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              Abstract 

Full wave form inversion (FWI) uses the full recorded wavefield to determine the physical 

properties of the subsurface. Due to the lack of wide aperture and low-frequency data, a reliable 

low-frequency starting velocity model is often required. A velocity model derived from pre-stack 

depth migration (PSDM) is typically used as the starting model for FWI.  Iterative PSDM is an 

expensive process and it also requires a velocity macro model.  Traveltime tomography methods 

are efficient algorithms to construct a smooth velocity model using refraction and reflection 

traveltimes. However, with limitations caused by acquisition constraints, data quality and 

assumptions used in traveltime tomography methods, the velocity model determined by these 

methods can be sub-optimal and results in degradation in the depth image. In this thesis, I 

address several strategies to improve tomography and to incorporate error measurements from 

refraction and reflection waveforms into the tomographic inversion kernels. My goal is to help to 

alleviate the inherent limitations in traveltime tomography methods. 
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    Chapter 1 

                  Introduction 

1.1 Seismic imaging and velocity inversion 

Seismic experiment records the ground motions caused by the propagation of controlled seismic 

sources.  We can use the time delays, amplitude, and phase characteristics to estimate the 

physical properties of the subsurface. Traditional velocity inversion uses the time delays and the 

kinematic of the wave propagation between the seismic sources and receiver to determine a 

velocity model that can best match the measured time delays of the seismic data.  Seismic 

imaging (migration) transforms seismic data to an image of lithological boundaries by reversing 

the wave propagation using the supplied model of the physical parameters. Analyzing the 

seismic waveform of the migrated data can quantify the accuracy and errors of the model 

parameters. This allows the model parameters to be updated and results in a higher resolution 

model.  Analyzing the seismic waveform of recorded seismic data can also reveal the absorption 

and dispersion properties of the lithological units.  

The accuracy of our estimation of the reflectivity and rock properties depends greatly on 

the recorded seismic data and how we model the wave field propagation. Traditional velocity 

inversion methods use time-delay characteristics of the seismic data to capture the large-scale 

features of the velocity model. Seismic migration methods accurately model the traveltime, 

amplitude and phase of the wave propagation to produce a highly resolved seismic image. 

Although, seismic migration velocity analysis can update the velocity model using curvatures in 

migrated image gather; an accurate starting velocity model still plays an important role in 

producing a successfully migrated image. Full waveform inversion updates the model 

parameters, including velocity, by minimizing the difference between the recorded and modelled 
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waveform. FWI can produce a higher resolution velocity model than traveltime tomography. 

Since FWI uses the full waveform, including the high-frequency components, it can have many 

local minima. Without an initial model that is reasonably close to the long-wavelength 

component of the true model, FWI can result in cycle skipping.  Bunks et al. (1995) address this 

problem by iterating FWI from low-frequency band to high-frequency band. However, this 

requires very low frequency and/or wide aperture data (Verieux and Operto, 2009), which are 

often missing in seismic data.  Recently source extension methods (Warner and Guasch  2014, 

Huang and Symes 2015) have been proposed to address the cycle skipping issue in FWI.   

Claerbout (1985) summarized the accuracy and resolution for velocity analysis and seismic 

imaging and pointed out that the traditional velocity analysis had resolution of up to 2.5 Hz in 

apparent frequency and seismic imaging had a resolution of 10 to 100 Hz. Lambaré (2014) added 

that ray-based traveltime tomography had increased the resolution of velocity inversion to about 

6 Hz; while broadband data had expanded the resolution bandwidth of seismic imaging (Figure 

1.1).  Both FWI and seismic migration algorithms continue to improve the resolution for velocity 

inversion and seismic imaging. Traveltime tomography also continues to play an important role 

in providing an accurate initial velocity model for both FWI and seismic migration. However, 

with limitations caused by acquisition constraints, data quality and assumptions used in 

traveltime tomography methods, the velocity model determined by traveltime tomography 

methods can be sub-optimal and results in degradation in the reflection image.  Furthermore, in 

order to build the most accurate velocity model from the surface to the target depth, it is 

important to understand the advantages and limitations of each velocity inversion method 

including refraction tomography, reflection tomography as well as FWI.   
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Figure 1. 1. Summary of resolution and accuracy of velocity inversion and imaging. (Lambare, 

TODO) 

 

1.2 Thesis proposal 

The primary goal of this research is to first investigate and understand the effects of errors from 

traveltime tomography on the processed seismic data and then to develop strategies to quantify 

these errors and to incorporate them in the tomography inversion kernels to alleviate the inherent 

limitations in traveltime tomography methods. algorithms.  Second, I propose to expand the 

scope of traveltime tomography to include measurable information from the seismic waveform to 

improve the accuracy and efficiency of traveltime tomography.  

1.3 Dissertation structure and overview 

The main content of the dissertation is organized into 7 chapters. The next chapter. Chapter 2 

reviews the tomography method. I compare medical tomography and seismic tomography. 

Medical tomography and seismic tomography shares some similar algorithms and technologies. 

However, medical tomography has the benefit of small targets of investigation and not having to 
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deal with the vast problem of acquisition limitations in seismic tomography, and results in much 

higher resolution images than that from seismic tomography. 

 Chapter 3 reviews the forward problem of tomography. In chapter 3, I review the wave 

equation for modelling seismic wave propagation and the seismic ray theory for traveltime 

computation. I also review the basic principles of different traveltime computation methods 

including the finite difference methods, ray shooting method, wavefront construction and 

paraxial method. I analyze their differences and similarities to investigate the effectiveness of 

these methods in traveltime tomography and seismic imaging. 

 Chapter 4 includes our paper “Robust refraction statics solution and near-surface velocity 

model building using feedback from reflection data” published in Geophysics Volume 83, no. 6, 

U63-U77. It reviews the inversion problem of refraction tomography and how to use feedback 

from the residual statics measurement of the deeper reflection data to improve the near-surface 

velocity model and the refraction statics solution.  The long-wavelength components of the 

reflection residual statics measured from deeper reflection data do not suffer the same acquisition 

and data limitation of the refraction data. They are used to compute the model and data weights 

for the new refraction tomography kernel. 

 Chapter 5 includes our paper “Near-surface velocity model building and statics correction 

for blended land data” published in the Canadian Journal of Exploration Geophysics Volume 45, 

no. 1, spring 2021. It evaluates the problems of blended seismic data acquisition imposed on 

refraction and reflection arrival times. It proposes a robust refraction arrival separation method 

that uses amplitude burst suppression and the sparse Radon transform to enhance the first break 

quality of the blended data. It also demonstrates that after refraction statics correction, we can 
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perform normal moveout velocity analysis and surface consistent residual statics prior to 

deblending because of the passive separation property of the blended data. 

 Chapter 6 reviews slope tomography, a reflection tomography method. In addition to the 

reflection traveltime, slope tomography also uses the slope of locally coherent events from the 

shot and geophone gathers to improve the results of reflection tomography. Each slope 

tomography pick will reconstruct a ray pair that connects a scatter point to a shot and receiver; 

therefore, slope tomography is also called stereo-tomography. I apply the slope tomography 

method to the Hussar 2D survey and confirm its accuracy with well-logs and depth migration. 

 Chapter 7 uses machine learning to addresses the major problem with refraction 

tomography: first breaking picking. First break picking is done using automated first break 

picking algorithms followed by laborious editing by trained technicians who are familiar with the 

near-surface geology and the first arrival energy waveform. I review two automatic trace-by-

trace first break picking algorithms. I also apply an unsupervised clustering algorithm to reject 

mis-picks in first break time picks. Finally, I use a supervised UNET to train the network with 

first arrival energy images and the first break masks to automate the first break picking. 

 Chapter 8 contains the conclusions and discussions of future works. 
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Chapter 2 

          Tomography 

2.1  Introduction 

Tomography comes from the Greek word “tomos” meaning “section” or “slice” and “graphia” 

meaning “describing”.  Thus, tomography is a process that describes the material properties 

within the body of investigation. Seismic tomography methods share some similar physical and 

mathematical principles with medical tomography. Both methods seek to determine the interior 

distribution of values of physical properties (the integrant) from the projections (the integral or 

the sums of some interior value) measured outside of an object (Stewart 1991). In seismic 

tomography seismic energy propagated through the medium and are received at the receivers on 

the surface or in the borehole. An example of seismic tomography is traveltime tomography (Fig. 

2.1b):  

   𝑡𝐿 = ∫ 𝑠(𝑥)𝑑𝑙 ,
 

𝐿
      (2.1) 

where the measured travel time 𝑡𝐿 for the raypath, 𝐿 is the integration of 𝑠(𝑥)𝑑𝑙, and the 

objective of traveltime tomography is to determine the integrant 𝑠(𝑥), the slowness of the 

medium.  

 In medical tomography, a CT scanner transmits a fan of X-ray beams through the target 

of the investigation and the detector elements record the attenuated radiation intensity (Fig. 2.1a). 

As X rays pass through the material of greater density, more of the rays are absorbed. Each 

radiation intensity reading represents the accumulated attenuation along the X-ray beam (Fig. 

2.1a).  Using Beer’s law of absorption, the intensity of an attenuated X-ray beam, travelled a 

distance d, can be expressed as:    
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   𝐼(𝑑) = 𝐼0𝑒
−∫ 𝜇(𝑥)𝑑𝑥

𝑑
0    , or      

𝑙𝑛
𝐼𝑜

𝐼(𝑑)
= ∫ 𝜇(𝑥)𝑑𝑥

𝑑

0
      (2.2) 

where 𝑰𝟎 is the initial beam intensity, 𝑰(𝒅) is the attenuated intensity, d is the target thickness 

and 𝝁(𝒙) is the attenuation coefficient at grid location x.  Equations (2.1) and (2.2) are similar. 

What the two equations measure is the result of integration. What they seek to determine is the 

integrant. For traveltime tomography, the integrant is the slowness of the medium.  For CT scan, 

the integrant is the attenuation coefficients, which are later transformed to Hounsfield unit for 

subsequent interpretation:  

𝐻𝑈𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 =
𝜇𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙−𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
∗ 1000.    (2.3) 

Table. 2.1 shows the typical HU values for different tissues and materials. 

 

 

      Table 2.1.  Hounsfield unit for some material and tissues. 

. 
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2.2 Medical tomography 

    

Computed Tomography (CT) is also known as Computed Axial Tomography (CAT).  

British engineer Godfrey Hounsfield invented the first dedicated head CT scanner based on x-ray 

computed tomography in 1967. The first CT scanner took up to several hours to acquire the data 

for a single slice and several days to reconstruct the image.  Newer multidetector CT (MDCT) 

scanners have seen increases in both speed and resolution over the years (Fig. 2.2.a), and full-

body scans can now be processed in real-time.  Similarly, seismic acquisition systems also have 

evolved to include multiple sources and receivers (Fig. 2.2.b).  CT differs from seismic 

tomography in scale, complexity and acquisition geometry. CT scan has a resolution of less than 

1 mm and 360° angular coverage. With straight ray paths and continuous angular coverage, CT 

can reconstruct the image in the object space effectively by transforming the recorded data 

between the Radon, Fourier and object domains.  

 

           

Figure 2. 1  (a) CT scanner sends a fan of X-ray beams from the source to the detectors placed on 

the other side of the target.  (b) Ray paths of seismic wave propagation are more complex than 

the X-ray beams in CT scans.   
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Figure 2. 2.  (a) Development of the number of detectors and resolution of MDCT.  (Adapted 

from Diagnostic Radiology Physics,2014.) (b) Multi-slice detectors allow multiple CT slices to 

be recorded simultaneously. (c) A 16-slice scanner can be used for 16 1.25 mm slices or 4 5 mm 

slices. (d) The 3D seismic method employs multiple sources and receivers; however, seismic 

sources and receivers are placed on the surface and lack the 360°   coverage of the CT scan 

method 

2.2.1 Medical tomography reconstruction methods 

 Series expansion methods and transform methods are two groups of methods that can be 

used in medical tomography. Series expansion method developed by Kaczmarz in 1937 

iteratively determines the model function. Series expansion methods include the algebraic 
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reconstruction technique (ART) and the simultaneous iterative reconstruction technique (SIRT).  

Transform methods include the simple back-projection method and filtered back-projection 

method.  With straight ray paths and 360°  coverage, the CT method can utilize the transform 

methods effectively. Most medical tomography reconstruction methods assume parallel-beam 

geometry; while all modern CT scanners use fan-beam projection. Therefore, it is necessary to 

rebin CT scan data from fan-beam geometry to parallel-beam geometry (Borsdorf et al. 2008). 

 

Rebinning from fan-beam projection to parallel-beam projection 

  For a fan-beam described by a central angle of 𝜶 with the x-axis, and a fan-beam angle of 

𝜷𝟏 (𝐅𝐢𝐠. 𝟐. 𝟑). The equivalent parallel projection angle is: 

  𝜽𝟏 = 𝜶 + 𝜷𝟏,       (2.4) 

 and the orthogonal distance to the isocenter for a CT scanner with radius 𝑹𝑺 is: 

  𝑢1 = 𝑅𝑠𝑠𝑖𝑛𝛽1.        (2.5) 

We can use equation (2.4) and (2.5) to rebin the equiangular 𝑃(𝛼, 𝛽) data to 𝑃(𝑢, 𝜃), and 

interpolate 𝑃(𝑢, 𝜃) to an equidistance and equiangular grid. Alternatively, we can use the 

following relationship to construct an equidistance 𝑃(𝑢1, 𝜃1) from the fan-beam data 𝑃(𝜃, 𝛽): 

  𝛽1 = sin−1 𝑢1

𝑅𝑠
        (2.6) 

Therefore, each fan-beam projection data can be rebinned to the parallel-beam cartesian grid. 
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Figure 2. 3. Rebinning from fan-beam geometry data 𝑷(𝜶,𝜷) to parallel-beam geometry data 

𝑷(𝒖, 𝜽).  

Algebraic Reconstruction Technique (ART) 

  The first reconstruction method I like to review is ART. Figure 2.4b illustrates the 

concept of ART. ART uses the X-ray path and the attenuated intensity for each angle to build a 

set of simultaneous linear equations. The equations are then solved for the attenuation 

coefficients.  Since ART uses the ray path characteristics to build the equations, it is also suited 

for bent rays. However, there may be inconsistence in the equations, and the system of equations 

can be under-determined. The solution may also be sensitive to measurement errors and noise. 

Furthermore, with the increasing requirement of better resolution, the number of equations 

grows. Therefore, it is not feasible to use ART in clinical practice (Dance et al. 2014).  Since CT 

data have continuous angular coverage, the back-projection method (Dance et al. 2014) and 

transform techniques (Stewart 1991, Lo and Inderwiesen 1994) are better suited than ART.   
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Figure 2. 4 (a)The principle of attenuation of an X-ray beam. The path of the X-ray beam is 

discretized by the image grid. (b) Each ray path constitutes one equation. Equations from all the 

projection angles can be solved for the attenuation coefficients using Algebraic reconstruction. 

 

Back-projection (without filter) 

In the simple back-projection method, for each incident bean angle 𝜃, the CT scanner 

projects the attenuated intensity of the X-ray beams to the detector elements (Fig. 2.5.a.b). The 

recorded projection, 𝑃(𝑢, 𝜃𝑖)  is then back-projected to the object space using the incident angle 

𝜃𝑖 (Fig. 2.5.c). Each back-projection is summed to reconstruct the image 𝑢(𝑥, 𝑧) of the object 

space (Fig. 2.5.d). Therefore, back-projection is really an average or sum of the recorded 

𝑃(𝑢 , 𝜃𝑖) mapped back to the object space at the incident angle of the X-ray beams. However, the 

reconstructed image is strongly blurred. The blurring of the image in this simple back-projection 

method is the result of the operation of the point spread function, 1/r (Stewart 1991).   
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Figure 2. 5 (a) Incident X-ray beams propagate through the chest of a patient. (b) Attenuated 

radiation intensities recorded by the detector elements. (c) 𝑷(𝒖𝒊, 𝜽𝒊) is back-projected to the 

object space using the incident angle. (d) Summing all the back-projections of different angles to 

reconstruct the object space.   

 

Fourier-transform method 

The Fourier transform method (Stewart 1991, Lo and Inderwiesen 1994) uses the 

projection slice theorem to reconstruct the image directly. Projection slice theorem states that 1-

D Fourier transform of a projection of an object at an angle 𝜃 constitutes a slice of the 2-D 

Fourier transform of the object, where the slice makes the same angle with the 𝑘𝑥 axis. 

Therefore, by performing 1-D Fourier transform on many projections of different angles, we can 

construct the 2-D Fourier transform of the object.  We can then interpolate for empty grid point 

in the 2-D Fourier domain and reconstruct the object by 2-D inverse Fourier transform.   Figure 

2.6 illustrates the concept of the projection slice theorem for one angular projection.  Figure 2.6a 

shows the detector elements recording the attenuated X rays, 𝑃(𝑢, 𝜃𝑖)  in the Radon space.  

The recorded projection is related to the line integral:     

             𝑃(𝑢, 𝜃𝑖) = ∫ 𝜇(𝑥, 𝑦)𝑑𝑣
𝑟𝑎𝑦

, or 

  𝑃(𝑢, 𝜃𝑖) = ∫ 𝜇(𝑥, 𝑦)𝑑𝑣
+∞

−∞
.      (2.7) 
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where 𝜇(𝑥, 𝑦) is the unknown attenuation function, 𝑥 and y are the axes of the object space, u 

is the projection axis and 𝑣 is the axis parallel to the incident ray. The u-v coordinate system for 

the detector elements is related to the x-z coordinate system by: 

[ 
𝑥
𝑧
] = [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

 ] [
𝑢
𝑣
 ].       (2.8) 

𝑃(𝑢, 𝜃𝑖) can be mapped directly to the Radon space as a line at 𝜃𝑖 location (Figure 2.6b).  

       

Figure 2. 6.  An illustration of projection slice theorem. (a) Projection of an object to the Radon 

space.   (b) 1-D Fourier transform of the projection slice (c) is equivalent to a slice in the 2-D 

Fourier transform of the object space at the same angle with the 𝒌𝒙 𝐚𝐱𝐢𝐬.  

     

Now, applying 1-D Fourier transform to 𝑃(𝑢, 𝜃) yields: 

  �̂�(Ω, 𝜃) =  ∫ 𝑃(𝑢, 𝜃)𝑒−𝑖(Ω𝑢 )  𝑑𝑢
+∞

−∞
.     (2.9) 

Using the project slice theorem, we have: 

   �̂�(𝑘𝑥, 𝑘𝑧) = �̂�(Ω, 𝜃),       (2.10)  

where  �̂�(Ω, 𝜃) makes an angle 𝜃 to the 𝑘𝑥 axis in the 2-D Fourier space �̂�(𝑘𝑥, 𝑘𝑧)  (Fig. 2.6c). 

The two coordinate systems are related by:  

  𝑘𝑥 = Ω𝑐𝑜𝑠𝜃, and 𝑘𝑦 = Ω𝑠𝑖𝑛𝜃.     (2.11) 

Therefore, we can map each �̂�(Ω, 𝜃) to the (𝑘𝑥, 𝑘𝑧) grid: 
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   �̂�(Ω𝑐𝑜𝑠𝜃, Ω𝑠𝑖𝑛𝜃) = �̂�(Ω, 𝜃).     (2.12) 

By repeating this process for all the projection angles, we can populate the �̂�(𝑘𝑥, 𝑘𝑧)  grid with 

 �̂�(Ω, 𝜃). We can then compute the attenuation coefficients 𝜇(𝑥, 𝑧)  by 2-D inverse Fourier 

transform of  �̂�(𝑘𝑥, 𝑘𝑧).  However, this process creates �̂�(𝑘𝑥, 𝑘𝑧)  in the ( 𝑘𝑥, 𝑘𝑧) that is denser 

near the zero wave numbers and sparser further away (Fig. 2.7).  This can lead to artifacts in the 

inverse 2-D Fourier transform.  This brings us to the filtered back-projection method. 

 

Figure 2. 7  Transforming �̂�(𝛀, 𝜽) to �̂�(𝒌𝒙, 𝒌𝒛) results in denser population of data points near 

the zero wave number and sparser further away. (From Diagnostic Radiology Physics 2014) 

 

Filtered back-projection method 

 The inverse 2-D Fourier transform of   �̂�(𝑘𝑥, 𝑘𝑧) in the cartesian coordinate is: 

 𝜇 (𝑘𝑥, 𝑘𝑧) =
1

4𝜋2 ∫  ∫ �̂�(𝑘𝑥, 𝑘𝑧)
+∞

−∞
 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧)𝑑𝑘𝑥𝑑𝑘𝑧

 
 

+∞

−∞
,   (2.13) 

  where 𝑘𝑥 = Ω𝑐𝑜𝑠𝜃, 𝑎𝑛𝑑 𝑘𝑧 = Ω𝑠𝑖𝑛𝜃. 

Changing variables from (𝑘𝑧 , 𝑘𝑧) 𝑡𝑜 (𝜔, 𝜃) give the integral in polar coordinates: 

 𝜇 (𝑘𝑥, 𝑘𝑧) =
1

4𝜋2 ∫  ∫ �̂�(Ω𝑐𝑜𝑠𝜃, Ω𝑠𝑖𝑛𝜃)
+∞

−∞
 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧)Ω𝑑Ω𝑑𝜃   

𝜋

0
.  (2.14)  

Substitute 2.13 into 2.14 gives: 

 𝜇 (𝑘𝑥, 𝑘𝑧) =
1

4𝜋2 ∫  ∫ �̂�(Ω, 𝜃) |Ω|
+∞

−∞
 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧)𝑑Ω𝑑𝜃   

𝜋

0
,   (2.15) 
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where 𝑃′(𝑢, 𝜃) =
1

2𝜋
∫ �̂�(Ω, 𝜃) |Ω|

+∞

−∞
 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧)𝑑Ω  is the inverse transform of the 1-D FT of 

projection 𝑃(𝑢, 𝜃) filtered by |Ω|, and 
1

2𝜋
∫  𝑃′(𝜇, 𝜃)𝑑𝜃 

𝜋

0
 is the inverse Radon transform. |Ω| is 

sometimes called the ramp filter or rho filter. 

Fig. 2.8 illustrates these steps:  

 a,b,c: Acquire projection of attenuated X-ray intensity for projection angle 𝜃𝑖.  

d: Use equation (2.9) to transform each projection slice 𝑃(𝑢, 𝜃𝑖)  to  �̂�(Ω, 𝜃𝑖) 

e: Apply |Ω| to high pass filter the 1-D FT projection slice, and repeat for projection 

slices of all incident angles.  

f: Inverse 1-D Fourier transform of all high pass filtered 1-D FT projection slices to form 

the high pass filtered Radon space. 

g: Inverse Radon transform to reconstruct the image space.  

