
Important Notice

This copy may be used only for
the purposes of research and

private study, and any use of the
copy for a purpose other than
research or private study may
require the authorization of the
copyright owner of the work in

question. Responsibility regarding
questions of copyright that may
arise in the use of this copy is

assumed by the recipient.

UNIVERSITY OF CALGARY

Theory guided machine learning in geophysics

by

Zhan Niu

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS

CALGARY, ALBERTA

September, 2021

© Zhan Niu 2021

Abstract

Machine learning has become a popular topic in the past decade thanks to the booming

in computer hardware and the tools invented. Many successful applications have been

made in various subjects in geophysics, including salt body detection, facies recognition and

inversion etc. However, the fact that most geophysical theory is well-established sometimes

contradicts the black box theory in machine learning when combining methods in the two

fields. This thesis will discuss several ways of incorporating well-established knowledge

into machine learning by giving a few applications and experiments in geophysics. We will

also discuss the limitations and challenges machine learning is facing.

ii

Acknowledgements

I would first like to thank the directors and sponsors of CREWES project, who have funded

me during my master’s research. Among those, I sincerely thank my supervisor Dr. Daniel

Trad, who has given me guidance not only on my research but also on my career and life.

Not to mention the efforts he has made editing this thesis and correcting the ugly grammar

errors I have made.

Among all CREWES fellows, I would also like to express my special gratitude to Jian

Sun, Marcelo Guarido and Lei Yang, who have given me valuable discussions not only as

colleagues but also have been supporting me as big brothers.

In addition, I would like to thank my parents, who have been living in China but never

made me feel apart. I thank both my grandmothers Huizhen Li and Shuzhen Wang, who

have passed away during my master’s program. They taught me to be honest, caring and

humble with their live examples, and I will carry their philosophies with me for the rest of

my life.

I would also like to thank the geoscientists I have met, including my father, Jiayu Niu.

Their professional skills and styles make me always proud of being a geoscientist myself.

iii

To anyone or anything that has helped me.

iv

Table of Contents

Abstract ii

Acknowledgements iii

Dedication iv

Table of Contents v

List of Figures and Illustrations viii

List of Tables x

List of Symbols, Abbreviations and Nomenclature xi

Epigraph xii

1 Introduction to machine learning 1
1.1 What is machine learning used for? . 1
1.2 The limitation of data-driven methods . 2
1.3 Physics-informed neural networks . 4
1.4 The continuum and thesis outline . 5
1.5 Training method . 8

1.5.1 Defining dataset . 8
1.5.2 Training workflow . 9

2 Deblending with UNet 11
2.1 Introduction . 11
2.2 Theory . 13

2.2.1 Model definition . 13
2.2.2 Loss function . 15
2.2.3 Back-propagation . 15
2.2.4 Training workflow . 17

2.3 Synthetic data examples . 18
2.3.1 Data preparation . 18
2.3.2 Training . 19

2.4 Conclusion . 22

v

3 Born inversion with recurrent neural networks 31
3.1 Theory . 33

3.1.1 Forward modelling with the Born approximation 33
3.1.2 The implementation using TensorFlow 34
3.1.3 The gradient update and optimization 36
3.1.4 The Fletcher-Reeves method . 39

3.2 Synthetic data examples . 40
3.2.1 The modelling results . 40
3.2.2 The inversion results . 40
3.2.3 Non-linear optimizers . 44
3.2.4 Limitations . 45

3.3 Conclusion . 45

4 Velocity extraction from migration images 49
4.1 Introduction . 49
4.2 Theory . 50

4.2.1 Reverse time migration . 50
4.2.2 `1 norm and `2 norm . 51
4.2.3 Chain rule and back-propagation . 52
4.2.4 Residual network (ResNet) . 53

4.3 Example . 54
4.3.1 Images from RTM . 54
4.3.2 The definition of input/output . 55
4.3.3 Fully connected neural network . 57
4.3.4 Choosing the right loss function . 58
4.3.5 ResNet . 60
4.3.6 Problematic cases . 62

4.4 Conclusion . 63

5 Constructing seismic using generative adversarial network 65
5.1 Introduction . 65
5.2 Theory . 66

5.2.1 Generative adversarial network . 66
5.2.2 Wasserstein GAN with gradient penalty 68

5.3 Method . 69
5.3.1 Architecture . 69

5.4 The dataset . 71
5.5 Training details and workflow . 72
5.6 Results and discussions . 73

5.6.1 Manual inspection . 73
5.6.2 Quantitative analysis . 74

5.7 Conclusion . 75

6 Conclusions 79

vi

Bibliography 82

A The derivation of the Born gradient 87

vii

List of Figures and Illustrations

1.1 The continuum between theory and data-driven method. 7

2.1 Diagram of U-Net model modified from Ronneberger et al., 2015. The gray
arrows refer to the bridge connections that directly pass the features from
down-going layers to up-going layers. 13

2.2 The inputs fed to the U-Net model. The plots show the corresponding input
(above) and label (bellow) pair at the 120th receiver, with 512 receiver slices
in total. 24

2.3 The inputs fed to the U-Net model. The plots show the corresponding input
(above) and label (bellow) pair at the 120th receiver, with 512 receiver slices
in total. 25

2.4 The loss curve when initial filters is 16. The blue line refers to the training
loss while the orange line is the validation loss (Lval). The red cross indicates
the least Lval, which is 1.318× 10−6 at epoch 280. The gray dashed lines
separate regions with different learning rates. 26

2.5 The cross comparison of Lval with varying initial filters. The blue, orange
and green line refer to the case with 8, 16 and 32 intial filters, respectively.
Red crosses stand for the least Lval on each line. The results are summarized
in Table 2.1. 27

2.6 The prediction and label for a sample in the validation set. All three grayscale
images have the same scale. The picture in the bottom right shots the
difference of the prediction and the label, with a smaller color scale. 28

2.7 The prediction on the whole dataset containing both the training and vali-
dation set (transposed to the shot domain). Note the preservations of the
diffractions. 29

2.8 Predictions for blended data from a two-layer model. 30

3.1 The diagram of the RNN structure. The black boxes are neural cells that take
the source and two previous perturbation wavefields to compute the next
perturbation wavefields. The output of each cell is the shot record at a given
time, and the most recent two wavefields will be passed to the next cell. . . 35

3.2 The scattering model. The true model was used for the finite difference
modelling (Figure 3.3) while the background and perturbed model were
used for the Born modelling method (Figure 3.4). 40

3.3 A shot record calculated by the finite difference modelling method. 41
3.4 The shot record calculated by the Born modelling method. 41

viii

3.5 The updated model at specific iterations. a) The true model; b) The ini-
tial zero model; c) The estimated model at the 10th iteration with ADAM
optimizer using a learning rate of 0.3; d) The model at the 50th iteration. . . 42

3.6 The cost functions for different value of α with β1 = 0.9 and β2 = 0.999 in all
cases. 43

3.7 The Marmousi model. The background velocity model is obtained by gaus-
sian filtering of the true model. The velocity perturbation is 2δv/v0, as
defined in the theory section. 47

3.8 The inversion results of Marmousi model by RNN. a) The true model; b) The
initial zero model; c) The estimated model at the 10th iteration with ADAM
optimizer using learning rate 0.3; d) The model at the 50th iteration. 48

3.9 Cost function curves comparison of the three used methods. a) The first 200
times of loss calculations; b) a zoomed version of the figure a. 48

4.1 A ResNet building block modified from He et al., 2016. Regular triangles
refer to activation functions. Dashed arrows are connected to other blocks. . 53

4.2 Four random examples of input and label pairs. 55
4.3 A 7-layer fully connected neural network. Each circle represents 100 nodes. 57
4.4 Predictions made by models with `1 and `2 loss function, respectively. . . . 59
4.5 `1 and `2 loss comparison. 60
4.6 A ResNet based on the fully connected network in Figure 4.3. 60
4.7 Loss curves of the fully connected (FC) and the ResNet model. 61
4.8 A comparison between predictions from the fully connected (FC) model and

the ResNet. 62
4.9 A typical prediction on data with Ricker wavelet. 63

5.1 A typical structure of unconditional GAN . 67
5.2 The results from the trained generator. The blue curves refer to the generated

traces while the orange traces are from the data. The number on the upper
left in each subplot refers to the scores obtained from the discriminator. The
higher the score, the better it looks from the perspective of the discriminator. 76

5.3 GAN loss curves. The blue and the orange lines refer to the losses of generator
and discriminator, respectively. The losses are defined by Equation 5.3 and
5.4. 77

5.4 Predictions from the generator at a) 1st epoch; b) 5th epoch; c) 20th epoch;
d) 47th epoch; e) 100th epoch and f) refers to a sample from real data for
comparison. 77

5.5 Histogram and kernel density estimation of real data and generated samples.
The parts in blue represent the results from real data distribution, while the
orange parts represent the results from generated examples. 78

5.6 Mean generator score using the discriminator from the 100th epoch. The
grey dashed line refers to the mean real data score, which is −10.940. 78

ix

List of Tables

2.1 Best epochs and the corresponding Lval for different initial filters. 21

5.1 The detailed structure of the generator . 70
5.2 The detailed structure of the discriminator 71

x

List of Symbols, Abbreviations and
Nomenclature

Symbol or abbreviation Definition
ML Machine learning
BP Back-propagation
ReLU Rectified Linear Unit
CNN Convolutional neural networks
RNN Recurrent neural networks
FC Fully-connected neural networks
GAN Generative adversarial networks
WGAN Wasserstein GAN
ADAM Adaptive moment estimation
RMSprop Root mean square propagation
L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
FR-CG Fletcher-Reeves conjugate gradient
FWI Full waveform inversion
LSRTM Least squares reverse time migration

xi

Epigraph

Plurality is never to be posited without necessity.

- William of Ockham,

Questions and the decisions of the Sentences of Peter Lombard

xii

Chapter 1

Introduction to machine learning

1.1 What is machine learning used for?

Machine learning is a flexible tool capable of solving many different types of problems.

In theory, machine learning can always give you a promising solution even without an

understanding of the actual problem from a physical point of view (often referred to as

domain knowledge). However, for the same reason, we need to be careful when we use it.

The deployment of machine learning can be easy — one can throw all the data we have

into a neural network and hope to get the right answer after training. However in this case,

the solution is likely to have compromised generalization and be inconsistent with physics.

To avoid this side effect of machine learning flexibility, for every problem we have to

ask ourselves — What part of a problem are we expecting for machine learning to help

us? In my perspective, machine learning can be applied in two ways to make use of its

advantages. The first is to train models for problems or subproblems that are difficult to

formulate explicitly. Those type of problems are usually intangible and abstract. A cat

classifier would be a great example that falls in this category. It is hard to come up with a

accurate formulation for the probability of being a cat given a picture, but machine learning

can find the relationship by treating it as a black box. The cost of treating it as a black box

1

is minimal, since the most robust theory to identify a cat is by observation and comparison

with previous experience. Another example in geophysics would be facies recognition based

on well logs. This process integrates information from various sources, including rock

properties, the surrounding geology and seismic data. The quality of each source is also

uncertain. Data from different sources sometimes contradict each other, and the main job

is to evaluate the importance of different parameters, which can be highly based on the

interpreter’s experience. This process is thus very hard to formulate, and machine learning

has played an important role in this type of task. We can apply machine learning to only

the part where the method is vague (B. Sun & Alkhalifah, 2019; Zhou & Brown, 2020). The

other category is that we want to use machine learning to speed up the calculation we have

already had. An example is migration/inversion solved by machine learning (Biswas et al.,

2019). Because sometimes the established physics model can be over-parameterized, the

performance might be harmed by having additional parameters. A trained neural network

can help skip unnecessary steps and hence speed up the process.

1.2 The limitation of data-driven methods

A key challenge of applying machine learning techniques to geophysics is that geophysical

solutions are usually not unique. We are able to acquire large quantities of data, but

unfortunately most of the data are often redundant because they contain a similar type of

information. Therefore, in spite of data abundance, the problem can be ill-conditioned. In

seismology, for example, although reflections can cover many different incident angles, the

data still only sense the reflector from the surface down. As a comparison from a different

field, magnetic resonance imaging (MRI) is able to look at the object from all angles. In this

case, the extra views that different angles of incidence provide independent information

and hence bring better imaging.

Another problem we face in Geophysics is the lack of labels or the existence of wrong

2

labels. Because the subsurface is inaccessible in general , we do not really know the ground

truth for our problems and the labels we use in geoscience-related problems are often

incorrect. The data are the best guesses from the collaboration of experienced seismic

interpreters, geologists and reservoir engineers, but they are still estimates. Even for well

logs, where we cut through the rocks and step close to the ground truth, errors can still be

introduced during processing. Furthermore, the number of well logs is often very limited

due to the drilling cost and well log information tends to be insufficient.

With all the above in mind, geophysical problems are often underdetermined. An

underdetermined problem is where the number of unknowns is more than the number

of data points. It requires constraints and robust data fitting to compensate for the non-

uniqueness and data error, respectively. One type of constraint is regularisation, where we

add an extra term to the cost function. For example, in inversion, models can be constrained

to be sparse or smooth by minimizing the first and second derivatives of the model. The

model can be constrained by the loss function itself. The effect of outliers is often attenuated

by choosing `1 loss functions, while it can be emphasized by choosing `1 loss functions. We

will discuss more on regularisation in Chapter 4.

Similarly, machine learning is also an under-determined problem because we usually

have more trainable parameters than the number of data points. However, being under-

determined is not a disadvantage if handled properly, and it enables the potential of neural

networks to mimic all kinds of functions. The quality of data is usually better than in the

geophysical case. For example, for a cat/dog classification problem, we can have a clear

view to help us identify whether it is a dog/cat. Also, we can be certain with our answer in

most cases. Those conditions can seldom be met in a geophysical context.

Therefore, although machine learning techniques can help to solve geophysical problems,

we should be aware that additional constraints may be required for most problems. These

new constraints could have similar formulations and traditional methods.

This discussion suggests that a reasonable approach to take advantage of the power

3

of ML is to use it for solving regression problems whose formulation is not well defined.

For example, there is not much advantage of using a completely flexible formulation to

simulate a wave equation unless we are uncertain that the existent formulation is accurate.

1.3 Physics-informed neural networks

In general, replacing complex physics with a black box ML tool is probably not bringing

significant progress because this approach bypasses the understanding that the physical

theories provide. For example, Weyn et al., 2019 trained deep learning models to predict

the weather at hPa geopotential height, but none of these models could outperform a

non-machine-learning model developed by using physical laws.

However, we certainly could use the flexibility of ML combined with our understanding

of a problem. In other words, we could inject physics into the ML formulation. von Rueden

et al., 2019 mentions three main ways for injecting information to neural networks:

1. Introduce information into the training data. Since machine learning is a data-

driven method, we can use our knowledge about the problem to modify the data and

make it easier for the network to learn from the data. Additional knowledge can be

implicitly passed to the model by carefully defining the distributions of the data and

selecting the features to be fed to the model, i.e. feature engineering.

