denoising of 3-D seismic data. The ARR method selects an

optimal rank of the block Hankel matrix for each slice of the frequency and each spatial

window. This strategy is more reliable than the traditional rank-reduction method because

it lessens the risk of rank misinterpretation. The ARR method shows good signal recon-

struction for the full frequency range, accounting for the need of higher rank on the high

frequency part of the spectrum.
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Chapter 5

Application of weighting operator on

rank-reduction step

5.1 Motivation

The previous chapter was a study on how to select the optimal rank in 3-D data to contain

all the components of the signal’s frequency. The strategy is to choose the second cutoff

in the singular value spectrum of the block Hankel matrix. Using the truncated SVD is an

optimal solution to measure the rank of a noisy matrix in a low-rank problem. However, in

real data, because of the mix of the signal and noise, it is difficult to suppress the random

noise from the desired signal by using only TSVD. This chapter is an effort to develop the

rank-reduction step described in chapters 3 and 4 to adjust the singular values to estimate

the best-desired signal.

When using TSVD in the low signal-to-noise ratio, the reconstructed data carries a mean-

ingful amount of noise. That is because of the subset projection on the signal component

projection. Nadakuditi (2014) introduced an algorithm that provides a weighted approxi-

mation and focuses on the reduction and thresholding form of the optimal weights, on the

singular values. Their method mitigates the effect of rank overestimation. If the rank is
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properly estimated, the algorithm will better estimate weak subspace components of the

signal matrix.

Chen et al. (2016) introduced a damping operator that shrinks the singular values con-

taining significant particles of residual noise. Their method in the reconstruction of highly

noisy incomplete 5-D data set reached better results than the Cadzow rank-reduction method

(Trickett and Burroughs, 2009; Oropeza and Sacchi, 2011).

5.2 Weighting rank-reduction (WRR)

Lets assume M an n ×m block Hankel matrix of the observed data whose σ1, .., σn are its

singular values as below:

M =
n∑

i=1

σiuiv
H
i , (5.1)

where ui and vi are the left and right singular vectors of M. let S be an n × m matrix

having rank k with θ1, ..., θk singular values. Moreover, the singular value distribution of the

noise only part can be estimated from the singular value distribution of the signal plus noise

matrix (M). The observed data can be written as:

M = S+N, (5.2)

where M is the observed data, S represents the desired signal, and N denotes the noise

component which includes the missing traces. Let’s assume that the rank of the signal is

predefined k. The signal can be modelled as:

S =
k∑

i=1

θiuiv
H
i , (5.3)
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where θi are the true singular values of the signal only (S) part of the M. Considering the

rank of the true signal is k, using the TSVD of M the calculated signal will be as follow:

M̃ =
k∑

i=1

σiuiv
H
i , (5.4)

where M̃ is the rank reduced matrix of M that solves the problem of equation 5.5. However,

the threshold k of the observed data cannot serve as the only signal part of data. It is yet

infected with the noise characteristics because of the projection of the noise component on

the projection of the signal’s only component.

∥∥∥M̃− S
∥∥∥ ≤ ϵ. (5.5)

In this section, we are looking for a weighting operator Ŵ, to adjust the singular values of

M̃ to calculate the best estimation of the desired signal. Nadakuditi (2014) proposed an

algorithm for low-rank matrix denoising that can be summarized as follow:

1: Mn×m is the signal plus noise Hankel matrix.

2: k is the best effective rank that can represent the signal,

3: for i = 1 : k

compute ŵi =

(
− 2

σi

D(σi;Σ)

D′(σi;Σ)

)
, (5.6)

4: end for loop,

5: compute results as M̂ =
∑k

i=1 ŵiσiuiv
H
i

In this algorithm D(σ;Σ) is computed as:

D(σ;Σ) =
1

k
Tr

(
σ(σ2I−ΣΣH)−1

)1
k
Tr

(
σ(σ2I−ΣHΣ)−1

)
=

[
1

k
Tr

(
σ(σ2I−Σ2)−1

)]2
,

(5.7)
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where D represents D−transform, and Tr(.) denotes the trace operator of the input.

The D′ represents the derivative of D with respect to σ:

D′(σ;Σ) = 2

[
1

k
Tr

(
σ(σ2I−Σ2)−1

)]
=

[
1

k
Tr

(
(σ2I−Σ2)−1 − 2σ(σ2I−Σ2)−2σ

)]
=

2

k2

[
Tr

(
σ(σ2I−Σ2)−1

)][
Tr

(
(σ2I−Σ2)−1 − 2σ2(σ2I−Σ)2)−2

)]
,

(5.8)

The D-transform describes how the distribution of the singular values of the sum of the

independent matrices is related to the distribution of the singular values of the individual

matrices (Benaych-Georges, 2009).

Benaych-Georges and Nadakuditi (2012) indicate that the principal singular values and vec-

tors of a large matrix can be set apart as the singular values of the signal matrix and the

D−transform of the limiting noise-only singular value distribution. From Equation 5.6 the

weighting operator Ŵ can be written as:

Ŵ = diag(ŵ1, ŵ2, ..., ŵk). (5.9)

We can substitute Equation 5.9 on Equation 5.4 to have:

˜̃M =
k∑

i=1

ŵiσiuiv
H
i , (5.10)

Applying operator Ŵ or the weighting coefficients on the matrix of singular values will loosen

the noise projection’s effect. In the matrix notion we can write Equation 5.10 as below:

˜̃M = UkŴΣkV
H
k , (5.11)

The weighting operator satisfies the equation below (Nadakuditi, 2014):
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∥∥∥ ˜̃M− S
∥∥∥ ≤ ϵ. (5.12)