 

Summary 

 

 With the advantage of 360° transmission coverage, medical tomography can use 

transform methods effectively to invert for the attenuation coefficients. To alleviate the blurring 

problem caused by the effect of the power spreading function, clinic medical tomography uses 

the filtered back-projection (FBP) method to apply a high pass filter to the recorded CT scan 

data. Figure 2.9 compares reconstructed images from 3, 6, 18, 45, 60, 90, 180 and 1800 angles. 
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Figure 2. 8.  (a) X-ray is transmitted through the object space at an incident angle 𝜽, and (b) 

recorded by the detectors. (c) The projection corresponds with one line on the Radon space. (d) 

1-D Fourier transform results in an angular line in Fourier space.  (e) High pass filter and repeat 

(a) to (e) for angles.  (f) 2-D inverse Fourier transform to Radon space. (g) Inverse Radon 

transforms back to object space.  
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Figure 2. 9  Results of filtered back-projections with 3, 6, 18, 45, 60, 90, 180 and 1800 angles.  

 

2.3 Seismic tomography 

 Lo and Inderwiesen (1994) categorizes seismic tomography into seismic ray tomography 

and seismic diffraction tomography (Deavney 1982, Wu and Toksoz 1987) accordingly to the 

forward modelling method used. When the scale of the medium inhomogeneities is much larger 

than the seismic wavelength, seismic ray tomography uses ray theory to model the wave 

propagation as rays. When the scale of the medium inhomogeneities is comparable with the 

seismic wavelength, diffraction tomography uses wave scattering theory to model the wave 

propagation. Another situation that seismic diffraction tomography is used is when the scale of 

the medium inhomogeneities is larger than the seismic wavelength, but the velocity contrast is 

small. Seismic ray tomography includes traveltime tomography. Seismic diffraction tomography 

includes full wave form inversion (FWI).  In this thesis, I will focus on traveltime tomography.  

Seismic ray tomography will be discussed in detail in the subsequent chapters. 
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   Chapter 3 

                  Forward problem 

Inversion problem begins with the generation of modelled data d, involving a forward 

modelling operator L acting on the parameter m (Claerbout 1990):  

 𝑑 = 𝐿 𝑚.       (2.1) 

Velocity inversion methods estimate the optimal velocity model by minimizing the difference 

between the modelled and observed wavefield attributes, including time delays, amplitude, and 

phase. Full waveform inversion methods minimize the differences in amplitude and phase, while 

traveltime tomography methods minimize the differences in time delays.  In this chapter, I 

review the wave equation for modelling seismic wave propagation and the seismic ray theory for 

traveltime computation. I also review the basic principles of different traveltime computation 

methods including the finite difference methods, ray shooting method, wavefront construction 

and paraxial method. I analyze their differences and similarities to investigate the effectiveness 

of these methods in traveltime tomography and seismic imaging. I compare the travel times from 

these methods to a finite-difference synthetic shot record of the Marmousi model and find travel 

times from all three methods are accurate except at the area where rays diverge. We also used the 

travel time from the fast-marching method in the refraction tomography processing of the Hussar 

2D dataset. The CDP stack from the refraction tomography processing is more coherent and 

better resolved than the CDP stack with datum static correction only. 
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3.1  Introduction 

        Full waveform inversion methods model the seismic wave propagation by solving the wave 

equation. It then updates the velocity model by minimization of the differences between the 

modelled and observed seismic wavefield.  Traveltime tomography estimates the optimal 

velocity model by minimizing the differences between the modelled and observed traveltimes. 

Core principles of most traveltime and ray tracing algorithms are derived from the seismic ray 

theory.  High-frequency approximation of the solution of the elastodynamic equation leads to 

solutions in different forms. For kinematic ray tracing, the solution leads to the eikonal equation 

and the ray equations. The high-frequency approximation requires the velocity of the media to 

varying smoothly. Vidale (1988,1990) presented a grid-based traveltime computation scheme 

that solves the eikonal equation by finite difference approximation. Vidale’s work leads to 

subsequent studies and developments by Qin (1992), Sethian and Popovici (1999) and other 

authors,  and resulted in more robust algorithms that can better handle rapid velocity variations. 

The results of these algorithms are traveltime from source to regularly spaced grid points.  Vidale 

(1988) proposed the construction of the ray paths by tracing the steepest traveltime gradient from 

the receiver back to the source.  Matsuoka (1992) presented a ray path reciprocity method that 

traces the minimum time of summed shot and receiver traveltime tables.   Alternate to grid-based 

traveltime computation schemes are kinematic and dynamic ray tracing (Cerveny and 

Hron,1980; Beydoun and Keho,1987), and wavefront construction method (Vinje,1993).  These 

methods involve tracing the ray path by computing the solutions to the ray equations at each ray 

step.  Some geophysical applications such as Kirchhoff migration only require traveltime from a 

source or receiver to a subsurface point, while other applications such as refraction tomography 

require both first arrival time and ray path between a source and receiver.   The purpose of this  
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chapter is to review the basic principles of the fast-marching method, paraxial method and 

wavefront construction method, and to evaluate their accuracy and effectiveness when applied in 

refraction tomography and depth imaging. 

3.1 Wave equation  

 

Figure 3. 10.   Traction �⃗⃗�  due to the element 

of force 𝒅�⃗⃗�  working on element surface dS. �⃗⃗�  
is the unit vector normal to the 𝒅𝑺. 

 

Figure 3. 2.   Stress 𝝈𝒊𝒋 and normal vector 𝒆𝒋 

 

 

 Traction �⃗⃗�   (Figure 3.1) is a contact force exerted by the material on the positive side of 

surface element 𝒅𝑺 due to the element of force 𝒅𝑭: 

   �⃗⃗� = 𝒅𝑭/𝒅𝒔 , or       (3.1) 

In terms of stress 𝝈𝒊𝒋:    

   𝑻𝒊 = ∑  𝝈𝒊𝒋𝒏𝒋;   𝒋 = 𝟏, 𝟐, 𝟑)𝟑
𝒋=𝟏       (3.2) 

𝑖 refers to the direction of traction components, 𝑗 refers to the direction of the normal of the face 

on which the traction is acting.   Applying Newton’s second law of motion, we can write: 

  ∫ 𝑇𝑑𝑆 + ∫ 𝑓𝑑𝑉 =  ∫ 𝜌�̈�𝑑𝑉
𝑉𝑉𝑠

 ,     (3.3) 
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where the first term represents surface forces acting on S, and the second term represents the 

body forces adding on the volume, 𝑢 is the displacement. Applying equation (3.2) to (3.3) gives 

the equation for direction i: 

  ∫ ∑ 𝝈𝒊𝒋 𝒏𝒋 + ∫ 𝑓𝑖𝑑𝑉 =  ∫ 𝜌𝑢𝑖̈ 𝑑𝑉
𝑉𝑉

 𝟑
𝒋=𝟏𝑠

    (3.4) 

Using divergence theorem, ∫ ∑
𝜕𝐴𝑗

𝜕𝑥𝑗
𝑑𝑉 3

𝑗=1𝑉
 =∫ ∑ 𝐴𝑗  𝑛𝑗  

3
𝑗=1 𝑑𝑆

𝑠
, gives: 

  ∫ ∑
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗

3
𝑗=1 𝑑𝑉 + ∫ 𝑓𝑖𝑑𝑉 = ∫ 𝜌𝑢𝑖̈ 𝑑𝑉

𝑉𝑉𝑉
, or    (3.5) 

  𝜎𝑖𝑗 ,𝑗+ 𝑓𝑖 = 𝜌𝑢𝑖̈         (3.6)  

Applying Hooke’s law: 

  𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜖𝑘𝑙,        (3.7) 

and stress-strain relationship: 

  𝜖𝑘𝑙 =
1

2
(
𝜕𝑢𝑘

𝜕𝑥𝑙
+

𝜕𝑢𝑙

𝜕𝑥𝑘
),       (3.8) 

give:  (𝑐𝑖𝑗𝑘𝑙𝑢𝑘,𝑙),𝑗+ 𝑓𝑖 = 𝜌�̈�𝑖 .      (3.9) 

𝑐𝑖𝑗𝑘𝑙 is the stress tensor and 𝜖𝑘𝑙 is the strain tensor. 

For wave field far away from the source, we can drop 𝑓𝑖: 

(𝑐𝑖𝑗𝑘𝑙𝑢𝑘,𝑙),𝑗  = 𝜌�̈�𝑖 .      (3.10)  

Equation (3.10) is often referred to as the elastodynamic equation. For an inhomogeneous, 

isotropic, and perfectly elastic medium described by Lam�́� parameters 𝝀, 𝝁 and density 𝝆, the 

stiffness tensor, 𝒄𝒊𝒋𝒌𝒍 , can be written as:  

            𝒄𝒊𝒋𝒌𝒍  = 𝝀𝜹𝒊𝒋𝜹𝒌𝒍 + 𝝁(𝜹𝒊𝒌𝜹𝒋𝒍 + 𝜹𝒊𝒍𝜹𝒋𝒌).                   (3.11) 

Substitute in 𝒄𝒊𝒋𝒌𝒍, ignore 𝒇𝒊 for force from afar, and take the derivative of 𝒖  gives:  

  (𝜆 + 𝜇)∇ ⋅ (∇ ⋅ 𝑢) + 𝜇∇2𝑢 = 𝜌𝑢 ̈        (3.12) 
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With  ∇2𝑢 = ∇ ⋅ (∇ ⋅ 𝑢) − ∇ × ∇ × 𝑢: 

(𝜆 + 2𝜇)∇ ⋅ (∇ ⋅ 𝑢) − 𝜇∇ × (∇ × 𝑢) = 𝜌�̈�.    (3.13) 

Apply divergence (∇ ⋅), and substitute in 𝑉𝑝 =
𝜆+2𝜇

𝜌
  give the scalar wave equation for P-wave: 

∇2𝑢 =
1

𝑉𝑝
2 �̈�        (3.14) 

 

3.2 Seismic ray method and eikonal equation 

    The seismic ray method is based on an asymptotic high-frequency solution of the 

elastodynamic equation. From equations (3.5) and (3.6) the acoustic wave equation can be 

written as: 

 (𝛁𝟐 −
𝟏

𝒄𝟐

𝒅𝟐

𝒅𝒕𝟐
)𝒖 = −𝒇,        (3.15) 

where 𝒄 = √
𝒌

𝝆
 ,   𝒌 = 𝒃𝒖𝒍𝒌 𝒎𝒐𝒅𝒖𝒍𝒖𝒔;  𝝆 = 𝒅𝒆𝒏𝒔𝒊𝒕𝒚. 

In frequency domain:  

 (𝛁𝟐 −
𝟏

𝒄𝟐 𝝎𝟐)𝒖 = −𝒇,        (3.16) 

Substitute 𝒖𝒊(�⃗⃗� ) 𝐞𝐱𝐩{−𝒊𝝎[𝒕 − 𝑻(�⃗⃗� )]}  into equation (3.5) and (3.6) gives: 

 (𝒄𝒊𝒋𝒌𝒍,𝒋 𝑨𝒌,𝒋 + 𝒄𝒊𝒋𝒌𝒍𝑨𝒌,𝒍𝒋)𝝎
−𝟐 − 𝒄𝒊𝒋𝒌𝒍𝑻,𝒋 𝑻,𝒍 𝑨𝒌 = −𝝆𝜹𝒊𝒌𝑨𝒌   (3.17) 

For high-frequency approximation, we drop the 𝝎−𝟐 term: 

Define: 𝑩𝒊𝒌 = 𝑻,𝒋 𝑻,𝒍 gives:  

 (  𝑩𝒊𝒌 − 𝝆𝜹𝒊𝒌)𝑨𝒌 = 𝟎, or in matrix form [𝑩 − 𝝆𝑰]𝑨 = 𝟎.   (3.18) 

The solution to the eigenvalue problem defined by equation (3.18) can be obtained by: 

 Det [𝑩 − 𝝆𝑰] = 𝟎.        (3.19) 

Expanding equation (3.19) yields: (𝑻,𝒌𝑻,𝒌 −
𝟏

𝜶𝟐) (𝑻,𝒌𝑻,𝒌 −
𝟏

𝜷𝟐) = 𝟎.  (3.20) 
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Equation (3.20) is often expressed as (�⃗⃗�  𝑻)
𝟐

=
𝟏

𝒄𝟐.     (3.21) 

The solution to equation (3.21) provides the traveltime 𝑻(𝒙, 𝒚, 𝒛). 

 

3.3 Ray equations 

    To trace the position of a ray, we have to define some properties of rays and wavefronts 

(Figure 3.3) and express their relationships as a set of ray equations. Wavefronts are defined by 

the surfaces  T(x,y,z)=constant.  Slowness vector �⃗⃗�  equals �⃗⃗� 𝑻 and is tangential to the ray and 

normal to the wavefronts. 

 

Figure 3. 3.  Relationship between ray and wavefront 

 

From equation (3.21), we have |𝑐 ∇⃗⃗ 𝑇| = 1 being a unit vector normal to the wavefront. 

Therefore, ray can be defined by 
𝑑𝑥 

𝑑𝑠
= 𝑐 ∇⃗⃗ 𝑇 = 𝑐𝑞 ,  or  

𝑑𝑥𝑖

𝑑𝑠
= 𝑐𝑞𝑖, i=1,2,3  (3.22) 

             where 
𝒅�⃗⃗� 

𝒅𝒔
  is a unit vector tangential to the ray. 

 

From  𝑞 =  �⃗� 𝑇,   we can obtain  
𝑑�⃗� 

𝑑𝑠
=

𝑑

𝑑𝑠
�⃗� 𝑇                           (3.23) 

 

Substitute (3.22) into (3.23), we obtain the ray equations for the slowness vectors: 
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𝑑�⃗� 

𝑑𝑠
=

𝑑

𝑑𝑠
[
1

𝑐

𝑑𝑥 

𝑑𝑠
 ] = �⃗� [ 

1

𝑐
 ]                               (3.24) 

Ray equations can also be expressed in terms of T instead of arc length, s: 

  
𝑑𝑥 

𝑑𝑇
= 𝑐2𝑞 ,        (3.25) 

and     
𝑑�⃗� 

𝑑𝑇
= 𝑐�⃗� [ 

1

𝑐
 ]                                 (3.26) 

These equations form the kinematic ray tracing system. Solution of equation (3.33) or (3.25) 

represents the trajectory  𝑥 , while the solution of equation (3.24) or (3.26) represents the 

slowness vector 𝑞  along the ray as unction of arc length or time. 

 

3.4  Finite difference solution to the eikonal equation and grid-based method 

 

    Grid-based travel time computation algorithms use the eikonal equation (3.21) to solve for 

T(x,y,z).   Vidale (1988) presented a method that uses a first-order finite difference 

approximation scheme to propagate geometric rays from three corners to the fourth corner of a 

square grid as shown in figure 3.4.  Equation (3.12+16) and (3.12+17) are the average finite 

difference approximation of  
𝜕𝑇

𝜕𝑥
 

and  
𝜕𝑇

𝜕𝑧
  respectively.  

   (
𝝏𝑻

𝝏𝒙
)
𝟐

+ (
𝝏𝑻

𝝏𝒛
)
𝟐

= 𝒔(𝒙, 𝒛)𝟐            (3.27) 

   
𝝏𝑻

𝝏𝒙
=

𝟏

𝟐𝒉
 ( 𝒕𝟎 + 𝒕𝟐 − 𝒕𝟏 − 𝒕𝟑)          (3.28) 

   
𝝏𝑻

𝝏𝒛
=

𝟏

𝟐𝒉
 ( 𝒕𝟎 + 𝒕𝟏 − 𝒕𝟐 − 𝒕𝟑)          (3.29) 

  Substitute equations (3.28) and (3.29) into  

   equation (3.27):    

𝒕𝟑 = 𝒕𝟎 + √𝟐(𝒉𝒔)𝟐 − (𝒕𝟐 − 𝒕𝟏)𝟐   (3.30) 

Where:  s(x,z) is the slowness, 

                𝐭𝟎, 𝐭𝟏 𝐚𝐧𝐝 𝐭𝟐 𝐚𝐫𝐞 𝐜𝐨𝐦𝐩𝐮𝐭𝐞𝐝 𝐭𝐫𝐚𝐯𝐞𝐥 𝐭𝐢𝐦𝐞𝐬,        

                𝒕𝟑 𝐢𝐬 𝐭𝐫𝐚𝐯𝐞𝐥 𝐭𝐢𝐦𝐞 𝐭𝐨 𝐛𝐞 𝐜𝐨𝐦𝐩𝐮𝐭𝐞𝐝.  
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Figure 3. 4.   Using 𝐭𝐨, 𝐭𝟏 𝐚𝐧𝐝 𝐭𝟐 to compute 

𝒕𝟑. 

 

     The procedure starts at the source and expands outward as square rings (Figure 3.5).  Points 

on the square ring are sorted from minimum traveltime to maximum traveltime, and the new 

traveltime is computed starting from the point with minimum travel time. 

      

Figure 3. 5.   The double circle shows the source point. Empty circles are timed locations.  Filled 

circles are locations to be timed.  Large filled circles are the square wavefront to be timed. Points 

on each edge are timed from location of minimum time to                     

maximum time.   (Adapted from Vidale 1988)                 

 

2.4.1  Expanding wavefront method 

 

       Qin (1992) showed that the expanding square strategy is not appropriate for a model with 

moderate to large velocity contrast and can lead to a negative value in the square root term in 
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equation (18).   Qin proposed an expanding wavefront method that can preserve the causality by 

expanding the wavefront only at points adjacent to the point with global minimum traveltime 

(shown as a double circle in Figure 3.6). This method ensures a ray associated with a point to be 

considered is completely timed up to that point. However, it is computationally expensive at 

𝟎(𝐍𝟑) algebraic operations, because sorting is required to establish the new global minimum 

after each wavefront point is added. 

     

Figure 3. 6.   (a)  Filled circles mark the outer circumference of timed locations. The double circle 

shows the location of minimum time on the current time wavefront. (b) new locations to be timed 

(empty circles next to double circle). (c) New locations in (b) are timed and the new minimum 

time of the current wavefront is marked as a double circle.  (Adapted from Qin 1992) 
 

 

3.4.2  Fast marching method 

    Sethian and Popovici (1999) showed that propagating a triangular wavefront with unit speed 

using central difference approximation to the travel time gradient results in instabilities at the 

bend of the triangular wavefront.  Rapid changes in velocity can result in similar instabilities. 

These instabilities are resolved by applying entropy-satisfying upwind differences schemes 

introduced by Osher and Sethian (1988) : 

 

  𝚿𝒙
𝟐 ≈ [𝐦𝐚𝐱(𝑫𝒊

−𝒙 𝚿, 𝟎)𝟐 + 𝐦𝐢𝐧(𝑫𝒊 
+𝒙 𝚿, 𝟎)𝟐 ]                    (3.31) 
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A more convenient upwind scheme from Rouy and Tourin (1992) is used in Sethian and 

Popovici’s fast marching method: 

    𝚿𝒙
𝟐 ≈ 𝐦𝐚𝐱(𝑫𝒊

−𝒙 𝚿,−𝑫𝒊 
+𝒙 𝚿, 𝟎)𝟐                                            (3.32) 

 

  where   𝐃− 𝐚𝐧𝐝 𝐃+𝐚𝐫𝐞 𝐛𝐚𝐜𝐤𝐰𝐚𝐫𝐝 𝐚𝐧𝐝 𝐟𝐨𝐫𝐰𝐚𝐫𝐝 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐨𝐩𝐞𝐫𝐚𝐭𝐨𝐫𝐬 ∶   

 

    𝑫𝒊
−𝒙𝚿 = (

𝚿𝐢  −𝚿𝐢−𝟏

𝐡
)   

    𝑫𝒊
+𝒙𝚿 = (

𝚿𝐢+𝟏 −  𝚿𝐢 

𝐡
) 

 

  𝚿𝐢 𝐢𝐬 𝐭𝐡𝐞 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 𝚿 𝐚𝐭 𝐠𝐫𝐢𝐝 𝐩𝐨𝐢𝐧𝐭 𝐢 𝐚𝐧𝐝 𝐡 𝐢𝐬 𝐭𝐡𝐞 𝐠𝐫𝐢𝐝 𝐬𝐩𝐚𝐜𝐢𝐧𝐠   

  

 

The upwind scheme chooses grid points in terms of the direction of the flow of information. 

Sethian and Popovici (1999) express the eikonal equation as the following and apply the upwind 

finite difference scheme: 

 

 |𝛁𝐭(𝐱, 𝐲, 𝐳)| = 𝒔(𝒙, 𝒚, 𝒛)                              (3.33)  

     

    |𝛁𝐭| ≈ [𝐦𝐚𝐱(𝑫𝒊𝒋𝒌
−𝒙  𝒕, −𝑫𝒊𝒋𝒌

+𝒙  𝒕, 𝟎)
𝟐
+ 𝐦𝐚𝐱 (𝑫𝒊𝒋𝒌

−𝒚
 𝒕, −𝑫𝒊𝒋𝒌

+𝒚
 𝒕, 𝟎)

𝟐

+

𝐦𝐚𝐱(𝑫𝒊𝒋𝒌
−𝒛  𝒕, −𝑫𝒊𝒋𝒌

+𝒛  𝒕, 𝟎)
𝟐
]

𝟏

𝟐
= 𝑺𝒊𝒋𝒌        (3.34)                       

                                                                                                                                                                        

          where 𝐒𝐢𝐣𝐤 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐥𝐨𝐰𝐧𝐞𝐬𝐬 𝐚𝐭 𝐠𝐫𝐢𝐝 𝐩𝐨𝐢𝐧𝐭(𝐢, 𝐣, 𝐤). 
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To solve for 𝒕𝒊𝒋𝒌, we expand equation (3.34) to a quadratic equation in the form of 

     𝒂𝒕𝟐 + 𝒃𝒕 + 𝒄 = 𝟎  

𝒕𝒊𝒋𝒌 can now be solved explicitly as the root to a quadratic equation using 𝒕 =
−𝒃±√𝒃𝟐−𝟒𝒂𝒄  

𝟐𝒂
 

 

        The fast march algorithm also stores the traveltime values on a heap with the minimum time 

on top of the heap to reduce the sorting effort. This reduces the computationally cost to 

𝟎(𝐍𝐥𝐨𝐠𝐍 ) algebraic operations.  The fast marching algorithm is outlined in the following steps: 

 First, compute traveltimes at locations around the source point and tag these locations as 

ACCEPTED. Then tag as CLOSE all points one grid point away. Finally, tag as FAR all other 

grid points.  

1) Begin Loop: Let TRIAL be the point in CLOSE with the smallest traveltime 

2) Add the point TRIAL to ACCEPTED; remove it from CLOSE. 

3) Tag as CLOSE all neighbours of TRIAL that are not ACCEPTED. If the neighbour is in 

FAR remove it from that list and add it to the set CLOSE. 

4) Recompute traveltimes at all neighbours according to equation (3.34). 

5) Return to 1. 

     

Figure 3. 7.  Fast marching scheme. Filled circles are timed locations. X’s are CLOSE locations to 

be tested for the minimum time. Empty circles are FAR locations have not been times. 
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Figure 3. 8.   Input velocity model and minimum traveltime from fast marching method. 