2. Introduce knowledge into the neural network architecture. A big part of any

type of regression, including ML, is choosing a proper model. One can observe the

relationship between the input and output and find a function that would best reflect

this relationship. The knowledge is injected during model selection. Convolutional

neural networks for image recognition are a good example. By choosing a CNN as the

model structure, we inject the knowledge and assumption that hidden features are

only related to spatially nearby points and that they are space invariant. Similarly, by

4

choosing an RNN as the model, we inject knowledge of a causal relationship between

the input and output, which means the output is related to prior time steps.

3. Add extra constraints in the cost function to reflect prior knowledge about the

model.

The most straightforward way of modifying the cost function is to add regularisations.

For example, using an `1 norm to measure the model size implies we believe on a

sparse model with many null coefficients. The `2 norm of the second derivatives of

the variable helps to minimize the structure of the variables or a complex function

that minimizes the change in energy (Karpatne, Watkins, et al., 2017). Aside from

adding regularisation terms, similarly, we can also alter the main body of the cost

function, i.e. the metrics that used to evaluate the error. One can choose to use `1 or

`2 norms, just like solving problems in traditional ways. But also, we can have more

complex loss functions thanks to auto differentiation. For example, in Biswas et al.,

2019, instead of using a cost function that evaluates the error between neural network

outputs with label data, the authors apply modelling on the output and evaluate the

error with the output. Their approach is similar to an auto-encoder, that is a network

that transforms the input to itself x′ = D(E(x)), with the constraint that the decoder

E is not trainable.

1.4 The continuum and thesis outline

Let us consider the following general equation to describe a medium:

y = f(x) (1.1)

As shown in Equation (1.1), there are three elements. The independent variable x, the

dependent variable y, and the mapping function f that describes the relationship between

5

them. A physics model is a series of equations or differential equations f1 that best describes

the mapping between x and y. This is often done in physics using derivations. For example,

in Newton’s 2nd law (F = ma), the input x refers to the mass of the object m and the

acceleration a. The output could be the force applied to the object. f1() is the multiplication,

which says the external force F is certain once given the mass and acceleration of an object.

However, the function is a result of human understanding of the problem and as such it

depends on the robustness of previous studies. For example, this law is held on assumptions

that mass is not a function of velocity, which is not true when more complete theories are

taken into account. The assumption indeed brings uncertainties and fails to describe the

truth where it cannot be met. A more accurate form f2 is that force equals the rate of

change in momentum (F = d(mv)
dt

= mdv
dt

+ v dm
dt

). This form expands Newton’s 2nd law by

removing the assumption on constant mass.

Forward seismic modelling is another example. The choice of absorbing boundary

conditions and the assumptions of wave complexity can greatly affect modelling results,

most of which are far from the true representation of the real world. In all, improvements of

a model are tied to better understandings of the real world, and the search for the ultimate

true model is an non-ending journey for every problem.

On the other hand, Machine learning is also a study on finding a mapping function f .

Instead of being based on a known theory for the problem at hand, machine learning trains

a model with available data to find the best mapping of data. With no other information

provided, the accuracy of the model is tied to the quality of data. In the era of big data that

we live today, machine learning is booming in computer vision, classification and regression.

This is because data samples in these areas are abundant. A shortcoming of data-driven

models is also obvious — the need for a large amount of labelled data is usually difficult or

too costly to fulfil in some other fields.

Despite different viewpoints, data-driven and theory-driven methods serve the same

goal: finding the most accurate representation of f possible. Figure 1.1 is the 1D version

6

TheoryData

Machine
learning

Traditional
method

Theory-guided
machine learning

Ch 5 Ch 3Ch 2&4

Figure 1.1: The continuum between theory and data-driven method.

modified from Karpatne, Atluri, et al., 2017. Note that machine learning in this figure refers

to classic data science methods in general.

Each chapter can be placed qualitatively on this continuum. In Chapter 2, we trained

a U-net for separating pseudo-deblended shots, which still fall in the category of classic

machine learning. However, the domain knowledge injected by carefully selecting model

architecture and data preparation shifts the point to the theory side. In Chapter 3, we

proposed born inversion in an RNN framework. The architecture is customized by hand

using low-level APIs. Coefficients and relationships are hardcoded to the network so that

the method is very close to the theoretical methods. Chapter 4 and Chapter 2 are in the

same scenario, where we trained a fully connected ResNet to perform velocity inversion

from seismic images. In Chapter 5, we trained a generative adversarial neural network

with Wasserstein loss and gradient penalty to generate 1D seismic shots. The training is

unsupervised so that we can inject only a limited amount of knowledge, and hence it is

closest to the data side. The knowledge injected includes the domain knowledge to select a

suitable neural network type. Also, the discriminator itself can be treated as a constraint

added to the loss function, despite it being trainable.

7

1.5 Training method

1.5.1 Defining dataset

An important aspect of ML is that the model has to be trained and evaluated on different

data sets. We divide the dataset into different sets, each with a different purpose. The largest

data set is used for training, that is for the model to learn the input/output connections.

Because the model sees these data during training, it also memorizes them. As a

consequence, predictions obtained from this dataset are better than would be if the data

were completely unknown. Therefore, a separate test dataset is required to fairly evaluate

the model. This test dataset should come from the same distribution of the training set and

should have known labels, that is the true answers when the network operates on it should

be known. To be fully independent of the model, the test dataset must remain unseen to

the neural network and should never be used on gradient calculation or model selection.

In addition, we need another dataset from the same distribution known as the validation

set. During the training process, we want to converge to a model that generalizes well, i.e.

a model that performs better on unseen data. This goal requires adjusting optimization

parameters such that the prediction produces a minimum error on unseen data which is

the validation dataset. This dataset is not directly used for the training process, that is to

estimating mapping weights by back-propagation, but will be used to give some insights for

tuning hyper-parameters and test different network architectures. Validation is important

since it is the only method we have to evaluate whether a model is over-fitted or under-fitted.

Machine learning problems can sometimes be an under-determined problem, that is having

more parameters to solve for than the information provided by the data points can support.

This is a serious difficulty in deep networks, especially when the sample size is small. If the

loss from the validation set is similar to the loss from the training set, then we can say the

model performs equally well on seen and unseen data. Hence we can have confidence that

the model will do well on the test set.

8

On a typical machine learning problem, the validation loss curve will decrease similarly

to the training loss during the early stage. However, the training loss will usually decrease

faster since the gradient is optimized for the training dataset (network weights are calculated

using the information provided by the training residuals). Then, as the model starts to

over-fit the training set, the validation loss will start to increase because the model is

over-fitting particular details that belong to the training data set only. Although the training

loss will be smaller after this point, we should prefer the model where the validation loss is

minimal. This follows from the fact that the validation dataset is less susceptible of being

over-fit since it was not used to calculated gradients. This discussion shows that, although

not directly, the validation set is used for training, which makes the model depend on

the validation set. Therefore a separate test set is still necessary with the presence of the

validation set,

There is no strict rule on how many fractions each set should have since it depends

on the specific situation and the nature of the problem. Insufficient number of samples

in any of the three sets will cause its own problems, and there is a trade-off between

these problems that should be balanced. In the ideal case where the number of samples

is adequate, the convention is to split the entire dataset by 60 %/20 %/20 % to form the

training/validation/test set. However, for small datasets, we may give up the validation

and use a ratio 80 %/20 % for training/test. The latter scenario is non-ideal, but with very

limited amount of data the emphasis is to have enough data for training. Later we will

discuss other ways to compensate for this issue by using data augmentation, which is also

non-ideal, but it tends to work better than ignoring validation.

1.5.2 Training workflow

Algorithm 1 shows a template of a training workflow. M(·) refers to the chosen model, X,

Y are input and label of the dataset. The subscript of X and Y indicate its source, and

prime means the corresponding prediction. L(·) refers to the loss function and α is the

9

Algorithm 1 Training template.
Require: L(·),M(·), X, Y , α

for each epoch do
Y ′train ←M(Xtrain) . compute prediction
L← L(Y ′train, Ytrain) . compute loss
g ← BP (L) . back-propagate
M(·)←M(·) + αg . update model parameters
Y ′val ←M(Xval)
Lval ← L(Y ′val, Yval) . compute validation loss
if Lval is the smallest then

M ←M(·) . save the best model as M
Ltest ← L(M(Xtest), Y) . Evaluate test loss

learning rate or the step size. Chapter 2,3 and 4 each uses a slightly modified version of the

training template. Details will be discussed when introduced in each chapter.

10

Chapter 2

Deblending with UNet

2.1 Introduction

Blending acquisition is a technique to reduce the cost of seismic acquisition. It enables us

to fire several shots simultaneously, which not only reduces the time of recording but also

reduces the cost of storing seismic data (Beasley et al., 1998). The reduction of recording

time also reduces the cost of labour and mitigates the exposure to ambient noise.

To process blended data, we need to apply pre-processing to separate the simultaneous

shots. This deblending process essentially separates coherent energy coming from different

sources so they can be treated as regular seismic data. This is an under-determined inversion

problem since it tries to produce several shots from each supershot (that is, it has more

unknowns than equations). Therefore, additional constraints must be applied to get a

unique solution.

There are many different blending approaches, but one commonly applied is shot

dithering. This method involves introducing known random delays to the firing time for

each shot. These time delays shift each shot differently, which has an effect on domains

where we group together different shots (for example, common midpoint gathers or receiver

gathers). The energy coming from different shots becomes incoherent in those domains. We

11

can use this characteristic to separate shots by applying corrections for these delays to the

targeted shots. This process is called pseudo-deblending, and its effect is the conversion of

the multi-shot gathers into noisy data sets. Thus deblending becomes similar to a denoising

process, where the noise here is the blended energy.

The most challenging part is to solve the interference where different shots overlap.

There are many choices for the denoising tool. For example, masks or mutes can be applied

to F-K or hyperbolic Radon domains. Furthermore, inversion-based methods have been

developed as well, which involve creating a cost function with a regularization term. Results

are highly dependent on the definition of the regularization, and the assumptions within

can cause loss of signal (Stanton & Wilkinson, 2018).

On the other hand, machine learning methods can be applied instead of signal-processing

/ inversion types of deblending operators. The problem can be defined in two ways based on

previous studies: a classification problem or a regression problem. The classification method

aims to generate a mask that indicates the position of the desired shots but leaves the

interferences unsolved, while the regression problem tries to produce individual shots but

requires more parameters to be determined. For example, Baardman, Tsingas, et al., 2019

used convolutional neural network (CNN, LeCun et al. 2015) for both problems. However,

we think that CNNs may not be the best choice to capture the relationship between inputs

and outputs due to the lack of skipping connections. Richardson and Feller, 2019 chose a

U-Net model with ResNet34 encoder pre-trained on ImageNet and trained with random

velocity models.

In this chapter, we will look at a wedge model with scatterers as a toy problem and

discuss the suitability of U-Nets in general for solving deblending problems.

12

2.2 Theory

2.2.1 Model definition

Our chosen neural network architecture to solve the deblending problem is the U-Net

(Ronneberger et al., 2015). The U-Net was designed based on an encoder-decoder backbone

with added bridge connections, which communicate the encoder and decoder parts and

facilitate the flow of information. This type of network is often used for solving segmentation

problems. Figure 2.1 shows a typical structure of U-Nets.

Figure 2.1: Diagram of U-Net model modified from Ronneberger et al., 2015. The gray
arrows refer to the bridge connections that directly pass the features from down-going
layers to up-going layers.

The U-Net contains three parts. The down-going/encoding part, the up-going/decoding

part and the bridge connections. The down-going part refers to the left half of the figure.

The U-Net has four tiers in total. At the first tier, the inputs went through two 3 by 3

convolutional layers with a predefined initial number of filters (64 filters in this case).

The initial number of filters defines how many features are extracted from the inputs.

13

The cascading of convolutional layers essentially enlarges the extent of kernel coverage.

After the convolution, the output was max-pooled by a 2 by 2 kernel with a stride of

2, and the result is used for the inputs fed to the next tier. At each time going down

a tier, the number of filters used for convolution doubled while the image dimension is

halved due to the max-pooling. On the other side for the up-going part, the inputs will

go through the opposite process generally. In this part, the number of filters gets halved,

and the image dimension gets doubled as the tier goes up. At the top tier, the image

dimensions are restored to the original size and the number of channels is reduced to 1 by

an additional outputting convolution layer. Each green arrow in the figure stands for a 2

by 2 up-convolution, which up-samples the image by two and then convolves with a 2 by

2 kernel. At this point, this structure is called an encoder-decoder convolutional network.

This type of structure extracts high-order features from the inputs and reconstructs the

output by decoding. The third part is the bridge connections, which are indicated by the

gray horizontal arrows. Each grey arrow refers to the process where part or the whole

outputs was forwarded as additional features to the same tier in the up-going part. These

additional channels were concatenated in the channel dimension with the outputs from

deeper tier after up-convolution. The introduction of bridge connections reduces the length

of backpropagation and hence mitigates the risk of vanishing gradients.

A segmentation prediction produces a mask of a given picture indicating an area of

interest. For example, this has applications on the brain MRI for finding the damaged

area, or in our case in seismic, for targeting events in a noisy shot record. Essentially, it

predicts the probability of a given pixel to be true. The probability on each pixel then can

be converted to a true or false by applying a judging threshold. The reason why U-Net is

more suitable to solve segmentation problems over traditional variations of CNNs is that

U-Net has bridge connections that directly link the features with the same tier as shown in

the gray arrows in Figure 2.1. Since the inputs and outputs of the segmentation usually

correlate and share spatial similarities, the connections will greatly reduce the efforts to

14

learn this relation by skipping unnecessary transforms, which helps to reduce the chance of

vanishing gradients.

2.2.2 Loss function

In machine learning, the optimization concept of a cost function is called loss, and it

represents some measure of the proposed model undesired features (for example fitting

error or complexity). Since the deblending problem can be thought of as a regression

problem, a common loss to use is the mean square error (MSE), which is the squared L2

norm averaged across each pixel. This type of loss function offers easy derivatives and

provides a convex shape. The MSE loss is defined as

L = mean
(
‖Y − Ypred‖22

)
=

1

Ns

∑
sample

1

Np

∑
pixel

(Y − Ypred)2, (2.1)

where the loss is normalized by the number of samples (Ns) and the number of pixels in a

shot record (Np) so that the error reflects the mean error in each pixel. Ns represents the

number of samples in one evaluation, which is not necessarily the total number of inputs

since often the error is evaluated in each minibatch independently due to the memory

limitations of the device.

2.2.3 Back-propagation

The gradients with respect to each model parameters can be calculated by a back-propagation

algorithm, which is a recursive estimation of error propagation by applying the chain rule

(I. Goodfellow et al., 2016). Equation 2.2 shows a form of gradient calculated by back-

propagations. Suppose that L = L(a) and a = f(h), then the gradient of L with respect to

the hidden parameters h is

15

∂L

∂hi
=
∑
j

∂L

∂aj
· ∂aj
∂hi

(2.2)

In short, back-propagation is an algorithm that calculates the gradient of a scalar

function (typically the cost function J) with respect to the hidden parameters (h) in the

model. The back-propagation starts from ∂J
∂J

= 1 and then gets the gradient for the last

hidden parameter by multiplying the Jacobian for the operations that produce the output.