To understand the effect of the weighting operator on the singular values of the block Hankel

matrices, the predefined rank-reduction method (TRR) and the WRR method are applied

to a block Hankel matrix. Figures 5.1 (a) shows clean and complete 3-D synthetic data

having four linear events, figure 5.1 (b) indicates the same 3-D data with SNR = 2 and 51%

missing traces. Figures 5.1 (c) and 5.1 (d) show the slices of data in inline directions for the

cube of Figures 5.1 (a) and 5.1 (b), respectively. Figures 5.1 (e) and 5.1 (f) are the slices of

the cubes of Figures 5.1 (a) and 5.1 (b) in crossline direction, respectively.

a) b) c)

d) e) f)

Figure 5.1: a) Cube of 3-D synthetic clean and complete data, b) and c) inline and cross-line
sections of cube (a), respectively. d) Cube of 3-D synthetic data with SNR = 2 and 51%
missing traces, e) and f) inline and cross-line sections of cube (d), respectively.

Figure 5.2 shows the Hankel matrices of data in figure 5.1 for the frequency slice of 20
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Hz. Figure 5.2 (a) is the block Hankel matrix of clean and complete data. Figure 5.2 (b)

corresponds to the block Hankel matrix of data with SNR = 2 and 51% missing traces.

Figure 5.2 (c) shows the block Hankel matrix after applying the predefined rank=12 after

ten iterations. Figure 5.2 (d) indicates the block Hankel matrix after applying the weighting

operator to adjust the singular values of the data using TSVD with predefined rank=12 after

ten iterations. We can see from the figure 5.2 that the block Hankel matrix of the WRR

method is smoother than the result of applying the predefined rank=12 after ten iterations.

a) b)

c) d)

Figure 5.2: Block Hankel matrices for frequency of 20 Hz for a) clean and complete data,
b) data with SNR = 2 and 51% missing traces, c) recovered data by TSVD rank-reduction
after ten iterations, d) recovered data by WRR after ten iterations.

Figure 5.3 corresponds to the first 25 singular values spectrum of the block Hankel matri-

ces of figure 5.1. Figure 5.3 (a) represents the singular values spectrum of the block Hankel

matrix of clean and complete data for the frequency of 20 Hz, the first 3 singular values
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indicate the useful signal that relates to the coherent events in the data. Figure 5.3 (b)

relates to the singular values spectra of the noisy and incomplete data, figure 5.3 (c) shows

the singular values spectra of the noisy and incomplete data after applying TSVD with rank

=12. Figure 5.3 (d) indicates the singular values spectra of the noisy and incomplete data

after applying TSVD with rank=12 and the weighting operator. We can see that the singular

spectrum of the data after applying the weighting operator is much closer to the one relates

to the desired signal in figure 5.3 (a).

a) b)

c) d)

Figure 5.3: The first 25 singular values spectrum of the block Hankel matrices for frequency
of 20 Hz for a) clean and complete data, b) data with SNR = 2 and 51% missing traces, c)
The first 12 singular value of the data, d) singular values spectrum of the data after applying
the weighting operator.
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5.3 Adaptive weighting rank-reduction

In the previous chapter, we examined how to select the optimum rank of the Hankel matrix

in 2-D data and block Hankel Matrix in 3-D data without any prior information about the

number of linear events in each window. To recover the higher frequencies in 3-D data, we

need to select the second cutoff in the singular values spectrum of data. One of the advan-

tages of this rank-reduction method is that it is adaptive and data-driven, and there is no

need to set any parameter for the rank-reduction step in each processing window. Moreover,

choosing the second cutoff as a substitute for the first cutoff lets the high frequencies recover

completely. However, selecting large ranks leads to remain more residual errors in the recov-

ered data. But, applying the weighting operator reduces the effect of noise on the projected

signal components and improves data results by recovering higher frequencies.

Let’s get back to equation 5.9 and equation 4.9 as follow:

Ŵ = diag(ŵ1, ŵ2, ..., ŵk̃). (5.13)

M̃ = Uk̃B(Σ, k̃)VH
k̃
. (5.14)

We can substitute the weighting algorithm obtained from equation 5.13 in equation 5.14 to

enhance the results of the rank-reduction step as:

M̂ = Uk̃ŴB(Σ, k̃)VH
k̃
, (5.15)

where M̂ indicates the reduced rank block Hankel matrix. Missing traces can be interpolated

completely by applying the iterative algorithm. This Adaptive Weighting Rank-Reduction

(AWRR) method leads the way that sorts out the rank of the block Hankel matrix automat-

ically while denoising data.

Figure 5.4 corresponds to the block Hankel matrices of the same data in the constant fre-
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quency slice of 50 Hz. Figure 5.4 (a) shows the block Hankel matrix of the clean and complete

data, figure 5.4 (b) is the block Hankel matrix of data with SNR = 2 where 51% of traces

are killed. Figure 5.4 (c) displays the recovered block Hankel matrix after applying TRR and

rank=4 after ten iterations. Figure 5.4 (d) indicates the block Hankel matrix after applying

the WRR with predefined rank=4. Figure 5.4 (e) represents the recovered block Hankel

matrix of the ARR method, and figure 5.4 (f) is the block Hankel matrix recovered by the

weighting ARR (AWRR) method. Generally, the results of AWRR and WRR are smoother

than the output of TRR and ARR, and the results of ARR and AWRR include more details

than TRR and WRR.
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a) b)

c) d)

e) f)

Figure 5.4: Block Hankel matrices for frequency of 50 Hz for a) clean and complete data,
b) data with SNR = 2 and 50% missing traces, c) recovered block Hankel matrix by TRR
rank=4 after ten iterations, d) recovered data by WRR after ten0 iterations. e) Recovered
data by applying the ARR method after ten iterations, d) recovered data after applying
AWRR after ten iterations.

