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Abstract

Full waveform inversion (FWI) is an important seismic inversion technique that provides high-resolution

estimates of underground physical parameters. However, high-accuracy inverse results are not guaranteed

due to the essential non-convexity characteristics of the FWI problem. This thesis focuses on designing novel

optimization schemes for the FWI problem which improve the inverse results.

Applying optimal transport (OT) based distances to the FWI problem is popular because they provide

additional geometric information. The OT distances are designed for positive measures with equal mass,

and the unbalanced optimal transport (UOT) distance can overcome the mass equality condition. A mixed

distance is constructed which can also overcome the mass equality condition, and the convex properties for

the shift, dilation, and amplitude change are proved. Both UOT distance and the proposed distance are

applied to the FWI problem with normalization methods transforming the signals into positive functions.

Numerical examples show that the optimal transport based distances outperform the traditional L2 distance

in certain cases.

The gradient projection methods are often used to solve constrained optimization problems, and the

closed-form projection function is necessary since the projection has to be evaluated exactly. A constraint set

expanding strategy is designed for the gradient projection methods such that the projection can be evaluated

inexactly, which extends the application scope of the gradient projection methods. The convergence analysis

is provided with proper assumptions.

A priori information of the model is important to improve the inverse result, and an optimization scheme

is proposed for incorporating multiple a priori information into the FWI problem. The optimization scheme

is a combination of the scaled gradient projection method and a projection onto convex sets algorithm. Also,

the L-BFGS Hessian approximation and the above constraint set expanding strategy are used. Numerical

examples show that the proposed optimization scheme is flexible for integrating multiple types of constraint

sets such as total variation constraint, sparsity constraint, box constraint, and hyperplane constraint into

the FWI problem.
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Chapter 1

Introduction

Geophysics is a long-standing discipline, and the seismic wave is one of the main research objects. The

seismic wave propagating through the Earth brings the physical information of the underground medium.

Especially in the exploration geophysics, the seismic wave generated by the artificial sources is one of the

most important approaches to reveal the geophysical target structures such as oil and gas reservoirs.

With the seismic data recorded by the receivers, the seismic inversion can be performed to recover the

subsurface properties. There are different types of seismic inversion methods. The seismic tomography

takes advantage of the travel time information in the seismic data to determine the locations of reflection

and refraction of the Earth model. In the impedance inversion method, the physical model of seismic wave

propagation is simplified as a one-dimensional convolution between the seismic wavelet and the underground

impedance. Then the physical properties can be estimated by comparing the synthetic data to the well-log

data. In the amplitude versus offset (AVO) method the physical model is the Zoeppritz equations which

approximately describe the seismic wave reflection behavior at an interface. The reflection coefficients can

be estimated with the relation of amplitude and the angle of incidence, then the physical parameters can be

determined.

Compared to the above conventional seismic inversion methods, the full waveform inversion (FWI) tech-

nique takes advantage of the “full” information of the seismic data, including travel time, amplitude, phase,

time-frequency information, etc, so that it is expected to provide accurate and high-resolution information

of the underground structures in the target area. The FWI technique was developed by Lailly [78] and

Tarantola [128] in the early 1980s. In the FWI problem, the PDE that governs the seismic propagation,

the recorded seismic data, the function of the seismic sources, and the locations of the receivers and the

sources are known a priori. Given an initial model, the FWI problem is to minimize the difference between
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the seismic data simulated by the model and the recorded data. Then the inverse result will be updated

iteratively by an optimization algorithm starting from the initial model. When the difference between the

simulated data and the recorded data is decreasing, the model that generated the simulated data can be

expected to become closer to the true model that generated the recorded data.

From the optimization point of view, the FWI problem is a PDE constrained optimization problem.

Similar to the optimal control problem, the objective function is the difference between the simulated data

and the recorded data, and the constraint PDE is the PDE that describes the seismic propagation such as

a wave equation, linear elastic wave equation, Helmholtz equation, etc. The FWI problem can be written in

a compact form as

min
y,u

J(y, u) =
1

2
‖Qy − yd‖2, (1.1)

such that e(y, u) = 0, (1.2)

where u is the control parameter, representing the physical properties of the model, such as velocity, density,

Lamé parameters, etc. The state parameter y is the seismic wavefield, and Q is the recording operator

determined by the position of the receivers. The L2 norm is usually used in the above equation. The

constrained PDE is written in a compact form. Since the PDE is well-posed, a parameter-to-state map can

be well-defined as y = F (u). The above optimization problem can be written in a compact form

min
u
f(u) = J(F (u), u), (1.3)

where f(u) is smooth, nonlinear, and nonconvex.

Tools from different mathematical branches are needed to solve the above PDE constrained optimization

problem. The analysis of the PDE constrained optimization problem and the constraint PDE provides the

solution properties and the connection between the optimization problem in a continuous setting and the

discrete optimization problem. The numerical methods for PDE such as finite difference and finite elements

are needed to simulate the seismic data with the model. The gradient and Hessian of the reduced objective

function can be evaluated efficiently through the adjoint state method. The FWI problem is large-scale on

two aspects. First, the control parameter u and the state parameter y are high-dimensional vectors after

the discretization. Second, extensive computation is required since the numerical PDE solver is performed

intensively. Due to the large scale of the FWI problem, numerical optimization methods in a deterministic

form are needed. Different optimization methods can be applied based on the different formulation of the

objective function. In this thesis work, we focus on developing novel optimization schemes for the FWI
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problem that can improve the inversion results, such as improving the piece-wise constant structure.

1.1 Developments and issues of the FWI problem

Although the basic scheme of the FWI problem was fixed in the early 1980s, it is still evolving in different

aspects.

The FWI problem was initialed and discussed with the acoustic approximation of the seismic wave

propagation [128, 60], later it was extended to the elastic model [129, 97]. In the work [110, 111], Pratt came

up with the FWI problem in the frequency domain. Instead of working with a linear evolution equation, the

constraint PDE in the frequency domain FWI is the Helmholtz equation. Both time domain and frequency

domain FWI problems are equivalent since the data and the model in time and frequency domain are

connected by Fourier transform. The frequency domain approach easily leads to the multi-scale strategies.

The gradient-based methods such as steepest descent and nonlinear conjugate gradient, are the conven-

tional optimization method used for the FWI problem [128, 60]. The update direction is the inverse of the

gradient in the steepest descent method and is the linear combination of the gradient of the current iteration

and the previous iteration in the nonlinear conjugate gradient method. Despite that the gradient-based

method is efficient to evaluate and stable for the large-scale optimization problem, it suffers the slow conver-

gence speed. The second-order information of the objective function is expected to improve the convergence

speed [121]. In Newton’s method and Gauss-Newton method, the update direction is achieved by the inverse

Hessian matrix times the gradient vector, which behaves as a “deconvolution” operator compensating the

geometrical spreading effects and deblurring the gradient [112]. However, the inverse Hessian matrix can

never be evaluated explicitly due to the large-scale of the FWI problem.

There are two major ways to introduce the second-order information to the optimization algorithm in the

FWI problem. In the truncated Newton method, the multiplication between Hessian matrix and the update

direction is evaluated in an abstract form by the adjoint state method, then the update direction is evaluated

approximately with the conjugate gradient method [92]. Another way is to use the quasi-Newton methods

such as Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method [86], in which the inverse

Hessian matrix is approximated with the model and the gradient in the previous iterations. Besides the above

methods, novel optimization methods can be applied for the case when specific constraints and regularizations

are introduced to the FWI problem, such as primal-dual hybrid gradient (PDHG) method [55, 140], fast

iterative shrinkage-thresholding algorithm (FISTA) [2], etc. Some popular optimization methods for the

FWI problem are reviewed in Chapter 1.

The computational requirements depend primarily on the numerical simulation of the constraint PDE in
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the FWI problem. In practice, the objective function is constrained by several PDEs, and each PDE corre-

sponds to a seismic source located at different positions. To reduce the computation cost, a simultaneous-

source (or phase-encoding) strategy can be introduced [68, 77, 130, 101]. The basic idea is: instead of

solving the PDE one by one, multiple sources are added together and simulated as one PDE [5]. In this

case, the number of forward modeling simulations can be largely reduced for each iteration during the inver-

sion. Specifically for the truncated Newton method, another way to decrease the computational cost is the

preconditioning technique for solving the update direction with the conjugate gradient method [98, 92, 102].
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Figure 1.1: (a): Two positive functions a and b. The position of b is fixed. (b): L2 distance between a
and b as a is shifted from left to right. The cycle-skipping issue exists at the local minimum near 0.35. (c):
Optimal transport distance between a and b as a is shifted from left to right. Only a global minimum exists.

Among all of the problems of the FWI technique, one of the fundamental problems is: can we get

the “right” inverse result? From the optimization point of view, because of the intrinsic non-convexity of

the objective function, only the local minimum can be guaranteed with the optimization methods in the

deterministic approach. In this case, the reasonable goal is how can we achieve a local minimum inverse

result that is close to the global minimum. There are two kinds of problems caused by the non-convexity that

are widely discussed: the cycle-skipping issue and the parameter cross-talk issue for multi-parameter FWI.

We focus on the single parameter FWI problem in this thesis work, and especially we developed optimization

schemes based on the optimal transport distance to mitigate the cycle-skipping issue.

There are several ways to improve the inverse result. First, the multi-scale approach is developed to im-

prove the inverse result of the FWI problem [25, 123, 23]. The multi-scale approach is based on the heuristic

justifications when the difference between the seismic wavelets within half a wavelength, the nearest mini-

mum in the objective function should be the global minimum. Then the converging area will be relatively

large as the frequency of the seismic signal is relatively low. The multi-scale approach is to perform the in-

version algorithm starting from the low-frequency components then move to the high-frequency components.
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However, the seismic data is naturally bandlimited in practice and the low-frequency information is missing

in the recorded data, which means the multi-scale approach can not fully eliminate the cycle-skipping issue.

Another way to mitigate the cycle-skipping issue is to enlarge the parameter space. In the work [131, 132],

instead of introducing the constraint PDE with the parameter-to-state map, the author suggested using the

constraint PDE as a penalty term in the objective function. In this case, the optimization variable from

u extends to (y, u). With the name Wavefield Reconstruction Inversion (WRI), this technique has been

successfully applied to the full waveform inversion problem [135, 1]. Other extension methods are developed,

such as the extended source approach [72, 70, 71, 127].

Special objective functions can be designed for the FWI problem. For example, the normalized integration

method (NIM) [87], and the integral wavefields misfit functional [65] have been used. Recently, the optimal

transport (OT) distance or named Wasserstein distance has been introduced to describe the difference

between seismic signals [50], and later it has been applied to the seismic imaging [52, 141] and the FWI

problem [53]. Although it requires certain prerequisites such as mass conservation and normalization, the

OT distance has the convexity property with respect to shift, dilation, and amplitude change in signals [53]

which is one of the main motivations for introducing OT distance to the FWI problem. For example as

shown in Figure 1.1.

The optimal transport distance is designed to describe the difference between two positive finite measures

with equal total mass, and this is denoted as the mass equality limitation. Despite the promising properties,

the seismic signal is oscillating around 0 and usually, the condition of equal mass is not satisfied. Several works

have been proposed to overcome those restrictions and integrate the OT distance to the FWI problem. In

the first strategy, the non-negative and equal mass restrictions are overcame by connecting the 1-Wasserstein

distance to the KR norm [22] with the dual form of the Kantorovich problem. And then the distance is

computed by a proximal splitting strategy called the simultaneous descent method of multipliers (SDMM)

[94, 93]. In [142], the 1-Wasserstein distance is evaluated through the dynamic formulation [13] and then

solved by a primal-dual hybrid gradient method (PDHG) with line search method. Another strategy is to

normalize the seismic signals into positive functions with equal mass first, then compute the OT distance.

In [113, 114, 138, 139], the seismic signals are normalized into positive functions with equal mass through

normalization methods such as linear, quadratic, and exponential functions. Then the 2-Wasserstein distance

between seismic signals can be evaluated either through a trace-by-trace technique or through the numerical

computation of Monge-Ampère equation.

To overcome the mass equality limitation, the unbalanced optimal transport (UOT) problem is raised

in [10] based on a dynamic approach. Later several works have been proposed in both static and dynamic

approaches [107, 38, 39]. In Chapter 3 and Chapter 4, we introduce the UOT distance to the FWI problem
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to overcome the mass equality limitation based on the work [38, 39]. And a new mixed L1/Wasserstein

distance is constructed and applied to the FWI problem.

Incorporating the a priori information of the model to the FWI problem can lead to better inversion

results. Suppose for the grid point x0 in the physical model, we know the average value of the ball B(x0, r)

which centered at x0 with radius r. Suppose for each of the grid points in the physical domain, we know this

a priori average value information. As r → 0, we actually have the values at all grid points. In other words,

we already know the true solution of the inverse problem. This toy example suggests that a more accurate

inverse result can be expected with more a priori information.

There are two equivalent ways to introduce the a priori information to the optimization problem: regu-

larization and constraints. In the work [54, 104], the total variation (TV) constraint is used to reduce the

cycle-skipping issues and build salt structures. Both box constraint and TV constraint are considered in

[140, 55]. Also, adaptive regularization strategies are studied in [2]. In the work [105], the author developed

an algorithm as a combination of the spectral projected gradients and Dykstra’s algorithm, which can im-

pose multiple constraints for the optimization problem. However, when the projection algorithm is evaluated

inexactly, the update might be outside of the constraint sets and the constraint may not work in this case.

This phenomena will be discussed in detail and a special constraint set expanding strategy is designed in

Chapter 5 to solve this problem. In Chapter 6, a new optimization scheme is designed for incorporating

multiple a priori information into the FWI problem.

1.2 Organization

The objective of this thesis is to develop novel optimization schemes that can provide better inverse results

for the FWI problem. The thesis work can be divided into two parts:

• Introduce the optimal transport based distances to the FWI problem.

• Develop the optimization methods for incorporating multiple a priori information into the FWI prob-

lem.

The thesis is organized as follows:

Chapter 2 presents the background of the FWI problem. The acoustic approximation with constant

density of the seismic propagation is used in this work, and the Born approximation is discussed which is

the main reason for the non-convexity of the objective function. The formulation of the reduced form FWI

problem is presented. To simulate the seismic wave propagation in an unbounded domain, the perfectly

matched layer (PML) technique is used, and the acoustic wave equation with PML is derived which is a part
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of the collaborative work [83]. The gradient of the objective function is derived through the adjoint state

method. In the end, several popular optimization algorithms for the FWI problem are reviewed.

The background of the optimal transport problem is provided in Chapter 3. The Monge problem, Kan-

torovich problem, and dual Kantorovich problem are discussed. The convex properties of the 2-Wasserstein

distance with respect to shift and dilation was proved with the Monge problem in the work [138, 139]. How-

ever, the Monge problem is not well-defined for comparing the discrete vectors. The above convex properties

are proved with the Kantorovich problem in this chapter with the similar method. The definition of the

unbalanced optimal transport (UOT) distance based on [38, 39] is reviewed. The numerical methods based

on the entropy regularization of the optimal transport problem is reviewed, which is used for the evaluation

of the UOT and the proposed mixed L1/Wasserstein distance.

In Chapter 4, the optimal transport based distances are introduced to the FWI problem. A mixed

L1/Wasserstein distance is constructed, which inherits the convex properties of the 2-Wasserstein distance

and overcomes the mass equality limitation. Normalization methods are discussed to introduce the UOT

distance and the proposed distance to the seismic signals. The computation methods of the adjoint sources

for both distances in the FWI problem are provided. Numerical examples including both the cross-well model

and reflective wave model show that the UOT distance and the mixed distance outperform the conventional

L2 distance in certain cases. Compared with the current literature on the optimal transport distance and the

FWI problem, this thesis work focuses on overcoming the mass equality limitation and computing through

the entropy regularization approach. Parts of the work in this chapter is in the preprint work [82].

Chapter 5 focuses on the gradient projection methods with inexact projections. When projecting a point

onto the intersection of several convex sets, a projection algorithm such as Dykstra’s algorithm is generating

a convergent sequence. This kind of algorithm has to be terminated after several iterations in practical usage,

and this makes the projection process actually an inexact projection. When the constrained optimization

problem is solved with the gradient projection methods, and the projection can only be evaluated with an

inexact projection, the update points can not be guaranteed to be in the constraint set. We first review the

set convergence and set-valued mapping results, then the convergence of the projection mapping sequence

is analyzed. A set expanding strategy is developed for both gradient projection method and scaled gradient

projection method with inexact projection. The convergence analyses are provided for both algorithms under

several proper assumptions.

In Chapter 6, an optimization scheme is developed which is a combination of the scaled gradient projection

method and the projection algorithm developed in [44, 45]. Multiple constraint sets including both the set

that has the closed-form projection function and the set that has subgradient projection function can be

incorporated in this scheme. The FWI problem is solved with the proposed optimization scheme. The
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numerical examples are provided for both cross-well model and reflective wave model with TV constraint,

l1 constraint, box constraint, and hyperplane constraint. Compared to the work [104], the proposed method

solves the inner projection problem with only one algorithm instead of two (Dykstra’s algorithm and the

ADMM method) when there is no closed-form projection function for the constraint set, which simplifies the

structure of the optimization algorithm. The set expanding strategy developed in Chapter 5 is applied such

that proper stopping criteria are available for the inner projection algorithm. The second-order information

of the objective function can be involved with the L-BFGS Hessian approximation, which provides a faster

convergence speed.

The contributions and innovations of this thesis work are summarized in Chapter 7. Future studies are

discussed in the end.

1.3 Contributions

Contributions of this thesis are summarized as follows:

• Developing a methodology to introduce the unbalanced optimal transport (UOT) distance to the full

waveform inversion (FWI) problem. Numerical examples show that the UOT distance provides more

accurate inverse results compared with the conventional L2 distance in certain cases.

• A mixed L1/Wasserstein distance is constructed, which inherits the convex properties and overcomes

the mass equality limitation of the optimal transport distance. The proposed distance is applied to

the FWI problem, and similar results to the UOT distance can be achieved.

• A set expanding strategy is developed for the gradient projection methods when the inexact projection

algorithm is used. The convergence results are proved under proper assumptions.

• An optimization scheme that can incorporate multiple a priori information as convex constraint sets

is developed. This optimization scheme is applied to the FWI problem, and numerical examples show

that the proposed scheme is sufficiently flexible to introduce multiple constraint sets at the same time

with both closed-form projection and subgradient projection.

• All code used in this thesis work is developed by the author with the programming language Julia.

The code can be found on the Github page: https://github.com/zzar43.
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Chapter 2

Background of full waveform inversion

problem

In this chapter, we provide the background material of the full waveform inversion (FWI) problem. First,

we discuss the acoustic model of the reflective seismic wave and the Born approximation that explains the

nonconvex behavior of the FWI problem. Then we formulate the FWI problem as an optimization problem.

The gradient of the objective function can be evaluated through the adjoint state method, which is discussed

in Section 2.3. Specific techniques and boundary conditions are required for numerically simulating the

seismic wave propagating in an unbounded domain. We review the perfectly matched layer (PML) technique

in Section 2.4, and the numerical scheme based on the finite difference method is discussed. In the end, several

popular optimization methods are reviewed for the FWI problem.

Since this thesis focuses on designing novel numerical methods that can provide better inverse results

compared with the conventional methods, we focus on the discrete optimization problem instead of building

the theory in functional spaces. We start with the abstract function spaces setting for the convenience of

describing the computation methods formally. FWI includes many components such as geophysics, scattering

theory of wave equation, numerical methods for PDE, optimization methods, etc, and it is impossible to give

a full description in one chapter. Only the fundamental contents required for this thesis work are reviewed

in this chapter. We refer to review paper [134] and monograph [56] for a more detailed introduction.
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2.1 Acoustic model of reflective seismic wave

Before the discussion of the inverse problem, we discuss the forward problem that characterizes the seismic

propagation. The linear acoustic wave equation governs the wave propagation in the medium with small

transient deformation, such as fluids and gases. Denote the time interval as I = (0, T ), T > 0. Consider

a spatial domain Ω ⊂ Rd where the seismic waves are propagating in, here d = 1, 2, 3. The acoustic wave

equation in the time domain is given by,

1

ρ(x)c(x)2

∂2

∂t2
y(x, t)−∇ ·

(
1

ρ(x)
∇y(x, t)

)
= s(x, t) in Ω× I, (2.1)

where y(x, t) is the wavefield, c(x) is the acoustic velocity, ρ(x) represents the density, and s(x, t) is the

source term. When the density is homogeneous with ρ(x) = 1, from equation (2.1), we can have the scalar

wave equation

1

c(x)2

∂2

∂t2
y(x, t)−∆y(x, t) = s(x, t) in Ω× I. (2.2)

Since we focus on developing new methods to improve the results of the FWI problem, we only consider the

simple case when the constraint PDE is the scalar wave equation.

Here we make a reasonable assumption that the spatial domain Ω is large enough such that the seismic

waves never reach the boundary of the domain so that the Dirichlet boundary condition can be equipped for

the convenience of analysis.

y(x, t) = 0 in ∂Ω× I, (2.3)

In the practical numerical simulation of the forward problem, special techniques are required to simulate

the wave propagation in an unbounded domain, such as the perfectly matched layer (PML) which will be

discussed later. Assume the medium is in an equilibrium state when t < 0, in this case we can assume the

causal initial condition

y(x, 0) = 0, yt(x, 0) = 0 on Ω× {t = 0}. (2.4)

Also, the spatial size of the source is much smaller than the medium domain and the seismic wavelength. In
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this case, a point source can be assumed as

s(x, t) = s̃(t)δ(xs), (2.5)

where s̃(t) is a function with respect to time only and s(t) = 0 as t < 0. We use u instead of c to represent

the physical parameter that needs to be revealed through the optimization problem. When the multiple

physical parameters are considered such as the acoustic wave equation, denote u = (c, ρ), the equation (2.1)

can be written in a compact form,

e(y, u) = L[u]y − s = 0, (2.6)

where L[u] is the linear differential operator depending on u.

The forward modeling problem can be described as: given the physical parameter u(x), the source term,

the initial and boundary condition of the system, compute the acoustic wavefield y(x, t).

Since the above PDE system is well-posed, a parameter-to-state map can be defined as:

y = F (u). (2.7)

Although the constraint PDE is linear, it is clear that the parameter-to-state map is not linear with respect

to the parameter u, and it is natural to study the linearization of the parameter-to-state map.

Next, we discuss a formal linearization of the parameter-to-state map based on the scalar wave equation

(2.2). Denote c1(x) = c0(x) + δc(x), where c0 is the reference velocity model and δc(x) is the perturbation

of the model. Denote y1(x, t) = y0(x, t) + δy(x, t), where δy(x, t) is the scattering wavefield. By equation

(2.2),

1

(c0(x) + δc(x))2

∂2

∂t2
(y0(x, t) + δy(x, t))−∆(y0(x, t) + δy(x, t)) = s(x, t). (2.8)

Using the Tayler series of the term

1

(c0(x) + δc(x))2
≈
(

1

c0(x)2
− 2δc(x)

c0(x)3

)
, (2.9)

and equation (2.2), then

1

c0(x)2

∂2

∂t2
δy(x, t)−∆δy =

2δc(x)

c0(x)3

∂2

∂t2
y1(x, t). (2.10)
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Notice that the scattering wavefield δy(x, t) is still implicitly in the right-hand side of the above equation.

We can have the solution of δy formally by the Green’s function,

δy(x, t) =

∫
I

∫
Ω

G0(x, y; t− τ)
2δc(y)

c0(y)3

∂2

∂τ2
y1(y, τ) dydτ, (2.11)

where G0(x, y; t− τ) is the Green’s function with respect to the reference model, i.e.

1

c0(y)2

∂2

∂t2
y0(x, t)−∆y0(x, t) = s(x, t). (2.12)

Denote the linear operator that arises by integration with G0(x, y; t− τ) as G0, we obtain

δy(x, t) = G0
2δc(y)

c0(y)3

∂2

∂t2
y1(y, t). (2.13)

Replace δy(x, t) = y1(x, t)− y0(x, t), then,

y0(x, t) = y1(x, t)− G0
2δc(y)

c0(y)3

∂2

∂t2
y1(y, t), (2.14)

which is named the Lippmann-Schwinger equation. Then we can formally have the following operator

equation,

y1(x, t) =

(
I − G0

2δc(y)

c0(y)3

∂2

∂t2

)−1

y0(x, t). (2.15)

The following Born series can be achieved by the expansion of the Neumann series,

y1(x, t) = y0(x, t) +

(
G0

2δc(y)

c0(y)3

∂2

∂t2

)
y0(x, t)

+

(
G0

2δc(y)

c0(y)3

∂2

∂t2

)(
G0

2δc(y)

c0(y)3

∂2

∂t2

)
y0(x, t) + · · · .

(2.16)

When the perturbation δc(y) is small enough such that ‖G0
2δc(y)
c0(y)3

∂2

∂t2 ‖ < 1 in some norm, the Neumann series

converges.

On the other hand, suppose the parameter-to-state map (2.7) is Fréchet differentiable we can have

y1 = y0 + δy = F (c1) = F (c0 + δc) = F (c0) +DF [c0]δc+D2F [c0](δc, δc) + · · · , (2.17)

It is easy to check that DF [c0]δc is formally equal to the first term of the Born series. Consider the scalar
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wave equation (2.2) with the reference model, replace y0 by F (c0),

1

c20

∂2

∂t2
F (c0)−∆F (c0) = s. (2.18)

Then we compute the directional derivative with respect to c in the direction δc of the above equation,

−2δc

c30

∂2

∂t2
F (c0) +

1

c20

∂2

∂t2
DF [c0]δc−∆DF [c0]δc = 0. (2.19)

With the Green’s function defined above, it is easy to check that

DF [c0]δc = G0
2δc

c30

∂2

∂t2
y0. (2.20)

When the linearization is accurate, we can have the approximation

δy ≈ DF [c0]δc, (2.21)

which is known as the Born approximation. The accuracy of the Born approximation is the most important

topic of the seismic imaging problem and seismic inverse problem. Here we quote the work [126]: based on the

heuristic, physical reasoning, computational experience, the linearization relation (2.21) is well-approximated

as long as

1. the reference model c(x) is slowly-varying (smooth) relative to a typical data wavelength;

2. the perturbations δc is oscillatory (“rough”).

This scale-separation phenomenon explains the reason that the accurate initial (reference) model is crucial

for the result of the seismic imaging and inversion problem.

We demonstrate this scale-separation phenomenon with the following two-dimensional numerical example.

The reference model c(x) is shown in Figure 2.1 (a), which is a part of the standard Marmousi model. Two

approximations are considered as

c ≈ c1 + δc1, and c ≈ c2 + δc2. (2.22)

Here c1 is a smoothed velocity model generated by the Gaussian filter and the reference model c, which

is shown in Figure 2.1 (b). The perturbation δc1 is shown in subfigure (c). The second approximation is

achieved by letting δc2(x) be a constant, such that ‖δc2‖2 = ‖δc1‖2, which means that the perturbation δc1
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Figure 2.1: (a): The reference velocity model c. (b): The first approximated velocity model c1. (c): The
perturbation δc1. (d): The second approximated velocity model c2. Notice that the color scale is different
to (a).

and δc2 have the same L2 norm. The velocity model c2 is shown in Figure 2.1 (d). One 8 Hz Ricker wavelet

is placed in the middle of the domain with a depth of 0.05 km. There are 101 equally spaced sources placed

on the top of the domain.

Figure 2.2 shows the received data. As we can see, with the same L2 norm perturbations δc1 and δc2, and

F (c1) +DF [c1]δc1 is close to F (c), which means the Born approximation is accurate in this case. However,

there are significant differences between F (c) and F (c2) +DF [c2]δc2.

The theoretical results on the accuracy of the Born approximation and the scale-separation phenomenon

in the one-dimensional case can be found in [81]. To this author’s best knowledge, there are no similar results

for higher dimensional settings. More discussion on the linearization of the acoustic wave model can be found

in [126]. We refer to the thesis work [125] for more information on the well-posedness and the smoothness

of the parameter-to-state map, in which a linear hyperbolic equation is discussed with the coefficients are in
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Figure 2.2: (a): Recorded wavefield F (c) generated by the reference velocity model c. (b): The first order
approximation with velocity model c1 and perturbation δc1. (c): The first order approximation with velocity
model c2 and perturbation δc2.

L∞ (measurable and essentially bounded).

2.2 Formulation of the full waveform inversion

We discuss the inverse problem in this section by formulating the full waveform inversion (FWI) problem as

a PDE constrained optimization problem. FWI can also be illustrated as a parameter estimation problem,

since the objective of the FWI problem is to estimate the physical parameters of the underground medium

such as acoustic velocity, density, Lamé parameters, etc. The seismic data generated by the artificial seismic

sources or the natural seismic event is given at first. An initial model that is an estimation of the underground

physical parameters is provided. The FWI problem is to minimize the distance between the simulated seismic

data generated by the initial (and updated) model and the received data.

With the scalar wave equation as the constraint PDE and the L2 distance is used in the objective function,
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the FWI problem can be written as:

min
c
J(y, c) =

1

2

∫
I

∫
Ω

(Qy(x, t)− yd(x, t))2
dxdt+ λrR(c), (2.23)

such that,
1

c(x)2

∂2

∂t2
y(x, t)−∆y(x, t) = s(x, t) in Ω× I,

y(x, 0) = 0, yt(x, 0) = 0 on Ω× {t = 0},

y(x, t) = 0 in ∂Ω× I.

(2.24)

Here yd(x, t) is the recorded data, Q is the recording operator that maps the forward modeling seismic

wavefield to the recorded seismic signal. The R(c) is a regularization term, and λr is the regularization

parameter. In the objective function, the c(x) is implicitly contained in the forward modeling wavefield

y(x, t).

The constraint PDE is not limited to the scalar wave equation. When the constraint PDE is the acoustic

wave equation (2.1), we minimize both the velocity c(x) and the density ρ(x) in the objective function. More

sophisticated physical models can be considered. For example, consider the linear elastic wave equation of

isotropic medium, the constraint PDE is given by

ρ(x)
∂2

∂t2
y(x, t)−∇(λ(x)∇ · y(x, t))−∇ · (µ(x)(∇y(x, t) + (∇y(x, t))

′
)) = s(x, t), (2.25)

here the displacement y(x, t) is a time-dependent vector field. The λ(x) and µ(x) are the Lamé parameters.

In this case, we optimize the triples (ρ(x), λ(x), µ(x)) in the objective function. Also, other parameterizations

are available, for example, consider the p-wave velocity and s-wave velocity as

cp =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
. (2.26)

For convenience, we rewrite the problem (2.23) and (2.24) in a compact form with abstract function

space setting. Let Y and U be the spaces representing seismic wavefield and physical parameters. Instead

of working on the specific physical parameter, denote u as the parameter we are looking for. Suppose there

is no regularization term in the objective function, then the FWI problem can be formulated formally as

min
(y,u)∈Y×Uad

J(y, u) =
1

2
‖Qy − yd‖2Y ,

such that e(y, u) = 0.

(2.27)
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Here, yd is the received data, Q : Y → Y is the observation operator that maps the seismic wavefield y to

the seismic signals recorded by the receivers. The set Uad ⊂ U is the feasible set. The constraint PDE is

written in a compact form with e : Y × U → Z. For example, consider the scalar wave equation with initial

and boundary condition in (2.24), then,



e1

e2

e3

e4


=



1
u2 ytt −∆y − s

y(·, 0)

yt(·, 0)

y(x, t)|x∈∂Ω


= 0. (2.28)

Since the initial and boundary condition can be discussed separately, we use another compact form for the

following computation,

e(y, u) = L(u)y − s =
1

u2
ytt −∆y − s = 0, (2.29)

where L(u) is the linear differential operator determined by u, and s is the source term.

The optimization problem (2.27) has the same form as the optimal control problem, where y is denoted

as the state parameter, and u is denoted as the control parameter. Since the constraint PDE is well-posed

in our case, a parameter-to-state map can be defined as y = F (u). Instead of solving problem (2.27) with

respect to both y and u, a reduced problem can be considered

min
u∈U

f(u) = J(F (u), u), such that u ∈ Uad. (2.30)

When Uad = U , this is an unconstrained optimization problem, otherwise it is a constrained optimization

problem.

The objective function f(u) is smooth, nonlinear, and nonconvex. The non-convexity of f(u) follows that

the parameter-to-state map y = F (u) is nonlinear as discussed in the previous section. Loosely speaking,

when the initial model is close to the true model and the difference between the initial model and the true

model is mainly oscillatory structures, the linearization of y = F (u) is nearly accurate. Then, the objective

function f(u) around the initial model is nearly convex, which means that the solution of the inverse problem

is more likely to be “close” to the true solution. On the contrary, when the initial model is far from the

true model, or the difference between the initial model and the true model is mainly large-scale structures,

the linearization of y = F (u) is not accurate. Then, the optimization algorithm will be trapped in a local

minimum. The typical size of the FWI problem is relatively large and the evaluation of the objective function
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is relatively expensive since a PDE system needs to be solved numerically, only the deterministic optimization

algorithm can be implemented. In this case, the local minimum problem is unavoidable. The initial idea of

this thesis research work is to find a way such that the inverse results (local minima) are close to the true

solution (global minimum). In this thesis work, we focus on developing new algorithms for the FWI problem,

which provides better results compared to the conventional methods. We focus on the scalar wave equation

as the constraint PDE, and we work on the reduced problem (2.30).

Notice that, instead of solving the optimization in the reduced form, the penalty approach can also be

considered which transform the constraint PDE as a penalty term in the objective function [131, 132]. It

has been successfully implemented in solving the FWI problem with the name Wavefield Reconstruction

Inversion (WRI). For the precise analysis work on the seismic inverse problem, we refer to [20]. The work

[21] provides a detailed function space setting for the FWI problem with the elastic wave equation, which

includes a wide range of the choice of constraint PDE for the FWI problem.

2.3 Adjoint state method

In this section, we review the adjoint state method for formally evaluating the first-order derivative of the

objective function f(u) in equation (2.30). The adjoint state method is a technique that evaluates the

gradient of a function efficiently. It was developed from the control theory [85] and then was applied to the

inverse problem [36]. In the early 80s, the adjoint state method was introduced to the exploration geophysics

by the work [78] and [128] as an important component of the FWI problem. For a complete review of the

adjoint state method in the seismic inverse problem, we refer to [109].