By a recursive process, each gradient for hidden parameters at each layer can be obtained

and used to update the parameters in the calculation order.

One can use the gradients directly to update the model or use gradient-based optimiza-

tion methods to make updates in a more controlled manner. The first is the most intuitive

way but may result in a zigzag path to the minimum. The second method tries to reduce the

zigzag pattern and is faster in an ideal case. One popular method to perform minimization

is adaptive moment estimation (ADAM, Kingma & Ba, 2014), which reduces the transverse

oscillations by cumulatively summing all the previous gradients during the optimization.

The pseudocode of ADAM update is shown in Algorithm 2. A more detailed explanation

Algorithm 2 The ADAM optimization. i stands for the current iterations. g is the gradient
calculated and h contains the parameters to be updated. v and s are the two vectors storing
the cumulative sum of historical g and g2. α and β are two hyper parameters that control
the portion of updates that is related to v and s.

v0 ← 0
s0 ← 0
i← 0
while i < iterations do

i← i+ 1
Calculate gi
vi ← β1vi−1 + (1− β1)gi
si ← β2si−1 + (1− β2)gi2
v̂i ← vi

1−β1i

ŝi ← si
1−β2i

hi = hi−1 − α v̂i√
ŝi+ε

of ADAM and its characteristics will be discussed in Chapter 3, where a more complicated

16

problem will be solved.

2.2.4 Training workflow

Algorithm 3 Training workflow for the UNet.
Require: L(·),M(·), X, Y , ADAM(·)

for each epoch do
for each minibatch do

zero the gradients
load Xtrain and Ytrain

Y ′train ←M(Xtrain) . compute prediction
L← L(Y ′train, Ytrain) . compute loss
g ← BP (L) . back-propagate
M(·)←M(·) + ADAM(g) . update model parameters

Y ′val ←M(Xval)
Lval ← L(Y ′val, Yval) . compute validation loss
if Lval is the smallest then

M ←M(·) . save the best model as M

The training workflow can be summarized in the pseudocode described as Algorithm 3,

which is modified from Algorithm 1 in Chapter 1. The main modifications are explained

below.

We implemented this algorithm using PyTorch (Paszke et al., 2017), which requires

making zero the gradients at each iteration. Otherwise, the gradients will accumulate

and cause long-wavelength oscillations in the loss curve and hence the model will fail to

converge. To save memory usage, datasets are usually loaded in batches. In the inner loop,

the model is trained with one batch at a time. After each full cycle of epochs, the mini-

batches will be shuffled for stochastic gradient updates. Batching is not always necessary for

the validation phase. This is because backpropagation is not involved, which will consume

a large piece of memory for storing intermediate gradients. In practice, validation loss is

usually calculated in bulk at the end of each epoch.

17

2.3 Synthetic data examples

2.3.1 Data preparation

All data used in this chapter were generated synthetically with a finite difference method.

We applied forward modelling with the acoustic wave equation for simplicity. Second-order

approximation was used in the time domain, while eighth-order approximation was used in

the space domain. The blended data was created by injecting shots simultaneously with

random delays and measuring the total wavefield in the receiver locations using the velocity

model shown in Figure 2.2. This model contains three layers and a wedge on the left,

with several point scatterers under the dipping layer. These scatterers are intended to test

whether the deblending algorithm can honour data diffractions. The dipping layer of the

wedge moves the apexes of reflections in the shot domain. In this model, 64 supershots

were recorded with four shots blended in each and with 512 receivers. No artificial noise

was added to the modelling process. However, reflections from boundaries are still present.

The direct waves and source effects are removed by subtracting the shot record modelled

with the velocity of the first layer. The data was resampled by increasing the time-step size

and the number of time samples was reduced from 3600 to 512 to reduce the computation

cost. Both sources and receivers are evenly distributed at the near-surface. Also, we created

for the training a regular data set without blending or time delays, which we call here “true

data”.

First, the blended data were pseudo-deblended as follows: the supershots are repeated as

many times as the number of blended shots per supershots, and the copies are concatenated

in the shot axis with the time delays removed one shot at a time. After this pseudo-

deblending, only those shots whose time delay were completely removed become coherent

in the receiver domain (Figure 2.3). Since duplications of supershots were concatenated

together, the blended data now has dimensions of Ng × Nt × Nshot, which refers to the

number of receivers, timesteps, and shots, respectively. The number of shots here is the

18

product of supershots and the number of blended shots. We treat each receiver gather as

a picture which we feed to the network for training. The time and source axis becomes

the height and width of the picture. We also have to define an extra dimension in the 2nd

place to represent the number of channels. Since the input is in grayscale, the number is 1.

Therefore, the input tensors has the format of Nsample×1×H×W which is 512×1×512×256

where Nsample is the number of receiver gathers. The “true data”, that is receiver gathers

without blending, have the same dimensions as well (Figure 2.3). Both inputs and labels

were normalized to be ranging from 0 to 1 for better generalization, as indicated by the

scale bar.

The dataset was then separated into training and validation sets. In this problem,

the randomly chosen 20 % of the entire dataset becomes the validation set and the rest

becomes the training set that will be used for calculating the gradient. We did not split

the data from test data set because the amount of data is limited and we want to make

more data available for training. However, it is still worth having a validation set to give

some confidence of not overtraining the model. We test the trained model’s performance

on a different velocity model, which is shown later in Figure 2.8. Furthermore, it is fair

to assume all the data comes from the same distribution due to the fact that all data was

synthesized from one model setup. Therefore, the effect of using the cross-validation

method is marginal compared to a static validation set.

2.3.2 Training

We used PyTorch for the machine learning framework and adapted the U-Net implementa-

tion described in Buda et al., 2019, which was designed for brain MRI. The U-Net has four

tiers in depth with two 3 by 3 convolutional layers in each block with zeros padding of 3 at

each boundary, which guarantees the inputs and outputs having the same dimension. The

original model was designed to take inputs with three channels as RGB images and has 32

filters in the initial layer. In this chapter, however, since the receiver gathers only have one

19

channel, the default 32 filters may be more than needed. We discuss later in the chapter

our choice for the number of initial filters. The U-Net uses ReLU as inter-layer activation

functions and uses batch normalization layers. The output activation is sigmoid, which

regularizes the outputs to a (0, 1) range.

After some testing and experimentations, we decided to train the model by following

Algorithm 3. We used ADAM optimizer with a learning rate of 0.002, α = 0.9 and β = 0.999.

To mitigate large oscillations at later epochs, we decrease the step learning rate every 100

iterations. After each completion of 100 epochs, we reduce the learning rate to its 10 %.

This learning rate decay slows down the descent in later epochs but makes it tolerant to a

bigger learning rate at the early stage (the default learning rate for the brain MRI problem

was 0.0001). Figure 2.4 shows the loss curves. The validation loss reaches a plateau with

small oscillations at 200th to 300th epochs. Models at those iterations can be considered

to have the same confidence level. One could choose the model at the last epoch since it

undergoes more training but we picked the model with the least Lval to avoid over-fitting

(see the red cross in Figure 2.4).

As mentioned in the previous section, the initial number of filters defines how many

features are extracted from the inputs. There is a trade-off between the complexity of the

model and performance. The more features are extracted, the more information from the

inputs are used for training but with more computational cost. Figure 2.5 shows three

validation losses with different initial numbers of filters. The saved model is summarized

in Table 2.1. Losses with 16 and 32 filters performed almost the same. The model with 16

filters descends faster than the model with 32 filters because of being simpler, but the later

achieves lower validation loss and requires fewer iterations. The model with 8 initial filters

shows poor results. Having too few parameters did not help with the model updates, which

may be evidence that 8 filters are not enough to capture the important information in this

problem. The model with 32 filters has better accuracy but also takes almost double time to

calculate and memory to train. After balancing these trade-offs, we chose the model with

20

16 initial filters.

Table 2.1: Best epochs and the corresponding Lval for different initial filters.

filters min(Lval) Best epoch

8 3.321× 10−6 295

16 1.318× 10−6 280

32 1.207× 10−6 241

Figure 2.6 shows an example for a prediction from the validation set. Most of the

incoherent noise is removed. Furthermore, the diffractions from the point scatterers are

mostly preserved although with some attenuation in their tail endings. The larger errors

are concentrated in two regions. The first region is inside the major primary, where the

reflections get complicated. Probably the identification of the reflections becomes difficult

for the algorithm and the interference complicates this. It is important to keep in mind

that the network does not know what reflections or diffractions are, but just see them as

patterns. Furthermore, we can also see some meshed patterns at the bottom of the plot.

These patterns could be multiples of the point scatterers’ reflections or boundary artifacts.

Likely the model behaves poorly for them because of their weak amplitude and complexity.

The second region is around the tails of the reflection. Something to mention is that the

input data have some missing samples due to the removal of time delays, but the “true”

data do not. To get the right prediction, the model tries not only to remove the incoherent

noise but also to interpolate the missing samples, which itself is a complex problem to solve.

Therefore, the prediction contains relatively larger errors after training on these points.

Figure 2.7 shows nine predictions on all samples from the train and validation set.

Some shadows of the blended shots are still present. Probably this is because in shots

from the acquisition edges the blended reflections are not like a typical hyperbola and are

different from the majority of the receiver gathers. Therefore, the model fails to resolve the

21

signal and noise in this case. One solution could be to use gradient boosting, which trains

several models iteratively to adapt to different situations. However, additional models will

introduce more model parameters and extra attention must be paid to avoid over-fitting.

Another point to notice is that the error seems larger in the shot domain than in the receiver

domain, in which the model was trained on. This may be solved by feeding the data in

multiple receiver gathers or even the entire volume instead of single gathers. However, this

cannot be done with one velocity model and indeed need exponentially larger computation

resources for the training.

So far, we trained the network with data from the same model on which we want to

perform deblending. It remains to see how the trained network will generalize to other

models. Figure 2.8 shows the result from applying the model trained on the wedge to data

from a two-layer model. This is a relatively easy test since the model on which we are

applying the network is simpler than the wedge model (Figure 2.2) on which we trained.

The results are not as good as in the first case, as expected. The primaries are resolved

well but the model gets confused inside the primaries (see shot 2, 3, 7 and 8). Even if the

two-layer model is an easier problem to solve, its data have different distributions than the

training dataset. We expect that results will improve by training on several different models

instead of one.

2.4 Conclusion

In this chapter, we trained a U-Net model to perform deblending, that is the separation of

coherent and incoherent signal coming from blended shots. We tried several optimizations

and network parameters and found the best combination for the current problem setup.

When the training and test data come from the same velocity model, the network performed

well by preserving small diffractions and correctly identifying primaries. It performed

slightly worse for the shots at the edge of the model because of the lack of training pictures

22

representative of this case. We also tested the performance with data that comes from a

different velocity distribution than the training data. Specifically, the velocity model was

made to be simpler than the training model, so the input should not exceed the trained

model’s capability. In this case, however, the network performs okay but not as well as the

first case. This observation indicates the model still memorizes part of the training data and

provides a direction for improvement.

More work is required to fully understand how to generalize the network to new

problems. The direction is to apply constraints and reduce flexibility. To address these

issues, one can investigate generalizing the model by gradient boosting, which gives

balanced outputs from several trained models. Another direction is to make the network

predict the residual instead, so it can be trained and applied iteratively like the least-square

methods.

23

0 1 2 3 4 5 6 7 8
Lateral [km]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
pt

h
[k

m
]

0 100 200 300 400 500
Concatenated supershot #

0

100

200

300

400

500

Ti
m

es
te

ps

1.5

1.8

2.2

2.5

3.2

Ve
lo

cit
y

[k
m

/s
]

0.4

0.2

0.0

0.2

0.4

Am
pl

itu
de

Figure 2.2: The inputs fed to the U-Net model. The plots show the corresponding input
(above) and label (bellow) pair at the 120th receiver, with 512 receiver slices in total.

24

0

200

400

Ti
m

es
te

ps

0 50 100 150 200 250
Concatenated supershot #

0

200

400

Ti
m

es
te

ps

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Figure 2.3: The inputs fed to the U-Net model. The plots show the corresponding input
(above) and label (bellow) pair at the 120th receiver, with 512 receiver slices in total.

25

0 50 100 150 200 250 300
Epochs

10 6

10 5

10 4

Lo
ss

 [l
og

]

Train
Val

Figure 2.4: The loss curve when initial filters is 16. The blue line refers to the training loss
while the orange line is the validation loss (Lval). The red cross indicates the least Lval,
which is 1.318× 10−6 at epoch 280. The gray dashed lines separate regions with different
learning rates.

26

0 50 100 150 200 250 300
Epochs

10 6

10 5

10 4

CV
 lo

ss
 [l

og
]

init=8
init=16
init=32

Figure 2.5: The cross comparison of Lval with varying initial filters. The blue, orange and
green line refer to the case with 8, 16 and 32 intial filters, respectively. Red crosses stand for
the least Lval on each line. The results are summarized in Table 2.1.

27

0

200

400Ti
m

es
te

ps

Input Prediction

0 100 200
Concatenated supershot #

0

200

400Ti
m

es
te

ps

Label

0 100 200
Concatenated supershot #

Diff (true-pred)

0.4
0.2

0.0
0.2
0.4

0.016
0.008

0.000
0.008
0.016

Figure 2.6: The prediction and label for a sample in the validation set. All three grayscale
images have the same scale. The picture in the bottom right shots the difference of the
prediction and the label, with a smaller color scale.

28

0

200

400

0

200

400

Ti
m

es
te

ps

0 200 400

0

200

400

0 200 400
Receivers

0 200 400

0.16

0.08

0.00

0.08

0.16

Figure 2.7: The prediction on the whole dataset containing both the training and validation
set (transposed to the shot domain). Note the preservations of the diffractions.

29

0

200

400

0

200

400

Ti
m

es
te

ps

0 200 400

0

200

400

0 200 400
Receivers

0 200 400

0.16

0.08

0.00

0.08

0.16

Figure 2.8: Predictions for blended data from a two-layer model.

30

Chapter 3

Born inversion with recurrent neural

networks

In the previous chapter, we showed an example of tackling the deblending problem using a

convolution-based neural network. We let the theory to guide the machine learning solution

by carefully generating the input data and choosing a suitable architecture. This is like most

machine learning algorithms treat problems from a statistical perspective. In this chapter,

we will lean more to the theoretical side of the continuum mentioned in Chapter 1.

Linear regression, as a straightforward example, extracts features (model parameters)

from the given data and learns how to correlate the selected features to the data (I.

Goodfellow et al., 2016). By fitting a line through a cluster of points, we assume that there

is a linear trend between the independent and dependant variables. By using this limiting

assumption, we greatly reduced the number of unknowns to just two, the slope and the

intercept coefficients. This is an example of how prior-knowledge can be injected into a

statistical problem to solve it with less effort.

