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Abstract 

Full wave form inversion (FWI) uses the full recorded wavefield to determine the physical 

properties of the subsurface. Due to the lack of wide aperture and low-frequency data, a reliable 

low-frequency starting velocity model is often required. A velocity model derived from pre-stack 

depth migration (PSDM) is typically used as the starting model for FWI.  Iterative PSDM is an 

expensive process, and it also requires a velocity macro model.  Traveltime tomography methods 

are efficient algorithms to construct a smooth velocity model using refraction and reflection 

traveltimes. However, with limitations caused by acquisition constraints, data quality and 

assumptions used in traveltime tomography methods, the velocity model determined by these 

methods can be sub-optimal and results in degradation in the depth image. In this thesis, I address 

several strategies to improve tomography and to incorporate error measurements from refraction 

and reflection waveforms into the tomographic inversion kernels. My goal is to help to alleviate 

the inherent limitations in traveltime tomography methods. 
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    Chapter 1 

                  Introduction 

1.1 Seismic imaging and velocity inversion 

Seismic experiment records the ground motions caused by the propagation of controlled seismic 

sources.  We can use the time delays, amplitude, and phase characteristics to estimate the physical 

properties of the subsurface. Traditional velocity inversion uses the time delays and the kinematics 

of the wave propagation between the seismic sources and receivers to determine a velocity model 

that can best match the measured time delays of the seismic data.  Seismic imaging (migration) 

transforms seismic data to an image of lithological boundaries (impedance) by reversing the wave 

propagation using the supplied model of the physical parameters. Analyzing the seismic waveform 

of the migrated data can quantify the accuracy and errors of the model parameters. This allows the 

model parameters to be updated and results in a higher resolution model.  Analyzing the seismic 

waveform of recorded seismic data can also reveal the absorption and dispersion properties of the 

lithological units.  

The accuracy of our estimation of the reflectivity and rock properties depends greatly on 

the recorded seismic data and how we model the wave field propagation. Traditional velocity 

inversion methods use time-delay characteristics of the seismic data to capture the large-scale 

features of the velocity model. Seismic migration methods accurately use the traveltime, amplitude 
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and phase of the wave propagation to produce a highly resolved seismic image. Although seismic 

migration velocity analysis can update the velocity model using curvatures in migrated image 

gathers, an accurate starting velocity model still plays an important role in producing a successfully 

migrated image. Full waveform inversion updates the model parameters, including velocity, by 

minimizing the difference between the recorded and modelled waveform. FWI can produce a 

higher resolution velocity model than traveltime tomography (Tarantola, 1984). Since FWI uses 

the full waveform, including the high-frequency components, it can have many local minima. 

Without an initial model that is reasonably close to the long-wavelength component of the true 

model, FWI can result in cycle skipping.  Bunks et al. (1995) address this problem by iterating 

FWI from low-frequency band to high-frequency band. However, this requires very low frequency 

and/or wide aperture data (Virieux and Operto, 2009), which are often missing in seismic data.  

Recently source extension methods (Warner and Guasch  2014, Huang and Symes 2015) have 

been proposed to address the cycle skipping issue in FWI.   

Claerbout (1985) summarized the accuracy and resolution for velocity analysis and seismic 

imaging and pointed out that the traditional velocity analysis had resolution of up to 2.5 Hz in 

apparent frequency and seismic imaging had a resolution of 10 to 100 Hz. Lambaré and Allemand 

(2015) added that ray-based traveltime tomography had increased the resolution of velocity 

inversion to about 6 Hz; while broadband data had expanded the resolution bandwidth of seismic 

imaging (Figure 1.1).  Both FWI and seismic migration algorithms continue to improve the 

resolution for velocity inversion and seismic imaging. Traveltime tomography also continues to 

play an important role in providing an accurate initial velocity model for both FWI and seismic 

migration. However, with limitations caused by acquisition constraints, data quality and 

assumptions used in traveltime tomography methods, the velocity model determined by traveltime 
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tomography methods can be sub-optimal and results in degradation in the reflection image.  

Furthermore, in order to build the most accurate velocity model from the surface to the target 

depth, it is important to understand the advantages and limitations of each velocity inversion 

method including refraction tomography, reflection tomography as well as FWI.   

 

 
Figure 1. 1. Summary of resolution and accuracy of velocity inversion and imaging. (Lambare 

and Allemand, 2015) 

 

1.2 Thesis proposal 

The primary goal of this research is to first investigate and understand the effects of errors from 

traveltime tomography on the processed seismic data and then to develop strategies to quantify 

these errors and to incorporate them in the tomography inversion kernels to alleviate the inherent 

limitations in traveltime tomography methods. Second, I propose to expand the scope of traveltime 

tomography to include measurable information from the seismic waveform to improve the 

accuracy and efficiency of traveltime tomography.  
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1.3 Dissertation structure and overview 

The main content of the dissertation is organized into 7 chapters. Chapter 2 reviews the 

tomography method. I compare medical tomography and seismic tomography. Medical 

tomography and seismic tomography share some similar algorithms and technologies. However, 

medical tomography has the benefit of small targets of investigation and not having to deal with 

the vast problem of acquisition limitations in seismic tomography, and results in much higher 

resolution images than that from seismic tomography. 

 Chapter 3 reviews the forward problem of tomography. In chapter 3, I review the wave 

equation for modelling seismic wave propagation and the seismic ray theory for traveltime 

computation. I also review the basic principles of different traveltime computation methods 

including the finite difference methods, ray shooting method, wavefront construction and paraxial 

method. I analyze their differences and similarities to investigate the effectiveness of these 

methods in traveltime tomography and seismic imaging. 

 Chapter 4 includes our paper “Robust refraction statics solution and near-surface velocity 

model building using feedback from reflection data” published in Geophysics Volume 83, no. 6, 

U63-U77. It reviews the inversion problem of refraction tomography and how to use feedback 

from the residual statics measurement of the deeper reflection data to improve the near-surface 

velocity model and the refraction statics solution.  The long-wavelength components of the 

reflection residual statics measured from deeper reflection data do not suffer the same acquisition 

and data limitation of the refraction data. They are used to compute the model and data weights 

for the new refraction tomography kernel. 

 Chapter 5 includes our paper “Near-surface velocity model building and statics correction 

for blended land data” published in the Canadian Journal of Exploration Geophysics Volume 45, 
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no. 1, spring 2021. It evaluates the problems of blended seismic data acquisition imposed on 

refraction and reflection arrival times. It proposes a robust refraction arrival separation method 

that uses amplitude burst suppression and the sparse Radon transform to enhance the first break 

quality of the blended data. It also demonstrates that after refraction statics correction, we can 

perform normal moveout velocity analysis and surface consistent residual statics prior to 

deblending because of the passive separation property of the blended data. 

 Chapter 6 reviews slope tomography, a reflection tomography method. In addition to the 

reflection traveltime, slope tomography also uses the slope of locally coherent events from the shot 

and geophone gathers to improve the results of reflection tomography. Each slope tomography 

pick will reconstruct a ray pair that connects a scatter point to a shot and receiver; therefore, slope 

tomography is also called stereo-tomography. I apply the slope tomography method to the Hussar 

2D survey and confirm its accuracy with well-logs and depth migration. 

 Chapter 7 uses machine learning to addresses the major problem with refraction 

tomography: first breaking picking. First break picking is done using automated first break picking 

algorithms followed by laborious editing by trained technicians who are familiar with the near-

surface geology and the first arrival energy waveform. I review two automatic trace-by-trace first 

break picking algorithms. I also apply an unsupervised clustering algorithm to reject mis-picks in 

first break time picks. Finally, I use a supervised UNET to train the network with first arrival 

energy images and the first break masks to automate the first break picking. 

 Chapter 8 contains the conclusions and discussions of future works. 
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Chapter 2 

Tomography 

2.1 Introduction 
Tomography comes from the Greek word “tomos” meaning “section” or “slice” and “graphia” 

meaning “describing”.  Thus, tomography is a process that describes the material properties within 

the body of investigation. Seismic tomography methods share some similar physical and 

mathematical principles with medical tomography. Both methods seek to determine the interior 

distribution of values of physical properties (the integrant) from the projections (the integral or the 

sums of some interior value) measured outside of an object (Stewart 1991). In seismic tomography 

seismic energy propagated through the medium and are received at the receivers on the surface or 

in the borehole. An example of seismic tomography is traveltime tomography (Fig. 2.1b):  

   𝑡𝑡𝐿𝐿 = ∫ 𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑 , 
𝐿𝐿       (2.1) 

where the measured travel time 𝑡𝑡𝐿𝐿 for the raypath, 𝐿𝐿 is the integration of 𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑, and the objective 

of traveltime tomography is to determine the integrant 𝑠𝑠(𝑥𝑥), the inverse of the medium velocity 

(called slowness in geophysics).  

 In medical tomography, a CT scanner transmits a fan of X-ray beams through the target 

of the investigation and the detector elements record the attenuated radiation intensity (Fig. 2.1a). 

As X rays pass through the material of greater density, more of the rays are absorbed. Each 

radiation intensity reading represents the accumulated attenuation along the X-ray beam (Fig. 

2.1a).  Using Beer’s law of absorption, the intensity of an attenuated X-ray beam that has travelled 

a distance d can be expressed as:    

   𝐼𝐼(𝑑𝑑) = 𝐼𝐼0𝑒𝑒−∫ 𝜇𝜇(𝑥𝑥)𝑑𝑑𝑑𝑑𝑑𝑑
0    , or      
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𝑙𝑙𝑙𝑙 𝐼𝐼𝑜𝑜
𝐼𝐼(𝑑𝑑)

= ∫ 𝜇𝜇(𝑥𝑥)𝑑𝑑𝑑𝑑𝑑𝑑
0       (2.2) 

where 𝑰𝑰𝟎𝟎 is the initial beam intensity, 𝑰𝑰(𝒅𝒅) is the attenuated intensity, d is the target thickness and 

𝝁𝝁(𝒙𝒙) is the attenuation coefficient at grid location x.  Equations (2.1) and (2.2) are similar. What 

the two equations measure is the result of integration. What they seek to determine is the integrant. 

For traveltime tomography, the integrant is the slowness of the medium.  For CT scan, the integrant 

is the attenuation coefficients, which are later transformed to Hounsfield unit for subsequent 

interpretation:  

𝐻𝐻𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝜇𝜇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝜇𝜇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

∗ 1000.    (2.3) 

Table. 2.1 shows the typical HU values for different tissues and materials. 

 

 
      Table 2.1.  Hounsfield unit for some material and tissues. 

. 

2.2 Medical tomography 

Computed Tomography (CT) is also known as Computed Axial Tomography (CAT).  

British engineer Godfrey Hounsfield invented the first dedicated head CT scanner based on x-ray 
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computed tomography in 1967. The first CT scanner took up to several hours to acquire the data 

for a single slice and several days to reconstruct the image.  Newer multidetector CT (MDCT) 

scanners have seen increases in both speed and resolution over the years (Fig. 2.2.a), and full-body 

scans can now be processed in real-time.  Similarly, seismic acquisition systems also have evolved 

to include multiple sources and receivers (Fig. 2.2.b).  CT differs from seismic tomography in 

scale, complexity and acquisition geometry. CT scan has a resolution of less than 1 mm and 360° 

angular coverage. With straight ray paths and continuous angular coverage, CT can reconstruct the 

image in the object space effectively by transforming the recorded data between the Radon, Fourier 

and object domains.  

 

 

Figure 2. 1  (a) CT scanner sends a fan of X-ray beams from the source to the detectors placed on 

the other side of the target.  (b) Ray paths of seismic wave propagation are more complex than 

the X-ray beams in CT scans because of large velocity variations. 
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Figure 2. 2.  (a) Development of the number of detectors and resolution of MDCT.  (Adapted from 

Dance et al, 2014.) (b) Multi-slice detectors allow multiple CT slices to be recorded 

simultaneously. (c) A 16-slice scanner can be used for 16 1.25 mm slices or 4 5 mm slices. (d) The 

3D seismic method employs multiple sources and receivers; however, seismic sources and 

receivers are placed on the surface and lack the 360°   coverage of the CT scan method 

2.2.1 Medical tomography reconstruction methods 

 Series expansion methods and transform methods are two groups of methods that can be 

used in medical tomography. Series expansion method developed by Kaczmarz in 1937 iteratively 

determines the model function. Series expansion methods include the algebraic reconstruction 

technique (ART) and the simultaneous iterative reconstruction technique (SIRT).  Transform 

methods include the simple back-projection method and filtered back-projection method.  With 

straight ray paths and 360°  coverage, the CT method can utilize the transform methods effectively. 
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Most medical tomography reconstruction methods assume parallel-beam geometry; while all 

modern CT scanners use fan-beam projection. Therefore, it is necessary to rebin CT scan data from 

fan-beam geometry to parallel-beam geometry (Borsdorf et al. 2008). 