There are different equivalent approaches to derive the adjoint state method. The Lagrangian approach

is used in this section, and for the sensitivity approach and the adjoint approach for the general inverse

problem, we refer to [69]. We start the derivation based on the abstract form of the FWI problem (2.27) for

convenience. Let Y , U , Z be Banach spaces, define the Lagrangian function: L : Y × U × Z∗ → R as

L(y, u, v) = J(y, u) + 〈v, e(y, u)〉Z∗,Z , (2.31)

where J(y, u) is the objective function in (2.27). Since the parameter-to-state map y = F (u) is well defined,

and e(F (y), u) = 0, the reduced problem is

f(u) = J(F (u), u) + 〈v, e(F (u), u)〉Z∗,Z = L(F (u), u, v). (2.32)

18



Then the derivative of f(u) can be written as

〈f(u)′, δu〉U∗,U = 〈Ly(F (u), u, v), DF [u]δu〉Y ∗,Y + 〈Lu(F (u), u, v), δu〉U∗,U . (2.33)

The idea of the adjoint state method is to find an adjoint state v(u) that is depending u such that

Ly(F (u), u, v) = 0. Notice that,

〈Ly(y, u, v), δy〉Y ∗,Y = 〈Jy(y, u), δy〉Y ∗,Y + 〈v, ey(y, u)δy〉Z∗,Z

= 〈Jy(y, u) + ey(y, u)∗v, δy〉Y ∗,Y .
(2.34)

Then we can have the following adjoint equation in an abstract form,

Ly(F (u), u, v) = Jy(F (u), u) + ey(F (u), u)∗v = 0. (2.35)

Given the state parameter u, compute the adjoint state parameter v(u) with the above adjoint equation, the

derivative of f(u) can be written as

f ′(u) = Lu(F (u), u, v(u)) = Ju(F (u), u) + eu(F (u), u)∗v(u). (2.36)

Next, we discuss the special case when the constraint PDE is the scalar wave equation, which can be

written as

e(y, u) =
1

u(x)2

∂2

∂t2
y(x, t)−∆y(x, t)− s(x, t) = 0. (2.37)

Compute the derivative of e(y, u) as

ey(y, u)δy =

(
1

u(x)2

∂2

∂t2
−∆

)
δy(x, t), (2.38)

eu(y, u)δu =
−2δu(x)

u(x)3

∂2

∂t2
y(x, t). (2.39)
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Recall that y = F (u), consider

〈ey(F (u), u)∗v, δy〉Y ∗,Y = 〈v, ey(F (u), u)δy〉Z∗,Z

=

∫
I

∫
Ω

v(x, t)

(
1

u(x)2

∂2

∂t2
−∆

)
δy(x, t) dxdt

=

∫
I

∫
Ω

δy(x, t)

(
1

u(x)2

∂2

∂t2
−∆

)
v(x, t) dxdt

+

∫
Ω

v(x, t)

(
∂

∂t
δy(x, t)− δy(x, t)

∂

∂t
v(x, t)

)∣∣∣∣T
0

dx

+

∫
I

∫
∂Ω

v(x, t)
∂δy(x, t)

∂~ν
− δy(x, t)

∂v(x, t)

∂~ν
dSdt.

(2.40)

The last equation follows from integrating by parts and Green’s formula.

By the assumption in the previous sections, the source term is concentrating on a point and the domain

Ω is large enough such that the wavefields never reach the boundary. Also, the initial condition is in an

equilibrium status. We can say that,

δy(x, t) =
∂δy(x, t)

∂~ν
= 0, ∀x ∈ ∂Ω. (2.41)

With the initial condition, we have,

δy(x, t) =
∂

∂t
δy(x, t) = 0, as t = 0. (2.42)

Also, we can assume that

v(x, t) =
∂

∂t
v(x, t) = 0, as t = T, (2.43)

and

v(x, t) =
∂v(x, t)

∂~ν
= 0, ∀x ∈ ∂Ω. (2.44)

Then the equation (2.40) is

〈ey(F (u), u)∗v, δy〉Y ∗,Y =

∫
I

∫
Ω

δy(x, t)

(
1

u(x)2

∂2

∂t2
−∆

)
v(x, t) dxdt. (2.45)
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By equation (2.35), the adjoint equation can be written explicitly as

1

u(x)2
v(x, t)−∆v(x, t) = −Jy(F (u), u), (2.46)

where the adjoint source is

−Jy(F (u), u) = −Q∗ (QF (u)− yd) , (2.47)

by equation (2.27). The boundary condition is given by equation (2.44), and the initial condition is given by

equation (2.43). Notice that the initial condition is given when the time is t = T , which is actually the final

status of the forward modeling system. The adjoint equation (2.46) should be solved with time-reversed.

Since there is no regularization term in equation (2.27), we have Ju(F (u), u) = 0. Also,

〈eu(F (u), u)∗v, δu〉U∗,U = 〈v, eu(F (u), u)δu〉Z∗,Z

=

∫
I

∫
Ω

v(x, t)
−2δu(x)

u(x)3

∂2

∂t2
y(x, t) dxdt

=

∫
Ω

δu(x)

∫
I

v(x, t)
−2

u(x)3

∂2

∂t2
y(x, t)dtdx.

(2.48)

When there is no regularization term, by equation (2.36), the derivative of the objective function can be

given as

f ′(u) =

∫
I

v(x, t)
−2

u(x)3

∂2

∂t2
y(x, t)dt. (2.49)

For the summary, the adjoint state method for computing the derivative f ′(u) can be written as:

1. Given model u(x), evaluate F (u) by computing the scalar wave equation (2.24).

2. Compute the adjoint wavefield v(x, t) by solving the adjoint equation (2.46).

3. Compute the derivative f ′(u) with the equation (2.49).

2.4 Forward modeling with perfectly matched layer

To solve the FWI problem numerically, the “first discretize, then optimize” approach is used in this work.

All the quantities in equation (2.23) and (2.24) are discretized at first. Then the FWI problem given by

(2.27) and (2.30) turns into a finite-dimensional optimization problem. Meanwhile, the constraint PDE can

be evaluated numerically with the same discretization scheme.
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Figure 2.3: The computation domain with PML: Ω = ΩPML ∪ Ω0, citing from [83].

We assume the spatial domain Ω be large enough such that the wavefield never reaches the boundary ∂Ω.

However, this is infeasible for the practical algorithm since the enlargement of the domain will largely increase

the computation time of the numerical simulation for the PDE system. As discussed in the previous sections,

the numerical solutions of the scalar wave equations are needed for both the evaluation of the objective

function f(u) and the evaluation of the derivative f ′(u), and this is the main bottleneck of the numerical

methods for the FWI problem. Two special techniques can be applied to simulate the wave propagating with

a bounded domain effectively and efficiently: absorbing boundary condition (ABC) [41, 51] and perfectly

matched layer (PML) [16]. The PML technique is used in this work.

The PML technique is to add an artificial absorbing layer for the PDE in the spatial domain, such that the

energy of the seismic wave can be approximately reduced to 0 as propagating in the absorbing layer. Denote

the absorbing layer as ΩPML and the interior domain as Ω0, then the computation domain Ω = ΩPML ∪Ω0.

Figure 2.3 provides a demonstration of the computation domain with PML in a two-dimensional spatial

space.

It can be illustrated with a one-dimensional sinusoidal wave propagation: ei(kx−ωt). By the analytic

continuation, we extend the domain to the complex plane with

x→ x+
i

ω

∫ x

0

σ(x′) dx′, (2.50)

where the damping function σ(·) controls the attenuation of the sinusoidal wave. The damping function

σ(x) > 0 when x in the absorbing layer, and σ(x) = 0 when x in the interior domain. Then we can have,

ei(kx−ωt) → ei(kx−ωt)− k
ω

∫ x
0
σ(x′) dx′ . (2.51)
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It can be seen that the amplitude of the sinusoidal wave is attenuated in the area when σ(x) 6= 0. Popular

choices of σ(x) including the linear damping function

σ(x) =


σ0x, if x ∈ ΩPML,

0, if x ∈ Ω0,

(2.52)

and the inverse distance damping function

σ(x) =


σ0

x , if x ∈ ΩPML,

0, if x ∈ Ω0.

(2.53)

here the σ0 is the coefficient to control the attenuation of the absorbing layer.

Based on the analytic continuation (2.51), the following transformation of the differential operator can

be used to apply the PML technique to the constraint PDE:

∂

∂x
→ 1

1 + iσ(x)
ω

∂

∂x
. (2.54)

Next, we demonstrate the PML technique with the acoustic wave equation (2.1) in a three-dimensional

spatial domain. This is based on the work [83] by the author and collaborators. For convenience, rewrite

the acoustic wave equation with spatial parameter (x, y, z) as

1

ρc2
∂2

∂t2
u−∇ ·

(
1

ρ
∇u
)

= s, (2.55)

where ρ(x, y, z) and c(x, y, z) are the density function and acoustic velocity function defined, u(x, y, z, t)

represents the wavefield, s(x, y, z, t) represents the source term. Replace the spatial differential operator by

∂

∂x
→ 1

1 + iσ(x)
ω

∂

∂x
=

1

ηx

∂

∂x
, (2.56)

∂

∂y
→ 1

1 + iσ(y)
ω

∂

∂y
=

1

ηy

∂

∂y
, (2.57)

∂

∂z
→ 1

1 + iσ(z)
ω

∂

∂z
=

1

ηz

∂

∂z
. (2.58)
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Then the equation (2.55) turns into

ηxηyηz
1

ρc2
∂2

∂t2
u

−
[(

∂

∂x

1

ρ

)(
ηyηz
ηx

∂

∂x
u

)
+

(
∂

∂y

1

ρ

)(
ηxηz
ηy

∂

∂y
u

)
+

(
∂

∂z

1

ρ

)(
ηxηy
ηz

∂

∂z
u

)]
−
[

1

ρ

∂

∂x

(
ηyηz
ηx

∂

∂x
u

)
+

1

ρ

∂

∂y

(
ηxηz
ηy

∂

∂y
u

)
+

1

ρ

∂

∂z

(
ηxηy
ηz

∂

∂z
u

)]
= ηxηyηzs.

(2.59)

Consider the temporal derivative term in the above equation,

ηxηyηz
1

ρc2
∂2

∂t2
u =

1

ρc2

(
1 +

σx
iω

)(
1 +

σy
iω

)(
1 +

σz
iω

) ∂2

∂t2
u

=
1

ρc2

(
∂2

∂t2
u+ (σx + σy + σz)

∂

∂t
u+ (σxσy + σxσz + σyσz)u+ σxσyσz

u

iω

)
.

(2.60)

For the spatial derivative term along x-direction in equation (2.59),

ηyηz
ηx

∂

∂x
u =

(
1 +

σy
iω

) (
1 + σz

iω

)(
1 + σx

iω

) ∂

∂x
u

=
−σx + σy + σz +

σyσz
iω

iω + σx

∂

∂x
u+

∂

∂x
u := vx +

∂

∂x
u.

(2.61)

For the variable vx, one has

iωvx + σxvx(σx − σy − σz)
∂

∂x
u− σyσz

∂

∂x

( u
iω

)
= 0. (2.62)

By the Fourier transform, we have iωvx = ∂
∂tvx. The same computation can be carried for the rest two

directions. Let w = u
iω , we have ∂

∂tw = u by Fourier transform. Together with the above equations, the

acoustic wave equation (2.55) can be transformed as

1

ρc2

(
∂2

∂t2
u+ α

∂

∂t
u+ βu+ γw

)
−∇ ·

(
1

ρ
(~v +∇u)

)
= s,

∂

∂t
~v +A~v +B∇u− C∇w = 0,

∂

∂t
w − u = 0,

(2.63)
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where ~v = (vx, vy, vz), α = σx + σy + σz, β = σxσy + σxσz + σyσz, γ = σxσyσz, and

A =


σx

σy

σz

 , B =


σyσz

σxσz

σxσz

 ,

C =


σx − σy − σz

σy − σx − σz

σz − σx − σy

 .

(2.64)

Replacing the partial differential operator with the finite difference operator, the standard finite difference

scheme can be applied for the above equations. Higher spatial and temporal accuracy schemes can also be

designed [83].

2.5 Optimization algorithms for full waveform inversion problem

As discussed in the previous sections, the FWI problem can be discretized and solved in a reduced form:

min
u∈Rn

f(x), such that x ∈ C. (2.65)

For the two-dimensional or three-dimensional case, the physical parameter can be reshaped into a n-

dimensional vector. The objective function f(x) is nonlinear and nonconvex, C is a convex set, and the

gradient of f(x) can be achieved through the adjoint state method as discussed before. Problem (2.65) is a

constrained optimization problem when C is a subset of Rn, otherwise, it is an unconstrained optimization

problem.

In this section, we review some popular optimization methods for the FWI problem, especially for the

reduced problem (2.65). A convergent sequence {xk} is generated by the optimization method for k ∈ N

that converges to a local minimum of the objective function f(x). The solution x0 satisfies the first-order

optimality condition, i.e.

∇f(x0) = 0, (2.66)

when C = Rn, and

〈∇f(x0), x− x0〉 ≥ 0, ∀x ∈ C, (2.67)

25



when C is a subset of Rn. Instead of the convergence results of the optimization methods, we only focus on

the implementation in this section.

The steepest descent method is one of the most commonly used methods for the unconstrained optimiza-

tion problem. Suppose at the k-th iteration, the update direction is represented as δxk, the negative of the

gradient is used for the update direction:

δxk = −∇f(xk). (2.68)

Then the update step can be written as

xk+1 = xk + αkδxk, (2.69)

where the step size αk is achieved through the line search algorithms, such as Armijo condition

f(xk + αkδxk) ≤ f(xk) + c1α∇f(xk)
′
δxk, (2.70)

or the Wolfe conditions

f(xk + αkδxk) ≤ f(xk) + c1α∇f(xk)
′
δxk, (2.71)

∇f(xk + αkδxk)
′
δxk ≥ c2∇f(xk)

′
δxk, (2.72)

here c1 and c2 are the line search coefficients.

Another most commonly used gradient-based method is the nonlinear conjugate gradient (NCG) method.

The update direction is defined as a linear combination of the gradient in the current iteration and the update

direction in the previous iteration:

δxk = −∇f(xk) + βkδx
k−1, (2.73)

where βk is defined such that the δxk and δxk−1 are conjugate. Popular choices of the scalar βk including

the Fletcher-Reeves method [57]:

βFR
k =

(∇f(xk))
′∇f(xk)

(∇f(xk−1))′∇f(xk−1)
, (2.74)
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the Polak-Ribière method

βPR
k =

(∇f(xk))
′
(∇f(xk)−∇f(xk−1))

‖∇f(xk)‖2
, (2.75)

and the Hestenes–Stiefel formula

βHS
k =

(∇f(xk))
′
(∇f(xk)−∇f(xk−1))

(∇f(xk)−∇f(xk−1))′δxk
. (2.76)

For more discussion about the βk we refer to the textbook [99]. The Fletcher-Reeves method is used in this

work for numerical experiments.

With the line search algorithm, the gradient-based methods are known to converge globally. However,

the convergence speed is possibly very slow. Compared to the gradient-based methods, Newton’s method

provides faster convergence speed. The update direction of Newton’s method is given by

δxk = −∇2f(xk)−1∇f(xk), (2.77)

where ∇2f(xk) is the Hessian matrix. A second-order adjoint state method is needed for the full Newton

step update [92].

Recall the reduced objective function of the FWI problem:

f(x) =
1

2
‖QF (x)− yd‖2, (2.78)

then the gradient can be given as

∇f(x) = DF [x]∗Q∗(QF (x)− yd), (2.79)

The Gauss-Newton method is to approximate full Hessian ∇2f(x) with

B = DF [x]∗Q∗QDF [x]. (2.80)

Here the DF [x] and DF [x]∗ can be derived through the adjoint method, by differentiating e(F (x), x) = 0,

ey(F (x), x)DF [x] + ex(F (x), x) = 0, (2.81)

where ey(F (x), x) and ex(F (x), x) are defined by equation (2.38) and (2.39). The DF [x]∗ follows the same
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method in equation (2.48). Usually, the matrix-vector production between inverse Hessian and the gradient

is evaluated in a Hessian free form. The update direction δxk is achieved approximately by solving the

following linear system with a conjugate gradient method:

Bδxk = −∇f(xk). (2.82)

Also, preconditioning methods can be introduced for solving the above Newton equation [102]. Although

Newton’s method and the Gauss-Newton method provide fast convergence speed, huge numbers of the

forward modeling are proceed in each of the iteration, which is expensive for the large-scale problem.

Compared to Newton’s method and the Gauss-Newton method, quasi-Newton methods provide both the

Hessian information and the efficient computation at the same time. At the k-th iteration, the objective

function f(x) is approximated by a quadratic form

f(xk + δxk) ≈ f(xk) +∇f(xk)
′
δxk +

1

2
(δxk)

′
Bkδx

k, (2.83)

where Bk is a symmetric positive definite matrix approximating the Hessian ∇2f(xk).

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is one of the most popular quasi-Newton meth-

ods. Denote the inverse Hessian matrix asHk = B−1
k , theHk is approximated by xk, ∇f(xk), and the Hessian

approximation Hk−1 at the previous iteration [99]. The BFGS inverse Hessian approximation is given by

Hk+1 = (I − ρksky
′

k)Hk(I − ρkyks
′

k) + ρksks
′

k, (2.84)

where I is the identity matrix, sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk), ρk = 1/(y
′

ksk). Then the update

direction is given by

δxk = −Hk∇f(xk). (2.85)

The Wolfe line search condition can be used for the update which can keep the BFGS Hessian approximation

be symmetric positive definite during the iteration.

When the model x is a n-dimensional vector, the size of the inverse Hessian matrix is n × n. In most

cases, it is unrealistic to save the inverse Hessian matrix Hk explicitly due to the large-scale size of the

FWI problem. A limited memory quasi-Newton method for the large-scale optimization problem has been

designed in the work [86] with the name L-BFGS method. Instead of saving the full inverse Hessian matrix

Hk at each iteration, only limited numbers of vectors are required. Denote V = I − ρkyks
′

k, the L-BFGS
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inverse Hessian approximation is given by

Hk =
(
V
′

k−1 · · ·V
′

k−m

)
H0
k (Vk−m · · ·Vk−1)

+ ρk−m

(
V
′

k−1 · · ·V
′

k−m+1

)
sk−ms

′

k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
V
′

k−1 · · ·V
′

k−m+2

)
sk−m+1s

′

k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·

+ ρk−1sk−1s
′

k−1.

(2.86)

Only the vectors sk and yk are needed for m most recent iterations, which is much more efficient than the

storage of the full inverse Hessian matrix. Modest values of m such as 3 ≤ m ≤ 20 can provide satisfactory

results in practice [99].

When the feasible set C 6= Rn, algorithms for the constrained optimization problem are needed. The

gradient projection method is one of the most popular numerical schemes for the constrained problem [17],

which can be written as

x̄k = PC(xk − βk∇f(xk)), (2.87)

xk+1 = xk + αk(x̄k − xk), (2.88)

where αk is the line search parameter, βk is a positive scalar. The projection operator PC(x0) is defined as

PC(x0) = arg min
x∈C
‖x− x0‖. (2.89)

Similar to the quasi-Newton method, the second-order information can be introduced and this is denoted as

the scaled gradient projection method, which is

x̄k = arg min
x∈C
∇f(xk)

′
(x− xk) +

1

2βk
(x− xk)

′
Bk(x− xk), (2.90)

xk+1 = xk + αk(x̄k − xk), (2.91)

where Bk is a symmetric positive definite matrix approximating the Hessian matrix ∇2f(xk). We discuss

the gradient projection method and scaled gradient projection method in detail in Chapter 5, and novel

numerical schemes are developed for the case when the projection operator can not be evaluated exactly.
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Denote the regularization term as g(x), consider the regularized problem as

min
x∈Rn

F (x) = f(x) + g(x). (2.92)

Define a proximal operator as

xk = proxβk [g](xk−1 − βk∇f(xk−1)),

= arg min
x
g(x) +

1

2βk
‖x− (xk−1 − βk∇f(xk−1))‖2.

(2.93)

It can be derive that, when the g(x) is the indicator function of set C, i.e.,

g(x) = δC(x) =


x, as x ∈ C,

0, as x /∈ C,
(2.94)

Equation (2.93) is equivalent to

xk = PC(xk−1βk∇f(xk−1)), (2.95)

which is the gradient projection method discussed above [8].

Consider the l1 regularization with g(x) = λ‖x‖1, then the equation (2.93) is equivalent to

xk = Tλβk(xk−1 − βk∇f(xk−1)), (2.96)

where Tλβk(·) is a shrink operator defined by

Tα(x)i = (|xi| − α)+sgn(xi). (2.97)

This update is denoted as the iterative shrinkage-thresholding algorithm (ISTA). An improved version fast

iterative shrinkage-thresholding Algorithm (FISTA) is provided in [9],

xk = prox1/L[g]

(
yk − 1

L
∇f(yk)

)
, (2.98)

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
, (2.99)

yk+1 = xk +
tk − 1

tk+1

(
xk − xk−1

)
. (2.100)
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The application of the FISTA algorithm for the FWI problem can be found in [144, 2].

The total variation (TV) technique is known for generating the results with piece-wise constant structures,

which is important for the seismic inverse problem. Consider the constrained optimization problem with

min
x
f(x), such that ‖x‖TV ≤ θ, (2.101)

here θ is the radius of the TV ball that can be used to control the inverse results. The primal-dual hybrid

gradient (PDHG) method is developed for solving the above problem [145]. A PDHG algorithm with adaptive

step size is designed in [62]. To apply the PDHG algorithm, define a Lagrangian function [140] as

min
δx

max
y
L(δx, y, λ) = ∇f(xk)

′
δx+

1

2
δx
′
+Bkδx

′
+ λ

(
p
′
D(xk + δx)− θ

)
, (2.102)

where D is the finite difference operator. Then we have the primal problem

arg min
δx

f(xk + δx) + δx
′
D
′
y, (2.103)

and the dual problem

arg sup
y
y
′
D(xk + δx)− θ‖y‖∞. (2.104)

Then the PDHG algorithm is to iteratively solve the above primal problem and dual problem. For more

information about the adaptive PDHG algorithm applied in the FWI problem, we refer to [140]. And for

the case when both box constraint and TV constraint are considered, please refer to [55].

31



Chapter 3

Background of optimal transport

problem

The classical optimal transport (OT) problem is defined for comparing the difference between two probability

measures. Then based on the solution of the optimal transport problem, the optimal transport distance or

so-called Wasserstein distance is well defined for probability measures. Compared to the conventional L2

and L1 distance, the OT distance holds better geometric properties, such as the convexity with respect to

shift and dilation operations. However, to generalize the OT distance to the general variational problem,

two problems need to be considered:

1. Generalize the OT distance to positive measures or positive functions which can describe the physical

properties with positive values.

2. Generalize the OT distance to signed measures or the functions with positive, negative, and 0-valued

parts which can describe the wavefield and signals.

We focus on the first problem in this chapter and discuss how to partially solve the second problem in the

next chapter.

To overcome the mass equality constraint, the unbalanced optimal transport (UOT) problem is studied

in recent works [10, 107, 38, 39]. With different approaches to define the UOT problem, the unbalanced

optimal transport (UOT) distance can be used to measure the difference between two positive measures.

Also, the entropy regularization methods of the original optimal transport problem can be introduced to

compute the UOT distance, which provides an efficient way to approximately evaluate the UOT distance

and the gradient.
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We review the optimal transport problem first. Since the convexity of OT distance with respect to shift

and dilation was proved in the work [139] through the Monge problem, which is not an ideal choice as we

will discuss later. We reprove the convex properties through the Kantorovich problem. Then the entropy

regularization of the OT problem and the Sinkhorn algorithm are reviewed. The UOT distance is introduced

in the last section, and the numerical algorithm to evaluate the UOT distance and the gradient is provided.

3.1 Review of optimal transport problem

First, we review the optimal transport problem and provide the preliminary results which are useful to

describe the metric properties of the proposed mixed L1/Wasserstein distance. For more analysis results on

the topic of optimal transport, we refer to the monographs [133, 119]. We refer to the book [106] for more

discussion of the computation methods and applications of the optimal transport problem.

Start with the general setting of the optimal transport problem, set X and Y be Polish spaces, we study

how to transport a measure µ on a space X to another measure ν on a space Y .

Definition 3.1 (Polish space). A Polish space is a topological space that is homeomorphic to some complete

separable metric space. Equivalently, a topological space is a Polish space if it is separable and completely

metrizable.

One of the important examples of Polish space is the Euclidean space Rd with the usual topology. Since

we are interested in the case comparing two functions that representing some physical properties in the real

world, we can focus on the special case when there is some nonempty closed subset Ω ⊂ Rd which is also

compact. Also, discretization is needed for the numerical algorithms and results. In this case, we are working

on the discrete measure defined on Ω or Rd in this work.

Denote the set of Radon measures on X asM(X), and the set of all positive measures on X asM+(X).

The set of probability measure on X is denoted as P(X). We will work on the discrete measure in Rd, first,

define the probability simplex as

Σn =

{
a ∈ Rn+

∣∣∣∣∣
n∑
i=1

ai = 1

}
. (3.1)

A discrete probability measure with weights a ∈ Σn and locations x1, · · · , xn ∈ X is

α =

n∑
i=1

aiδxi , (3.2)

where δxi is the Dirac measure concentrated on the point xi. When the coefficient a has not to be restricted
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in the probability simplex Σn, the general discrete measure can be defined as:

α =

n∑
i=1

aiδxi , (3.3)

here a ∈ Rn. Since our goal is to compare the difference between two discrete signals which have the values

as a vector in Rn and sampling at the spatial (or temporal) points (x1, · · · , xn) ∈ (Rd)n, the above discrete

measure fulfills our demand. We use α, β to represent the discrete measures, and use µ, ν as the general

probability measures and Radon measures in this work.

For a continuous map T : X → Y , the push forward operator T] :M(X)→M(Y ) is defined as

T]µ(E) = µ(T−1(E)), ∀ Borel set E ⊂ Y. (3.4)

The push forward operator can be characterized by

∫
Y

f(y) dT]µ(y) =

∫
X

f ◦ T (x) dµ(x), ∀f ∈ C(Y ). (3.5)

Denote the continuous map T as a transport map. For the discrete probability measure in equation (3.2),

the push forward operator is to move the position of all the points in the support of the measure with the

transport map, i.e.,

T]α =

n∑
i=1

aiδT (xi). (3.6)

To represent the distance between xi and T (xi), a cost function c : X ×Y → R∪{+∞} can be equipped

for the space X and Y . We focus on the case when c is the square of the Euclidean distance on Rd, i.e.,

c(x, y) = |x − y|2 for x ∈ X and y ∈ Y . The optimal transport problem is a classical problem proposed by

Monge [96] in 1781, and we write it in the modern language as:

Problem 3.2 (Monge problem). Given two probability measures µ ∈ P(X) and ν ∈ P(Y ), and a cost

function c : X × Y → R ∪ {+∞}, minimize

T →
∫
X

c(x, T (x)) dµ(x), (3.7)

for all transport maps T such that T]µ = ν.

One of the issues of the Monge problem (3.7) is the optimal transport map T may not exists. For example,

if µ is a Dirac measure and ν is not. And also, when we are working on the discrete measures, the Monge
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Figure 3.1: The empirical measure α and β are shown in blue and red. In the case of subfigure (a), the
Monge problem can be well defined. In the case of subfigure (b), the Monge problem can not be well defined.

problem can only be used to compare the uniform histograms with the same size, for example as Figure

3.1. Another issue is the constraint in the Monge problem (3.7) is nonconvex. The reason of the Monge

problem is not working well on discrete measures is one source point xi can only be assigned to another point

T (xi) and no mass can be split [106]. In 1942, Kantorovich proposed a relaxed transportation problem [74].

Instead of working on the transport map T , a transport plan γ which is a measure on the product space

X × Y is considered, and this allows the mass can be split from a source xi toward several target points.

Define the set of the transport plans as

Π(µ, ν) = {π ∈ P(X × Y ) | PX]π = µ and PY ]π = ν} , (3.8)

where PX] and PY ] are the projections of X × Y onto X and Y respectively. The set of transport plan is

nonempty since there exists a transport plan π such that

π(A×B) = µ(A)ν(B), ∀ Borel sets A ⊂ X,B ⊂ Y. (3.9)

Then the Kantorovich problem is given by

Problem 3.3 (Kantorovich problem). Given two probability measures µ ∈ P(X) and ν ∈ P(Y ), and a cost

function c : X × Y → R ∪ {+∞}, minimize

π →
∫
X×Y

c(x, y) dπ(x, y), (3.10)

such that π ∈ Π(µ, ν), where the set of transport plans is defined by equation (3.8).
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The following theorems give the existence of the Kantorovich problem.

Theorem 3.4 ([119], Theorem 1.4). Let X and Y be compact metric spaces, µ ∈ P(X), ν ∈ P(Y ), and

c : X × Y → R is a continuous function. Then the Kantorovich problem admits a solution.

Theorem 3.5 ([119], Theorem 1.7). Let X and Y be Polish spaces, µ ∈ P(X), ν ∈ P(Y ), and c : X × Y →

R ∩ {+∞} is lower semicontinuous. Then the Kantorovich problem admits a solution.

Notice that the uniqueness is not guaranteed for the Kantorovich problem, one example is shown in

Figure 3.2.
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Figure 3.2: The empirical measure α and β are shown in blue and red. The transport plan shown in subfigures
(a) and (b) are different, but the costs of two transport plan are equal due to the symmetry.

The transport plans “include” transport maps. For two probability measures µ ∈ P(X) and ν ∈ P(Y ),

suppose we have a transport map T : X → Y between µ and ν. A transport plan γ can have the form of

(id, T])µ. In this case, the Kantorovich problem is a relaxation of the Monge problem. And since we focus

on the discrete measure, the Kantorovich problem is a better choice since it is well defined for the discrete

measures. The following definitions and corollary provide the connection between the Monge problem and

the Kantorovich problem.

Definition 3.6 (Atomless measure). When Ω ⊂ Rd be a compact subset, the measure µ is called atomless if

for every singleton in Ω, the measure is 0, i.e.,

µ({x}) = 0, ∀x ∈ Ω. (3.11)

Corollary 3.7 ([119], Corollary 1.29). If µ, ν are two probability measures on Rd and µ is atomless, then

there exists at least a transport map T such that T]µ = ν.
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Obviously, the discrete measure (3.2) is not an atomless measure. The above corollary provides a sufficient

condition that the Monge problem is equivalent to the Kantorovich problem. However, we do not have this

equivalence for the case of discrete measure.

Definition 3.8 ([133], Definition 5.1, c-cyclically monotonicity). Let X, Y be arbitrary sets, and c : X×Y →

(−∞,∞] be a function. A subset Γ ⊂ X × Y is said to be c-cyclically monotone if, for any N ∈ N, and any

family (x1, y1), · · · , (xN , yN ) of points in Γ, holds the inequality

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1), (3.12)

holds, with the convention yN+1 = y1. A transport plan is said to be c-cyclically monotone if it is concentrated

on a c-cyclically monotone set.

Theorem 3.9 ([3], Theorem 1.13). Assume that c : X × Y → R is continuous and bounded from below, and

let µ ∈ P(X), ν ∈ P(Y ) be such that

c(x, y) ≤ a(x) + b(y), ∀(x, y) ∈ X × Y, (3.13)

for some a ∈ L1(µ), b ∈ L1(ν). Also, let π ∈ Π(µ, ν). Then the following statements are equivalent:

(i) The transport plan π is optimal.

(ii) The set transport plan π is c-cyclically monotone.

Notice that when X and Y are compact subsets in Rd, the condition (3.13) is natural. We will restrict

the measure µ and ν be the probability measure with a finite second-order moment when X and Y are

the Euclidean space Rd. The condition (3.13) is for the cases when the cost function admits ∞ values, see

Remark 1.14 in [3]. The Theorem 3.9 is an important tool to determine whether a transport plan is the

optimal transport plan. And it will be used in the following sections to show that the convex properties of

2-Wasserstein distance.

Since the equation (3.10) is a linear functional for π, and the constraints of the Kantorovich problem is

affine, a dual problem can be achieved.

Problem 3.10 ([3], Problem 1.16, Dual of Kantorovich problem). Given two probability measures µ ∈ P(X)

and ν ∈ P(Y ), and a cost function c : X × Y → R ∪ {+∞}, maximize

∫
φ(x) dµ(x) +

∫
ψ(y) dν(y), (3.14)
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among all functions φ ∈ L1(µ), ψ ∈ L1(ν) such that

φ(x) + ψ(y) ≤ c(x, y), ∀x ∈ X, y ∈ Y. (3.15)

The following theorem provides the existence of a solution to the dual problem and provides the connection

between the Kantorovich problem and the dual problem.

Theorem 3.11 ([119], Theorem 1.39). Suppose that X and Y are Polish spaces and that c : X × Y → R is

uniformly continuous and bounded. Then the dual of Kantorovich problem 3.10 admits a solution. And we

have the maximum value of equation (3.14) is equal to the minimum of equation (3.10), i.e. strong duality

holds.

Corollary 3.12. Suppose X and Y are compact subspaces in Rd, and the cost function c(x, y) = |x − y|2

is the squared Euclidean distance. Then the Kantorovich problem 3.3 and the dual of Kantorovich problem

3.10 admit a solution. The strong duality holds.

Proof. Since the cost function c(x, y) = |x−y|2 is defined on the compact set X×Y , c is uniformly continuous

and bounded on X × Y . The existence follows by the Theorem 3.4 and Theorem 3.11. The strong duality

follows by the Theorem 3.11.

Now we discuss the choice of the set X and Y . Suppose X and Y are the Euclidean space Rd, and the

cost function c(x, y) = |x − y|2 is the square of Euclidean distance. In this case, we have the existence of

Kantorovich problem 3.3 by the Theorem 3.5. But the existence of dual Kantorovich problem is not achieved

since a uniformly continuous and bounded cost function is needed based on Theorem 3.11. Consider the

case when X, Y are closed and bounded subset of Rd, the compactness follows by the Heine–Borel theorem.

Also, the uniformly continuous of the square of Euclidean distance cost function follows the Heine–Cantor

theorem. Then by Theorem 3.4 and Corollary 3.12, we have the existence of both the primal problem and

the dual problem.

From the above discussion, the Kantorovich problem is a better choice for our work since it is well defined

for the discrete measures. The concept of c-transform and c-concave functions play an important role in

the discussion of the dual Kantorovich problem, the proof of the existence of the dual problem, and the

connection between of Kantorovich problem and the dual problem. We refer the monographs [133] and [3]

for more detailed discussion.