Even the most fundamental fully connected neural network contains injected knowledge—

it requires the number of layers and the number of nodes to be predefined, which is related

to how many orders of non-linearity need to be simulated. The Convolutional Neural Net-

31

works (CNNs), a more complex model that is popular in image recognition/segmentation,

injects the idea that a feature at a given point only depends on its nearby points (Fukushima,

1979; LeCun et al., 2015). This assumption significantly reduces the burden on the learning

process compared to fully connected neural networks. The recurrent neural network (RNN,

Lipton et al., 2015) feeds in the knowledge that the output at a current state depends on

the features at the current state and the previous states. This causal characteristic makes

the network time- or sequence-relevant and makes RNN a perfect match for a complex

job like word recognition and natural language processing. As a general rule, the more

knowledge is fed into the neural network/structure, the less flexible is the model. The

return of yielding flexibility is easier training and the reduced risk of diverging.

Most studies applying machine learning to wave simulation in geophysics treat the

forward problem as a black box, selecting the velocity as a feature (Moseley et al., 2018).

The black box idea solves the problem statistically, which follows the classical machine

learning philosophy, but it ignores theoretical knowledge that has been well studied in

geophysics (e.g. the wave equation and scattering theory). With the neglect of those

crucial theories, the neural network will spend too much energy finding approximations to

the theories by itself. The approximations are usually poor and highly dependent on the

problem trying to solve. Some recent works in geophysics proposed that we shall inject our

knowledge to the machine learning algorithm and only treat part of it to be a numerical

problem (Karpatne, Atluri, et al., 2017).

In this chapter, we attempted to add wave propagation knowledge to an RNN. By

following a similar idea from Richardson, 2018 and J. Sun et al., 2020, we incorporated the

Born approximation into the structure of the RNN. The RNN takes a background velocity

and the source as input features. We designed the network structure from scratch to make

the velocity perturbation to be the hidden parameter, and the output is a shot record.

We performed an inversion of the model by training the RNN with generated data. The

inversion process can be proven to be the same as least squares reverse time migration

32

(LSRTM). We implemented the RNN based on the APIs in TensorFlow (Abadi et al., 2016),

tested popular machine learning optimizers and discuss their performances. As a test result,

we concluded that the ADAM optimizer is the most stable and time-efficient for this method.

3.1 Theory

3.1.1 Forward modelling with the Born approximation

Consider a wavefield p0(x, t) propagating in a background velocity v0(x) with a source

f(x, t). This wavefield obeys the wave equation

(
1

v2
0

∂2

∂t2
−∇2

)
p0 = f (3.1)

Let us consider another wavefield p(x, t) = p0(x, t) + δp(x, t) propagating in a velocity

media v(x) = v0(x) + δv(x) with the same source, where v(x) is a velocity that differs

from v0(x) by δv(x) and p(x, t) is the corresponding wavefield with respect to v(x). The

wavefield is hence governed by

(
1

(v0 + δv)2
∂2

∂t2
−∇2

)
(p0 + δp) = f (3.2)

If it is assumed that δv
v0
→ 0, then

1

(v0 + δv)2
=

1

v2
0

(
1 +

δv

v0

)−2
≈ 1

v2
0

(
1− 2

δv

v0

)
(3.3)

Replacing Equation 3.1 in Equation 3.2

(
1

v2
0

∂2

∂t2
−∇2

)
δp =

2δv

v3
0

∂2

∂t2
(p0 + δp) (3.4)

33

If we apply the Born approximation assuming the second time derivative of δp is

negligible, we can write two wave equations for the background and perturbed wavefield

as follows:

(
1

v2
0

∂2

∂t2
−∇2

)
p0 = f (3.5a)(

1

v2
0

∂2

∂t2
−∇2

)
δp =

1

v2
0

m
∂2

∂t2
p0 (3.5b)

where m is the model defined as velocity perturbation (2δv
v0

). The perturbation wavefield

can be considered as the wavefield of a source that is the zero-lag cross-correlation of the

model and the second time derivative of the background wavefield. With Equation 3.5a

and 3.5b, we can calculate the perturbation wavefield (δp) given a velocity perturbation m

from v0.

3.1.2 The implementation using TensorFlow

Based on the fact that the wave propagation is a function of time, the most suitable

neural network framework for simulating the wavefield is the RNN, which already contains

time structures. The RNN can be built with the help of TensorFlow, which brings the

power of parallel computing with GPUs. Tensorflow provides a flexible python Application

Programmer Interface (API) that calls the CUDA library "cudnn". Moreover, as one of

the popular machine learning packages, TensorFlow has an API to compare different

optimization methods systematically. Figure 3.1 shows the RNN architecture used for this

chapter.

As shown in Figure 3.1, each cell refers to a series of calculations to compute the

perturbed wavefield. We decided to use the 3-point-centred finite difference expansion for

the second order time derivative since it is accurate enough for small time steps. In the

space domain, we also chose a second order finite difference for prototype development,

which can be improved to a more accurate approximation in the future. The second order

34

Figure 3.1: The diagram of the RNN structure. The black boxes are neural cells that take
the source and two previous perturbation wavefields to compute the next perturbation
wavefields. The output of each cell is the shot record at a given time, and the most recent
two wavefields will be passed to the next cell.

approximation in the space is usually not adequate but is fast and stable. After discretization,

Equation 3.5a and 3.5b can be rearranged to

p
(t+1)
0 − 2p

(t)
0 + p

(t−1)
0 = v2

0∆t2
(
∇2p

(t)
0 + f

)
(3.6a)

δp(t+1) − 2δp(t) + δp(t−1) = v2
0∆t2

(
∇2δp(t) +

m

v0
2

(
∇2p

(t)
0 + f

))
(3.6b)

where the superscript (t) denotes a variable at the tth time step. Note that the time derivative

(∂
2

∂t2
p0) on the right hand side of Equation 3.5b is replaced by the equality in Equation 3.5a.

Instead, in Equations 3.6a and 3.6b, the wavefields at the current time step can be calculated

if the previous two wavefields are known or given. With the wavefield at the current cell,

d(t) can be extracted from the wavefields. Then the wavefields at (t) and (t − 1) will be

moved forward to the next cell to go through a similar process until it reaches the maximum

time step. The shot record (dcal) can be formed by concatenation of d(t) from each cell to

produce a synthetic wavefield. This wavefield can be compared with the observed data for

35

either full waveform inversion, to estimate velocity errors, or for least squares migration, to

estimate a reflectivity model.

3.1.3 The gradient update and optimization

In the previous section, we introduce the procedure to use an RNN to perform forward

modelling. Neural networks problems are essentially optimization problems. If we let a

model parameter to be unknown and feed the generated data by the forward modelling,

the model can be solved by “training” of the neural network.

The derivation of the gradient follows a similar idea as described by Richardson, 2018.

A cost function penalizing modelling errors can be defined as

J =
1

2ns

∑
xs

‖D − dcal‖2 =
1

2ns

∑
xs

∑
xr

∑
t

(D − dcal)
2 =

1

2ns

∑
xs

∑
xr

∑
t

r2, (3.7)

where D stands for the observed data and dcal is the prediction calculated by the Born

modelling. r refers to the data residual. A gradient of this cost function with respect to

the unknown parameters, the model, will tell us how the error changes as the parameter

changes. This gradient will provide us with information on how to change the model

to decrease the prediction error. Since the error was summed through out the time, the

gradient is the sum of all gradients at each time step as well:

gi =
T∑
t=0

g
(t)
i =

T∑
t=0

∂J (t)

∂m
. (3.8)

The gradients at each time step can be proved to be the dot product of the time-

reverse-propagated wavefield of the data residual (r) and the 2nd time derivative of the

time-forward-propagation of the background wavefield (p0), i.e.

∂J (t)

∂m
=

1

v0
2
B(r,x, T − t) ∂

2

∂t2
p0(f,x, t) (3.9)

36

(proof is developed in the Appendix). Therefore, the optimization problem for the inverse

of Born modelling can be treated in the same manner as a LSRTM inversion.

Optimization by adaptive moment estimation (ADAM)

For each iteration of the training step, one can update the model using gradient descent as

following:

mi = mi−1 − αgi (3.10)

where α is the learning rate that is usually smaller than 1 (α = 1 means the full step

along the gradient). However, the negative direction of the gradient is not necessarily

the direction towards the local minimum. The traditional gradient descent method is

not costly to calculate at each iteration but usually takes a zigzag path to the optimal

solution. Adaptive moment estimation (ADAM) is a first-order optimization method that

can suppress the oscillations that commonly appear in the gradient descent method. Similar

to conjugate gradients, ADAM chooses a more optimal path based on previous updates.

This optimization method combines the advantages of momentum and root mean square

propagation (RMSprop) (Kingma & Ba, 2014).

ADAM needs three (hyper-) parameters to be set manually: 1) α refers to the step length

of the gradient update, which is similar to what is used in other gradient methods; 2) β1

and 3) β2 are extra parameters to control how much the new gradient is related to previous

gradients. These parameters are used to calculate two momentum terms, which are the

accumulative sum of the first order and second order of the gradient in previous iterations.

These momentums are defined as

v ← β1v + (1− β1)g (3.11a)

s← β2s + (1− β2)g2. (3.11b)

Instead of the model update described in Equation 3.10, ADAM optimizer updates the

37

model in the following way:

mi = mi−1 − α
v̂√
ŝ + ε

(3.12)

where v̂ and ŝ are v and s normalized by (1− β1i) and (1− β2i), respectively. The division

is point-wise, and ε is a regularization coefficient to avoid the division by zero. α refers to

the learning rate. The pseudo-code provided by Kingma and Ba, 2014 is shown below as

Algorithm 4.

Algorithm 4 The ADAM optimization
v0 ← 0
s0 ← 0
i← 0
while i < #iter do

i← i+ 1
Calculate gi
vi ← β1vi−1 + (1− β1)gi
si ← β2si−1 + (1− β2)gi2
v̂i ← vi

1−β1i

ŝi ← si
1−β2i

mi = mi−1 − α v̂i√
ŝi+ε

Generally speaking, the numerator of the update v̂ can be interpreted as the weighted

sum of gradients through iterations. Therefore the oscillation will be cancelled in terms of

the vector sum. The denominator
√
ŝ can be thought of as the weighted root-sum-square

of the gradients. For the very first iteration of ADAM, the update will be a scale of alpha

and the information of the gradient will be added later on. From the flow of the ADAM

optimization, one can notice that the absolute value of the parameter update will never

be greater than the step size α. This means the ADAM optimizer will still perform small

updates even if the optimal update should be large. This is because v̂ <
√
ŝ holds as long as

gradients at each iteration are not always in the same direction. This characteristic prevents

overshooting of the gradient. In our problem, the parameter to be solved is usually smaller

than 1 (unless the initial guess for the velocity is very inaccurate), so the updates should be

smaller than 1 as well. This is similar to classical machine learning problems, where the

38

hidden parameters are usually small numbers. Therefore, we can start by testing different α

values from 0.001 to 0.1, which works well in most machine learning algorithms. However,

for problems that need greater updates, one may need a step size that is greater than the

values recommended by machine learning.

3.1.4 The Fletcher-Reeves method

The Fletcher-Reeves method (FR) is a non-linear adaptation of the traditional linear conju-

gate gradient method (Wright & Nocedal, 1999). The traditional linear conjugate gradient

method is designed for a quadratic cost function with respect to the model parameters.

Although the Born modelling is a linear method and applying non-linearity seems to be

unnecessary, the cost function may not be perfectly quadratic with respect to the model.

Therefore, we decided to test this method by using the FR optimizer in the SciPy package

of Python (Virtanen et al., 2020), which was implemented following Wright and Nocedal,

1999. The pseudo-code is shown as Algorithm 5.

Algorithm 5 The Fletcher-Reeves method
Require: The initial guess of model m0 (zeros)

Compute J0 = f(m0),∇J0 = ∂J
∂m

(m0)
Set p0 = −∇J0
i← 0
while i < niter and ∇Ji 6= 0 do

Compute αi and set mi+1 = mi + αipi
Evaluate ∇Ji+1

βk+1 ← 〈∇Ji+1,∇Ji+1〉
〈∇Ji,∇Ji〉 (〈·, ·〉 refers to inner product)

pi+1 ← −∇Ji+1 + βk+1pk
i← i+ 1

39

0 500 1000
Lateral [m]

0

500

1000

De
pt

h
[m

]
True velocity

0 500 1000
Lateral [m]

Background velocity

0 500 1000
Lateral [m]

Velocity perturbation

2400
3000
3600
4200
4800

[m
/s

]

2400
3000
3600
4200
4800

[m
/s

]

0.4
0.2

0.0
0.2
0.4

[u
ni

tle
ss

]

Figure 3.2: The scattering model. The true model was used for the finite difference
modelling (Figure 3.3) while the background and perturbed model were used for the Born
modelling method (Figure 3.4).

3.2 Synthetic data examples

3.2.1 The modelling results

We designed a simple scattering model to test the modelling accuracy using the Born

approximation. The model is shown in Figure 3.2, which has a dimension of 101× 101 cells

with a grid spacing of 10 m. For both the finite difference modelling and the Born modelling,

11 shots are fired at the indexes 1, 11, 21, 31, 41, 51, 61, 71, 81, 91 and 101 at the surface

and the receivers are placed at each cell with the same depth. The receivers record the first

1 s with time step of 1 ms. The injected source was a 15 Hz Ricker wavelet. Figures 3.3 and

3.4 are the corresponding synthetic wavefields, showing that finite difference and Born

modelling produce similar results for this case.

3.2.2 The inversion results

We tested whether the RNN is capable of calculating model corrections from the prediction

errors, that is we test the RNN back propagation algorithm. The shot record shown in

Figure 3.4 was fed to the RNN as the desired output (label). At each iteration, the training

process automatically finds the inverse of the prediction error and returns an estimate of the

model. Then we repeated the same test on the more structured Marmousi model (Figure

40

0 1000

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
[s

]

2nd Shot

0 1000

4th Shot

0 1000
Lateral [m]

6th Shot

0 1000

8th Shot

0 1000

10th Shot

8

4

0

4

8

Figure 3.3: A shot record calculated by the finite difference modelling method.

0 500 1000

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
[s

]

2-th Shot

0 500 1000

4-th Shot

0 500 1000
Lateral [m]

6-th Shot

0 500 1000

8-th Shot

0 500 1000

10-th Shot

8

4

0

4

8

Figure 3.4: The shot record calculated by the Born modelling method.

3.7). In our tests, we found that the method does not seem to reach a stopping criterion.

This is because the high-frequency component of the model is difficult to recover, which

leads to the convergence rate decreasing with iterations. Therefore, even after a reasonable

period of time, the cost function does not reach the accuracy threshold. To circumvent this

issue, we have to set a maximum for the number of iterations. Unfortunately, the maximum

number of iterations depends on the chosen optimization method. The following subsection

shows the results of using the ADAM optimizer.