 

Rebinning from fan-beam projection to parallel-beam projection 

  For a fan-beam described by a central angle of 𝜶𝜶 with the x-axis, and a fan-beam angle of 

𝜷𝜷𝟏𝟏 (𝐅𝐅𝐅𝐅𝐅𝐅.𝟐𝟐.𝟑𝟑), the equivalent parallel projection angle is: 

  𝜽𝜽𝟏𝟏 = 𝜶𝜶 + 𝜷𝜷𝟏𝟏,       (2.4) 

 and the orthogonal distance to the isocenter for a CT scanner with radius 𝑹𝑹𝑺𝑺 is: 

  𝑢𝑢1 = 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽1.        (2.5) 

We can use equation (2.4) and (2.5) to rebin the equiangular 𝑃𝑃(𝛼𝛼,𝛽𝛽) data to 𝑃𝑃(𝑢𝑢,𝜃𝜃), and 

interpolate 𝑃𝑃(𝑢𝑢, 𝜃𝜃) to an equidistance and equiangular grid. Alternatively, we can use the 

following relationship to construct an equidistance 𝑃𝑃(𝑢𝑢1,𝜃𝜃1) from the fan-beam data 𝑃𝑃(𝜃𝜃,𝛽𝛽): 

  𝛽𝛽1 = sin−1 𝑢𝑢1
𝑅𝑅𝑠𝑠

        (2.6) 

Therefore, each fan-beam projection data can be rebinned to the parallel-beam Cartesian grid. 
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Figure 2. 3. Rebinning from fan-beam geometry data 𝑷𝑷(𝜶𝜶,𝜷𝜷) to parallel-beam geometry data 

𝑷𝑷(𝒖𝒖,𝜽𝜽).  

Algebraic Reconstruction Technique (ART) 

  The first reconstruction method to review is ART. Figure 2.4b illustrates the concept of 

ART. ART uses the X-ray path and the attenuated intensity for each angle to build a set of 

simultaneous linear equations. The equations are then solved for the attenuation coefficients.  Since 

ART uses the ray path characteristics to build the equations, it takes into account ray bending 

because of velocity gradient. However, there may be inconsistence in the equations, and the system 

of equations can be under-determined. The solution may also be sensitive to measurement errors 

and noise. Furthermore, with the increasing requirement of better resolution, the number of 

equations grows. Therefore, it is not feasible to use ART in clinical practice (Dance et al., 2014).  

Since CT data have continuous angular coverage, the back-projection method and transform 

techniques (Stewart 1991, Lo and Inderwiesen 1994) are better suited than ART.   
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Figure 2. 4 (a)The principle of attenuation of an X-ray beam. The path of the X-ray beam is 

discretized by the image grid. (b) Each ray path constitutes one equation. Equations from all the 

projection angles can be solved for the attenuation coefficients using Algebraic reconstruction. 

 

Back-projection (without filter) 

In the simple back-projection method, for each incident bean angle 𝜃𝜃, the CT scanner 

projects the attenuated intensity of the X-ray beams to the detector elements (Fig. 2.5.a.b). The 

recorded projection, 𝑃𝑃(𝑢𝑢,𝜃𝜃𝑖𝑖)  is then back-projected to the object space using the incident angle 

𝜃𝜃𝑖𝑖 (Fig. 2.5.c). Each back-projection is summed to reconstruct the image 𝑢𝑢(𝑥𝑥, 𝑧𝑧) of the object space 

(Fig. 2.5.d). Therefore, back-projection is really an average or sum of the recorded 

𝑃𝑃(𝑢𝑢 ,𝜃𝜃𝑖𝑖) mapped back to the object space at the incident angle of the X-ray beams. However, the 

reconstructed image is strongly blurred. The blurring of the image in this simple back-projection 

method is the result of the operation of the point spread function, 1/r (Stewart 1991).   
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Figure 2. 5 (a) Incident X-ray beams propagate through the chest of a patient. (b) Attenuated 

radiation intensities recorded by the detector elements. (c) 𝑷𝑷(𝒖𝒖𝒊𝒊,𝜽𝜽𝒊𝒊) is back-projected to the object 

space using the incident angle. (d) Summing all the back-projections of different angles to 

reconstruct the object space.   

 

Fourier-transform method 

The Fourier transform method (Stewart 1991, Lo and Inderwiesen 1994) uses the 

projection slice theorem to reconstruct the image directly. Projection slice theorem states that 1-D 

Fourier transform of a projection of an object at an angle 𝜃𝜃 constitutes a slice of the 2-D Fourier 

transform of the object, where the slice makes the same angle with the 𝑘𝑘𝑥𝑥 axis. Therefore, by 

performing 1-D Fourier transform on many projections of different angles, we can construct the 

2-D Fourier transform of the object.  We can then interpolate for empty grid point in the 2-D 

Fourier domain and reconstruct the object by 2-D inverse Fourier transform.   Figure 2.6 illustrates 

the concept of the projection slice theorem for one angular projection.  Figure 2.6a shows the 

detector elements recording the attenuated X rays, 𝑃𝑃(𝑢𝑢, 𝜃𝜃𝑖𝑖)  in the Radon space.  

The recorded projection is related to the line integral:     

             𝑃𝑃(𝑢𝑢,𝜃𝜃𝑖𝑖) = ∫ 𝜇𝜇(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 , or 

  𝑃𝑃(𝑢𝑢,𝜃𝜃𝑖𝑖) = ∫ 𝜇𝜇(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑+∞
−∞ .      (2.7) 
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where 𝜇𝜇(𝑥𝑥,𝑦𝑦) is the unknown attenuation function,𝑥𝑥 and y are the axes of the object space, u is 

the projection axis and 𝑣𝑣 is the axis parallel to the incident ray. The u-v coordinate system for the 

detector elements is related to the x-z coordinate system by: 

� 𝑥𝑥𝑧𝑧� = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  � �𝑢𝑢𝑣𝑣 �.       (2.8) 

𝑃𝑃(𝑢𝑢,𝜃𝜃𝑖𝑖) can be mapped directly to the Radon space as a line at 𝜃𝜃𝑖𝑖 location (Figure 2.6b).  

       
Figure 2. 6.  An illustration of projection slice theorem. (a) Projection of an object to the Radon 

space.   (b) 1-D Fourier transform of the projection slice (c) is equivalent to a slice in the 2-D 

Fourier transform of the object space at the same angle with the 𝒌𝒌𝒙𝒙 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚.  

     

Now, applying 1-D Fourier transform to 𝑃𝑃(𝑢𝑢,𝜃𝜃) yields: 

  𝑃𝑃�(Ω,𝜃𝜃) =  ∫ 𝑃𝑃(𝑢𝑢,𝜃𝜃)𝑒𝑒−𝑖𝑖(Ω𝑢𝑢 )  𝑑𝑑𝑑𝑑+∞
−∞ .     (2.9) 

Using the project slice theorem, we have: 

   𝜇̂𝜇(𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧) = 𝑃𝑃�(Ω,𝜃𝜃),       (2.10)  

where  𝑃𝑃�(Ω,𝜃𝜃) makes an angle 𝜃𝜃 to the 𝑘𝑘𝑥𝑥 axis in the 2-D Fourier space 𝜇̂𝜇(𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧)  (Fig. 2.6c). 

The two coordinate systems are related by:  

  𝑘𝑘𝑥𝑥 = Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and 𝑘𝑘𝑦𝑦 = Ω𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.     (2.11) 

Therefore, we can map each 𝑃𝑃�(Ω,𝜃𝜃) to the (𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧) grid: 
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   𝜇̂𝜇(Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,Ω𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑃𝑃�(Ω,𝜃𝜃).     (2.12) 

By repeating this process for all the projection angles, we can populate the 𝜇̂𝜇(𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧)  grid with 

 𝑃𝑃�(Ω,𝜃𝜃). We can then compute the attenuation coefficients 𝜇𝜇(𝑥𝑥, 𝑧𝑧)  by 2-D inverse Fourier 

transform of  𝜇̂𝜇(𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧).  However, this process creates 𝜇̂𝜇(𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧)  in the ( 𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧) that is denser near 

the zero wave numbers and sparser further away (Fig. 2.7).  This can lead to artifacts in the inverse 

2-D Fourier transform.  This brings us to the filtered back-projection method. 

 
Figure 2. 7  Transforming 𝑷𝑷�(𝛀𝛀,𝜽𝜽) to 𝝁𝝁�(𝒌𝒌𝒙𝒙,𝒌𝒌𝒛𝒛) results in denser population of data points near the 

zero wavenumber and sparser further away (from Dance et al, 2014) 

 

Filtered back-projection method 

 The inverse 2-D Fourier transform of   𝜇̂𝜇(𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧) in the cartesian coordinate is: 

 𝜇𝜇 (𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧) = 1
4𝜋𝜋2 ∫  ∫ 𝜇̂𝜇(𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧)+∞

−∞  𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧𝑧𝑧)𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑧𝑧
  +∞

−∞ ,   (2.13) 

  where 𝑘𝑘𝑥𝑥 = Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑧𝑧 = Ω𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

Changing variables from (𝑘𝑘𝑧𝑧 ,𝑘𝑘𝑧𝑧) 𝑡𝑡𝑡𝑡 (𝜔𝜔, 𝜃𝜃) give the integral in polar coordinates: 

 𝜇𝜇 (𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧) = 1
4𝜋𝜋2 ∫  ∫ 𝜇̂𝜇(Ω𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,Ω𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)+∞

−∞  𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧𝑧𝑧)Ω𝑑𝑑Ω𝑑𝑑𝑑𝑑   𝜋𝜋
0 .  (2.14)  

Substitute 2.13 into 2.14 gives: 

 𝜇𝜇 (𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧) = 1
4𝜋𝜋2 ∫  ∫ 𝑃𝑃�(Ω,𝜃𝜃) |Ω|+∞

−∞  𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧𝑧𝑧)𝑑𝑑Ω𝑑𝑑𝑑𝑑   𝜋𝜋
0 ,   (2.15) 
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where 𝑃𝑃′(𝑢𝑢,𝜃𝜃) = 1
2𝜋𝜋 ∫ 𝑃𝑃�(Ω,𝜃𝜃) |Ω|+∞

−∞  𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑧𝑧𝑧𝑧)𝑑𝑑Ω  is the inverse transform of the 1-D FT of 

projection 𝑃𝑃(𝑢𝑢,𝜃𝜃) filtered by |Ω|, and 1
2𝜋𝜋 ∫  𝑃𝑃′(𝜇𝜇,𝜃𝜃)𝑑𝑑𝑑𝑑 𝜋𝜋

0  is the inverse Radon transform. |Ω| is 

sometimes called the ramp filter or rho filter. 

Fig. 2.8 illustrates these steps:  

 a,b,c: Acquire projection of attenuated X-ray intensity for projection angle 𝜃𝜃𝑖𝑖.  

d: Use equation (2.9) to transform each projection slice 𝑃𝑃(𝑢𝑢, 𝜃𝜃𝑖𝑖)  to  𝑃𝑃�(Ω,𝜃𝜃𝑖𝑖) 

e: Apply |Ω| to high pass filter the 1-D FT projection slice, and repeat for projection slices 

of all incident angles.  

f: Inverse 1-D Fourier transform of all high pass filtered 1-D FT projection slices to form 

the high pass filtered Radon space. 

g: Inverse Radon transform to reconstruct the image space.  

 

2.3 Seismic tomography 

 Lo and Inderwiesen (1994) categorizes seismic tomography into seismic ray tomography 

and seismic diffraction tomography (Devaney 1982, Wu and Toksoz 1987) accordingly to the 

forward modelling method used. When the scale of the medium inhomogeneities is much larger 

than the seismic wavelength, seismic ray tomography uses ray theory to model the wave 

propagation as rays. When the scale of the medium inhomogeneities is comparable with the 

seismic wavelength, diffraction tomography uses wave scattering theory to model the wave 

propagation. Another situation that seismic diffraction tomography is used is when the scale of the 

medium inhomogeneities is larger than the seismic wavelength, but the velocity contrast is small. 

Seismic ray tomography includes traveltime tomography. Seismic diffraction tomography includes 
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the method known as full waveform inversion (FWI).  In this thesis, I will focus on traveltime 

tomography.  Seismic ray tomography will be discussed in detail in the subsequent chapters. 