Figure 5.5 corresponds to the first 25 singular values spectrum of the block Hankel matri-

ces of figure 5.4. Figure 5.5 (a) represents the singular values spectrum of the block Hankel

matrix of clean and complete data for the frequency of 50 Hz. The abrupt drop of energy
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of the third and the fourth singular value relates to the useful signal. However, there are

still nonzero singular values that are related to the useful signal. Figure 5.5 (b) is the sin-

gular values spectra of the block Hankel matrix of noisy and incomplete data. Figure 5.5

(c) shows the singular values spectrum of the noisy and incomplete data after TRR with

rank=4. Figure 5.5 (d) displays the singular values spectrum of the noisy and incomplete

data after applying WRR with rank=4. Figure 5.5 (e) depicts the singular values spectrum

after applying ARR. Figure 5.5 (d) indicates the singular values spectrum of the noisy and

incomplete data after implementation of the AWRR method. From the figures, one can see

that the result of AWRR is more comparable to the one relates to the desired signal in Figure

5.5 (a).
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a) b)

c) d)

e) f)

Figure 5.5: The first 25 singular values spectrum of the block Hankel matrices for frequency
slice of 50 Hz for, a) clean and complete data, b) data with SNR = 2 and 50% killed
traces, c) recovered data by TRR, d) recovered data by WRR, e) recovered data by ARR,
f) recovered data by AWRR.

5.3.1 Results and discussions

Several evaluations are presented in this section to estimate the proficiency of the different

methods of rank-reduction for the MSSA algorithm.
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First, the methods are tested on a synthetic shot gather containing nine hyperbolic events

with different curvatures. Then the efficiency of the methods on a shot gather of a 3-D field

data set is tested.

5.3.2 Synthetic data

Figure 5.6 shows the result of applying the methods of rank-reduction to a synthetic shot

gather holding nine hyperbolic events with different curvatures. The first test is a cube of

100 inline and 11 crosslines with SNR = 100 and 60% decimated traces. The local window is

set to 23 traces in the inline direction and 11 in the crossline direction with half of the input

traces overlapping. The number of iterations is fixed for all of the methods. The MSSA

algorithm is applied for the frequency range of 1 to 100 Hz. The predefined rank for TRR

and WRR methods is set to nine where equals the number of observations in each window

of processing.

Figure 5.6 (a) shows a 3-D shot gather prior to noise contamination and killing traces ar-

ranged into a 2-D matrix. 5.6 (b) is the the same data with SNR = 100 and 60% missing

traces. The results of applying TRR, ARR, WRR, and AWRR are shown in figures 5.6

(c), (e), (g), (i), respectively. Figures 5.6 (d), (f), (h), and (j) are the noise estimators

resulting from subtracting the clean and complete data from the recovered data of figures

5.6 (c), (e), (g), and (i) respectively. We see in figure 5.6 that all the methods succeed

in recovering the missing traces. The quality of the input data is QF = −1.71 dB.

The output quality of interpolation of the TRR, ARR, WRR, and AWRR methods is

QF = 8.82, 9.31, 10.21, 11.45, dB, respectively. The results of AWRR and WRR

are comparable, but it is important to notice that for real data it is hard to decide the cor-

rect rank in each window. The benefit of the AWRR rather than WRR is that it is adaptive,

and we do not need to know the rank.
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a) b)

c) d)

e) f)

g) h)

i) j)

Figure 5.6: Comparison of different methods of rank-reduction. a) Clean and complete data,
b) data with SNR = 100 and 60% missing traces. c), e), g), and i) Interpolated data by
TRR, ARR, WRR, and AWRR methods, respectively. d), f), h), and j) Residual errors of
TRR, ARR, WRR, and AWRR, respectively.

The next test represents the same data in the previous example but in presence of random
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noise. Missing traces and the random noise both increase the rank of the Hankel matrix

which means an increase in the non-zero singular values. Figure 5.7 shows the result of

applying different rank-reduction methods to the same data in figure 5.6 but contaminated

with random noise. Alike to the early test, we choose the local window with 23 traces

in the inline direction and 11 in the crossline direction for each method and half a window

overlapping in each direction. We set the number of iterations constant for all of the methods.

The frequency range of the MSSA algorithm is 1 to 100 Hz. Furthermore, the rank of TRR

and WRR is set to 9. Figure 5.7 (a) is the desired data arranged into a 2-D matrix. Figure

5.7 (b) shows input data with SNR = 2 and 60% missing traces. The results of applying

TRR, ARR, WRR, and AWRR methods are shown in figures 5.7 (c), (e), (g), and (i),

respectively. Figures 5.7 (d), (f), (h), and (j) are residual errors of figures 5.7 (c), (e), (g),

and (i), respectively. All four methods have recovered the amplitude of the signals. However,

TRR remains severe residual errors, the result from ARR causes significant residual noise

and AWRR is much cleaner than TRR, ARR and WRR. The input data quality is calculated

QF = −1.44 dB. The output quality factor of the TRR, ARR, WRR, and AWRR methods

are QF = 5.23, 6.58, 7.56, 8.12, dB, respectively.

75



a) b)

c) d)

e) f)

g) h)

i) j)

Figure 5.7: Comparison of different methods of rank-reduction. a) Clean and complete data,
b) input data with SNR = 2 and 60% missing traces, c), e), g), and i) interpolated data
by TRR, ARR, WRR, and AWRR, respectively. d), f), h), and j) residual errors of TRR ,
ARR, WRR, and AWRR, respectively.