41

0

200

400

600

800

1000

De
pt

h
[m

]

a) b)

0 200 400 600 800 1000
Lateral [m]

0

200

400

600

800

1000

De
pt

h
[m

]

c)

0 200 400 600 800 1000
Lateral [m]

d)

0.4

0.2

0.0

0.2

0.4

Pe
rtu

rb
at

io
n

0.4

0.2

0.0

0.2

0.4

Pe
rtu

rb
at

io
n

Figure 3.5: The updated model at specific iterations. a) The true model; b) The initial zero
model; c) The estimated model at the 10th iteration with ADAM optimizer using a learning
rate of 0.3; d) The model at the 50th iteration.

The scattering model

Figure 3.5 shows the inversion result by the ADAM optimizer applied to the scattering model

shown in Figure 3.2. The initial model was all zeros and the learning rate was set to a value

of 0.03. We can see that the main skeleton of the model was partially recovered after 10th

iterations. The model kept improving and gained more high frequencies through iterations.

Figure 3.6 shows the cost function response to different choices of the learning rate α. As

mentioned in the theory section, β1 and β2 are the weighing factors that determine how

much the update is related to previous gradients, while the step size is controlled by α.

42

0 20 40 60 80 100
Iterations

0

50000

100000

150000

200000
Co

st
= 0.1
= 0.03
= 0.01

Figure 3.6: The cost functions for different value of α with β1 = 0.9 and β2 = 0.999 in all
cases.

Since the absolute value of the update is never greater than α, the choice of α is crucial

and problem-specific. For the scattering model shown in Figure 3.2, velocity perturbations

range from −0.4 to 0.4. If setting the number of iterations to 400 and letting the step size

be equal to α, then α should be around 0.4/400 = 0.01. In Figure 3.6, we can see that

α = 0.01 is too conservative—the curve is smooth but it converges slower then α = 0.03.

In contrast, α = 0.1 seems to be too aggressive—the oscillation on the curve indicates the

step size used is too large. Although it is still approaching the local minima with satisfying

speed, the progress is at high risk as the function may get trap into other local minima at

any oscillation peaks. α = 0.03, despite some minor imperfection, converges the fastest

to the local minimum. Furthermore, the training process does not need 400 iterations to

converge, and it gives good results after 50 iterations. Selected iterations of model was

shown in Figure 3.5b, 3.5c and 3.5d.

43

The Marmousi model

One may find that even a non-linear method like FWI has difficulty estimating flat layers

since the high-frequency part of the model takes a long time to converge. Therefore, we test

a different model. Marmousi (see Figure 3.7) is more complex and representative of the

kind of problems we would like to solve in the real world. The model grid has a dimension

of 94× 288 with a cell size of 10 m. In our tests, we reduced the depth and lateral distance

by a constant scale factor to reduce memory usage. Otherwise, the model would need a

lower dominant frequency to satisfy the dispersion condition and would result in images

with poor resolution. Figure 3.8 shows the model updates obtained at selected iterations

using the ADAM optimizer with a learning rate of α = 0.03. The red line in Figure 3.9 refers

to the cost function corresponding to it. The values of the cost function are, at the initial

state equal to 1 933 903.87, at the 200th iteration equal to 247.67, and at the 300th iteration

equal to 101.88.

3.2.3 Non-linear optimizers

Two non-linear optimization methods were used in this chapter, the FR-CG and the L-BFGS-

B method. Both methods use line search, which means the cost will be computed more

than once at some iterations. The green and blue lines in Figure 3.9 show cost functions for

both methods, respectively.

For the FR-CG method, it is noticeable that some severe line search oscillation happens

in early iterations and causes it to be slow from the beginning. The cost is 33 246.41 at

the 200th function evaluation and converged extremely slow after the cost is minimized to

around 2000.

For the L-BFGS-B method, there are only minor line search oscillations. The method is

much faster than the FR-CG method and has also converged to a lower cost. The cost is

4044.99 at the 200th function evaluation and converges to around 300 eventually. However,

44

neither of the methods outperforms the ADAM optimizer. This is because the step length is

problem-specific and gives a boost to the optimization process.

3.2.4 Limitations

Although RNN is convenient to take advantage of parallel CPUs and GPU acceleration, it

also has many drawbacks. On the one hand, RNN uses small number of time steps (usually

less than 100), because of the kind of problems it was designed for (voice recognition and

word processing). On the other hand, it needs to use small time steps to avoid aliasing

and distortion and to fully cover realistic models. TensorFlow saves all the functions to

cache for each layer before starting the back-propagation, but in the kind of problems

discussed in this chapter there are too many variables. For the scatter model as shown in

Figure 3.2, though the actual training progress is fast, it takes 10 gigabytes of memory and

usually needs 15 min to 20 min just for the initial setup. This disadvantage may be avoided

by designing a more suitable neural network structure or by transforming the time domain

into the frequency domain to reduce the number of layers in RNN.

The other notable drawback is from the use of the Born approximation. Like LSRTM,

that also uses the Born approximation, the method also highly depends on the quality of the

background velocity estimation. A poor/wrong background velocity will result in position

shifts for the imaged reflector. A solution for this would be adding more non-linearity. For

example, the forward modelling can be replaced by the finite difference method, or we can

update the background velocity during the iteration to add more non-linearity.

3.3 Conclusion

The Born modelling can be successfully implemented using RNN with TensorFlow. Then, by

feeding a theoretical data to the RNN built, the model can be inverted by back-propagation

of the RNN. This operation can be proven to be the same as the LSRTM formulation. We

45

found the ADAM method seems to be the most efficient optimizer but it requires to be extra

careful when choosing the hyper-parameters. The second efficient optimizer is L-BFGS-B,

which does not take extra hyper-parameters. The least efficient optimizer in our tests is the

FR-CG, which spends much time in line searching and hence causes too many perturbations

to the loss curve. The overall computing performance is good but TensorFlow takes too

much time and memory to build the network before the back-propagation. In the future,

we are interested in bringing this method to the frequency domain and looking for a more

suitable neural network structure for wave propagation.

46

0

200

400

600

800

De
pt

h
[m

]

True velocity

0

200

400

600

800

De
pt

h
[m

]

Background velocity

0 500 1000 1500 2000 2500
Lateral [m]

0

200

400

600

800

De
pt

h
[m

]

Velocity perturbation

1600

2400

3200

4000

4800

[m
/s

1600

2400

3200

4000

4800

[m
/s

]
0.4

0.0

0.4

0.8

1.2

[u
ni

tle
ss

]

Figure 3.7: The Marmousi model. The background velocity model is obtained by gaussian
filtering of the true model. The velocity perturbation is 2δv/v0, as defined in the theory
section.

47

0

500

De
pt

h
[m

]
a) b)

0 1000 2000
Lateral [m]

0

500

De
pt

h
[m

]

c)

0 1000 2000
Lateral [m]

d)

0.4

0.0

0.4

0.8

1.2

Pe
rtu

rb
at

io
n

Figure 3.8: The inversion results of Marmousi model by RNN. a) The true model; b) The
initial zero model; c) The estimated model at the 10th iteration with ADAM optimizer using
learning rate 0.3; d) The model at the 50th iteration.

0 25 50 75 100 125 150 175 200
Iterations

0

1

2

3

Co
st

 fu
nc

tio
n

1e6 a)

Adam (= 0.03)
FR-CG
L-BFGS-B

0 10 20 30 40 50
Iterations

0

1

2

Co
st

 fu
nc

tio
n

1e6 b)

Adam (= 0.03)
FR-CG
L-BFGS-B

Figure 3.9: Cost function curves comparison of the three used methods. a) The first 200
times of loss calculations; b) a zoomed version of the figure a.

48

Chapter 4

Velocity extraction from migration

images

4.1 Introduction

Machine learning has become an important tool in the field of geophysics. It can overcome

some drawbacks of the theory and facilitates the combination of CPUs and GPUs because of

the maturity of high-level APIs. In the previous chapters, we discussed that machine learning

has great potential in numerical analysis, but it also has limitations. The most crucial

limitation is generality. Since machine learning is a data-driven technique, the learned

knowledge can be specific to the dataset used for training. Therefore, the predictions

from a trained network can often be invalid for other data, for example in seismic, data

observed in a different type of geological environment or survey conditions. Especially

in seismic inversion and forward modelling, a small change in the acquisition can result

in great changes in the data. Since there are many possible types of surveys, training a

network can be very challenging, because a dataset cannot cover countless acquisition

setups. Most researchers on solving modelling/inversion problems often assume a fixed

acquisition geometry and train networks with data based on random velocity models. This

49

generalizes the network for a variety of velocity models but not for different acquisition

geometries.

In this chapter, we will explore a way to extract velocity from reverse time migration

images. We use migration images because that helps to remove dependencies on the

acquisition geometry. Shot gathers are a function of time, acquisition parameters and the

geology that lies beneath. Not all of them are of our interests — we care more about the

structure and the rock properties. Migration, however, reduces the number of parameters

by mapping seismic events to reflector boundaries, which are of interests for seismic

interpretation. Reverse time migration (Claerbout, 1971) uses the correlation of source

wavefields and receiver wavefields to show the location of the reflector. This method

requires a good background velocity model and does not deal with multiples (which is

related to acquisition geometry), but it has become very popular because of its good balance

between accuracy and efficiency. Different imaging conditions have been proposed, and

they all aim to achieve better accuracy for estimating the reflectivity, from which we can

extract more information about the subsurface. It is crucial to recover the correct reflectors’

amplitude, and it is beneficial for model updates in inversion methods such as FWI (Lailly

& Bednar, 1983; Tarantola, 1984). Starting from the inaccurate amplitude from migration

images, we trained a neural network to convert them into velocities at low costs.

4.2 Theory

4.2.1 Reverse time migration

Reverse time migration (RTM) uses an imaging condition to combine the shot and receiver

wavefields and obtain the location of the reflectors. The simplest form of this condition is

the dot product of the up-going wavefield and down-going wavefield. Following Claerbout,

1971, the reverse propagation of the shot record will coincide with the source wavefield

at the position of the reflector, providing a maximum of the cross-correlation where the

50

reflector is located. A typical 2D cross-correlation imaging condition can be defined as

I(x) =
∑
t

S(x, t)R(x, T − t) (4.1a)

I ′(x) =
2

v0(x)3

∑
t

∂2S(x, t)

∂t2
R(x, T − t) (4.1b)

where S refers to the source wavefield while R refers to the receiver wavefield. The dot in

between refers to element-wise production. The indexes t and T − t indicate the forward

and reverse propagation of the wavefields. Each time t produces an image. When all

these images are added, constructive interference produces a stable image of the reflectors.

Equation 4.1a does not yield the true reflectivity but is a good approximation. In this chapter,

we define the imaging condition by Equation 4.1b as it is closer to the FWI gradient. The

source wavefield is replaced by its second derivative with respect to time, and the amplitude

is normalized by the background velocity model vo(x). This replacement corresponds to

using Born modelling instead of the full wavefield, as is common in least-squares migration

since it casts imaging as a linear problem.

4.2.2 `1 norm and `2 norm

`1 norm and `2 norm (or their squares) are the most common loss functions used in

optimization problems. The choice between them lead to different results in inversion

problems (Taylor et al., 1979). Suppose the observation/true data is y and prediction is

ypred, then

L1(y,ypred) =
1

n

n∑
i

∣∣∣y(i) − y(i)pred

∣∣∣ (4.2a)

L2
2(y,ypred) =

1

n

n∑
i

(
y(i) − y(i)pred

)2
(4.2b)

51

Equations 4.2a and 4.2b are both metrics that positively relate to the error magnitude and

will be zero if there is no difference between y and ypred. Note that Equation 4.2b is `2 norm

square to be precise, but it is called `2 in this chapter for simplicity. Another interesting

aspect appears when we consider their gradients. Let ∇yL denote the gradient of L with

respect to y, then

∇yL1 =
1

n
· sign (y − ypred) (4.3a)

∇yL
2
2 =

2

n
(y − ypred) (4.3b)

We can see that the gradient of `2 is related to the error at that point while the gradient of

`1 is essentially a direction which could only be either 0, 1 or −1. These characteristics can

be both advantages of disadvantages. Optimizations based on `2 gradient produce updates

proportional to the error, which will be strong when the error is large but weaken as the

solution gets closer to the truth. On the other hand, optimizations based on `1 have a more

stable model update but will oscillate when the learning rate is bigger than the error.

Another way of understanding the difference between `1 and `2 losses is the priority when

dealing with outliers, that is data points with large observational error. From Equation 4.2b

we can see that `2 weights large errors much more than small errors since the error is

squared and the gradient scales with the distance. Using an `2 norm as a loss function will

focus more on solving these large errors first, which can be difficult if the initialization is

bad. On the other hand, `1 norm weights large and small errors in a more similar manner.

4.2.3 Chain rule and back-propagation

The chain rule from calculus can be summarized with the following equation. Assuming

L = f(y) where y = g(x), then

∇xL =

(
∂y

∂x

)ᵀ

∇yL (4.4)

52

L is a scaler function that could represent the loss while x and y are two vectors that

do not necessarily have the same dimension. ∇ refers to the gradient with respect to the

subscript. We can see that the gradient with respect to x, ∂y/∂x, refers to the Jacobian

matrix, which links the two gradients. One can calculate the gradient with respect to later

variables (y), then convert it to the gradient of previous variables (x). That is why this

scheme is named “back-propagation”. The back-propagation starts from ∂J/∂J = 1 and

then recursively multiplies the Jacobian matrices down to each trainable parameter, which

yields the gradient for parameter updates. Then the gradient will keep propagating until it

reaches the beginning of the computation graph.

One can infer that if the chain becomes too long and any of the gradients in this chain

has become a small number, the resulting gradient will end up with an even smaller number

and make the parameters difficult to update. This phenomenon is called vanishing gradient

in numerical differentiation. There are several ways to mitigate gradient vanishing. The

first cure is to avoid too deep networks. This is usually not the case because more layers are

needed for adding enough non-linearity. Another popular method is to add shortcuts to the

network, which allows the neural network to learn some features first and then deal with

the other. U-Net (Ronneberger et al., 2015) and ResNet (He et al., 2016) are two of the

most popular frameworks that use shortcuts.

4.2.4 Residual network (ResNet)

+

Transform Block

NN Block NN Block

Figure 4.1: A ResNet building block modified from He et al., 2016. Regular triangles refer
to activation functions. Dashed arrows are connected to other blocks.

53

Figure 4.1 shows a building block of a typical ResNet. The building block contains

two parts: the backbone which contains the main structure of the neural networks, and

a shortcut to skip neural network blocks. Each of the neural blocks can contain several

neural layers which can be either convolutional or fully connected. The shortcut contains a

transformation that will fix the dimensional mismatch of its inputs and outputs. Usually,

the transformation is linear with no activation function applied, or it can also be the

identity operator if the input and output are in the same dimensions. Then the result of

the transformation is added back to the backbone’s output, and the sum is then fed to

an activation function. The dashed line on either side may be connected to other ResNet

building blocks.

The introduction of shortcuts enables the neural network to skip unnecessary steps.