38



3.2 Metric properties of discrete 2-Wasserstein distance

In this section, we review the Kantorovich problem in the discrete form first, then the p-Wasserstein distance

for the discrete probability measures is provided. We focus on the 2-Wasserstein distance in this work. Then

the metric property and subdifferentiability of the 2-Wasserstein distance are provided. The convexity of

2-Wasserstein distance with respect to shift and dilation was provided in the work [138, 139] through the

Monge problem. The convex properties are the main reason for us to study the optimal transport distance.

However, the Monge problem is not an ideal choice for the discrete probability measure as we discussed in

the previous subsection. The proof of the convexity results based on the Kantorovich problem is provided

at the end of this subsection.

Let Ω ⊂ Rd be nonempty, closed, and bounded. Let p ∈ [1,∞), we restrict our work on the set of

probability measures defined on Ω with finite p-th order moment:

Pp(Ω) =

{
µ ∈ P(Ω)

∣∣∣∣ ∫
Ω

|x|p dµ < +∞
}
. (3.16)

Next, we define the p-Wasserstein distance on Pp as:

Definition 3.13. Given two measure µ, ν ∈ Pp and the cost function c(x, y) = |x − y|p, the p-Wasserstein

distance between µ and ν is defined as

Wp(µ, ν) = min
π∈Π(µ,ν)

(∫
Ω×Ω

|x− y|p dπ

)1/p

, (3.17)

where the set of transport plans Π(µ, ν) is given by equation (3.8).

Proposition 3.14 ([119], Proposition 5.1). The quantity Wp defined above is a distance over Pp(Ω).

In this work, we focus on the discrete measure defined on Ω. To define the discrete measures, first denote

the set of sampling points as X = {x1, · · · , xn} ⊂ Ω and Y = {y1, · · · , ym} ⊂ Ω. Define two probability

measures as:

α =

n∑
i=1

aiδxi , β =

m∑
i=1

biδyi , (3.18)

where a ∈ Σn, b ∈ Σm. Denote π as a transport plan between α and β, i.e. π ∈ Π(α, β). It is straight

forward to see that the transport plan has the discrete form as

π =
∑
i,j

Pi,jδ(xi,yj), xi ∈ X and yj ∈ Y. (3.19)
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We use the matrix P ∈ Rn×m+ to represent the transport plan in the discrete form. The set of the transport

plans in the discrete form is given by:

Πd(α, β) =
{
P ∈ Rn×m+

∣∣∣ P1m = a and P
′
1n = b

}
, (3.20)

where 1n is the row vector with n entries and every entry is 1. The feasible set Πd(α, β) is bounded and

defined by n+m equality constraints, then it is a convex polytope [106].

Next, let p ∈ [1,∞), define the cost matrix C ∈ Rn×m as

Ci,j = c(xi, yj) = |xi − yj |p, (3.21)

where the distance function c : X × Y → R ∩ {+∞} is the p-th order of Euclidean distance.

When the sampling points of α and β are fixed, the Kantorovich problem 3.15 has a discrete form as:

Problem 3.15 (Discrete Kantorovich problem). Given two discrete probability measure α and β in Rd as

(3.18), and the cost matrix C is defined by equation (3.21) with p ∈ [1,∞). The discrete Kantorovich problem

is

min
P∈Πd(α,β)

〈P,C〉 =
∑
i,j

Ci,jPi,j , (3.22)

where the set of transport plan Πd(α, β) is given by equation (3.20).

The definition of p-Wasserstein distance between discrete probability measures is given by:

Definition 3.16. Given two discrete measure α and β as (3.18), and the cost matrix C is defined by equation

(3.21) with p ∈ [1,∞). The p-Wasserstein distance between α and β is defined as

Wp(α, β) =

(
min

P∈Πd(α,β)
〈P,C〉

)1/p

, (3.23)

where the set of transport plans Πd(α, β) is given by equation (3.20).

Proposition 3.17. The p-Wasserstein distance defined in equation (3.23) is a distance over the set of

discrete probability measures in Pp(Ω).

Problem 3.18 (Discrete dual problem). Given two discrete probability measure α and β as equation (3.18),

and the cost matrix C is defined by equation (3.21) with p ∈ [1,∞). The dual Kantorovich problem is given
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by

max
(φ,ψ)∈RC

φ
′
a+ ψ

′
b, (3.24)

where the polyhedron RC of dual variables is

RC = {(φ, ψ) ∈ Rn × Rm | φi + ψj ≤ Ci,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m} . (3.25)

In this work, we focus on the case when p = 2. By Corollary 3.12, both the solution of the primal problem

3.15 and the dual problem 3.18 exist, and the strong duality holds. The value of 2-Wasserstein distance can

be evaluated with the dual problem 3.18.

Let (φ∗, ψ∗) solves the dual problem 3.18, it is straightforward to see that (φ∗ + k1n, ψ
∗ − k1m) is also

a solution of the dual problem. To remove this freedom, we set
∑n
i=1 φi = 0 [49].

Notice that, for the case of discrete probability measures, the W 2
2 (α, β) is actually controlled by the

vectors a, b, and sets X, Y . Then the square of 2-Wasserstein distance for α and β in equation (3.18) is

W 2
2 (α, β) = W 2

2 (a, b,X, Y ) = max
(φ,ψ)∈RC

φ
′
a+ ψ

′
b, (3.26)

where the feasible set RC is given by equation (3.25). The subdifferentiability of W 2
2 as a function of a is

given by the following proposition.

Proposition 3.19 ([49], Proposition 1). Given two discrete probability measure α and β as equation (3.18),

and the cost matrix C is defined by equation (3.21) with p = 2. Any optimal dual variable φ∗ of the dual

problem (3.24) is a subgradient of W 2
2 with respect to a.

One of the reasons we introduce the 2-Wasserstein distance to the inverse problem is that it maintains

the convexity with respect to shift and dilation compared to the usual L2 distance which is popular in the

inverse problem. The convexity results has been shown in the work of [138, 139]. However, in the above

work, the Wasserstein distance and the convex properties were built with the Monge problem which is not the

ideal choice for the discrete measures used in this work. We show the convex properties of the 2-Wasserstein

distance with the discrete Kantorovich problem 3.15 next.

The following theorem provides the convexity with respect to shift between two discrete probability

measures. The shift process is described in Figure 3.3 (a).

Theorem 3.20. Suppose α and β are two discrete probability measures defined by equation (3.18), let

π =
∑
i,j Pi,jδ(xi,yj) ∈ Π(α, β) be the optimal transport plan that rearranges α to β, where the matrix
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Figure 3.3: (a): The empirical measure αs is the shift of measure α with the direction η = (1, 5) and the

length s = 0.5. (b): The empirical measure αA is the dilation of measure α with the transform A =

[
3 0
0 1.5

]
.

P ∈ Πd(α, β). The shift of discrete measure α with the direction η ∈ Rd and shift size s > 0 is defined as

αs =

n∑
i=1

aiδxi+sη. (3.27)

Here the shift size s is small enough such that xi + sη ∈ Ω for i = 1, · · · , n. Then W 2
2 (αs, β) is convex with

respect to the shift size s.

Proof. Denote πs =
∑
i,j(Ps)i,jδ(xi+sη,yj) ∈ Π(αs, β) as a transport map between αs and β, where Ps ∈

Πd(αs, β). Since measure αs and α have the same value a, then Πd(αs, β) = Πd(α, β). Then Ps = P ,

i.e., the discrete transport plan is not changing with the shift operator. And πs =
∑
i,j Pi,jδ(xi+sη,yj) is a

transport plan between αs and β.

Next, we show that πs =
∑
i,j Pi,jδ(xi+sη,yj) is the optimal transport plan. By Theorem 3.9, it is

equivalent to show that the transport plan πs is c-cyclically monotone. Denote Xs = {x1 + sη, · · · , xN + sη}

be the set where αs is concentrated. Suppose for any N ∈ N, and any family of points (x1 +sη, y1), · · · (xN +

sη, yN ) ∈ Xs × Y , by Definition 3.8 and c(x, y) = |x− y|2,

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1), (3.28)

N∑
i=1

〈xi − yi, xi − yi〉 ≤
N∑
i=1

〈xi − yi+1, xi − yi+1〉 , (3.29)

N∑
i=1

〈xi, yi〉 ≥
N∑
i=1

〈xi, yi+1〉 . (3.30)
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Then,
N∑
i=1

〈xi + sη, yi〉 =

N∑
i=1

〈xi, yi〉+

N∑
i=1

〈sη, yi〉

≥
N∑
i=1

〈xi, yi+1〉+

N∑
i=1

〈sη, yi〉

=

N∑
i=1

〈xi, yi+1〉+

N∑
i=1

〈sη, yi+1〉

=

N∑
i=1

〈xi + sη, yi+1〉 .

(3.31)

Then,

W 2
2 (αs, β) = 〈P,C〉 =

∑
i,j

Pi,j |xi + sη − yj |2, (3.32)

which is convex with respect to s.

The next theorem provides the convex property of the square of 2-Wasserstein distance with respect to

the dilation. The dilation process is described in Figure 3.3 (b).

Theorem 3.21. Given a ∈ Σn and a discrete set X = {x1, · · · , xn} ⊂ Ω, two discrete probability measures

are defined by

α =

n∑
i=1

aiδxi , αA =

n∑
i=1

aiδAxi .

Here A is a dilation transform matrix which is symmetric positive definite, and αA is the dilation of α. Also,

suppose xi ∈ Ω and Axi ∈ Ω for i = 1, · · · , n. Let π =
∑
i,j Pi,jδ(Axi,xj) ∈ Π(αA, α) be the transport plan

that rearranges αA to α, where P ∈ Πd(αA, α). Then, π is the optimal transport plan with P = diag(a), and

W 2
2 (αA, α) is convex with respect to the eigenvalues of A.

Proof. From the definition of α and αA, it is easy to see that when P = diag(a), π ∈ Π(αA, α).

Next we show that π =
∑
i,j Pi,jδ(Axi,xj) is the optimal transport plan. For any N ∈ N and N ≤ n and

any family of points {x1, · · · , xN} ⊂ X, by the construction above {Ax1, · · · , AxN} ⊂ Ω, denote yi = Axi,
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for i = 1, · · · , N .

N∑
i=1

〈yi, xi〉 −
N∑
i=1

〈yi, xi+1〉 =

N∑
i=1

〈Axi, xi〉 −
N∑
i=1

〈Axi, xi+1〉

=
1

2

(
N∑
i=1

〈Axi, xi〉+

N∑
i=1

〈Axi+1, xi+1〉 − 2

N∑
i=1

〈Axi, xi+1〉

)

=
1

2

N∑
i=1

〈A(xi − xi+1), xi − xi+1〉 ≥ 0.

(3.33)

The last inequality holds since A is symmetric positive definite. Then, by inequality (3.30), the transport

plan π =
∑
i,j Pi,jδ(Axi,xj) is concentrated on a c-cyclically monotone set. By Theorem 3.9, the transport

plan π is optimal.

Since A is a real symmetric matrix, by eigendecomposition,

A = QDQ
′
, (3.34)

where Q is a real orthogonal matrix, and D is a diagonal matrix whose entries are the eigenvalues of A,

denoted as D = diag{λ1, · · · , λd}. Also,

W 2
2 (αA, α) = 〈diag(a), C〉

=

n∑
i=1

ai |xi −Axi|2

=

n∑
i=1

ai 〈(I −A)xi, (I −A)xi〉

=

n∑
i=1

ai(Q
′
xi)
′
diag

(
(1− λ1)2, · · · , (1− λd)2

)
Q
′
xi,

(3.35)

where λ1, · · · , λd are the eigenvalues of A. The convex properties follows the above equation.

3.3 Entropy regularization of the optimal transport problem

In this subsection, we review the entropy regularization for the optimal transport problem, which leads to

a fast approximate evaluation of the Wasserstein distance. The numerical methods in this section are not

innovative, but it is important for the numerical evaluation of the following unbalanced optimal transport

distance and the proposed mixed L1/Wasserstein distance.

As we discussed before, the Wasserstein distance holds several desirable geometry properties compared

to the conventional L2 and L1 distance for discrete vectors. However, the evaluation of the Wasserstein
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distance is not straight forward. The computational cost of solving the discrete Kantorovich problem 3.15

through network simplex or interior point methods for two n-dimensional vectors is at least O(n3 log(n))

[48, 103], that prevents the widespread use of the Wasserstein distance for large-scale problem. A dynamic

formulation of optimal transport problem is proposed in the work [11] which provides a connection between

the optimal transport problem and the computational fluid mechanics. By transforming the transport plan

as a geodesic, the optimal transport problem can be solved as a convex optimization problem. However,

an extra time dimension is needed for this approach and this expands the dimension of the problem and

is expensive to compute. When the optimal transport problem is considered with the squared Euclidean

distance as the cost function, it can be solved through the connection between the optimal transport plan

and the Monge-Ampère equation [14]. The Monge-Ampère equation can be solved with Newton’s method

[88, 59] approximately, and additional regularity assumptions on the density and domain are needed [15].

And this approach has been successfully applied in the geophysics domain and the seismic inversion problem

[139, 138].

Besides the above methods, the entropy regularization method is the most popular numerical method for

the optimal transport problem. Introducing the regularization to the optimal transport problem is a natural

choice and can date back to the 1960s [136]. The work [48, 49] provide a smoothed Wasserstein distance by

solving the Kantorovich problem with an entropy regularization. Those works make the evaluation of large-

scale optimal transport problem become possible and popularized the Wasserstein distance in the machine

learning society. By introducing the regularization term to the Kantorovich problem 3.15, a strict convex

problem can be solved with matrix scaling algorithms. In [48], the author suggests to use the Sinkhorn’s fixed

point iteration algorithm which has a linear convergence [58, 75]. In this case, the smoothed Wasserstein

distance is also denoted as Sinkhorn distance. We provide a short review of using the Sinkhorn algorithm to

solve the entropy regularized optimal transport problem.

Let F : Ω → R be a continuously differentiable, strictly convex function, and the set Ω is closed and

convex. The Bregman divergence associated with F for points a, b ∈ Ω is given by

DF (a, b) = F (a)− F (b)− 〈∇F (b), a− b〉 . (3.36)

Given a vector a ∈ Rn, with ai ≥ 0 for i = 1, · · · , n, the entropy function is defined as:

E(a) = −
n∑
i=1

ai(log(ai)− 1), (3.37)

here the convention 0 log(0) = 0 is used. The Kullback–Leibler (KL) divergence (also called relative entropy)
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is defined as the negative Bregman divergence associated with the entropy function E. Given vector a, b ∈ Rn,

with ai ≥ 0, bi ≥ 0, for i = 1, · · · , n, the Kullback–Leibler (KL) divergence is defined as:

KL(a|b) =

n∑
i=1

ai log

(
ai
bi

)
− ai + bi, (3.38)

here the convention 0 log(0/0) = 0 is used. For the special case when a, b ∈ Σn,

KL(a|b) =

n∑
i=1

ai log

(
ai
bi

)
. (3.39)

Since the matrix can be rearranged into a vector, the entropy function and the KL divergence can be defined

for the matrix with non-negative entries with the same method.

Given discrete probability measures α and β defined by equation (3.18), consider the entropy regularized

Kantorovich problem:

Pε = arg min
P∈Πd(α,β)

〈P,C〉 − εE(P ), (3.40)

where ε > 0 is the regularization parameter, Πd(α, β) is the set of optimal transport plan defined by (3.20).

Since we focus on the case when the cost matrix C is defined by the squared Euclidean distance, we denote

the square of the regularized 2-Wasserstein distance as:

W 2
2,ε(α, β) = 〈Pε, C〉 , (3.41)

where Pε = arg min
P∈Πd(α,β)

〈P,C〉 − εE(P ). (3.42)

This is also denoted as the Sinkhorn distance in the work [48].

Figure 3.4 shows that the convergence behavior of the transport plan in the regularized Kantorovich

problem as ε → 0. In Figure 3.4 (a), the Gaussian density α is centered at 0.4, and β is centered at 0.6.

The transport plan between α and β should be a shift as discussed in the previous section, which should

be sparse as shown in the transport plan matrix. As shown in Figure 3.4 (b), (c), (d), the transport plan

converges to a sparse matrix as the regularization parameter ε goes to 0. For more analysis results of the

convergence behavior of the entropy regularized OT problem, please refer to the monograph [106], Chapter

4.
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Figure 3.4: (a): Two Gaussian densities α and β centered at 0.4 s and 0.6 s. (b): The regularized transport
plan with ε = 5 × 10−2. (c): The regularized transport plan with ε = 5 × 10−3. (d): The regularized
transport plan with ε = 5× 10−4.

It is straightforward to show that

Pε = arg min
P∈Πd(α,β)

KL(P |K)

= arg min
P∈Πd(α,β)

n∑
i=1

m∑
j=1

Pi,j log

(
Pi,j
Ki,j

)
− Pi,j +Ki,j ,

(3.43)

where Ki,j = e−Ci,j/ε. Denote,

C1 =
{
P ∈ Rn×m+

∣∣ P1m = a
}
, C2 =

{
P ∈ Rn×m+

∣∣∣ P ′1n = b
}
, (3.44)

then Πd(α, β) = C1∩C2. The regularized Kantorovich problem (3.40) can be explained as finding a projection

of K onto the intersection of C1 and C2, which can be solved by the Bregman iterative projections [15]. This

is equivalent to the following matrix scaling algorithm approach, and we refer to the work [15] for the details

of this approach.
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Consider the Lagrangian of the problem (3.40),

L(Pε, φ, ψ) =
∑
i,j

(Pε)i,jCi,j + ε(Pε)i,j (log(Pε)i,j − 1) + φ′ (a− Pε1m) + ψ′
(
b− P

′

ε1n

)
. (3.45)

The first order optimality condition provides that

∂L(Pε, φ, ψ)

∂(Pε)i,j
= Ci,j + ε log(Pε)i,j − φi − ψj = 0, (3.46)

which equivalents to

Pε = diag(u)Kdiag(v), (3.47)

where ui = eφi/ε, vj = eψi/ε, and Ki,j = e−Ci,j/ε.

The dual problem can be derived with the Lagrangian:

max
φ,ψ∈Rn×Rm

φ
′
a+ ψ

′
b− ε

∑
i,j

e−(Ci,j−φi−ψj)/ε. (3.48)

The following proposition provides the connection between the regularized Kantorovich problem (3.40) and

the dual problem.

Proposition 3.22 ([49], Proposition 2). Given discrete probability measures α, β, the matrix K is defined

by Ki,j = e−Ci,j/ε. Then there exists a pair of vectors (u, v) ∈ Rn+ × Rm+ such that the optimal solutions of

the primal problem (3.40) and the dual problem (3.48) is given by

P ∗ε = diag(u)Kdiag(v). (3.49)

The dual parameter φ∗ is given by

φ∗i = ε log(ui). (3.50)

Then, solving the regularized Kantorovich problem (3.40) is equivalent to find vector u ∈ Rn+, v ∈ Rm+

such that P = diag(u)Kdiag(v) satisfies P1m = a and P
′
1n = b. This matrix scaling problem can be solved

with the Sinkhorn fixed point iteration. The following lemma provides the matrix scaling computation of

the regularized Kantorovich problem (3.40). We refer to [48, 49, 106] for more details.

Lemma 3.23 ([49], Lemma 1; [122]). For any positvie matrix K ∈ Rn×m+ and positive probability vectors
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a ∈ Σn and b ∈ Σm, there exist positive vectors u ∈ Rn+ and v ∈ Rm+ , unique up to scalar multiplication, such

that diag(u)Kdiag(v) ∈ Πd(α, β). Such a pair (u, v) can be recovered as a fixed point of the Sinkhorn map

ui = φi/(Kv)i, vj = ψj/(K
′u)j . (3.51)

The Sinkhorn algorithm of regularized Kantorovich problem (3.40) is given by Algorithm 1.

The stopping criteria can be designed in a variety of ways, for example, the iteration process can be

terminated after a certain number of iterations. If the distance is evaluated for each iterations as d1, by

introducing a temporary variable d0 to save the distance in the previous iteration. The iteration can be

terminated when |d1/d0 − 1| ≤ η, here η is a threshold variable to control the accuracy of the distance.

Algorithm 1: Sinkhorn algorithm.
Input: α, β, C, ε.
Initialization: matrix K with Ki,j = e−Ci,j/ε, u = 1n, v = 1m.
while not converged do

Update vector u with ui = ai/(Kv)i.
Update vector v with vj = bj/(K

′
u)j .

end
Compute the transport plan matrix Pε = diag(u)Kdiag(v).
return The Sinkhorn distance W 2

2,ε(α, β) = 〈Pε, C〉.
The gradient of W 2

2,ε(α, β) with respect to a is (∇aW 2
2,ε(α, β))i = ε log(ui)− ε/n

∑
j log(uj).

Two matrix-vector productions Kv and K
′
u are evaluated for each of the iterations in Algorithm 1.

Suppose u and v are the row vectors rearranged by the matrices with n = N×M size, then the computational

complexity of the matrix-vector production be O(N2M2). Also, the MN ×MN matrix K is stored for the

matrix-vector production which is impossible for large-scale problems. When the discrete probability measure

α and β are defined on Rd, a special technique can be applied. This technique is denoted as convolutional

Wasserstein distance and extends to the case when the optimal transport problem is studied on manifolds

[124]. The central idea is to replace the matrix-vector production with a kernel convolution. Since the

feasibility of large-scale problem is common for the variational problem, we review this technique by using

the tools of the Kronecker product.

Suppose the discrete probability measures α and β are defined on R2,

α =
∑
i

aiδxi , β =
∑
j

bjδyj , (3.52)

here a, b ∈ Σn. And the index i and j are multi-index here as xi = (x1
i1
, x2
i2

) ∈ R2, yj = (y1
j1
, y2
j2

) ∈ R2.
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Define the matrix C1 and C2 as

(C1)i1,j1 = (x1
i1 − y

1
j1)2, (C2)i2,j2 = (x2

i2 − y
2
j2)2. (3.53)

Then the cost matrix C is defined as

Ci,j = |xi − yj |2 = (x1
i1 − y

1
j1)2 + (x2

i2 − y
2
j2)2 = (C1)i1,j1 + (C2)i2,j2 . (3.54)

Define the matrix K1 and K2 as

(K1)i1,j1 = e−(C1)i1,j1/ε, (K2)i2,j2 = e−(C2)i2,j2/ε, (3.55)

by the definition of matrix K,

Ki,j = e−Ci,j/ε = (K1)i1,j1(K2)i2,j2 . (3.56)

Then matrix K can be represented as the Kronecker product between K2 and K1,

K = K2 ⊗K1. (3.57)

Lemma 3.24 ([73], Section 2.8). For the N ×M dimension matrix U and V , let u and v be the row-ordered

vector of matrix U and V . Given N ×N matrix A and M ×M matrix B, if V = AUB
′
, then v = (A⊗B)u.

Taking advantage of the above lemma, we can have the following algorithm designed for computing the

Sinkhorn distance for two-dimensional images.

3.4 Unbalanced optimal transport distance

To overcome the mass equality limitation, the unbalanced optimal transport (UOT) problem is raised in

[10] based on a dynamic approach. Later several works have been proposed in both static and dynamic

approaches [107, 38, 39]. In this subsection, we introduce the UOT distance mainly based on the work in

[39], and then apply it to the FWI problem.

Let Ω be a nonempty, closed and bounded subset in Rn, given two sampling set X = {x1, · · · , xn} ⊂ Ω
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Algorithm 2: Sinkhorn algorithm in R2.
Input: discrete probability measures α, β on R2 with densities a, b ∈ RN×M , ε > 0. The cost matrix
C1 and C2 defined by equation (3.53).
Initialization: matrix K1, K2 with (K1)i,j = e−(C1)i,j/ε, (K2)i,j = e−(C2)i,j/ε. Matrix u, v are
initialized as N ×M matrices with all entries be 1. Let d = 0.
while not converged do

Update vector u with ui,j = ai,j/(K2vK
′

1)i,j .
Update vector v with vi,j = bi,j/(K

′

2uK1)i,j .
end
for i1 = 1 : N do

for i2 = 1 : M do
for j1 = 1 : N do

for j2 = 1 : M do
d = d+ ui1,i2(K2)i2,j2(K1)i1,j1vj1,j2((C1)i1,j1 + (C2)i2,j2).

end
end

end
end
return The Sinkhorn distance W 2

2,ε(α, β) = d.
The gradient of W 2

2,ε(α, β) with respect to a is (∇aW 2
2,ε(α, β))i,j = ε log(ui,j)− ε/n

∑
k,l log(uk,l).

and Y = {y1, · · · , ym} ⊂ Ω. Define two positive discrete measure on Ω as

α =

n∑
i=1

aiδxi , β =

m∑
i=1

biδyi , (3.58)

where a = (a1, · · · , an) ∈ Rn+ and b = (b1, · · · , bm) ∈ Rm+ . Denote the set of discrete measure defined in

equation (3.58) on Ω asMd(Ω).

When a and b are the density functions of probability measures α and β, the equal mass condition∑
i ai =

∑
i bi is satisfied intrinsically. The unbalanced optimal transport problem is a generalization of

the optimal transport problem to overcome the mass equality limitation between α and β. The unbalanced

optimal transport problem used in this work is based on the work in [39]. To relax the marginal constraints

in the discrete Kantorovich problem 3.15, the unbalanced optimal transport problem is defined as:

min
P∈Rn×m

〈P,C〉+ Fa(P1m) + Fb(P
′
1n), (3.59)

here both Fa and Fb are proper convex functions.

For example, when Fa and Fb are the indicator function:

Fa(P1m) = ι{=}(P1m|a), Fb(P
′
1n) = ι{=}(P

′
1n|b), (3.60)
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where the indecator function between vectors a, b ∈ Rn is defined as

ι=(a|b) =


0, a = b,

∞, a 6= b.

(3.61)

It can be easily checked that the unbalanced optimal transport problem (3.59) coincides with the discrete

Kantorovich problem (3.15) when
∑
i ai =

∑
i bi. In this work we consider the case when

Fa(P1m) = εuKL(P1m|a), Fb(P
′
1n) = εuKL(P

′
1n|b). (3.62)

Here Fa and Fb are the Kullback-Leibler divergence between vectors given in equation (3.38) which measures

the differences between P1m and a, P
′
1n and b. And the parameter εu controls the weight of the mass

balancing term in (3.59).

Similar to the Wasserstein distance (3.23), the unbalanced optimal transport distance based on the square

Euclidean ground cost between vector is:

W 2
2,εu(α, β) = min

P∈Rn×m
〈P,C〉+ εuKL(P1m|a) + εuKL(P

′
1n|b), (3.63)

where the cost matrix C is defined as Ci,j = |xi − yj |2.

As we discussed in the previous subsection, the entropy regularization method is a proper choice to

evaluate the Wasserstein distance and the gradient. Given the regularization parameter ε > 0, consider the

entropy regularized UOT problem:

min
P∈Rn×m

〈P,C〉 − εE(P ) + εuKL(P1m|a) + εuKL(P
′
1n|b). (3.64)

Same as we discussed in the previous subsection, the above equation can be rewritten as

min
P∈Rn×m

εKL(P |K) + εuKL(P1m|a) + εuKL(P
′
1n|b), (3.65)

where K is defined as Ki,j = e−Ci,j/ε.

Then we have the definition of regularized unbalanced optimal transport distance used in this work:

Definition 3.25. Given positive discrete measures α, β with equation (3.58). Define the ground cost matrix

C by Ci,j = |xi − yj |2. With the regularization parameter ε and the mass balancing parameter εu, the
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regularized unbalanced optimal transport distance between α and β is

W 2
2,εu,ε(α, β) = 〈Pε, C〉+ εuKL(Pε1m|a) + εuKL(P

′

ε1n|b),

where Pε = arg min
P∈Rn×m

εKL(P |K) + εuKL(P1m|a) + εuKL(P
′
1n|b).

(3.66)

Here KL(·|·) is the Kullback-Leibler divergence between two matrices or vectors. And Ki,j = e−Ci,j/ε.

Notice that, when the support X and Y of α and β are fixed, the UOT distance W 2
2,εu,ε(α, β) is defined

with respect to the vector a and b, that can also be denoted as W 2
2,εu,ε(a, b).

Equation (3.66) is denoted as the primal problem. The dual problem is needed to compute the unbalanced

optimal transport distance.

Theorem 3.26 ([39], Theorem 3.2). The dual problem of (3.66) is

max
φ,ψ∈Rn+

∑
i,j

−εuai
(
e−φi/εu − 1

)
− εubj

(
e−ψj/εu − 1

)
− εKi,j

(
eφi/εeψj/ε − 1

)
, (3.67)

where the matrix K is defined by Ki,j = e−Ci,j/ε. Strong duality holds for the primal and the dual problem.

The minimization is attained for a unique P ∗ε for the primal problem (3.66). And φ∗, ψ∗ maximize the dual

problem (3.67) if and only if:

(P ∗ε )i,j = eφ
∗
i /εKi,je

ψ∗j /ε. (3.68)

Proposition 3.27. Given matrix K, coefficient ε and εu in consistent with Theorem 3.26. Suppose φ∗, ψ∗

solve the dual problem (3.67), let (u∗, v∗) ∈ Rn+ × Rm+ with u∗i = eφ
∗
i /ε and v∗j = eψ

∗
j /ε. Then,

u∗i =

(
ai∑

j Ki,jv∗j

) εu
εu+ε

, v∗j =

(
bj∑

iKi,ju∗i

) εu
εu+ε

. (3.69)

The above proposition can be easily checked by computing the first order optimality condition of the dual

problem (3.67). The following remark provides an algorithm to compute the unbalanced optimal transport

distance with the entropy regularization as Definition 3.25.

Remark 3.28. Starting with an initial value v(0) = 1m, the dual problem can be computed through a

coordinate ascent algorithm: for the k-th iteration,

u
(k+1)
i =

(
ai∑

j Ki,jv
(k)
j

) εu
εu+ε

, v
(k+1)
j =

(
bj∑

iKi,ju
(k+1)
i

) εu
εu+ε

. (3.70)
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Suppose the coordinate ascent algorithm converges with u∗, v∗, the transport plan matrix P ∗ε in (3.66) can be

computed as

(P ∗ε )i,j = u∗iKi,jv
∗
j . (3.71)

Also, the gradient of regularized unbalanced optimal transport distance can be achieved through the

following remark.

Remark 3.29. Suppose P ∗, φ∗ and ψ∗ solve the primal problem (3.66) and dual problem (3.67), the gradient

of regularized unbalanced optimal transport distance with respect to a is:

∇aW 2
2,εu,ε(α, β) = −εu

(
e−φ

∗/εu − 1
)
. (3.72)

The algorithm to compute the regularized unbalanced optimal transport distance and the gradient is

given by Algorithm 3. For more information about the above remarks and Algorithm 3, please refer to the

work [39].

Algorithm 3: Scaling algorithm for regularized UOT distance and gradient
Input: C, εu, ε
Initialization: Ki,j = e−Ci,j/ε, v = 1m,
while not converged do

Update vector u with ui = ai/(Kv)
εu/(εu+ε)
i .

Update vector v with vj = bj/(K
′
u)
εu/(εu+ε)
j .

end
Compute transport matrix Pε with (Pε)i,j = uiKi,jvj
return The regularized UOT distance:

W 2
2,εu,ε(α, β) =

∑
i,j

(Pε)i,jCi,j + εu

(
(Pε1m)i log

(
(Pε1m)i

ai

)
− (Pε1m)i + ai

)

+ εu

(
(P
′

ε1n)j log

(
(P
′

ε1n)j
bj

)
− (P

′

ε1n)j + bj

)
.

The gradient of W 2
2,εu,ε(α, β) with respect to a is (∇aW 2

2,εu,ε(α, β))i = −εu
(
u
−ε/εu
i − 1

)
.

Similar to the Sinkhorn algorithm, a special algorithm can be derived to compare the discrete measures

defined on R2.
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Algorithm 4: Scaling algorithm for regularized UOT distance and gradient in R2

Input: discrete probability measures α, β on R2 with densities a, b ∈ RN×M , ε > 0. The cost matrix
C1 and C2 defined by equation (3.53).
Initialization: matrix K1, K2 with (K1)i,j = e−(C1)i,j/ε, (K2)i,j = e−(C2)i,j/ε. Matrix u, v are
initialized as N ×M matrices with all entries be 1. Let d = 0, A,B ∈ RN×M with entries be 1.
while not converged do

Update vector u with ui,j = ai,j/(K2vK
′

1)
εu/(εu+ε)
i,j .

Update vector v with vi,j = bi,j/(K
′

2uK1)
εu/(εu+ε)
i,j .

end
for i1 = 1 : N do

for i2 = 1 : M do
for j1 = 1 : N do

for j2 = 1 : M do
Ai1,i2 += ui1,i2(K2)i2,j2(K1)i1,j1vj1,j2 .
Bj1,j2 += ui1,i2(K2)i2,j2(K1)i1,j1vj1,j2 .
d += ui1,i2(K2)i2,j2(K1)i1,j1vj1,j2((C1)i1,j1 + (C2)i2,j2).

end
end

end
end
return The regularized UOT distance:

W 2
2,εu,ε(α, β) = d+

∑
i1,i2

εu

(
Ai1,i2 log

(
Ai1,i2
ai1,i2

)
−Ai1,i2 + ai1,i2

)

+
∑
j1,j2

εu

(
Bj1,j2 log

(
Bj1,j2
bj1,j2

)
−Bj1,j2 + bj1,j2

)
.

The gradient of W 2
2,εu,ε(α, β) with respect to a is (∇aW 2

2,εu,ε(α, β))i1,i2 = −εu
(
u
−ε/εu
i1,i2

− 1
)
.
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Chapter 4

Full waveform inversion with optimal

transport based distance

In this chapter, we introduce the method of solving the full waveform inversion problem with optimal

transport (OT) based distance and the entropy regularization approach.

Although the unbalanced optimal transport (UOT) distance generalizes the OT distance, the geometric

properties are only approximately inherited. A new mixed L1/Wasserstein distance which is a combination

of Wasserstein distance and a mass balancing term is proposed in this chapter, and it is well defined for the

discrete measure in Rd without the mass equality constraint. Furthermore, we show that the proposed mixed

distance is indeed a metric for the discrete measures. When the mixed distance is applied in the variational

problem, we show that the objective function is convex with respect to shift, dilation, and amplitude change.