Figure 5.8 compares the f − k spectra of the discussed rank-reduction methods. Figure
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5.8 (a) shows the f − k spectra of clean data. Figure 5.8 (b) represents the f − k spectra of

data with SNR = 2 and 50% missing traces. Figures 5.8 (c), (d), (e), and (f) are the f − k

spectra of the TRR, WRR, ARR, and AWRR methods, respectively.

a) b) c)

d) e) f)

Figure 5.8: f − k spectra comparison of: a) clean and complete data, b) input data, c) TRR
result, d) WRR result, e) ARR result, f) AWRR result.

For the stability analyses of each algorithm, we run them under different levels of gaps

percentage with 20 several realizations of sampling ratio for a given SNR = 2. The other

parameters are set constant for each run. Figure 5.9 shows the graph of the interpolation

quality factor for each method versus the gap ratio for SNR = 2. The length of the error

bars is the standard deviation of the interpolation quality factor, and each coloured lines

connect the mean value of the interpolation quality factor for each method at each gap ratio.

As we can see from figure 5.9, the input quality factor decreases with increasing gap ratio
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also the output quality factor decreases with increasing gap ratios. Moreover, the output

quality factor curve of the AWRR method is always above the other curves.

Figure 5.9: The mean and standard error of the quality of reconstruction versus gap ratio
for different methods. These results are obtained by running each method on 20 realizations
of different data set for different gap ratios and rank=9 for the predefined rank methods.

Table 5.1 indicates the values of the mean and standard deviation of the interpolation

quality of each method for each gap percent. We can see that the average value of the AWRR

quality factor is higher than the other methods. Comparing the discussed methods, AWRR

has lower standard deviation values that indicate the values tend to be close to the mean

value, especially when the data is more sparse.

78



Table 5.1: Mean and standard deviation of the quality of interpolation for each method for
different gap ratio inputs.

Output Quality Factor (dB)

AWRR WRR ARR TRR

Gap Ratio MEAN (dB) STD MEAN (dB) STD MEAN (dB) STD MEAN (dB) STD

10 12.34 0.04 12.10 0.04 11.22 0.06 11.17 0.04

20 11.90 0.05 11.64 0.05 10.71 0.09 10.69 0.06

30 11.36 0.05 11.12 0.05 10.08 0.08 8.86 0.08

40 10.45 0.07 10.35 0.07 9.24 0.10 8.90 0.11

50 9.64 0.16 9.38 0.20 8.01 0.17 7.28 0.20

60 8.13 0.13 7.61 0.13 6.51 0.14 5.16 0.20

70 5.70 0.16 4.78 0.21 4.10 0.21 2.46 0.25

In the next experiment, the stability analysis is repeated to test the sensitivities of each

method to the additive noise. The test is performed by changing the level of signal to

noise ratio with 20 different realizations of SNR for a gap ratio = 50%. We set the other

parameters constant for each run. In figure 5.10 we see that the proposed method (AWRR)

outperforms the other methods even in the poor quality of the signal.

79



Figure 5.10: The mean and standard error of the reconstruction’s quality versus SNR for
different methods. These results are obtained by running each algorithm on 20 realizations
of the different data set for a signal-to-noise ratio with the gap ratio = 50%, and rank=9 for
the predefined rank methods.

Table 5.2 represents the values of the mean and standard deviation of the output quality

factor of each method for each signal to noise ratio inputs.
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Table 5.2: Mean and standard deviation of the quality of interpolation for each method for
different SNR inputs.

Output Quality Factor (dB)

AWRR WRR ARR TRR

Input SNR MEAN (dB) STD MEAN (dB) STD MEAN (dB) STD MEAN (dB) STD

100 13.64 0.41 12.98 0.41 11.90 0.44 10.72 0.30

10 13.32 0.42 12.89 0.42 11.44 0.30 10.34 0.28

4 12.10 0.26 11.77 0.28 10.25 0.23 9.36 0.38

2 9.61 0.26 9.20 0.26 8.16 0.16 7.26 0.15

1 5.88 0.09 5.51 0.09 4.61 0.05 3.40 0.07

5.3.3 Optimally damped rank-reduction method

In the previous section, we studied the performance of the AWRR algorithm compared to

the predefined rank-reduction method in interpolation and denoising of 3-D data. In this

section, we compare AWRR as an adaptive and data-driven rank-reduction method with

a ”nearly-adaptive” method proposed by Chen et al. (2016). Their technique first derives

the weighting operator, then based on the original weighting operator a damping operator

is obtained to decrease the residual noise after the optimal weighting. In this method, the

weighting operator is adjusted with an optimal damping operator. Moreover, regardless of

the number of the linear events, the rank is selected larger. This ”nearly adaptive” algorithm

is less sensitive to the rank parameter also reduces the residual noise in the rank-reduction

step. Due to this advantage, one can choose a large rank and preserve the signal perfectly

while remaining fewer residual errors. The algorithm can be summarized as below.

The optimally damped rank-reduction (ORR) method considers a predefined rank= D,

which is usually selected large enough to deal with complicated data and local windows.

Then the estimated signal is calculated as follows:

ˆ̃M = UDΣDV
H
D , (5.16)
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where D is the selected rank. There is a damping factor as below:

ν = δ̂Q(ΣD)
−Q, (5.17)

where δ̂ represents the maximum element of ΣD, and Q is the damping factor.