Since there are fewer terms when applying the chain rule, this process prevents vanishing

gradient to some degree. Furthermore, the shortcuts do more than skipping some layers

because of the existence of the addition node. This could be understood in another way.

Suppose that the transformation block is identity. Instead of fitting a function that maps

from the block input x to the block output y, the ResNet block is trying to fit a function that

maps from x to (y − x). In other words, the ResNet is forced to focus on learning features

that are non-linear to x.

4.3 Example

4.3.1 Images from RTM

In this example we will use a neural network to convert reflectivity traces from 1D RTM

migration to velocities. The velocity models are defined as 4-layer 1D models. Each

generated velocity model contains 1000 points with spacings of 8 m. We fixed the shallowest

layer to have a velocity of 3000 m/s and assume it is the minimum of the entire model. The

other layers have random velocities within 3000 m/s to 5500 m/s. The range was designed

54

to match the global range for the acoustic Marmousi model. The positions of reflectors are

randomized with uniform distribution. However, we reject the models with layers being too

thin to avoid severe overlapping of primaries. There is no need to apply such restriction to

the deeper layers, since velocity model can be treated as having fewer layers if any adjacent

velocities are close.

The RTM images are generated by following Equation 4.1b. The forward modelling used

second order finite difference method for calculating both temporal and spatial derivatives.

The source wavelet is a Gaussian source. The source is non-negative and symmetric, which

helps to identify reflectors. The source and receiver are both placed at 8 m below the surface.

We use absorbing boundary conditions on both sides of the wavefield, and direct waves are

removed when calculating the receiver wavefield.

4.3.2 The definition of input/output

0.5
0.0
0.5

Input

1
0
1

Label

0.5
0.0
0.5

1
0
1

0.5
0.0
0.5

1
0
1

0 2000 4000 6000 8000
Depth [m]

0.5
0.0
0.5

0 2000 4000 6000 8000
Depth [m]

1
0
1

Figure 4.2: Four random examples of input and label pairs.

55

Here we define the input fed to the neural networks to be 50 000 RTM images from

random 1D velocity models as described in the above section. In machine learning, the

theoretical values used to calculate the loss of predictions are called true labels. In this case,

the true labels are the velocity model corresponding to each image. There is an infinite

number of choices in the forms of inputs and labels, which will affect the focus of the

network. For example, the labels can be vectors that store the depth and velocity of each

layer since we have flat velocity models. The representation is efficient in terms of telling

information, and the model would spend no effort in learning each layer has constant

velocity. The problem is that this representation makes the problem hard to generalize

because we have to know the number of layers in advance and train models for different

situations. Another representation is to use the true reflectivity directly as labels. This

may also be problematic since the entire information is concentrated on the “spikes” in the

reflectivity. Useful information will be flooded by less significant information and make the

network less intuitive to what type of information should be learned.

Different input-label pairs are called samples in machine learning. Both input and labels

have the dimensions of nsample × nz, which is 50 000 by 1000 in this case. Figure 4.2 shows

4 example input-label pairs from the dataset. The left column refers to the inputs, which

are normalized to be ranging from (−1, 1). The right column shows the labels, which are

the corresponding velocity models. The magnitudes have been normalized to the same

range. Note that the “velocities” of the first layer are all −1. This is because they are equal

to the minimum of the entire set of velocity models, i.e. 3000 m/s. For the same reason, the

maximums of the labels are all equal to 1. The entire dataset is then separated randomly

into training and validation sets. The training set takes up 80 % from the whole, and the rest

forms the validation set. The training set contains the data used directly for calculating the

gradients at each iteration. The gradients would be directly related to the misfit between

the predictions of the model and labels in the training set. On the other hand, the validation

set is used indirectly as a metric of the optimization process. We used the performance on

56

the validation set to help determine hyper-parameters, the degrees of over-fitting or the

timing for early stopping. The trained network is then still a function of the validation set

and this is how a validation set differs from the test set. In an ideal case, the dataset should

be divided into training/validation/test sets. The test set, which never gets involved in the

training process from the start to finish, is the only reliable metric for judging a model.

However, we ignore the difference and use validation error to estimate test error in this

case. This may be unfair in some sense but will allow us to have more data reserved for the

training set. The Adaptive moment estimation optimizer (ADAM, Kingma & Ba, 2014) is

adopted. Despite different neural network types, the workflow can follow Algorithm 3. The

algorithm saves the model that has the lowest validation error in a training process. More

details on the workflow are discussed in Chapter 3.

4.3.3 Fully connected neural network

OutputInput Hidden

(Leaky ReLU) (tanh)

Figure 4.3: A 7-layer fully connected neural network. Each circle represents 100 nodes.

All neural networks in this chapter are implemented with the machine learning package

PyTorch (Paszke et al., 2019). A fully connected model is used for solving the original

problem (see Figure 4.3). The model contains seven layers. The input layer and output

57

layer have 1000 nodes, the same as the length of the model. There are five hidden layers

in between, with 500 nodes in each layer. The activation function for each hidden layer is

leaky ReLU (leaky rectified linear unit) with a slope of 0.2 on the negative side. The leaky

ReLu will capture features on the negative half but still add non-linearity. The activation

function for the outputting layer is tanh. The connections between two adjacent layers in a

fully connected network can be represented by a matrix containing trainable parameters.

In this network structure, the trainable parameters are, 1000 by 500 for the connections

between the inputs and first layer; four 500 by 500 matrices for interconnection between

hidden layers; and a 500 by 1000 between the last hidden layer and the output layer. In

addition, there is one extra parameter for the bias of each neuron. The total number of

trainable parameters is quite large, about 2× 106. Although the number of parameters is

smaller than the number of data points, the problem is under-determined because data

points are not fully independent of each other. This is typical in Neural Networks, which

are designed to find non-linear patterns from data and therefore given more flexibility than

formulations based on physical laws.

4.3.4 Choosing the right loss function

Figure 4.4 shows predictions from different models trained with `1 and `2 loss. The bottom

figure refers to the inputting RTM image and the corresponding velocity model is shown as

the blue line in the top figure. We used the same network structure and hyper-parameters

for both tests. We can see that the `1 prediction (green) is visually better than the `2

prediction (orange). Especially, `1 loss reacts faster when there is an abrupt change in the

label, which eventually helps to update other velocities. We can also notice the `2 prediction

is affected by another layer at around 1000 m to 1500 m. Similar observations can be made

in the last layer (6000 m to 6500 m), where the prediction is affected by greater velocities

above it. One interesting part is that although `1 is overall more stable than `2, they have

similar behaviours handling different layers. We define the model to have a fixed min and

58

0 1000 2000 3000 4000 5000 6000 7000 8000
1.0

0.5

0.0

0.5

1.0

Ve
lo

cit
y

[n
or

m
al

ize
d]

True
L2
L1

0 1000 2000 3000 4000 5000 6000 7000 8000
Depth [m]

0.2

0.0

Am
pl

itu
de

[n
or

m
al

ize
d]

Input

Figure 4.4: Predictions made by models with `1 and `2 loss function, respectively.

max velocity, which are −1 and 1 after normalization. This is because we use tanh as the

outputting activation, which suppresses all prediction that is too large or too small. The

raw output before the tanh activation function may have great oscillations and more drastic

limits.

Figure 4.5 shows the comparison between `1 and `2 loss on the training set. The `2 loss

in Equation 4.2b is square rooted to be comparable with `1 loss. The figure shows that the

optimization curve with `1 not only converges faster but also achieves lower error in the

late stage. Since the label contains abrupt changes, `2 loss focuses on dealing with those

changes from the beginning but gets confused as iterations proceed and causes fluctuations

eventually. On the other hand, `1 loss is less affected by this issue.

Although the `1 loss curve shows that the network probably needs more iterations or a

larger learning rate to reach a plateau, it proves that `1 is a more suitable loss function for

this type of problem. Therefore we adopt `1 norm as loss function. However, there may be

better choices of the loss function, like total variation (Anagaw & Sacchi, 2012) which is

59

0 100 200 300 400 500 600
Epochs

10 1

100

Lo
ss

 [l
og

]

L1
L2

Figure 4.5: `1 and `2 loss comparison.

better in preserving blocky discontinuities rather than spiky models.

4.3.5 ResNet

OutputInput Hidden

(Leaky ReLU) (tanh)

Figure 4.6: A ResNet based on the fully connected network in Figure 4.3.

Figure 4.6 shows the ResNet tested in this chapter. In addition to the network in

Figure 4.3, skipping connections are added to the hidden layers. As shown by the black

arrows, each connection skips two trainable fully connected layers and adds the input

60

directly to the output of the ResNet building block. Since the input and output of each

building block are the same, the transformation block is the identity operator. There

are no additional trainable parameters introduced. Therefore the networks should have

comparable training burdens.

0 100 200 300 400 500 600
Epochs

10 1

Lo
ss

 [l
og

]

ResNet
FC

Figure 4.7: Loss curves of the fully connected (FC) and the ResNet model.

We train the ResNet with the same setup and hyper-parameters as before. The loss curve

on the validation set is very similar to and almost overlapping the loss curve of the fully

connected case (see Figure 4.7). Both models achieve small `1 errors and do a good job of

identifying reflection interfaces. However, the two models make predictions differently.

As shown in Figure 4.8, although the two networks have similar errors, the ResNet

predictions (green in the top figure) have fewer fluctuations than the fully connected (FC)

predictions (orange in the top figure). This characteristic is common in different samples.

The only difference between the ResNet and the fully connected models is the shortcuts that

fed back to the backbone. The direct input from several layers before makes the network

easier to find relationships between points and hence reduces the fluctuations. However,

the shortcuts do not help much on the convergence in this case. This is because we are

using a relatively shallow network that may not suffer much from vanishing gradient.

61

0 1000 2000 3000 4000 5000 6000 7000 8000
3000

4000

5000

Ve
lo

cit
y

[m
/s

] Label
FC
ResNet

0 1000 2000 3000 4000 5000 6000 7000 8000
Depth [m]

0.05

0.00

0.05

Am
pl

itu
de

Input

Figure 4.8: A comparison between predictions from the fully connected (FC) model and the
ResNet.

4.3.6 Problematic cases

For testing, one thing to keep in mind is that the validation/test dataset must be normalized

in exactly the same way as the training dataset. In this chapter, the training data are

normalized by linearly stretching the min and max value to (−1, 1) and the test dataset

must be stretched with the min and max of the training dataset but not its own.

As shown in Figure 4.9, we test the model with inputs and output pairs generated by

using a different wavelet (Ricker wavelet). Although we can easily recognize the positions of

the reflectors on the bottom image, the predictions are bad for both models. The predictions

somewhat react to reflections at the first two interfaces but failed to detect the deepest

interface. Also, the velocity is correct only for the first 150 points and this is partly because

the velocity of the first layer is fixed. Similar results can be observed if we change the

imaging condition. This is certain because we have broken the fundamental rule of machine

learning: the test set must come from the same distribution for the training set. In order

62

0 1000 2000 3000 4000 5000 6000 7000 8000
3000

4000

5000

Ve
lo

cit
y

[m
/s

] Label
FC
ResNet

0 1000 2000 3000 4000 5000 6000 7000 8000
Depth [m]

10

5

0

5

Am
pl

itu
de

Input

Figure 4.9: A typical prediction on data with Ricker wavelet.

to make the model work with different wavelets, we should either remove the wavelet

effect by some methods (as we remove dependencies on acquisitions by migrations) or

provide enough data for the network to learn about the change. The former will make the

whole problem less meaningful as if the wavelet effect is fully removed, the results will be

the true reflectivity and we can get velocity by integration. The latter would require the

dataset to be several times larger and perhaps need a network with more complex structure,

more trainable parameters and more advanced technique for the training (such as gradient

boosting, which takes a lot more power to perform). This is hard to do, either more data is

not available or computation cost is too high even for today’s computation power.

4.4 Conclusion

In this chapter, we use fully connected networks to recover the reflectivity from random

4-layer velocity models. We investigate different behaviours when using `1/`2 norms as

63

loss function, and we conclude `1 is more suitable for this type of problem. We test ResNet

shortcuts to the network and they reduce fluctuations. The model performs poorly on data

from different distributions of the training set. Future works may include applying more

advanced training techniques like gradient boosting or seeking better representations of

the input and outputs. Also, we may test the effects of total variation as an additional

regularisation to the loss function.

64

Chapter 5

Constructing seismic using generative

adversarial network

5.1 Introduction

Machine learning has become a popular topic in most sciences and geophysical applications

are not an exception. In Geophysics, many successful applications of supervised machine

learning have been published, in particular in the area of image segmentation/detection,

for example, facies recognition, salt body segmentation (Lomask et al., 2007; Shi et al.,

2018), relative geological time picking (Bi et al., 2020), etc.

Although applications have become more robust in the image recognition field (Chen et

al., 2017; Girshick, 2015; Girshick et al., 2014), we still face a significant challenge that does

not exist in the broader machine learning society: the lack of abundant public labelled data.

The abundance of data is perhaps more crucial and needed to solve geophysical problems

than in other areas like image classification because seismic data interpretation, for example,

relies on subtle details with complex relations between physics and geology. Therefore, in

order to solve problems involving a complex theory by using machine learning, geophysical

research injects theoretical knowledge through the use of complex network architectures

65

or applies physics-guided regularization to compensate for the gaps in information during

the learning process. As a partial solution, researchers have tried to generate synthetic

data with satisfying quality for use in training and improve model convergence and model

generality. For example, Wu et al., 2019 successfully trained a relatively ordinary U-Net

with synthetic fault images. The images are very carefully generated, so the trained model

can provide accurate results on real data and easily adapt to other scenarios without harm

in accuracy using transfer learning. However, we do not always have abundant or precise

knowledge to model the data. Generative adversarial networks (GANs, I. J. Goodfellow

et al., 2014) is capable of this kind of tasks. A successfully trained generator can produce

artificial data in a given data distribution.

This chapter is our first attempt to test GANs in synthetic data modelling. We will use

very simple cases to generate seismic data. At this stage, the main goal is to understand the

characteristics of GAN and its behaviour during training and opening the door for further

research. We explore the methodology of generating 1D data with a generative adversarial

model. Both the generator and discriminator are convolutional, and the noise vectors are

fed along the channel dimension to the generator. The networks are successfully trained

via Wasserstein loss with gradient penalty and careful hypermeter tuning. We evaluate the

trained networks quantitatively and qualitatively. We attempt to find the optimal stopping

point for the training. However, the conclusion cannot be made during the training and

part of it remains subjective.

5.2 Theory

5.2.1 Generative adversarial network

Figure 5.1 shows a typical structure of a GAN. There are two sub-networks in a GAN, the

generator (G) and the discriminator (D is sometimes called the critic, depending on the

form of the output). G generates some samples in the form of random vectors n, while

66

Noise
vector

Real
sample

Score

Generator loss

Discriminator loss

Figure 5.1: A typical structure of unconditional GAN

D distinguishes the generated samples from real samples d. The two networks compete

against each other and try to improve themselves during the training. G will try to learn

how to trick D by generating more realistic predictions, while D will try to become more

aware of the differences between the generated and real samples, which will be changing

as G improves.