 

Summary 

 With the advantage of 360° transmission coverage, medical tomography can use transform 

methods effectively to invert for the attenuation coefficients. To alleviate the blurring problem 

caused by the effect of the power spreading function, clinic medical tomography uses the filtered 

back-projection (FBP) method to apply a high pass filter to the recorded CT scan data. Figure 2.9 

compares reconstructed images from 3, 6, 18, 45, 60, 90, 180 and 1800 angles. 
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Figure 2. 8.  (a) X-ray is transmitted through the object space at an incident angle 𝜽𝜽, and (b) 

recorded by the detectors. (c) The projection corresponds with one line on the Radon space. (d) 1-

D Fourier transform results in an angular line in Fourier space.  (e) High pass filter and repeat (a) 

to (e) for angles.  (f) 2-D inverse Fourier transform to Radon space. (g) Inverse Radon transforms 

back to object space.  

 

 
Figure 2. 9  Results of filtered back-projections with 3, 6, 18, 45, 60, 90, 180 and 1800 angles.  
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Chapter 3 

Forward problem 

Inversion problem begins with the generation of modelled data d, involving a forward 

modelling operator L acting on the parameter m (Claerbout 1992):  

 𝑑𝑑 = 𝐿𝐿 𝑚𝑚.       (2.1) 

Velocity inversion methods estimate the optimal velocity model by minimizing the difference 

between the modelled and observed wavefield attributes, including time delays, amplitude, and 

phase. Full waveform inversion methods minimize the differences in amplitude and phase, while 

traveltime tomography methods minimize the differences in time delays.  In this chapter, I review 

the wave equation for modelling seismic wave propagation and the seismic ray theory for 

traveltime computation. I also review the basic principles of different traveltime computation 

methods including the finite difference methods, ray shooting method, wavefront construction and 

paraxial method. I analyze their differences and similarities to investigate the effectiveness of these 

methods in traveltime tomography and seismic imaging. I compare the travel times from these 

methods to a finite-difference synthetic shot record of the Marmousi model and find travel times 

from all three methods are accurate except at the area where rays diverge. I also used the travel 

time from the fast-marching method in the refraction tomography processing of the Hussar 2D 

dataset (Margrave et al., 2012). The CDP stack from the refraction tomography processing is more 

coherent and better resolved than the CDP stack with datum static correction only. 

3.1 Introduction 

        Full waveform inversion (FWI) methods model the seismic wave propagation by solving the 

wave equation. FWI then updates the velocity model by minimization of the differences between 
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the modelled and observed seismic wavefield.  Traveltime tomography estimates the optimal 

velocity model by minimizing the differences between the modelled and observed traveltimes. 

Core principles of most traveltime and ray tracing algorithms are derived from the seismic ray 

theory.  High-frequency approximation of the solution of the elastodynamic equation leads to 

solutions in different forms. For kinematic ray tracing, the solution leads to the eikonal equation 

and the ray equations. The high-frequency approximation requires the velocity of the media to 

varying smoothly. Vidale (1988,1990) presented a grid-based traveltime computation scheme that 

solves the eikonal equation by finite difference approximation. Vidale’s work leads to subsequent 

studies and developments by Qin (1992), Sethian and Popovici (1999) and other authors,  and 

resulted in more robust algorithms that can better handle rapid velocity variations. The results of 

these algorithms are traveltime from source to regularly spaced grid points.  Vidale (1988) 

proposed the construction of the ray paths by tracing the steepest traveltime gradient from the 

receiver back to the source.  Matsuoka and Ezaka (1992) presented a ray path reciprocity method 

that traces the minimum time of summed shot and receiver traveltime tables.   Alternate to grid-

based traveltime computation schemes are kinematic and dynamic ray tracing (Červený and 

Hron,1980; Beydoun and Keho,1987), and wavefront construction method (Vinje et al.,1993).  

These methods involve tracing the ray path by computing the solutions to the ray equations at each 

ray step.  Some geophysical applications such as Kirchhoff migration only require traveltime from 

a source or receiver to a subsurface point, while other applications such as refraction tomography 

require both first arrival time and ray path between a source and receiver.   The purpose of this 

chapter is to review the basic principles of the fast-marching method, paraxial method and 

wavefront construction method, and to evaluate their accuracy and effectiveness when applied in 

refraction tomography and depth imaging. 
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3.1 Wave equation  

 

Figure 3. 10.   Traction 𝑻𝑻��⃗  due to the element of 

force 𝒅𝒅𝑭𝑭��⃗  working on element surface dS. 𝒏𝒏��⃗  is 

the unit vector normal to the 𝒅𝒅𝒅𝒅. 

 

Figure 3. 2.   Stress 𝝈𝝈𝒊𝒊𝒊𝒊 and normal vector 𝒆𝒆𝒋𝒋 

 

 

 Traction 𝑻𝑻��⃗   (Figure 3.1) is a contact force exerted by the material on the positive side of 

surface element 𝒅𝒅𝒅𝒅 due to the element of force 𝒅𝒅𝒅𝒅: 

   𝑻𝑻��⃗ = 𝒅𝒅𝒅𝒅/𝒅𝒅𝒅𝒅 , or       (3.1) 

In terms of stress 𝝈𝝈𝒊𝒊𝒊𝒊:    

   𝑻𝑻𝒊𝒊 =  ∑  𝝈𝝈𝒊𝒊𝒊𝒊𝒏𝒏𝒋𝒋𝟑𝟑
𝒋𝒋=𝟏𝟏 = 𝝈𝝈𝒊𝒊𝒊𝒊𝒏𝒏𝒋𝒋     (3.2) 

𝑖𝑖 refers to the direction of traction components, 𝑗𝑗 refers to the direction of the normal of the face 

on which the traction is acting.   On the right, I use Einstein’s notation (repeated indexes imply 

summation). Applying Newton’s second law of motion, we can write: 

  ∫ 𝑇𝑇𝑇𝑇𝑇𝑇 + ∫ 𝑓𝑓𝑓𝑓𝑓𝑓 =  ∫ 𝜌𝜌𝑢̈𝑢𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉𝑠𝑠  ,     (3.3) 

where the first term represents surface forces acting on S, and the second term represents the body 

forces adding on the volume, 𝑢𝑢 is the displacement. Applying equation (3.2) to (3.3) gives the 

equation for direction i: 

  ∫ ∑ 𝝈𝝈𝒊𝒊𝒊𝒊 𝒏𝒏𝒋𝒋 + ∫ 𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑 =  ∫ 𝜌𝜌𝑢𝑢𝚤𝚤̈ 𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉  𝟑𝟑
𝒋𝒋=𝟏𝟏𝑠𝑠     (3.4) 
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Using divergence theorem, ∫ ∑ 𝜕𝜕𝐴𝐴𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

𝑑𝑑𝑑𝑑 3
𝑗𝑗=1𝑉𝑉  =∫ ∑ 𝐴𝐴𝑗𝑗  𝑛𝑛𝑗𝑗  3

𝑗𝑗=1 𝑑𝑑𝑑𝑑𝑠𝑠 , gives: 

  ∫ ∑ 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

3
𝑗𝑗=1 𝑑𝑑𝑑𝑑 + ∫ 𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑 = ∫ 𝜌𝜌𝑢𝑢𝚤𝚤̈ 𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉 , or    (3.5) 

  𝜎𝜎𝑖𝑖𝑖𝑖 ,𝑗𝑗+ 𝑓𝑓𝑖𝑖 = 𝜌𝜌𝑢𝑢𝚤𝚤̈         (3.6)  

Applying Hooke’s law, 

  𝜎𝜎𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖𝑘𝑘𝑘𝑘,        (3.7) 

where 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the stress tensor and 𝜖𝜖𝑘𝑘𝑘𝑘 is the strain tensor, 

  𝜖𝜖𝑘𝑘𝑘𝑘 = 1
2

(𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑙𝑙

+ 𝜕𝜕𝑢𝑢𝑙𝑙
𝜕𝜕𝑥𝑥𝑘𝑘

),       (3.8)  

wee obtain the stress-strain relationship: 

 �𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑘𝑘,𝑙𝑙�,𝑗𝑗+ 𝑓𝑓𝑖𝑖 = 𝜌𝜌𝑢̈𝑢𝑖𝑖 .      (3.9) 

For a wavefield propagation in general (for example, far away from any source): 

�𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑘𝑘,𝑙𝑙�,𝑗𝑗  = 𝜌𝜌𝑢̈𝑢𝑖𝑖 .      (3.10)  

Equation (3.10) is often referred to as the elastodynamic equations. For an inhomogeneous, 

isotropic medium described by Lam𝒆́𝒆 parameters 𝝀𝝀,𝝁𝝁 and density 𝝆𝝆, the stiffness tensor, 𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 , can 

be written as:  

            𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊  = 𝝀𝝀𝜹𝜹𝒊𝒊𝒊𝒊𝜹𝜹𝒌𝒌𝒌𝒌 + 𝝁𝝁�𝜹𝜹𝒊𝒊𝒊𝒊𝜹𝜹𝒋𝒋𝒋𝒋 + 𝜹𝜹𝒊𝒊𝒊𝒊𝜹𝜹𝒋𝒋𝒋𝒋�.                   (3.11) 

Substitute in 𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, ignore 𝒇𝒇𝒊𝒊 for force from afar, and take the derivative of 𝒖𝒖  gives:  

  (𝜆𝜆 + 𝜇𝜇)∇ ⋅ (∇ ⋅ 𝑢𝑢) + 𝜇𝜇∇2𝑢𝑢 = 𝜌𝜌𝑢𝑢 ̈        (3.12) 

With  ∇2𝑢𝑢 = ∇ ⋅ (∇ ⋅ 𝑢𝑢) − ∇ × ∇ × 𝑢𝑢: 

(𝜆𝜆 + 2𝜇𝜇)∇ ⋅ (∇ ⋅ 𝑢𝑢) − 𝜇𝜇∇ × (∇ × 𝑢𝑢) = 𝜌𝜌𝑢̈𝑢.    (3.13) 

Apply divergence (∇ ⋅), and substitute in 𝑉𝑉𝑝𝑝 = 𝜆𝜆+2𝜇𝜇
𝜌𝜌

  give the scalar wave equation for P-wave: 

∇2𝑢𝑢 = 1
𝑉𝑉𝑝𝑝2
𝑢̈𝑢        (3.14) 
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This is a particular solution for the case of the scalar wave equation. In general, the displacements 

will be vectors and there will be solutions for acoustic and shear waves.  

3.2 Seismic ray method and eikonal equation 

    The seismic ray method is based on an asymptotic high-frequency solution of the elastodynamic 

equation. A ray represents the movement of energy in the wavefield and is a curve perpendicular 

to the wavefronts as defined in the next section. In the previous section, we describe the acoustic 

wave equation can be written as: 

 �𝛁𝛁𝟐𝟐 − 𝟏𝟏
𝒄𝒄𝟐𝟐

𝒅𝒅𝟐𝟐

𝒅𝒅𝒕𝒕𝟐𝟐
�𝒖𝒖 = −𝒇𝒇,        (3.15) 

where 𝒄𝒄 = �𝒌𝒌
𝝆𝝆
 ,   𝒌𝒌 = 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎;  𝝆𝝆 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅. 

In the frequency domain:  

 �𝛁𝛁𝟐𝟐 − 𝟏𝟏
𝒄𝒄𝟐𝟐
𝝎𝝎𝟐𝟐�𝒖𝒖 = −𝒇𝒇,        (3.16) 

Going back to the general description in equations (3.5) and (3.6, we can substitute 

𝒖𝒖𝒊𝒊(𝒙𝒙��⃑ )𝐞𝐞𝐞𝐞𝐞𝐞{−𝒊𝒊𝒊𝒊[𝒕𝒕 − 𝑻𝑻(𝒙𝒙��⃑ )]}  in those equations, giving the Kelvin-Christoffel equation: 

 (𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊,𝒋𝒋 𝑨𝑨𝒌𝒌,𝒋𝒋 + 𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨𝒌𝒌,𝒍𝒍𝒍𝒍)𝝎𝝎−𝟐𝟐 − 𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑻𝑻,𝒋𝒋 𝑻𝑻,𝒍𝒍 𝑨𝑨𝒌𝒌 = −𝝆𝝆𝜹𝜹𝒊𝒊𝒊𝒊𝑨𝑨𝒌𝒌   (3.17) 

For high-frequency approximation, we drop the 𝝎𝝎−𝟐𝟐 term: 

Define: 𝑩𝑩𝒊𝒊𝒊𝒊 =  𝑻𝑻,𝒋𝒋 𝑻𝑻,𝒍𝒍 gives:  

 (  𝑩𝑩𝒊𝒊𝒊𝒊 − 𝝆𝝆𝜹𝜹𝒊𝒊𝒊𝒊)𝑨𝑨𝒌𝒌 = 𝟎𝟎, or in matrix form [𝑩𝑩 − 𝝆𝝆𝝆𝝆]𝑨𝑨 = 𝟎𝟎.   (3.18) 

The solution to the eigenvalue problem defined by equation (3.18) can be obtained by: 

 Det [𝑩𝑩 − 𝝆𝝆𝝆𝝆] = 𝟎𝟎.        (3.19) 

Expanding equation (3.19) yields: �𝑻𝑻,𝒌𝒌𝑻𝑻,𝒌𝒌 −
𝟏𝟏
𝜶𝜶𝟐𝟐
� �𝑻𝑻,𝒌𝒌𝑻𝑻,𝒌𝒌 −

𝟏𝟏
𝜷𝜷𝟐𝟐
� = 𝟎𝟎.  (3.20) 

Equation (3.20) is often expressed as �𝛁𝛁��⃑  𝑻𝑻�
𝟐𝟐

= 𝟏𝟏
𝒄𝒄𝟐𝟐

.    (3.21) 
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Equation (3.21) is known as the eikonal equation and its solution provides the traveltime 𝑻𝑻(𝒙𝒙,𝒚𝒚, 𝒛𝒛) 

for the subsurface. There is a fully elastic form for anisotropic media which I don’t present here 

(see Cervený, 2001). 