Following the entropy regularization of the optimal transport problem, the approximated gradient of the

mixed distance can be evaluated efficiently. Due to the historical issue, the name of optimal transport

distance and the Wasserstein distance are interchangeably used. We call the UOT distance with the name

“optimal transport” in this work based on the conventions in the main references [38, 39]. And we call

the proposed mixed distance with the name “Wasserstein” based on the convention in the work [12], which

proposed a mixed L2/Wasserstein distance.

Since we focus on developing numerical optimization methods, the discrete measures are considered in

this chapter. The optimal transport problem was designed to compare the difference between probabil-

ity measures, i.e. positive measures with equal total mass. The UOT distance and the proposed mixed

L1/Wasserstein distance can overcome the mass equality limitation. However, normalization methods that

transform the signals to positive functions are still needed to compare the difference between seismic signals.
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Similar procedures are used in several works [142, 50, 53, 138, 139, 137, 93, 95].

The mixed L1/Wasserstein distance is proposed in Section 4.1. In Section 4.2, we review some reliable

normalization methods and discuss the normalization parameter selection with numerical examples. Then,

we introduce the method to compute the adjoint source which is an important part of the adjoint state

method for the gradient computation. The trace-by-trace technique is used due to the large size of the

seismic signal in the real case. Numerical examples of the full waveform inversion problem are provided,

including a two-parameter two-layer toy model, a cross-well model, and a more realistic Marmousi model.

4.1 Mixed L1/Wasserstein distance

A mixed L1/Wasserstein distance is constructed in this section. The concept of the mixed distance with

Wasserstein distance is not new. In the work of [12], a mixed L2/Wasserstein is provided through the

dynamic form of optimal transport problem. Our initial idea is to generalize the 2-Wasserstein distance and

maintain two properties:

1. The mixed distance can handle the discrete measures defined on a nonempty, closed, and bounded

subset in Rd. In this case, the distance can be used to represents some physical properties and can

leads to a discrete form for computation.

2. The objective function of the mixed distance should keep the convex properties with respect to the

shift and dilation as the square of 2-Wasserstein distance.

Given a closed and bounded set Ω ⊂ Rd, we start with the positive discrete measures defined as

α =

n∑
i=1

aiδxi , β =

m∑
i=1

biδyi , (4.1)

where a = (a1, · · · , an) ∈ Rn+, b = (b1, · · · , bm) ∈ Rm+ , and the sampling points X = {x1, · · · , xn} ⊂ Ω,

Y = {y1, · · · , ym} ⊂ Ω. Since a and b are vectors with positive entries, we can use the l1 norm to denote the

mass of the measure as
∑n
i=1 ai = ‖a‖1, and

∑m
i=1 bi = ‖b‖1. Denote the normalized α and β as

α̂ =
1

‖a‖1

n∑
i=1

aiδxi =

n∑
i=1

âiδxi , β̂ =
1

‖b‖1

m∑
i=1

biδyi =

m∑
i=1

b̂iδyi . (4.2)

It is straight forward to see that α̂, β̂ ∈ P2(Ω), and â = (â1, · · · , ân) ∈ Σn, b̂ = (b̂1, · · · , b̂m) ∈ Σm. The

2-Wasserstein distance between α̂ and β̂ is well defined.

The following definition provides the mixed L1/Wasserstein distance.
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Definition 4.1 (Mixed L1/Wasserstein distance). Given two discrete measures α and β as equation (4.1),

the cost matrix C is defined by Ci,j = |xi − yj |2. The mixed L1/Wasserstein distance between α and β is

W̄2(α, β) = W2(α̂, β̂) + |‖a‖1 − ‖b‖1| , (4.3)

where α̂ and β̂ are the normalized measures given by equation (4.2).

In the above definition, the first term is the 2-Wasserstein distance between normalized measures α̂ and β̂,

which describes the shape difference between α and β. The second term is the L1 term, which is the absolute

value of the mass difference between α and β. The following proposition describes the metric property of

the above mixed distance.

Proposition 4.2. The mixed L1/Wasserstein distance defined in equation (4.3) is a distance over the set

of positive discrete measures inMd(Ω).

Proof. It is clear that W̄2(α, β) is nonnegative. Suppose α = β, then ‖a‖1 = ‖b‖1, and |‖a‖1 − ‖b‖1| = 0.

Also W2(α̂, β̂) = 0 by the metric property of W2, we have W̄2(α, β) = 0. On the other hand, if W̄2(α, β) = 0

then W2(α, β) = 0 and |‖a‖1 − ‖b‖1| = 0, which leads to α = β.

The symmetric property of W̄2(α, β) comes directly from the metric property of W2(α, β).

Denote γ ∈Md(Ω) with γ =
∑k
i=1 ciδzi , where c ∈ Rk+ and the set of sampling point Z = {z1, · · · , zk} ⊂

Ω. We then observe:

W̄2(α, γ) = W2(α̂, γ̂) + |‖a‖1 − ‖c‖1|

= W2(α̂, γ̂) + |‖a‖1 − ‖b‖1 + ‖b‖1 − ‖c‖1|

≤W2(α̂, β̂) +W2(β̂, γ̂) + |‖a‖1 − ‖b‖1|+ |‖b‖1 − ‖c‖1|

= W̄2(α, β) + W̄2(β, γ).

(4.4)

The inequality follows by the metric property of 2-Wasserstein distance and the triangle inequality.

The Wasserstein distances have been widely applied in different areas, for instance, imaging restora-

tion, tomographic inversion, density regularization, sparse recovery, and seismic inversion [106]. To extend

the application scene from the discrete probability measures to the discrete measures, the above mixed

L1/Wasserstein distance can be used. For the variational problem when a discrete measure β is given, we

are going to apply the optimization algorithm to find a measure α which is close to β. Since

W̄ 2
2 (α, β) =

(
W2(α̂, β̂) + |‖a‖1 − ‖b‖1|

)2

≤ 2
(
W 2

2 (α̂, β̂) + (‖a‖1 − ‖b‖1)
2
)
, (4.5)
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define

J(α;β) = W 2
2 (α̂, β̂) + (‖a‖1 − ‖b‖1)

2
. (4.6)

In this case, to minimize the mixed L1/Wasserstein distance between α and β, it is sufficient to minimize

the objective function J(α;β) with respect to α.

By the construction of the discrete measure α, the objective function is controlled by vector a and

sampling set X, i.e.

J(α;β) = J(a,X). (4.7)

The following proposition provides the subdifferentiability of the objective function with respect to a.

Proposition 4.3. The objective function J(a,X) defined by equation (4.6) and (4.7) is subdifferentiable

with respect to a.

Proof. The subdifferentiability of J(a,X) = J(α;β) with respect to vector a follows directly from Proposition

3.19.

The following propositions show that the objective function (4.7) with the proposed mixed distance

retains the convex properties of the square of 2-Wasserstein distance.

Proposition 4.4. Given two discrete measures α and β. Given the shift direction η ∈ Rd and the shift size

s > 0, the shift of discrete measure α is denoted as

αs =

n∑
i=1

aiδxi+sη, (4.8)

here the shift size s is small enough such that αs is defined on Ω. The objective function J(s) = J(αs;β) is

defined by equation (4.6). Then J(s) is convex with respect to s.

Proof. By the construction of the objective function

J(s) = J(αs, β) = W 2
2 (α̂s, β̂) + (‖a‖1 − ‖b‖1)

2
. (4.9)

The convexity of J(s) follows since W 2
2 (α̂s, β̂) is convex with respect to s by Theorem 3.20.

Proposition 4.5. Given a discrete measure α =
∑n
i=1 aiδxi , where a ∈ Rn+ and xi ∈ Ω for i = 1, · · · , n.
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The dilation of measure α is given by

αA =

n∑
i=1

aiδAxi , (4.10)

here A is a dilation transform matrix which is symmetric positive definite, and Axi ∈ Ω for i = 1, · · · , n.

Let λ1, · · · , λd be the eigenvalues of matrix A. The objective function J(λ1, · · · , λd) = J(αA;α) is defined by

equation (4.6). Then J(λ1, · · · , λd) is convex with respect to λ1, · · · , λd.

Proof. By the construction of the objective function

J(λ1, · · · , λd) = J(αA;α) = W 2
2 (α̂A, α̂) + (‖a‖1 − ‖a‖1)

2
. (4.11)

The convexity of J(λ1, · · · , λd) follows that W 2
2 (α̂A, α̂) is convex with respect to λ1, · · · , λd by Theorem

3.21.

Proposition 4.6. Given two discrete measures α and β. Denote the mass change of measure α by

αk =

n∑
i=1

(kai)δxi , (4.12)

where k ∈ (0,∞). The objective function J(k) = J(αk;β) is defined by equation (4.6). Then J(k) is convex

with respect to k.

Proof. By the construction of the objective function

J(k) = J(αk;β) = W 2
2 (α̂k, β̂) + (k‖a‖1 − ‖b‖1)

2
. (4.13)

Since α̂k = α̂, then the convexity of J(k) follows by the second term of the above equation.

The numerical evaluation of J(α;β) is straightforward. Suppose the support of α and β are fixed, the

entropy regularization method can be used to define a regularized Jε with

Jε(α;β) = W 2
2,ε(â, b̂) + (‖a‖1 − ‖b‖1)2. (4.14)

The first part of the Jε(α;β) can be evaluated with the Sinkhorn algorithm 1 and 2. When the supports of

α and β are fixed, the regularized objective function Jε(α;β) can be written as Jε(a, b), and the gradient of
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Jε(a; b) with respect to a is given by

∇Jε(a; b) = (Dâ)′∇âW 2
2,ε(â, b̂) + 2(‖a‖1 − ‖b‖1)1n, (4.15)

where ∇âW 2
2,ε(â, b̂) is the gradient of the regularized Wasserstein distance with respect to the first entry.

The Jacobian matrix Dâ is given by

(Dâ)i,j =
∂âi
∂aj

=


− ai

(
∑
k ak)2 , if i 6= j,

1∑
k ak
− ai

(
∑
k ak)2 , if i = j.

(4.16)

In practice, a mass balancing parameter λm > 0 can be introduced to the Jε as

Jε,λm(α;β) = W 2
2,ε(â, b̂) + λm(‖a‖1 − ‖b‖1)2. (4.17)

4.2 Normalization methods for signals

In this section, we discuss several normalization methods that transform the seismic signals into positive

functions. Instead of focusing on the theoretical properties of the normalization methods, we are working

with numerical examples to show how the normalizations behaves. The normalization methods here can only

partially solve the problem that how to generalize the optimal transport distance to compare the difference

between signals. However, the numerical examples provided in this section and in the following sections show

that by introducing the optimal transport based distance, the inverse results of the full waveform inversion

problem are indeed improved in certain cases.

Since the trace-by-trace strategy is going to be used, we focus on comparing the difference between one-

dimensional signals with UOT distance and the mixed L1/Wasserstein distance. The signal a(t) and b(t) are

defined on the time domain. When t = (δt1 , · · · , δtn) is fixed, the signals a(t) and b(t) can be represented as

n-dimensional vectors a = (a1, · · · , an) ∈ Rn, b = (b1, · · · , bn) ∈ Rn. And the discrete signals are defined by

α =
∑
i aiδti , β =

∑
j bjδtj .

The L2 distance, UOT distance, and mixed L1/Wasserstein distance are going to be compared in several

numerical experiments, and we use d(·, ·) to represent the distance used in the objective functions. Instead

of working on the distance between α and β, we are working on the distance between a and b since the vector
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t is fixed as the sampling settings of the signals. Let du(·, ·) represent the UOT distance

du(a, b) = W 2
2,εu,ε(a, b), (4.18)

and dm(·, ·) represent the mixed L1/Wasserstein distance,

dm(a, b) = J(a; b) = W 2
2,ε(â, b̂) + λm(‖a‖1 − ‖b‖1)2, (4.19)

where J(a; b) is defined by equation (4.6). As discussed in the previous chapter, both UOT distance and

mixed L1/Wasserstein distance can be evaluated through the entropy regularization approach. And the

smaller the regularization coefficient ε is used, the more accurate result we can achieve. On the other

hand, the regularization coefficient ε can not be too small due to the machine precision. In this work, the

regularization coefficients are chosen as small as possible in the numerical experiments.

4.2.1 Review of some normalization methods

The first normalization method in our discussion is the Mainini strategy [90], which separates the signals

into positive and negative parts. We set

a = a+ − a−, b = b+ − b−, (4.20)

where ·+ is the positive part of the vector, and ·− is the absolute value of the negative part of the vector.

Then the Mainini strategy is given by

d(a, b) = W p
p (a+ + b−, b+ + a−). (4.21)

A special form can be derived when p = 1. Consider the continuous case for the density function a(t) and

b(t), the dual of the Kantorovich problem is given by:

W p
p (a, b) = max

φ,ψ

∫
φ(t)a(t) + ψ(t)b(t) dt, (4.22)

such that φ(t1) + ψ(t2) ≤ |t1 − t2|. As p = 1, we can claim that ψ = −φ, and φ ∈ Lip1 which is the space of

all 1-Lipschitz functions. In this case, we have

W1(a, b) = max
φ∈Lip1

∫
φ(t)(a(t)− b(t)) dt. (4.23)
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We refer to the monograph [106] (Chapter 6) for more information about the Kantorovich problem as p = 1.

Based on the above equation, we can have the following equation

d(a, b) = W1(a+ + b−, b+ + a−)

= max
φ∈Lip1

∫
φ(t)(a+(t) + b−(t)− b+(t)− a−(t)) dt

= W1(a+ − a−, b+ − b−) = W1(c, d),

(4.24)

where c = a+ + b− and d = b+ + a−. The above equations extend the definition of the Kantorovich problem

from the positive measures to the signed measures. Based on the above equation, the Mainini strategy is ac-

tually comparing the vector c and d. The connection between Mainini strategy and Kantorovich–Rubinstein

(KR) norm, and the application can be found in the work [79, 93]. This strategy has been also introduced

in the full waveform inversion problem in the work [142].
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Figure 4.1: (a): Signal a and b. (b): Comparing signal a and b with Mainini strategy.

However, problems occur when the Mainini strategy is applied for the signals. For example, two signals

a and b with one period of the sine function are given in Figure 4.1 (a). The case when comparing a and

b with the Mainini strategy is given by figure (b). When the support of a and b are far away enough from

each other, the transport plan is given by the black arrows in figure (b), which moves the positive parts of

a to the negative parts of a, and move the negative parts of b to the positive parts of b. Suppose the signal

b is shifted towards the right direction, the transport plan stays the same, so does the transport cost. That

means, when the signal b moves in the right direction, the distance between a and b is not changing under

the Mainini strategy. This is not ideal for describing the waveform propagation.
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Figure 4.2: (a): Ricker wavelet a. (b): Ricker wavelet b.

The normalization method with square scaling function has been discussed in [138], defined as

â(t) = a(t)2. (4.25)

The square normalization can not distinguish the case when the compared signals have the phase difference

of π, as shown in Figure 4.2. This case is important for the seismic signals since the reflectivity of the

earth medium will change the phase of reflection signals. The same reason exists for the absolute value

normalization, i.e.,

h(a)(t) = |a(t)|. (4.26)

The next normalization method is to compare the Wasserstein distance for the signals with positive and

negative parts separately:

d(a, b) = W 2
2 (a+, b+) +W 2

2 (a−, b−), (4.27)

where the ·+ and ·− are the positive and negative parts of the entries as equation (4.20). Suppose for a ∈ Rn,

there exists a linear operator such that a− = P−(a)a = 〈p−(a), a〉, where p−(a) ∈ Rn. Notice that the linear

operator P−(a) is depending on a, and it is not differentiable with respect to a.

One counter example can be given as: let a = (0, 0) ∈ R2, direction v1 = (1, 0) and v2 = (−1, 0). Let
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A =

0 0

0 0

, then we have

lim
t→0

‖p−(a+ tv1)− p−(a)− tAv1‖
‖tv1‖

= lim
t→0

‖(0, 0)′ − (0, 0)′ − tA(1, 0)′‖
‖t(1, 0)‖

= 0. (4.28)

On the other hand,

lim
t→0

‖p−(a+ tv2)− p−(a)− tAv1‖
‖tv2‖

= lim
t→0

‖(1, 0)′ − (0, 0)′ − tA(1, 0)′‖
‖t(−1, 0)‖

6= 0. (4.29)

The objective function will not be differentiable when this normalization is applied in the variational problem.

The same problem exists for another sign-sensitive normalization proposed by the work [137] (Section 5.2.3)

and the absolute value normalization (4.26). Given coefficients k and l, the sign-sensitive normalization in

[137] is defined as

h(a)(t) =


a(t)+ 1

k

l , if a(t) > 0, k > 0,

1
k
ekf(t)

l , if a(t) < 0.

(4.30)

We focus on the linear and exponential normalizations in this work. Given a normalization parameter k,

the linear normalization is defined as

hl(a, k)(t) = a(t) + k, (4.31)

and the exponential normalization is defined as

he(a, k)(t) = eka(t). (4.32)

We demonstrate the behavior of the above two normalizations with numerical examples in the following

subsection.

4.2.2 Numerical examples for the normalization methods

As discussed in the previous chapter, the optimal transport distance is convex for shift and dilation, and that

is our initial idea to introduce the optimal transport distance to the seismic inverse problem. The normal-

ization methods are needed to extend the optimal transport distance to signals. However, the normalization

methods will destroy the convex properties. In this section, we discuss the convex behavior with both linear
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and exponential normalization for both UOT distance and mixed L1/Wasserstein distance. Usually, the

seismic event can be approximated with a linear combination of the Ricker wavelet, i.e.,

s(t) =

(
1− (t− t0)2

σ2

)
e
−(t−t0)2

2σ2 . (4.33)
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Figure 4.3: (a): Ricker wavelets a and b. (b): The objective function f1(t0) with L2 distance.

First, we investigate the behavior for the time-shift of Ricker wavelets with L2 distance, UOT distance,

and mixed L1/Wasserstein distance. Let σ = 0.03, t0 ∈ [0.25, 0.75], the sampling frequency is 1000 Hz. Let

b be fixed with the center at 0.5 s, and a is shifting from left to right, denote a and b as

a(t0, t) =

(
1− (t− t0)2

0.032

)
e
−(t−t0)2

2×0.032 , (4.34)

b(t) =

(
1− (t− 0.5)2

0.032

)
e
−(t−0.5)2

2×0.032 , (4.35)

as in Figure 4.3 (a). We fix b as the reference signal and shift the center of a from 0.25 s to 0.75 s. Define

the objective function as

f1(t0, k) = d(h(a(t0, t), k), h(b(t), k)), (4.36)

where d can be UOT distance and mixed L1/Wasserstein distance as equation (4.18) and (4.19). No nor-

malization method is needed for the L2 distance. The normalization function h(·, ·) can be linear and the

exponential normalization is defined by equation (4.31) and (4.32).

To evaluate the UOT distance and mixed L1/Wasserstein distance we set the entropy regularization

parameter ε = 1 × 10−3 to guarantee that the optimal transport distance is evaluated accurately. We set
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εu = 1 in the UOT distance and set λm = 1×10−10 such that both UOT distance and mixed L1/Wasserstein

distance have notable results for the time-shift.

The normalized objective function f1(t0) with L2 distance is shown in Figure 4.3 (b). One global minimum

and two local minima are observed, which is a sign of the cycle-skipping artifact.

0.3 0.4 0.5 0.6 0.7
Shift time t0 (s)

0.0

0.2

0.4

0.6

0.8

1.0
(a) UOT distance, linear normalization

k = 0.45
k = 0.65
k = 1

0.3 0.4 0.5 0.6 0.7
Shift time t0 (s)

0.0

0.2

0.4

0.6

0.8

1.0
(b) Mixed distance, linear normalization

k = 0.45
k = 0.65
k = 1

0.3 0.4 0.5 0.6 0.7
Shift time t0 (s)

0.0

0.2

0.4

0.6

0.8

1.0
(c) UOT distance, exponential normalization

k = 0.5
k = 1
k = 1.5

0.3 0.4 0.5 0.6 0.7
Shift time t0 (s)

0.0

0.2

0.4

0.6

0.8

1.0
(d) Mixed distance, exponential normalization

k = 0.5
k = 1
k = 1.5

Figure 4.4: The normalized objective function f1(t0, k) with UOT distance, mixed Wasserstein distance and
linear normalization, exponential normalization.

The numerical results of normalized objective function f1(t0, k) of both optimal transport based distances

with both linear and exponential normalization are shown in Figure 4.4. Comparing subfigures (a), (b)

with subfigures (c) (d), the shape of normalized objective functions are similar for both normalization

methods. Compared to L2 distance, the cycle-skipping artifact is slightly reduced by both distances with

linear normalization as shown in subfigures (a) and (b). The smaller the normalization coefficient k is used,

the better performance can be achieved. However, k can not be less than the absolute value of the minimal

value of a and b, which is approximately 0.446259 in this example. In subfigures (c) and (d), as k = 0.5, the

normalized objective function is similar to the case of (a) and (b), i.e., with one global minimum and two
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local minima. Only one global minimum is obtained with the case k = 1 and k = 1.5, which means no cycle-

skipping issue occurs in this case. Compared to L2 distance, both UOT distance and mixed L1/Wasserstein

distance can mitigate the cycle-skipping artifact with proper normalization coefficient k. Also, compared to

the previous work in [93, 142], the UOT distance and mixed distance provide more convex behavior than

the 1-Wasserstein distance with respect to the time-shift.
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Figure 4.5: (a): Two Ricker wavelets a and b. (b): The objective function f2(σ0) with L2 distance.

In the following example, we investigate the behavior with respect to the dilation of the Ricker wavelet.

Fix t0 = 0.5, let σ0 ∈ [0.02, 0.04], the sampling frequency is still 1000 Hz. Let b be fixed with σ = 0.03, and

a is dilating with the change of the σ0, denote a and b as

a(σ0, t) =

(
1− (t− 0.5)2

σ2
0

)
e
−(t−0.5)2

2σ20 , (4.37)

b(t) =

(
1− (t− 0.5)2

0.032

)
e
−(t−0.5)2

2×0.032 . (4.38)

One example is shown in Figure 4.5 (a). Define the objective function as

f2(σ0, k) = d(h(a(σ0, t), k), h(b(t), k)), (4.39)

where d can be UOT distance and mixed L1/Wasserstein distance as equation (4.18) and (4.19). No normal-

ization method is needed for the L2 distance. The normalization function h(·, ·) can be linear and exponential

normalization is defined by equation (4.31) and (4.32). The computation coefficients εu, λm are the same as

in the previous shift Ricker example.

The normalized objective function f2(σ0) with L2 distance is shown in Figure 4.5 (b). Only one global

minimum is observed and it is located at point σ0 = 0.03, and in this case a(σ0, t) = b(t).
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Figure 4.6: The normalized objective function f2(σ0, k) with UOT distance, mixed L1/Wasserstein distance
and linear normalization, exponential normalization.

The numerical results of the normalized objective function f2(σ0) of both optimal transport based dis-

tances with both linear and exponential normalization are shown in Figure 4.6. Subfigure (a) shows the

result of UOT distance with linear normalization, only one global minimum can be observed for each k.

However, when k is larger, the position of the global minima tends to be less than 0.03 which is the global

minima we expect. Subfigure (c) is the case of UOT distance with exponential normalization. The position

of the global minima is larger than 0.03 when k is small. The position of the global minima is gradually

decreasing when k is increasing, and it will be less than 0.03 when k is large enough. For the case of mixed

L1/Wasserstein distance with both normalizations are shown in subfigures (b) and (d). There is only one

global minimum in each of subfigures (b) and (d), and the global minima is close to (but may not equal

to) the point σ0 = 0.03 for different normalization coefficients k. Compared to the L2 distance, both UOT

distance and mixed L1/Wasserstein distance can retain the convex property with respect to σ0 when proper

normalization and coefficient are chosen.

69



In conclusion, when the linear normalization method is used, the smaller normalization coefficient k will

lead to better convex behavior with respect to the time-shift for the UOT distance. However, the k can not

be arbitrarily small since it has to be larger than the absolute value of the minimum value of the signals.

Therefore the linear normalization is not encouraged for use with the optimal transport based distances. On

the other hand, both distances with a larger exponential normalization coefficient k will retain the convex

properties with respect to the time-shift and dilation. To avoid the significant distortion of the waveform,

the normalization parameter of exponential normalization should not be too small or large. In practice, the

normalization parameter should be chosen such that the normalized signal is approximately in the interval

from 1 and 10. In this case, the wavefront of the seismic signal can be slightly amplified and the waveform

is not significantly distorted.

Notice that the above experiments are designed to analyze the behavior of normalization methods based on

the fact that the seismic signals can be approximated with a linear combination of Ricker wavelets. Although

both UOT distance and mixed L1/Wasserstein distance with proper normalization fulfill the requirement,

these experiment results should not be considered as the theoretical results. And more detailed mathematical

analysis is still expected to show how the normalization works for generalizing the optimal transport distance

to signed measures and signals.

4.3 Applying the optimal transport based distances in full wave-

form inversion

In this section, we formulate the FWI problem with UOT distance and mixed L1/Wasserstein distance

by introducing the normalization methods discussed in the previous section. The wave equation in a two-

dimensional domain is used as the constraint PDE, and the computation of adjoint sources is provided.

Consider there are Ns sources and Nr receivers in the domain, and let s = 1, · · · , Ns, r = 1, · · · , Nr be

the indexes of the sources and the receivers. Denote the objective function as

J(c, y1, · · · , yNs) =

Ns∑
s=1

Nr∑
r=1

d(h(Qrys), h(yd,s,r)), (4.40)

where here d is chosen as one of L2 distance, UOT distance, and mixed L1/Wasserstein distance. The

function h can be linear normalization or exponential normalization, and the normalization coefficient k is

omitted. When the L2 distance is used in the objective function, no normalization method is needed. The

operator Qr is the recording operator that maps the wavefield generated by the s-th source ys to the signals
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received by the r-th receiver. The yd,s,r represents the received data by the s-th source and the r-th receiver.

The constraint PDE is given by

1

c2
∂2

∂t2
ys −∆ys = fs, s = 1, · · · , Ns, (4.41)

where fs is the function of the s-th source. In practice, a special technique such as absorbing boundary

condition (ABC) or perfectly matched layer (PML) is needed to simulate the seismic wave propagating in an

unbounded domain. A numerical PDE method such as finite difference or finite element method is needed

to discretize the system and numerically simulate the wave propagation. We focus on the discrete form in

this work.

Since the PDE is well-posed, it can be written in a compact form as Fs(c) = ys. Then the reduced

objective function is given by

f(c) = J(c, F1(c), · · · , FNs(c)). (4.42)

The gradient of f(c) can be achieved through the adjoint state method:

∇f(c) =

Ns∑
s=1

∫
−2

c3

(
∂2

∂t2
us

)
vs dt. (4.43)

Here vs is the solution of the adjoint equation with s-th source

1

c2
∂2

∂t2
vs −∆vs = f̃s, (4.44)

where f̃s is the adjoint source with respect to the s-th constraint equation. When L2 distance is applied in

the objective function, the adjoint source is given by

f̃s = −
Nr∑
r=1

Q
′

r(Qrys − yd,s,r). (4.45)

When the UOT distance and mixed L1/Wasserstein distance with linear normalization is used in the objective

function, the adjoint source is given by

f̃s = −
Nr∑
r=1

Q
′

r∇1d(h(Qrys), h(yd,s,r)), (4.46)

where the ∇1 is the gradient of d(·, ·) with respect to the first term. When the UOT distance and mixed
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L1/Wasserstein distance with exponential normalization is used in the objective function, the adjoint source

is given by

f̃s = −
Nr∑
r=1

Q
′

r

(
kekQrys

)
∇1d(h(Qrys), h(yd,s,r)). (4.47)

Once the gradient ∇f(c) can be computed, the PDE constrained optimization problem can be solved by the

gradient based optimization methods such as conjugate gradient method or L-BFGS method.

4.4 Numerical examples and discussion

Three full waveform inversion examples are provided in this section based on the formulation in the pre-

vious section. We compare the numerical results generated by L2 distance, UOT distance, and mixed

L1/Wasserstein distance. The exponential normalization method is used for UOT distance and mixed

L1/Wasserstein distance. A two-parameter two-layer model is designed to compare the objective func-

tion generated by different distances in the first example. Next, a cross-well example is provided to show

the update direction generated by different distances. The third numerical example is based on the standard

Marmousi model. Both UOT distance and mixed L1/Wasserstein distance outperforms the conventional

L2 distance in this example. In the end, we discuss the practical strategy for the general seismic inverse

problem.

4.4.1 Example 1: Two-parameter two-layer model

This example shows the difference of objective functions between the L2 distance, UOT distance, and mixed

L1/Wasserstein distance of a toy model. Due to the large size and nonlinear behavior of the FWI problem,

we build a simplified two-parameter two-layer velocity model in two-dimension:

c(δc, z) = c0(x, z) + δcH(z), (4.48)

where H(z) is the Heaviside step function along the z direction. The factor δc is the velocity perturbation of

the bottom part for the background velocity c0(x, z). The background velocity is chosen to be homogeneous

with c0(x, z) = 1 km/s. The model is in a region with 1 km wide and 1 km deep, discretized into 101× 101

grid points. Only one source is used in this example, located at the center of the model and 0.05 km depth

with a 6 Hz Ricker wavelet. The sampling frequency is 300 Hz and the sampling time is 2 seconds. There

are 11 equally spaced receivers at the top of the region.
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Define the objective function as:

f3(δc, z) = f(c(δc, z)), (4.49)

where f(·) is defined by equation (4.42). The true model of this example is δc = 0.05, z = 0.51 which is

shown in Figure 4.7. We set δc ∈ [−0.1, 0.2] with step size 0.005, and z ∈ [0.4, 0.6] with step size 0.01. Since

there is a velocity perturbation between the two layers at the depth z, a reflective seismic wave is generated

as the seismic wave propagating through the interface, and it will be recorded by the receivers at the top of

the model. For different velocity models c(δc, z), the position of the reflector z controls the arriving time of

the reflective wave, and the velocity difference δc controls the amplitude of the reflective wave. We generate

the recorded data with the true model c(0.05, 0.51). As the δc and z are changing, the reflective waves will

interact with the above recorded data, which will cause the cycle-skipping artifact. We evaluate f3 for each

(δc, z) by using L2 distance, UOT distance, and mixed L1/Wasserstein distance respectively, the results are

shown in Figure 4.8. Similar numerical examples with other kinds of optimal transport based distance are

provided in the work [50, 95, 93].
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Figure 4.7: The true velocity model c(0.05, 0.51).

In Figure 4.8, the z axis is the normalized objective function f3(δc, z), and the other two axes are the

perturbation δc and the position z. The objective function with L2 distance is shown in subfigure (a). Notice

the global minimum is located at the point (0.05, 0.51), and there are several wrinkles in the surface of the

objective function around the global minimum. This suggests that when an initial model that is not close

to the global minimum is provided, the optimization algorithm will be trapped in a local minimum due to

the wrinkles.

The exponential normalization method is used in this example to compare the difference between signals
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Figure 4.8: (a), (b), (c): the normalized objective function f3(δc, z) with L2 distance, UOT distance, and
mixed L1/Wasserstein distance.

with UOT distance and mixed L1/Wasserstein distance. We set the normalization parameter k = 5 × 104

such that the maximal value of the normalized signal is approximately in the interval between 1 and 10,

and the entropy regularization parameter is ε = 1× 10−4. For UOT distance, we set the coefficient of mass

balancing term to be εu = 1. And we set the λm = 1× 10−8 in the mixed L1/Wasserstein distance. There

are 500 iterations performed for the computation of UOT and mixed distance. This numerical example

is performed on a server with the cpu model Intel Xeon CPU E7-8891 v4 @ 2.80GHz, and the code is

written in the programming language Julia. There are 12 workers used in this numerical example. For each

(δc, z), 61 ∗ 21 = 1281 experiments are performed for UOT distance and the mixed distance, and 11 signals
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are compared for each experiment. The computation time of the UOT example is 273 seconds, and the

computation time of the mixed L1/Wasserstein distance is 228 seconds.

The objective functions with UOT distance and mixed L1/Wasserstein distance are shown in subfigures

(b) and (c) respectively. Compared with subfigure (a), the surface in subfigures (b) and (c) have fewer

wrinkle structures. For an initial model with δc ∈ [−0.1, 0.2] and z ∈ [0.4, 0.6], the optimization algorithm is

less likely to be trapped in the local minima with both UOT distance and mixed L1/Wasserstein distance.

As the position of the perturbation is controlled by z, so too is the travel time of the reflection seismic events.

The results in Figure 4.8 are consistent with the shift Ricker wavelet examples in the previous section.

4.4.2 Example 2: Cross-well model

In this subsection, we perform the full waveform inversion in a two-dimensional cross-well model to investigate

the behavior of the update step in the optimization algorithm with direct wave. When the initial model is

close to the true model, the difference between the simulated data and the received data is small. In this

case, the Born approximation is relatively accurate and the inverse result is less likely to be trapped into

a local minimum which is far away from the global minimum. However, the inverse result may be very

different from the global minimum when the initial model is inaccurate. This phenomenon is demonstrated

by the Camembert model [60]. The previous research shows that the 2-Wasserstein distance provides more

accurate update steps compared to the L2 distance [139]. We repeat the Camembert model experiment here

to show the optimal transport based distances have the same advantage.

The model size is 2 km by 2 km, discretized into 101 × 101 grids with spatial grid size 0.02 km. The

true velocity model is given by Figure 4.9 (a). In the true model, the background velocity is 3 km/s, and a

single circle velocity anomaly is located at the center of the model with radius 0.5 km and velocity 3.6 km/s.

There are 11 are equally spaced sources located on the left boundary of the domain, and 101 equally spaced

receivers located on the right boundary of the domain. The synthetic data is generated with 10 Hz Ricker

wavelets and a homogeneous initial velocity model is used with velocity 3 km/s.

The inverse results with L2 distance, UOT distance, and mixed L1/Wasserstein distance is compared, the

exponential normalization method is used for the optimal transport based distances. The L-BFGS method

with a memory parameter of 5 is used as the optimization algorithm, and we perform 5 iterations to show

the directions of the velocity model updates. Figure 4.10 shows the 6-th adjoint source at the first iteration

with different distances. The adjoint sources generated by UOT distance and mixed L1/Wasserstein distance

provide slow transitions on the positions of the seismic wavefront. The frequency component of the seismic

data is lower compared to the L2 case. This leads to gradients with fewer large-scale components due to the
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Figure 4.9: (a): True velocity model. (b): Inverse result with L2 distance. (c): Inverse result with UOT
distance and exponential normalization. (d): Inverse result with mixed L1/Wasserstein distance and expo-
nential normalization.

adjoint state method (4.43). Also, compared to the trace-by-trace strategy used in [139], the adjoint sources

in subfigures (b) and (c) are more regular by the proposed method.