The main goal of a GAN is to find a transform from a randomly distributed variable

to a given data distribution. The input of a GAN is usually a uniformly randomized noise

vector n. The output is not treated as the “ground truth” as we do in supervised learning

because no individual input is trained to be bonded to a corresponding label. Instead the

distribution of the input labels and the predictions are compared to each other to assess

convergence.

GANs are notoriously famous for their difficulty in being properly trained. There are

two critical aspects of designing a GAN. First, the accuracy of the network mostly depends

on the robustness of the discriminator due to the way the value function is defined. The

discriminator must be capable of doing its job of separating truth from fake, while being

trained with general approaches. Second, the success is based on balancing the training

of the generator and the discriminator. If the discriminator is too strong or learns too fast

compared to the generator, it cannot provide useful feedback for the generator to continue

67

the learning. In this case, the discriminator will always reject the model no matter how the

generator modifies its parameters, so the generator is likely to get trapped in local minima

and fail to escape from it because of unhelpful gradients. On the other hand, if we have a

generator that is much superior to the discriminator, the generated example will always

fool the discriminator. Because the “same thing” is labelled to be both right and wrong from

the perspective of the discriminator, there may not be a clear path to improvement and be

unable to adapt its weights to decrease the loss function. Using a personification of the

discriminator, we could say that it may get confused and refuse to improve itself.

Because of the reasons above, training a GAN is where science forgets its modern role

and becomes alchemy (Chollet, 2018). Many empirical tricks need to be applied to the

model, and they may not be suitable in other cases.

5.2.2 Wasserstein GAN with gradient penalty

Here we use the value function from WGAN (Arjovsky et al., 2017) for more stable training.

The value function is defined as

VW = min
G

max
D

E[D(d)]− E [D(G(n))] , (5.1)

where n refers to the random latent vector and d refers to real data. In practice, the

expectations are replaced by the mean value of the current mini-batch. Equation 5.1 defines

a min-max game, in which we want to find a D(·) that maximizes its expected score on

real examples while minimizes its expected score on the generated ones. Meanwhile, we

find a G(·) that maximizes its expected score from the discriminator. Gulrajani et al., 2017

propose a gradient penalty as a regularization term in addition to Equation 5.1 to enforce

1-Lipschitz constraint. The term is defined as

VP =

(∥∥∥∥∂D(m)

∂m

∥∥∥∥
2

− 1

)2

,where m = εd + (1− ε)G(n). (5.2)

68

Here m refers to the mixing of real and generated samples, which is controlled by a random

scalar ratio ε. The value ε is drawn from U(0, 1) at each discriminator update to lower

the chance of being stuck in some local minima by introducing more stochasticity. The

partial derivative can be calculated with auto differentiation. Minimizing Equation 5.2 will

favour the discriminator gradients with a unitary norm, therefore clipping larger unstable

gradients and guiding the model to avoid small updates.

By combining Equation 5.1 and 5.2, we obtain the following loss functions required for

updating the generator and discriminator parameters:

LG = −E [D(G(n))] , (5.3)

LD = E [D(G(n))]− E[D(d)] + λVP . (5.4)

Note the negative sign in LG since the two losses are opposing each other. The min-max

problem then becomes two optimization problems where the two networks are updated

according to the losses in an alternating fashion. The trainable parameters in the discrim-

inator are temporarily frozen when updating the generator using Equation 5.3, and the

parameters in the generator are frozen when updating with Equation 5.4.

5.3 Method

5.3.1 Architecture

Since the problem is relatively straightforward, we designed two small networks from

scratch. We use PyTorch (Paszke et al., 2019) as the machine learning framework. Both the

generator and the discriminator are constructed using sequential 1D convolutional layers.

The noise vectors n with a length of 100 are fed into the generator via the channel dimension

with a size of 1 in the spatial dimension, which is gradually increased by undergoing a

sequence of 1D transposed convolutional layers with proper kernel sizes and strides. The

69

first layer in the sequence has 256 filters. The number of filters is halved multiple times

in the successive layers. At the last layer, the number of channels is reduced to 1, and the

spatial dimension is expanded to 499 to match the length of traces d from the forward

modelling.

Table 5.1 shows the details on the output dimension after each transposed convolutional

layer in the generator. Without zero-padding and dilation, the output dimension of the ith

layer can be calculated as

li = li−1si + ki (5.5)

where si and ki refers to the stride and kernel size of the ith layer, respectively.

Table 5.1: The detailed structure of the generator

layer channel length kernel size stride # filters

1 100 1 3 2 256

2 256 3 4 1 256

3 256 6 4 2 128

4 128 14 4 2 128

5 128 30 3 2 32

6 32 61 4 2 32

7 32 124 3 2 16

8 16 249 3 2 1

output 1 499

The discriminator is fully convolutional. It takes input that has one channel with a

length of 499 and makes it through four convolutional layers with a kernel size of 3. Then

the length and channel dimensions of the output are switched. Finally, the output goes

70

through two 1× 1 convolutional layer to be packed to a scaler score for each sample. The

details are summarized in Table 5.2.

Table 5.2: The detailed structure of the discriminator

layer channel length kernel size # filters

1 1 499 3 64

2 64 499 3 64

3 64 499 3 64

4 64 499 3 1

5 499 1 1 250

6 250 1 1 1

output 1 1

We use leaky ReLU (Xu et al., 2015) instead of ReLU as inter-layer activation function

in both generator and discriminator. We also introduce batch normalizations before each

convolutional layers in the generator only, since the discriminator remains more stable

during training compared to the generator.

5.4 The dataset

The data is generated by 1D forward modelling with the direct arrival removed by sub-

traction. We use simple velocity models with four horizontal layers with random interval

velocity and thickness. As a source wavelet, we use a Gaussian function at shallow locations.

The model has a free-surface boundary condition and absorbing boundary at depth. Since

the source position is shallow, the primary wave overlaps with the ghost wave from the sur-

face boundary and forms a unique waveform (see orange traces in Figure 5.2) 10 000 traces

71

are generated in total to ensure continuous distribution. Each trace has 2000 timesteps and

is later resampled and trimmed to 499 to make the generator training-friendly.

The data are divided by ten folds of the global mean for normalization. No bias is

removed from the data to avoid shifting the origin. The magic number 10 was obtained

empirically by experiments. This number is bounded to the initialization of trainable

parameters in both networks. Three traces after normalization are shown in Figure 5.2 as

orange lines.

5.5 Training details and workflow

Since the GAN consists of two networks, we have to define two separate optimizers, one for

each of them. Both networks use an Adam optimizer (Kingma & Ba, 2014) with a learning

rate of 1× 10−4 and a β1 = 0.5 lower than the default value. This ensures that the model

updated is more influenced by the current gradient than by the momentum part. Based

on experiments, it is crucial to use additional methods to stabilize the training since the

value function mentioned in the previous section will react more wildly than a common loss

function like binary cross-entropy or mean square error. The convolutional kernels in both

networks are initialized with a standard deviation of 0.2, which is smaller than PyTorch’s

default, to avoid huge predictions at early stages. The λ in Equation 5.4 is set to 10.

We train the GAN for 300 epochs. We load the data with a batch size of 64 on each

16 GB graphic card. Moreover, we trained the generator once but the discriminator twice

at each iteration to balance the power of the two networks during training. The training

workflow is shown as Algorithm 6.

72

Algorithm 6 Training workflow for GAN.
Require: G(·), D(·), d

for each epoch do
for each mini-batch do

for counting 2 do
generate noise vectors n
d̂← G(n) . generate fake data
Sfake ← D(d̂) . get the score of fake data
Sreal ← D(d) . get the score of real data
m← εd + (1− ε)d̂

Vp ←
∂D(m)

∂m
. gradient penalty

update D(·) based on Equation 5.4 . back-propagate and apply Adam
generate another noise vectors n
d̂← G(n) . generate another fake data
Sfake ← D(d̂) . get score on fake data
update G(·) based on Equation 5.3

visualize d̂ and save D(·) and G(·) regularly

5.6 Results and discussions

5.6.1 Manual inspection

One major issue of evaluating results from GAN is the lack of proper metrics. There are

quantitative measurements that check if the generated examples are in the same distribution

as the provided data. However, there are still no clear metrics that directly show us when to

stop the training. One intuitive and still efficient way of verifying is to check the generated

samples manually. From inspection, the generator stops improving efficiently after the 100th

epoch, despite oscillations continuing on the lost functions. Figure 5.2 shows the result

after training for 100 epochs.

In Figure 5.2, we can see that the generated traces look like the real data. The number

on the upper-left refers to the scores from the discriminator. Note that the negative signs do

not have physical meaning since the score is not bounded and only the relative difference

matters (higher is better). We can see that the generated traces achieved similar scores as

the real data, which means the discriminator treats them as the same. Specifically, the zero

73

response of the discriminator is −10.824, which means the trained discriminator still cannot

distinguish zero traces and traces with reflections. However, the discriminator responses to

white noises range from −45 to −38, which can be safely considered as “different”.

One common problem of a GAN is mode collapse, where the generator learns only one

style presented by the data. In our case, the generator may end up producing similar traces

all the time. The model collapse is less likely to have happened in our case since the result

in Figure 5.2 shows great divergence. Besides, most of the examples can reproduce the

unique waveform mentioned earlier in both normal and reversed polarity.

Figure 5.3 shows the loss curves for the first 100 epochs and Figure 5.4 shows the

evolution of generated examples during the process. Since the two losses are competing

with each other, we can see the loss curves are not guaranteed to drop all the time. In

general, the curves are in a mirror relationship. Most severe competition happens during

the first epochs. Before the 10th epoch, the discriminator loss decreases drastically. This is

because the discriminator’s job at the early stage is to distinguish white noise generated

by the generator (Figure 5.4a) and physically meaningful real data (Figure 5.4f), which

is relatively easy. In the meanwhile, this is also a corresponding steep increase in the

generator loss. Although the generator loss is increasing, the generator is much improved

(Figure 5.4b) because the discriminator’s feedback is useful. As the generator generates

more reasonable results, the discriminator’s job becomes harder. After the 20th epoch, the

generator loss starts to decrease, which indicates the discriminator learns slower compared

to the generator. By comparing Figure 5.4d, 5.4e and 5.4f, we conclude that the two

networks reach equilibrium and can hardly be improved.

5.6.2 Quantitative analysis

Figure 5.5 shows the distribution of the scores on the trained generator from the trained

discriminator after 100 epochs. The real data score distribution is shown in blue, which

can be assumed to be Gaussian. The mean discriminator score of the real data is −10.940,

74

and that of the generated samples is −10.932. The scores are close, and the score from

generated samples is slightly higher than the real data distribution. This indicates the

discriminator may get confused and stops improving itself. Figure 5.6 shows the mean

generated score using the discriminator at the 100th epoch. Note that the generator stops

improving from the perspective of the 100th discriminator, even though its gradients come

from the discriminator at later epochs. We can infer that both the generator and the

discriminator stops improving at around the 100th epoch, which roughly agrees with our

observations using manual inspection. Therefore, we chose the models at the 100th epochs

to be the best model. However, this conclusion is subjective and made after the training

process. There are no clear metrics indicating the stopping point during the training, and

further study is needed on this topic.

5.7 Conclusion

In this chapter, we have explored a way of generating 1D seismic traces using WGAN.

The trained generator is able to transform uniformly distributed noise vectors to data

distribution generated by the forward modelling. The two models reach equilibrium at

around 100 epochs and hardly improve each other afterwards. The generated samples from

the trained model preserve the unique waveform of real data, despite the discriminator still

lacks the ability to distinguish empty traces from real examples. The future work will be

expanding the same model architecture to 2D and applying conditions to the noise vector

to gain more control over the generation process. Although the context of this chapter

is generating 1D shots, GAN is not limited to the same purpose. For example, one can

generate 2D fault images using the same architecture.

75

0.5

0.0

0.5
-10.999 -10.844 -10.883

0.5

0.0

0.5
-10.939 -10.934 -10.966

0.5

0.0

0.5
-10.974 -10.814 -11.038

0.5

0.0

0.5
-10.880 -10.981 -10.882

0 200 400
0.5

0.0

0.5
-10.844

0 200 400

-10.876

0 200 400

-10.940

Figure 5.2: The results from the trained generator. The blue curves refer to the generated
traces while the orange traces are from the data. The number on the upper left in each
subplot refers to the scores obtained from the discriminator. The higher the score, the better
it looks from the perspective of the discriminator.

76

0 10 20 30 40 50 60 70 80 90 100
epochs

10

0

10

20

30

40
Ge

ne
ra

to
r l

os
s

8

6

4

2

0

2

4

Di
sc

rim
in

at
or

 lo
ss

Figure 5.3: GAN loss curves. The blue and the orange lines refer to the losses of generator
and discriminator, respectively. The losses are defined by Equation 5.3 and 5.4.

a) b)

c) d)

e) f)

Figure 5.4: Predictions from the generator at a) 1st epoch; b) 5th epoch; c) 20th epoch; d)
47th epoch; e) 100th epoch and f) refers to a sample from real data for comparison.

77

11.4 11.2 11.0 10.8 10.6
0

250

500

750

1000

1250

1500 Real
Generated

11.4 11.2 11.0 10.8 10.6
Discriminator score

0

1

2

3

4

5

6 Real
Generated

Figure 5.5: Histogram and kernel density estimation of real data and generated samples.
The parts in blue represent the results from real data distribution, while the orange parts
represent the results from generated examples.

0 50 100 150 200
epochs

14.0

13.5

13.0

12.5

12.0

11.5

11.0

10.5

10.0
Generated score
Real mean score

Figure 5.6: Mean generator score using the discriminator from the 100th epoch. The grey
dashed line refers to the mean real data score, which is −10.940.

78

Chapter 6

Conclusions

In this thesis, we have investigated several applications of machine learning to the solution

of geophysical problems. The emphasis of this research has been on introducing physical

principles into the algorithms to facilitate achieving a meaningful solution. These principles

act as constraints that limit the type of solutions that the networks will produce.

In Chapter 2, we trained a U-Net to separate pseudo-deblended shots. The trained

network can successfully remove noise with the same amplitude of the signal. We found

the best optimizer and training parameters through experiments for the current problem

setup. The trained model preserved small diffractions and left minor residuals on the test

dataset. The model performed slightly worse for the shots at the edge of the model because

of the lack of training pictures representative of this case.

We also tested the performance with data that comes from a different velocity distri-

bution. Specifically, the velocity model was made to be simpler than the training model.

Therefore the corresponding pseudo-blended shots are simpler than the training set and

they should not exceed the trained model’s capability. In this case, however, the network

performs okay but not as well as the first case. This observation indicates the model still

memorizes part of the training data and provides a direction for improvement.

More work is required to generalize the network to new problems. The direction is to

79

apply constraints and reduce flexibility. Another direction for future work is to make the

network predict the residual instead. In this way, the model can be trained and applied

iteratively on the residual to reduce the error.