Using the weighting operator as Ŵ = diag(ŵ1, ŵ2, ..., ŵD), and the damping operator from

equation 5.17 substituting in equation 5.16, the estimated signal applying the ORR method

will be:

ˆ̂
M = UD(I− ν)ŴΣDV

H
D , (5.18)

where I is a unit matrix,
ˆ̂
M denotes the recovered block Hankel matrix by the ORR

method.By using the iterative algorithm, data can be interpolated.

The method is insensitive to the rank so, one can choose a large rank and preserve the signal

completely with remaining fewer residual errors. One of the drawbacks of this method is

its computational cost that makes the algorithm less desirable, particularly for data with

more than two spatial dimensions. Because computing the SVD using a large rank can be

extremely time-consuming for large-scale problems.

We test the sensitivity of the ORR method assuming that we do not have prior information

about the structural complexity of the data and thus the proper rank for data. We evaluate

the efficiency of the ORR by selecting the rank=7 to 18. Figure 5.11 shows the diagram of

the interpolation quality with respect to the selected rank for the range of 7 to 18. By in-

creasing the selected rank the output quality factor is increasing. The quality factor reaches

its maximum value for the selected rank=12 while the curve drops for the ranks larger than

12. However, the quality factor is in the range of 9 to 9.2 (dB) for the chosen rank 10-15.

Accordingly, the method is not fully insensitive to the rank unless we select the large rank

in a reasonable range.
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Figure 5.11: Diagram of the output Quality of interpolation using ORR with respect to the
selected rank.

To compare the efficiency of AWRR and ORR, a data set with additive random noise

SNR = 2 is tested for different percentages of missing traces. The selected rank for the ORR

method is chosen 12. The parameters such as the number of iterations and the processing

window size are selected the same for both methods. Figure 5.12 shows the output quality

factor of AWRR and the ORR method with respect to the missing traces percentage. The

blue line with the ‘o’ marker is the result of the ORR method and the red line with the ‘*’

marker is the result of the AWRR method.
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Figure 5.12: The quality of interpolation versus gap percent for ORR, and AWRR.

Figure 5.13 refers to the result of applying ORR and AWRR to the data in figure 5.6,

which is contaminated by random noise. The local processing window is set to 23 traces in

the inline direction and 11 in the crossline direction for each method, with half a window

overlapping in each direction. Figure 5.13 (a) is the initial data before noise contamination

and killing traces arranged into a 2-D matrix. Figure 5.13 (a) shows input data with SNR =

2 and 60% missing traces. Figure 5.7 (c) is the result of applying ORR, figure 5.13 (e) displays

the result of applying AWRR. 5.13 (d) and (f) indicate residual error results subtracting the

clean and complete data from the recovered data of figure 5.7 (c) and (e), respectively. We

can set that both methods are successful in recovering data; however, the residual errors of

the ORR method are less than the AWRR method. The input data quality factor is QF =

−1.44 dB. The outputs quality factor for the ORR and AWRR methods are QF = 11.12
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and 9.44 dB, respectively.

a) b)

c) d)

e) f)

Figure 5.13: Comparison of the interpolation results for ORRmethod. a) Clean and complete
data, b) data with SNR = 2 and 50% missing traces, c) recovered data by ORR (output
QF = 11.12 dB), d) residual errors for ORR, e) interpolated data by AWRR (output
QF = 9.44 dB), f) residual errors for AWRR.

When zooming the data, the comparison of the two methods is more noticeable. Figure

5.14 corresponds to the zooming area of the time 0.4 (s) to 10.2 (s), and the trace number

400 to 460 of data in figure 5.14. We can see that both ORR and AWRR are very powerful

in reconstructing the data; however, the ORR’s result is smoother than AWRR.
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a) b)

c) d)

e) f)

Figure 5.14: Zoomed images of figure 5.13 from the time 0.4 s to 1.2 s and trace number
400 to 460. a) Clean and complete data, b) data with SNR = 2 and 50% missing traces,
c) recovered data by ORR, d) residual errors for ORR, e) interpolated data by AWRR, f)
residual errors for AWRR.

5.3.4 Real field data

This experiment tests the efficiency of the methods on a shot gathers of a 3-D field data

set. It is easy to inspect traces in shot/receiver gather displays for poor receivers or any
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bad shots, which are the logistic constraints during the seismic survey. Regarding the input

data, the best results are obtained with NMO-corrected data (Trad, 2009). However, in this

experiment, we applied the MSSA interpolation before NMO correction to see the effect of

the algorithm on the curvature.

Figure 5.15 refers to the acquisition coordinates of the shot gather. The red star represents

the location of the shot, and the black dot indicates the receiver’s location. Figure 5.15 (a)

shows the initial distribution of the traces in a shot gather. For this experiment, 41% of the

traces are killed. Figure 5.15 (b) illustrates the geometry of input traces after killing 41% of

them.

This test is applying the MSSA algorithm using the AWRR and TRR methods in the rank-

reduction step. Figure 5.16 (a) shows the input cube of data, which presents the missing

traces. Figure 5.16 (b) shows the result of the interpolation using TRR in the rank-reduction

step, and figure 5.16 (c) shows the result after using AWRR. For both tests, the number of

iterations and processing window remain unchanged. For the TRR approach, the predefined

rank is set to rank = 10.