Figure 4.9 (b), (c), (d) display the inverse results with L2 distance, UOT distance, mixed L1/Wasserstein

distance respectively. All three results describe the presence of the velocity anomaly. However, the L2 result

contains abnormal disturbances at the left and right parts of the center, which will provide a wrong velocity

update in future iterations. Compared to the L2 result, both UOT distance and mixed L1/Wasserstein

distance provide more regular updates with the shape similar to the velocity anomaly. This experiment

shows that both UOT distance and mixed L1/Wasserstein distance with exponential normalization can

reduce the risk of wrong velocity updates, which may cause the optimization algorithm to be trapped in the

local minima.
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Figure 4.10: (a), (b), (c): The 6-th adjoint sources at the first iteration with L2 distance, UOT distance,
and mixed L1/Wasserstein distance, the exponential normalization method is used.

4.4.3 Example 3: Marmousi model

In this subsection, we compare the inverse results with L2 distance, UOT distance, and mixed L1/Wasserstein

distance through a two-dimensional reflection model. The exponential normalization method is used for the

optimal transport based distances.

As shown in Figure 4.11 (a), the true velocity model is a part of the Marmousi 2 model [91] that provides

strong velocity differences in both vertical and horizontal directions. The velocity model is discretized into

84 × 301 grids with the spatial size 0.03 km. There are 11 equally spaced sources and 101 equally spaced

receivers located on the surface of the model. The initial model is achieved through a two-dimensional

Gaussian filter applied to the true model which is strongly smoothened, as shown in Figure 4.11 (b). The

sampling frequency is 400 Hz, and the recording time is 3 s. The synthetic data is generated by the

Ricker wavelet with central frequency 5 Hz as the source function. The perfectly matched layer technique is

performed to simulate the seismic wave propagating in an unbounded domain.
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Figure 4.11: (a): True velocity model. (b): Initial velocity model.

Figure 4.12 shows snapshots of the synthetic wavefield, demonstrating the seismic wave propagating in

the domain. Figure 4.13 shows the adjoint sources of L2 distance, UOT distance, and mixed L1/Wasserstein

distance at the first iteration. Similar to the previous example, the energy of the adjoint sources generated

by the optimal transport based distance concentrates on the location of the seismic wavelet, and provides a

smoothed waveform of the seismic events. The first iteration gradients of L2 distance, UOT distance, and

mixed L1/Wasserstein distance are shown in Figure 4.14. Compared to the L2 gradient, the UOT gradient

and mixed Wasserstein gradient provide more large-scale structures, which is more sensible on the bottom

of the domain. These large-scale structures will increase the stability of the optimization algorithm.

The nonlinear conjugate gradient (CG) method is performed to minimize the objective function with L2

distance, UOT distance, and mixed L1/Wasserstein distance. The inverse results with L2 distance are shown

in Figure 4.15. The inverse result after 20 iterations and 40 iterations are shown in subfigures (a) and (b)

separately. Compared to the true velocity model, there is a velocity anomaly that exists at near depth 0.75

km, distance 6.25 km. This can be explained as the cycle-skipping issue since the velocity distribution in the

initial model at this area is inaccurate compared to the true velocity model. In this case, the L2 distance

inversion failed to recover the velocity structure of the domain.

The inverse results of UOT distance and mixed L1/Wasserstein distance are provided in Figure 4.16
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(b) Wavefield at t = 1.5 s
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(c) Wavefield at t = 2.0 s
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(d) Wavefield at t = 2.5 s
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Figure 4.12: Snapshots of seismic wave generated by the 6-th source propagating in the domain.

and 4.17 (a) and (b). Both optimal transport based distances recovered the structure of the true velocity

model after 40 iterations. Since the evaluation of UOT distance and mixed L1/Wasserstein distance is much

more expensive than the conventional L2 distance. After the large-scale structure is accurately revealed,

the optimal transport based distances can be replaced by the L2 distance to achieve the inverse result more

efficiently. With the inverse results Figure 4.16 (b) and Figure 4.17 (b) as the initial model, 80 nonlinear
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(b) UOT adjoint source
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(c) Mixed L1/Wasserstein adjoint source

0.002

0.001

0.000

0.001

0.002

Figure 4.13: (a), (b), (c): The 6-th adjoint source at the first iteration with L2 distance, UOT distance, and
mixed L1/Wasserstein distance.

conjugate gradient iterations are performed with the L2 distance. The final inverse results are shown in

Figure 4.16 (c) and Figure 4.17 (c) with more detailed velocity structures be revealed. The difference before

and after the additional L2 nonlinear CG iterations are shown in Figure 4.16 (d) and Figure 4.17 (d).

4.4.4 Discussion

In this work, the methodology of integrating UOT distance and mixed L1/Wasserstein distance to the

full waveform inversion problem is provided. The normalization methods for transforming the signals into

positive functions are needed, and several normalization methods are discussed with numerical examples.

We formulate the full waveform inversion problem with UOT distance and mixed L1/Wasserstein distance,

and the computation methods of adjoint sources are provided. The numerical examples show that UOT

distance and mixed L1/Wasserstein distance with exponential normalization can mitigate the cycle-skipping

issue efficiently compared to the conventional L2 distance. With a poor initial model, the optimal transport
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(b) UOT gradient
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(c) Mixed L1/Wasserstein gradient
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Figure 4.14: (a), (b), (c): The gradient at the first iteration with L2 distance, UOT distance, and mixed
L1/Wasserstein distance.

based distances can provide a more accurate update step of the objective function and increase the stability

of the optimization algorithm. Compared to the optimal transport based distances, L2 distance objective

function is sensitive to the initial model but can be evaluated efficiently. In practice, the inverse problem can

be solved in two parts. First, use UOT distance or mixed L1/Wasserstein distance objective function in the

first few iterations to improve the initial model. Second, use L2 distance objective function in the following

iterations to increase the resolution of the inverse result.

There are two reasons that might explain the better performance of the optimal transport based distance.

First, the velocity anomaly between the true velocity model and the initial velocity model dilates the shape

of the seismic wavelet and changes the arriving time of the seismic event. Based on the previous discussion,

the optimal transport based distances have more convex behavior compared to the L2 distance. Another

reason is the adjoint sources generated by the optimal transport based distances have more low-frequency
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(a) L2 Inverse result after 20 iterations
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(b) L2 Inverse result after 40 iterations
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Figure 4.15: Nonlinear conjugate gradient inverse results with L2 distance after 20 and 40 iterations.

components, so the update steps have more large-scale components based on the adjoint state method. This

will decrease the nonlinearity of the optimization problem.
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(a) UOT inverse result after 20 iterations
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(b) UOT inverse result after 40 iterations
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(c) L2 inverse result with (b) as initial model
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(d) Difference between (b) and (c)
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Figure 4.16: (a), (b): Nonlinear conjugate gradient inverse results with UOT distance after 20 and 40
iterations. (c): Nonlinear conjugate gradient inverse result with L2 distance and (b) as the initial model
after 80 iterations. (d): The difference between (b) and (c).
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(a) Mixed L1/Wasserstein inverse result after 20 iterations
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(b) Mixed L1/Wasserstein inverse result after 40 iterations
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(c) L2 inverse result with (b) as initial model
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Figure 4.17: (a), (b): Nonlinear conjugate gradient inverse results with mixed L1/Wasserstein distance after
20 and 40 iterations. (c): Nonlinear conjugate gradient inverse result with L2 distance and (b) as the initial
model after 80 iterations. (d): The difference between (b) and (c).
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Chapter 5

Gradient projection methods with

inexact projection

5.1 Introduction

In this chapter, we focus on solving the constrained optimization problem:

min
x
f(x), such that x ∈ X, (5.1)

where f is a smooth nonlinear objective function which might be nonconvex. The feasible set X is a

nonempty, convex, and closed subset in Rn.

To solve the above constrained optimization problem, one of the most straightforward methods is the

gradient projection method. At the k-th iteration, compute

x̄k = PX(xk − βk∇f(xk)), (5.2)

xk+1 = xk + αk(x̄k − xk), (5.3)

here βk is a scalar parameter and αk ∈ [0, 1] is a stepsize achieved through a line search method. This

algorithm is demonstrated in Figure 5.1.

One of the most important parts of the gradient projection method is the evaluation of the projection

function PX(·). When the constraint is simple, like the box constraint, the closed-form projection function

is available and the evaluation of the projection function is efficient. However, only iterative projection
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X

xk

xk − βk∇f(xk)

x̄k = PX(xk − βk∇f(xk))

xk+1 = xk + αk(x̄k − xk)

Figure 5.1: Gradient projection method at the k-th iteration.

algorithms like Dykstra’s algorithm are available when the feasible set X is an intersection of several convex

constraint sets, and the iteration process has to be ended after a stopping criterion is met. In this case, the

projection function PX(·) is an inexact projection. For example in the gradient projection method defined

in equation (5.2), the projection x̄k may only be close to the accurate projection PX(xk − βk∇f(xk)) and

may not be in X. We use the notation P̄X(·) to represent the inexact projection function onto set X. Figure

5.2 is an illustration of the inexact projection.

X

xk

xk − βk∇f(xk)

x̄k = P̄X(xk − βk∇f(xk))

Figure 5.2: Gradient projection method at the k-th iteration with inexact projection.

In this chapter, we develop a set expanding strategy for the gradient projection methods with inexact

projection. This set expanding strategy determines the stopping criterion of the iterative projection process

when the constraint set X is an intersection of several constraint sets and the iterative projection process is

used. First, we construct an increasing constraint set sequence {Xk}:

X = lim
k→∞

Xk, Xk ⊂ Xk+1, Xk+1 6= Xk, (5.4)
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where Xk is nonempty, closed, and convex for each k ∈ N. At the k-th iteration, we evaluate the projection

process towards the set Xk such that the inexact projection P̄X(·) ∈ Xk+1. With this construction, each set

Xk acts as a constraint set, and Xk is expanding along with the iterations. In this case, the expanding set

sequence {Xk} adds a “soft” constraint information to the overall algorithm and might increase the result of

the optimization problem when the objective function is nonconvex.

In Section 5.2, the basic set convergence and set-valued mapping results are reviewed, and preliminary

results for the projection function are provided. We discuss the gradient projection method with inexact pro-

jection in Section 5.3. To increase the convergence speed, the Hessian matrix information can be introduced

to the projection gradient method, and this leads to the scaled gradient projection method. We introduce

the scaled gradient projection method with inexact projection in Section 5.4.

5.2 Preliminary results

In this section, we review some of the set convergence and set-valued mapping results based on the monograph

[116], Chapter 3 to 5. We consider a sequence of sets Cν ⊂ Rn and focus on the convergence behavior to

C. Later, the projection operator on sets can be considered as set-valued mappings. We review some results

of the projection function and then prove the basic results which are used to show the convergence of the

proposed algorithm.

Since we are working with both n-dimensional Euclidean space and the scaled Euclidean space, denote

H = Rn be the n-dimensional Euclidean space with the inner product 〈x, y〉 = x′y and the norm ‖x‖ =
√
x′x.

Given a symmetric positive definite matrix B, let the space HB be the scaled Euclidean space with the

elements in Rn, the inner product 〈x, y〉B = 〈Bx, y〉 = x′By and the norm ‖x‖B =
√
x′Bx.

5.2.1 Set convergence and set-valued mapping convergence

The following subsets of N are useful in this section:

N∞ = {N ⊂ N | N\N finite} , (5.5)

N ]
∞ = {N ⊂ N | N infinite} , (5.6)

where N∞ represents the set of subsequences of N containing all ν beyond some ν̄, and N ]
∞ represents all

subsequences of N. Then we can have the definition of the limit of set sequence:

Definition 5.1 ([116] 4.1, inner and outer limits). For a sequence {Cν}ν∈N of subsets of Rn, the outer limit
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is the set

lim sup
ν→∞

Cν =
{
x
∣∣∣ ∃N ∈ N ]

∞, ∃xν ∈ Cν(ν ∈ N) with xν →
N
x
}
, (5.7)

while the inner limit is the set

lim inf
ν→∞

Cν =
{
x
∣∣∣ ∃N ∈ N∞, ∃xν ∈ Cν(ν ∈ N) with xν →

N
x
}
, (5.8)

The limit of sequence exists if the outer and inner limit sets are equal:

lim
ν→∞

Cν := lim sup
ν→∞

Cν = lim inf
ν→∞

Cν (5.9)

The set convergence defined by the above definition is denoted as Painlevé-Kuratowski convergence [116].

For any nonempty, closed set C ⊂ Rn and x ∈ Rn, the distance between a point x to C is denoted as a

distance function:

dC(x) = inf
z∈C
‖x− z‖. (5.10)

We denote the distance function dC(x) = d(x,C) sometimes.

Next, we discuss the distance between sets and the set convergence in a metric space. For more detailed

discussion, we refer to [116]. Given a parameter ρ ∈ R+ = [0,∞) and a pair of nonempty sets C and D,

define

dρ(C,D) = max
|x|≤ρ

|dC(x)− dD(x)| . (5.11)

Then, the (integrated) set distance between C and D is defined as

d(C,D) =

∫ ∞
0

dρ(C,D)e−ρ dρ. (5.12)

Fix the notation of the sets of nonempty, closed subsets of Rn as

cl-sets 6=∅(Rn) = the space of all nonempty, closed subsets of Rn. (5.13)

The following definition characterizes the set sequence eventually departs from any bounded region of Rn.

Definition 5.2 ([116] 4.11, escape to the horizon). The condition Cν → ∅ (or equivalently, lim supν C
ν = ∅)
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holds for a sequence {Cν}ν∈N in Rn if and only if for every ρ > 0 there is an index set N ∈ N∞ such that

Cν ∩ ρB = ∅ for all ν ∈ N .

The following theorem gives the metric description of set convergence.

Theorem 5.3 ([116] 4.42, metric description of set convergence). The expression d gives a metric on

cl-sets 6=∅(Rn) which characterizes ordinary set convergence:

Cν → C ⇐⇒ d(Cν , C)→ 0. (5.14)

Furthermore, cl-sets 6=∅(Rn) is a complete metric space in which a sequence {Cν}ν∈N escapes to the horizon

if and only if for some set C in this space one has d(Cν , C)→∞.

The following corollary provides the boundedness of the set limit.

Corollary 5.4 ([116] 4.12, limits of connected sets). Let Cν ⊂ Rn be connected with lim supν C
ν bounded

and no subsequence escaping to the horizon. Then there is a bounded set B ⊂ Rn such that Cν ⊂ B for all

ν in some N ∈ N∞.

The above corollary is useful because convex sets in Rn are connected.

The projection function is a set-valued mapping, denoted as PC(·) for an nonempty, closed set C. Next,

we review the results of the set-valued mapping to analyse the convergence behavior of PCν (x) to PC(x) as

Cν → C. Consider a set-valued mapping S which maps the element in space X to the elements in space U ,

S(x) is a subset in U and point x ∈ X. The graph of S is a subset of space X × U as

gph S := {(x, u) | u ∈ S(x)} . (5.15)

Denote the set-valued mapping S : X ⇒ U :

S(x) = {u | (x, u) ∈ gph S} . (5.16)

The double arrow notation is used in the textbook [116] in order to distinguish the set-valued mapping from

regular function.

Definition 5.5 ([116] 5.31, pointwise limits of mappings). For a sequence of mappings Sν : Rn ⇒ Rm, the

pointwise outer limit and the pointwise inner limit are the mappings p- lim supν S
ν and p- lim infν S

ν defined
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at each point x by

(
p- lim sup

ν
Sν
)

(x) := lim sup
ν

Sν(x), (5.17)(
p- lim inf

ν
Sν
)

(x) := lim inf
ν

Sν(x). (5.18)

When the pointwise outer and inner limits agree, the pointwise limit p- limν S
ν is said to exist; thus, S =

p- limν S
ν if and only if S ⊃ p- lim supν S

ν and S ⊂ p- lim infν S
ν . We summarize this definition with the

notation

Sν
p→ S ⇐⇒ Sν(x)→ S(x) for all x. (5.19)

The graphical convergence is obtained by applying the theory of set convergence to the graph of sets.

Definition 5.6 ([116] 5.32, graphical limits of mappings). For a sequence of mappings Sν : Rn ⇒ Rm, the

graphical outer limit denoted by g- lim supν S
ν is the mapping

gph
(
g- lim sup

ν
Sν
)

= lim sup
ν

(gph Sν) , (5.20)(
g- lim sup

ν
Sν
)

(x) =
{
u
∣∣∣ ∃N ∈ N ]

∞, x
ν →
N
x, uν →

N
u, uν ∈ Sν(xν)

}
. (5.21)

The graphical inner limit, denoted by g- lim infν S
ν is the mapping

gph
(
g- lim inf

ν
Sν
)

= lim inf
ν

(gph Sν) , (5.22)(
g- lim inf

ν
Sν
)

(x) =
{
u
∣∣∣ ∃N ∈ N∞, xν →

N
x, uν →

N
u, uν ∈ Sν(xν)

}
. (5.23)

If these outer and inner limits agree, the graphical limit g- limν S
ν exists. Thus S = g- limν S

ν if and only if

S ⊃ g- lim supν S
ν and S ⊂ g- lim infν S

ν . We summarize this definition with the notation

Sν
g→ S ⇐⇒ gph Sν → gph S. (5.24)

Proposition 5.7 ([116] 5.33, graphical limit formulas at a point). For any sequence of mappings Sν : Rn ⇒
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Rm, one has

(
g- lim inf

ν
Sν
)

(x) =
⋃

{xν→x}

lim inf
ν→∞

Sν(xν) = lim
δ↓0

[
lim inf
ν→∞

Sν (x+ δB)
]
, (5.25)

(
g- lim sup

ν
Sν
)

(x) =
⋃

{xν→x}

lim sup
ν→∞

Sν(xν) = lim
δ↓0

[
lim sup
ν→∞

Sν (x+ δB)

]
, (5.26)

where the unions are taken over all sequences xν → x. Thus, Sν converges graphically to S if and only if,

at each point x̄ ∈ Rn, one has

⋃
{xν→x}

lim sup
ν→∞

Sν(xν) ⊂ S(x̄) ⊂
⋃

{xν→x}

lim inf
ν→∞

Sν(xν). (5.27)

The above proposition is characterized by the graphical convergence of Sν to S at a single point x̄ by

equation (5.27). We say that Sν converges graphically to S relative to a set X if equation (5.27) holds for

every x̄ ∈ X with corresponding sequence xν in X.

The following definitions describe the convergence behavior of Sν converges to S as xν converges to x̄.

Let N (x) be the set of neighborhood of point x.

Definition 5.8 ([116] 5.41, continuous limits of mappings). A sequence of mappings Sν : Rn ⇒ Rm is said

to converge continuously to a mapping S at x̄ if Sν(xν)→ S(x̄) for all sequences xν → x̄. It can be identified

with the condition that for every ε > 0 and ρ > 0 there exists N ∈ N∞ along with a neighborhood V ∈ N (x̄)

such that

Sν(x) ∩ ρB ⊂ S(x̄) + εB, (5.28)

S(x̄) ∩ ρB ⊂ Sν(x) + εB, (5.29)

for all x ∈ V when ν ∈ N . If this holds at all x̄ ∈ Rn, the sequence Sν converges continuously to S. It does

so relative to a set X ⊂ Rn if this holds at all x̄ ∈ X when xν ∈ X.

Definition 5.9 ([116] 5.41, uniform limits of mappings). The mappings Sν : Rn ⇒ Rm converge uniformly

to S on a subset X if for every ε > 0 and ρ > 0 there exists N ∈ N∞ such that

Sν(x) ∩ ρB ⊂ S(x) + εB, (5.30)

S(x) ∩ ρB ⊂ Sν(x) + εB, (5.31)

for all x ∈ X when ν ∈ N .
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The following theorem provides a connection between continuous convergence and uniform convergence

of the set-valued mapping sequence.

Theorem 5.10 ([116] 5.43, continuous versus uniform convergence). For mappings S, Sν : Rn ⇒ Rm and

a set X ⊂ Rn, the following conditions are equivalent:

1. Sν converges continuously to S relative to X;

2. Sν converges uniformly to S on all compact subsets of X, and S is continuous relative to X.

The next theorem provides a connection between graphical convergence and continuous convergence at

a point.

Theorem 5.11 ([116] 5.44, graphical versus continuous convergence). For mappings S, Sν : Rn ⇒ Rm and

a set X ⊂ Rn, the following properties at x̄ ∈ X are equivalent:

1. Sν converges continuously to S at x̄ relative to X;

2. Sν converges graphically to S at x̄ relative to X, and the sequence is asymptotically equicontinuous at

x̄ relative to X.

The gradient projection method is one of the most popular methods to solve the constrained optimization

problem (5.1), and a projection function is evaluated at each of the iterations. Later we will show the

projection function is a single-valued mapping when projecting onto the nonempty, closed, and convex sets.

The following corollary plays an important role in our work.

Corollary 5.12 ([116] 5.45, graphical convergence of single-valued mappings). For single-valued mappings

F, F ν : Rn ⇒ Rm, the following conditions are equivalent:

1. F ν converges continuously to F at x̄;

2. F ν converges graphically to F at x̄, and the sequence is eventually locally bounded at x̄, i.e., there exist

V ∈ N (x̄), N ∈ N∞ and a bounded set B such that F ν(x) ∈ B for all x ∈ V when ν ∈ N .

5.2.2 Convergence of projection mapping sequence

Given a nonempty, closed set C ⊂ Rn, define the projection function as

PC(x) = arg min
z∈C
‖x− z‖. (5.32)

It is a set-valued function consisting of the points in C nearest to x.
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When C is convex, the projection function is a single-valued mapping, PC(x) is the closest point to point

x on C. The following proposition gives the basic properties of the projection functions onto convex sets.

Proposition 5.13 ([17] Proposition 2.1.3, projection theorem). Let C be a nonempty, closed, and convex

subset of Rn,

1. For every x ∈ Rn, there exists a unique z = PC(x) that minimize ‖x− z‖ over all z ∈ C.

2. Given some x ∈ Rn, a point x̄ is equal to the projection PC(x) if and only if

〈x− x̄, z − x̄〉 ≤ 0, ∀z ∈ C. (5.33)

3. The mapping PC : Rn → C is continuous and nonexpansive, that is

‖PC(x)− PC(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn. (5.34)

4. In the case when C is a subspace, a point x̄ is equal to the projection PC(x) if and only if x − x̄ is

orthogonal to C, that is

〈x− x̄, z〉 = 0, ∀z ∈ C. (5.35)

Proposition 5.14 ([116] 5.35, graphical convergence of projection mappings). For closed sets Cν , C ⊂ Rn,

one has PCν
g→ PC if and only if Cν → C.

Proposition 5.15 ([116] 5.23, local boundedness of projection mappings). For any nonempty set C ⊂ Rn,

the projection mapping PC is locally bounded.

Lemma 5.16 (Eventually locally boundedness). Suppose Cν , C ⊂ Rn are nonempty, closed, and convex,

Cν → C. Then the sequence of projection function {PCν} is eventually locally bounded.

Proof. Fix arbitrary x̄ ∈ Rn, by Proposition 5.15, since C is nonempty, PC is locally bounded at x̄, i.e.,

∃V ∈ N (x̄) and a bounded set B1, such that PC(x) ∈ B for all x ∈ V .

By Proposition 5.13, PCν , PC are single-valued continuous functions. The map x → (x, PCν (x)) is

continuous, and x ∈ V is connected, then the graph gph PCν ⊂ V × Rn is connected.

By Proposition 5.14, PCν converge graphically to PC , that is equivalent to gph PCν → gph PC by

equation (5.24). Since gph PC is nonempty, there is no subsequence escaping to the horizon in {gph PCν}.

Also, gph PC ⊂ V ×B is bounded.
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Then, by Corollary 5.4, there exists a bounded set B̄ ⊂ Rn and N ∈ N∞ such that gph PCν ⊂ B̄ for all

ν ∈ N . That means, there exists a bounded set B2 such that gph PCν ⊂ V ×B2 ⊂ B̄ for all ν ∈ N .

In summary, for arbitrary x̄, there exists the above V ∈ N (x̄), the above N ∈ N∞, and the above

bounded set B2, such that PCν (x) ∈ B2 for all x ∈ V when ν ∈ N .

The following proposition is used for the convergence analysis.

Proposition 5.17. Suppose Cν , C ⊂ Rn are nonempty, closed, and convex, Cν → C. Then the projection

mapping sequence PCν converges continuously to PC .

Furthermore, suppose X is a subset in Rn, the projection mapping sequence PCν converges uniformly to

PC on all compact subsets of X.

Proof. Since Cν , C are nonempty and convex, the projection functions PCν , PC are single-valued mapping

by Proposition 5.13.

For any x̄ ∈ Rn, since Cν , C ⊂ Rn are closed and Cν → C, we have PCν converges graphically to PC at

point x̄ by Proposition 5.14. By Lemma 5.16, the projection function sequence {PCν} is eventually locally

bounded at x̄. By Corollary 5.12, PCν converges continuously to PC at x̄. The proof is finished since x̄ is

an arbitrary point in Rn.

By Theorem 5.10, PCν converges uniformly to PC on all compact subsets of X.

5.2.3 Convergence of scaled projection mapping sequence

Next, we discuss the projection mappings defined on the scaled Euclidean space HB . For any nonempty

closed convex set C ⊂ Rn and x ∈ Rn, the scaled distance function is denoted as:

dB,C(x) = inf
z∈C
‖x− z‖B . (5.36)

The scaled projection mapping is denoted as

PB,C(x) = arg min
z∈C
‖x− z‖B . (5.37)

The following proposition gives the basic properties of scaled projection mapping with respect to nonempty

closed convex sets.

Proposition 5.18 (Scaled projection theorem). Suppose C ⊂ Rn is nonempty, closed, and convex. Given

a symmetric positive definite matrix B, suppose for all x ∈ Rn, there exists positive constants β1, β2, β3 > 0,
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such that

‖Bx‖ ≤ β1‖x‖, and β2‖x‖2 ≤ 〈Bx, x〉 ≤ β3‖x‖2, ∀x ∈ Rn. (5.38)

Then following four statements hold:

1. Given x ∈ Rn, there exists a unique vector z ∈ C that minimize ‖z − x‖B over all z ∈ C. Denote

z = PB,C(x) as the projection of x on C in HB, i.e.

PB,C(x) = arg minz∈C‖z − x‖B . (5.39)

2. Given x ∈ Rn, a vector x̄ ∈ C is equal to PB,C(x) if and only if,

〈x− x̄, z − x̄〉B ≤ 0, ∀z ∈ C. (5.40)

3. The function PB,C(x) : Rn → C is continuous and,

‖PB,C(x)− PB,C(y)‖ ≤ β1

β2
‖x− y‖, ∀x, y ∈ Rn. (5.41)

4. When C is a subspace in Rn, for all x ∈ Rn, there exists x̄ ∈ C equal to PB,C(x) if and only if x− x̄

is orthogonal to C in HB, i.e.

〈x− x̄, z〉B = 0, ∀z ∈ C. (5.42)

Proof. Note that β1 = β3 can be taken as the maximum eigenvalue of B, and β2 as the minimum eigenvalue.

Let’s examine each statement:

1. Fix x ∈ Rn, then the statement is equivalent to

find z ∈ C, s.t. ‖x− z‖B ≤ ‖x− y‖B , ∀y ∈ C. (5.43)

Define function g(z) = ‖z − x‖B and g is continuous on a closed set C. By the Weierstrass’ extreme

value theorem, there exists a minimizing vector for function g on C. The uniqueness follows since g is

strictly convex.
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2. For all x, y ∈ C,

‖z − x‖2B = ‖z − x̄‖2B + ‖x̄− x‖2B − 2 〈x− x̄, z − x̄〉B ≥ ‖x̄− x‖
2
B − 2 〈x− x̄, z − x̄〉B . (5.44)

If 〈x− x̄, z − x̄〉B ≤ 0 for all z ∈ C, then we have,

‖z − x‖2B ≥ ‖x̄− x‖2B , ∀z ∈ C, (5.45)

which means x̄ = PB,C(x). On the other hand, suppose x̄ = PB,C(x), denote h(α) = αz + (1− α)x̄, h

is continuous and h(0) = x̄.

‖x− h(α)‖2B = α2‖x− z‖2B + (1− α)2‖x− x̄‖2B + 2α(1− α) 〈x− z, x− x̄〉B . (5.46)

Consider the derivative

∂

∂α

(
‖x− h(α)‖2B

)
α=0

= −2‖x− x̄‖2B + 2 〈x− z, x− x̄〉B

= −2 〈x− x̄, z − x̄〉B .
(5.47)

Suppose 〈x− x̄, z − x̄〉B > 0 then ∂
∂α

(
‖x− h(α)‖2B

)
α=0

< 0. By continuity of ‖x − h(α)‖2B , there

exists an α0 small enough such that

‖x− h(α)‖2B ≤ ‖x− h(0)‖2B = ‖x− x̄‖2B , (5.48)

contradict to x̄ = PB,C(x).

3. For all x, y ∈ Rn, by 1 and 2 we have,

〈x− PB,C(x), PB,C(y)− PB,C(x)〉B ≤ 0, (5.49)

〈y − PB,C(y), PB,C(x)− PB,C(y)〉B ≤ 0. (5.50)

Then we have,

〈y − PB,C(y)− x+ PB,C(x), PB,C(x)− PB,C(y)〉B ≤ 0, (5.51)

‖PB,C(x)− PB,C(y)‖2B ≤ 〈B(x− y), PB,C(x)− PB,C(y)〉 . (5.52)
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By the assumption of matrix B and Cauchy–Schwarz inequality, we have

‖PB,C(x)− PB,C(y)‖ ≤ β1

β2
‖x− y‖. (5.53)

The continuity follows by the above inequality.

4. Since C is a subspace of Rn, x̄+ z and x̄− z in C for all z ∈ C. Then by the equation in 2,

〈x− x̄, x̄+ z − x̄〉B ≤ 0, and 〈x− x̄, x̄− z − x̄〉B ≤ 0, (5.54)

then, 〈x− x̄, z〉B = 0.

Suppose the matrix Bν is symmetric positive definite for each ν and converges to B as ν → ∞. Next,

we describe the behavior of scaled projection mappings PBν ,C , PB,Cν , and PB,C as ν → ∞. Because every

symmetric positive definite matrix has a unique Cholesky decomposition, matrix Bν , B can be written as

Bν = LνL
′

ν , B = LL
′
, (5.55)

here Lν and L are lower triangular, invertible, and with real and positive diagonal entries, Lν → L as ν →∞.

Suppose matrix Bν , B satisfy the assumption in (5.38), then

β2‖x‖ ≤ ‖Lνx‖ ≤ β3‖x‖, β2‖x‖ ≤ ‖Lx‖ ≤ β3‖x‖. (5.56)

Also, Lν and L can be written as bounded linear set-valued mappings map Rn → Rn as

L(C) =
{
x
∣∣ L−1x ∈ C

}
. (5.57)

Proposition 5.19. Given symmetric positive definite matrix B, L is an invertible matrix given by the

Cholesky decomposition with B = LL
′
. Suppose C ⊂ Rn is nonempty, closed, and convex, then for any

x ∈ Rn, PB,C(x) = PL′ (C)(L
′
x).

Proof.

PB,C(x) = arg min
z∈C
‖x− z‖B = arg min

z∈C
‖L
′
(x− z)‖ = arg min

z∈L′ (C)
‖L
′
x− z‖ = PL′ (C)(L

′
x). (5.58)
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Lemma 5.20. Suppose Cν , C ⊂ Rn are nonempty, closed, and convex, Cν → C. And suppose Lν , L are

bounded linear operators derived by Cholesky decomposition (5.55), and satisfies (5.56), Lν → L as ν →∞.

1. Set Lν(C), L(Cν), L(C) are nonempty, closed, and convex for all ν.

2. L(Cν)→ L(C).

3. Lν(C)→ L(C).

Proof. 1. We only need to show the case of L(C). L(C) is nonempty follows that C is nonempty. Since L

is a bijection and is continuous, then it is a closed map, L(C) is closed. The convexity of L(C) follows

L is a linear operator and C is convex.

2. For all x ∈ L(C), we have L−1x ∈ C. By Definition 5.1, there exists N1 ∈ N∞ and sequence xν1 ∈ Cν

with xν1 →
N1

L−1x. Then we have Lxν1 ∈ L(Cν) with Lxν1 →
N1

x, that is x ∈ lim infν L(Cν). So

L(C) ⊂ lim infν L(Cν).

For all x ∈ lim supν L(Cν), by Definition 5.1, there exists N2 ∈ N ]
∞ and sequence xν2 ∈ L(Cν) with

xν2 →
N2

x. Then we have L−1xν2 ∈ Cν with L−1xν2 →
N2

L−1x, that is L−1x ∈ lim supν C = C. Then

x ∈ L(C) and lim supν L(Cν) ⊂ L(C).

Then

L(C) = lim inf
ν

L(Cν) = lim sup
ν

L(Cν). (5.59)

3. First, we show L(C) ⊂ lim infν Lν(C). For all x ∈ L(C), let N1 = {1, 2, 3, · · · } ∈ N∞, there exists

xν = LνL
−1x ∈ Lν(C) and xν →

N1

x. By Definition 5.1, x ∈ lim infν Lν(C), then L(C) ⊂ lim infν Lν(C).

Also by Definition 5.1 we have lim infν Lν(C) ⊂ lim supν Lν(C). Suppose there exists a point x0 ∈

lim supν Lν(C) but x0 /∈ L(C). Then there exists N2 ∈ N ]
∞, and xν0 ∈ Lν(C) with xν0 →

N2

x0 as ν →∞.

By

‖L−1
ν xν0 − L−1x0‖ = ‖L−1

ν xν0 − L−1
ν x0 + L−1

ν x0 − L−1x0‖

≤ ‖L−1
ν ‖‖xν0 − x0‖+ ‖L−1

ν − L−1‖‖x0‖,
(5.60)

we have L−1
ν xν0 →

N2

L−1x0 ∈ C since C is closed, contradicting that x0 /∈ L(C). Then we have

lim supν Lν(C) ⊂ L(C). In summary,

L(C) = lim inf
ν→∞

Lν(C) = lim sup
ν→∞

Lν(C). (5.61)
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The following propositions are useful for convergence analysis.

Proposition 5.21. Given a symmetric positive definite matrix B. Suppose Cν , C ⊂ Rn are nonempty,

closed, and convex, Cν → C. Then the scaled projection mapping sequence PB,Cν converges continuously to

PB,C .