 

3.5  Ray Shooting method 

 

    The ray shooting method (Figure 3.9) shoots a series of rays through the medium with starting 

vertical angle 𝜽𝒊 and horizontal angle 𝝓𝒊, and uses the ray equations to computes the trajectory of 

the ray paths.   Travel times along the ray paths are then computed by integrating through the 

velocity model.  Finally, the computed travel times are mapped to the subsurface grid by 
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interpolation. 

 

Figure 3.9.   a) Input velocity model and rays,  b) interpolated traveltime. 

 

 

The initial value of equations (3.22) for an isotropic medium is: 

       
𝒅�⃗⃗� 

𝒅𝒔
= (𝒔𝒊𝒏𝜽𝒊 𝒄𝒐𝒔𝒊𝝓, 𝒔𝒊𝒏𝜽𝒊 𝒔𝒊𝒏𝝓𝒊, 𝒄𝒐𝒔𝜽𝒊)                  (3.35)  

 

The initial value for the ray parameter for an isotropic medium is: 

      �⃗⃗� =
𝟏

𝒄(𝑿𝒔,𝒀𝒔,𝒁𝒔)

𝒅�⃗⃗� 

𝒅𝒔
            (3.36) 

Trajectory �⃗⃗�   of the ray is computed with the following steps: 

   1: Solve ODE (3.22) for  �⃗⃗�  

    2: Solve ODE (3.24) for  �⃗⃗�  . 

  Repeat steps 1 and 2 for all depth steps. 

Repeat for all starting angles  𝜽𝒊 𝒂𝒏𝒅 𝝓𝒊  
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3.6 Wavefront Construction 

 

Wavefront construction (WFC) is a natural extension of the ray shooting method.  WFC uses 

localized ray tracing to construct a wavefront of constant traveltimes. The amplitude of rays can 

be computed from the ratio of the cross-sectional area of rays of adjacent wavefronts. The initial 

wavefront is constructed by shooting a series of short ray segments of equal time steps from the 

source.  The end points of the ray segments on the wavefront are then propagated for another 

time step to construct a new wavefront. Coordinates of position and components of slowness 

vector of the ray segments are computed using the same procedure as the ray shooting method.   

When the wavefront crosses an interface with rapid velocity changes, the ray segments diverge 

and create a gap or shadow zone.  The ray segments can also cross over and create caustics or 

multi-values (Figure 3.10a). To address the problem of shadow zones and to ensure sufficient ray 

density, additional ray segments can be interpolated (Figure 3.10b).  For minimum traveltime ray 

tracing, caustics can be removed (Figure 3.10c). Figure 3.10d shows gridded minimum 

traveltime after caustics are removed.  

In this example, upgoing rays are disabled for depth imaging.  However, if caustics are to be 

removed, upgoing rays can be enabled for refraction ray tracing.   
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Figure 3. 10.  a) Wavefronts without interpolation, b) wavefronts with third-order interpolation 

along wavefronts, c) wavefronts with caustics removed, d) travel time gridded from wavefronts. 

 

3.7  Paraxial method 

 

    The paraxial method is a dynamic ray-tracing method in ray coordinate system (𝜸𝟏, 𝜸𝟐, 𝒖)  or 

ray-centred coordinate system ( 𝒒𝟏, 𝒒𝟐, 𝒒𝟑 ). The following discussion refers to the ray 

coordinate system shown in figure 3.11a.  Paraxial rays are rays in the vicinity of a central ray 
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(Figure 3.11b).  𝜸𝟏 𝒂𝒏𝒅 𝜸𝟐  are ray parameters.  They can be take-off angles 𝒊𝟎 𝒂𝒏𝒅 𝝓𝟎, or they 

can be components of slowness vector. They specify the initial direction of the ray in isotropic 

media. For anisotropic media, they specify the initial direction of the slowness vector.  The third 

ray parameter 𝑢  is a monotonically changing parameter along the ray.  It can be arc length s or 

travel time T.    

 

Figure 3.11.  a) ray coordinates  𝜻𝟏, 𝜻𝟐;  ray parameters 𝜸𝟏, 𝜸𝟐  and  wavefront 𝑻.    b) paraxial 

rays are rays in the vicinity of the central ray. 𝒅𝝈𝟎 is the cross sectional area of the paraxial ray,  

𝒓𝟎  is radius of curvature of the wavefront at 𝑴𝟎. Similarly, for  𝒅𝝈𝟏𝒂𝒏𝒅 𝒓𝟏 .              

                            

Paraxial rays can have different properties than the central ray. These properties can be travel 

times or amplitude.  The paraxial method determines these properties by differentiating the ray 

equations with respect to 𝛾1 𝑎𝑛𝑑 𝛾2.  If we choose u=s, we can start with ray equations in the 

form of: 

                         
𝒅𝒙𝒊

𝒅𝒔
= 𝒄 𝒑𝒊                                   (3.38) 

                            
𝒅𝒑𝒊

𝒅𝒔
= 

𝒅 

𝒅𝒙𝒊
[ 

𝟏

𝒄
 ]                                           (3.39) 
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3.7.1 Dynamic ray tracing equations 

 

We define: 

                        𝑸𝒊
𝝏𝒙𝒊

𝝏𝜸
, 𝑷𝒊

𝝏𝒑𝒊

𝝏𝜸
                                             (3.40) 

To derive the dynamic ray tracing equations, we take the derivatives of (3.38) and (3.39): 

  
𝝏

𝝏𝒚

𝒅𝒙𝒊

𝒅𝒔
=

𝒅

𝒅𝒔

𝝏𝒙𝒊

𝝏𝒚
=

𝒅𝑸𝒊

𝒅𝒔
=

𝝏𝒄

𝝏𝒚
𝒑𝒊 + 𝒄𝑷𝒊 

   
𝒅𝑸𝒊

𝒅𝒔
=

𝝏𝒄

𝝏𝒙𝒌

𝝏𝒙𝒌

𝝏𝒚
𝒑𝒊 + 𝒄𝑷𝒊 = 𝒄,𝒌 𝑸𝒌𝒑𝒊 + 𝒄𝑷𝒊   (3.41) 

  
𝝏

𝝏𝒚

𝒅𝒑𝒊

𝒅𝒔
=

𝒅

𝒅𝒔

𝝏𝒑

𝝏𝒚
=

𝒅𝑷𝒊

𝒅𝒔
=

𝝏

𝝏𝒚
(

𝒅 

𝒅𝒙𝒊
[ 

𝟏

𝒄
 ] )      

             
𝒅𝑷𝒊

𝒅𝒔
= (

𝝏 

𝝏𝒙𝒌
 

𝝏 

𝝏𝒙𝒊
(
𝟏

𝒄
)) 

𝝏𝒙𝒌

𝝏𝜸
=

𝝏 𝟐 

𝝏𝒙𝒊𝝏𝒙𝒌
(
𝟏

𝒄
)𝑸𝒌             (3.42)   

 
Equation (3.41) and (3.42) are dynamic ray tracing equations and are used to compute 

𝑸𝒊 𝐚𝐧𝐝  𝑷𝒊 for the central ray.   

3.72  Paraxial ray tracing equations 

We define  𝜹𝒙𝒊 𝒂𝒏𝒅 𝜹𝒑𝒊 as parameters that connect a paraxial ray to the central ray using the 

following approximation∶  

    𝜹𝒙𝒊 ≈ 
𝝏𝒙𝒊

𝝏𝜸
𝒅𝜸 = 𝑸𝒊 𝒅𝜸                     (3.43) 

    𝜹𝒑𝒊 ≈  
𝝏𝒑𝒊

𝝏𝜸
𝒅𝜸 = 𝑷𝒊 𝒅𝜸                             (3.44) 

Multiplying equation (29) and (30) with 𝜹𝜸 and apply equation (3.43) and (3.44) yields: 
𝑑𝑄𝑖

𝑑𝑠
𝛿𝑦 = 𝑐,𝑘 𝑄)𝑘 𝑝𝑖𝛿𝑦 + 𝑐𝑃𝑖𝛿𝑦  

𝑑

𝑑𝑠
𝛿𝑥𝑖 = 𝑐,𝑘 𝛿𝑥𝑘𝑝𝑖 + 𝑐𝛿𝑝𝑖    (3.45) 

𝑑𝑃𝑖

𝑑𝑠
𝛿𝑦 =

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑘
(
1

𝑐
)𝑄𝑘𝛿𝑦  

𝑑

𝑑𝑠
𝛿𝑝𝑖 =

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑘
(
1

𝑐
) 𝛿𝑥𝑘 = (

2𝑐,𝑖𝑐,𝑘

𝑐3 −
𝑐,𝑖𝑘

𝑐2 ) 𝛿𝑥𝑘  (3.46) 
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Equation (3.45) and (3.46) are paraxial ray tracing equations and are used to compute 

𝜹𝒙𝒊 𝒂𝒏𝒅 𝜹𝒑𝒊 for paraxial ray from  𝒄, �⃗⃗� 𝒄 𝒂𝒏𝒅 �⃗⃗� . 

3.7.3  Geometrical spreading factor 

 

Geometrical spreading can be computed from the ratio of cross-sectional areas. Equation (3.43) 

shows that the cross-sectional area of paraxial ray can be computed directly from  

𝑸𝟏 𝒂𝒏𝒅 𝑸𝟐 and the ray parameters 𝜸𝟏 𝒂𝒏𝒅 𝜸𝟐: 

   𝒅𝝈 = |
𝝏�⃗⃗� 

𝝏𝜸𝟏
𝐱 

𝝏�⃗⃗� 

𝝏𝜸𝟐
 | 𝒅𝜸𝟏𝒅𝜸𝟐 = 𝑸𝟏𝑸𝟐𝒅𝜸𝟏𝒅𝜸𝟐   (3.47) 

 

3.7.4 Paraxial ray traveltimes 

      

Figure 3. 12.   Paraxial ray and traveltime 

    

 As shown in figure 3.12, a point R is at �⃗⃗�  on  the central ray and a point R’ is at  �⃗⃗� + �⃗⃗�    on 

a nearby ray.  Using the 3D Taylor series to relate R and R’, we obtain: 

 𝑇(𝑥 + ℎ⃗ ) = 𝑇(𝑥 ) + 𝑡,𝑗 (𝑥 )ℎ𝑗 +
1

2
𝑇,𝑗𝑘 (𝑥 )ℎ𝑗ℎ𝑘,   (3.48) 

   where 𝑻(�⃗⃗� ) is travel time at R,   

                                        𝑻,𝒋 𝐢𝐬 𝐭𝐡𝐞 𝐟𝐢𝐫𝐬𝐭 𝐝𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐨𝐟 𝐭𝐫𝐚𝐯𝐞𝐥𝐭𝐢𝐦𝐞  𝐚𝐧𝐝 𝐞𝐪𝐮𝐚𝐥𝐬 𝒑𝒋.   

𝑻,𝒋𝒌  is the second derivative of traveltime and can be computed from: 
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 𝑇,𝑗𝑘 =
𝜕𝑝𝑗

𝜕𝑥𝑘
=

𝜕𝑝𝑗

𝜕𝛾𝑛

𝜕𝛾𝑛

𝜕𝑥𝑘
 = 𝑃𝑗𝑛𝑄𝑛𝑘

−1    (3.49) 

   where 𝑄𝑛𝑘
−1 = 

𝜕𝛾𝑛

𝜕𝑥𝑘
 

Or in matrix form:  𝑻,𝒋𝒌 = 𝐓 = 𝐏𝐐−𝟏                                      (3.50) 

 

The paraxial ray tracing algorithm is outlined in the following steps: 

 

1) Shoot a ray through the medium with starting vertical angle 𝜽𝒊 and horizontal angle 𝝓𝒊 

2) Solve ODE 3.38 for displacement 𝒙𝒊 for the central ray 

3) Solve ODE 3.39 for slowness vector 𝒑𝒊 for the central ray 

4) Solve ODE 3.41 and 3.42 for 𝑷𝒊 𝒂𝒏𝒅 𝑸𝒊 

5) Use equation 3.49 to compute 𝑻,𝒋𝒌 

6) Use equation 3.48 to compute paraxial travel time for paraxial rays near the central ray 

   Repeat steps 1 to 6 for all starting angle 𝜽𝒊 and horizontal angle 𝝓𝒊 

 

3.8 Comparisons of travel times from ray-tracing methods 

 

    To verify and compare the accuracy of the travel times computed from WFC (Figure 3.13a), 

fast marching and paraxial method (Figure 3.13b), we use the Marmousi model with the source 

placed at the depth of 2500m and compute the travel times from these three methods.  A second-

order finite difference shot record was created using the Seismic Unix module sufdmod2.  Travel 

times at the surface are plotted on the shot record with travel times from WFC plotted in red, fast 

marching plotted in blue and paraxial method plotted in yellow (Figure 3.14). As shown in figure 
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3.14, the travel times at the surface from WFC and fast marching are almost identical. Travel 

times at the surface from the paraxial method that uses the shortest ray path agree with the other 

two methods at most locations except at locations where rays diverge.  This test demonstrated all 

three methods result in very similar travel times that agree with the finite difference shot record.  

Both WFC and fast marching methods produce smooth and stable minimum travel times.  Rays 

in the paraxial method may diverge and create large gaps that can result in inaccurate travel 

times.   

 

Figure 3. 13.   a) Ray paths and wavefronts from the WFC method,  b) Ray paths from the 

Paraxial method. 

 

    WFC and paraxial methods also show that rays can cross over in an area with a complex 

velocity structure.  These cross-over ray paths result in multi-arrivals at the same grid point.  

Furthermore, WFC computes geometric spreading amplitude using cross-sectional area ratio at 

the starting and end points of ray segment and the paraxial method computes amplitude from 
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dynamic ray tracing equations.  Therefore, WFC and paraxial method can be used when multi-

arrivals or different branches of traveltime including most energetic arrivals is desirable.  

 

Figure 3. 14.   Finite difference synthetic shot record with first arrival times from WFC, fast 

marching and paraxial method 

 

3.9 Summary of ray tracing methods 

 

Fast marching method: 

 

• Advantages 
- Unconditionally stable 
- Can handle turning rays. Does not have a shadow zone problem. 
- Computes first arrival time for every grid point without interpolation. 
- Excellent algorithm for refraction tomography 

 

• Disadvantages 
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- Does not compute ray paths directly.  Alternate computation algorithms using the 
steepest travel time gradient or minimum time can be unstable. 

- Does not compute multi-arrivals. 
- Does not compute amplitude. 
- Can be slow for a large output grid. 

  

Wavefront Construction method: 

 

• Advantages 
- Stable if appropriate velocity smoothing parameter is used; however, accuracy can 

decrease with increasing smoothing 
- Can handle turning rays. Does not have a shadow zone problem. 
- Can compute multi-arrivals and amplitude 
- Can be faster than the fast marching method, if a larger step size is used. 
- A good algorithm for refraction tomography as well as depth imaging 

 

• Disadvantages 
- Ray paths from interpolated ray segments may not be accurate enough for 

tomographic inversion. 
 

Paraxial method: 

 

• Advantages 
- Fast and accurate. 
- More accurate travel time interpolation in the vicinity of the central ray than 

classical ray shooting method. 
- Can compute multi-arrivals and amplitude 
- A good algorithm for depth imaging 

 

• Disadvantages 
- Cannot handle turning ray.  Not suitable for refraction tomography 
- Can have problems with ray path divergence and shadow zone in areas with 

complex structure.  
 

Ray shooting method: 
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• Advantages 
- Fast and accurate. 
- Can compute multi-arrivals  
- A good algorithm for depth imaging 

 

• Disadvantages 
- Cannot handle turning ray.  Not suitable for refraction tomography 
- Travel time interpolation is not as accurate as the paraxial method in the vicinity of 

the central ray 
- Does not compute amplitudes 
- Can have problems with ray path divergence and shadow zone in areas with 

complex structure.  
 

Application of ray tracing methods in depth imaging 

         All methods tested show similar accuracy; while WFC and the paraxial method are capable 

of computing multi-values traveltimes.  This poses a challenge in determining which arrival 

times to use as well as storage and computational resources in retrieving these values. However, 

when minimum time and shortest path is not the optimal approach, the multi-values capability of 

WFC and paraxial methods can improve the imaging result. 

      We did not perform a comprehensive analysis of the effects of these ray tracing methods in 

depth imaging.  However, based on the observed geometry of the ray paths in our tests using the 

Marmousi model; we believe the proper application of the multi-arrivals, amplitude and ray path 

distance information from WFC and paraxial method can have a significant impact on the quality 

of the final depth image. 

 

Application of ray tracing methods in refraction traveltime tomography 
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         Refraction traveltime tomography involves forward modelling of first arrival times and 

using the differences between the modelled times and the actual first arrival time picks to update 

the velocity model along the ray path. I use different ray tracing methods in refraction 

tomography to invert for the near-surface velocity model.  Ray shooting method and paraxial 

method are not suitable for ray tracing refraction ray paths because of their inability to handle 

up-turning rays.  Both WFC and fast marching methods can handle up-turning rays; therefore, 

they are more suitable for refraction tomography.  We used the fast marching method for forward 

modelling in refraction tomography and apply the refraction tomography process to the Hussar 

2D line acquired in 2011 by CREWES of the University of Calgary.  We compared the CDP 

stack with the tomographic statics correction to the CDP stack with GLI (Hampson and Russel 

1984) weathering statics correction.  GLI is one of the delay time methods and has found great 

success when the near-surface can be approximated by layers with a distinct difference in 

velocity but has a problem with gradational velocity changes and rough topography. 

 

      A velocity model with a constant velocity gradient between layers and with the depth of the 

layer boundaries following the recording surface as shown in figure 3.15a is used as the starting 

model.  Figure 3.15b shows the updated velocity model and refraction ray paths for shot location 

417 after 10 iterations. Shown in figure 3.16 is the comparison of modelled refraction arrival 

times and the actual first arrival picks before and after tomographic inversion for shot location 

417 as well as the RMS error for all time picks after each iteration.  Fig 3.16b shows that 

modelled refraction arrival times from the final velocity model match the actual first arrival 

picks.           
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Figure 3. 15.   a)  Starting model for tomographic inversion. b) Velocity model after 10 iterations 

using traveltimes from fast marching method.  Ray paths from shot location 417 are shown. 

 

 

Figure 3. 16.   a) Actual first arrival times from shot location plotted in black, minimum travel 

times from starting model plotted in blue, b) Minimum travel times from velocity model after 10 

iterations,  c) RMS error at each iteration.  
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Figure 3.17.   (a) CDP stack with datum statics correction, (b) CDP stack with tomographic 

weathering statics correction. 

 

Figure 3.17 compares the CDP stacks with datum statics correction only and with tomographic 

weathering statics correction.  The images from the tomographic weathering statics corrected 

CDP stack are more coherent and better resolved than the datum statics corrected CDP stack.  

These results demonstrate that the fast marching method is accurate and is effective when used in 

refraction tomography.  

 

3.10 Conclusion 

     Fast marching, WFC, ray shooting method and paraxial method are all based on the principles 

of high-frequency ray theory. They all produce accurate travel times when the velocity model 

varies smoothly.  Similar to the classical ray shooting method, the paraxial method has the 

problem of diverging ray paths and shadow zones in areas of complex structure. WFC alleviates 

this problem by interpolating additional ray segments along wavefronts to ensure sufficient ray 

density.  Both paraxial and WFC methods can produce multi-arrivals as well as amplitude. 

However, the fast marching method can only produce minimum traveltime values. Therefore, 
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WFC and paraxial methods are better suited for depth imaging of complex structures.  The fast 

marching method expands the wavefront and computes traveltime from the source to each grid 

cell without additional interpolation by solving the eikonal equation.  Both fast marching and 

WFC methods can handle up-turning rays; therefore, they can be used in refraction tomography.  

We used the fast marching method in the refraction tomography processing of the Hussar 2D 

lines.  The CDP stack image from the refraction tomography processing is more coherent and 

better resolved than the CDP stack with datum statics correction. Therefore, refraction travel 

times computed from the fast marching method are accurate and the velocity model from the 

refraction tomography is reliable and can potentially be used as starting model for full-waveform 

inversion and depth imaging.   We did not perform a comprehensive analysis of the effects of 

these ray tracing methods in depth imaging.  However, based on the observed geometry of the 

ray paths in our tests using the Marmousi model,  we believe the proper application of the multi-

value traveltime, amplitude and ray path distance information from WFC and paraxial method 

can have a significant impact on the quality of the final depth image. 
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   Chapter 4 

Trave-time tomography inversion problem using feedbacks from reflection data 

This chapter combines the review of the inverse problem with a proposal of using feedbacks 

from reflection data to improve the near-surface velocity model. I include the following 

published paper in the chapter. 

  

 

4.1 Introduction 

An accurate near-surface velocity model is critical for weathering statics correction and initial 

model building for depth migration and full waveform inversion. However, near-surface models 

from refraction inversion often suffer from errors in refraction data, insufficient sampling and 

over-simplified assumptions used in refraction algorithms. Errors in refraction data can be 

caused by picking errors resulting from surface noise, attenuation and dispersion of first arrival 

energy with offset. These errors are partially compensated later in the data flow by reflection 

residual statics.  Therefore, surface consistent residual statics contain information that can be 

used to improve the near-surface velocity model. We present a new dataflow to automatically 

include median and long wavelength components of surface consistent reflection residual statics.  

This technique can work with any model-based refraction solution, including grid-based 

tomography methods and layer-based methods.  We modify the cost function of the refraction 

inversion by adding model and data weights computed from the smoothed surface consistent 

Robust refraction statics solution and near-surface velocity model building using 

feedback from reflection data 

Bernard Law and Daniel Trad, 2018 

Published in Geophysics, 83, P. U63-77 
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residual statics. By using an iterative inversion, these weights allow us to update the near-surface 

velocity model and to reject first arrival picks that do not fit the updated model.  In this nonlinear 

optimization workflow, the refraction model is derived from maximizing the coherence of the 

reflection energy and minimizing the misfit between model arrival times and the recorded first 

arrival times.  This approach can alleviate inherent limitations in shallow refraction data by using 

coherent reflection data.   

 

4.2  Theory 

4.2.1 Linear Inversion  

An inversion problem can be cast as the inversion of a parameter m using a linear operator L and 

data d: 

    𝒅 = 𝑳 𝒎 ,      (4-1) 

For a linear system, the parameter m can be computed by minimizing the objective function J: 

      J = || 𝒅 − 𝑳𝒎 ||².    (4-2) 

The linear least squares solution of equation (4-2) is: 

               𝒎 = ( 𝑳𝑇𝑳 + 𝜇𝐼)−1𝑳𝑇 𝒅   ,  (4-3) 

where 𝜇 is the stabilization parameter. 