Figure 5.17 represents the cube of data arranged into a 2-D matrix. Figure 5.17 (a) is the

input data. Figure 5.16 (b) represents the result of applying TRR. Figure 5.17 (c) shows

the result of applying AWRR. Figure 5.18 corresponds to a patch of data from the time 1.35

(s) to 1.75 (s) and the trace number 160 to 190. Figure 5.18 represents the cube of data

rearranged in a 2-D matrix. Figure 5.18 (a) is the input data. Figure 5.18 (b) represents the

result of applying TRR. Figure 5.18 (c) shows the result of applying AWRR.
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a) b)

Figure 5.15: Geometry of the field data. (a) Initial distribution of the traces. (b) Distribution
of traces after killing 41% of them.

a) b) c)

Figure 5.16: Cube of 3-D field data. a) The input data. b) Interpolation result of applying
TRR. c) Interpolation result of applying AWRR.
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a)

b)

c)

Figure 5.17: a) Input real data, b) interpolation result of applying TRR approach, c) inter-
polation result of applying AWRR method.
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Figure 5.18: Zooming area of figure 5.17 from time 1.35 (s) to 1.75 (s) and trace number 160
to 190. a) input data, b) TRR result, c) AWRR result

5.4 Discussions

In this chapter, I compared different methods of rank-reduction in the MSSA algorithm

to interpolate and denoise 3-D seismic data. I proposed the AWRR method, which is a

parameter-free method. AWRR is based on a cascade weighting operator combined with the

adaptive rank-reduction method. It is adaptive in selecting the rank of the Hankel matrices

or the block Hankel matrices. Moreover, because of the weighting operator, AWRR can

cause less residual noise.

AWRR is compared with the other rank-reduction methods the results showed that AWRR

is more effective than the other methods especially in the case of low signal-to-noise ratio and

when the data is spare. The recovered block Hankel matrices in the frequency slices using

AWRR are smoother and contain more details than the other rank-reduction methods.

The AWRR method also was compared with a “nearly adaptive” rank reduction method
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called ORR. The results showed better quality of interpolation for ORR compared to WRR.

However, the ORR method is not completely data-driven, and it is a computationally ex-

pensive algorithm.
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Chapter 6

SSA comparison with Minimum

Weighted Norm Interpolation

6.1 The binning approach

Most seismic surveys are irregularly sampled. Even if shots and receivers are laid out on a

regular grid, offsets and azimuths are not, and midpoints will often be deviated from the

bin centers and scattered across the CMP grid. Many interpolation methods need to set

seismic traces into a regular grid. Fitting irregularly sampled recorded data to regular grids

required careful algorithms because can lead to jittering of events and therefore loss of high

frequency information in interpolation algorithms. A common approach to reduce binning

errors is reducing bin intervals but that also increases the number of unknowns in the prob-

lem making optimization more difficult (Trad, 2009). Binning allocates a cluster of traces of

adjacent coordinates to the nearest neighbour point of the desired regular output grid.

Finding an optimal binning size is important since coarse binning produces amplitude and

phase errors of the traces specially for dippy events. Fine binning enlarges the size of the

input data into the algorithm which makes it difficult to resolve the problem. It is worth

noting that some algorithms work faster in a regular grid with more traces than the irregular
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grid that contains few traces, therefore, binning size is a trade-off parameter for precision

and complexity Trad (2008).

Liu and Sacchi (2004) proposed Minimum Weighted Norm Interpolation (MWNI) to re-

construct spatially band-limited signals. It is implemented via the fast Fourier transform.

MWNI controls the bandwidth of the signal and the spectral shape of the reconstructed data

by including prior spectral weights. Also, it can interpolate data in fine grid that leads to

minimizing binning errors.

In this chapter, we examine the MWNI interpolation method and compare the findings with

SSA.

6.2 Theory

In previous chapters, we discussed the Singular Spectrum Analysis (SSA) algorithm as a

rank-reduction method of seismic data interpolation. We can summarize the main steps of

SSA in 6 steps:

� Transforming data from t− x or t− x− y to f − x or f − x− y.

� Generating a Hankel matrix (for 2-D data or a block Hankel matrix for 3-D data) in

each slice of frequency.

� Decomposition of the Hankel matrix in its singular spectrum via singular value decom-

position.

� Rank reduction of the Hankel matrix.

� Averaging in the Hankel matrix anti-diagonals.

� Inverse Fourier transform to return to the time domain.
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By using an iterative algorithm, we can use SSA to interpolate seismic data. The iterative

algorithm is as follows:

S̃n+1(ωm) = αnSobs+(I−αnR)F−1ARHF
(
Sn(ωm)

)
+(I−R)F−1ARHF

(
Sn(ωm)

)
, n = 1, 2, ..., N

(6.1)

where ωm is the frequency that SSA is applied on the signals, I is the matrix of ones,

αn ∈ (o, 1] is the weight factor and linearly changes with the number of iterations, Sobs

denotes the observed data, F indicates the Fourier transform, and F−1 shows the inverse

Fourier transform. H points to the Hankelization operator, R reveals rank reduction opera-

tor, and A gives the averaging anti-diagonal operator (Oropeza and Sacchi, 2011).

We studied different methods of rank-reduction for the step of rank-reduction that can en-

hance the interpolation’s results. We proposed an adaptive weighting rank-reduction method

that is data-driven and can select the rank of the Hankel matrix properly. The SSA method

assumes a regular distribution of traces and suffers from critical deficiencies in interpolating

regularly decimated traces.

MWNI works in the Fourier domain and the interpolation algorithm is implemented for each

frequency on the spatial dimensions. Let us consider a 2-D seismic data in the time domain.

which can be shown as:

S(x, t) = W (t− px) (6.2)

where x defines the space, t is time, p is dip and w(t) indicates the wavelet. First data are

taken to the f − x domain by a Fourier transform.