Furthermore, suppose X is a subset in Rn, the scaled projection mapping sequence PB,Cν converges

uniformly to PB,C on all compact subsets of X.

Proof. By the Cholesky decomposition, there exists an invertible positive definite matrix L with B = LL
′
.

For all x̄ ∈ Rn, L′ x̄ ∈ Rn.

By Lemma 5.20, L
′
(Cν), L

′
are nonempty, closed, and convex sets, L

′
(Cν)→ L(C) and no subsequence

escapes to the horizon. By Proposition 5.14, PL′ (Cν) converges graphically to PL′ (C) at L
′
x̄. By Lemma

5.16, the projection function sequence {PL′ (Cν)} is eventually locally bounded at x̄.

Then, by Corollary 5.12, the projection function sequence PL′ (Cν) converges continuously to PL′ (C) at

L
′
x̄, i.e., for all ε > 0, ρ > 0, there exists N ∈ N∞ along with a neighborhood V ∈ N (L

′
x̄), such that

PL′ (Cν)(x) ∩ ρB ⊂ PL′ (C)(L
′
x̄) + εB, (5.62)

PL′ (C)(L
′
x̄) ∩ ρB ⊂ PL′ (Cν)(x) + εB, (5.63)

for all x ∈ V when ν ∈ N . By Proposition 5.19, PL′ (Cν)(x) = PB,Cν ((L
′
)−1x), PL′ (C)(L

′
x̄) = PB,C(x̄). Also,

(L
′
)−1x ∈ (L

′
)−1(V ), and (L

′
)−1(V ) ∈ N ((L

′
)−1L

′
x̄) = N (x̄). Then we have the following equivalence of

the above equations,

PB,Cν (x) ∩ ρB ⊂ PB,C(x̄) + εB, (5.64)

PB,C(x̄) ∩ ρB ⊂ PB,Cν (x) + εB, (5.65)

for all x ∈ (L
′
)−1(V ) when ν ∈ N . That is the scaled projection function sequence PB,Cν converges

continuously to PB,C at x̄. Since x̄ is an arbitrary point in Rn, PB,Cν converges continuously to PB,C .

By Theorem 5.10, PB,Cν converges uniformly to PB,C on all compact subsets of X.

Proposition 5.22. Given symmetric positive definite matrices Bν , B with sequence Bν converges to B as

ν → ∞. Suppose C ⊂ Rn is nonempty, closed, and convex. Then the scaled projection mapping sequence

PBν ,C converges continuously to PB,C .
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Furthermore, suppose X is a subset in Rn, the scaled projection mapping sequence PBν ,C converges

uniformly to PB,C on all compact subsets of X.

Proof. The proof is similar to the proof of Proposition 5.21.

5.3 Gradient projection method with inexact projection

In this section, we discuss the gradient projection method with inexact projection. Before introducing the

proposed algorithm, we give a review of the traditional gradient projection method. Consider the constrained

optimization problem:

min
x
f(x), such that x ∈ X, (5.66)

where f is a continuous differentiable nonlinear function, possibly nonconvex, bounded from below. The

constraint set X ⊂ Rn is nonempty, closed, and convex. First, we review some basic properties.

Proposition 5.23 ([17] proposition 2.1.2, optimality condition). For problem (5.66),

1. If x∗ is a local minimum of f over X, then

∇f(x∗)′(x− x∗) ≥ 0, ∀x ∈ X. (5.67)

2. If f is convex over X, then the above condition is also sufficient for x∗ to minimize f over X.

The above proposition gives the optimality condition for the constrained optimization problem (5.66).

Definition 5.24 (Stationary point). The point x∗ is a stationary point of the constrained optimization

problem (5.66) if the optimality condition Proposition 5.23 is satisfied.

Definition 5.25 (Feasible direction method). For the constrained optimization problem (5.66), a feasible

direction method starts with a feasible point x0 ∈ X, then generating a series of points with equation

xk+1 = xk + αkdk. (5.68)

If xk is a nonstationary point, then dk is chosen as a feasible direction at xk which is a descent direction
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with

〈
∇f(xk), dk

〉
< 0. (5.69)

Moreover, there exists a stepsize αk > 0 such that

xk + αkdk ∈ X. (5.70)

If xk is stationary, the method stops with xk+1 = xk.

The gradient projection method can be given by the following equations. At the k-th iteration, compute

x̄k = PX(xk − βk∇f(xk)), (5.71)

xk+1 = xk + αk(x̄k − xk), (5.72)

where PX is a single-valued projection mapping by Proposition 5.13, βk is a positive scalar and αk ∈ (0, 1]

is the stepsize parameter generally achieved through the line search algorithm. The positive scalar βk can

be chosen as a constant, and more sophisticated strategy such as Armijo rule along the projection arc can

be used, for more information please refer to [17]. We discuss two line search methods in this work.

1. Armijo rule [99]:

f(xk + αkdk) ≤ f(xk) + c1α
k∇f(xk)′dk, (5.73)

with c1 ∈ (0, 1), and αk = ηjα, here α is the initial step size, η ∈ (0, 1) and j is the corresponding line

search time.

2. Wolfe conditions [99]:

f(xk + αkdk) ≤ f(xk) + c1α
k∇f(xk)′dk, (5.74)

∇f(xk + αkdk)′dk ≥ c2∇f(xk)′dk, (5.75)

where 0 < c1 < c2 < 1. The line search stepsize αk is chosen as the above Armijo rule.

Proposition 5.26 (Existence of the feasible direction). The gradient projection method (5.71) is a feasible

direction method.
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Proof. Notice that if xk is a nonstationary point, xk+1 6= xk, then x̄k 6= xk and ∇f(xk) 6= 0. Denote the

feasible direction as dk = x̄k − xk.

If xk − βk∇f(xk) ∈ X, dk = −βk∇f(xk) and
〈
∇f(xk), dk

〉
< 0, then dk is a feasible direction. Also we

can have xk + αkdk = xk − αkβk∇f(xk) ∈ X since αk ∈ (0, 1] and X is convex, then there exists an update

xk+1 ∈ X.

On the other hand, if xk − βk∇f(xk) /∈ X, dk = x̄k − xk, by Proposition 5.13

〈
xk − βk∇f(xk)− x̄k, x− x̄k

〉
≤ 0, ∀x ∈ X, (5.76)

let x = xk,

〈
xk − βk∇f(xk)− x̄k, xk − x̄k

〉
≤ 0, (5.77)〈

∇f(xk), dk
〉
≤ 0. (5.78)

Since xk is nonstationary then ∇f(xk) 6= 0, also xk+1 6= xk then xk 6= x̄k,
〈
∇f(xk), dk

〉
< 0. Then dk is a

feasible direction. Also xk + αkdk = xk + αk(x̄k − xk) ∈ X since αk ∈ (0, 1] and X is convex.

Definition 5.27 (Gradient related direction). For a feasible direction method, the direction sequence {dk}

is gradient related to {xk} if for any subsequence {xk}k∈K that converges to a nonstationary point, the

corresponding subsequence {dk}k∈K is bounded and satisfies

lim sup
k→∞,k∈K

〈
∇f(xk), dk

〉
< 0. (5.79)

An important proposition showing the convergence behavior of the feasible direction method is provided

below.

Proposition 5.28 ([17], proposition 2.2.1, stationarity of limit points for feasible direction methods). Let

{xk} be a sequence generated by the feasible direction method xk+1 = xk + αkdk. Assume {dk} is gradient

related and αk is chosen by the Armijo rule. Then every limit point of {xk} is a stationary point.

Proposition 5.28 is given in [17] and the proof is omitted. For the completeness we give the proof below.

The proof is similar to Proposition 1.2.1 in [17].

Proof. Assume x̄ is a limit point of {xk} and x̄ is on the boundary of X. Suppose x̄ is a nonstationary point,
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i.e. there exists x0 ∈ X such that

〈∇f(x̄), x0 − x̄〉 < 0. (5.80)

In this case we have ∇f(x̄) 6= 0. At the k-th iteration

f(xk) = f(x0) +

k∑
j=1

f(xj)− f(xj−1). (5.81)

Since f is bounded from below, then f(xk) converges to a finite value then we can have (f(xk)−f(xk+1))→ 0,

as k →∞. By the definition of Armijo rule (5.73),

f(xk)− f(xk+1) ≥ −c1αk
〈
∇f(xk), dk

〉
, (5.82)

then we have αk
〈
∇f(xk), dk

〉
→ 0 as k →∞. Let {xk}k∈K be a subsequence converges to x̄, and since the

corresponding direction {dk}k∈K is gradient related, we have

lim sup
k→∞,k∈K

〈
∇f(xk), dk

〉
< 0, (5.83)

then αk → 0 as k → ∞ and k ∈ K. Since {αk}k∈K is decreasing to 0, from the definition of Armijo rule

(5.73), there exists an index set N ∈ N∞ such that for all k ∈ N , the corresponding Armijo stepsize αk has

to decrease once. That means if the stepsize is enlarged once with αk/η, the Armijo rule (5.82) will not be

satisfied for k ∈ N , i.e.,

f(xk)− f(xk + αkdk/η) < −c1αk/η
〈
∇f(xk), dk

〉
, ∀k ∈ N ∩ K. (5.84)

Denote

pk =
dk

‖dk‖
, ᾱk =

αk‖dk‖
η

. (5.85)

Since {dk} is gradient related, {dk}k∈K is bounded, we have ᾱk → 0 as k ∈ K and k → ∞. Since ‖pk‖ = 1

for all k ∈ K, there exists a bounded subsequence {pk}k∈K̄ and K̄ ⊂ K such that pk → p̄ as k ∈ K̄ and

k →∞. Also we have ‖p̄‖ = 1. From equation (5.84) we have

f(xk)− f(xk + ᾱkpk)

ᾱk
< −c1

〈
∇f(xk), pk

〉
. (5.86)
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Taking the limits in the above equation,

−〈∇f(x̄), p̄〉 ≤ −c1 〈∇f(x̄), p̄〉 , (5.87)

then 〈∇f(x̄), p̄〉 ≥ 0 since c1 ∈ (0, 1).

On the other hand,

〈∇f(x̄), p̄〉 ≤ lim sup
k∈K̄,k→∞

〈
∇f(xk), pk

〉
= lim sup
k∈K̄,k→∞

〈
∇f(xk), dk

〉
‖dk‖

< 0, (5.88)

the last inequality holds since {dk}k∈K̄ is gradient related. Then we have the contradiction.

For the case when x̄ is in the interior of X, we have ∇f(x̄) = 0 if and only if x̄ is stationary. By assuming

∇f(x̄) 6= 0, with the same discussion we can have the contradiction.

5.3.1 Proposed algorithm

Next, we consider the gradient projection method with inexact projection. Rewrite the optimization problem

(5.66),

min
x
f(x), such that x ∈ X. (5.89)

In the gradient projection method, at the k-th iteration, we compute x̃k = xk−βk∇f(xk) first, then project

x̃k to feasible set X by x̄k = PX(x̃k). When the projection operator can not be evaluated in a closed-form, we

can only project x̃k to a point close to PX(xk). In order to solve this problem, we construct a set expanding

strategy for the feasible set X.

Definition 5.29 (Set expanding strategy). Given a feasible set X is nonempty, closed, and convex, construct

an expanding set sequence {Xk} such that

X = lim
k→∞

Xk, Xk ⊂ Xk+1, Xk 6= Xk+1, (5.90)

where Xk is nonempty, closed, and convex for each k ∈ N.

One example for the set expanding strategy is:

Xk =
{
x ∈ R2

∣∣ x1 ≤ θ(k)
}
, (5.91)
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where θ(k) is a threshold function defined by

θ(k) =


0, if k = 0,∑k
i=1 η

iε, if k ≥ 1,

(5.92)

and

lim
k→∞

θ(k) =
η

1− η
ε, (5.93)

here ε > 0, η ∈ (0, 1). Then the constraint set X is

X =

{
x ∈ R2

∣∣∣∣ x1 ≤
η

1− η
ε

}
. (5.94)

This example is illustrated in Figure 5.3.

X0 X1 X2 X

Figure 5.3: Example of a set expanding strategy in R2.

There are two strategies to construct the expanding set sequence for the constrained optimization problem

(5.66):

1. Given the constraint set X, construct the initial constraint set X0 = X, then the element in the

expanding set sequence {Xk} is larger than the initial constraint set X. A special expanding strategy

like the above example can be designed such that the sequence {Xk} does not expand too much

compared to X. In this case, the expanding set sequence strategy adds a “soft” constraint to the

optimization problem.

2. Start with a smaller initial constraint set X0 ⊂ X, then design an expanding set sequence {Xk} with

Xk → X. In this case, the constraint set X is not changed.
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Proposition 5.30. The set sequence {Xk} generated by the set expanding strategy 5.29 has no subsequence

escaping to the horizon.

Proof. Since limk→∞Xk = X, and X is nonempty, then it is obvious that no subsequence escaping to the

horizon.

Since the projection algorithm discussed in this work is an iterative process, we make an assumption for

the projection algorithm.

Assumption 5.31. Starting with z0 = x̃k, the projection function PXk(x̃k) generates a series of {zj} which

converges to PXk(x̃k) strongly.

Under the above assumption, we define an inexact projection function which projects x̃k towards Xk,

denoted as P̄Xk(x̃k) = zj0 . Here j0 is the index of sequence {zj} in Assumption 5.31 such that

zj0 ∈ Xk+1, (5.95)〈
x̃k − zj0 , xk − zj0

〉
≤ 0. (5.96)

The above equations provide the stopping criterion of the iterative projection process.

Proposition 5.32. When xk is a nonstationary point, under Assumption 5.31, there exists an index j0 such

that zj0 in the converging sequence {zj} such that equation (5.95) and (5.96) are satisfied.

Proof. At the k-th iteration, x̃k = xk−sk∇f(xk). Since Xk is nonempty, closed, and convex, PXk(x̃k) exists

by Proposition 5.13. Since Xk ⊂ intXk+1, there exists an open ball B(PXk(x̃k), ε) ⊂ Xk+1. By Assumption

5.31, the sequence {zj} converges strongly to PXk(x̃k), then there exists an index set N1 ∈ N∞ such that

zj ∈ Xk+1 for all j ∈ N1.

When xk is a nonstationary point, then xk 6= PXk(x̃k), by Proposition 5.13

〈
x̃k − PXk(x̃k), xk − PXk(x̃k)

〉
< 0. (5.97)

Then, 〈
x̃k − PXk(x̃k), xk − PXk(x̃k)

〉
=
〈
x̃k − zj , xk − zj

〉
+
〈
x̃k − zj , zj − PXk(x̃k)

〉
+
〈
zj − PXk(x̃k), xk − zj

〉
+
〈
zj − PXk(x̃k), zj − PXk(x̃k)

〉
< 0.

(5.98)
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Suppose
〈
x̃k − zj , xk − zj

〉
> 0, then as zj converges to PXk(x̃k),

〈
x̃k − PXk(x̃k), xk − PXk(x̃k)

〉
≥ 0, (5.99)

yielding a contradiction.

By Assumption 5.31, there exist an index set N2 ∈ N∞ such that
〈
x̃k − zj , xk − zj

〉
≤ 0. Let j0 be an

index in N1 ∩N2 then proof is finished.

The set expanding strategy can be applied for the case when the gradient projection method has an

inexact projection: consider the case when βk is constant, at the k-th iteration, set the feasible set as Xk

then compute

x̄k = P̄Xk(xk − β∇f(xk)), (5.100)

xk+1 = xk + αk(x̄k − xk). (5.101)

This process is illustrated in Figure 5.4.

Xk

Xk+1

xk

xk − βk∇f(xk)

x̄k = PX(xk − βk∇f(xk))

xk+1 = xk + αk(x̄k − xk)

Figure 5.4: Gradient projection method with inexact projection at the k-th iteration.

The gradient projection method with inexact projection is described as Algorithm 5.

5.3.2 Convergence analysis

Proposition 5.33. Algorithm 5 is a feasible direction method.

Proof. With the condition (5.96), the proof is exactly the same as Proposition 5.26.
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Algorithm 5: Gradient projection method with inexact projection
Initialization: Given feasible set X, construct set sequence {Xk} satisfies (5.90). Given the initial
point x0 ∈ X0.
while not convergent do

Step 1: Compute x̃k = xk − β∇f(xk) ;
Step 2: Projecting x̃k to Xk, until equation (5.95) and (5.96) are satisfied, denote x̄k = P̄Xk(x̃k);
Step 3: Evaluate the line search stepsize with Armijo rule or Wolfe conditions, update with
xk+1 = xk + αk(x̄k − xk);
Step 4: Enlarge the feasible set Xk = Xk+1 with set expanding strategy, let k = k + 1.

end

Assumption 5.34. The inexact projection function project x̃k is close enough to its exact projection PXk(x̃k)

with

‖P̄Xk(x̃k)− PXk(x̃k)‖ ≤ d(Xk, Xk+1), (5.102)

here the d(Xk, Xk+1) is the (integrated) set distance between Xk and Xk+1.

The above assumption make sense because d(Xk, Xk+1) > 0 asXk andXk+1 are closed sets, Xk ⊂ Xk+1,

Xk 6= Xk+1, and the projection function generating a sequence {zj} converges to PXk(x̃k) strongly by

Assumption 5.31.

Theorem 5.35. Under Assumption 5.31, 5.34, let {xk} be the sequence generated by Algorithm 5. Then

every limit point of {xk} is stationary.

Proof. Suppose there is a subsequence {xk}k∈K converges to a nonstationary point x0. By Proposition 5.28,

it is sufficient to show the update direction sequence dk = x̄k − xk as k ∈ K is gradient related, i.e.

lim sup
k→∞,k∈K

‖x̄k − xk‖ <∞, (5.103)

lim sup
k→∞,k∈K

〈
∇f(xk), x̄k − xk

〉
< 0. (5.104)

Denote x̃k = xk − β∇f(xk), x̃ = x0 − β∇f(x0), then x̃k → x̃ as k ∈ K and k → ∞. We can assume that

there exists a compact subset Ω ⊂ Rn large enough such that all points in the sequence {x̃k} are in Ω.

Recall that the inexact projection of x̃k is x̄k = P̄Xk(x̃k), consider the inequality,

‖P̄Xk(x̃k)− PX(x̃)‖

≤ ‖P̄Xk(x̃k)− PXk(x̃k)‖+ ‖PXk(x̃k)− PX(x̃k)‖+ ‖PX(x̃k)− PX(x̃)‖.
(5.105)

By Proposition 5.13, PX is continuous, for all ε/3 > 0, there exists N1 ∈ N∞, such that ‖PX(x̃k) −
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PX(x̃)‖ < ε/3.

By Definition 5.1, Proposition 5.30, and Proposition 5.17, the projection function sequence PXk converges

uniformly to PX on all compact subsets of Rn. Then the uniform convergence holds on the set Ω. For ε/3 > 0,

for all ρ > 0, there exists N2 ∈ N∞ such that

PXk(x) ∩ ρB ⊂ PX(x) + ε/3B, (5.106)

PX(x) ∩ ρB ⊂ PXk(x) + ε/3B, (5.107)

for all x ∈ Ω when k ∈ N2. Then we have ‖PXk(x̃k)− PX(x̃k)‖ ≤ ε/3.

SinceXk → X andXk, X are nonempty closed bounded, by Theorem 5.3, d(Xk, X)→ 0. By Assumption

5.34, for ε/6, there exists N3 ∈ N∞ such that when k, k + 1 ∈ N3,

‖P̄Xk(x̃k)− PXk(x̃k)‖ ≤ d(Xk, Xk+1) ≤ d(Xk, X) + d(X,Xk+1) < ε/6 + ε/6 = ε/3. (5.108)

Then for the above arbitrary ε > 0, there exists N = N1 ∩N2 ∩N3 such that ‖P̄Xk(x̃k)−PX(x̃)‖ < ε as

k ∈ N . Which means P̄Xk(x̃k)→ PX(x̃) as k ∈ K and k →∞.

Then,

‖x̄k − xk‖ = ‖P̄Xk(x̃k)− xk‖ → ‖PX(x̃)− x0‖, k →∞, k ∈ K. (5.109)

Since PX(x̃) ∈ X and x0 ∈ X, then lim supk→∞,k∈K ‖x̄k − xk‖ <∞.

By inequality (5.96),

〈
x̃k − x̄k, xk − x̄k

〉
≤ 0, (5.110)〈

xk − β∇f(xk)− x̄k, xk − x̄k
〉
≤ 0, (5.111)〈

∇f(xk), x̄k − xk
〉
≤ − 1

β
‖x̄k − xk‖2. (5.112)

Taking the limit of above equation, since x̄k = P̄Xk(x̃k) and P̄Xk(x̃k)→ PX(x̃),

lim sup
k→∞,k∈K

〈
∇f(xk), x̄k − xk

〉
≤ − 1

β
‖PX(x̃)− x0‖2. (5.113)
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Assume PX(x̃) = x0, then by Proposition 5.13,

〈x̃− PX(x̃), x− PX(x̃)〉 ≤ 0, ∀x ∈ X, (5.114)

〈−β∇f(x0), x− x0〉 ≤ 0, ∀x ∈ X, (5.115)

〈∇f(x0), x− x0〉 ≥ 0, ∀x ∈ X, (5.116)

that means x0 is stationary, yielding a contradiction. Then,

lim sup
k→∞,k∈K

〈
∇f(xk), x̄k − xk

〉
< 0. (5.117)

5.4 Scaled gradient projection with inexact projection

Next, we discuss the scaled gradient projection method. For optimization problem (5.66), at the k-th

iteration, we assume we have a symmetric positive definite matrix Bk with a unique Cholesky decomposition

Bk = LkL
′

k. Here Lk is an invertible positive definite lower triangular matrix. In the HBk space, rewrite the

constrained optimization problem (5.66),

min
y
gk(y) = f((L

′

k)−1y), such that y ∈ L
′

k(X). (5.118)

Perform the gradient projection method to the above problem,

yk+1 = yk + αk(ȳk − yk), (5.119)

where

ȳk = PL′k(X)(y
k − βk∇gk(yk)). (5.120)
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By Proposition 5.13, the above equation is equivalent to

ȳk = arg min
y∈L′k(X)

‖y − (yk − βk∇gk(yk))‖2

= arg min
y∈L′k(X)

‖y − yk‖2 + (βk)2‖∇gk(yk)‖2 + 2βk
〈
∇gk(yk), y − yk

〉
= arg min

y∈L′k(X)

〈
∇gk(yk), y − yk

〉
+

1

2βk
‖y − yk‖2.

(5.121)

Let y = L
′

kx, y
k = L

′

kx
k, and ∇gk(yk) = L−1

k ∇f((L
′

k)−1yk) = L−1
k ∇f(xk). Then,

x̄k = arg min
L
′
kx∈L

′
k(X)

〈
L−1
k ∇f(xk), L

′

k(x− xk)
〉

+
1

2βk

〈
L
′

k(x− xk), L
′

k(x− xk)
〉

= arg min
x∈X

〈
∇f(xk), x− xk

〉
+

1

2βk
‖x− xk‖Bk .

(5.122)

The scaled gradient projection method can be written as: at the k-th iteration, given a symmetric positive

definite matrix Bk, compute

x̄k = arg min
x∈X

〈
∇f(xk), x− xk

〉
+

1

2βk
〈
Bk(x− xk), x− xk

〉
, (5.123)

xk+1 = xk + αk(x̄k − xk). (5.124)

Here the matrix Bk is chosen as an approximation of the Hessian matrix ∇2f(xk). When the Hessian matrix

is symmetric positive definite and Bk = ∇2f(xk), the scaled gradient projection method is equivalent to the

constrained Newton’s method. The scale parameter βk can be set to 1 if the Bk is an accurate approximation

of the Hessian matrix. The line search parameter αk can be achieved through the line search methods like

Armijo rule and Wolfe conditions. The relation between line search method and the Hessian approximation

will be discussed in the following subsections.

In this work, we consider the case that the accurate approximation is used for the Hessian matrix, so

suppose the scale parameter βk = 1 for each iteration. Denote

fk(x) =
〈
∇f(xk), x− xk

〉
+

1

2

〈
Bk(x− xk), x− xk

〉
, (5.125)

here the scaling matrix Bk satisfies the following assumption.

Assumption 5.36. The scaling matrix Bk is symmetric positive definite, and there exists positive constants
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β1, β2, β3 ≥ 0, such that

‖Bkx‖ ≤ β1‖x‖, and β2‖x‖2 ≤ 〈Bkx, x〉 ≤ β3‖x‖2, ∀x ∈ Rn, (5.126)

for all iterations. Also, Bk converges to a symmetric positive definite matrix B as k →∞.

The subproblem (5.123) of the scaled gradient projection method can be denoted as

x̄k = arg min
x∈X

fk(x). (5.127)

Proposition 5.37. Let x̃k = xk −B−1
k ∇f(xk), the equation (5.125) is equivalent to

fk(x) =
1

2
‖x− x̃k‖2Bk −

1

2

〈
B−1
k ∇f(xk),∇f(xk)

〉
. (5.128)

The subproblem (5.123) is equivalent to compute x̃k first, then project x̃k to feasible set X in HBk , i.e.

find x̄k ∈ X, such that ‖x̃k − x̄k‖Bk ≤ ‖x− x̄k‖Bk ,∀x ∈ X. (5.129)

There exists a unique x̄k for each x̃k, denote the projection function as PBk,X(x̃k) = x̄k.

Proof. Let xk = x̃k +B−1
k ∇f(xk), by equation (5.125),

fk(x) =
〈
∇f(xk), x− x̃k

〉
−
〈
∇f(xk), B−1

k ∇f(xk)
〉

+
1

2

〈
Bk(x− x̃k), x− x̃k

〉
− 1

2

〈
∇f(xk), x− x̃k

〉
− 1

2

〈
Bk(x− x̃k), B−1

k ∇f(xk)
〉

+
1

2

〈
∇f(xk), B−1

k ∇f(xk)
〉

=
1

2

〈
Bk(x− x̃k), x− x̃k

〉
− 1

2

〈
B−1
k ∇f(xk),∇f(xk)

〉
.

(5.130)

Since X is nonempty, closed, and convex, the existence and uniqueness of x̄k is followed by Proposition

5.18.

The scaled gradient projection method needs to compute the subproblem (5.123) at each iteration. By the

above proposition, the subproblem can be solved by first computing x̃k = xk −B−1
k ∇f(xk), then projecting

x̃k to X with the metric of HBk . Rewrite the scaled gradient projection method as: at the k-th iteration,
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X

xk

x̃k = xk −B−1
k ∇f(xk)

x̄k = PBk,X(x̃k)

xk+1 = xk + αk(x̄k − xk)

Figure 5.5: The scaled gradient projection method at the k-th iteration.

given a symmetric positive definite matrix Bk, compute

x̃k = xk −B−1
k ∇f(xk), (5.131)

x̄k = PBk,Xk(x̃k), (5.132)

xk+1 = xk + αk(x̄k − xk). (5.133)

Figure 5.5 provides an illustration of the above process.

Proposition 5.38. Under Assumption 5.36, the scaled gradient projection method is a feasible direction

method.

Proof. Consider the case when xk is nonstationary, xk+1 6= xk, dk = x̄k − xk 6= 0, ∇f(xk) 6= 0.

When x̃k = xk −B−1
k ∇f(xk) ∈ X, x̃k = x̄k,

〈
∇f(xk), dk

〉
=
〈
∇f(xk), x̃k − xk

〉
=
〈
∇f(xk),−B−1

k ∇f(xk)
〉

= −‖∇f(xk)‖2
B−1
k

< 0, (5.134)

then dk is a feasible direction. Also xk + αkdk = xk + αk(x̃k − xk) ∈ X, since X is convex. Then, there

exists an update xk+1 ∈ X.

When x̃k = xk −B−1
k ∇f(xk) /∈ X, by Proposition 5.18

〈
x̃k − x̄k, xk − x̄k

〉
Bk
≤ 0, (5.135)〈

xk −B−1
k ∇f(xk)− x̄k, xk − x̄k

〉
Bk
≤ 0, (5.136)〈

∇f(xk), dk
〉

=
〈
B−1
k ∇f(xk), dk

〉
Bk
≤ −‖x̄k − xk‖2Bk < 0. (5.137)
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The last inequality holds since dk 6= 0, that means dk is a feasible direction. Also xk +αkdk = xk +αk(x̄k −

xk) ∈ X since x̄k ∈ X and X is convex. Then, there exists an update xk+1 ∈ X.

5.4.1 Proposed algorithm

Next, we discuss the scaled gradient projection method with inexact projection. Rewrite the constrained

optimization problem (5.66),

min
x
f(x), such that x ∈ X. (5.138)

By the same method in the gradient projection method, we construct an expanding set sequence {Xk} by

Definition 5.29 satisfying

X = lim
k→∞

Xk, Xk ⊂ Xk+1, Xk 6= Xk+1, (5.139)

where Xk is nonempty, closed, and convex for each k ∈ N.

As with the gradient projection method with inexact projection, we make an assumption for the projection

algorithm.

Assumption 5.39. Starting with z0 = x̃k, the projection function PBk,Xk(x̃k) generates a series of {zj}

which converges to PBk,Xk(x̃k) strongly.

Under above assumption, we define an inexact projection function which projects x̃k towards Xk in the

metric of HBk , denoted as P̄Bk,Xk(x̃k) = zj0 . Here j0 is the index of sequence {zj} in Assumption 5.39 such

that

zj0 ∈ Xk+1, (5.140)〈
x̃k − zj0 , xk − zj0

〉
Bk
≤ 0. (5.141)

Proposition 5.40. When xk is a nonstationary point, under Assumption 5.39, there exists an index j0 such

that zj0 in the converging sequence {zj} such that equation (5.140) and (5.141) are satisfied.

Proof. Similar to Proposition 5.32.

114



Xk

Xk+1

xk

x̃k = xk −B−1
k ∇f(xk)

x̄k = P̄Bk,Xk(x̃k)

xk+1 = xk + αk(x̄k − xk)

Figure 5.6: The scaled gradient projection method with inexact projection.

Similar to the scaled gradient projection method, at the k-th iteration, compute

x̃k = xk −B−1
k ∇f(xk), (5.142)

x̄k = P̄Bk,Xk(x̃k), (5.143)

xk+1 = xk + αk(x̄k − xk). (5.144)

Figure 5.6 illustrates the above process. The scaled gradient projection method with inexact projection can

be described as Algorithm 6.

Algorithm 6: Scaled gradient projection method with inexact projection
Initialization: Given feasible set X, construct set sequence {Xk} satisfies (5.139). Given the initial
point x0 ∈ X0.
while not convergent do

Step 1: Find a scaling matrix Bk, compute x̃k = xk −B−1
k ∇f(xk) ;

Step 2: Projecting x̃k towards Xk, until equation (5.140) and (5.141) are satisfied, denote
x̄k = P̄Bk,Xk(x̃k);
Step 3: Evaluate the line search stepsize with Armijo rule or Wolfe conditions, update with
xk+1 = xk + αk(x̄k − xk);
Step 4: Enlarge the feasible set Xk = Xk+1 with set expanding strategy, let k = k + 1.

end

5.4.2 Convergence analysis

Proposition 5.41. Algorithm 6 is a feasible direction method.

Proof. With the condition (5.141), the proof is exactly the same as Proposition 5.38.
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Assumption 5.42. The inexact projection function project x̃k close enough to its exact projection PBk,Xk(x̃k)

with

‖P̄Bk,Xk(x̃k)− PBk,Xk(x̃k)‖ ≤ d(Xk, Xk+1), (5.145)

here the d(Xk, Xk+1) is the (integrated) set distance between Xk and Xk+1.

The above assumption make sense since d(Xk, Xk+1) > 0 as Xk and Xk+1 are closed sets, Xk ⊂ Xk+1,

Xk 6= Xk+1, and by Assumption 5.39, the projection generating a sequence {zj} converges to PBk,Xk(x̃k)

strongly.

Theorem 5.43. Under Assumption 5.36, 5.39, and 5.42, let {xk} be the sequence generated by Algorithm

6. Then every limit point of {xk} is stationary.

Proof. Suppose there is a subsequence {xk}k∈K converges to a nonstationary point x0. By Proposition 5.28,

it is sufficient to show the update direction sequence dk = x̄k − xk as k ∈ K is gradient related, i.e.

lim sup
k→∞,k∈K

‖x̄k − xk‖ <∞, (5.146)

lim sup
k→∞,k∈K

〈
∇f(xk), x̄k − xk

〉
< 0. (5.147)

Denote x̃k = xk − B−1
k ∇f(xk), x̃ = x0 − B−1∇f(x0). By Assumption 5.36, Bk → B as k → ∞ The

objection function f is smooth, ∇f(xk) → ∇f(x0) and x̃k → x̃ as k → ∞. We can assume that there is a

compact subset Ω ⊂ Rn such that {x̃k} ⊂ Ω.

Recall that the inexact projection of x̃k is x̄k = P̄Bk,Xk(x̃k), consider the inequality,

‖P̄Bk,Xk(x̃k)− PB,X(x̃)‖ ≤ ‖P̄Bk,Xk(x̃k)− PBk,Xk(x̃k)‖+ ‖PBk,Xk(x̃k)− PB,Xk(x̃k)‖

+ ‖PB,Xk(x̃k)− PB,X(x̃k)‖+ ‖PB,X(x̃k)− PB,X(xk)‖.
(5.148)

By Proposition 5.18, PB,X is continuous, for all ε/4 > 0, there exists N1 ∈ N∞, such that ‖PB,X(x̃k)−

PB,X(x̃)‖ < ε/4.

Since Xk → X as k →∞, by Proposition 5.21, the scaled projection function sequence PB,Xk converges

uniformly to PB,X on all compact subsets of Rn. The uniform convergence holds on the set Ω. For the above
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ε/4 > 0, for all ρ1 > 0, there exists N2 ∈ N∞ such that

PB,Xk(x) ∩ ρ1B ⊂ PB,X(x) + ε/4B, (5.149)

PB,X(x) ∩ ρ1B ⊂ PB,Xk(x) + ε/4B, (5.150)

for all x ∈ Ω, when k ∈ N2. Then we have ‖PB,Xk(x̃k)− PB,X(x̃k)‖ ≤ ε/4.