3.3 Ray equations 

    To trace the position of a ray, we have to define some properties of rays and wavefronts (Figure 

3.3) and express their relationships as a set of ray equations. Wavefronts are defined by the surfaces  

T(x,y,z)=constant.  Slowness vector 𝒒𝒒��⃗  equals 𝛁𝛁��⃗ 𝑻𝑻 and is tangential to the ray and normal to the 

wavefronts. 

 

Figure 3. 3.  Relationship between ray and wavefront 

From equation (3.21), we have �𝑐𝑐 ∇��⃗ 𝑇𝑇� = 1 being a unit vector normal to the wavefront. Therefore, 

ray can be defined by 𝑑𝑑𝑥⃗𝑥
𝑑𝑑𝑑𝑑

= 𝑐𝑐 ∇��⃗ 𝑇𝑇 = 𝑐𝑐𝑞⃗𝑞,  or  𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑞𝑞𝑖𝑖, i=1,2,3  (3.22) 

             where 𝒅𝒅𝒙𝒙��⃗
𝒅𝒅𝒅𝒅

  is a unit vector tangential to the ray. 

 

From  𝑞⃗𝑞 =  𝛻𝛻�⃗ 𝑇𝑇,   we can obtain  𝑑𝑑𝑞𝑞�⃗
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
𝛻𝛻�⃗ 𝑇𝑇                          (3.23) 

 

Substitute (3.22) into (3.23), we obtain the ray equations for the slowness vectors: 
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𝑑𝑑𝑞𝑞�⃗
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
�1
𝑐𝑐
𝑑𝑑𝑥⃗𝑥
𝑑𝑑𝑑𝑑

 � = 𝛻𝛻�⃗ [ 1
𝑐𝑐
 ]                               (3.24) 

Ray equations can also be expressed in terms of T instead of arc length, s: 

  𝑑𝑑𝑥⃗𝑥
𝑑𝑑𝑑𝑑

= 𝑐𝑐2𝑞⃗𝑞,        (3.25) 

and     
𝑑𝑑𝑞𝑞�⃗
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝛻𝛻�⃗ [ 1
𝑐𝑐
 ]                                 (3.26) 

These equations form the kinematic ray tracing system. Solution of equation (3.33) or (3.25) 

represents the trajectory  𝑥⃗𝑥, while the solution of equation (3.24) or (3.26) represents the slowness 

vector 𝑞⃗𝑞 along the ray as function of arc length or time. 

3.4 Finite difference solution to the eikonal equation and grid-based method 

    Grid-based travel time computation algorithms use the eikonal equation (3.21) to solve for 

T(x,y,z).   Vidale (1988) presented a method that uses a first-order finite difference approximation 

scheme to propagate geometric rays from three corners to the fourth corner of a square grid as 

shown in figure 3.4.  Equation (3.12+16) and (3.12+17) are the average finite difference 

approximation of  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 and  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  respectively.  

   �𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏
�
𝟐𝟐

+ �𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏
�
𝟐𝟐

= 𝒔𝒔(𝒙𝒙, 𝒛𝒛)𝟐𝟐            (3.27) 

   𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝟏𝟏
𝟐𝟐𝟐𝟐

 ( 𝒕𝒕𝟎𝟎 + 𝒕𝒕𝟐𝟐 − 𝒕𝒕𝟏𝟏 − 𝒕𝒕𝟑𝟑)          (3.28) 

   𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝟏𝟏
𝟐𝟐𝟐𝟐

 ( 𝒕𝒕𝟎𝟎 + 𝒕𝒕𝟏𝟏 − 𝒕𝒕𝟐𝟐 − 𝒕𝒕𝟑𝟑)          (3.29) 

  Substitute equations (3.28) and (3.29) into  

   equation (3.27):    

𝒕𝒕𝟑𝟑 = 𝒕𝒕𝟎𝟎 +  �𝟐𝟐(𝒉𝒉𝒔𝒔)𝟐𝟐 − (𝒕𝒕𝟐𝟐 − 𝒕𝒕𝟏𝟏)𝟐𝟐   (3.30) 

Where:  s(x,z) is the slowness, 

                𝐭𝐭𝟎𝟎, 𝐭𝐭𝟏𝟏 𝐚𝐚𝐚𝐚𝐚𝐚 𝐭𝐭𝟐𝟐 𝐚𝐚𝐚𝐚𝐚𝐚 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭,        

                𝒕𝒕𝟑𝟑 𝐢𝐢𝐢𝐢 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐭𝐭𝐭𝐭 𝐛𝐛𝐛𝐛 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜.  

 

Figure 3. 4. Using 𝐭𝐭𝐨𝐨, 𝐭𝐭𝟏𝟏 𝐚𝐚𝐚𝐚𝐚𝐚 𝐭𝐭𝟐𝟐 to compute 𝒕𝒕𝟑𝟑. 
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     The procedure starts at the source and expands outward as square rings (Figure 3.5).  Points on 

the square ring are sorted from minimum traveltime to maximum traveltime, and the new 

traveltime is computed starting from the point with minimum travel time. 

      

Figure 3. 5.   The double circle shows the source point. Empty circles are timed locations.  Filled 

circles are locations to be timed.  Large filled circles are the square wavefront to be timed. Points 

on each edge are timed from location of minimum time to maximum time.   (Adapted from 

Vidale 1988)                 

 

2.4.1 Expanding wavefront method 

       Qin (1992) showed that the expanding square strategy is not appropriate for a model with 

moderate to large velocity contrast and can lead to a negative value in the square root term in 

equation (18).   Qin proposed an expanding wavefront method that can preserve the causality by 

expanding the wavefront only at points adjacent to the point with global minimum traveltime 

(shown as a double circle in Figure 3.6). This method ensures a ray associated with a point to be 

considered is completely timed up to that point. However, it is computationally expensive at 

𝟎𝟎(𝐍𝐍𝟑𝟑) algebraic operations, because sorting is required to establish the new global minimum after 

each wavefront point is added. 
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Figure 3. 6. (a)  Filled circles mark the outer circumference of timed locations. The double circle 

shows the location of minimum time on the current time wavefront. (b) new locations to be 

timed (empty circles next to double circle). (c) New locations in (b) are timed and the new 

minimum time of the current wavefront is marked as a double circle.  (Adapted from Qin 1992) 
 

3.4.2 Fast marching method 

    Sethian and Popovici (1999) showed that propagating a triangular wavefront with unit speed 

using central difference approximation to the travel time gradient results in instabilities at the bend 

of the triangular wavefront.  Rapid changes in velocity can result in similar instabilities. These 

instabilities are resolved by applying entropy-satisfying upwind differences schemes introduced 

by Osher and Sethian (1988): 

 

  𝚿𝚿𝒙𝒙
𝟐𝟐 ≈ [𝐦𝐦𝐦𝐦𝐦𝐦(𝑫𝑫𝒊𝒊

−𝒙𝒙 𝚿𝚿,𝟎𝟎)𝟐𝟐 + 𝐦𝐦𝐦𝐦𝐦𝐦(𝑫𝑫𝒊𝒊 
+𝒙𝒙 𝚿𝚿,𝟎𝟎)𝟐𝟐 ]                    (3.31) 

 

A more convenient upwind scheme from Rouy and Tourin (1992) is used in Sethian and Popovici’s 

fast marching method: 

    𝚿𝚿𝒙𝒙
𝟐𝟐 ≈ 𝐦𝐦𝐦𝐦𝐦𝐦(𝑫𝑫𝒊𝒊

−𝒙𝒙 𝚿𝚿,−𝑫𝑫𝒊𝒊 
+𝒙𝒙 𝚿𝚿,𝟎𝟎)𝟐𝟐                                            (3.32) 

 

  where   𝐃𝐃− 𝐚𝐚𝐚𝐚𝐚𝐚 𝐃𝐃+𝐚𝐚𝐚𝐚𝐚𝐚 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛 𝐚𝐚𝐚𝐚𝐚𝐚 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 ∶   
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    𝑫𝑫𝒊𝒊
−𝒙𝒙𝚿𝚿 =  (𝚿𝚿𝐢𝐢  −𝚿𝚿𝐢𝐢−𝟏𝟏

𝐡𝐡
)   

    𝑫𝑫𝒊𝒊
+𝒙𝒙𝚿𝚿 =  (𝚿𝚿𝐢𝐢+𝟏𝟏 −  𝚿𝚿𝐢𝐢 

𝐡𝐡
) 

 

  𝚿𝚿𝐢𝐢 𝐢𝐢𝐢𝐢 𝐭𝐭𝐭𝐭𝐭𝐭 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯 𝐨𝐨𝐨𝐨 𝚿𝚿 𝐚𝐚𝐚𝐚 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐢𝐢 𝐚𝐚𝐚𝐚𝐚𝐚 𝐡𝐡 𝐢𝐢𝐢𝐢 𝐭𝐭𝐭𝐭𝐭𝐭 𝐠𝐠𝐠𝐠𝐢𝐢𝐢𝐢 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬   

  

 

The upwind scheme chooses grid points in terms of the direction of the flow of information. 

Sethian and Popovici (1999) express the eikonal equation as the following and apply the upwind 

finite difference scheme: 

 

 |𝛁𝛁𝛁𝛁(𝐱𝐱, 𝐲𝐲, 𝐳𝐳)| = 𝒔𝒔(𝒙𝒙,𝒚𝒚, 𝒛𝒛)                              (3.33)  

     

  |𝛁𝛁𝛁𝛁| ≈ �𝐦𝐦𝐦𝐦𝐦𝐦�𝑫𝑫𝒊𝒊𝒊𝒊𝒊𝒊
−𝒙𝒙  𝒕𝒕,−𝑫𝑫𝒊𝒊𝒊𝒊𝒊𝒊

+𝒙𝒙  𝒕𝒕,𝟎𝟎�
𝟐𝟐

+ 𝐦𝐦𝐦𝐦𝐦𝐦 �𝑫𝑫𝒊𝒊𝒊𝒊𝒊𝒊
−𝒚𝒚 𝒕𝒕,−𝑫𝑫𝒊𝒊𝒊𝒊𝒊𝒊

+𝒚𝒚 𝒕𝒕,𝟎𝟎�
𝟐𝟐

+ 𝐦𝐦𝐦𝐦𝐦𝐦�𝑫𝑫𝒊𝒊𝒊𝒊𝒊𝒊
−𝒛𝒛  𝒕𝒕,−𝑫𝑫𝒊𝒊𝒊𝒊𝒊𝒊

+𝒛𝒛  𝒕𝒕,𝟎𝟎�
𝟐𝟐
�
𝟏𝟏
𝟐𝟐

=

𝑺𝑺𝒊𝒊𝒊𝒊𝒊𝒊        (3.34)                       

                                                                                                                                                                        

          where 𝐒𝐒𝐢𝐢𝐢𝐢𝐢𝐢 𝐢𝐢𝐢𝐢 𝐭𝐭𝐭𝐭𝐭𝐭 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐚𝐚𝐚𝐚 𝐠𝐠𝐠𝐠𝐢𝐢𝐝𝐝 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩(𝐢𝐢, 𝐣𝐣,𝐤𝐤). 

 

To solve for 𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊, we expand equation (3.34) to a quadratic equation in the form of 

     𝒂𝒂𝒕𝒕𝟐𝟐 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄 = 𝟎𝟎  

𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊 can now be solved explicitly as the root to a quadratic equation using 𝒕𝒕 =
−𝒃𝒃±�𝒃𝒃𝟐𝟐−𝟒𝟒𝟒𝟒𝟒𝟒  

𝟐𝟐𝟐𝟐
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        The fast march algorithm also stores the traveltime values on a heap with the minimum time 

on top of the heap to reduce the sorting effort. This reduces the computationally cost to 

𝟎𝟎(𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 ) algebraic operations (Sethian and Popovici, 1999).  The fast marching algorithm is 

outlined in the following steps: 

 First, compute traveltimes at locations around the source point and tag these locations as 

ACCEPTED. Then tag as CLOSE all points one grid point away. Finally, tag as FAR all other grid 

points.  