Alternatively, the inverse problem can be posed in terms of the Fréchet derivatives 𝑮, changes in 

the model parameter 𝜹𝒎, and differences between the initial model response and the observed 

data 𝜹𝒅 (Lines and Treitel, 1984): 

     𝜹𝒅 =  𝑮 𝜹𝒎     (4-4) 

Fréchet derivatives are the partial derivatives of the modelled response with respect to the model 

parameters. The least square solution of equation (4-4) is: 
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𝜹𝒎 = ( 𝑮𝑇𝑮 + 𝜇𝐼)−1𝑮𝑇𝜹𝒅    (4-5) 

4.2.2 Nonlinear Inversion  

    For refraction inversion, the problem is nonlinear because the operator L is a function of 

parameters m. The cost function becomes: 

      J = || 𝒅 − 𝑳(𝒎) ||²,    (4-6) 

and the model parameter m cannot be obtained directly using equation (4-3). This non-linear 

problem can be solved by a sequence of linear least squares estimates of 𝜹𝒎 using equation (4-5) 

and updating the model parameters iteratively (Lines and Treitel, 1984): 

𝒎𝒌 = 𝒎𝒌−𝟏
 + 𝜹𝒎 ,     (4-7) 

where  𝑘 is the iteration number. The iteration stops when the modelled response fits the 

observations within a selected convergence criterion. 

In the case of refraction inversion, m is the near-surface model parameters, d is the first arrival 

time picks and L is the forward modelling operator that maps m into d.   𝜹𝒎 contains the model 

perturbations between iterations,  𝜹𝒅 is the data difference between the modelled and the 

observed first arrival times and G is the matrix that contains the Fr�́�chet derivatives of the 

modelled first arrival times with respect to the model parameter m.  G maps 𝜹𝒎 into 𝜹𝒅. 

 

4.2.3 GLI method  

A layer-based refraction model with two layers is depicted in Figure 4.1, where the total travel 

time, T, from S to R can be computed from the ray path SBCR:  

    𝑇 = 2 
𝑍1  𝑐𝑜𝑠𝜃𝑐 

𝑉0
+

𝑋

𝑉1
     (4-8) 
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where 𝑍1 is the thickness of the layer, 𝑉0 is the velocity of the layer,  𝜃𝑐 is the critical angle, X is 

the offset distance from S to R and 𝑉1 is the velocity of the underlying refractor.  Equation (4-8) 

can be written for the total travel time for an n layer media:  

     𝑇𝑛 = ∫ 2 
𝑍𝑘  𝑐𝑜𝑠𝜃𝑐𝑘

𝑉𝑘−1

𝑛

𝑘=1
   +

𝑋

𝑉𝑛
  ,            (4-9)  

where 𝑍𝑘 and 𝜃𝑐𝑘
 are the thickness and critical angle for the 𝑘𝑡ℎ layer;  𝑉𝑘−1  and  𝑉𝑛 are 

velocities for layers k-1 and n. 

Hampson and Russell (1984) presented a first-break interpretation method that uses the 

Generalized Linear Inversion technique to iteratively update the model parameters of a near-

surface velocity model. The GLI method computes the model perturbation via first-order Taylor 

expansion and relates the errors in 𝑇𝑛 to the model perturbations in 𝑉𝑘 𝑎𝑛𝑑 𝑍𝑘  using the 

following sets of linear equations: 

    ∆𝑇 = 𝐵∆𝑚      (4-10) 

    𝐵 = 𝜕𝑇/𝜕𝑚      (4-11) 

where ∆𝑇 are the changes in ray-traced time between iterations, ∆𝑚 are the model updates 

between iterations; and  𝜕𝑇/𝜕𝑚  are the partial derivative of travel time with respect to the 

model parameters 𝑉𝑘 𝑎𝑛𝑑 𝑍𝑘 .  The least squares solution for a model update Δm is: 

      Δ𝑚 = (𝐵𝑇𝐵 +  𝜇𝐼)−1𝐵𝑇 ∆𝑇    (4-12) 

Equation (4-10) and (4-12) are equivalent to equation (4-4) and (4-5), and 𝐵 in equation (4-10), 

(4-11) and (4-12) is equivalent to 𝐺 in equation (4-4) and (4-5). 
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Figure 4. 1. Time-Distance plot and refraction raypath.  𝑽𝟎 is the velocity of the first layer,  𝜽𝒄 is 

the critical angle. X is the offset distance from S to R and 𝑽𝟏 is the velocity of the underlying 

refractor.   SBCR is the refraction raypath.  𝑻𝑰 is the intercept time for 𝑽𝟏 and 𝑿𝒄 is the critical 

distance  ABCDEFG 

            

4.2.4 Turning-ray refraction tomography  

Turning-ray refraction tomography methods discretize the near-surface velocity model into a 

grid of rectangular cells.  Figure 4.2 shows a near-surface velocity grid and the relationship 

between ray path geometry and travel times. Rays are traced through the velocity cells between 

                    

Figure 4. 2.  Relationship between ray path geometry and travel time.  �⃗⃗�  and �⃗⃗� + 𝒅�⃗⃗�  are the 

positions of 2 points along the ray path on two adjacent wavefronts of constant travel times 

separated by the distance vector 𝒅�⃗⃗�  .  𝒔 and 𝒔 + 𝒅𝒔 are the ray segment lengths from the source 

to �⃗⃗�  and �⃗⃗� + 𝒅�⃗⃗�  .  �⃗⃗�  is the slowness vector at  �⃗⃗� + 𝒅�⃗⃗�   and 𝛁𝑻 is the travel time gradient at the 

same location. 
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source and receivers using diving rays by solving the ray equations (4-13) and (4-14) or the 

eikonal equation (4-15):  

            
𝑑𝑥 

𝑑𝑠
   =  𝑐 𝑞    ,      (4-13) 

      
𝑑�⃗� 

𝑑𝑠
   = �⃗� [ 

1

𝑐
 ] ,     (4-14) 

    (
𝜕𝑇

𝜕𝑥
)
2

+ (
𝜕𝑇

𝜕𝑦
)
2

+  (
𝜕𝑇

𝜕𝑧
)
2

=
1

𝑐2  ,   (4-15) 

where 𝑐  is the velocity, 𝑞  is the slowness vector,  
𝑑𝑥 

𝑑𝑠
 is a unit vector tangential to the ray, and T is 

the travel time.  If equations (4-13) and (4-14) are used to trace the ray, travel times can be 

computed by integrating the slowness model along the ray path.  If the eikonal equation is used 

to compute the travel time, the ray paths can be traced along the paths of the maximum travel 

time gradient (Vidale,1988) or along the paths of minimum time (Matsuoka,1992).   Ray path 

distances 𝑙𝑖𝑗 within velocity cells computed from the ray tracing process form the Fréchet 

derivative G in equation (4-4) and (4-5):    

 

    𝑮 =

[
 
 
 
 
 

𝜕𝑇 1  

𝜕𝑚1

𝜕𝑇 1  

𝜕𝑚2
  . .

𝜕𝑇 1  

𝜕𝑚𝐽
 

𝜕𝑇 2  

𝜕𝑚1
  

𝜕𝑇 2  

𝜕𝑚2
  . .

𝜕𝑇 2  

𝜕𝑚𝐽   . . . . . . . .
𝜕𝑇 𝐼  

𝜕𝑚1
 

𝜕𝑇 𝐼  

𝜕𝑚2
 . .

𝜕𝑇 𝐼  

𝜕𝑚𝐽
 
]
 
 
 
 
 

 ,               (4-16)  

where 𝑇 𝑖  is the modelled travel time for ray path i,  
𝜕𝑇 𝑖  

𝜕𝑚𝑗
= 𝑙𝑖𝑗 and is the ray segment length for 

ray path i and cell j. The  𝜹𝒎 vector contains the slowness update Δ𝑀𝑗
𝑘 for the 𝑘𝑡ℎ iteration and 

can be solved iteratively using equation (4-5). 
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Lo and Inderwiesen (1994) proposed the Simultaneous Iterative Reconstruction Technique 

(SIRT) to solve for slowness update Δ𝑀𝑗  iteratively without matrix operations: 

     Δ𝑀𝑗
𝑘 =

1

𝑊𝑗
∑  𝐼

𝑖=1 𝑙𝑖𝑗𝛿𝑑𝑖/∑ 𝐿2
𝑖𝑗′
 𝐽

𝑗′=1  ,  (4-17)  

where 𝑖  is the observation number, 𝐼 is the total number of observations, 𝑗 is the model cell to 

update, 𝑗′ to 𝐽 is the range of model cells that the ray path has traversed, and 𝑙𝑖𝑗 is the ray 

segment length for observation number 𝑖 and model cell 𝑗 , 𝑊𝑗 is the total number of rays 

intersecting the model cell 𝑗 and 𝑘 is the iteration number.   SIRT is computationally more 

efficient than solving equation (4-5) directly and is used in the refraction tomography inversion 

in this paper. 

 

4.3  Reflection residual statics and near-surface velocity model update 

Errors in the refraction solution arise when the modelling operator L is unable to model the 

observed first arrival times because of poor refraction data quality, numerical errors of the 

refraction solution, and the inability of the refraction algorithm to model the actual physical 

property of the near-surface.  We classify these errors as data error 𝜖𝑑, model error 𝜖𝑚 and 

algorithm error 𝜖𝑝.  The data error is equivalent to poor pick quality. The model error is the 

difference between our current estimates and the actual subsurface parameters. The algorithm error is 

the error in the method because of several approximations like discrete derivative evaluations and 

coarse parameterization. These errors contaminate the refraction correction Cwx and are often 

revealed on CDP stack sections as deterioration in the reflection coherence and structural 

integrity. Some of these errors are often compensated by applying surface consistent residual 

statics corrections derived from correlation of reflection data. In conventional refraction and 

reflection residual statics workflows, the surface consistent residual statics are applied to the 
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reflection data to compensate for deficiencies in the near-surface velocity model caused by these 

errors; however, the near-surface velocity model is not updated.  If the surface consistent residual 

statics are caused by the deficiencies in the near-surface velocity model and contain these errors, 

we can back propagate these errors vertically as model weights to update the near-surface 

velocity model. For layer-based models, these errors can result in velocity or thickness error, or 

both.  The following deviation assumes these errors contribute to only velocity or thickness error.  

Consider the layered model shown in Figure 4.3. The weathering statics correction can be 

computed by 

   𝑇 =  ∑ (
1

𝑉𝑟
− 𝑃𝑖

 
) 𝑍𝑠𝑖 + (

1

𝑉𝑟
− 𝑃𝑖

 
) 𝑍𝑟𝑖  

𝑛
𝑖=0  ,   (4-18)  

where 𝑍𝑠𝑖 and 𝑍𝑟𝑖 are the thickness of layer 𝑖 at source and receiver location, 𝑃𝑖 is the slowness 

for layer 𝑖 and 𝑉𝑟 is the replacement velocity for weathering statics correction. Let us define 

   𝑇𝑖 =
𝑍𝑖

𝑉𝑟
 − 𝑍𝑖𝑃𝑖  ,       (4-19) 

    𝐸 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑎𝑡𝑖𝑐𝑠 ,    (4-20) 

        𝐸𝑖 = 𝐸 (  
𝑍𝑖

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 ),      (4-21) 

   𝑍𝑖 = 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑓𝑜𝑟 𝑙𝑎𝑦𝑒𝑟 𝑖 ,     (4-22) 

   𝑃𝑖 =
1

𝑉𝑖
 ,        (4-23) 

    𝑊𝑚𝑖(𝑠𝑙𝑜𝑤𝑛𝑒𝑠𝑠) = 𝑠𝑙𝑜𝑤𝑛𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑙𝑎𝑦𝑒𝑟 𝑖, and (4-24) 

   𝑊𝑚𝑖(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑙𝑎𝑦𝑒𝑟 𝑖 , (4-25) 

where  𝑇𝑖  is the weathering statics correction for layer 𝑖.  Adding a smoothed surface consistent 

statics correction 𝐸𝑖 to the weathering statics correction 𝑇𝑖, and updating only 𝑃𝑖 with  

𝑊𝑚𝑖(𝑠𝑙𝑜𝑤𝑛𝑒𝑠𝑠) yields: 

   𝑇𝑖 + 𝐸𝑖 =
𝑍𝑖

𝑉𝑟
 − 𝑍𝑖𝑃𝑖𝑊𝑚𝑖(𝑠𝑙𝑜𝑤𝑛𝑒𝑠𝑠) .    (4-26) 

Replacing 𝑇𝑖 with   
𝑍𝑖

𝑉𝑟
 − 𝑍𝑖𝑃𝑖  gives:   
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𝑍𝑖

𝑉𝑟
 − 𝑍𝑖𝑃𝑖 + 𝐸𝑖 =

𝑍𝑖

𝑉𝑟
 − 𝑍𝑖𝑃𝑖𝑊𝑚𝑖(𝑠𝑙𝑜𝑤𝑛𝑒𝑠𝑠)  , and     (4-27) 

  𝑊𝑚𝑖(𝑠𝑙𝑜𝑤𝑛𝑒𝑠𝑠) = 1 −
𝐸𝑖

𝑍𝑖𝑃𝑖
       (4-28) 

Similarly, updating only 𝑍𝑖 with  𝑊𝑚𝑖(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) yields:   

   𝑇𝑖 + 𝐸𝑖 = (
𝑍𝑖

𝑉𝑟
 − 𝑍𝑖𝑃𝑖) 𝑊𝑚𝑖(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)    (4-29)  

Replacing   
𝑍𝑖

𝑉𝑟
 − 𝑍𝑖𝑃𝑖  with 𝑇𝑖  gives:   

𝑇𝑖 + 𝐸𝑖 = 𝐸𝑖  𝑊𝑚𝑖(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠), 𝑎𝑛𝑑        (4-30)  

   𝑊𝑚𝑖(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) = 1 +
𝐸𝑖

𝑇𝑖
      (4-31) 

         

Figure 4. 3.  Refraction model and weathering statics correction.  𝒁𝒔𝟎 , 𝒁𝒓𝟎 , 𝒁𝒔𝟏and 𝒁𝒓𝟏 are 

thickness of layer 𝟎  and 1 at source and receiver location S and R. 𝑽𝟎 , 𝑽𝟏  and 𝑽𝟐 are the 

velocity for layer 0, 1 and 2.  
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Figure 4. 4.  (a) Finite difference synthetic data with velocity variations (marked by blue arrows) 

in the near-surface. (b) (top) near-surface velocity model, (middle) CDP stack without 

weathering statics corrections, (bottom) CDP stack with weathering statics correction. (c) (top) 

Error (marked by the blue arrow) introduced to near-surface velocity, (middle) CDP stack with 

weathering statics correction from the model with error, (bottom) surface consistent residual 

statics from reflection data. (d) (middle) Modified near-surface velocity model using model 

weights. 

 

 To illustrate the concept of model weights, we create a finite-difference synthetic dataset 

with a velocity model with 6 layers of velocities 1000, 2000, 2500, 3000, 3500 and 4000 m/sec. 

Both receiver spacing and depth step are 5 m.  Two weathering pockets in the model are centred 

at stations 251 and 601.  Distortion to reflection events caused by the weathering pockets can be 

seen in figure 4.4a.  Figure 4.4b compares the CDP stacks before and after weathering statics 

correction.  Figure 4.4c shows the near-surface velocity model with an arbitrary error introduced, 

the CDP stack with reduced coherence caused by weathering statics correction using the 

erroneous model and the surface consistent residual statics computed from reflection data. Figure 

4.4d shows the updated velocity model 𝑊𝑚𝑚, and the CDP stack with weathering statics 

correction from the updated velocity model.  This synthetic data test demonstrates that incorrect 

near-surface velocity can reduce the coherence and structural integrity of the reflection stack.  It 

also demonstrates that the surface consistent reflection residual statics process can detect near-
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surface statics errors and that the model weight  𝑊𝑚 can be computed from the surface consistent 

reflection residual statics. 

 

4.4 Application of data weight and model  

Data weight 𝑊𝑑 and model weight 𝑊𝑚 in the cost function are a commonly used approach in 

geophysics (Claerbout 1992).  Application of data weight and model weight is equivalent to data 

space and model space regularization.  Regularization in the data space helps to reduce the 

effects of outliers in data picks on the solution.  Regularization in the model space stabilizes the 

solution and provides a means of applying a priori information into the inversion (Zhou et al., 

2003; Trad et al.,2003). We include the model weight 𝑊𝑚 and data weight  𝑊𝑑in the cost 

function of the inversion problem, 

J = || 𝐖𝐝𝐝 − 𝐖𝐝𝐋𝐖𝐦𝐦′ ||²,  and 𝐦 = 𝐖𝐦𝐦′    (4-32) 

For layer-based method, 𝐸𝑖 can be caused by errors in the slowness and/or thickness. Any 

combination of contributing factors can be used. When updating both slowness and thickness 

with equal distribution, equal factors of 0.5 can be applied to 𝐸𝑖 and  𝑊𝑚𝑖 (slowness) and 𝑊𝑚𝑖 

(thickness) are: 

                𝑊𝑚𝑖(𝑠𝑙𝑜𝑤𝑛𝑒𝑠𝑠) = 1 − 0.5
𝐸𝑖

𝑍𝑖𝑃𝑖
 ,   (4-33) 

                𝑊𝑚𝑖(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) = 1 + 0.5
𝐸𝑖

𝑇𝑖 
  , and   (4-34) 

    𝑊𝑑 = { 
0 for  𝐸 ≥   ԑ    and   𝛿𝑡  >  𝐾  𝑠𝑡𝑑(δt)
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4-35)  

where 𝛿𝑡 is the difference between observed and modelled first arrival time, 𝑠𝑡𝑑(𝛿𝑡) is the 

standard deviation of 𝛿𝑡,  ԑ and 𝐾 are thresholds used for 𝑊𝑑. We use equations (33) and (34) to 
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compute 𝑊𝑚𝑖  (slowness) and  𝑊𝑚𝑖(thickness) for the GLI algorithm.  𝑊𝑑 corrects for data errors 

and is computed from the misfit between 𝑑 and 𝐿 𝑊𝑚𝑚 .    

For turning-ray tomography, 𝑊𝑚  is typically applied to slowness only. However, if applying 𝑊𝑚 

results in unreasonable velocity values, we may have to apply 𝑊𝑚 to thickness as well.  This is 

done by stretching the distance between the surface and the intermediate datum and remapping 

the velocity values. Using an equal distribution of model weights for slowness and thickness, 

equal factors of 0.5 can be applied to 𝐸𝑖 and  𝑊𝑚 (slowness) and 𝑊𝑚 (thickness) can be 

computed as:            

   𝑊𝑚 (slowness) = 1 − 0.5𝐸/𝑇 ,     (4-36) 

   𝑊𝑚 (thickness) = 1 + 0.5𝐸/𝑇 , and     (4-37) 

    𝑇 = ∑ (  
1

𝑉𝑟
−  𝑃𝑖𝑧)𝑑𝑧

𝑖𝑑𝑎𝑡𝑢𝑚

𝑖𝑧=1
 ,    (4-38) 

where 𝑖𝑑𝑎𝑡𝑢𝑚 is the number of depth steps to the intermediate datum and 𝑃𝑖𝑧  is slowness at 

depth step  𝑖𝑧.  It is important to review the initial model after applying the model weight 𝑊𝑚 

(slowness) and 𝑊𝑚 (thickness) to confirm the proper distribution of the model weights is used. 

𝑊𝑚 and 𝑊𝑑 can be incorporated into equation (4-4) for turning-ray refraction tomography as: 

   𝑊𝑑 𝐺 𝑊𝑚 𝛿𝑚 = 𝑊𝑑  𝛿𝑑      (4-39) 

𝑊𝑑 𝐺 𝑊𝑚 represents the new 𝐺 matrix that is updated on each external iteration. 𝑊𝑚 is applied to 

the Fréchet derivatives computation in 𝐺 matrix, and 𝑊𝑑 is used to reject data points that do not 

agree with the new model. The Fréchet derivatives in this G matrix are used in the computation 

of 𝜹𝒎 during the internal iterations with SIRT. 

4.5 Inversion procedure 
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The conventional refraction statics and reflection residual statics processing flow are outlined in 

Figure 4.5.  In this conventional processing flow, the refraction model m is computed by 

minimizing the square of the misfit between the first arrival picks d and the modelled first arrival 

times Lm.  Refraction statics corrections are then calculated from the computed model m.   

    

Figure 4. 5. Conventional refraction and reflection statics workflow.  𝐶𝑤𝑥 is the weathering 

correction computed by refraction inversion that solves for model parameter 𝑚  by minimizing 

the cost function 𝐽 =∥ 𝑑 − 𝐿𝑚 ∥2.    𝜖𝑑, 𝜖𝑚 and 𝜖𝑝 are data error, model error and algorithm 

limitation associated with the refraction inversion. 

 

 

Figure 4. 6.  Nonlinear optimization of the near-surface velocity model.   𝐶𝑤𝑥 is the weathering 

correction computed by refraction inversion that solves for model parameter 𝑚  by minimizing 

the cost function 𝐽 =∥ 𝑑 − 𝐿𝑚 ∥2.    𝜖𝑑, 𝜖𝑚 and 𝜖𝑝 are data error, model error and algorithm 

limitation associated with the refraction inversion. 𝑊𝑚 and 𝑊𝑑 are the model and data weights 

for the new cost function. 

 

However, if there are errors in the refractions solution, these errors will be applied to the 

reflection data. These errors are partially compensated later in the data flow by surface consistent 



 

59 

reflection residual statics. The proposed nonlinear optimization of near-surface velocity model 

processing flow using model and data weights described above is outlined in Figure 4.6.  In this   

proposed processing flow, the refraction model m is computed by minimizing the original cost 

function. Weathering statics corrections are computed and applied to the reflection data. Surface 

consistent reflection residual statics are then computed using the cross-correlations of the 

reflection data.  The smoothed surface consistent reflection residual statics E is then used to 

compute 𝑾𝒎 and 𝑾𝒅 for the new cost function.  The weathering statics correction  𝑪𝒘𝒙  

computed from the initial updated model 𝑾𝒎𝒎 is equivalent to applying smoothed surface 

consistent residual statics 𝑬 to the seismic data.  Subsequent iterations of minimizing || 𝑊𝑑𝑑 −

𝑊𝑑𝐿 𝑊𝑚𝑚′ ||² will produce a near-surface velocity model that is in harmony with the refraction 

and reflection data and can produce better imaging results.  This processing flow is also outlined 

in the following steps: 

1.  Minimize  J = || 𝑑 − 𝐿 𝑚 ||² and apply weathering statics correction to seismic data. 

2. Compute surface consistent reflection residual statics.   

3.  Compute smoothed surface consistent residual statics 𝑬,  𝑾𝒎  and 𝑾𝒅. 

4.  If required, pick again first arrival times using modelled first arrival times 𝑊𝑚𝐿 𝑚 as 

constraints. 

5.  Minimize J = || 𝑊𝑑𝑑 − 𝑊𝑑𝐿 𝑊𝑚𝑚′ ||². 

6.  Iterate 2 to 5 until there are no significant improvements in the near-surface velocity model 

and the reflection image. 