By Assumption 5.36, Bk → B as k → ∞. Then the projection function sequence {PBk,Xk} converges

uniformly to PB,Xk on all compact subsets of Rn by Proposition 5.22. The uniform convergence holds on

the set Ω. For the above ε/4 > 0, for all ρ2 > 0, there exists N3 ∈ N∞ such that

PBk,Xk(x) ∩ ρ2B ⊂ PB,Xk(x) + ε/4B, (5.151)

PB,Xk(x) ∩ ρ2B ⊂ PBk,Xk(x) + ε/4B, (5.152)

for all x ∈ Ω, when k ∈ N3. Then we have ‖PBk,Xk(x̃k)− PB,Xk(x̃k)‖ ≤ ε/4.

SinceXk → X andXk, X are nonempty closed bounded, by Theorem 5.3, d(Xk, X)→ 0. By Assumption

5.42, for ε/8, there exists N4 ∈ N∞ such that when k, k + 1 ∈ N4,

‖P̄Bk,Xk(x̃k)− PBk,Xk(x̃k)‖ ≤ d(Xk, Xk+1) ≤ d(Xk, X) + d(X,Xk+1) < ε/4. (5.153)

Then for the above arbitrary ε > 0, there existsN = N1∩N2∩N3∩N4 such that ‖P̄Bk,Xk(x̃k)−PB,X(x̃)‖ <

ε as k ∈ N . Which means P̄Bk,Xk(x̃k)→ PB,X(x̃) as k →∞ and k ∈ K. Then

‖x̄k − xk‖ = ‖P̄Bk,Xk(x̃k)− xk‖ → ‖PB,X(x̃)− x0‖, k →∞, k ∈ K. (5.154)

Since PB,X(x̃) ∈ X and x0 ∈ X, then lim supk→∞,k∈K ‖x̄k − xk‖ <∞.

By inequality (5.141) and Assumption 5.36,

〈
x̃k − x̄k, xk − x̄k

〉
Bk
≤ 0, (5.155)〈

xk −B−1
k ∇f(xk)− x̄k, xk − x̄k

〉
Bk
≤ 0, (5.156)〈

∇f(xk), x̄k − xk
〉

=
〈
B−1
k ∇f(xk), x̄k − xk

〉
Bk
≤ ‖x̄k − xk‖2. (5.157)
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Taking the limit of the above equation, since x̄k = P̄Bk,Xk(x̃k) and P̄Bk,Xk(x̃k)→ PB,X(x̃),

lim sup
k→∞,k∈K

〈
∇f(xk), x̄k − xk

〉
≤ ‖PB,X(x̃)− x0‖2. (5.158)

Assume PB,X(x̃) = x0, by Proposition 5.18,

〈x̃− PB,X(x̃), x− PB,X(x̃)〉B ≤ 0, ∀x ∈ X, (5.159)〈
x0 −B−1∇f(x0)− PB,X(x̃), x− PB,X(x̃)

〉
B
≤ 0, ∀x ∈ X, (5.160)〈

B−1∇f(x0), x− x0

〉
B
≥ 0, ∀x ∈ X, (5.161)

〈∇f(x0), x− x0〉 ≥ 0, ∀x ∈ X, (5.162)

that means x0 is a stationary point, contradiction. Then,

lim sup
k→∞,k∈K

〈
∇f(xk), x̄k − xk

〉
< 0. (5.163)

5.4.3 Discussion on scaling matrix

One of the most popular Hessian approximations is the Limited-memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS) method. At the k-th iteration, denote the L-BFGS Hessian matrix by Bk and let Hk = B−1
k . The

information of xk and ∇f(xk) are stored for a small number m with,

sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk), (5.164)

ρk = 1/y
′

ksk, Vk = I − ρkyks
′

k. (5.165)

Then the L-BFGS Hessian inverse matrix can be written as:

Hk =
(
V
′

k−1 · · ·V
′

k−m

)
H

(0)
k (Vk−m · · ·Vk−1)

+ ρk−m

(
V
′

k−1 · · ·V
′

k−m+1

)
sk−ms

′

k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
V
′

k−1 · · ·V
′

k−m+2

)
sk−m+1s

′

k−m+1 (Vk−m+2 · · ·Vk−1)

...

+ ρk−1sk−1s
′

k−1.

(5.166)
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Both Bk and Hk are needed in our work. To efficiently store and evaluate matrix multiplication of Bk and

Hk, a compact form is proposed in [27],

Sk = [sk−m, · · · , sk−1], Yk = [yk−m, · · · , yk−1], (5.167)

(Rk)i,j =


(sk−m−1+i)

′
(yk−m−1+j), if i ≤ j,

0, otherwise,
(5.168)

Dk = diag(s
′

k−myk−m, · · · , s
′

k−1yk−1), (5.169)

(Uk)i,j =


(sk−m−1+i)

′
(yk−m−1+j), if i > j,

0, otherwise.
(5.170)

We write the Hk and Bk in a compact form.

Bk = σkI −
[
σkSk Yk

]σkS′kSk Uk

U
′

k −Dk


−1 σkS′k

Y
′

k

 , (5.171)

Hk = γkI +

[
Sk γkYk

](R
′

k)−1
(
Dk + γkY

′

kYk

)
R−1
k −(R

′

k)−1

−R−1
k 0


 S

′

k

γkY
′

k

 , (5.172)

where γk = y
′

k−1sk−1/y
′

k−1yk−1, σk = y
′

k−1sk−1/s
′

k−1sk−1.

Remark 5.44 ([99]). Under Wolfe conditions, both Bk and Hk remain positive definite.

The above remark guarantees that the L-BFGS Hessian approximation can be used in practice. However,

to the author’s best knowledge, there are no results to show that the L-BFGS Hessian approximation satisfies

Assumption 5.36. Relevant results can be found in [26, 84], which show that the Assumption 5.36 is not

satisfied for the BFGS Hessian approximation.
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Chapter 6

Scaled gradient projection method

with multiple constraints

In this chapter, we introduce the scaled gradient projection method with multiple constraints, then apply

the proposed method to the seismic inverse problem. First, we fix the notations. Let space H be the regular

Euclidean space with element in Rn, with the inner product 〈x, y〉 = x
′
y and the norm ‖x‖ =

√
x′x. Given

a symmetric positive definite matrix B, let the space HB be the scaled Euclidean space with the elements

in Rn, with inner product 〈x, y〉B = 〈Bx, y〉 and norm ‖x‖B =
√
〈Bx, y〉. When u ∈ Rn represents a

digital image, it can be considered as a two dimensional discrete matrix with Nx rows and Ny columns with

n = Nx × Ny pixels in total. In this case, u can be also dealt with as a vector in Rn. The above two

representations are equivalent with u(i−1)Nx+j = ui,j , for i = 1, · · · , Nx and j = 1, · · · , Ny.

Consider the constrained optimization problem:

min
x
f(x), such that x ∈ ∩iXi, (6.1)

where Xi is nonempty, closed, and convex for each i. The feasible set for the above optimization problem is

the intersection of Xi, which can describe the a priori information of the optimization problem. When f(x)

is nonconvex, the uniqueness properties of the optimization problem is not available. An equivalent problem

can be written as:

min
x
f(x) +

∑
i

λiRi(x), (6.2)

where Ri(x) is a regularization term and λi is the regularization parameter. Compared to problem (6.2):
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1. Problem (6.1) is flexible when different types of constraints are considered. The gradient and Hessian

evaluation of the objective is unchanged when the constraints are different.

2. The constraint set Xi provides a direct description of the solution, and the radius or shape of Xi can be

easily estimated. On the other hand, the regularization parameter λi provides an indirect description

of the problem, and the choice of λi might depends on the experience or multiple experiments.

We focus on the constrained optimization problem (6.1) to incorporate multiple a priori information by

constraint sets. The optimization scheme proposed in this chapter is a combination of the scaled gradient

projection method, the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) Hessian approxi-

mation, and the projection onto the intersection of convex sets algorithm developed in [44, 45]. The set

expanding strategy proposed in the previous chapter is used because the projection algorithm can only be

evaluated inexactly.

First, we discuss how to describe the a priori information as convex constraint sets. The constraint sets

with closed-form projection function are discussed in Section 6.1, and the constraint sets with subgradient

projection function are discussed in Section 6.2. In Section 6.3, we discuss the algorithms of projecting onto

the intersection of the above convex sets based on the work [44, 45]. The proposed algorithm is provided

in Section 6.4. The formulation of the proposed algorithm for the full waveform inversion (FWI) problem

is provided in Section 6.5. Furthermore, numerical examples of both cross-well and reflective waves are

provided at the end of the chapter.

6.1 Convex constraint sets with closed-form projection function

We discuss a kind of convex constraint sets named “simple set” which has the closed-form projection function.

In this case, the projection function can be evaluated efficiently and accurately. First, we discuss several

convex constraint sets, and each of the sets can describe the inverse problem with some kinds of a priori

information. Next, the projection functions of the above sets are given. In the end, we show how to build

the expanding sequence of convex constraint sets.

One of the most commonly used constraint sets in the constrained optimization problem the is box

constraint which provides the lower and upper bounds of the parameter. Given a, b ∈ R with a ≤ b, the box

constraint set is given as:

Xbox = {u ∈ Rn | a ≤ ui ≤ b, i = 1, · · · , n} . (6.3)
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For vector a, b ∈ Rn with ai ≤ bi for index i = 1, · · · , n, a more sophisticated box constraint set is given as

X̄box = {u ∈ Rn | ai ≤ ui ≤ bi, i = 1, · · · , n} . (6.4)

In this work we will focus on the box constraint in the simple form (6.3) to demonstrate the algorithm.

Given p ∈ Rn and κ ∈ R, the affine hyperplane is

Xplane = {u ∈ Rn | 〈u, p〉 = κ} . (6.5)

Since we are working on the two-dimensional images with all pixels are non-negative in this work, we can set

pi ≥ 0 for each index i = 1, · · · , n, and set κ > 0. In this case, it is reasonable to use the affine hyperplane

to represent the (weighted) average value of a certain area. In the same way, given η, κ ∈ R with η < κ,

p ∈ Rn with pi ≥ 0, for each index i = 1, · · · , n, we can have the affine hyperslab

Xslab = {u ∈ Rn | η ≤ 〈u, p〉 ≤ κ} . (6.6)

Notice, when η = −∞ or κ = ∞, the hyperslab is a half-space, which is a subset of Rn and divided by a

hyperplane. Sometimes we know the exact value of certain pixels in the image, and denote the index of these

values as an index set Isubspace. That is, for i ∈ Isubspace, we a priori know ui = ai. In this case, denote the

constraint set as a subspace

Xsubspace = {u ∈ Rn | ui = ai, i ∈ Isubspace} . (6.7)

Given u0 ∈ Rn and r > 0, the l2 ball with center u0 and radius r is

Xl2 = {u ∈ Rn | ‖u− u0‖ ≤ r} . (6.8)

Proposition 6.1. All the above subsets are convex.

Next, we give the closed-form projection function for the above convex constraint sets. The projection
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function of the box constraint set (6.3) is given by

Pbox(u)i =


a, if ui < a,

ui, if a ≤ ui ≤ b,

b, if b < ui,

or Pbox(u)i = max(a,min(ui, b)). (6.9)

The projection function of the affine hyperplane (6.5) is given by

Pplane(u) = u+
κ− 〈u, p〉
‖p‖2

p. (6.10)

The projection function of the affine hyperslab (6.6) is given by

Pslab(u) =


u+ κ−〈u,p〉

‖p‖2 p, if 〈u, p〉 > κ,

u, if η ≤ 〈u, p〉 ≤ κ,

u+ η−〈u,p〉
‖p‖2 p, if 〈u, p〉 < η.

(6.11)

The projection function of subspace (6.7) is given by

Psubspace(u)i =


ai, if i ∈ Isubspace,

ui, otherwise.
(6.12)

The projection function of l2 ball (6.8) is given by

Pl2(u) =


u0 + r u−u0

‖u−u0‖ , if ‖u− u0‖ > r,

u, otherwise.
(6.13)

A different notation U is used in the optimization problem to represent the feasible set for the PDE

constrained optimization problem. An expanding set sequence is needed for the proposed method, which

satisfies

Uad = lim
k→∞

Uk, Uk ⊂ Uk+1, Uk 6= Uk+1, (6.14)

where Uk is nonempty, closed, and convex. An adaptive strategy can be considered: if uk ∈ Uk, we set

Uk+1 = Uk. In this case, the constraint set Uk does not expand at the k + 1 iteration. We expand the
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constraint set Uk+1 such that Uk ⊂ Uk+1 otherwise. The adaptive strategy will be discussed in the following

sections. To represent this process in a more convenient way, another index h is used to describe the set

expanding process.

Next, we show how to build the expanding set sequence with the convex constraint sets we showed above.

Let ε > 0 be a threshold and η ∈ (0, 1) is a parameter to control the sequence of sets expanding speed. We

need the sequence is expanding as iteration goes on, but not expand to infinity large. In this case, define a

threshold function as

θ(h) =


0, if h = 0,∑h
i=1 η

iε, if h ≥ 1,

(6.15)

and

lim
h→∞

θ(h) =
η

1− η
ε, (6.16)

here h ∈ N is the index controlling the set expanding.

First, the box constraint set (6.3), given a, b ∈ R and a ≤ b, define

Uhbox = {u ∈ Rn | a− θ(h) ≤ ui ≤ b+ θ(h), i = 1, · · · , n} , h ∈ N. (6.17)

In this case, we have

U0
box = Xbox, (6.18)

Ubox = lim
h→∞

Uhbox =

{
u ∈ Rn

∣∣∣∣ a− η

1− η
ε ≤ ui ≤ b+

η

1− η
ε, i = 1, · · · , n

}
. (6.19)

For the affine hyperplane subset (6.5), define the sequence of hyperplane sets as

Uhplane = {u ∈ Rn | ‖u− Pplane(u)‖ ≤ θ(h)} , h ∈ N, (6.20)

then,

U0
plane = Xplane, (6.21)

Uplane = lim
h→∞

Uhplane =

{
u ∈ Rn

∣∣∣∣ ‖u− Pplane(u)‖ ≤ η

1− η
ε

}
. (6.22)
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For the affine hyperslab subset (6.6), define the sequence of hyperslab sets as

Uhslab = {u ∈ Rn | η − θ(h) ≤ 〈u, p〉 ≤ κ+ θ(h)} , h ∈ N, (6.23)

then,

U0
slab = Xslab, (6.24)

Uslab = lim
h→∞

Uhslab =

{
u ∈ Rn

∣∣∣∣ η − η

1− η
ε ≤ 〈u, p〉 ≤ κ+

η

1− η
ε

}
. (6.25)

For the subspace (6.7), define the sequence of subspaces as

Uhsubspace = {u ∈ Rn | ‖u− Psubspace(u)‖ ≤ θ(h)} , h ∈ N, (6.26)

then,

U0
subspace = Xsubspace, (6.27)

Usubspace = lim
h→∞

Uhsubspace =

{
u ∈ Rn

∣∣∣∣ ‖u− Psubspace(u)‖ ≤ η

1− η
ε

}
. (6.28)

For the l2 ball, define the sequence of l2 balls as

Uhl2 = {u ∈ Rn|‖u− u0‖ ≤ r + θ(h)}, h ∈ N, (6.29)

then,

U0
l2 = Xl2 , (6.30)

Ul2 = lim
h→∞

Uhl2 =

{
u ∈ Rn

∣∣∣∣ ‖u− u0‖ ≤ r +
η

1− η
ε

}
. (6.31)

Proposition 6.2. Every element in the above set sequences is closed and convex.

6.2 Convex constraint sets with subgradient projection

6.2.1 Subgradient projection

In this section, we focus on the total variation (TV) constraint and l1 ball constraint. Through the concept

of lower level set, the TV function and l1 function can be used to describe the convex constraint sets. The

125



closed-form projection function is not available for the TV constraint. To evaluate the projection efficiently,

the subgradient projection method is introduced.

Definition 6.3 (Lower level set). Given a continuous convex function f : Rn → R, the lower level set

function of f with a height τ ∈ R is given by

lev≤τf = {x ∈ Rn | f(x) ≤ τ} . (6.32)

Proposition 6.4. The lower level set (6.32) is convex and closed.

Before the discussion of the subgradient projection, we review the definition of subgradient and subdif-

ferential first. For more information, we refer to [115].

Definition 6.5 (Subgradient). Given a convex function f : Rn → R, a vector x∗ ∈ Rn is said to be a

subgradient of f at the point x if

f(z) ≥ f(x) + 〈x∗, z − x〉 , ∀z ∈ Rn. (6.33)

The equation (6.33) is also refer to as the subgradient inequality.

The set of all subgradients of f at x is called the subdifferential of f at x, and denoted as ∂f(x). The

subdifferential as a set-valued mapping and ∂f(x) is a closed convex set. In general, ∂f(x) may be empty or

it may consist of just one vector. If ∂f(x) is not empty, f is said to be subdifferentiable at x.

The next theorem provides the relation between subdifferentiability and differentiability.

Theorem 6.6 ([115] Theorem 25.1). Let f be a convex function, and let x be a point where f is finite. If f

is differentiable at x, then ∇f(x) is the unique subgradient of f at x, so that in particular

f(z) ≥ f(x) + 〈∇f(x), z − x〉 , ∀z ∈ Rn. (6.34)

Conversely, if f has a unique subgradient at x, then f is differentiable at x.

Denote C as a nonempty, closed, and convex subset in Rn and x is a vector in Rn. The projection

mapping of x onto set C is denoted as PC(x) in the previous chapter. When C is nonempty, closed, and

convex, the PC(x) is a single-valued mapping. Also, PC(x) can be described through the following inequality

〈x− PC(x), z − PC(x)〉 ≤ 0, ∀z ∈ C. (6.35)
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The projection of x onto C is equivalent to solving the following problem

min
z
‖z − x‖2, such that z ∈ C. (6.36)

This minimization problem usually leads to some iterative structure. For the convex subsets discussed in the

previous section, the projection of x onto C can be evaluated through a projection function in closed form

which is very efficient in most cases. But for some of the convex constraint sets, the closed-form projection

function is not always available. For the case when C is a lower level set of a continuous convex function f

and height τ , i.e.

C = lev≤τf = {x ∈ Rn | f(x) ≤ τ} , (6.37)

the subgradient projection is an economical way to approximate the projection.

Proposition 6.7. Given a continuous convex function f : Rn → R, vector x ∈ Rn and x /∈ C, and the

subgradient x∗ ∈ ∂f(x), the lower level set C is defined by equation (6.37). The half-space set

Hx = {z ∈ Rn | f(x) + 〈x∗, z − x〉 ≤ τ} . (6.38)

is an outer approximation of set C. Also, we have x /∈ Hx.

Proof. Suppose x0 ∈ C, since C is a lower level set with level set function f and height r, f(x0) ≤ τ . Then

by the subgradient inequality (6.33)

f(x) + 〈x∗, x0 − x〉 ≤ f(x0) ≤ τ, (6.39)

which means x0 ∈ Hx. On the other hand, suppose x0 /∈ Hx,

f(x) + 〈x∗, x0 − x〉 > τ, (6.40)

and by subgradient inequality (6.33), we have f(x0) > τ , which means x0 /∈ C.

Since

f(x) + 〈x∗, x− x〉 = f(x) > τ, (6.41)

then x /∈ Hx.
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C

x

Hx

Figure 6.1: Approximation of C with half-space Hx.

The outer approximation is demonstrated in Figure 6.1

As discussed in the previous section, the projection function onto half-space has a closed-form function

PHx(z) =


z + τ−f(x)−〈z−x,x∗〉

‖x∗‖2 x∗, if z /∈ Hx,

z, if z ∈ Hx.

(6.42)

By Proposition 6.7, if x /∈ C then x /∈ Hx. In this case, f(x) > τ , we can always have

PHx(x) = x+
τ − f(x)

‖x∗‖2
x∗. (6.43)

Next, we give the definition of subgradient projection

Definition 6.8 (Subgradient projection). Given a continuous convex function f : Rn → R, vector x ∈ Rn,

and the subgradient x∗ ∈ ∂f(x), the lower level set C is defined by equation (6.37). The subgradient projection

function which project x towards C is given by

P̃C(x) =


x+ τ−f(x)

‖x∗‖2 x
∗, if f(x) > τ,

x, if f(x) ≤ τ.
(6.44)

6.2.2 Total variation constraint

Since first introduced in the image denoising problem by Rudin, Osher, and Fatemi [118], the total varia-

tion regularization technique has been widely applied in image processing areas such as restoration [117],

segmentation [34], optical flow [24]. The total variation regularization technique is not only restricted in

the image processing area but also has been successfully applied in a wide variety of inverse problems such
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as computational tomography [24], magnetic resonance imaging [76], and electrical impedance tomography

[40, 63]. The total variation techniques are especially suitable for image processing and imaging problem

with sharp boundaries and block structures. For more application information, we refer to [35]. The total

variation technique are also applied successfully in the full waveform inversion problem [66, 67, 89, 4], it pro-

vides efficient results on reducing cycle-skipping issue [55] and improve the inverse result for the salt body

structure [140]. To incorporate with the total variation regularization, one of the most popular methods is

to take the TV norm as a penalty term and take advantage of the dual structure of the ROF model [33].

Other methods like the primal-dual hybrid gradient method [145] are also been proposed.

Consider a two-dimensional digital image u ∈ RNx×Ny with Nx rows and Ny columns, and n = Nx×Ny.

It is equivalent to consider u as a vector in Rn. We focus on the discrete version of the total variation norm

in this work. For more analytic results of total variation and bounded variation spaces, we refer to [6]. Define

the discrete gradient operator D : RNx×Ny → RNx×Ny×2 with

(Du)i,j,1 =


ui+1,j − ui,j , if 0 ≤ i < Nx,

0, if i = Nx,

(6.45)

(Du)i,j,2 =


ui,j+1 − ui,j , if 0 ≤ j < Ny,

0, if i = Ny.

(6.46)

Then the discrete total variation norm is given by the TV function fTV : Rn → R

fTV(u) = ‖u‖TV =

Nx∑
i=1

Ny∑
j=1

∣∣∣(Du)i,j

∣∣∣ . (6.47)

Proposition 6.9. The above discrete total variation function fTV : Rn → R is continuous and convex.

By the definition of lower level set, we can build a sequence of TV constraint sets with the TV function.

Recall the threshold function in the previous section, given ε > 0, η ∈ (0, 1), and an index h,

θ(h) =


0, if h = 0,∑h
i=1 η

iε, if h ≥ 1,

(6.48)

and

lim
h→∞

θ(h) =
η

1− η
ε, (6.49)
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Then given initial radius τTV, we can build a sequence of convex constraint sets as

UhTV = {u ∈ Rn | fTV(u) ≤ θ(h) + τTV} . (6.50)

In this case, we have

U0
TV = {u ∈ Rn | fTV(u) ≤ τTV} , (6.51)

UTV = lim
h→∞

UhTV =

{
u ∈ Rn

∣∣∣∣ fTV(u) ≤ η

1− η
ε+ τTV

}
. (6.52)

The subgradient projection function for the sequence of total variation constraint sets UhTV is

P̃UhTV
(u) =


u+ θ(h)+τTV−fTV(u)

‖u∗‖2 u∗, if fTV(u) > θ(h) + τTV,

u, if fTV(u) ≤ θ(h) + τTV.

(6.53)

Here u∗ ∈ ∂fTV(u) is a subgradient TV function fTV at point u. The computation formula of subgradient

u∗ is given by the following proposition.

Proposition 6.10. Let u ∈ RNx×Ny be a two dimensional image, the discrete total variation function fTV

is given by (6.47) with the discrete gradient operator in (6.45). Denote ei,j as the identity element of matrix

in RNx×Ny . Given the function

u∗ =
∑

(i,j)∈I1

(
(ui+1,j − ui,j)2

+ (ui,j+1 − ui,j)2
)−1/2

× ((ui+1,j − ui,j) ei+1,j − (ui+1,j − 2ui,j + ui,j+1) ei,j + (ui,j − ui,j+1) ei,j+1)

+
∑

(i,j)∈I2

sgn (uNx,j+1 − uNx,j) (eNx,j+1 − eNx,j)

+
∑

(i,j)∈I3

sgn
(
ui+1,Ny − ui,Ny

) (
ei+1,Ny − ei,Ny

)
,

(6.54)

where the index sets are given by

I1 = {(i, j) | ui,j 6= ui+1,j or ui,j 6= ui,j+1, 1 ≤ i < Nx, 1 ≤ j < Ny} , (6.55)

I2 = {(i, j) | uNx,j 6= uNx,j+1, 1 ≤ j < Ny} , (6.56)

I3 =
{

(i, j)
∣∣ ui,Ny 6= ui+1,Ny , 1 ≤ i < Nx

}
. (6.57)

Then u∗ ∈ ∂fTV(u), i.e. u∗ is a subgradient of fTV at u.
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Proof. By direct computation.

6.2.3 Increase the sparsity with l1 constraint

Consider u ∈ Rn is a signal or a digital image with Nx × Ny pixels, n = Nx × Ny. Let b ∈ Rm be

a measurement, given the measurement matrix A ∈ Rm×n denote b = Au as the encoding process and

u = A−1b is the decoding matrix. Suppose b is highly sparse, i.e. most of entries of b are zeros. Then the

decoding problem can be shown as

ū = arg min
u∈Rn

‖u‖0, such that Au = b, (6.58)

here ‖u‖0 is the “l0 norm” of u represents the number of nonzero entries in u. The problem (6.58) is a

combinatorial optimization problem and is impossible be solved when n is large for most real applications.

One way to overcome this issue is to replace the “l0 norm” by l1 norm as

ū = arg min
u∈Rn

‖u‖1, such that Au = b. (6.59)

This approach has been widely applied in the geophysical area [120] and later was popularized with the name

of basis pursuit by the work [37]. As A is a random sampling matrix, the relation between problem (6.58)

and (6.59) leads to the research area of compress sensing (CS). A rich theory has been developed for the CS

area, for more analytic results we refer to the seminal work [29, 30, 31] and survey paper [28]. We only focus

on the sparse structure of vector or image u, so we consider A is the identity matrix I in this work.

In most cases, a linear transformation is needed to achieve the sparsity structure of u. Denote the linear

transformation as a matrix Φ ∈ Rm×n, which can represents wavelet transform, curvelet transform, etc.

Suppose we have the a priori information of the model as it has the sparsity, then we can work on the term

‖Φu‖1 ≤ τl1 . When Φ = I, in this case we will focus on the l1 fidelity term ‖u‖1 ≤ τl1 .

Next, we discuss how to describe the sparsity a priori information with l1 ball as the convex constraint

set. Given a matrix Φ ∈ Rm×n, with Φ = [φ1, · · · , φm]′, here each φi, i = 1, · · · ,m is a n-dimensional row

vector represents some basis of Rn. Here Φ represents a linear transformation that maps the signal u to the

coefficient space Rm. Typical choices of Φ can be wavelet transform, or curvelet transform, etc. We define

the l1 function with linear operator Φ as

fl1(u) = ‖Φu‖1 =

m∑
i=1

|〈φi, u〉| =
m∑
i=1

∣∣∣∣∣∣
n∑
j=1

Φi,juj

∣∣∣∣∣∣ . (6.60)

131



Proposition 6.11. The above l1 function fl1 : Rn → R is continuous and convex.

By the definition of lower level set, we can build a sequence of l1 constraint sets with the l1 function.

Given initial radius τl1 , ε > 0, and η ∈ (0, 1)

Uhl1 = {u ∈ Rn | fl1(u) ≤ θ(h) + τl1} , (6.61)

in this case, we have

U0
l1 = {u ∈ Rn | fl1(u) ≤ τl1} , (6.62)

Ul1 = lim
h→∞

Uhl1 =

{
u ∈ Rn

∣∣∣∣ fl1(u) ≤ η

1− η
ε+ τl1

}
. (6.63)

The subgradient projection function for the l1 constraint set Uhl1 is

P̃Uhl1
(u) =


u+

θ(h)+τl1−fl1 (u)

‖u∗‖2 u∗, if fl1(u) > θ(h) + τl1 ,

u, if fl1(u) ≤ θ(h) + τl1 .

(6.64)

Here u∗ ∈ ∂fl1(u) is a subgradient of the l1 function fl1 at point u, and the computation formula of

subgradient u∗ is given by the following proposition.

Proposition 6.12. Given u ∈ Rn, and the linear operator Φ ∈ Rm×n with Φ = [φ1, · · · , φm]
′. The l1

function is given by (6.60), denote ei be the i-th identity element of vectors in Rn. Given the function

u∗ =

m∑
i=1

n∑
j=1

sgn (〈φi, u〉) Φi,jej , (6.65)

then u∗ ∈ ∂fl1(u), i.e. u∗ is a subgradient of fl1 at u.

Proof. By direct computation.

When the linear operator Φ = I, the l1 function fl1 is just the l1 norm of u

fl1(u) = ‖u‖1. (6.66)

Also we can build the sequence of constraint sets as

U0
l1 = {u ∈ Rn | ‖u‖1 ≤ τl1} , (6.67)
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then,

Uhl1 = {u ∈ Rn | ‖u‖1 ≤ θ(h) + τl1} , (6.68)

Ul1 = lim
h→∞

Uhl1 =

{
u ∈ Rn

∣∣∣∣ ‖u‖1 ≤ η

1− η
ε+ τl1

}
. (6.69)

The corresponding subgradient projection function to set Uhl1 is given by

P̃Uhl1
(u) =


u+

θ(h)+τl1−‖u‖1
‖u∗‖2 u∗, if ‖u‖1 > θ(h) + τl1 ,

u, if ‖u‖1 ≤ θ(h) + τl1 ,

(6.70)

where the vector u∗ is a subgradient of ‖u‖1. By Proposition 6.12, let

u∗ =

n∑
i=1

sgn(ui)ei, (6.71)

then u∗ ∈ ∂(‖u‖1).

6.3 Discussion on the projection algorithm

We developed the gradient projection methods with the set expanding strategy in the previous chapter. An

algorithm that projects a point towards the convex constraint set by generating a convergence sequence is

needed. Since our initial idea is incorporating multiple convex constraints into the optimization problem, the

projection methods onto the intersection of convex sets are needed. In this section, we discuss the projection

algorithm used in our work. We begin with an initial point x0 ∈ Rn, a family of nonempty, convex, and

closed sets Xi with the index set I = {1, · · · , Nc}. Suppose X = ∩i∈IXi is nonempty, the projection problem

is

find x̄ = arg min
x∈Rn

‖x− x0‖2, such that x ∈ X = ∩i∈IXi. (6.72)

6.3.1 Review of convex feasibility problem

Solving the convex feasibility problem is a part of the projection algorithm used in our work. Before the

discussion of the projection algorithm, we give a review of numerical methods for the convex feasibility
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problem based on the work [43]. The convex feasibility problem is given by

find x̄ ∈ X = ∩i∈IXi. (6.73)

A class of the most popular algorithms is the projections onto convex sets (POCS) method (or named

alternating projection method) [64, 80, 143]. Suppose there are Nc constraint sets. Denote Pi as the

projection function onto set Xi, for i ∈ I = {1, · · · , Nc}, the basic POCS generates a sequence {xk} with

periodic projections onto the sets

xk+1 = P(k mod Nc)+1(xk). (6.74)

Although the POCS method has a simple form, it suffers several shortcomings as slow convergence, only

processing one projection per iteration, the exact projection onto set Xi is needed, etc [43]. Improvements

have been made based on the basic POCS method, and new methods have been come up with such as the

simultaneous iterative reconstruction technique [61],

xk+1 =
1

Nc

∑
i∈I

Pi(x
k), (6.75)

and the parallel projection method [42],

xk+1 = xk + λk

(∑
i∈I

ωiPi(x
k)− xk

)
. (6.76)

Here λk is a relaxation parameter, and ωi is the weight parameter for each of the set Xi with
∑
i ωi = 1.

Another way to solve the projection problem is to work in the Nc-fold Cartesian product space. De-

note the Nc-fold Cartesian product space as H = HNc = (Rn)Nc , the inner product is given by 〈x,y〉 =∑
i∈I ωi 〈xi, yi〉, where ωi is the weight parameter mentioned above. Denote the product set as

X = X1 × · · · ×XNc = {x ∈ H | xi ∈ Xi, i ∈ I} , (6.77)

and

D = {x ∈ H | xi = xj , ∀i, j ∈ I} . (6.78)
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Then the convex feasibility problem (6.73) can be rewritten as

find x̄ ∈ X ∩D. (6.79)

The extrapolated parallel projection method [108, 43] is based on this construction as

xk+1 = xk + λk
(
PD ◦ PX(xk)− xk

)
. (6.80)

Further improvements focus on two aspects. First, since multiple projections are involved in each of the

iterations, a parallel computing structure for computing all projection at the same time is expected. The

problem happens when the workers (processors) in parallel computing is less than the number of sets Nc.

The method of parallel projections [47, 32] is developed for this issue as

xk+1 = xk + λk

(∑
i∈Ik

ωi,kPi(x
k)− xk

)
, (6.81)

where Ik ⊂ I. More convergence analysis results can be found in [100]. Second, only an approximate

projection like the subgradient projection can be evaluated for some of the sets. The generalization of

extrapolated parallel projection method [43] is developed for this issue,

xk+1 = xk + λk
(
PD ◦ PXk

(xk)− xk
)
, (6.82)

here Xk is a superset of X and xk /∈ Xk.

As a summary to the above numerical methods, the author of [43] developed the algorithm named

extrapolated method of parallel subgradient projections (EMOPSP),

xk+1 = xk + λk

(∑
i∈Ik

ωi,kPi(x
k)− xk

)
, (6.83)

here the weight parameter satisfies
∑
i∈Ik ωi,k = 1. For a more detailed review of the development of

projection algorithms please refer to [43]. A complete study of the algorithm for the convex feasibility

problem is given by [7].

6.3.2 Projection in scaled Euclidean space

Given a family of nonempty, convex, and closed sets Xi, i ∈ I, suppose X = ∩i∈IXi is nonempty. Given an

initial point x0 ∈ Rn, a sequence {xk} can be built with the basic POCS algorithm or the EMOPSP method
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that towards to X. However, it is not guaranteed that the sequence {xk} converges to point PX(x0), that is

the projection onto the intersection of convex sets. More sophisticated algorithm is needed for the projection

problem. In the work [105], the author suggest using the Dykstra’s projection algorithm to solve similar

problem.

In this work, we consider another projection algorithm based on the work [44, 45], which is compatible with

both closed-form projection and subgradient projection. In [44] the author provides an outer approximation

scheme in the Banach space setting to solve the projection algorithm. Then he proposed an adaptation of

the outer approximation scheme to the quadratic signal recovery problem, and also the parallel computing

structure is considered [45]. Later he applied the above algorithm for image restoration problem with total

variation constraint [46].