1) Begin Loop: Let TRIAL be the point in CLOSE with the smallest traveltime 

2) Add the point TRIAL to ACCEPTED; remove it from CLOSE. 

3) Tag as CLOSE all neighbours of TRIAL that are not ACCEPTED. If the neighbour is in 

FAR remove it from that list and add it to the set CLOSE. 

4) Recompute traveltimes at all neighbours according to equation (3.34). 

5) Return to 1. 

     

Figure 3. 7.  Fast marching scheme. Filled circles are timed locations. X’s are CLOSE locations to 

be tested for the minimum time. Empty circles are FAR locations have not been times. 
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Figure 3. 8.   Input velocity model and minimum traveltime from fast marching method (Sethian 

and Popovici, 1999). 

3.5 Ray Shooting method 

    The ray shooting method (Figure 3.9) shoots a series of rays through the medium with starting 

vertical angle 𝜽𝜽𝒊𝒊 and horizontal angle 𝝓𝝓𝒊𝒊, and uses the ray equations 3.35 and 3.36 to compute the 

trajectory of the ray paths.   These ray equations contain the definition and conservation of 

slowness (this conservation is equivalent to Snells’ law). Travel times along the ray paths are then 

computed by integrating through the velocity model.  Finally, the computed travel times are 

mapped to a regular grid map of the subsurface by interpolation across rays.  

Figure 3.9.   a) Input velocity model and rays, b) interpolated traveltime. 
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The initial value of equations (3.22) for an isotropic medium is: 

       𝒅𝒅𝒙𝒙��⃗
𝒅𝒅𝒅𝒅

= (𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽𝒊𝒊 𝒄𝒄𝒄𝒄𝒔𝒔𝒊𝒊𝝓𝝓, 𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽𝒊𝒊 𝒔𝒔𝒔𝒔𝒔𝒔𝝓𝝓𝒊𝒊, 𝒄𝒄𝒄𝒄𝒄𝒄𝜽𝜽𝒊𝒊)                  (3.35)  

 

The initial value for the ray parameter for an isotropic medium is: 

      𝒒𝒒��⃗ = 𝟏𝟏
𝒄𝒄(𝑿𝑿𝒔𝒔,𝒀𝒀𝒔𝒔,𝒁𝒁𝒔𝒔)

𝒅𝒅𝒙𝒙��⃗
𝒅𝒅𝒅𝒅

            (3.36) 

Trajectory 𝒙𝒙��⃗   of the ray is computed with the following steps: 

   1: Solve ODE (3.22) for  𝒙𝒙��⃗  

    2: Solve ODE (3.24) for  𝒒𝒒��⃗  . 

  Repeat steps 1 and 2 for all depth steps. 

Repeat for all starting angles  𝜽𝜽𝒊𝒊 𝒂𝒂𝒂𝒂𝒂𝒂 𝝓𝝓𝒊𝒊  

 

3.6 Wavefront Construction 

Wavefront construction (WFC) (Vinje et al., 1993) is a natural extension of the ray shooting 

method.  WFC uses localized ray tracing to construct a wavefront of constant traveltimes. The 

amplitude of rays can be computed from the ratio of the cross-sectional area of rays of adjacent 

wavefronts. The initial wavefront is constructed by shooting a series of short ray segments of equal 

time steps from the source.  The end points of the ray segments on the wavefront are then 

propagated for another time step to construct a new wavefront. Coordinates of position and 

components of slowness vector of the ray segments are computed using the same procedure as the 

ray shooting method.   When the wavefront crosses an interface with rapid velocity changes, the 

ray segments diverge and create a gap or shadow zone, that is subsurface points without 

illumination. The ray segments can also cross over and create caustics or multi-values (Figure 

3.10a). Caustics in seismic refer to concentration of energy along a path that produces infinite 
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values of amplitude. Multivalues are subsurface points where rays cross each other producing more 

than one possible value of the wavefield. To address the problem of shadow zones and to ensure 

sufficient ray density, additional ray segments can be interpolated (Figure 3.10b).  For minimum 

traveltime ray tracing, caustics can be removed (Figure 3.10c). Figure 3.10d shows gridded 

minimum traveltime after caustics are removed.  

In this example, upgoing rays are disabled for depth imaging.  However, if caustics are to be 

removed, upgoing rays can be enabled for refraction ray tracing.   

 

 

Figure 3. 10.  a) Rays and wavefronts without interpolation, b) Rays and wavefronts with third-

order interpolation along wavefronts, c) Rays and wavefronts with caustics removed, d) travel time 

gridded from wavefronts (Vinje et al., 1993). 
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3.7 Paraxial method 

    The paraxial method (Beydoun and Keho1987) is a dynamic ray-tracing method in ray 

coordinate system (𝛾𝛾1,𝛾𝛾2,𝑢𝑢)  or ray-centred coordinate system ( 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 ). The following 

discussion refers to the ray coordinate system shown in figure 3.11a.  Paraxial rays are rays in the 

vicinity of a central ray (Figure 3.11b).  𝛾𝛾1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾2  are ray parameters.  They can be take-off angles 

𝑖𝑖0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙0, or they can be components of slowness vector. They specify the initial direction of the 

ray in isotropic media. For anisotropic media, they specify the initial direction of the slowness 

vector.  The third ray parameter 𝑢𝑢  is a monotonically changing parameter along the ray.  It can be 

arc length s or travel time T.    

 

Figure 3.11.  a) ray coordinates  𝜻𝜻𝟏𝟏, 𝜻𝜻𝟐𝟐;  ray parameters 𝜸𝜸𝟏𝟏,𝜸𝜸𝟐𝟐  and  wavefront 𝑻𝑻.    b) paraxial rays 

are rays in the vicinity of the central ray. 𝒅𝒅𝝈𝝈𝟎𝟎 is the cross sectional area of the paraxial ray,  𝒓𝒓𝟎𝟎  is 

radius of curvature of the wavefront at 𝑴𝑴𝟎𝟎. Similarly, for  𝒅𝒅𝝈𝝈𝟏𝟏𝒂𝒂𝒂𝒂𝒂𝒂 𝒓𝒓𝟏𝟏 .              
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Paraxial rays can have different properties than the central ray. These properties can be travel times 

or amplitude.  The paraxial method determines these properties by differentiating the ray equations 

with respect to 𝛾𝛾1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾2.  If we choose u=s, we can start with ray equations in the form of: 

                         𝒅𝒅𝒙𝒙𝒊𝒊
𝒅𝒅𝒅𝒅

= 𝒄𝒄 𝒑𝒑𝒊𝒊                                   (3.38) 

                            𝒅𝒅𝒑𝒑𝒊𝒊
𝒅𝒅𝒅𝒅

=  𝒅𝒅 
𝒅𝒅𝒙𝒙𝒊𝒊

[ 𝟏𝟏
𝒄𝒄
 ]                                           (3.39) 

 

3.7.1 Dynamic ray tracing equations 

We define: 

                        𝑸𝑸𝒊𝒊≡
𝝏𝝏𝒙𝒙𝒊𝒊
𝝏𝝏𝝏𝝏

,𝑷𝑷𝒊𝒊≡
𝝏𝝏𝒑𝒑𝒊𝒊
𝝏𝝏𝝏𝝏

                                             (3.40) 

To derive the dynamic ray tracing equations, we take the derivatives of (3.38) and (3.39): 

  𝝏𝝏
𝝏𝝏𝝏𝝏

𝒅𝒅𝒙𝒙𝒊𝒊
𝒅𝒅𝒔𝒔

= 𝒅𝒅
𝒅𝒅𝒅𝒅

𝝏𝝏𝒙𝒙𝒊𝒊
𝝏𝝏𝝏𝝏

= 𝒅𝒅𝑸𝑸𝒊𝒊
𝒅𝒅𝒅𝒅

= 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏
𝒑𝒑𝒊𝒊 + 𝒄𝒄𝑷𝑷𝒊𝒊 

   𝒅𝒅𝑸𝑸𝒊𝒊
𝒅𝒅𝒅𝒅

= 𝝏𝝏𝝏𝝏
𝝏𝝏𝒙𝒙𝒌𝒌

𝝏𝝏𝒙𝒙𝒌𝒌
𝝏𝝏𝝏𝝏
𝒑𝒑𝒊𝒊 + 𝒄𝒄𝑷𝑷𝒊𝒊 = 𝒄𝒄,𝒌𝒌 𝑸𝑸𝒌𝒌𝒑𝒑𝒊𝒊 + 𝒄𝒄𝑷𝑷𝒊𝒊   (3.41) 

  𝝏𝝏
𝝏𝝏𝝏𝝏

𝒅𝒅𝒑𝒑𝒊𝒊
𝒅𝒅𝒅𝒅

= 𝒅𝒅
𝒅𝒅𝒅𝒅

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝒅𝒅𝑷𝑷𝒊𝒊
𝒅𝒅𝒅𝒅

= 𝝏𝝏
𝝏𝝏𝝏𝝏
� 𝒅𝒅 
𝒅𝒅𝒙𝒙𝒊𝒊

� 𝟏𝟏𝒄𝒄 � �      

             𝒅𝒅𝑷𝑷𝒊𝒊
𝒅𝒅𝒅𝒅

= ( 𝝏𝝏 
𝝏𝝏𝒙𝒙𝒌𝒌

 𝝏𝝏 
𝝏𝝏𝒙𝒙𝒊𝒊
�𝟏𝟏
𝒄𝒄
�) 𝝏𝝏𝒙𝒙𝒌𝒌

𝝏𝝏𝜸𝜸
= 𝝏𝝏 𝟐𝟐 

𝝏𝝏𝒙𝒙𝒊𝒊𝝏𝝏𝒙𝒙𝒌𝒌
�𝟏𝟏
𝒄𝒄
�𝑸𝑸𝒌𝒌             (3.42)   

 

Equation (3.41) and (3.42) are dynamic ray tracing equations and are used to compute 

𝑸𝑸𝒊𝒊 𝐚𝐚𝐚𝐚𝐚𝐚  𝑷𝑷𝒊𝒊 for the central ray (Cervený and Hron,1980, Cervený., 2001).   

3.72 Paraxial ray tracing equations 

We define  𝜹𝜹𝒙𝒙𝒊𝒊 𝒂𝒂𝒂𝒂𝒂𝒂 𝜹𝜹𝒑𝒑𝒊𝒊 as parameters that connect a paraxial ray to the central ray using the 

following approximation∶  
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    𝜹𝜹𝒙𝒙𝒊𝒊 ≈  𝝏𝝏𝒙𝒙𝒊𝒊
𝝏𝝏𝝏𝝏
𝒅𝒅𝒅𝒅 =  𝑸𝑸𝒊𝒊 𝒅𝒅𝒅𝒅                     (3.43) 

    𝜹𝜹𝒑𝒑𝒊𝒊 ≈  𝝏𝝏𝒑𝒑𝒊𝒊
𝝏𝝏𝝏𝝏
𝒅𝒅𝒅𝒅 =  𝑷𝑷𝒊𝒊 𝒅𝒅𝒅𝒅                             (3.44) 

Multiplying equation (29) and (30) with 𝜹𝜹𝜹𝜹 and apply equation (3.43) and (3.44) yields: 

𝑑𝑑𝑄𝑄𝑖𝑖
𝑑𝑑𝑑𝑑
𝛿𝛿𝛿𝛿 = 𝑐𝑐,𝑘𝑘 𝑄𝑄)𝑘𝑘 𝑝𝑝𝑖𝑖𝛿𝛿𝛿𝛿 + 𝑐𝑐𝑃𝑃𝑖𝑖𝛿𝛿𝛿𝛿  

𝑑𝑑
𝑑𝑑𝑑𝑑
𝛿𝛿𝑥𝑥𝑖𝑖 = 𝑐𝑐,𝑘𝑘 𝛿𝛿𝑥𝑥𝑘𝑘𝑝𝑝𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑝𝑝𝑖𝑖    (3.45) 

𝑑𝑑𝑃𝑃𝑖𝑖
𝑑𝑑𝑑𝑑
𝛿𝛿𝛿𝛿 = 𝜕𝜕2

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑘𝑘
�1
𝑐𝑐
� 𝑄𝑄𝑘𝑘𝛿𝛿𝑦𝑦  

𝑑𝑑
𝑑𝑑𝑑𝑑
𝛿𝛿𝑝𝑝𝑖𝑖 = 𝜕𝜕2

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑘𝑘
�1
𝑐𝑐
� 𝛿𝛿𝑥𝑥𝑘𝑘 = �2𝑐𝑐,𝑖𝑖𝑐𝑐,𝑘𝑘

𝑐𝑐3
− 𝑐𝑐,𝑖𝑖𝑖𝑖

𝑐𝑐2
� 𝛿𝛿𝑥𝑥𝑘𝑘  (3.46) 

Equation (3.45) and (3.46) are paraxial ray tracing equations and are used to compute 𝜹𝜹𝒙𝒙𝒊𝒊 𝐚𝐚𝐚𝐚𝐚𝐚 𝜹𝜹𝒑𝒑𝒊𝒊 

for paraxial ray from  𝒄𝒄,𝜵𝜵��⃗ 𝒄𝒄 𝐚𝐚𝐚𝐚𝐚𝐚 𝒑𝒑��⃗  (Beydoun and Keho, 1987, Cervený., 2001). 