 Comparing to the conventional processing flow (Figure 4.5), the additional computation 

cost for this new processing flow is the cost for running another GLI or refraction tomography 

inversion as well as reflection residual statics.  GLI inversion is computationally efficient even 
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for large 3D surveys; therefore, computational cost should not be a concern.  For refraction 

tomography, we can reduce the computational cost by using fewer iterations because we are 

starting with a refined model.  For seismic surveys challenged by near-surface problems caused 

by near-surface conditions or acquisition limitations, we often try to enhance the reflection image 

by re-computing the near-surface refraction solution, involving manually revising the inversion 

parameters, editing the starting model and first arrival picks.  Therefore, comparing to the 

manual approach, this new processing flow does not increase the computational cost.  Moreover, 

it improves the manual approach by automatically updating the starting model and rejecting 

outlying picks that do not agree with the reflection coherence.  This new processing flow 

assumes that surface consistent residual statics makes a significant improvement to the coherence 

and structural integrity of the reflection image. Therefore, choosing the optimal parameters for 

the reflection residual statics process to overcome acquisition limitations is very important. For 

example, it is important to use reflection residual parameters that allow large smoothing or 

macro-binning radius at edges or gaps of the seismic survey where the CDP fold is low.  For this 

new method to make a noticeable difference to the near-surface velocity model and the reflection 

image, there must be a significant amount of medium or long-wavelength components in the 

surface consistent residual statics, because these components determine the magnitude of the 

model weight 𝑾𝒎 and data weight 𝑾𝒅 for the new cost function.  
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4.6 Field data example 

 

Figure 4. 7. Hussar 2D broadband experiment (a) location map, (b) seismic line layout. 

CDP stack sections are created using near-surface velocity models computed from the 

conventional and the new non-linear optimization workflow. The data used in this example are 

the vertical component of the dynamite shot records from a 4.5 Km 2D 3C survey acquired at 

Hussar, Alberta in September 2011.  The seismic survey was acquired for a broadband 

experiment (Margrave et al., 2012). Figures 4.7a and 4.7b show the location and the layout of the 

seismic line. The seismic line runs NE-SW with a topographic relief of about 80 m.  The receiver 

interval is 10 m and the shot point interval is 20 m. The 448-channel split-spread geometry gives 
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a nominal maximum offset of 2240 m for standard spread and a maximum offset of 4480 for off-

end shots. The nominal CDP fold for offsets 0 to 1500 m is 80.  First arrivals were picked for all 

traces and offsets; however, only first arrivals with an offset less than 3000 m were used in the 

refraction solution.  Figure 4.8 shows the time-distance plot of the first arrival picks with a 

distinct difference between layer velocities V1 and V2. This is a good indication that layer-based 

refraction inversion methods such as GLI can produce a stable solution. We created the 

common-receiver stack (Figure 4.9) and the CDP stack (Figure 4.10) with datum statics 

corrections only.  Effects of near-surface time delays are obvious on the common receiver stack. 

The incoherency of seismic events on the CDP stack is likely the result of the same near-surface 

time delays. To test the proposed nonlinear optimization workflow for the near-surface velocity 

model, we follow the steps outlined in figure 4.6.   We create the first near-surface velocity 

model by minimizing || 𝑑 − 𝐿𝑚 ||² for both GLI and turning-ray refraction tomography.  We then 

use the weathering statics corrected gathers from both methods to compute surface consistent 

reflection residual statics.  We smooth the surface consistent residual statics and use them to 

compute the model 

 

Figure 4. 8. First arrival picks for Hussar 2D survey 
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Figure 4. 9. Common receiver stack showing near-surface time delays 

 

Figure 4. 10. CDP stack with datum statics correction only 

weight 𝑊𝑚. The smoothing length determines the smoothness of the model weight.  A small 

smoothing length can introduce rapid changes to the near-surface velocity model and result in 

unreasonable near-surface velocity model and erroneous data weights.  A large smoothing length 

can reduce the effectiveness of the model and data weights.   We chose a smoothing length of 31 

receiver stations because the smoothed residual statics represents a reasonable medium and long 

wavelength residual statics and should provide reasonable model weights to start the next 

refraction iteration.   A threshold parameter of 2 times the standard deviation of traveltime 
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residuals is used for 𝑊𝑑. The near-surface velocity model is then updated iteratively by 

minimizing the cost function ∥ 𝑊𝑑𝑑 − 𝑊𝑑𝐿𝑊𝑚𝑚′ ∥2.   The GLI solutions, residual error analysis 

and error distributions from the two processing flows are plotted in Figure 4.11, 4.12 and 4.13 

respectively.  CDP stacks with weathering statics correction from the two GLI solutions (Figure 

411a and 411c) are plotted in Figure 4.14. Figure 4.12 shows the misfits between the first arrival 

picks and the modelled first arrival time for the two processing flows at iteration 0, 10 and 20. 

The vertical and horizontal alignment of misfits in Figure 4.12a represents receiver anomalies 

and shot anomalies in the near-surface velocity model prior to the GLI inversion. The misfits are 

reduced as the GLI solutions converge with iterations. The misfits after 10 iterations of 

minimizing the new cost function (Figure 4.12e) is smaller than the misfit after 20 iterations of 

minimizing the original cost function (Figure 4.12c).  Figure 4.13a and 4.13b show the error 

distribution for the first and second layers after 10 iterations of the original GLI inversion; while 

figures 4.13c and 4.13d show the error distribution of the first and second layers after 10 

iterations of the new GLI inversion. Errors are reduced after the new GLI inversion.    

The smoothed surface-consistent reflection residual statics (Figure 4.11b) from gathers 

corrected with the GLI solution from the original cost function are in the range of -2.7 to 3.3 

msec. They are small; however, a small long-wavelength trend dipping from SW to NE can be 

observed at the NE end of the seismic line. The difference between the GLI solutions (Figure 

4.11a and 4.11c) is small and occurs mostly at the two ends of the profile.  CDP stacks with 

weathering statics correction from the two GLI methods (Figures 4.14a and 4.14b) show 

significant improvement in coherence and structural integrity when compared to the CDP stack 

with datum statics correction only. However, there is no significant difference in coherence 

between the two CDP stacks with different GLI corrections.  This test confirms that small 
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smoothed residual statics will not result in significant improvement in the near-surface velocity 

model or reflection image. For seismic surveys that are affected by acquisition limitations, such 

as 3D surveys with large shot line and receiver line spacing, and in areas where near-surface 

velocity is better represented by a velocity gradient, or in areas where first arrival picking is 

prone to cycle skipping errors we would expect more difference from the two processing 

workflows.   

 

Figure 4. 11. (a) GLI near-surface velocity model computed from minimizing the original cost 

function. (b) Surface-consistent residual statics from reflection correlation, smoothed residual 

statics and first-order long-wavelength trend. (c) Near-surface velocity model computed from the 

new cost function with model and data weights derived from smoothed surface consistent 

reflection residual statics. 
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Figure 4. 12. Top: misfits between first arrival picks and modelled first arrival times (a) prior to 

GLI inversion, (b) after 10 iterations, (c) after 20 iterations. Bottom: misfits between first arrival 

picks and modelled first arrival times (d) after applying 𝑾𝒎 𝐚𝐧𝐝 𝑾𝒅, (e) after 10 iterations of 

the new GLI iterations.   

 

Figure 4. 13.  Error distribution after minimizing the original cost function for the first layer (a) 

and the second layer (b).  Error distribution after minimizing the new cost function for the first 

layer (c) and the second layer (d). 
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Figure 4. 14. CDP stack section with weathering statics correction using GLI velocity model 

computed from minimizing (a) the original cost function, (b) the new cost function with model 

weight and data weight derived from surface constant reflection residual statics. 

To confirm the effectiveness of the new approach for the GLI method in areas where first 

arrival picking is prone to cycle skipping errors, we imposed a 30 msec picking error to two-third 

of the first arrival picks greater than 300 msec and between receiver 250 and 300.  The imposed 

picking errors and GLI solutions are plotted in Figure 4.15.  The original first arrival picks and 

the first arrival picks with imposed errors over the receiver range of 117 to 327 are displayed in 

Figures 4.15a and 4.15c.  The comparisons of the GLI solutions from input with and without 

imposed first arrival picking error are displayed in Figures 4.15b and 4.15d.  The blue rectangle 

in Figure 4.15d marks the receiver ranges where imposed picking errors are added.  Within this 
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receiver range, we can see a thickening of the second layer in the GLI model (Figure 4.15d). We 

compute weathering statics corrections from the two solutions and their CDP stacks (Figure 

4.16).   

 

Figure 4. 15.  (a) Original first arrival pick over the receiver range of 117 to 327 (b) GLI solution 

from the original first arrival picks, (c) first arrival picks with 30ms errors added to 2/3 of the 

shots over the receiver range of 250 to 300, (d) GLI solution with imposed first arrival pick 

errors. The blue rectangle marks the receiver range where first arrival pick errors are added. 

 

Figure 4. 16.  (a) CDP stack section with weathering statics correction using GLI solution 

without imposed first arrival pick errors (b) CDP stack section with weathering statics correction 

using GLI solution with imposed first arrival pick errors. 
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Deterioration of coherence can be seen in the CDP stack (Figure 4.16b) from the GLI solution 

with imposed pick errors. We use the weathering statics corrected gathers from the GLI solution 

with first arrival pick errors (Figure 4.15d) to compute surface consistent reflection residual 

statics.  We use the same smoothing length of 31 receiver stations as in the previous test to 

compute the smoothed surface consistent reflection residual statics.  The threshold parameter of 

2 times the standard deviation of traveltime residuals is used for 𝑊𝑑. The near-surface velocity 

model is then  

 

Figure 4. 17.   (a) GLI near-surface velocity model computed from minimizing the original cost 

function. The blue rectangle marks the receiver range where first arrival pick errors are added.  

(b) Surface-consistent residual statics from reflection correlation, smoothed residual statics and 

first-order long-wavelength trend. Large positive smoothed residual correlates with the area with 

the first arrival pick errors. (c) Near-surface velocity model computed from the new cost function 

with model and data weights derived from smoothed surface consistent reflection residual statics. 

The excess thicknesses caused by first arrival pick errors are corrected. (d) Surface-consistent 

residual statics from reflection correlation after applying the new GLI solution. 

 



 

70 

 

Figure 4. 18. CDP stack section with weathering statics correction using GLI velocity model 

computed from minimizing (a) the original cost function, (b) the new cost function with model 

weight and data weight derived from surface constant reflection residual statics. 

 

updated iteratively by minimizing || 𝑊𝑑𝑑 − 𝑊𝑑𝐿 𝑊𝑚𝑚′ ||².   The original GLI solution with first 

arrival pick errors, surface-consistent reflection residual statics, the new GLI solutions and the 

new surface-consistent residual statics after applying the new GLI solution are plotted in Figure 

4.17. The smoothed reflection residual statics (Figure 4.17b) are in the range of -4 to 8 msec and 

correlate with the thickening of the original GLI solution caused by picking errors. The GLI 

solution from the new approach (Figure 17c) is closer to the solution without imposed first break 

picking errors shown in Figure 4.15b.  Figure 4.17d shows the surface consistent residual statics 

from the correlation of reflection data after applying the new GLI solution. The new GLI 

solution does not completely remove the medium wavelength components of surface-consistent 

reflection residual statics. The smoothed reflection residual statics after applying the new GLI 

solution are in the range of -3 to 3 msec. This can be the limit of the sensitivity and resolution of 

the refraction inversion and agrees with the observations we found in the first GLI test.  CDP 

stacks are created using the two GLI solutions. The windows of data near the marked area, where 

picking errors were introduced, are plotted in Figure 4.18.  Noticeable improvement in the 
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reflection coherence is observed in the new CDP stack (Figure 4.18b). This test confirms that for 

a GLI solution that is negatively impacted by systematic picking errors due to poor first arrival 

pick quality, correlation of reflection data can be used to construct the model and data weights to 

guide and constrain the GLI solution in this new approach. However, large smoothed surface 

consistent reflection residual statics are required for improvements to be significant. In the above 

test, this was achieved with smoothed residual statics of 8 msec.  The residual error analysis and 

error distribution from the two processing flows are plotted in Figures 4.19 and 4.20.  The misfits 

between first arrival picks and modelled first arrivals time before and after GLI inversion for 

input with imposed first arrival picking error are plotted in Figures 4.19a and 4.19b respectively. 

The picking errors appear as receiver consistent anomalies marked by blue arrows in figure 

4.19a.   

 



 

72 

 

Figure 4. 19. (a) misfits between first arrival picks and modelled first arrival times prior to GLI 

inversion showing the effects of imposed errors, (b) misfits after GLI inversion showing most 

imposed errors are removed by the final GLI solution.  Bottom: (c) misfits between first arrival 

picks and modelled first arrival times after applying 𝑊𝑚 𝑎𝑛𝑑 𝑊𝑑 ,(d) after 10 iterations of 

minimizing the new cost function. 

 

Figure 4. 20. Error distributions for GLI test with imposed pick errors. Top: After minimizing the 

original cost function for the first layer (a) and the second layer (b).  Bottom: after minimizing 

the new cost function for the first layer (c) and the second layer (d). 
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Figure 4.19b shows the picking errors were corrected for by the final GLI solution. This results 

in the overestimation in layer thickness shown in figure 4.17a.  Smoothed surface-consistent 

residual statics (Figure 4.17b) are used to compute the model and data weights for the new cost 

function || 𝑊𝑑𝑑 − 𝑊𝑑𝐿 𝑊𝑚𝑚′ ||².  The misfits after applying the model weight and data weights 

are displayed in Figure 4.19c. The misfits after 10 iterations of the new GLI inversion are 

displayed in Figure 4.19d.  First arrival picks rejected by the data weights are shown as missing 

picks and are shown in white. The RMS of the misfits after 10 iterations is 4.92 msec and is 

comparable to the RMS of 4.43 msec from the original GLI solution without the imposed first 

arrival pick errors.  The error distributions from minimizing the cost functions || 𝑑 − 𝐿𝑚 ||² and || 

𝑊𝑑𝑑 − 𝑊𝑑𝐿 𝑊𝑚𝑚′ ||² are plotted in Figure 4.20. Similar to the first GLI test errors are reduced 

after minimizing the cost function || 𝑊𝑑𝑑 − 𝑊𝑑𝐿 𝑊𝑚𝑚′ ||².  However, with larger smoothed 

surface-consistent residual statics of 8 msec, improvement to the near-surface velocity and the 

coherence of the reflection image is noticeable. 

We also compare the turning-ray refraction solutions from the two approaches. The 

results of the turning-ray refraction tomography test are summarized in Figures 4.21a to 4.21e.  

As shown in the ray density plot (Figure 4.21b), not all cells are covered by ray paths.  The 

minimum non-zero ray density of 600 and maximum ray density of 38000 seem high.  However, 

for a 448-channel recording with 269 shots and 488 receivers, ray coverage immediate below a 

shot point can be 448 channels plus 448 receivers.  If a velocity cell is covered by every ray path, 

the maximum possible ray density is 269 shots × 448 channels. Therefore, the ray density range 

of 600 to 38000 is reasonable.  Velocity values at cells with no ray coverage cannot be updated 

and velocity values at cells with insufficient ray coverage can be unreliable.  The smoothed 

surface-consistent reflection residual statics (Figure 4.21c) from gathers corrected with a 
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tomographic solution from the original cost function are in the range of -4.9 to 2.5 msec. We do 

not see a similar long-wavelength trend at the NE end of the seismic line as observed in the GLI 

solutions; however, a long-wavelength trend can be observed at a location between 1.0 Km to 2.0 

Km from the start of the seismic line. Applying the model weight to the velocity values results in 

very slow velocity in some velocity cells.  To maintain the same time term corrections from the 

smoothed surface-consistent residual statics, we choose to update the model thickness by 

stretching the velocity model between the surface and the intermediate datum. The updated 

velocity model 𝑊𝑚𝑚 and the final velocity model after 7 iterations of the new kernel are plotted 

in Figures 4.21d and 4.21e.  The CDP stacks created with the two different solutions are plotted 

in Figure 4..22. The CDP stack with the new turning-ray refraction tomography solution (Figure 

4.22b) shows significant improvement in coherence at a location between 1.0 Km to 2.0 Km 

from the start of the seismic line. Amplitudes of seismic events at around 1.0 second are slightly 

weaker on the CDP stack with the new solution.  This suggests NMO velocity may have to be 

revised after the new statics solution.  On the CDP stack with the original turning-ray refraction 

tomography solution (Figure 4.21a), there is a long-wavelength trend dipping from NE to SW. 

This trend is reduced on the CDP stack with the new solution. In the GLI tests, we found 

smoothed surface consistent residual statics of 3.3 msec was not sufficient to show noticeable 

improvement in the near-surface velocity model and reflection image; while smoothed surface 

consistent residual statics of 8 msec was sufficient to show noticeable improvements. Therefore, 

with the smoothed surface consistent residual statics of -4.9 to 2.5 msec, we do not believe 

additional iterations of the new processing flow will result in meaningful changes. 
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Figure 4. 21. Turning-ray refraction tomography: (a) final model by solving  𝐺 𝛿𝑚 = 𝛿𝑑, (b) ray 

density plot shows low coverage at edges of the model, (c) smoothed surface-consistent 

reflection residual statics, (d) updated model 𝑊𝑚 𝑚 , (e) final model by solving 𝑊𝑑𝐺𝑊𝑚𝛿𝑚 =
𝑊𝑑 𝛿𝑑. 
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Figure 4. 22. CDP stack section with weathering statics correction using turning-ray refraction 

tomography velocity model computed from solving (a) the original cost function, (b) 

 𝑊𝑑𝐺 𝑊𝑚𝛿𝑚 = 𝑊𝑑𝛿𝑑 with model weight and data weight derived from surface constant 

reflection residual statics. 

 

4.7 Discussion 

Surface-consistent reflection residual statics derived from correlation of reflection data 

optimize the stacking response of the reflection data.  Using these statics corrections as 

undetected errors in the near-surface refraction analysis and back projecting these errors to the 

near-surface velocity model can produce weathering statics corrections that give the same 

stacking response as applying the surface-consistent reflection residual statics.  Using only the 



 

77 

smoothed surface-consistent reflection residual statics helps to alter the medium to long-

wavelength variations in the near-surface velocity model.  Applying the model weight to the 

velocity can sometimes place the velocity into an unreasonable range. It may be necessary to 

review the initial updated velocity model to determine the proper combination of model weight 

for velocity and thickness. We only apply a constant correction to all depth steps below the same 

surface location; however, this correction serves only as a priori information to guide the 

refraction inversion toward time delays that agree with the reflection data. With proper selection 

of the data weight threshold, an optimal solution can be achieved by rejecting outlying picks.  

Data weight threshold of 1 standard deviation keeps 68% of the data; while data weight threshold 

of 2 standard deviations keeps 95% of the data. We suggest a data weight threshold between 1.5 

and 2.  We found the smoothing length of 31 to 51 receiver stations or 300 m to 500m results in a 

reasonable medium wavelength reflection residual statics for the proposed algorithm.  However, 

these parameters should be tested. The number of non-linear iterations required depends on the 

quality of the first solution.  The first GLI test results in a stable near-surface velocity model and 

only minor medium wavelength surface-consistent residual statics are derived from the reflection 

corrections. The GLI solution from the proposed non-linear optimization workflow only shows 

small differences in the near-surface velocity model and reflection coherence; therefore, more 

iterations will not result in meaningful improvement.  However, for a more challenging seismic 

survey, improvement in the near-surface velocity model can lead to improved coherence and 

structural integrity of the reflection image. Therefore, subsequent iterations can potentially 

further enhance the near-surface velocity model. The second GLI test with imposed picking 

errors results in cycle skipping in first arrival picks. These errors generate medium wavelength 

residual statics in the range of -4 to 8 msec. The proposed nonlinear optimization workflow 



 

78 

corrects for the errors caused by the imposed first arrival picking errors and results in a 

noticeable improvement to the near-surface velocity model and the coherence of the reflection 

image.  However, the medium wavelength components derived from the new GLI solution are in 

the range of -3 to 3 msec. As observed in the first GLI test, a medium wavelength residual of 3 

msec will not result in meaningful improvement from additional iteration.  

4.9 CONCLUSION 

Conventional refraction inversion using first arrival times alone suffers from data errors, 

numerical errors, and algorithm errors inherent in refraction data and refraction methods.  

Surface-consistent residual statics using correlation of reflection data can compensate for some 

of these deficiencies in the near-surface velocity model by maximizing the stack response of the 

reflection data; however, the near-surface velocity model is left compromised by these errors. 

These deficiencies in the new surface velocity model tend to accumulate in the deeper reflectors 

during subsequent reflection velocity model building processes.  In contrast to the conventional 

refraction inversion that uses first arrival times alone, the new nonlinear optimization scheme 

also uses the surface-consistent reflection residual statics that maximizes the stacking response as 

a priori information in the refraction inversion.  This is implemented by modifying the cost 

function of refraction inversion to include model weight and data weight.  We applied this 

scheme to GLI and turning-ray refraction tomography methods.  Test results from the Hussar 2D 

dataset confirm that the proposed nonlinear optimization refraction solution workflow is robust 

and converges to a near-surface velocity model that is harmonized with the surface consistency 

of the reflection data. However, the significance of the improvement depends on the magnitude 

of the smoothed surface-consistent residual statics. We found that for the GLI method smoothed 
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surface-consistent residual statics of 8 msec. can produce noticeable improvements in the near-

surface velocity model and the coherence of the reflection image. We also found that for the 

refraction tomography test, smoothed surface consistent residual statics in the range -4.9 to 2.5 

msec. can produce noticeable improvements. 
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   Chapter 5 

Near-surface velocity model building and statics correction for blended land data 

This chapter addresses the problems of blended land data in new-surface and statics correction. 

It evaluates the problems of blended seismic data acquisition imposed on refraction and 

reflection arrival times. It proposes a robust refraction arrival separation method that uses 

amplitude burst suppression and the sparse Radon transform to enhance the first break quality of 

the blended data. It also demonstrates that after refraction statics correction, we can perform 

normal moveout velocity analysis and surface consistent residual statics prior to deblending 

because of the passive separation property of the blended data. I include the following published 

paper in the chapter. 

  
Bernard Law1, and Daniel Trad1 
1University of Calgary, Department of Geoscience, Calgary, Canada 

Abstract: An accurate near-surface velocity model allows proper correction of near-surface 

variation on land seismic data. This process often uses first arrival time picks of refraction 

energy. Simultaneous source data acquisition, also called seismic blending, increases the spatial 

sampling and/or reduces the acquisition cost. However, interfering shots also contaminate the 

refraction arrivals and the quality of first arrival time picks for land seismic data. We use 

synthetic and numerically blended land data to assess the interfering noises from seismic 

blending. We propose a robust refraction arrival separation method that uses amplitude burst 

suppression and the sparse Radon transform algorithm to enhance the first break quality of 

blended data. We also demonstrate that after refraction statics correction, we can perform normal 

Near-surface velocity model building and statics correction for blended land data 

Bernard Law and Daniel Trad, 2021 

Published in Canadian Journal of Exploration Geophysics Volume 45, no. 1, spring 

2021 
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moveout velocity analysis and surface consistent residual statics prior to deblending because of 

the passive separation property of blended data. Furthermore, we show that the suppression and 

removal of blending noise can be done using the computational efficient parabolic Radon 

transform after statics and moveout correction. 