Our initial idea is to represent multiple a priori information as convex constraint sets and then proceed

with the optimization algorithm on the intersection of the constraint sets. Since only a finite number

of constraint sets is considered, and both exact projection with respect to “simple” sets and subgradient

projection are used. In this case, a simple version of the outer approximation algorithm in [44] can fulfill

our demand. As discussed in the previous chapter, the gradient projection methods are performed in both

Euclidean space and scaled Euclidean space. This means projection algorithms are needed for both cases.

The Euclidean space can be considered as a special case of scaled Euclidean space with letting B = I in

HB . Given an initial point x0 ∈ Rn, a family of nonempty, convex, and closed sets Xi with the index set

I = {1, · · · , Nc}, and X = ∩i∈IXi is nonempty. We focus on the following problem in this section, let

f(x) = ‖x− x0‖2B , (6.84)

the projection problem in HB is: given x0,

find x̄ = arg min
x∈Rn

f(x), such that x ∈ X = ∩i∈IXi. (6.85)

With the notations in the previous chapter, we can denote PB,X(x0) = x̄.

Next, we introduce the projection algorithm used in this work. For each convex set Xi, assign a corre-

sponding weight parameter ωi 6= 0 and
∑
i∈I ωi = 1. Then, the point x0 is projected onto the intersection of

X = ∩i∈IXi with an iterative process. Suppose at the k-th iteration, denote pi = PXi(x
k) when set Xi has

a closed-form projection function. When the set Xi is not simple and the subgradient projection is available,

the subgradient projection is used and denote pi = P̃Xi(x
k). Like the EMOPSP method, project the point
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xk towards X with

zk = xk + λkB
−1

(∑
i∈I

ωipi − xk
)
, (6.86)

where the relation parameter λk is given by

λk =


∑
i∈I ωi‖pi−x

k‖2

‖xk−
∑
i∈I ωipi‖B−1

, if xk /∈ X,

1/‖B−1‖, otherwise.
(6.87)

With the point x0, xk, and zk, two half-spaces can be constructed

Dk =
{
x ∈ Rn

∣∣ 〈x− xk,−∇f(xk)
〉
≤ 0
}

=
{
x ∈ Rn

∣∣ 〈x− xk, x0 − xk
〉
B
≤ 0
}
,

(6.88)

and

Hk =
{
x ∈ Rn

∣∣ 〈x− zk, xk − zk〉
B
≤ 0
}
. (6.89)

Then an outer approximation can be constructed as the intersection of the above two closed half-spaces

containing X [45]. The set Hk is named the surrogate half-space (or surrogate cut) [44]. For more discussion

on the outer approximation we refer to [44, 45]. The following definition gives the projection function onto

the intersection of the above half-spaces.

Definition 6.13 ([45], Definition 10). Given (u, v, w) ∈ (Rn)3 such that

A = {x ∈ Rn | 〈x− v, u− v〉B ≤ 0}∩

{x ∈ Rn | 〈x− w, v − w〉B ≤ 0} 6= ∅,
(6.90)

Denote QB(u, v, w) as the projection of u onto A in HB, i.e., QB(u, v, w) = PB,A(u).

The following lemma shows how to evaluate PB,Ak(x0).

Lemma 6.14 ([45], Lemma 11, [44], eq (6.9)). Set πk =
〈
x0 − xk, xk − zk

〉
B
, µk = ‖x0 − xk‖2B, νk =

‖xk − zk‖2B, and ρk = µkνk − π2
k. Then

QB(x0, xk, zk) =


zk, if ρk = 0 and πk ≥ 0,

x0 +
(

1 + πk
νk

) (
zk − xk

)
, if ρk > 0 and πkνk ≥ ρk,

xk + νk
ρk

(
πk(x0 − xk) + µk(zk − xk)

)
, if ρk > 0 and πkνk < ρk.

(6.91)
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Notice that, on each of the iteration, the projection process by EMOPSP is to find a closer point zk

between xk and set X. The projection process is actually done by the above lemma which projects the

initial point x0 onto the outer approximation Ak = Dk ∩ Hk of X iteratively. Algorithm 7 is used in our

proposed optimization scheme, that is a simplified version of Algorithm 14 in [45], with the name of surrogate

constraint splitting algorithm.

Algorithm 7: Projection algorithm 1
Initialization: a family of nonempty convex closed set Xi, i ∈ I, initial point x0, weight parameter
ωi 6= 0, i ∈ I with

∑
i∈I ωi = 1.

At the k-th iteration:
while Not converge do

Step 1: compute the projection of xk onto each of Xi with:

pi =

{
PXi(x

k), if Xi is simple,
P̃Xi(x

k), if Xi is not simple and have subgradient projection.
(6.92)

Step 2: set zk = xk + λkB
−1
(∑

i∈I ωipi − xk
)
, where λk is given by equation (6.87).

Step 3: update xk+1 = QB(x0, xk, zk) with equation (6.91).
end

Theorem 6.15 ([45], Theorem 16). Every sequence {xk} generated by Algorithm 7 converges strongly to the

solution x̄ of the projection problem (6.85).

Proof. Algorithm 7 is a simplified case of Algorithm 14 in [45], and it is easy to verify all assumptions in

Assumption 15 which in [45] is satisfied. The above theorem is a restate of Theorem 16 in [45].

Observe that multiple evaluations of the matrix-vector multiplications with respect to B and B−1 are

needed in equation (6.87), (6.91), and the step 2 of Algorithm 7. Algorithm 7 can be reorganized such that

only one matrix-vector multiplication of B and B−1 are needed for each iteration. The reorganization has

been discussed in the work [45], we restate it as Algorithm 8 for completeness. The stopping criteria are

discussed in the next section for both algorithms.

6.4 Scaled gradient projection method with multiple constraints

In this section, we introduce the proposed algorithm which is a combination of the scaled gradient projection

method in the previous chapter, the projection method in the previous section, and the L-BFGS Hessian

approximation.

First, we state the problem. Denote the nonlinear objective function as f : Rn → R which is smooth

and bounded from below, and f can be a nonconvex function. Given a family of constraint sets Ui and an
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Algorithm 8: Projection algorithm 2
Initialization: a family of nonempty convex closed set Xi, i ∈ I, initial point x0, weight parameter
ωi 6= 0, i ∈ I with

∑
i∈I ωi = 1.

At the k-th iteration:
while Not converge do

Step 1: compute the projection of xk onto each of Xi with:

pi =

{
PXi(x

k), if Xi is simple,
P̃Xi(x

k), if Xi is not simple and have subgradient projection.
(6.93)

Step 2: set v =
∑
i∈I ωiai with ai = pi − xk.

Step 3: set λ =
∑
i∈I ωi‖ai‖2. If λ = 0, set xk+1 = xk, break; otherwise set

b = x0 − xk, c = Bb, d = B−1v, λ =
λ

〈d, v〉
. (6.94)

Step 4: set d = λd, then compute

π = −〈c, d〉 , µ = 〈b, c〉 , ν = λ 〈d, v〉 , ρ = µν − π2. (6.95)

Step 5: update with

xk+1 =


xk + d, if ρ = 0 and π ≥ 0,

x0 +
(
1 + π

ν

)
d, if ρ > 0 and πν ≥ ρ,

xk + ν
ρ (πb+ µd) , if ρ > 0 and πν < ρ.

(6.96)

end

index set I = {1, · · · , Nc}, Ui is nonempty, convex, and closed for each of index i ∈ I. Let the feasible set

Uad = ∩i∈IUi be nonempty, the optimization problem is given as

min
u∈Rn

f(u), such that u ∈ Uad = ∩i∈IUi. (6.97)

We are going to implement the scaled gradient projection method to solve the above problem (6.97). The

second order Taylor approximation of objection function at the k-th iteration is

fk(u) =
〈
∇f(uk), u− uk

〉
+

1

2

〈
Bk(u− uk), u− uk

〉
, (6.98)

where Bk is the Hessian approximation for the k-th iteration which is a symmetric positive definite matrix.

Then the scaled gradient projection method at k-th iteration can be written as

ūk = arg min
u∈Uad

fk(u), (6.99)

uk+1 = uk + αk(ūk − uk). (6.100)
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Here αk is the line search parameter achieved with Armijo rule or Wolfe conditions. As discussed in the

previous chapter, the scaled gradient projection method is equivalent to

ũk = uk −Bk∇f(uk), (6.101)

ūk = PBk,Uad(ũk), (6.102)

uk+1 = uk + αk(ūk − uk). (6.103)

Notice that the subproblem (6.102) is equivalent to the projection problem (6.85) in the previous section.

Our goal is to implement Algorithm 7 and 8 to the subproblem (6.102) in the scaled gradient projection

method. Three problems arise:

1. Algorithm 7 and 8 projects ũk to PBk,Uad(ũk) by generating a converging sequence {zj}, with limj→∞ zj =

PBk,Uad(ũk). Then the projection process is actually an inexact projection and the projection result is

an approximation of PBk,Uad(ũk), denoted as P̄Bk,Uad(ũk). In this case P̄Bk,Uad(ũk) might not in the

feasible set Uad.

2. We need to choose a stopping criteria for projection Algorithm 7 and 8.

3. Since the multiplications between matrix Bk, B
−1
k and vectors are evaluated at every iteration of

Algorithm 7 and 8, an efficient Hessian approximation is needed.

To solve the first problem, the set expanding strategy is introduced to the scaled gradient projection

method in the previous chapter. There are two strategies to design the expanding set sequence:

1. Given the constraint set Ui, start with the initial constraint set U0
i = Ui, design

Ũi = lim
k→∞

Uki , Uki ⊂ Uk+1
i , Uki 6= Uk+1

i , (6.104)

where Uki is nonempty, closed, and convex. In this case, Ũi is larger than the initial constraint set U0
i .

Denote Ukad = ∩i∈IUki , then

Ũad = lim
k→∞

Ukad, Ukad ⊂ Uk+1
ad , Ukad 6= Uk+1

ad . (6.105)

In this case, the final constraint set Ũad is larger than the constraint set Uad in problem (6.97). It is

acceptable when Ũad does not extend too much compared to Uad in practice.
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2. Start with a smaller initial constraint set U0
i ⊂ Ui, design

Ui = lim
k→∞

Uki , Uki ⊂ Uk+1
i , Uki 6= Uk+1

i , (6.106)

where Uki is nonempty, closed, and convex. Denote Ukad = ∩i∈IUki , then

Uad = lim
k→∞

Ukad, Ukad ⊂ Uk+1
ad , Ukad 6= Uk+1

ad . (6.107)

In this case, the final constraint set Uad is the same as the constraint set in problem (6.97).

The construction of different set sequence is introduced in the previous sections.

Next, we describe the stopping criteria of Algorithm 7 and 8. Since the projection algorithms are

generating a convergence sequence {zj} converges to PBk,Uadh
(ũk). Denote the inexact projection operator

as P̃Bk,Uhad(ũk) = zj0 for some index j0 ∈ N. With the discussion in the previous chapter, the stopping

criteria of Algorithm 7 and 8 is given by

zj0 ∈ Uk+1
ad , (6.108)〈

ũk − zj0 , uk − zj0
〉
Bk
≤ 0. (6.109)

For the last problem, the L-BFGS quasi-Newton approximation of Hessian matrix is applied. Denote

Hk = B−1
k , we rewrite the L-BFGS approximation in the compact form for completeness. Denote

sk = uk+1 − uk, yk = ∇f(uk+1)−∇f(uk). (6.110)

The L-BFGS approximation of Hessian approximation and inverse Hessian are

Bk = σkI −
[
σkSk Yk

]σkS′kSk Uk

U
′

k −Dk


−1 σkS′k

Y
′

k

 , (6.111)

Hk = γkI +

[
Sk γkYk

](R
′

k)−1
(
Dk + γkY

′

kYk

)
R−1
k −(R

′

k)−1

−R−1
k 0


 S

′

k

γkY
′

k

 , (6.112)
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where γk = y
′

k−1sk−1/y
′

k−1yk−1, σk = y
′

k−1sk−1/s
′

k−1sk−1. The coefficients are given by

Sk = [sk−m, · · · , sk−1], Yk = [yk−m, · · · , yk−1],

(Rk)i,j =


(sk−m−1+i)

′
(yk−m−1+j), if i ≤ j,

0, otherwise,

Dk = diag(s
′

k−myk−m, · · · , s
′

k−1yk−1),

(Uk)i,j =


(sk−m−1+i)

′
(yk−m−1+j), if i > j,

0, otherwise.

(6.113)

With the above discussion, the scaled gradient projection with multiple constraints algorithm is given by

the following algorithm.

Algorithm 9: Scaled gradient projection method with multiple constraints
Given: the objective function f and initial value u0; a family of nonempty, closed, convex constraint
sets Ui, for i ∈ I = {1, · · · , Nc},
Construct: for each Ui construct an increasing set sequence {U ji }j∈N; set U0

ad = ∩i∈IU0
i .

while Not converge do
At k-th iteration:
Step 1: Compute ∇f(uk).
Step 2: Update sk and yk with equation (6.110), Sk, Yk, Rk, Uk with equation (6.113).
Step 3: Compute ũk = uk −Hk∇f(uk) with equation (6.112).
Step 4: Compute ūk = PBk,Ukad(ũk), i.e., project ũk to Ukad in HBk with Algorithm 8, until the
stopping criteria equation (6.108) (6.109) are satisfied. The multiplication between Bk, Hk and
vectors are evaluated with equation (6.111) and (6.112).
Step 5: Update uk+1 = uk + αk(ūk − uk), here αk is the line search parameter achieved with the
Wolfe conditions.
Step 6: Construct Uk+1

ad = ∩i∈IUk+1
i , set k = k + 1.

end

Sometimes we do not expect the constraint set sequence to expand too fast, an adaptively expanding

sequence of constraint sets can be designed. An independent index hi ∈ N is used corresponding to each of

the constraint set Ui as

Ui = lim
hi→∞

Uhii , Uhii ⊂ U
hi+1
i , Uhii 6= Uhi+1

i , (6.114)

where Uhii is nonempty, closed, and convex. At the k-th iteration, suppose Uki = Uhii , if uk+1 ∈ Uki , set

Uk+1
i = Uhii , that means the i-th constraint set is not expanding at the (k + 1)-th iteration. Otherwise, set

Uk+1
i = Uhi+1

i . The adaptive algorithm is given by the following algorithm.
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Algorithm 10: Scaled gradient projection method with multiple constraints and adaptive set ex-
panding strategy
Given: the objective function f and initial value u0; a family of nonempty, closed, convex constraint
sets Ui, for i ∈ I = {1, · · · , Nc},
Construct: for each Ui construct an increasing set sequence {Uhii }hi∈N; set U0

ad = ∩i∈IU0
i .

while Not converge do
At k-th iteration:
Step 1: Compute ∇f(uk).
Step 2: Update sk and yk with equation (6.110), Sk, Yk, Rk, Uk with equation (6.113).
Step 3: Compute ũk = uk −Hk∇f(uk) with equation (6.112).
Step 4: Compute ūk = PBk,Ukad(ũk), i.e., project ũk to Ukad in HBk with Algorithm 8, until the
stopping criteria equation (6.108) (6.109) are satisfied. The multiplication between Bk, Hk and
vectors are evaluated with equation (6.111) and (6.112).
Step 5: Update uk+1 = uk + αk(ūk − uk), here αk is the line search parameter achieved with the
Wolfe conditions.
Step 6: For each i ∈ I, update the constraint sets: if uk+1 ∈ Uki , then set Uk+1

i = Uhii ; otherwise,
set Uk+1

i = Uhi+1
i , hi = hi + 1.

Step 7: Construct Uk+1
ad = ∩i∈IUk+1

i , set k = k + 1.
end

6.5 Applications with full waveform inversion problem

We are working on the full waveform inversion problem in discrete sense.

min
y1,··· ,yNs∈Y,u∈Uad

J(y1, · · · , yNs , u) =

Ns∑
s=1

1

2
‖Qys − yd,s‖2, (6.115)

such that es(ys, u) = 0, s = 1, · · · , Ns. (6.116)

Here Y is the wavefield space and Uad ⊂ U = Rn is the feasible set. We have Ns sources in this model, and

each index s is corresponding to a wave equation which is written in a compact form as es(y, u) = 0. Here

Q is the observation operator recording the corresponding wavefield ys.

Multiple constraint sets are provided to improve the inverse result. In this case, the constrained opti-

mization problem is processed in the intersection of several constraint sets:

Uad = ∩Nci=1Ui, (6.117)

where Ui ⊂ Rn is nonempty, closed, and convex. From the discussion in Chapter 2, the full waveform

inversion problem has a reduced form

min
u∈Uad

f(u) = min
u∈Uad

J(y1(u), · · · , yNs(u), u). (6.118)
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Rewrite the reduced full waveform inversion problem in the abstract form:

min
u
f(u), such that u ∈ Uad = ∩Nci=1Ui. (6.119)

Then, the proposed Algorithm 10 in the previous section can be applied to solve the reduced form FWI

problem. The following numerical examples are the applications of the proposed algorithm. The cross-well

examples are provided in Example 1 and Example 2, and the reflection seismic experiment is provided in

Example 3.

6.5.1 Example 1: Cross-well model 1

A cross-well model is studied in this example as shown in Figure 6.2 (a), denoted as utrue. The initial velocity

model is shown in Figure 6.2 (b). There are 6 equally spaced sources in the left boundary of the domain,

and there are 51 equally spaced receivers in the right boundary of the domain. The model size is 1 km by 1

km and is discretized with size 101× 101. A finite difference scheme is used to solve the wave equation with

spatial step size 0.01 km and temporal step size 0.0005 s. The perfectly matched layer technique is used to

simulate the wave propagation in a boundary-free domain. The source is a Ricker wavelet with 5 Hz peak

frequency.

Three constraints are considered: box constraint, total variation constraint, and hyperplane constraint.

When box constraint is used for the FWI problem, the first set expanding strategy given by equation (6.104)

and (6.105) is used. The reason is: the inaccurate lower bound of the velocity model leads to an inaccurate

Born approximation. The sequence of box constraint sets is given by

Uh1 = {u ∈ Rn | 1− θ1(h) ≤ ui ≤ 1.2 + θ1(h), i = 1, · · · , n} , (6.120)

where θ1(h) =


0, if h = 0,∑h
i=1 0.001× 0.9i, otherwise.

(6.121)

The sequence of total variation constraint sets is given by

Uh2 = {u ∈ Rn | fTV(u) ≤ 24 + θ2(h)} , (6.122)

where θ2(h) =


0, if h = 0,∑h
i=1 0.24× 0.9i, otherwise.

(6.123)

Here the TV function fTV is given in equation (6.47). The sequence of the first hyperplane constraint sets
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(a) True velocity model (km/s)
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(b) Initial velocity model (km/s)
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(c) Hyperplane p1

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
Width (km)

0.0

0.2

0.4

0.6

0.8

1.0
De

pt
h 

(k
m

)

(d) Hyperplane p2
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Figure 6.2: (a): True velocity model. (b): Initial velocity model used in the FWI problem. (c): The
hyperplane p1. (d): The hyperplane p2.

is given by

Uh3 = {u ∈ Rn | ‖u− P1(u)‖ ≤ θ3(h) + 0.01} , (6.124)

where P1(u) = u+
〈utrue, p1〉 − 〈u, p1〉

‖p1‖2
p1, (6.125)

θ3(h) =


0, if h = 0,∑h
i=1 0.01× 0.9i, otherwise.

(6.126)

The sequence of the second hyperplane constraint set is given by

Uh4 = {u ∈ Rn | ‖u− P2(u)‖ ≤ θ4(h) + 0.01} , (6.127)

where P2(u) = u+
〈utrue, p2〉 − 〈u, p2〉

‖p2‖2
p2, (6.128)

θ4(h) =


0, if h = 0,∑h
i=1 0.01× 0.9i, otherwise.

(6.129)

The vector p1, p2 ∈ Rn are shown in Figure 6.2 (c) and (d). The hyperplane constraints used here are
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(a) L-BFGS result
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(b) Box constraint
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(c) Box and TV constraint
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(d) Box, TV and hyperplane constraint
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Figure 6.3: (a): Unconstrained result. (b): Inverse result with box constraint. (c): Inverse result with box
and total variation constraint. (d): Inverse result with box, total variation and hyperplane constraint.

providing the average value information of the two areas near the left boundary of the velocity perturbation.

In this case, an inverse result with a sharp left boundary can be expected.

The inverse results are shown in Figure 6.3. For the unconstrained result in subfigure (a), the L-BFGS

algorithm is performed with 20 iterations. The proposed Algorithm 10 is performed with 20 iterations for

the results in subfigures (b), (c), and (d). Subfigure (b) provides the inverse result with only box constraint

sequence {Uh1 } with the index set I = {1} and weight parameter ω1 = 1. The inverse result in subfigure

(b) provides a more accurate velocity value than the result in subfigure (a). Subfigure (c) provides the

inverse result with box and total variation constraint sequences, with the index set I = {1, 2} and the weight

parameter ω1 = ω2 = 1/2. Compared with the result in subfigure (b), the inverse result in subfigure (c)

provides a homogeneous velocity anomaly that is closed to the true model, and the faulty structure outside

the anomaly is not significant. The inverse result with all four constraint sequence of sets is provided in

subfigure (d), with the index set I = {1, 2, 3, 4} and the weight parameter ω1 = ω2 = ω3 = ω4 = 1/4. A

sharp left boundary of the velocity anomaly is revealed because of the hyperplane constraints. For most of

the inner projection process, the number of iterations ranging from hundreds to thousands. Compared with

the computation cost of the PDE solver and the evaluation of gradient through the adjoint state method,
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(b) Initial velocity model (km/s)
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Figure 6.4: (a): True velocity model. (b): Initial velocity model.

the iterative projection process does not increase the overall computation time significantly.

All the constraints play a role in improving the inverse result compared with the unconstrained case.

Although the result of hyperplane constraints is artificial, a sharp left boundary of the velocity perturbation

is revealed. This provides a way to improve the local inverse results with accurate a priori information. This

example shows that the proposed method can handle multiple constraints at the same time. With more

information provided for the optimization algorithm, a more accurate image can be achieved.

6.5.2 Example 2: Cross-well model 2

In this example, we incorporate the l1 constraint with the proposed method, a cross-well model similar to

Example 1 is provided. The true velocity model and the initial velocity model are shown in Figure 6.4 (a)

and (b). We use the initial velocity model as the reference model in the l1 fidelity constraint sets, denoted

as uref. The acquisition is the same as in Example 1.

Next, we denote the sequences of constraint sets, the first set expanding strategy given by equation

(6.104) and (6.105) is used. The sequence of box constraint sets is given by

Uh1 = {u ∈ Rn | 1− θ1(h) ≤ ui ≤ 1.2 + θ1(h), i = 1, · · · , n} , (6.130)

where θ1(h) =


0, if h = 0,∑h
i=1 0.001× 0.9i, otherwise.

(6.131)
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(a) L-BFGS result

1.00

1.05

1.10

1.15

1.20

0.0 0.5 1.0
Width (km)

0.0

0.2

0.4

0.6

0.8

1.0

De
pt

h 
(k

m
)

(b) Box constraint
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(c) Box and TV constraint
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(d) Box, TV and l1 constraint
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Figure 6.5: (a): Unconstrained result. (b): Inverse result with box constraint. (c): Inverse result with box
and total variation constraint. (d): Inverse result with box, total variation and l1 constraint.

The sequence of total variation constraint sets is given by

Uh2 = {u ∈ Rn | fTV(u) ≤ 39.5 + θ2(h)} , (6.132)

where θ2(h) =


0, if h = 0,∑h
i=1 0.395× 0.9i, otherwise.

(6.133)

The sequence of l1 constraint set is given by

Uh3 = {u ∈ Rn | ‖u− uref‖1 ≤ 128 + θ3(h)} , (6.134)

where θ3(h) =


0, if h = 0,∑h
i=1 1.28× 0.9i, otherwise.

(6.135)

Numerical results are shown in Figure 6.5. For the unconstrained case, the L-BFGS algorithm is per-

formed 20 iterations and the result is shown in subfigure (a). The proposed Algorithm 10 is performed with

20 iterations for the results in subfigures (b), (c), and (d). Subfigure (b) provides the inverse result with only
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Figure 6.6: (a): True velocity model. (b): Initial velocity model.

the sequence of box constraint, with the index set I = {1} and weight parameter ω1 = 1. Compared with

the inverse result in subfigure (a), the result in subfigure (b) provides a more accurate velocity value and

a clearer boundary. Subfigure (c) provides the inverse result with the sequence of box and total variation

constraint, with the index set I = {1, 2} and weight parameter ω1 = ω2 = 1/2. The velocity anomalies in

subfigure (c) have more homogeneous structure compared with the results in subfigures (a) and (b). The

inverse result with all three sequences of constraints is shown in subfigure (d), with the index set I = {1, 2, 3}

and weight parameter ω1 = ω2 = ω3 = 1/3. The faulty structure outside the velocity anomalies is not sig-

nificant compared with the previous results, and the boundaries of the anomalies are clearly recovered. For

the inner projection process, the number of iterations ranging from hundreds to thousands, and the iterative

projection process does not increase the overall computation time significantly. Compared with different

inverse results, both total variation constraint and l1 constraint play an important role in providing a better

inverse result.

6.5.3 Example 3: Overthrust model

A more realistic velocity model is provided in this example as shown in Figure 6.6 (a) that is a part of the

Overthrust model. And the initial velocity model is shown in Figure 6.6 (b). Since the horizontal layer

structure is prominent in the Overthrust model, it is reasonable to describe the true model as piece-wise
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constant layers, and that corresponds to the total variation constraint. With 3.8 km depth and 12.55 km

width, the model is discretizde into 76 × 251 points. There are 10 equally spaced sources and 126 equally

spaced receivers on the top of the model. The finite difference method is used for the constraint equation,

with spatial step size 0.05 km, and temporal step size 0.004 s. The perfectly matched layer technique is used

to simulate the seismic wave propagating in a free domain. The 5 Hz Ricker wavelet is used for each of the

sources.

In this example, we compare the inverse results with the different size of the constraints. The first set

expanding strategy given by equation (6.104) and (6.105) is used. First, we fix the box constraint as

Uh1 = {u ∈ Rn | 2.5588− θ1(h) ≤ ui ≤ 6 + θ1(h), i = 1, · · · , n} , (6.136)

where θ1(h) =


0, if h = 0,∑h
i=1 0.02× 0.9i, otherwise.

(6.137)

Then we define three total variation constraint sequences with different radius

Uh2 = {u ∈ Rn | fTV(u) ≤ 1200 + θ2(h)} , (6.138)

where θ2(h) =


0, if h = 0,∑h
i=1 60× 0.9i, otherwise.

(6.139)

Uh3 = {u ∈ Rn | fTV(u) ≤ 1000 + θ3(h)} , (6.140)

where θ3(h) =


0, if h = 0,∑h
i=1 50× 0.9i, otherwise.

(6.141)

Uh4 = {u ∈ Rn | fTV(u) ≤ 800 + θ4(h)} , (6.142)

where θ4(h) =


0, if h = 0,∑h
i=1 40× 0.9i, otherwise.

(6.143)

There are 50 iterations performed for each of the following examples and the inverse results are shown

in Figure 6.7. The unconstrained result with L-BFGS method is shown in subfigure (a). The proposed

Algorithm 10 is performed for the case of subfigures (b), (c), and (d), and both box constraint and total
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variation constraint are performed. For subfigure (b), the constraint sequence set index is I = {1, 2}, with

weight parameter ω1 = ω2 = 1/2. For subfigure (c), the constraint sequence set index is I = {1, 3}, with

weight parameter ω1 = ω3 = 1/2. For subfigure (d), the constraint sequence set index is I = {1, 4}, with

weight parameter ω1 = ω4 = 1/2. For the inner projection process, the number of iterations ranged from

hundreds to thousands, and the iterative projection process does not increase the overall computation time

significantly. The total variation constraint is introduced to the inverse problem such that the piece-wise

constant structure in the inverse result is expected. The inverse results in Figure 6.7 show that, as the total

variation constraint radius is larger, the inverse result is closer to the unconstrained case. This example

shows that the proposed method can control the inverse result by changing the radius of the sequence of

constraint sets.

6.5.4 Discussion

The optimization scheme scaled gradient projection method with multiple constraints is provided in this

work. The proposed scheme is a combination of scaled gradient projection method with inexact projection,

L-BFGS Hessian approximation, and the iterative projection method proposed by [44, 45]. When the a

priori information can be represented as convex constraint sets with closed-form projection or subgradient

projection, it can be incorporated into the inverse problem with the proposed scheme. In this case, multiple

a priori information of the inverse problem can be incorporated at the same time to provide a more accurate

inverse result. Since the projection process in this scheme is closed-form projection or subgradient projection,

and the L-BFGS Hessian approximation is used, the optimization scheme can be efficiently implemented

similar to the L-BFGS method for the unconstrained optimization problem.

The full waveform inversion numerical examples provided in this work show that the a priori information

of the problem indeed makes a difference compared to the unconstrained case. And the proposed optimization

scheme is efficient and flexible to incorporate multiple a priori information to the problem. The box constraint

is one of the most commonly used constraints for the PDE constrained optimization problem, and it provides

accurate lower and upper bounds of the parameter. The hyperplane constraint can be used to provide the

average value of certain areas. The total variation constraint is useful for providing a piece-wise constant

structure of the inverse result, and a more homogeneous velocity anomaly can be achieved. The l1 constraint

can be used to enhance the sparsity of the inverse result. As shown with the numerical examples, the size of

the constraint sets can control the inverse result, and it should be set based on the a priori information of

the true model or the problem.
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(b) TV constraint with radius 1200
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(c) TV constraint with radius 1000
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Figure 6.7: (a): Unconstrained result. (b): The inverse result with box constraint and total variation
constraint with radius 1200. (c): The inverse result with box constraint and total variation constraint with
radius 1000. (d): The inverse result with box constraint and total variation constraint with radius 800.
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Chapter 7

Conclusions and future studies

7.1 Conclusions

As discussed in Chapter 1 and Chapter 2, the full waveform inversion (FWI) is a promising and powerful

technique for the seismic inverse problem. However, how to achieve an accurate inverse result that is close

to the true model is still a challenging task. In this dissertation, we focus on developing the optimization

schemes for the FWI problem which can improve the inverse result. This study contains two parts, applying

the optimal transport based distance to the FWI problem, and developing the optimization scheme which

can incorporate multiple a priori information to the inverse problem.

In Chapter 4, the unbalanced optimal transport (UOT) distance is introduced to the objective function

as the metric in the FWI problem. Also, a mixed L1/Wasserstein distance is constructed to overcome

the mass equality limitation for the optimal transport distance, and the convex properties with respect

to shift, dilation, and amplitude change are proved for the proposed distance. Then the proposed mixed

distance is also introduced to the FWI problem. Both the value and gradient of the UOT distance and the

proposed mixed distance can be evaluated efficiently through the entropy regularization approach of optimal

transport problem. The computation methods of the adjoint source with the UOT distance and the mixed

L1/Wasserstein distance are also provided. Numerical examples show that compared to the conventional

L2 distance, the optimal transport based distance can mitigate the cycle-skipping issue and reduce the

non-convexity of the objective function.

Starting with the argument that the more a priori information are known to the model, the better inverse

result can be achieved, we suggest transforming the a priori information of the model into convex constraint

sets. Then the inverse problem is formulated as a constrained optimization problem, with the feasible set as
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the intersection of multiple convex constraint sets. However, the projection algorithms onto the intersection

of convex sets are usually worked in an iterative process by generating a convergent sequence. In practice,

the iteration process has to be terminated when the stopping criteria are met, this makes the projection

algorithm actually an inexact projection. In Chapter 5, a set expanding strategy is developed for the gradient

projection methods, and the convergence results are proved under proper assumptions. In Chapter 6, an

optimization scheme of scaled gradient projection method with multiple constraints is developed. This

scheme can work with multiple convex constraint sets which can have the closed-form projection function or

the subgradient projection function. Numerical examples show that the proposed optimization scheme works

with several kinds of constraints and is flexible to implement, and the inverse results of the FWI problem

can be improved with proper a priori information.

7.2 Future studies

Following the current thesis work, I have designed plans for future research works.

Despite the UOT distance and the proposed mixed L1/Wasserstein distance can evaluate the difference

between signals with normalization methods, theoretical results are still absent. The optimal transport

problem has an intrinsic connection with the continuity equation [11] that is fundamentally different from

the hyperbolic system for the signals. This might impede the ability to establish a complete analysis work

for the variational problem based on the signals. New theory similar to the optimal transport problem but

for the signals (or signed measures) and based on the transport equation instead of the continuity equation

can be expected. On the other hand, the proposed mixed L1/Wasserstein distance is well defined for the

positive functions (or positive atomic measures). And the application of the mixed L1/Wasserstein distance

to the variational problem based on the positive quantities can be expected.

Similar to the scaled gradient projection method, the spectral projected gradient method is another

generalization of the gradient projection method [18, 19]. A non-monotone inexact line search is used in the

spectral projected gradient method, and the objective function value is allowed to increase temporarily, which

often results in faster convergence [18]. A new optimization scheme can be designed with the combination of

the spectral projected gradient method and the set expanding strategy proposed in Chapter 5 for the case

when the constraint set is the intersection of several convex sets.

There are several a priori information discussed in Chapter 6 for the FWI problem. Only synthetic

examples are provided in Chapter 6, and it is still unclear that what a priori information is efficient for

improving the inverse results of the FWI problem with real data. When the well-log data is available, each

well-log data can be represented as the average value of dozens of intervals of different depths, and this a
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priori information can be represented as hyperplane constraint sets. The proposed optimization scheme is

expected to largely improve the inversion results when enough well-log data are available. Another research

topic is new constraints for multiple physical parameters that can be designed to decrease the cross-talk

issue for the multi-parameter FWI problem.

The set expanding strategy developed in Chapter 5 provides a method to analyze the constrained opti-

mization problem:

min
x
f(x), such that x ∈ Xk, (7.1)

where the constraint set Xk is changing along the iteration process and the final constraint set X =

limk→∞Xk. This final constraint set X provides the a priori information of the optimization problem.

This method is not limited to the expanding sequence as long as the limit of the constraint set sequence

{Xk} exists. An adaptive changing set sequence can be constructed with the a priori information of the

model for the inverse problem. An example is: the feasible set X can be constructed with the well log data

which is usually available for a certain target area in the FWI problem. Then, an adaptive sequence {Xk}

can be built to reduce the cycle-skipping issue and increase the stability of the inverse algorithm. Both

theoretical results and practical examples can be studied with this approach.
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