3.7.3 Geometrical spreading factor 

Geometrical spreading can be computed from the ratio of cross-sectional areas. Equation (3.43) 

shows that the cross-sectional area of paraxial ray can be computed directly from  𝑸𝑸𝟏𝟏 𝐚𝐚𝐚𝐚𝐚𝐚 𝑸𝑸𝟐𝟐 and 

the ray parameters 𝜸𝜸𝟏𝟏 𝒂𝒂𝒂𝒂𝒂𝒂 𝜸𝜸𝟐𝟐 (Cervený., 2001): 

   𝒅𝒅𝒅𝒅 = � 𝝏𝝏𝒙𝒙��⃗
𝝏𝝏𝜸𝜸𝟏𝟏

𝐱𝐱 𝝏𝝏𝒙𝒙��⃗
𝝏𝝏𝜸𝜸𝟐𝟐

 � 𝒅𝒅𝜸𝜸𝟏𝟏𝒅𝒅𝜸𝜸𝟐𝟐 = 𝑸𝑸𝟏𝟏𝑸𝑸𝟐𝟐𝒅𝒅𝜸𝜸𝟏𝟏𝒅𝒅𝜸𝜸𝟐𝟐   (3.47) 

3.7.4 Paraxial ray traveltimes 

      

Figure 3. 12.   Paraxial ray and traveltime (Beydoun and Keho, 1987) 
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 As shown in figure 3.12, a point R is at 𝒙𝒙��⃗  on  the central ray and a point R’ is at  𝒙𝒙��⃗ + 𝒉𝒉��⃗    on a 

nearby ray.  Using the 3D Taylor series to relate R and R’, we obtain: 

 𝑇𝑇�𝑥⃗𝑥 + ℎ�⃗ � = 𝑇𝑇(𝑥⃗𝑥) + 𝑇𝑇,𝑗𝑗 (𝑥⃗𝑥)ℎ𝑗𝑗 + 1
2
𝑇𝑇,𝑗𝑗𝑗𝑗 (𝑥⃗𝑥)ℎ𝑗𝑗ℎ𝑘𝑘,   (3.48) 

where 𝑻𝑻(𝒙𝒙��⃗ ) is travel time at R,  𝑻𝑻,𝒋𝒋 𝐢𝐢𝐢𝐢 𝐭𝐭𝐭𝐭𝐭𝐭 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐨𝐨𝐨𝐨 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭  𝐚𝐚𝐚𝐚𝐚𝐚 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝒑𝒑𝒋𝒋.   

𝑻𝑻,𝒋𝒋𝒋𝒋  is the second derivative of traveltime and can be computed from: 

 𝑇𝑇,𝑗𝑗𝑗𝑗 = 𝜕𝜕𝑝𝑝𝑗𝑗
𝜕𝜕𝑥𝑥𝑘𝑘

= 𝜕𝜕𝑝𝑝𝑗𝑗
𝜕𝜕𝛾𝛾𝑛𝑛

𝜕𝜕𝛾𝛾𝑛𝑛
𝜕𝜕𝑥𝑥𝑘𝑘

 = 𝑃𝑃𝑗𝑗𝑗𝑗𝑄𝑄𝑛𝑛𝑛𝑛−1    (3.49) 

   where 𝑄𝑄𝑛𝑛𝑛𝑛−1 =  𝜕𝜕𝛾𝛾𝑛𝑛
𝜕𝜕𝑥𝑥𝑘𝑘

 

Or in matrix form:  𝑻𝑻,𝒋𝒋𝒋𝒋 = 𝐓𝐓 = 𝐏𝐏𝐐𝐐−𝟏𝟏                                      (3.50) 

 

The paraxial ray tracing algorithm is outlined in the following steps: 

1) Shoot a ray through the medium with starting vertical angle 𝜽𝜽𝒊𝒊 and horizontal angle 𝝓𝝓𝒊𝒊 

2) Solve ODE 3.38 for displacement 𝒙𝒙𝒊𝒊 for the central ray 

3) Solve ODE 3.39 for slowness vector 𝒑𝒑𝒊𝒊 for the central ray 

4) Solve ODE 3.41 and 3.42 for 𝑷𝑷𝒊𝒊 𝐚𝐚𝐚𝐚𝐚𝐚 𝑸𝑸𝒊𝒊 

5) Use equation 3.49 to compute 𝑻𝑻,𝒋𝒋𝒋𝒋 

6) Use equation 3.48 to compute paraxial travel time for paraxial rays near the central ray 

   Repeat steps 1 to 6 for all starting angle 𝜽𝜽𝒊𝒊 and horizontal angle 𝝓𝝓𝒊𝒊 

3.8 Comparisons of travel times from ray-tracing methods 

    To verify and compare the accuracy of the travel times computed from WFC (Figure 3.13a), 

fast marching and paraxial method (Figure 3.13b), we use the Marmousi model (Brougois et al, 

1990) with a buried source placed at the depth of 2500m and compute the travel times from these 
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three methods.  A second-order finite difference shot record was created using the Seismic Unix 

module sufdmod2.  Travel times at the surface are plotted on the shot record with travel times from 

WFC plotted in red, fast marching plotted in blue and paraxial method plotted in yellow (Figure 

3.14). As shown in figure 3.14, the travel times at the surface from WFC and fast marching are 

almost identical. Travel times at the surface from the paraxial method that uses the shortest ray 

path agree with the other two methods at most locations except at locations where rays diverge.  

This test demonstrated all three methods result in very similar travel times that agree with the finite 

difference shot record.  Both WFC and fast marching methods produce smooth and stable 

minimum travel times.  Rays in the paraxial method may diverge and create large gaps that can 

result in inaccurate travel times.   

 

Figure 3. 13.   a) Ray paths and wavefronts from the WFC method,  b) Ray paths from the Paraxial 

method. 
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    WFC and paraxial methods also show that rays can cross over in an area with a complex velocity 

structure.  These cross-over ray paths result in multi-arrivals at the same grid point.  Furthermore, 

WFC computes geometric spreading amplitude using cross-sectional area ratio at the starting and 

end points of ray segment and the paraxial method computes amplitude from dynamic ray tracing 

equations.  Therefore, WFC and paraxial method can be used when multi-arrivals or different 

branches of traveltime including most energetic arrivals is desirable.  

 

Figure 3. 14.   Finite difference synthetic shot record with first arrival times from WFC, fast 

marching and paraxial method 

 

3.9 Summary of ray tracing methods 

As discussed before, there are many different ray tracing algorithms, all with applications in 

different areas of research. In the list below, I present the main advantages and disadvantages of 

each method.  
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Fast marching method: 

• Advantages 

- Unconditionally stable 

- Can handle turning rays. Does not have a shadow zone problem. 

- Computes the first arrival time for every grid point without interpolation. 

- Excellent algorithm for refraction tomography 

 

• Disadvantages 

- Does not compute ray paths directly but the wavefronts.   

- Does not compute multi-arrivals. 

- Does not compute amplitude. 

- Can be slow for a large output grid. 

  

Wavefront Construction method: 

• Advantages 

- Stable if appropriate velocity smoothing parameter is used; however, accuracy can 

decrease with increasing smoothing 

- Can handle turning rays. Does not have a shadow zone problem. 

- Can compute multi-arrivals and amplitude 

- Can be faster than the fast marching method, if a larger step size is used. 

- A good algorithm for refraction tomography as well as depth imaging 
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• Disadvantages 

- Ray paths from interpolated ray segments may not be accurate enough for 

tomographic inversion. 

 

Paraxial method: 

• Advantages 

- A good tradeoff between speed and accuracy. 

- More accurate travel time interpolation in the vicinity of the central ray than the 

classical ray shooting method. 

- Can compute multi-arrivals and amplitude 

- A good algorithm for depth imaging 

 

• Disadvantages 

- Cannot handle turning ray.  Not suitable for refraction tomography 

- Can have problems with ray path divergence and shadow zone in areas with complex 

structures.  

 

Ray shooting method: 

 

• Advantages 

- Fast and accurate. 

- Can compute multi-arrivals  

- A good algorithm for depth imaging 
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• Disadvantages 

- Cannot handle turning ray.  Not suitable for refraction tomography 

- Travel time interpolation is not as accurate as the paraxial method in the vicinity of 

the central ray 

- Does not compute amplitudes 

- Can have problems with ray path divergence and shadow zone in areas with complex 

structure.  

 

Application of ray tracing methods in depth imaging 

         All methods tested show similar accuracy; while WFC and the paraxial method are capable 

of computing multi-value traveltimes.  This poses a challenge in determining which arrival times 

to use as well as storage and computational resources in retrieving these values. However, when 

minimum time or shortest path is not the optimal approach, the multi-values capability of WFC 

and paraxial methods can improve the imaging result. 

      I did not perform a comprehensive analysis of the effects of these ray tracing methods in depth 

imaging.  However, based on the observed geometry of the ray paths in our tests using the 

Marmousi model; I believe the proper application of the multi-arrivals, amplitude and ray path 

distance information from WFC and paraxial method can have a significant impact on the quality 

of the final depth image. This statement is based on the property of WFC and paraxial methods to 

create smooth traveltime tables, which help imaging algorithms like Kirchhoff to produce clean 

images.  
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Application of ray tracing methods in refraction traveltime tomography 

Refraction traveltime tomography involves forward modelling of first arrival times and 

using the differences between the modelled times and the actual first arrival time picks to update 

the velocity model along the ray path. I use different ray tracing methods in refraction tomography 

to invert for the near-surface velocity model.  Ray shooting method and paraxial method are not 

suitable for ray tracing refraction ray paths because of their inability to handle up-turning rays.  

Both WFC and fast marching methods can handle up-turning rays; therefore, they are more suitable 

for refraction tomography.  We used the fast marching method for forward modelling in refraction 

tomography and apply the refraction tomography process to the Hussar 2D line acquired in 2011 

by CREWES of the University of Calgary (Margrave et al., 2012).  We compared the CDP stack 

with the tomographic statics correction to the CDP stack with GLI (Hampson and Russel 1984) 

weathering statics correction.  GLI is one of the delay time methods and has found great success 

when the near-surface can be approximated by layers with a distinct difference in velocity but has 

a problem with gradational velocity changes and rough topography. 

 

      A velocity model with a constant velocity gradient between layers and with the depth of the 

layer boundaries following the recording surface as shown in figure 3.15a is used as the starting 

model.  Figure 3.15b shows the updated velocity model and refraction ray paths for shot location 

417 after 10 iterations. Shown in figure 3.16 is the comparison of modelled refraction arrival times 

and the actual first arrival picks before and after tomographic inversion for shot location 417 as 

well as the RMS error for all time picks after each iteration.  Fig 3.16b shows that modelled 

refraction arrival times from the final velocity model match the actual first arrival picks.           
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Figure 3. 15.   a) Starting model for tomographic inversion. b) Velocity model after 10 iterations 

using traveltimes from fast marching method.  Ray paths from shot location 417 are shown. 

 

 

Figure 3. 16.   a) Actual first arrival times from shot location plotted in black, minimum travel 

times from starting model plotted in blue, b) Minimum travel times from velocity model after 10 

iterations, c) RMS error at each iteration.  
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Figure 3.17.   (a) CDP stack with datum statics correction, (b) CDP stack with tomographic 

weathering statics correction. 

 

Figure 3.17 compares the CDP stacks with datum statics correction only and with tomographic 

weathering statics correction.  The images from the tomographic weathering statics corrected CDP 

stack are more coherent and better resolved than the datum statics corrected CDP stack.  These 

results demonstrate that the fast marching method is accurate and is effective when used in 

refraction tomography.  

 

3.10 Conclusion 

     Fast marching, WFC, ray shooting method and paraxial method are all based on the principles 

of high-frequency ray theory. They all produce accurate travel times when the velocity model 

varies smoothly.  Similar to the classical ray shooting method, the paraxial method has the problem 

of diverging ray paths and shadow zones in areas of complex structure. WFC alleviates this 

problem by interpolating additional ray segments along wavefronts to ensure sufficient ray density.  