In Chapter 3, we implemented the Born modelling using TensorFlow API. The physics

of wave propagation was incorporated into the problem by matching the finite difference

method with the architecture of RNN so that the velocity model can be calculated via

the back-propagation method. Back-propagation finds the inverse of the Born modelling

automatically and can be proven to have a close connection to the LSRTM formulation. After

trying different optimizers, we found that the Adam optimizer is the most efficient in speed,

but requires careful hyperparameter tuning. The other two non-linear optimizers tested,

FR-CG and L-BFGS-B, could not outperform Adam. Back-propagation and the optimizers are

very powerful in the sense that they can find the step length automatically, but the price to

pay for this advantage is the need for more computation power and memory requirements.

The preparation time before computation requires additional memory that scales with the

number of time steps due to the design of Tensorflow. In the future, we are interested

in bringing this method to the frequency domain and looking for a more suitable neural

network structure for wave propagation.

In Chapter 4, we made attempts to recover the reflectivity from randomly generated

4-layer models using fully connected networks. Besides the main problem to tackle, we also

investigated different behaviours when using `1/`2 norms as loss function. We conclude

`1 is more suitable for this type of problem. We found ResNet shortcuts can reduce

fluctuations and converge to a lower loss. The model performs poorly on data from different

distributions of the training set, and hence it needs more generalization. Future work

can include gradient boosting or seeking better representations of the input and outputs.

Also, we can study the effects of total variation as an additional regularisation to the loss

function.

In Chapter 5, we have explored a way of generating 1D seismic traces using WGAN.

80

The WGAN was built with a 1D convolutional generator and discriminator. The network

was trained with the Wasserstein loss plus a gradient penalty added to achieve stability.

The trained generator successfully transforms uniformly distributed 1D noise vectors to 1D

synthetic seismic traces from the forward modelling. The trained generator and discrimi-

nator competing against each other and reach equilibrium at early epochs. The generated

samples preserve the unique waveform of the synthetic data, despite the discriminator still

lacking the ability to distinguish empty traces from real examples. The future work will

be expanding the same model architecture to 2D seismic shots or images. Also, additional

conditions can be applied to the noise vector to gain more control over the generation

process.

As a final conclusion, except for the RNN application, which is highly constrained

by physics, all the other applications show a common problem of over-parametrization.

Each trained network is “overfitted” by memorizing specifics of the problems that are

trying to solve and, as a consequence, needs extra attention to adapt to new problems.

To improve generalization, we can try in the future to include transfer learning and

regularization techniques that penalize or disfavour overfitting. These techniques include

gradient boosting, which can combine the strengths of different methods and even out the

weaknesses. Furthermore, we can apply more constraints to the problem. The constraints

can be introduced by defining the problem better and add extra terms for the formulation.

However, it requires understandings of the task to choose a proper constraint and usually

requires trials.

81

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A.,

Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Anagaw, A. Y., & Sacchi, M. D. (2012). Edge-preserving seismic imaging using the total

variation method. Journal of Geophysics and Engineering, 9(2), 138–146.

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks,

In International conference on machine learning. PMLR.

Baardman, R., Tsingas, C. et al. (2019). Classification and suppression of blending noise us-

ing convolutional neural networks, In Spe middle east oil and gas show and conference.

Society of Petroleum Engineers.

Beasley, C. J., Chambers, R. E., & Jiang, Z. (1998). A new look at simultaneous sources. In

Seg technical program expanded abstracts 1998 (pp. 133–135). Society of Exploration

Geophysicists.

Bi, Z., Geng, Z., Gao, H., Wu, X., & Li, H. (2020). 3d relative geologic time estimation with

deep learning. In Seg technical program expanded abstracts 2020 (pp. 1465–1470).

Society of Exploration Geophysicists.

Biswas, R., Sen, M. K., Das, V., & Mukerji, T. (2019). Pre-stack inversion using a physics-

guided convolutional neural network. In Seg technical program expanded abstracts

2019 (pp. 4967–4971). Society of Exploration Geophysicists.

82

Buda, M., Saha, A., & Mazurowski, M. A. (2019). Association of genomic subtypes of

lower-grade gliomas with shape features automatically extracted by a deep learning

algorithm. Computers in biology and medicine, 109, 218–225.

Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution

for semantic image segmentation. arXiv preprint arXiv:1706.05587.

Chollet, F. (2018). Deep learning mit python und keras: Das praxis-handbuch vom entwickler

der keras-bibliothek. MITP-Verlags GmbH & Co. KG.

Claerbout, J. F. (1971). Toward a unified theory of reflector mapping. Geophysics, 36(3),

467–481.

Fukushima, K. (1979). Neural network model for a mechanism of pattern recognition

unaffected by shift in position-neocognitron. IEICE Technical Report, A, 62(10), 658–

665.

Girshick, R. (2015). Fast r-cnn, In Proceedings of the ieee international conference on computer

vision.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation, In Proceedings of the ieee

conference on computer vision and pattern recognition.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning [http://www.deeplearningbook.

org]. MIT Press.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., & Bengio, Y. (2014). Generative adversarial networks.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved

training of wasserstein gans.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition,

In Proceedings of the ieee conference on computer vision and pattern recognition.

Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar,

S., Samatova, N., & Kumar, V. (2017). Theory-guided data science: A new paradigm

83

http://www.deeplearningbook.org
http://www.deeplearningbook.org

for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineer-

ing, 29(10), 2318–2331.

Karpatne, A., Watkins, W., Read, J., & Kumar, V. (2017). Physics-guided neural networks

(pgnn): An application in lake temperature modeling. arXiv preprint arXiv:1710.11431.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Lailly, P., & Bednar, J. (1983). The seismic inverse problem as a sequence of before stack

migrations, In Conference on inverse scattering: Theory and application. Siam Philadel-

phia, PA.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural

networks for sequence learning. arXiv preprint arXiv:1506.00019.

Lomask, J., Clapp, R. G., & Biondi, B. (2007). Application of image segmentation to tracking

3d salt boundaries. Geophysics, 72(4), P47–P56.

Moseley, B., Markham, A., & Nissen-Meyer, T. (2018). Fast approximate simulation of

seismic waves with deep learning. arXiv preprint arXiv:1807.06873.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,

Antiga, L., & Lerer, A. (2017). Automatic differentiation in PyTorch, In Nips autodiff

workshop.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,

Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). Pytorch:

An imperative style, high-performance deep learning library. In H. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances

in neural information processing systems 32 (pp. 8024–8035). Curran Associates,

Inc. http://papers.neurips.cc/paper/9015-pytorch-an- imperative- style-high-

performance-deep-learning-library.pdf

84

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Richardson, A. (2018). Seismic full-waveform inversion using deep learning tools and

techniques. arXiv preprint arXiv:1801.07232.

Richardson, A., & Feller, C. (2019). Seismic data denoising and deblending using deep

learning. arXiv preprint arXiv:1907.01497.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical

image segmentation, In International conference on medical image computing and

computer-assisted intervention. Springer.

Shi, Y., Wu, X., & Fomel, S. (2018). Automatic salt-body classification using a deep convolu-

tional neural network. In Seg technical program expanded abstracts 2018 (pp. 1971–

1975). Society of Exploration Geophysicists.

Stanton, A., & Wilkinson, K. (2018). Robust deblending of simultaneous source seismic

data. arXiv preprint arXiv:1812.06040.

Sun, B., & Alkhalifah, T. (2019). Ml-descent: An optimization algorithm for fwi using

machine learning, In Seg international exposition and annual meeting. OnePetro.

Sun, J., Niu, Z., Innanen, K. A., Li, J., & Trad, D. O. (2020). A theory-guided deep-learning

formulation and optimization of seismic waveform inversion. Geophysics, 85(2),

R87–R99.

Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation.

Geophysics, 49(8), 1259–1266.

Taylor, H. L., Banks, S. C., & McCoy, J. F. (1979). Deconvolution with the l1 norm. Geophysics,

44(1), 39–52.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,

. . . SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/

s41592-019-0686-2

85

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., Kirsch, B.,

Pfrommer, J., Pick, A., Ramamurthy, R., et al. (2019). Informed machine learning–a

taxonomy and survey of integrating knowledge into learning systems. arXiv preprint

arXiv:1903.12394.

Weyn, J. A., Durran, D. R., & Caruana, R. (2019). Can machines learn to predict weather?

using deep learning to predict gridded 500-hpa geopotential height from historical

weather data. Journal of Advances in Modeling Earth Systems, 11(8), 2680–2693.

Wright, S., & Nocedal, J. (1999). Numerical optimization. Springer Science, 35(67-68), 7.

Wu, X., Liang, L., Shi, Y., & Fomel, S. (2019). Faultseg3d: Using synthetic data sets to

train an end-to-end convolutional neural network for 3d seismic fault segmentation.

Geophysics, 84(3), IM35–IM45.

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in

convolutional network. arXiv preprint arXiv:1505.00853.

Zhou, C., & Brown, S. (2020). Automatic velocity model building with machine learning.

In Seg technical program expanded abstracts 2020 (pp. 1596–1600). Society of

Exploration Geophysicists.

86

Appendix A

The derivation of the Born gradient

First, let us express the current perturbation wavefield with the two previous perturbation

wavefields at time step t, t+ 1 and t+ 2, respectively. We get

δp(t) =
(
2 + ∆t2v0

2∇2
)
δp(t−1) − δp(t−2) + ∆t2m

∂2p
(t−1)
0

∂t2
(A.1a)

δp(t+1) =
(
2 + ∆t2v0

2∇2
)
δp(t) − δp(t−1) + ∆t2m

∂2p
(t)
0

∂t2
(A.1b)

δp(t+2) =
(
2 + ∆t2v0

2∇2
)
δp(t+1) − δp(t) + ∆t2m

∂2p
(t+1)
0

∂t2
(A.1c)

where δp refers to the perturbation wavefield and the superscript refers to the corresponding

time step. p0 is the background wavefield. m refers to the velocity perturbation (2δv/v0).

Note that the last term in (A.1a) is the source term scaled by ∆t2v0
2. This characteristic is

used later in the proof.

Differentiate (A.1a) with respect to m and differentiate (A.1b) and (A.1c) with respect

87

to δp(t). Then we get

∂δp(t)

∂m
= ∆t2

∂2p
(t−1)
0

∂t2
(A.2a)

∂δp(t+1)

∂δp(t)
= 2 + ∆t2v0

2∇2 (A.2b)

∂δp(t+2)

∂δp(t)
= −1 (A.2c)

From Equation 3.7, the cost of each shot at a specific time slice is

J (t) =
1

2

(
D(t) − dcal

(t)
)2

=
1

2

(
dobs

(t) − Sxrδp
(t)
)2

(A.3)

where Sxr is the sampling operator that extract the data from the wavefield at the receiver

positions to form the shot record dcal. By taking the derivative with respect to the current

perturbation wavefield δp(t) on both side, we can get

∂J (t)

∂δp(t)
= −Sxr

(
D(t) − Sxrδp

(t)
)

(A.4a)

= −Sxrr
(t) (A.4b)

= −r(t) (A.4c)

Since Sxr is the sampling operator, Sxrr
(t) will simply be r(t). Similar to what is discussed

by Richardson, 2018. The gradient of the const function with respect to tone wave field at

specific time step t can be express as

∂J

∂δp

∣∣∣∣
t

=
∂J

∂δp

∣∣∣∣
t+2

∂δp(t+2)

∂δp(t)

+
∂J

∂δp

∣∣∣∣
t+1

∂δp(t+1)

∂δp(t)

+
∂J (t)

∂δp(t)

(A.5)

According to the chain rule, the gradient of the cost J with respect to m at a specific

88

time step t can be express as
∂J

∂m

∣∣∣∣
t

=
∂J

∂δp

∣∣∣∣
t

∂δp(t)

∂m
(A.6)

By Substituting (A.5), (A.2b), (A.2c) and (A.2a) into (A.6), the equation becomes

∂J

∂m

∣∣∣∣
t

=

[(
2 + ∆t2v0

2∇2
) ∂J

∂δp

∣∣∣∣
t+1

− ∂J

∂δp

∣∣∣∣
t+2

+
∂J

∂δp(t)

][
∆t2

∂2p
(t−1)
0

∂t2

]
(A.7)

where the last term in the first bracket equals to the residual time slice (Equation A.4c).

If we compare the terms in the first bracket with terms in Equation A.1a, we can notice

that ∂J
∂δp

∣∣∣
t

is actually a wavefield at time step t + 1 which uses the residual slice scaled

by 1/∆t2v0
2 as source, denoted by B(r(t+1)/∆t2v0

2,x, t + 1). B refers to a time-reverse-

propagation of wavefield since the wavefield at time step t is calculated by the wavefields

at future time steps t+ 1 and t+ 2. The term in the 2nd time derivative of the background

wavefield (p0) scaled by ∆t2 at time step t − 1, denoted by ∆t2F (f,x, t − 1). F is the

time-forward-propagation of wavefield since p0 is propagating in the positive time direction.

Then, Equation A.7 becomes

∂J

∂m

∣∣∣∣
t

= −B(r(t+1)/∆t2v0
2,x, t+ 1)∆t2F (f,x, t− 1) (A.8a)

≈ − 1

v0
2
B(r(t+1)/∆t2v0

2,x, t+ 1)F (f,x, t− 1) (A.8b)

With Equation A.8b, we can infer the gradient in the global scale instead of at individual

time step
∂J

∂m

∣∣∣∣
t

≈ − 1

v0
2
B(r,x, T − t) ∂

2

∂t2
p0(f,x, t) (A.9)

which is similar to the form of LSRTM.

89

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Figures and Illustrations
	List of Tables
	List of Symbols, Abbreviations and Nomenclature
	Epigraph
	Introduction to machine learning
	What is machine learning used for?
	The limitation of data-driven methods
	Physics-informed neural networks
	The continuum and thesis outline
	Training method
	Defining dataset
	Training workflow

	Deblending with UNet
	Introduction
	Theory
	Model definition
	Loss function
	Back-propagation
	Training workflow

	Synthetic data examples
	Data preparation
	Training

	Conclusion

	Born inversion with recurrent neural networks
	Theory
	Forward modelling with the Born approximation
	The implementation using TensorFlow
	The gradient update and optimization
	The Fletcher-Reeves method

	Synthetic data examples
	The modelling results
	The inversion results
	Non-linear optimizers
	Limitations

	Conclusion

	Velocity extraction from migration images
	Introduction
	Theory
	Reverse time migration
	1 norm and 2 norm
	Chain rule and back-propagation
	Residual network (ResNet)

	Example
	Images from RTM
	The definition of input/output
	Fully connected neural network
	Choosing the right loss function
	ResNet
	Problematic cases

	Conclusion

	Constructing seismic using generative adversarial network
	Introduction
	Theory
	Generative adversarial network
	Wasserstein GAN with gradient penalty

	Method
	Architecture

	The dataset
	Training details and workflow
	Results and discussions
	Manual inspection
	Quantitative analysis

	Conclusion

	Conclusions
	Bibliography
	The derivation of the Born gradient