5.1 Introduction 

Conventional seismic data acquisition deploys sources with a large time delay to minimize 

interference between sources.  With advances in computing capacity and imaging algorithms, 

seismic data with longer offset, wider azimuth, denser source and receiver spacing have resulted 

in better seismic images. However, these improvements demand higher data density and increase 

the acquisition cost. Over the past two decades, acquisition and processing techniques have been 

developed to increase acquisition efficiency (Beasley et al., 1998; Berkhout, 2008). Beasley et al. 

(1998) propose a simultaneous source firing operation involving two or more sources firing at 

the same time. They demonstrate that, with sufficient blended source separation, processes that 

require correct geometry information, for example, NMO and stack, can suppress blending 

interference noises directly without direct separation of the blended shots. This happens because 

interference noises have incorrect geometry information. Another group of deblending methods 

is denoising-based deblending. Hampson et al. (2008) introduce small random firing-time delays 

between sources and show that after removing the firing-time delay (a process called “pseudo-

deblending”), blending interference noise is coherent in the common shot domain and incoherent 

in other domains. Processes such as migration and CDP stack can effectively suppress blending 

interference. Mahdad et al. (2011) separate blended data by iteratively removing blending noise 

in pseudo-deblended receiver gathers via F-K filtering. Trad et al. (2012) use Apex Shifted 

Radon transform to separate blended shots in the shot gather domain. Another approach is to 
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treat blending interference as a signal and simultaneously separate the blended shots by inversion 

( Moore et al. 2008, Wapenaar et al. 2011, Ibrahim and Sacchi 2013, 2015, Abma et al. 2015,). 

Ibrahim and Trad (2020) show inversion-based approach results in better deblending than the 

denoising-based approach. However, inversion-based methods inverse all the shots at the same 

time, while the denoising-based approach works on one gather at a time. For large 3D, memory 

and computational requirements can be a challenge for the inversion-based approach because of 

the need for changing sort order on each iteration. 

Blended land seismic data are generally noisier than marine data and surface-related statics has 

to be addressed at the beginning of the processing steps (Moore et al. 2008, Manning and Ahmad 

2013). Manning and Ahmad (2013) show source separation by sparse inversion enhances first 

break qualities. In this study, we use synthetic data and numerically blended land data to assess 

the effects of seismic blending on first arrival picking and statics computation. We also use 

sparse Radon transform to remove blending interference in pseudo-deblended receiver gathers.  

5.1.1 Deblending vs passive separation 

The typical processing flow of blended data is to separate the blended shots by using a 

denoising-based or inversion-based method and to follow that with the conventional processing 

flow  (Figure 5.1a).  An alternate processing flow is to process the blended data without 

separation by refining processing algorithms to make use of the characteristic of the blended data 

(Figure 5.1b).  Algorithms such as velocity analysis, NMO and migration enhance the signal 

from primary shot points with proper survey geometry, while suppressing the signal from 

interfering shots through stacking or summing.  For example, NMO aligns reflection energy 

according to the source to receiver offset and moveout velocity. Stacking of moveout corrected 

data will enhance the signal from the primary shots that have the correct source to receiver offset 
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and will suppress signal from interfering shots. Migration sums the reflection energy according 

to the forward modelled ray paths. Similar to NMO stacking, migration will enhance the 

reflection signal from primary shots and suppress the reflection signal from the interfering shots.  

  

Figure 5. 1.  Processing flow of blended data: (a) Deblending followed by conventional 

processing, (b) Modified processing algorithms using the characteristics of the blended data 

without direct deblending of blended data. 

5.1.2 Statics correction 

Denoising-based deblending, inversion-based deblending and passive separation processing 

methods all require weathering statics and surface consistent residual statics corrections at the 

front end of the processing flow (Figure 5.2) for land seismic surveys. Weathering statics 

correction involves refraction signal and surface consistent residual statics involves reflection 

signal. Both refraction and reflection signals are contaminated by interfering shots in seismic 

blending. In this study, we use the denoising-based method with pseudo-deblended data to 

separate the refraction and reflection signal for weathering statics and surface consistent residual 

statics correction computation. 
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Figure 5. 23.   Statics corrections for blended data processing flow. 

5.2 Theory 

5.21 Seismic blending and de-blending 

Seismic source blending can be represented by the source matrix S, blending matrix 𝚪,  and the 

blended source matrix 𝐒𝒃𝒍 : 

𝐒𝒃𝒍 =  𝐒𝚪.            (5-1) 

For a 9 shot points seismic survey with a blending fold of 3 and regular shot increment, these 

matrices are: 

𝐒 =

[
 
 
 
 
 
 
 
 
𝑆1 0 0 0 0 0 0 0 0
0 𝑆2 0 0 0 0 0 0 0
0 0 𝑆3 0 0 0 0 0 0
0 0 0 𝑆4 0 0 0 0 0
0 0 0 0 𝑆5 0 0 0 0
0 0 0 0 0 𝑆6 0 0 0
0 0 0 0 0 0 𝑆7 0 0
0 0 0 0 0 0 0 𝑆8 0
0 0 0 0 0 0 0 0 𝑆9]

 
 
 
 
 
 
 
 

 ,     (5-2) 
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𝚪 =

[
 
 
 
 
 
 
 
 
e−jωdt1 0 0

0 e−jωdt2 0
0 0 e−jωdt3

e−jωdt4 0 0
0 e−jωdt5 0
0 0 e−jωdt6

e−jωdt7 0 0
0 e−jωdt8 0
0 0 e−jωdt9]

 
 
 
 
 
 
 
 

,       (5-3) 

 

𝐒𝐛𝐥 
=

[
 
 
 
 
 
 
 
 
 
 
S1e

−jωdt1 0 0

0 S2e
−jωdt2 0

0 0 𝑆3e
−jωdt3

S4e
−jωdt4 0 0

0 𝑆5e
−jωdt5 0

0 0 𝑆6e
−jωdt6

𝑆7e
−jωdt7 0 0

0 S7e
−jωdt8 0

0 0 S9e
−jωdt9]

 
 
 
 
 
 
 
 
 
 

,      (5-4) 

where dti  is the randomized firing-time delay for 𝑖𝑡ℎ shot point. Each column of  𝚪  contains the 

blending parameters for a blended source, and each column  of 𝐒𝐛𝐥 
is a blended source. 

Randomized firing-time delays result in temporal inconsistency.  By interchanging rows in the 

blending matrix 𝚪 , additional spatial inconsistency can be added to the seismic blending. 

For blended seismic data 𝐏𝒃𝒍 , it can be represented by the blending matrix 𝚪  and the unblended 

data 𝐏 as:  

𝐏𝒃𝒍 =  𝐏𝚪.            (5-5) 

Because 𝚪  is not a square matrix, it is not invertible. Equation (5-5) cannot be directly inverted 

to get 𝐏. 𝐏 is instead computed by minimizing the following objective function :  

  𝐽 =∥ 𝐏𝒃𝒍  
− 𝐏𝚪 ∥2+ λ ∥ 𝐏 ∥2 ,     (5-6) 
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where 𝜆 is a tradeoff constant, 𝚪H is the conjugate transpose of 𝚪 , and the least-squares solution 

to (6) is: 

   𝐏 = 𝐏𝒃𝒍 𝚪 H(𝚪𝚪H + λI )−1.      (5-7) 

The term 𝐏𝒃𝒍 𝚪 H, 
 
also referred to as pseudo-deblending (Mahdad et al., 2011), expands the 

blended data 𝐏𝒃𝒍  into the number of sources that would be obtained without blending and 

corrects for the fire-time delay for each shot record within a blended shot. After pseudo-

deblending, the signal appears coherent, while blending noises appear incoherent in receiver and 

CDP domains (Figure 5.4). This property leads to the removal of blending noises in the pseudo-

deblended receiver and CDP gathers. Algorithms that use this property include FK transform 

(Madhad et al., 2011, Abma et al., 2015) and sparse Radon transform (Moore et al.,2008;  

Ibrahim et al., 2014).      

5.2.2 Sparse Radon transform 

The Radon transform (RT) maps data 𝑢(𝑡, ℎ), in time 𝑡, distance ℎ space to radon space 𝑈(𝜏, 𝑝), 

in zero offset time 𝜏  and slowness 𝑝, according to the basis function 𝑇(𝜏, 𝑝, ℎ): 

𝑈(𝜏, 𝑝) = ∬𝑑(𝑡, ℎ)𝛿(𝑡 − 𝑇(𝜏, 𝑝, ℎ))𝑑𝑡𝑑ℎ.       (5-8) 

Linear, hyperbolic and parabolic basis functions are often used in seismic data processing for 

coherent and non-coherent noise attenuation : 

 Linear:  𝑇(𝜏, 𝑝, ℎ) = 𝜏 + 𝑝ℎ.      (5-9) 

 Hyperbolic: 𝑇(𝜏, 𝑝, ℎ) = 𝜏 + √𝜏2 + 𝑝2ℎ2.     (5-10) 

 Parabolic: 𝑇(𝜏, 𝑞, ℎ) = 𝜏 + 𝑞 ℎ2,      (5-11)  

where 𝑞 is not the slowness, but simply a coefficient in the transform (Hampson 1986). 𝑞 is also 

referred to as curvature. 
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Apex shifted (AS)  RT (Trad et al., 2012) incorporates apex ℎ0 of each source of blended  shot 

record: 

AS Hyperbolic:  𝑇(𝜏, 𝑝, ℎ) = 𝜏 + √𝜏2 + 𝑝2(ℎ − ℎ0)
2.     (5-12) 

Equation (5-8) is used directly in velocity stacks for moveout velocity analysis. However, 

slope/curvature/velocity filtering requires an inversion process. Thorson and Claerbout (1985) 

use stochastic inversion in time domain hyperbolic RT. Hampson (1986) proposes fast frequency 

domain parabolic RT, that minimize the cost function: 

  𝐉 =∥ 𝐋 𝐮 − 𝐝 ∥𝟐 ,       (5-13) 

with the solution: 

  𝐮 = (𝐋𝐓 𝐋)−𝟏  𝐋𝐓 𝐝 ,       (5-14) 

where L is the forward radon modelling operator for  frequency 𝝎, offset ℎ𝑖 and 𝑞𝑘:  

  𝐿𝑖,𝑘 = 𝑒−𝜔𝑞𝑘ℎ𝑖
2        (5-15) 

Ng and Perz (2004) outline a time-domain Gauss-Seidel iteration algorithm with sparseness 

constraints in 𝑝 and 𝑡𝑎𝑢 direction using thresholding as well as prioritizing the computation 

sequence of the 𝑞  traces according to their energy from the previous iteration.   

5.3 SYNTHETIC EXAMPLE 

The first arrival picking on blended data has not been widely addressed in the literature, to assess 

the impact of blending noise on the first arrival and reflection energy we generate a finite-

difference synthetic dataset using a layered wedge model and acquisition geometry with a 

receiver and shot spacing of 24 m.  We use a 5 shots pattern acquired simultaneously with 

randomized firing-time delays (Figure 5.3).  The first shot in each pattern has zero firing delay, 

while the other 4 shots have randomized firing delays between 50 and 200 ms. Figure 5.4 shows 

the pseudo-deblended shot, receiver and CDP gather. Blending noise appears coherent in the shot 
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gather; while it appears incoherent in receiver and CDP gather.  The amplitudes of the first 

arrival energy from interfering shots are stronger than the reflection signal. We use sparse linear 

Radon transform (Ng and Perz, 2004) to model the first arrival energy on windowed pseudo-

deblended receiver gathers (Figure 5.5a). The windowed pseudo-deblended received gather is 

transformed to 𝑝 and 𝑡𝑎𝑢 domain. Sparseness is introduced by computing the  𝑝 traces in the 

descending order of its energy level from the previous iteration and by rejecting 𝑝 traces with 

low semblance value. Hence, the strongest event will be modelled first, and weak events will be 

omitted. The modelled first arrival energy is then constructed by the forward transform of the 

sparse 𝑝 traces to the distance-time domain. The  𝑝 range is 0.5 ms/m to 1 ms/m, and the 

semblance threshold is 0.0001 for this test. Figures 5.5b and 5.5c display the receiver and CDP 

gather with modelled first arrival energy removed. Strong residual first arrival energy can be 

seen near the sources; however, there are significant improvements in the reflection arrival 

between 1 and 1.5 seconds. Figures 5.6 and 5.7 compare the normal moveout (NMO) velocity 

analysis using CDP gather with and without the removal of modelled first arrival energy. 

Although the reflection event at 1100 ms is contaminated by strong first arrival from interfering 

shots (Figure 5.6a), the velocity semblance scan (Figure 5.6b) can focus at the right velocity 

because of the passive separation property of the NMO and stacking process that suppresses the 

blending interference with an incorrect source to receiver offset. After NMO correction, seismic 

reflections are better aligned, and some blending interference appears as large-amplitude bursts 

(Figure 5.7c). We use a 200 ms time-varying median filter to lower the amplitude level of the 

amplitude bursts in NMO corrected pseudo-deblended CDP gathers(Figure 5.8a) that is greater 

than 2 times the median amplitude level. However, the interferences are still significant and 

appear coherent on shot gathers (Figure 5.8c).  Using the coherence of the moveout corrected 
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seismic reflection, we perform sparse parabolic RT on the moveout corrected and amplitude 

burst suppressed CDP gather (Figure 5.9a). Figure 5.9b and 5.9c show the moveout restored 

CDP and shot gathers after sparse parabolic RT. 

   

Figure 5. 3.  Velocity model and 5 shots blending design pattern. The firing-time delay for this 

example is zero for the first source of each blended shot. 

 

 

Figure 5. 4.  (a) Pseudo-deblended shot gather showing coherent blending interference, (b) 

pseudo-deblended receiver gather and (c) pseudo-deblended CDP gather showing incoherent 

blending interference. 
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Figure 5. 5.  (a) Refraction arrival modelled with sparse linear Radon transform of pseudo-

deblended receiver gather 39, (b) pseudo-deblended receiver gather and (c) pseudo-deblended 

CDP gather after removal of all modelled refraction arrival. 

 

Figure 5. 6.   Pseudo-deblended CDP gather 201, (b) NMO velocity analysis, (c) moveout 

corrected CDP gather. 
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Figure 5. 7.  (a) Pseudo-deblended CDP gather 201 after removal of modelled refraction arrival, 

(b) NMO velocity analysis, (c) moveout corrected CDP gather. 

 

 

Figure 5. 8.  (a) Pseudo-deblended CDP after moveout correction and amplitude burst 

suppression, (b) moveout restored, (c) shot gather after amplitude burst suppression in CDP 

gathers. 
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Figure 5. 9.  (a) Pseudo-deblended CDP after moveout correction, amplitude burst suppression 

and sparse parabolic Radon transform (b) moveout restored, (c) shot gather after amplitude burst 

suppression and sparse parabolic Radon transform in CDP gathers. 

 

These test results demonstrate that the denoising-based method using sparse linear Radon 

transform can effectively model and separate first arrival energy on blended data. This is 

computationally more efficient than the inversion-based approach. Separating first arrival energy 

on blended land data is important for near-surface velocity modelling using the first arrival time 

picks or waveform. These tests also show that moveout velocity analysis can be performed on 

pseudo-deblended CDP gather before separation because of the passive separation property of 

the NMO and stacking process. Furthermore, sparse parabolic Radon transform on moveout 

corrected data can be an effective denoising-based deblending method. 

 

5.4 NUMERICALLY BLENDED 2D LAND DATA EXAMPLE 

We use numerically blended 2D land data to test the effectiveness of the first arrival separation 

and its significance on near-surface velocity model building and statics correction. The 3-shots 

blending pattern has zero firing delay time for the first shot and a randomized firing delay time 
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that ranges from 1000 to 1500 ms. The data used in this example are the vertical component of 

the dynamite shot records from a 4.5 Km 2D 3C survey acquired at Hussar, Alberta in September 

2011 (Margrave et al., 2012).  The 2D line runs NE-SW with a topographic relief of about 80 m 

(Figure 5.10). Examination of blended shot records (Figure 5.11) shows surface elevation effects 

and blending interference from the ground roll and coherent energy of interfering shot points. 

We address the surface elevation effects by applying a static time shift that corrects the surface 

elevation to a smooth surface. We also low-cut filter the blended record to suppress the ground 

roll interference on the first arrival energy (Figure 5.12).  In the pseudo-deblended receiver 

gather, refraction and reflection arrivals appear as a coherent signal; while blending interference 

appears as large-amplitude burst and incoherent noise (Figure 5.13).  

  

We apply low-cut and median filters to suppress the ground roll and large amplitude burst, and 

linear sparse Radon transform to suppress the incoherent blending noise in the pseudo-deblended 

receiver gathers over a time window that includes the first arrival energy (Figure 5.14).  The 

processed receiver gathers are sorted to shot domain for first arrival picking (Figure 5.15).  The 

process does not completely remove the blending noise; however, it improves the first arrival 

energy for the first break picking. Figures 5.15b and 5.15c display the processed first arrival 

energy and the original non-blended seismic shot record with the first arrival time picks from the 

processed pseudo-deblended data displayed in blue.  

 

We use the first arrival time picks to compute a new surface velocity model using refraction 

tomography (Figure 5.16).  The refraction tomography starts with a layered-based GLI refraction 

inversion with the top layer velocity fixed at 1000 m/s. Refraction tomography will then update 
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the velocity model according to ray path geometry. There is also a lower velocity limit of 1000 

m/s used in the refraction tomography solution. Figures 5.17 and 5.18 compare the CDP stack 

with datum elevation correction only with the CDP stack with weathering statics correction.  The 

latter shows an overall significant improvement in both coherence and structural integrity. 

However, there are strong blending noises on the CDP stack. Moveout velocity functions for the 

CDP stacks are determined from weathering statics corrected CDP gathers (Figure 5.19). We 

also computed the surface consistent residual statics using the weathering statics and moveout 

corrected CDP gathers. CDP gathers after surface consistent residual statics (Figure 5.20b) 

shows significant improvement in the alignment of reflection energy. We use the smoothed 

surface consistent residual statics to update the refraction tomography model (Law and Trad, 

2018). Figure 5.21 displays the updated refraction tomography model and the CDP stack with the 

updated weathering statics. Significant improvement in the lateral coherence can be seen when 

compared to the CDP stack with weathering statics computed from the original refraction 

tomography solution (Figure 5.18).  Figure 5.22 summarizes the workflow for refraction 

tomography and surface-consistent residual statics for blended land data. 

 

The CDP stack after weathering and surface-consistent residual statics still shows blending 

interference. We use a median filter and parabolic sparse Radon transform on statics and 

moveout corrected receiver gathers (Figure 5.23a) to remove the remaining coherent blending 

noises. Figure 5.23b displays the processed receiver gather. Figure 5.24a displays the CDP stack 

after the removal of blending noises in receiver gathers. It shows the strong blending noises have 

been removed. Figure 5.24b displays the CDP stack of the original nonblended data with statics 

correction and it shows a good correlation with the CDP stack from the denoising-based 
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deblending workflow. However, some blending noises still noticeable, especially at the edges of 

the CDP stack. Figure 5.25a and 5.25b compare the statics corrected shot gather 373 before and 

after the removal of blending noises.  Figure 5.25c shows the differences between the blended 

shot gather and the deblended shot gather. The refraction arrivals at the top of the gather are lost 

during the NMO and UNMO processes; therefore, they dominate the difference display. Figure 

5.25d shows the original non-blended shot gather, it compares well with the deblended shot 

gather in figure 5.25b. However, it also shows leakage from the refraction arrivals from the 

blended shots. This study demonstrates parabolic sparse Radon transform with statics and 

moveout corrected pseudo-deblended receiver gather as an effective denoising-based deblending 

method. 

 

 

Figure 5. 10. Hussar 2D broadband experiment location map and seismic line layout (Isaac and 

Margrave 2012). 
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Figure 5. 11.   Numerically blended shot record showing (1) surface elevation effect, (2) ground 

roll interference and (3) coherent first arrival interference.  

 

Figure 5. 12.  Numerically blended shot record after smooth elevation time adjustments and low-

cut filter.    
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Figure 5. 13.    Pseudo-deblended receiver gather.  

 

Figure 5. 14.  Pseudo-deblended and surface elevation corrected receiver gather, b) after the low-

cut filter, amplitude burst suppression and sparse linear Radon transform.   
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Figure 5. 15.  Numerically blended shot gather, b) windowed, low-cut filter, amplitude burst 

suppression and sparse linear Radon transform in pseudo-deblended receiver domain, c) original 

non-blended shot gather. (First arrival time picks from processed pseudo-deblended data are 

displayed in blue) 

 

 

Figure 5. 16. First arrival time picks from deblended data and refraction tomography solution. 
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Figure 5. 17.   CDP stack with datum elevation correction only. 

 

 

Figure 5. 18.  CDP stack with datum elevation and weathering statics correction. 
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Figure 5. 19.  Pseudo-deblended CDP gather with weathering statics correction and NMO 

velocity semblance 

 

Figure 5. 20.  a) Pseudo-deblended CDP gather with NMO correction,(b) pseudo-deblended CDP 

gather with NMO correction and surface consistent residual statics correction 
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Figure 5. 21.   CDP stack with weathering statics computed from model updated with reflection 

residual statics. 

 

Figure 5. 22.  a) Refraction tomography workflow for blended land data,  b) Surface-consistent 

residual statics workflow for blended land data.  
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Figure 5. 23.   a) Pseudo-deblended receiver gather with weathering statics computed from 

model updated with reflection residual statics, b) after the median filter and sparse parabolic 

radon transform. 

 

a) 

 

b) 

 



 

103 

Figure 5. 24.   a) CDP stack after statics, median filtering and sparse parabolic Radon transform 

in receiver gathers, b) CDP stack of original non-blended data with statics corrections.   

 

 

 

Figure 5. 25.  a) Pseudo-deblended shot gather with statics correction, b) shot gather after sparse 

parabolic Radon transform on statics and moveout corrected pseudo-deblended receiver gathers. 

c) (a)-(b), d) original non-blended shot gather with statics correction. 