Both paraxial and WFC methods can produce multi-arrivals as well as amplitude tables, which are 
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important for true amplitude migration. However, the fast marching method can only produce 

minimum traveltime values. Therefore, WFC and paraxial methods are better suited for depth 

imaging of complex structures, where multi-arrivals are necessary to recreate the complexity of 

the wavefields by using several wavefronts.  The fast marching method expands the wavefront and 

computes traveltime from the source to each grid cell without additional interpolation by solving 

the eikonal equation.  Both fast marching and WFC methods can handle up-turning rays; therefore, 

they can be used in refraction tomography.  We used the fast marching method in the refraction 

tomography processing of the Hussar 2D lines.  The CDP stack image from the refraction 

tomography processing is more coherent and better resolved than the CDP stack with datum statics 

correction. Therefore, refraction travel times computed from the fast marching method are accurate 

and the velocity model from the refraction tomography is reliable and can potentially be used as 

starting model for full-waveform inversion and depth imaging.   We did not perform a 

comprehensive analysis of the effects of these ray tracing methods in depth imaging.  However, 

based on the observed geometry of the ray paths in our tests using the Marmousi model,  we believe 

the proper application of the multi-value traveltime, amplitude and ray path distance information 

from WFC and paraxial method can have a significant impact on the quality of the final depth 

image. 
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Chapter 4 

Trave-time tomography inversion problem using feedbacks from 

reflection data 

This chapter combines the review of the inverse problem with a proposal of using feedbacks from 

reflection data to improve the near-surface velocity model. I include the following published paper 

in the chapter (reproduced with Permision from Society of Exploration Geophysics). 

  

 

Abstract 

An accurate near-surface velocity model is critical for weathering statics correction and initial 

model building for depth migration and full waveform inversion. However, near-surface models 

from refraction inversion often suffer from errors in refraction data, insufficient sampling and 

over-simplified assumptions used in refraction algorithms. Errors in refraction data can be caused 

by picking errors resulting from surface noise, attenuation and dispersion of first arrival energy 

with offset. These errors are partially compensated later in the data flow by reflection residual 

statics.  Therefore, surface consistent residual statics contain information that can be used to 

improve the near-surface velocity model. We present a new dataflow to automatically include 

median and long wavelength components of surface consistent reflection residual statics.  This 

technique can work with any model-based refraction solution, including grid-based tomography 

Robust refraction statics solution and near-surface velocity model building using 
feedback from reflection data 

Bernard Law and Daniel Trad, 2018 
Published in Geophysics, 83, P. U63-77 
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methods and layer-based methods.  We modify the cost function of the refraction inversion by 

adding model and data weights computed from the smoothed surface consistent residual statics. 

By using an iterative inversion, these weights allow us to update the near-surface velocity model 

and to reject first arrival picks that do not fit the updated model.  In this nonlinear optimization 

workflow, the refraction model is derived from maximizing the coherence of the reflection energy 

and minimizing the misfit between model arrival times and the recorded first arrival times.  This 

approach can alleviate inherent limitations in shallow refraction data by using coherent reflection 

data.   

4.1 Introduction 

The earth near-surface is known to have localized variations in material properties, which can 

introduce time varying delays to reflection traveltimes. Furthermore, all ray paths travelling 

through un-accounted for near-surface velocity anomalies will be affected and this will result in 

imaging errors. For 2D split-spread or symmetrical 3D receiver recording patch, these imaging 

errors extend to an area that is within half cable length or receiver patch to either side of the velocity 

anomalies (Jones, 2012). Therefore, accurate determination of near-surface velocity variations is 

essential to the successful imaging of deeper reflection events.  Seismic acquisition is designed to 

optimally illuminate deeper targets.  It often does not provide sufficient shallow reflection data for 

near-surface velocity modeling.  First arrivals of refracted waves from seismic reflection surveys 

have been used to create near-surface velocity models for initial static corrections.  There are many 

different methods to obtain near-surface velocity models from refraction arrival times.  Refraction 

methods that use a layered model include delay time method (Gardner, 1939, Barry, 1967), plus-

minus method (Hagedoorn, 1959), generalized reciprocal method (Palmer, 1981), generalized 

linear inversion (GLI) method (Hampson and Russell, 1984) and weathering layer tomography 
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(Docherty, 1992).  Some of these methods compute the velocity and thickness of a few near-

surface layers directly using refraction travel time equations and shot and receiver geometry.  GLI 

and weathering layer tomography use inversion schemes to compute the thickness and velocity 

parameters by minimizing the misfits between the modeled and actual first arrival times. Turning-

ray refraction tomography methods (White 1989; Zhu, Sixta and Angsman 1992; Belfer and 

Landa, 1996) discretize the near-surface velocity model into rectangular cells.  Rays are traced 

through these cells between source and receivers by solving the ray equations (Červený, 2001; 

Langan, Lerche and Cutler,1984; Vinje et al.,1993) or the eikonal equation (Vidale, 1990; Qin, 

1992; Sethian and Papovici,1999).  Turning-ray refraction tomography back propagates the misfits 

between the actual and ray-traced first arrival times along the ray paths to update the velocity grid.  

The GLI method can provide stable solutions; however, it is limited by the assumption of layered-

based refraction model with velocity increasing in depth. In areas of complex geological structures 

and surface terrain, and when the velocity model is better represented by velocity gradients, the 

simplified assumption used in the GLI methods is often violated. Turning-ray tomography methods 

are not limited by this simple assumption, and therefore can model near-surface velocity changes 

with higher resolution than the GLI method.  However, it suffers from instability when ray-density 

is low, especially at large shot point gaps and at edges of 2-D and 3-D surveys.  The starting model, 

grid size and smoothing parameters can also influence the final model of turning-ray tomography.  

In addition, refraction solutions and corrections are also affected by the quality of refraction data 

and acquisition geometry. Therefore, refraction statics corrections often contain errors caused by 

the quality of the refraction data, numerical errors of the refraction solution and the inability of the 

refraction algorithm to model the actual physical properties of the near-surface. This can result in 

unsatisfactory statics corrections and reflection images. These problems are often addressed by 
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revising the parameters and constraints of the refraction algorithm and by using deeper reflection 

data for the surface consistent residual statics.  Using a surface-consistent hypothesis, Taner et al. 

(1974) showed that surface consistent residual statics correction can yield optimally stacked CDP 

section with lateral signal continuity representative of real geologies. Ronen and Claerbout (1985) 

demonstrated that surface-consistent residual statics can be estimated by stack-power 

maximization. They also pointed out that statics estimation is effectively a velocity analysis of the 

near-surface, but they do not use the surface-consistent residual statics derived from more coherent 

and better sampled reflection data in refraction inversion.    

High resolution near-surface velocity models from turning-ray refraction tomography are often 

integrated with reflection velocity models and used in depth imaging and depth model building 

processes.  Uncertainties in near-surface velocity models derived from refraction data alone tend 

to accumulate and adversely affect the velocity building process of the deeper layers. Kosloff et 

al. (1997) and Pecholcs et al. (1997) used depth errors from subsurface image gathers to update 

velocity and thickness in the near-surface layers.  Birdus et al. (2013) used a velocity model from 

reflection tomography as the starting point for their iterative joint refraction/ reflection tomography 

workflow.  The integrity of the reflections is the priority of this joint inversion.  

The objective of this work is to use surface-consistent reflection residual statics detected by 

correlation of reflection data to alleviate limitations and errors in refraction data and refraction 

solution algorithms and to harmonize near-surface velocity models with reflection events. We 

introduce new cost functions for GLI and turning-ray refraction tomography that incorporate 

model space and data space regularization using medium and long wavelength residual statics 

derived from reflection correlation.  We describe how these model and data weights for the new 

cost functions are computed and test the procedure with a synthetic dataset.  We propose a 



 

50 

nonlinear optimization workflow for refraction statics using the new cost functions.  We use a 2D 

field dataset to show that the new method can improve the structural integrity of the reflection 

events and the reliability of the near-surface velocity model. 

4.2 Theory 

4.2.1 Linear Inversion  

A linear inverse problem can be cast as the inversion of a parameter m using a linear operator L 

and data d: 

    𝒅𝒅 = 𝑳𝑳 𝒎𝒎 ,      (4-1) 

The parameter m can be computed by minimizing the objective function J: 

      J = || 𝒅𝒅 − 𝑳𝑳𝑳𝑳 ||².    (4-2) 

The linear least squares solution of equation (4-2) is (Claerbout, 1992): 

               𝒎𝒎 = ( 𝑳𝑳𝑇𝑇𝑳𝑳 + 𝜇𝜇𝜇𝜇)−1𝑳𝑳𝑇𝑇 𝒅𝒅   ,  (4-3) 

where 𝜇𝜇 is the stabilization parameter. 

Alternatively, this linear inverse problem can be posed in terms of the Fréchet derivatives 

𝑮𝑮, changes in the model parameter 𝜹𝜹𝜹𝜹, and differences between the initial model response and the 

observed data 𝜹𝜹𝜹𝜹 (Lines and Treitel, 1984): 

     𝜹𝜹𝜹𝜹 =  𝑮𝑮 𝜹𝜹𝜹𝜹.     (4-4) 

Fréchet derivatives are the partial derivatives of the modelled response with respect to the model 

parameters. The least squares solution of equation (4-4) is: 

𝜹𝜹𝜹𝜹 = ( 𝑮𝑮𝑇𝑇𝑮𝑮 + 𝜇𝜇𝜇𝜇)−1𝑮𝑮𝑇𝑇𝜹𝜹𝜹𝜹.    (4-5) 

4.2.2 Nonlinear Inversion  

    For refraction inversion, the problem is nonlinear because the operator L is a function of 

parameters m. The cost function becomes: 
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      J = || 𝒅𝒅 − 𝑳𝑳(𝒎𝒎) ||²,    (4-6) 

and the model parameter m cannot be obtained directly using equation (4-3). This non-linear 

problem can be solved by a sequence of linear least squares estimates of 𝜹𝜹𝜹𝜹 using equation (4-5) 

and updating the model parameters iteratively (Lines and Treitel, 1984): 

𝒎𝒎𝒌𝒌 = 𝒎𝒎𝒌𝒌−𝟏𝟏
 + 𝜹𝜹𝜹𝜹 ,     (4-7) 

where  𝑘𝑘 is the iteration number. The iteration stops when the modelled response fits the 

observations within a selected convergence criterion. 

In the case of refraction inversion, m is the near-surface model parameters, d is the first arrival 

time picks and L is the forward modelling operator that maps m into d.   𝜹𝜹𝜹𝜹 contains the model 

perturbations between iterations,  𝜹𝜹𝜹𝜹 is the data difference between the modelled and the observed 

first arrival times and G is the matrix that contains the Fr𝑒́𝑒chet derivatives of the modelled first 

arrival times with respect to the model parameter m.  G maps 𝜹𝜹𝜹𝜹 into 𝜹𝜹𝜹𝜹. 

 

4.2.3 GLI method  

A layer-based refraction model with two layers is depicted in Figure 4.1, where the total travel 

time, T, from the source (S) to the receiver (R) can be computed from the ray path SBCR in Figure 

4.1:  

    𝑇𝑇 = 2 𝑍𝑍1  𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐 
𝑉𝑉0

+ 𝑋𝑋
𝑉𝑉1

,     (4-8) 

where 𝑍𝑍1 is the thickness of the layer, 𝑉𝑉0 is the velocity of the layer,  𝜃𝜃𝑐𝑐 is the critical angle, X is 

the offset distance from S to R and 𝑉𝑉1 is the velocity of the underlying refractor.  Equation (4-8) 

can be written for the total travel time for an n layer media:  

     𝑇𝑇𝑛𝑛 =  ∫ 2 𝑍𝑍𝑘𝑘  𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑘𝑘
𝑉𝑉𝑘𝑘−1

𝑛𝑛
𝑘𝑘=1    + 𝑋𝑋

𝑉𝑉𝑛𝑛
  ,            (4-9)  
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where 𝑍𝑍𝑘𝑘 and 𝜃𝜃𝑐𝑐𝑘𝑘 are the thickness and critical angle for the 𝑘𝑘𝑡𝑡ℎ layer;  𝑉𝑉𝑘𝑘−1  and  𝑉𝑉𝑛𝑛 are velocities 

for layers k-1 and n. 