S(x, ω) = A(ω)e−iωpx (6.3)
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where ω is the temporal frequency and A is the amplitude. Sω = [s1, s2, ..., sNx ]
H . The

complete data and the observed data are connected by a linear system:

d = LS. (6.4)

Assume R as a sampling operator that is a matrix of ones and zeros. As an example of an

observed data with Nx = 9 and some missing traces like Sω = [s1, 0, s3, 0, s5, s6, s7, 0, 0]
H , we

can show:



s1

s3

s5

s6

s7


=



1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0


(s1, s2, s3, s4, s5, s6, s7, s8, s9)

H (6.5)

Solving equation 6.4 leads to an undetermined system of equations. Among all the possible

solutions, MWNI chooses a solution which minimizes a model norm. The inversion can be

reduced to solving the constrained minimization problem:

minimizing ∥S∥2p subjects to d = LS, where ∥.∥2p indicates a weighted norm. In the

presence of noise, the above constraints can be modified as: Minimize ∥WsS∥pp subject to

∥Wd(d− LS)∥qq = ϕd, where p and q indicate the different norms used to estimate the size

of the quantities involved, ϕd is the estimation of noise plus a residual due to the failure of

the model, Ws is a matrix of model weights and Wd is a matrix of data weights. To obtain

the desired solution we should minimize the cost function:

(λWH
s Ws + LHWH

d WdL)S = LHWH
d Wdd (6.6)

where λ is a trade-off parameter. By fixing the model to some previous estimation (like the

spatial spectra from the previous temporal frequency) and applying a linear minimization
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by conjugate gradient algorithm (CG) equation 6.4 is solved. To prevent a potential zero

division (for a zero model) we can apply right preconditioning:

d = LW−1
s WsS (6.7)

with WsS being a new model S̃, and L−
s 1 being a new operator L̃. The optimization problem

leads to: Minimize ∥S̃|pp subject to

∥Wd(d− LW−1
s S̃)∥qq = ϕd (6.8)

The following system is the result of the minimization of the cost function of equation 6.8:

(λI+W−H
s LHWH

d WdLW
−1
S )S̃ = WH

s (6.9)

Equation 6.9 is solved by setting the trade-off parameter to 0 and letting the number of

internal iterations in the conjugate gradient play the role of regularizer (Trad, 2003). The

FFT algorithm assumes data are regular so binning is needed before applying the algorithms

for interpolation (Liu and Sacchi, 2004; Trad, 2009).

6.2.1 Synthetic data

In this section, we set a regularization test for a 2-D synthetic shot gather, containing 2

hyperbolic and one linear events. The input traces were located at irregular offset, where

30% of which was randomly decimated. In this test, the offset was regularized with differ-

ent binning sizes (figure 6.1). Figure 6.1 (a) and (b) shows the input data in the t− x and

f−k domain. Figure 6.1 (c) and (d) indicates the complete and clean data in t−x and f−k.
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a) b) c) d)

Figure 6.1: 2-D data with irregular offset. a) Input data with 30% randomly missing traces.
b) f −k spectrum of the input data. c) Desired data. d) f −k spectrum of the desired data.

Figure 6.2 shows the geometry distribution of the input data where the ‘o’ indicates the

true coordinates of the traces and ‘.’ refers to the regularized grid of traces with different

binning sizes. Figure6.2 (a), (b), (c), and (d) show the regularized grid for binning sizes 18,

9, 6, and 4.5 (m), respectively. The best match between the true traces locations and the

regularized grid refers to the finest bin size, which was 4.5 (m).

Figure 6.2: Geometry distribution of traces with irregular offset and different binning sizes.
a) Bin size=18 (m), b) bin size=9 (m), c) bin size =6 (m), d) bin size=4.5 (m).

Figure 6.3 corresponds to the results of MWNI interpolation for different bin sizes. Fig-
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ure 6.3 (a), (d), (g), and (j) show the regularized and interpolated data for bin cells 18, 9,

6, and 4.5 (m), respectively. Figure 6.3 (b), (e), (h), and (k) show the corresponding inter-

polated results in their exact coordinates, the output quality of interpolation was calculated

QF = 9, 9.26, 9.35, and 10, respectively. The residual errors for the different input

regularized data are shown in figure 6.3 (c), (f), (i), and (l) respectively. We can see that

the flat event was interpolated entirely, whereas the curved events have some vertical errors.

By reducing the size of the bin cells, the quality of interpolation was enhanced.

Figure 6.4 corresponds to the f − k spectrum of the result of MWNI interpolation for dif-

ferent binning sizes. Figure 6.4 (a), (b), (c), and (d) indicates the f − k filter when the

regular offset was set to 18, 9, 6, and 4.5 (m) respectively. The effect of inserting zero traces

regularly is aliasing which was removed after the MWNI interpolation.

Figure 6.5 (a) shows the result of applying SSA to the data in figure 6.1 the output quality

was QF = 8.5 (dB). Figure 6.5 (b) depicts the results of subtracting interpolated data

from the complete data. Figure 6.5 (c) is interpolated data in the f − k domain.
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 6.3: Results of MWNI interpolation on a 2-D data. a), d), g), and h) Regularized
and interpolated data for different bin size of 18, 9, 6, and 4.5(m), respectively. b), e), h),
and k) interpolated traces in their true coordinates. c), f), i), and l) Residual errors.
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a) b) c) d)

Figure 6.4: f − k spectrum of the MWNI interpolation. a) Bin size=18(m), b) 9(m), c)
6(m), and d) 4.5(m).

a) b) c)

Figure 6.5: Results of SSA interpolation a) Interpolated data in a rough grid of 18(m), b)
residual errors, c) f − k spectrum of the interpolated data.
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Chapter 7

Conclusions and Recommendations

Seismic data irregularities caused by acquisition constraints, economic limitations, or removal

of bad traces, decreases the performance of many processing tools and imaging required for

seismic interpretation. Therefore, interpolation of seismic data is a high priority tool in

geophysics. In this thesis, we have studied the application of Singular Spectrum Analysis

(SSA) with an iterative algorithm as a rank-reduction interpolation method. The primary

objective was to improve the results of SSA interpolation by introducing different methods

of rank-reduction operators.