 

5.5 CONCLUSION  
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Seismic blended interference degrades the quality of refraction arrival that is critical for near-

surface velocity building and statics correction for blended land data. We have shown that linear 

sparse Radon transform can effectively model refraction arrival energy on blended data. For 

blended land data, it is also necessary to suppress ground roll and large amplitude bursts using 

low-cut and median filters. We also showed that normal moveout velocity analysis can be 

performed on weathering statics corrected blended data prior to separation. Subsequent surface 

consistent residual statics can then be computed on weathering statics and moveout corrected 

data. We also used the smoothed surface constant residual statics computed from the correlation 

of reflection energy of the blended data to update the near-surface velocity model. Furthermore, 

we have demonstrated that a parabolic sparse Radon transform on statics and moveout corrected 

pseudo-deblended receiver gather is an effective deblending method. 
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Chapter 6 

Application of stereo-tomography Reflection tomographic methods to Hussar 2D survey   

Reflection tomography uses reflection arrival times to estimate the subsurface velocity. Using 

deeper reflection arrival times, reflection tomography can provide velocity information of deeper 

depth than the previously discussed refraction tomography. Stereotomography is one of the 

reflection tomography methods. Unlike classical reflection tomography, stereo-tomography does 

not require picking of continuous refection events and it uses additional information of the 

apparent slopes of local coherent events in the common shot and receiver gathers. 

6.1 INTRODUCTION 

Stereotomography belongs to the family of slope tomography methods (Sword, 1987).  Slope 

tomography characterizes each reflection ray path with its two-way traveltimes and apparent 

slopes or ray parameters of the reflection event on the corresponding shot and receiver gathers 

(Figure 6.1). In a shot gather the apparent slope of a reflection event  recorded at a geophone 

represents the ray parameter 𝑃𝑔 of that geophone, and it determines the ray path between the 

reflection point and the geophone. Similarly, in the geophone gather the apparent slope of the same 

reflection event represents the ray parameters 𝑃𝑠 of the shot, and it determines the ray path between 

the reflection point and the shot. Therefore, it is necessary to evaluate both the shot gather and 

receiver gather of a reflection event in slope tomography to establish the unique shot and geophone 

ray pairs. Hence, the name stereo-tomography was used by Billette and Lambar�́� to emphasize the 

shot and receiver ray segment pair for each localized reflection event. Figure 6.1a shows traces 

around the shot location 𝑺 and geophone location 𝑅 at the two-way traveltime 𝑇𝑠𝑟. If the velocity 

of media is known, the shot and receiver ray segments can be reconstructed with 𝑃𝑠 , 𝑃𝑔 and 𝑇𝑠𝑟 
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(Figure 6.1b).  The ray parameters 𝑃𝑠 and 𝑃𝑔 can be picked by tracking the reflection events or by 

automatic picking using the semblance of the localized shot and receiver slant stacks.  

The advantages of slope tomography over classical reflection tomography (Bishop et al., 

1985; Chiu and Stewart, 1987) include the additional data measurements of shot and receiver ray 

parameters and the elimination of the requirement to pick continuous reflection events on pre-stack 

data; hence, making automated picking easier.  Sword (1987) developed the first slope tomography 

method, also called CDR (Rieber 1936; Riabinkin 1957) tomography. This method reconstructs 

the shot and receiver ray segments by shooting rays from shot and receiver at the surface using the 

picked 𝑃𝑠 ,  𝑃𝑔 and ending the ray tracing when the sum of the traveltime of the shot ray segment 

and receiver ray segment equals the two-way traveltime, 𝑇𝑠𝑟. The velocity of the media 𝑉 is 

estimated by minimizing the position errors 𝑋𝑒𝑟𝑟 of the endpoints of the ray segments (Figure 

6.2a). However, this method is sensitive to the picking errors and can be unstable because the 

accuracy of the forward modelling depends greatly on the picked 𝑃𝑠 and 𝑃𝑔. Stereotomography 

(Billette et. al, 1998, 2003) remedied this instability using the generalized formulation of the slope 

tomography method. The forward modelling of stereo-tomography involves ray tracing from a 

scatter point 𝑋  toward the 𝑆 and 𝑅 at the surface, and is independent of 𝑃𝑠  ,  𝑃𝑔 and 𝑇𝑠𝑟. Therefore, 

it is independent of picked data and remedies the instability of the original slope tomography 

method.  However, besides the media velocity, this approach also requires the estimations of the 

scatter position and the ray path geometry parameters for each local reflection event. This results 

in a more complex multi-parameter inversion problem (Figure 6-2b). The model space of stereo-

tomography includes 𝑉, 𝑋, the shooting angle 𝜃𝑠 and traveltime 𝑇𝑠 for the shot ray segment, and 

the shooting angle 𝜃𝑔  and traveltime 𝑇𝑟 for the receiver ray segment. The data space includes 

𝑆, 𝑅, 𝑃𝑠, 𝑃𝑔 and 𝑇𝑠𝑟 
.  Picking of reflection arrival times and slopes are flexible in stereo-
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tomography and can be based on the semblance of the shot and geophone slant stacks. However, 

for noisy data and in areas of complex structure, picking can still be a challenge. We will validate 

the accuracy of the stereo-tomography method using synthetic data created with a wedge model 

and the Marmousi model. We will also apply the stereo-tomography method to a 2D land data set 

acquired in the Hussar area of Alberta to demonstrate the data preparation, the picking procedure 

and the quality of the Stereotomography solution. 

 

Figure 6. 1  (a) Relationship between 𝑇𝑠𝑟𝑃𝑠, 𝑃𝑔 of a localized coherent event. (b) The event is 

characterized by the traveltime 𝑇𝑠𝑟 and the ray parameters 𝑝𝑠 and 𝑝𝑔 and is associated with a ray 

segment pair in the velocity model. Reflector dip 𝜙 and ray segment parameters including the 

scatter point location X, ray shooting angles 𝜃𝑠   and 𝜃𝑔 can be estimated from the half-offset h, the 

ray parameters, and two-way traveltime 𝑇𝑠𝑟. 

 

Figure 6. 2  (a) CDR tomography shoots a ray from the surface using picked ray parameters 

𝑃𝑠, 𝑃𝑔 and estimates the velocity by minimizing the position error Xerr of the ray segment 

endpoints. (b) Stereo-tomography shoots rays from an estimated scatter point X to the shot and 

receiver, and  estimates the velocity V and ray segment parameter X, 𝜃𝑠 , 𝜃𝑔 , 𝑇𝑠 𝑎𝑛𝑑 𝑇𝑟 
by 

minimizing the misfits of the data space parameters. 
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6.2 THEORY 

 

6.21  Forward and inverse problem 

      In classical reflection tomography, the forward modelling of the traveltime tomography 

can be represented by: 

 

 𝑡𝑟𝑎𝑦𝑝𝑎𝑡ℎ = ∫ 𝑠(𝑥, 𝑧)𝑑𝑙,
𝑟𝑎𝑦𝑝𝑎𝑡ℎ

      (6-1) 

 

where the measured traveltime 𝑡  is the integral of slowness 𝑠(𝑥, 𝑧) along the ray path. 

 

If the  line integral equation (6-1) defines a linear system, it can be represented in matrix form as: 

 

𝐝 = 𝐋 𝐦 ,       (6-2) 

 

where d is the travel time of a raypath, m is the slowness model,  L is a matrix that contains the 

physical relationship between the measurements 𝐭 and the model parameter 𝐬.  L is called the 

Kernel, Jacobian, Fréchet derivative or sensitivity matrix. For the line integral equation 1, L is of 

the dimension of the number of data points by the number of velocity cells. Each row of L 

contains the ray path segment length for each cell that a ray path has traversed to create a 

traveltime measurement.   

 

The cost function or misfit function for equation (6-2) is: 
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                       𝐽(𝑚) = ∥ d − 𝐋 m ∥2                                                   (6-3) 

The linear least-squares solution of equation (6-3) is 

                      𝐦 = (𝐋𝐓𝐋 )−1𝐋𝑇𝐝 .                                                       (6-4) 

Since ray path is a function of the slowness and line integral equation represent a non-linear 

system, equation 2 becomes: 

  𝐝 = 𝐋(𝐦),                    (6-5) 

and the cost function for equation (6-4) is: 

  𝐽(𝑚) = ∥ 𝐝 − 𝐋 (𝐦) ∥2.                 (6-6) 

 

Because of the non-linearity of Equations (6-5) and (6-6), the slowness model cannot be obtained 

directly using Equation 4.  However, the traveltime 𝐝  is picked from the data; it is invariant or 

model-independent. We can exactly calculate the cost function in equation (6-6);  Therefore, the 

non-linear problem of classical reflection tomography can be linearized by iteratively solving:  

 

  𝚫𝐝 = 𝐋 𝚫𝐦,        (6-7) 

where Δm is the model update vector between iterations, L is the Frechét derivative matrix 

𝜕𝐿(𝑚)/𝜕𝑚, the partial derivatives of the modelled response with respect to the model parameters 

and Δd is the differences between the modelled and the observed traveltimes.   

6.22 Stereo-tomography  

Unlike classical traveltime tomography that has only traveltimes in the data space and 

slowness in the model space, stereo-tomography is a multiparameter problem (Figure 6-2b). It is 

necessary to include the data covariance 𝐂𝐝
  in the cost function: 

 

𝐽(𝑚) =  (𝐝 − 𝐋(𝐦))
𝐓
𝐂𝐝

−𝟏(𝐝 − 𝐋(𝐦))   .    (6-8) 

 



 

110 

 

When the data covariance are uncorrelated,  𝐂𝐝
  is a diagonal matrix with the diagonal elements 

being the square of the standard derivation 𝛔 
  of the data, and 𝐂𝐝

−𝟏 is also a diagonal matrix with 

the diagonal element being 1/𝛔𝟐.  Therefore 𝐂𝐝
  can be chosen according to the standard 

deviation of the data measurements. It is important to choose the appropriate unit for the data 

covariance so that the data misfit of different data types is scaled accordingly. The data space of 

stereo-tomography includes 𝑆, 𝑅, 𝑇𝑠𝑟, 𝑃𝑠  and 𝑃𝑔. Data misfit  Δ𝑑𝑖 for each data point in equation 

7 is: 

 

  Δ𝑑𝑖 = ((𝑆𝑜𝑏𝑠 − 𝑆𝑐𝑎𝑙)𝐶𝑑𝑆
  , (𝑅𝑜𝑏𝑠 − 𝑅𝑐𝑎𝑙)𝐶𝑑𝑅

 , (𝑇𝑠𝑟𝑜𝑏𝑠
− 𝑇𝑠𝑟𝑐𝑎𝑙

)𝐶𝑑𝑇𝑠𝑟
 ,  

(𝑃𝑠𝑜𝑏𝑠
− 𝑃𝑠𝑝𝑟𝑒𝑑

) 𝐶𝑑𝑃𝑠
 , (𝑃𝑔𝑜𝑏𝑠

− 𝑃𝑔𝑝𝑟𝑒𝑑
)𝐶𝑑𝑃𝑔

 ).    (6-9) 

 

The model space includes 𝑉, 𝑋𝑐 
, 𝜃𝑠 , 𝑇𝑠 , 𝜃𝑔 

and 𝑇𝑔 
.  For each data point, the Fréchet derivative 

𝐿𝑖  in equation 7 is the combination of the derivatives of data space element with respect to the 

model space element: 

 

 𝐿𝑖 =
𝛛(𝐒,𝐑,𝐓𝐬𝐫,𝑷𝒔,𝑷𝒈)

𝛛(𝐗𝐜,𝛉𝐬,𝜽𝒈,𝑻𝒔,𝑻𝒈,𝑽𝟏,𝒎)
 .       (6-10) 

 

Each element of the Fréchet derivative 𝐿𝑖 can be computed during paraxial raytracing (Cervený 

et al, 1977).  With the data misfit Δ𝑑𝑖 and the Fréchet derivative 𝐿𝑖 for each data point 

established, model update 𝚫𝐦 can be computed iteratively by solving equation (6-7 using a 

conjugate gradient method.  



 

111 

 

6.3 Synthetic DATA EXAMPLE 

To validate the accuracy of the stereo-tomography method, we create synthetic data sets using 

a wedge model and the Marmousi model. The wedge model (Figure 6.3a) consists of four constant 

velocity layers with the second layer thins out with increasing surface location. 200 shot gathers 

(Figure 6.3b) were created using finite-difference modelling with absorbing sponge boundaries. 

We picked a rough moveout velocity function (Figure 6.3c) at the middle of the model and created 

a near-trace stack (Figure 6.3d) using traces with an offset less than 1000 m. Reflection boundaries 

were picked on the near offset stacks and were used to track the reflection arrival times 

automatically on the moveout corrected CDP gathers (Figure 6.3e). Moveout correction was then 

removed from the picked reflection arrival times. Figure 6.3f shows a shot gather with picked 

reflection arrivals displayed in blue. We use the reflection arrival times to compute the shot and 

geophone ray parameters for stereo-tomography inversion. Figure 6.4a shows a shot gather with 

the two-way times and geophone slope picks. Figure 6.4b shows the quality control panels for each 

analysis location. Figure 6.4c shows the initial estimates of the scatter positions for all the stereo-

tomography picks using straight ray and homogeneous media assumptions. The green lines in 

Figure 6.4c mark the dip bars computed from the 3 stereo-tomography picks.  
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Figure 6. 3.  (a) Wedge model. (b) Finite difference shot gather. (c) Moveout velocity scans. (d) 

Near trace stack. (e) A moveout corrected CDP gather with refraction arrival times picked by 

correlation with the near-trace stack. (f) Shot gather with reflection arrival times.  

 

Figure 6. 4.  (a) A shot gather with two-way traveltime and geophone ray parameter picks. Green 

lines mark the picks for the active analysis location. (b) Quality control panels for an analysis 

location, (c) Initial estimates of the scatter positions. Green lines represent dip bars computed from 

stereo-tomography picks at the active analysis location.  

We use the stereo-tomography picks to estimate the velocity 𝑉  and ray segment parameters  𝑋 , 

𝜃𝑠 , 𝑇𝑠 , 𝜃𝑔 
and 𝑇𝑔 

.  Figure 6.5a shows the final velocity solution with the velocity values at 6 

locations displayed in white. Velocity values of the true model are displayed in black. Figure 6.5b 

shows the estimated scatter positions. Velocity solution from stereo-tomography does not capture 
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the blocky characteristics of the wedge model, but it resembles velocity gradients centred around 

the true velocity values. The scatter positions match the velocity boundaries of the wedge model; 

hence, it is possible to develop a hybrid method that uses the scatter positions to establish the layer 

boundaries and modify the stereo-tomography algorithm to estimate a layered based velocity 

model. We estimate the velocity boundaries by linear fitting the computed scatter positions. The 

average velocity is computed by averaging stereo-tomography solution between layer boundaries 

(Figure 6.5c).  Figure 6.5d displays the true velocity model with linear fitted scatters for 

comparison. 

 

Figure 6. 5.  (a) Stereotomography solution of the wedge model synthetic dataset. Velocity values 

at 6 locations are displayed in white for the stereo-tomography solution and in black for the true 

model. (b) Scatter positions are displayed as black dots. (c) Velocity layer boundaries are 

computed by linear fitting the computed scatter positions and displayed as black dots. 

Stereotomography solution is averaged between computed layer boundaries. (d) Linear fitted 

scatters positions displayed as black dots on the true velocity model. 

We also use the Marmousi model (Figure 6.6a) to create 261 synthetic shot records with 96 

traces per shot (Figure 6.6b). Both the shot spacing and geophone spacing are 25m. Because of the 
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complex structures of the model and reflection signal, it is necessary to pick the reflection arrival 

times, shot and geophone ray parameters using semblance of the shot and geophone slant stacks. 

Figure 6.7a shows the picked reflection events on shot 248. Figure 6.7b shows the picked events 

and semblance at shot location 248 and geophone location 170. Figure 6.7c shows the initial 

estimates of the scatter positions for all the stereo-tomography picks using straight ray and 

homogeneous media assumptions.   We use a constant velocity gradient as the starting model for 

stereo-tomography inversion. Figure 6.8a shows the final velocity solution, and figure 6.8b 

overlays the final scatter positions on the velocity solution. Comparing the stereo-tomography 

solution to the true model in figure 6.6a, the velocity solution captures the long-wavelength trend 

of the true model up to about 2Km, and the scatter positions match the velocity boundaries in the 

true model. Figure 6.8c displays the velocity values from the stereo-tomography solution in white, 

and the true model in black at 6 locations. This further confirms that the stereo-tomography 

solution does capture the long-wavelength trend of the true model. 

To evaluate the effectiveness of the stereo-tomography solution as a starting model for high-

resolution inversion methods such as FWI, we perform FWI on the Marmousi data set using 

starting model from a constant vertical velocity gradient (Figure 6.9a) and from the stereo-

tomography solution (Figure 6.9c).  Figures 6.9b and 6.9d compare the FWI solution from the two 

starting models. FWI solution using the constant vertical velocity gradient as the starting model 

only captures some of the high-frequency velocity changes in the true model. FWI solution using 

the stereo-tomography solution as the starting model recovers most of the velocity features up to 

about 2Km. Details below 2Km are missing in the FWI solution.  Potential improvement can be 

using higher-order finite-difference propagation in FWI and using the higher resolution multi-grid 
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FWI approach proposed by Trad 2020, in which the high-frequency field data will be shaped to 

the lower frequency predicted data between iterations. 

   

Figure 6. 6.  (a) Marmousi model. (b) Synthetic shot records.  

 

Figure 6. 7.  (a)  A shot gather with two-way traveltime and geophone ray parameter picks 

determined by  the maximum semblance of the shot and geophone slant stacks. Green lines mark 

the picks for the active analysis location. (b) Quality control panels for an analysis location, (c) 

Initial estimates of the scatter positions. Green lines represent scatter positions and dips computed 

from stereotomography picks at the active analysis location.  
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Figure 6. 8.  (a) Stereotomography solution of the Marmousi synthetic data set. (b) Scatter positions 

are displayed as black dots. (c)  Velocity values at 6 locations are displayed in white for the stereo-

tomography solution and in black for the true model.  

 

Figure 6. 9. (a)  Constant vertical velocity gradient model. (b) FWI solution using (a) as the starting model. 

(c) Stereotomography solution. (d) FWI solution using (c) as the starting model. 

6.4 FIELD DATA EXAMPLE 

We apply similar approaches of the wedge model and the Marmousi model in stereo-

tomography to a 2D land dataset. The data used in the example are the vertical component of the 
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dynamite shot records from a 4.5 Km 2D 3C survey acquired at Hussar, Alberta in September 

2011. The seismic survey was acquired for a broadband experiment (Margrave et al., 2012).  Figure 

6.10a shows the location and the layout of the seismic line and some nearby wells. Figure 6.10b 

shows a spherical divergence corrected shot gather, and figure 6.10c shows the deconvolution and 

weathering statics correction of the same shot records.  To remove the ground roll interference and 

to improve the lateral coherence, we use Radon transform filter on moveout corrected CDP gathers. 

Figures 6-10d shows the same shot records after the Radon transform filter in the CDP domain. 

We use the same approach that we took in the wedge model to automatically pick the refraction 

arrival time by correlating a CDP stack (Figure 6.10e) with the moveout corrected and noise 

attenuated CDP gathers. The moveout correction times are then backed out from the picked 

reflection arrival times. Figure 6.10f shows the same shot records with picked reflection arrival 

times. In order to identify the tie between the well logs and the seismic events, we compare the 

CDP stack in time with the 8-12-45-55 Hz. synthetic seismograms (Figure 6.11). In specific, we 

tie the CDP stack with the Belly Rive, Basal Belly River, Base Fish scales and the Mannville 

formations. The Belly River reflection is quite noisy, we choose to add it for better control on the 

shallow. We also attempt to do some picking at 200 ms and below 1000 ms. 

 The reflection arrival times are then used to compute the geophone and shot ray parameters. 

To remove errors in the reflection arrival times, the geophone and shot ray parameters are picked 

again using the maximum semblance of the shot and geophone slant stacks (Figure 6.12a). The 

final reflection arrival times and ray parameters are then used for stereo-tomography inversion. 

The final stereo-tomography solution is displayed with P-P velocity from well 01-34-025-21W4 

and 14-34-025-21W4 (Figure 6.12b). The velocity values from the stereo-tomography solution at 

the well locations agree with the long-wavelength trend of the P-P velocity from well logs. Figure 
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6.6-12c shows the scatter position solution. The scatter positions align with Belly River, Basal 

Belly River, Base Fish Scales and Mannvilles. However, the picks do not cluster as tight as the 

two synthetic models.     This is an indication of some picking error.  

   To validate the accuracy of the stereo-tomography solution, we depth migrate the Hussar 2d data 

set using the stereo-tomography solution as the velocity model.  Figure 6.13a shows the depth 

image gathers and figure 6.13b shows the depth migration result with P-P velocity logs in depth.  

This result confirms that the stereo-tomography velocity solution accurately migrates the Hussar 

2D data in depth. A further enhancement is possible through residual curvature analysis using the 

depth image gathers. 

 

Figure 6. 10. (a) Hussar seismic line and the location of nearby wells. (b) Shot 335 with spherical 

divergence correction. (c) Shot 335 deconvolved with weathering statics correction. (d) Noise 

suppression with Radon transform on moveout corrected data. (e) CDP stack with 8 picked 

horizons. (f) Reflection arrival times picked by correlating (d) and (e).  
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Figure 6. 11. CDP time stack with well ties and synthetic 8-12-45-55 Hz. Seismograms to identify 

reflection events with well tops.  
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Figure 6. 12. (a) Geophone and shot ray parameters refined by the semblance of shot and geophone 

slant stacks, and scatter point positions computed from all the stereo-tomography picks using 

straight-ray and homogeneous velocity assumption. (b) Final stereo-tomography velocity solution 

and well ties. Smooth white lines are stereo-tomography velocity values at well locations.  (c) 

Scatter position solution. 
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Figure 6. 13. (a) Images gathers at the well locations and one image gather in between the well 

locations. (b) Depth migration using velocity from stereo-tomography displayed with P-P velocity 

logs at well locations 01-34-025-21W4 and 14-34-025-21W4.  
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Figure 6. 14.  (a) Images gathers at the well locations and one image gather in between the well 

locations. (b) Depth migration using velocity from stereo-tomography displayed with P-P velocity 

logs at well locations 01-34-025-21W4 and 14-34-025-21W4.  

 

.  
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6.5 CONCLUSION 

We have reviewed the stereo-tomography method and verified its accuracy and characteristic 

with a wedge model and the more complex Marmousi model. We showed that the velocity solution 

from stereo-tomography does not capture the blocky characteristics of the wedge model, but it 

resembles velocity gradients centred around the true velocity values. The scatter positions match 

the velocity boundaries of the wedge model; hence, it is possible to develop a hybrid method that 

uses the scatter positions to establish the layer boundaries and modify the stereo-tomography 

algorithm to estimate a layered based velocity model. The Marmousi model test showed that the 

solution of stereo-tomography captured the long-wavelength velocity model that helped FWI to 

converge to a high-resolution model. We noticed that the FWI solution below 2Km was not able 

to capture the details of the Marmousi model.  A higher-order finite-difference propagation in the 

FWI and adaptive multi-grid FWI approach can potentially improve the resolution of the FWI 

solution below 2Km in the Marmousi model. We apply the stereo-tomography approaches used in 

the blocky wedge model and the complex Marmousi model to the Hussar 2D dataset. We first 

track the reflection arrival times on moveout corrected and noise attenuated CDP gathers, and then 

remove the moveout corrections from the reflection arrival time picks. To correct for the picking 

errors, shot and geophone ray parameters are picked again automatically using the semblance of 

the shot and geophone slant stacks. The stereo-tomography solution was found to be accurately 

migrating the Hussar 2D data set to a depth section that agrees with the well logs. A further 

enhancement is possible through residual curvature analysis using the depth image gathers. 
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Chapter 7 

Traveltime Tomography: First break picking and machine learning  

One of the most laborious and problematic tasks in refraction tomography is the first arrival 

traveltime or first break (FB) picking. Many automated FB picking methods determine the 

arrival time by the difference in amplitude, phase, or frequency characteristics between the data 

before and after the FB and are often done on a trace-by-trace basis. Spatial correlation between 

adjacent traces is only used for subsequent editing of mis-picks. The final step in FB picking is to 

confirm or manually modify the FB picks by trained technicians. With experiences from a large 

number of datasets with different topography and near-surface geological setting, experienced 

technicians can recognize the relationship between the FB and the complex waveform of the first 

arrival energy and various interfering noises. With increasing data density, this has become a 

very time-consuming and expensive process.  

Machine learning is a fast-developing science that teaches computers to learn from data 

and human experiences.  There are two potential applications of machine learning in automatic 

FB picking. One application of machine learning is automated editing of outlying picks by 

clustering. Another more important application is deep learning by training the networks with 

manually edited FB and classifying the first arrival energy waveforms as pre-FB and post-FB. 

With a catalogue of images of trained models, the deep neural works will be able to classify the 

first arrival energy waveforms of a new datasets as pre-FB and post-FB as accurately as the 

trained technicians. In this chapter, I will review some of the automatic FB picking methods, 

clustering applications and one deep-learning application. 
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7.1 Automated first arrival picking 

During a seismic experiment, ground motions are recorded after a seismic source is activated. A 

seismic record contains the refraction and reflection seismic signals caused by the seismic 

source, as well as surface-related seismic noises (Figure 7.1) caused by ambient noise, human 

and animal activities.  First arrival energy is characterized by the relatively weak surface noises, 

followed by the stronger refraction seismic signal. I will review and compare two automatic first 

arrival picking methods that use these amplitude characteristics. The signal to noise ratio (S2N) 

method defines the sum of peaks, 𝑃(1: 𝑘 − 1), of a potential first arrival time pick 𝑘, as noise, 

and the peak at 𝑘, as the signal, and 𝑆2𝑁 at 𝑘 as: 

  𝑆2𝑁(𝑘) =
𝑃(𝑘)

𝑆𝑢𝑚(𝑃(1:𝑘−1))
          7-1 

Another method that uses the characteristics of the amplitude levels before and after the first 

arrival is the Akaike’s information criterion (AIC) (Akaike, 1973; St-Onge, 2011).  AIC is 

defined as: 

 𝐴𝐼𝐶(𝑘) = 𝑘 ∗ log (𝑣𝑎𝑟(𝑦(1: 𝑘)) + (𝑛𝑠𝑎𝑚𝑝 − 𝑘 − 1) ∗ (log (𝑣𝑎𝑟(𝑦(𝑘 + 1: 𝑛𝑠𝑎𝑚𝑝)), 7-2 

where 𝑣𝑎𝑟(𝑦(𝑖: 𝑗)) is the variance for the time series 𝑦 from sample 𝑖 to 𝑘.  

𝑣𝑎𝑟(𝑦(𝑖: 𝑗)) =
𝑠𝑢𝑚( 𝑣(𝑦(𝑖:𝑗)− 𝑦(𝑖:𝑗)̅̅ ̅̅ ̅̅ ̅̅  )

2
)

𝑗−𝑖 𝑖𝑖=(𝑖:𝑗
      7-3 

 

When 𝑘 is less than the first arrival time, 𝑣𝑎𝑟(𝑦(1: 𝑘)) is small, and (𝑣𝑎𝑟(𝑦(𝑘 + 1: 𝑛𝑠𝑎𝑚𝑝)) is 

large. Similarly, when k is greater than the first arrival time, (𝑣𝑎𝑟(𝑦(1: 𝑘)) becomes larger, and  

𝑣𝑎𝑟(𝑘 + 1: 𝑛𝑠𝑎𝑚𝑝) becomes smaller. When 𝑘  is at the first arrival time, 𝐴𝐼𝐶(𝑘) is at its 

minimum. 

 



 

126 

 

Figure 7. 1.  Seismic record with varying surface noise conditions. Receivers 359, 444 and 544 

are identified with an increased noise level.  

 

 
 

Figure 7. 2.  Results of S2N and AIC methods with increasing noise level (a to c). Top panel: first 

arrival energy. Middle panel: S2N analysis. Bottom panel: AIC analysis. 
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 Figure 7.2a shows the first arrival energy with weak surface noise, followed by S2N and 

AIC analysis. Using positive FB polarity. The first arrival pick is chosen at a peak with the 

maximum 𝑺𝟐𝑵(𝒌). The polarity of the S2N analysis method is peak; therefore, it picks a peak 

that meets the S2N criteria and arrives later than the zero-crossing picked by the AIC method. 

With a moderate increase in noise level (Figure 7.2b)  both S2N and AIC methods are able to 

detect the consistent FB picks. However, with significantly stronger surface noises that 

overwhelm the first arrival energy, both S2N and AIC methods fail. 

 

Figure 7. 3.  Seismic shot 295 high-resolution linear Radon transform in windowed first arrival 

energy in receiver gather domain. 

 

 I sort the seismic records into common receiver gather domain and apply high-resolution 

Sparse Linear-Radon transform to remove the surface noise from windowed first arrival energy. 

Figure 7.3 shows the shot record 295 after being sorted back to the shot domain. This shows that 

high-resolution Sparse Linear-Radon transform in common receiver gather domain is an 

effective algorithm to remove surface noises that appear coherent within the shot gathers. Figure 
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7.4 shows both S2N and AIC methods can effectively determine the FB picks after the removal 

of the strong surface noise. However, this approach also creates some pre-first arrival artifacts 

that can negatively affect the FB picking accuracy.  In general, AIC is superior to the S2N 

method; however, additional preconditioning processes may still be required to remove strong 

surface noises. Moreover, carefully editing of automatically picked FBs is often required by 

trained technicians with experience in identifying FB through complex first arrival waveforms 

and surface noises. 

 

 

 
Figure 7. 4.  Results of S2N and AIC methods at shot 295 and receiver 544 after high-resolution 

linear Radon transform in windowed first arrival energy in common receiver gather domain. 

 

7.2 application of machine learning in automatic first arrival picking 

Unlike the two trace-by-trace automated first arrival picking algorithms, machine learning 

algorithms explore the spatial relationship between data points. When technicians perform 

quality control of the computer-picked FBs, they reject FB picks that vary rapidly with respect to 

the neighbouring picks. Clustering is a machine learning technique that groups the data points 

according to their attributes. It has the potential of automating the human efforts in rejecting and 

modifying the FB picks that vary too rapidly. Three commonly used clustering algorithms are K-



 

129 

Means, Gaussian Mixture Models (GMM) and Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN).   

7.2.1 K-Means 

K-Means assumes the data points distribution to be Euclidean or circular. The Euclidean distance 

square is defined as: 

 Δ2 = (𝑥 − 𝜇)𝑇(𝑥 − 𝜇),        7-4 

where 𝑥 is the dimensional matrix, 𝜇 is the mean matrix. 

 

The following steps outline the K-Means algorithm: 

1. Starts with randomly placing the centroids of 𝑁 clusters. 

2. For each data point, calculates the Euclidean distance between the data point and each 

of the centroids. 

3. To find the clusters, assign the data point to the nearest centroid. 

4. Recompute the coordinates of the centroids using the mean coordinates of the clusters. 

5. Repeat steps 2, 3, and 4 until convergence. 

7.2.2 Gaussian-Mixture-Models 

GMM assumes the data points distribution to be Gaussian and is less restrictive than K-means.  

The Gaussian distribution function is defined as: 

 𝑓(𝑥) =
1

2𝜋 |∑ |
1
2 
exp[ −

1

2
(𝑥 − 𝜇)𝑇 ∑ (𝑥 − 𝜇)] −1      7-5 

where 𝑥 is the dimensional matrix, 𝜇 is the mean matrix and  ∑ is the covariance matrix. For a 

two dimensions case and 𝜇 equals 0: 

 𝑥 = [
𝑥1

𝑥2
  ],          7-6 
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 𝜇 = [ 
0
0
 ],          7-7 

 ∑ = [ 
𝜎1

2 𝜎12

𝜎12 𝜎2
2   ],         7-8 

 ∑ =
1

𝜎1
2𝜎2

2− 𝜎12
2  [ 

𝜎2
2 −𝜎12

−𝜎12 𝜎1
2  ] = [ 

𝑎 −𝑏
−𝑏 𝑐

 ] −1 .     7-9 

The Mahalanobis or statistical distance is different from the Euclidean distance by the inclusion 

of the inverse covariance matrix: 

 Δ =  (𝑥 − 𝜇)𝑇 ∑ (𝑥 − 𝜇)] −1  

     = [ 𝑥1 𝑥2 ] [ 
𝑎 −𝑏

−𝑏 𝑐
 ] [

𝑥1

𝑥2
  ] 

     = 𝑎𝑥1
2 − 2𝑏𝑥1𝑥2 + 𝑐𝑥2

2        7-10 

For the special case of 𝑎 = 𝑐, and 𝑏 = 0, this is the same as Euclidean distance.  For the case of 

𝑎 > 𝑐, and 𝑏 = 0, this is a horizontal ellipse. For the case of 𝑎 < 𝑐, and 𝑏 = 0, this is a vertical 

ellipse. For the case of 𝑎 ≠ 𝑐, and 𝑏 ≠ 0,  this is a rotated ellipse. Hence, Mahalanobis distance 

is more flexible and can handle elongated clusters better than Euclidean distance. 

The following steps outline the algorithm that uses the Mahalanobis distance: 

1. Starts with randomly placing the centroids of 𝑁 clusters. 

2. Compute the mean matrix 𝜇  and the covariance matrix ∑  of the clusters. 

3. Compute the Mahalanobis distance between the data point and each of the centroids. 

3. To find the clusters, assign the data point to the nearest centroid. 

4. Repeat steps 2, 3, and 4 until convergence. 

GMM available in Scikit-learn achieves the same result but is implemented differently. 

The following steps outline the GMM algorithm: 
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1. Starts with randomly initializing the Gaussian distribution parameters 𝜇  and ∑ for 

each cluster. 

2. GMM iterates until convergence using the Expectation-Maximization (EM) 

algorithm. 

 

7.2.3 Density-Based Spatial Clustering of Application with Noise 

DBSCAN is a density-based clustering algorithm that forms clusters of dense regions of data 

points and ignores the low-density areas by considering them as noise. Hence, DBSCAN has an 

advantage in handling clusters with irregular shapes and data points with noisy outliers. 

DBSCAN uses two parameters 𝑒𝑝𝑠, and min_𝑠𝑎𝑚𝑝𝑙𝑒𝑠.  𝑒𝑝𝑠 defines the maximum distance 

between two points for them to belong to the same cluster. min_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 defines the minimum 

number of data points a cluster must-have.  The following outlines the DBSCAN algorithm: 

1. For each data point calculate its distance from all other points. If the distance is within 𝑒𝑝𝑠, it 

is a neighbour of the corresponding data point. If the data point has a number of neighbours 

greater than or equal to min_𝑠𝑎𝑚𝑝𝑙𝑒𝑠, it is considered a core point. 

2. For each core point that has not been assigned to a cluster create a new cluster. For this core 

point, find all its neighbouring points and assign them to the same cluster. 

3. Continue step 2 until all the non-core points are covered. 

 

I will demonstrate the effectiveness of the three clustering algorithms in recognizing trends and 

rejecting outliers using FB from shot records from the Hussar 2D (Margrave et.al 2012). The 

shot record is linear moveout (LMO) corrected with time correction of 0 ms at 0 m offset and 

1600 ms at 4500 m offset, and bulk shifted by 500 ms (Figure 7.5).  Automatic FB picking is 
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done using the AIC algorithm. Three groups of mis-picks are introduced at around sequential 

receiver locations 120, 220 and 320. The FB picks are input to the K-Means algorithms, GMM 

algorithms and DBSCAN algorithms. The parameter for the K-Means and GMM algorithms is 

20 clusters. The parameters for the DBSCAN algorithm are 𝑒𝑝𝑠 = 0.08 and min_samples=3.  

Figures 7.6a to 7.6c compare the results from the 3 algorithms.  All three algorithms capture the 

trend of the FB picks; however, only DBSCAN can reject the mis-picks at around sequential 

receiver 120, 200 and 320. Figure 7.6c displays the input FB as black dots and the interpolated 

DBSCAN picks as a blue line. Figure 7.7a displays the input FB picks and interpolated 

DBSCAN in the same scale as the LMO shot gather 203. Figure 7.7b overlays the interpolated 

DBSCAN picks on LMO shot gather 203. This shows DBSCAN is a good algorithm for 

rejecting outlying picks in FB picks. 

 

Figure 7. 5.  LMO and bulk shifted shot records with FB picks displayed as black dots. 
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Figure 7. 6.   (a) K-Means cluster boundaries and centroid, b) GMM cluster boundaries and 

centroids, c) DBSCAN cluster boundaries and centroids, d) Interpolated DBSCAN centroids 

displayed as a blue line and input FB picks displayed as black dots.  
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Figure 7. 7.  a) Interpolated DBSCAN centroids displayed as a blue line and input FB picks 

displayed as black dots in the same scale as the LMO shot gather, b) LMO shot gather 203 

overlays with interpolated DBSCAN picks.  

 

7.2.4 Deep learning with UNET 

Another more important machine learning application is supervised deep learning by training the 

networks with images of the first arrival energy waveform and pre-FB and post-FB masks 

created by automatically picked, and manually edited FB (Figure 7.8). With a catalogue of 

images of trained models from the regions of similar near-surface geology, the deep neural 

networks will be able to classify the first arrival energy waveforms of a new dataset as pre-FB 

and post-FB as accurately as the trained technicians.  The ultimate goal of the network is to 

classify each pixel of an input image according to the class to which it belongs.  

 

Figure 7. 8.   Linear-moveout corrected shot records, b) Corresponding pre-first break and post-

first break masks.  
 

 

This can be solved as an image segmentation problem using UNET. One-half of the 

UNET increases the depth of the feature maps and downsizes the resolution of the image using 
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convolutional filters during the encoding process, while the other side of UNET increases the 

resolution of the output using transpose convolution filters during the decoding process (Figure 

7.9).  The input image size of an LMO corrected shot record is 258 traces and 501 samples. This 

is resized to 256 traces by 256 samples for the UNET.  The first break mask is either pre-FB or 

post-FB; therefore, has a depth of 1. Figure 7.10 describes the simple UNET used in the problem. 

The Conv2D filter has a 3x3 filter width and height and 2 feature maps. A 2x2 Maxpooling 

reduces the image size to  128x128. Another Conv2D filter with a kernel size of 3x3 increases 

the number of feature maps to 4. The other half of the UNET uses a transpose Conv2D filter to 

increase the image size back to 256 by 256. The subsequent Conv2D filter reduces the depth of 

the output segmentation map back to 1. 

 

 

 

Figure 7. 9. First, break picking as an image segmentation problem. 
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Figure 7. 10. Simple UNET for the first break image segmentation problem.  

 

7.2.5 Field data example 

The vertical component of the Hussar 2D multicomponent seismic survey is used for the UNET 

test. The first arrival energy is linear moveout corrected to reduce the data size, and the first 

arrival picking is done automatically using the AIC method, followed by manual editing. The 

edited FB times are used to create pre-FB and post-FB masks. Convolutional neural networks 

require input images to be of the same dimensions; therefore, we extract data from 0 to 2230 

meters offset from each shot. The result is 258 positive and negative 2D spreads of 224 traces 

and 501 samples each.  The input images are then resized to 256 traces by 256 samples. The 258 

images are separated into 206 training images and 52 validation images. The number of training 

images is also expanded to 824 images by augmentation. A simple UNET is a setup as described 

in figure 7.10.  A validation test using 60 epochs is run. Figures 7.11a and 7.11b show the 

convergence history for the validation test. The network converges after 15 epochs with 96.8% 
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accuracy. Figure 7.12a shows the superimposed classification predictions on the first arrival 

energy. Figure 7.12b shows the classification predictions. The prediction results are good but not 

perfect because a small percentage of the traces have predicted the earlier FB than what is 

expected according to the first arrival images. This may be the result of the lack of training 

images for the UNET.  If more training images are available, the prediction results are expected 

to improve. 

 

Figure 7. 11.  (a) Training and validation loss displayed in blue and green respectively, b) 

training and validation accuracy displayed in blue and green respectively. 
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Figure 7. 12.  a) Validation prediction results and first arrival energy displayed together, b) 

Validation prediction results. 

 

 
 

 

7.3 Conclusion 

When the first arrival energy is contaminated with noise, experienced technicians are 

required to confirm, or modified FB picks based on their experience in the regional near-surface 

geology and in recognizing FB trends through the complex first arrival waveform mixed with 

noises. With increasing data density, this has become a very time-consuming and expensive 

process. I used the vertical component of the multi-components Hussar 2D survey to demonstrate 

the application of machine learning in the most important part of near-surface velocity model 

building: FB picking. The first application is to reject outlying FB picks using three clustering 

algorithms, K-Means, GMM and DBSCAN. Only DBSCAN can reject outlying FB picks 

introduced in the test. The more important application of machine learning in FB picking is 
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supervised deep learning.  I define 2 classifications for the first arrival energy: pre-FB and post-

FB. FB are picked automatically using the AIC method and edited interactively to create the 

training masks. With the Hussar dataset, I created 258 training images and masks of equal size.  I 

use a simple UNET to model the first arrival events. The network converges after 15 epochs with 

96.8% accuracy. We only used 258 training images in this test, while in a production processing 

environment one will have more than thousands of training images. Therefore, a better match 

between the FB mask and first arrival energy can be achieved in a production processing 

environment with more training images.  
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Chapter 8 

     Discussion and Conclusions   

 

The algorithms and workflows for using additional information from reflection waveform for 

traveltime tomography in this thesis have been demonstrated to provide improved seismic 

images using synthetic and real field data. 

 Using traveltimes alone in refraction tomography limits the accuracy and resolution of 

the near-surface velocity model and statics corrections by the errors in the data, the model and 

the algorithms. It can be observed that the degradation to the near-surface velocity model and 

statics corrections deteriorate the coherence and the structural integrity of the deeper reflection 

data. The common procedure in conventional seismic data processing is to compute the residual 

statics corrections that can maximize the CDP stack power, and apply the corrections to the 

reflection data. I presented a new workflow and a new refraction tomography kernel that use the 

long-wavelength component of the reflection residual statics to compute the data weight and 

model weight for the new refraction tomography algorithm. I verified the accuracy of this new 

method with both synthetic and real 2D field data. 

 With an increasing demand for higher data density, wider aperture and deeper depth, 

seismic blending has become a common practice in seismic acquisition. There have been many 

works done in direction deblending by inversion. However, the weathering corrections are 

required for land data for these inversion methods. I analyzed and effects of the seismic blending 

on refraction data, as well as, the effects of the refraction energy from blended shots on reflection 

data. I presented a robust workflow to model and remove refraction and reflection blending 

noises from blended shots. This workflow uses high-resolution sparse linear radon transform in 
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the common receiver domain to model the refraction arrival and remove blending noises. It also 

uses high-resolution sparse parabolic Radon transform in the common CDP domain to remove 

blending noises on reflection data. I verified the accuracy of this workflow with synthetic and 

numerically blended 2D field data. 

 For reflection traveltime tomography, I investigated and verified the accuracy of the 

slope tomography. Unlike the classical reflection traveltime tomography that requires picking of 

continuous reflection events, slope tomography uses picks of reflection traveltimes and apparent 

slopes from the common shot and receiver gathers of any locally coherent events. This uses 

additional information from the shot and receiver ray parameters, and it also has the operational 

efficiency of not having to pick continuous reflection events. To verify the accuracy and 

efficiency of slope tomography, I used the Marmousi model to create synthetic data and 

automatically picked the traveltimes, shot and geophone ray parameters for all locally coherent 

events based on semblance. The picks were used to invert for a grid-based starting model for 

FWI. The result of FWI is satisfactory up to the depth of 1.6Km. The reason for the problem at 

greater depth is potentially caused by the quality of the picks at greater depth and the accuracy of 

the FWI algorithm.  For non-structural data, I took a different approach. I automatically tracked 

the reflection arrival times for selected horizons using near-offset CDP stack and moveout 

corrected CDP gathers. The shot and geophone ray parameters were then computed using the 

arrival time picks. This approach was first tested on a synthetic dataset created using a simple 

model that consists of four constant velocity layers and with one of the layers has a non-zero dip. 

The velocity of the slope tomography inversion matched the true model, and the scatter points 

also matched the reflection boundaries. I used a similar approach with the vertical component of 

the Hussar 2D survey. Two nearby well logs were used in this test. Well tops were correlated 
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with CDP stacks to identify the important reflectors. The velocity from the slope tomography 

inversion matched the long-wavelength trend of the well logs. Depth migrated section of the 

field data using the velocity model from slope tomography also tied the well logs.  

 Finally, I use machine learning to address the biggest challenge for refraction 

tomography: first break picking. Machine learning methods can be divided into unsupervised and 

supervised learning methods. I used unsupervised learning to learn the trend of the first break 

picks within a shot record. Three methods, K-Mean, GMM and DBSCAN were used to reject 

some outlying picks, only DBSCAN was able to reject the outliers. The most important 

application of machine learning for first break picking is to program the unsupervised deep 

learning network to learn from training models and masks and to automatically pick new 

datasets. I used the AIC method to automatically pick the first breaks for the Hussar 2D dataset, 

and then manually edited all the picks. The first break masks are created for each shot with two 

classifications, pre-first break and post-first break. This resulted in 258 training images and 

masks. 80% of this was used as training images and 20% of this was used as validation images. 

A simple UNET was set up to run the validation test with 60 epochs. The network converged 

after 15 epochs with 96.8% accuracy, 

Higher accuracy is expected when more training images are available. 

8.1 Future Work 

Three potential future lines of work remain on traveltime tomography using feedbacks from 

reflection waveform and machine learning. 

Most of my works have been evolved around 2D p-wave refraction tomography with the 

exception of slope tomography. Therefore, the first line of work is to extend the methods I 

presented to 3D converted wave. The second line of work is to investigate further slope 
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tomography, including new and more efficient methods. The third line of work is to use more 

training images in the UNET validation test. 
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