In chapter 2, we reviewed the four main steps of the basic SSA algorithm and different

uses of SSA for the case of time series, such as smoothing the series, finding the trends, or

observing the periodic events. The main steps of the basic SSA algorithm can be summarized

in four steps. Embedding of the time series in a trajectory matrix in the form of a Hankel

matrix. Decomposition of this Hankel matrix into its singular values and singular vector

matrices by SVD. Rank-reduction of the Hankel matrix by making zero the unwanted sin-

gular values (Truncated SVD) and recovering the matrix spanned by the main components.

Averaging on the anti-diagonals of the restored Hankel matrix to reclaim the time series.

This dimensionality reduction of the matrix eliminates unwanted components like noise or
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artifacts produced by gaps.

In chapter 3, we studied the application of SSA to 2-D and 3-D seismic data. The main

difference for seismic data in comparison with 1-D time series is that the algorithm is applied

in the Fourier domain for each frequency slice. Here, we looked at the problem of how to

define the rank of the Hankel matrix in each frequency slice when knowing the number of

linear events in the processing window. SSA can be expanded to more than two dimensions

with some rearranging of the Hankel matrices. Generating a block of Hankel matrices in each

frequency slice, Multichannel Singular Spectrum Analysis (MSSA), uses the information of

different dimensions of the seismic data simultaneously. Rank-reduction of the block Hankel

matrices enhances the results of SSA. We reviewed MSSA for 3-D data using only three di-

mensions (one gather at the time), but full 3-D data interpolation requires the expansion to

5-D to take into account the data continuity across inlines, crosslines, offsets and azimuths.

This requires creating windows with contributions from many shots and receiver gathers si-

multaneously. This can be done by generating the fourth-order of the Hankel matrix. In this

chapter, the implementation of SSA with a POCS-like algorithm was studied. This iterative

algorithm recovers amplitudes and performs denoising simultaneously. We examined the 3-D

synthetic seismic data for interpolation and denoising by MSSA.

In chapter 4, we considered the problem of rank selection. Finding the optimal rank for

rank-reduction in seismic data can be quite challenging and it has an important effect on the

interpolation results. On one hand, choosing the rank too large leads to significant remaining

noise or incomplete interpolation. On the other hand, underestimation of the rank distorts

the signal by removing singular vectors that are necessary for a proper data reconstruction.

In this chapter, we proposed an adaptive rank-reduction method by exploring the singular

values of the Hankel matrix in each frequency slice. The method chooses the maximum

energy ratio between the two following singular values as the criterion to define the optimal
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rank. For 3-D data, the block Hankel matrices in higher frequencies are recovered with higher

ranks. Consequently, the method selects the second cutoff in the singular values spectrum.

In Chapter 5, we considered the problem of additive random noise. We included a

weighting operator in the rank-reduction step to reduce the effect of noise. We proposed a

data driven method of rank reduction called Adaptive Weighting Rank-Reduction (AWRR),

which leads to a decrease of residual noise in the recovered data. We compared rank reduc-

tion methods with and without applying the weighting operator on the block Hankel matrix.

As an additional improvement, the result of AWRR in our tests was smoother than when

applying other methods. We compared AWRR with a “nearly adaptive” rank reduction

method called the Optimally damped Rank-Reduction method (ORR) for different percent

of missing traces. Although the results of ORR outperformed AWRR in our tests, its com-

putationally cost was larger.

Finally, in Chapter 6, we briefly discussed the Minimum Norm Weighted Interpolation

method and the effect of binning when samples are located at variant distances from each

other. This problem affects both MSSA and MWNI, and we made a quick comparison of

the results from the two methods in these conditions.

7.1 Future Work

Interpolation of regularly decimated traces with SSA (upsampling), as opposed to gaps or

irregular sampling, is an important topic for further research. For this case, it is interesting to

inspect carefully the singular vectors of the Hankel matrix. For a data containing one event,

the reduced rank Hankel matrix can be generated by the first singular value. Looking at

the first column of the left and right singular vectors, we see zeroes representing the missing

traces. The first singular vector can be recovered by omitting these zeroes and fitting a
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polynomial curve to it. Figure 7.1 shows the result of the application of SSA on regularly

decimated traces containing one linear event and their f − k spectrum.

a) b) c) d)

e) f) g)

Figure 7.1: Interpolating decimated traces by SSA or upsampling. a) Input data. b)Desired
data. c) Interpolated by SSA. d) Residual errors. e) f − k spectrum of input data. f)f − k
spectrum of desired data. g) f − k spectrum of interpolates data.

Most interpolation rank-reduction methods such as SSA are SVD-based methods. A

SVD decomposition of a Hankel matrix is a very time-expensive operation, especially for

block Hankel matrices as used in MSSA. An iterative approach in the interpolation part of

SSA makes the algorithm time consuming. To make MSSA with AWRR feasible for higher

dimensions, it is recommended to move from the SVD-based method to the SVD-free based

rank minimization method.

The SSA approach has many similarities with what is known in machine learning as kernel

dimensionality reduction, for example, Kernel PCA. It would be important to understand if

the Hankel matrix formation can be formulated in terms of what is called the Kernel-trick

to reduce computational costs.
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