Hampson and Russell (1984) presented a first-break interpretation method that uses the 

Generalized Linear Inversion technique to iteratively update the model parameters of a near-

surface velocity model. The GLI method computes the model perturbation via first-order Taylor 

expansion and relates the errors in 𝑇𝑇𝑛𝑛 to the model perturbations in 𝑉𝑉𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑍𝑍𝑘𝑘  using the following 

sets of linear equations: 

    ∆𝑇𝑇 = 𝐵𝐵∆𝑚𝑚      (4-10) 

    𝐵𝐵 = 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕      (4-11) 

where ∆𝑇𝑇 are the changes in ray-traced time between iterations, ∆𝑚𝑚 are the model updates between 

iterations; and  𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕  are the partial derivative of travel time with respect to the model 

parameters 𝑉𝑉𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑍𝑍𝑘𝑘 .  The least squares solution for a model update Δm is: 

      Δ𝑚𝑚 = (𝐵𝐵𝑇𝑇𝐵𝐵 +  𝜇𝜇𝜇𝜇)−1𝐵𝐵𝑇𝑇 ∆𝑇𝑇    (4-12) 

Equation (4-10) and (4-12) are equivalent to equation (4-4) and (4-5), and 𝐵𝐵 in equation (4-10), 

(4-11) and (4-12) is equivalent to 𝐺𝐺 in equation (4-4) and (4-5). 
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Figure 4. 1. Time-Distance plot and refraction raypath.  𝑽𝑽𝟎𝟎 is the velocity of the first layer,  𝜽𝜽𝒄𝒄 is 

the critical angle. X is the offset distance from S to R and 𝑽𝑽𝟏𝟏 is the velocity of the underlying 

refractor.   SBCR is the refraction raypath.  𝑻𝑻𝑰𝑰 is the intercept time for 𝑽𝑽𝟏𝟏 and 𝑿𝑿𝒄𝒄 is the critical 

distance  ABCDEFG. 

4.2.4 Turning-ray refraction tomography  

Turning-ray refraction tomography methods discretize the near-surface velocity model into a grid 

of rectangular cells.  Figure 4.2 shows a near-surface velocity grid and the relationship between 

ray path geometry and travel times. Rays are traced through the velocity cells between source and 

                    

Figure 4. 2.  Relationship between ray path geometry and travel time.  𝒙𝒙��⃗  and 𝒙𝒙��⃗ + 𝒅𝒅𝒙𝒙��⃗  are the 

positions of 2 points along the ray path on two adjacent wavefronts of constant travel times 

separated by the distance vector 𝒅𝒅𝒙𝒙��⃗  .  𝒔𝒔 and 𝒔𝒔 + 𝒅𝒅𝒅𝒅 are the ray segment lengths from the source to 
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𝒙𝒙��⃗  and 𝒙𝒙��⃗ + 𝒅𝒅𝒙𝒙��⃗  .  𝒒𝒒��⃗  is the slowness vector at  𝒙𝒙��⃗ + 𝒅𝒅𝒙𝒙��⃗   and 𝛁𝛁𝑻𝑻 is the travel time gradient at the same 

location. 

receivers using diving rays by solving the ray equations (4-13) and (4-14) or the eikonal equation 

(4-15):  

            𝑑𝑑𝑥⃗𝑥
𝑑𝑑𝑑𝑑

   =  𝑐𝑐 𝑞⃗𝑞   ,      (4-13) 

      𝑑𝑑𝑞𝑞�⃗
𝑑𝑑𝑑𝑑

   = 𝛻𝛻�⃗ [ 1
𝑐𝑐

 ] ,     (4-14) 

    �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

= 1
𝑐𝑐2

  ,   (4-15) 

where 𝑐𝑐  is the velocity, 𝑞⃗𝑞 is the slowness vector,  𝑑𝑑𝑥⃗𝑥
𝑑𝑑𝑑𝑑

 is a unit vector tangential to the ray, and T is 

the travel time.  If equations (4-13) and (4-14) are used to trace the ray, travel times can be 

computed by integrating the slowness model along the ray path.  If the eikonal equation is used to 

compute the travel time, the ray paths can be traced along the paths of the maximum travel time 

gradient (Vidale,1988) or along the paths of minimum time (Matsuoka,1992).   Ray path distances 

𝑙𝑙𝑖𝑖𝑖𝑖 within velocity cells computed from the ray tracing process form the Fréchet derivative G in 

equation (4-4) and (4-5):    

 

    𝑮𝑮 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑇𝑇 1  
𝜕𝜕𝑚𝑚1

𝜕𝜕𝑇𝑇 1  
𝜕𝜕𝑚𝑚2

  . . 𝜕𝜕𝑇𝑇 1  
𝜕𝜕𝑚𝑚𝐽𝐽

 
𝜕𝜕𝑇𝑇 2  
𝜕𝜕𝑚𝑚1

  
𝜕𝜕𝑇𝑇 2  
𝜕𝜕𝑚𝑚2

  . . 𝜕𝜕𝑇𝑇 2  
𝜕𝜕𝑚𝑚𝐽𝐽   . . . . . . . .

𝜕𝜕𝑇𝑇 𝐼𝐼  
𝜕𝜕𝑚𝑚1

 𝜕𝜕𝑇𝑇 𝐼𝐼  
𝜕𝜕𝑚𝑚2

 . . 𝜕𝜕𝑇𝑇 𝐼𝐼  
𝜕𝜕𝑚𝑚𝐽𝐽

 ⎦
⎥
⎥
⎥
⎥
⎤

 ,               (4-16)  

where 𝑇𝑇 𝑖𝑖  is the modelled travel time for ray path i,  𝜕𝜕𝑇𝑇 𝑖𝑖  
𝜕𝜕𝑚𝑚𝑗𝑗

= 𝑙𝑙𝑖𝑖𝑖𝑖 and is the ray segment length for ray 

path i and cell j. The  𝜹𝜹𝜹𝜹 vector contains the slowness update Δ𝑀𝑀𝑗𝑗𝑘𝑘 for the 𝑘𝑘𝑡𝑡ℎ iteration and can 

be solved iteratively using equation (4-5). 
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Lo and Inderwiesen (1994) proposed the Simultaneous Iterative Reconstruction Technique (SIRT) 

to solve for slowness update Δ𝑀𝑀𝑗𝑗  iteratively without matrix operations: 

     Δ𝑀𝑀𝑗𝑗𝑘𝑘 = 1
𝑊𝑊𝑗𝑗
∑  𝐼𝐼
𝑖𝑖=1 𝑙𝑙𝑖𝑖𝑖𝑖𝛿𝛿𝑑𝑑𝑖𝑖/∑ 𝐿𝐿2𝑖𝑖𝑗𝑗′

 𝐽𝐽
𝑗𝑗′=1  ,  (4-17)  

where 𝑖𝑖  is the observation number, 𝐼𝐼 is the total number of observations, 𝑗𝑗 is the model cell to 

update, 𝑗𝑗′ to 𝐽𝐽 is the range of model cells that the ray path has traversed, and 𝑙𝑙𝑖𝑖𝑖𝑖 is the ray segment 

length for observation number 𝑖𝑖 and model cell 𝑗𝑗 , 𝑊𝑊𝑗𝑗 is the total number of rays intersecting the 

model cell 𝑗𝑗 and 𝑘𝑘 is the iteration number.   SIRT is computationally more efficient than solving 

equation (4-5) directly and is used in the refraction tomography inversion in this paper. 

 

4.3 Reflection residual statics and near-surface velocity model update 

Errors in the refraction solution arise when the modelling operator L is unable to model the 

observed first arrival times because of poor refraction data quality, numerical errors of the 

refraction solution, and the inability of the refraction algorithm to model the actual physical 

property of the near-surface.  We classify these errors as data error 𝜖𝜖𝑑𝑑, model error 𝜖𝜖𝑚𝑚 and 

algorithm error 𝜖𝜖𝑝𝑝.  The data error is equivalent to poor pick quality. The model error is the difference 

between our current estimates and the actual subsurface parameters. The algorithm error is the error in 

the method because of several approximations like discrete derivative evaluations and coarse 

parameterization. These errors contaminate the refraction correction Cwx and are often revealed on 

CDP stack sections as deterioration in the reflection coherence and structural integrity. Some of 

these errors are often compensated by applying surface consistent residual statics corrections 

derived from correlation of reflection data. In conventional refraction and reflection residual statics 

workflows, the surface consistent residual statics are applied to the reflection data to compensate 
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for deficiencies in the near-surface velocity model caused by these errors; however, the near-

surface velocity model is not updated.  If the surface consistent residual statics are caused by the 

deficiencies in the near-surface velocity model and contain these errors, we can back propagate 

these errors vertically as model weights to update the near-surface velocity model. For layer-based 

models, these errors can result in velocity or thickness error, or both.  The following deviation 

assumes these errors contribute to only velocity or thickness error.  Consider the layered model 

shown in Figure 4.3. The weathering statics correction can be computed by 

   𝑇𝑇 =  ∑ ( 1
𝑉𝑉𝑉𝑉
− 𝑃𝑃𝑖𝑖  

) 𝑍𝑍𝑍𝑍𝑖𝑖 + ( 1
𝑉𝑉𝑉𝑉
− 𝑃𝑃𝑖𝑖  

) 𝑍𝑍𝑍𝑍𝑖𝑖  𝑛𝑛
𝑖𝑖=0  ,   (4-18)  

where 𝑍𝑍𝑠𝑠𝑖𝑖 and 𝑍𝑍𝑟𝑟𝑖𝑖 are the thickness of layer 𝑖𝑖 at source and receiver location, 𝑃𝑃𝑖𝑖 is the slowness 

for layer 𝑖𝑖 and 𝑉𝑉𝑟𝑟 is the replacement velocity for weathering statics correction. Let us define 

   𝑇𝑇𝑖𝑖 = 𝑍𝑍𝑖𝑖
𝑉𝑉𝑟𝑟

 − 𝑍𝑍𝑖𝑖𝑃𝑃𝑖𝑖  ,       (4-19) 

    𝐸𝐸 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,    (4-20) 

        𝐸𝐸𝑖𝑖 = 𝐸𝐸 (  𝑍𝑍𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 ),      (4-21) 

   𝑍𝑍𝑖𝑖 = 𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖 ,     (4-22) 

   𝑃𝑃𝑖𝑖 = 1
𝑉𝑉𝑖𝑖

 ,        (4-23) 

    𝑊𝑊𝑚𝑚𝑚𝑚(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖, and (4-24) 

   𝑊𝑊𝑚𝑚𝑚𝑚(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑓𝑓𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖 , (4-25) 

where  𝑇𝑇𝑖𝑖  is the weathering statics correction for layer 𝑖𝑖.  Adding a smoothed surface consistent 

statics correction 𝐸𝐸𝑖𝑖 to the weathering statics correction 𝑇𝑇𝑖𝑖, and updating only 𝑃𝑃𝑖𝑖 with  

𝑊𝑊𝑚𝑚𝑚𝑚(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) yields: 

   𝑇𝑇𝑖𝑖 + 𝐸𝐸𝑖𝑖 = 𝑍𝑍𝑖𝑖
𝑉𝑉𝑟𝑟

 − 𝑍𝑍𝑖𝑖𝑃𝑃𝑖𝑖𝑊𝑊𝑚𝑚𝑚𝑚(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) .    (4-26) 
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Replacing 𝑇𝑇𝑖𝑖 with   𝑍𝑍𝑖𝑖
𝑉𝑉𝑟𝑟

 − 𝑍𝑍𝑖𝑖𝑃𝑃𝑖𝑖  gives:   

            𝑍𝑍𝑖𝑖
𝑉𝑉𝑟𝑟

 − 𝑍𝑍𝑖𝑖𝑃𝑃𝑖𝑖 + 𝐸𝐸𝑖𝑖 = 𝑍𝑍𝑖𝑖
𝑉𝑉𝑟𝑟

 − 𝑍𝑍𝑖𝑖𝑃𝑃𝑖𝑖𝑊𝑊𝑚𝑚𝑚𝑚(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  , and     (4-27) 

  𝑊𝑊𝑚𝑚𝑚𝑚(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 1 − 𝐸𝐸𝑖𝑖
𝑍𝑍𝑖𝑖𝑃𝑃𝑖𝑖

       (4-28) 

Similarly, updating only 𝑍𝑍𝑖𝑖 with  𝑊𝑊𝑚𝑚𝑚𝑚(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) yields:   

   𝑇𝑇𝑖𝑖 + 𝐸𝐸𝑖𝑖 = (𝑍𝑍𝑖𝑖
𝑉𝑉𝑟𝑟

 − 𝑍𝑍𝑖𝑖𝑃𝑃𝑖𝑖) 𝑊𝑊𝑚𝑚𝑚𝑚(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)    (4-29)  

Replacing   𝑍𝑍𝑖𝑖
𝑉𝑉𝑟𝑟

 − 𝑍𝑍𝑖𝑖𝑃𝑃𝑖𝑖  with 𝑇𝑇𝑖𝑖  gives:   

𝑇𝑇𝑖𝑖 + 𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑖𝑖  𝑊𝑊𝑚𝑚𝑚𝑚(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), 𝑎𝑎𝑎𝑎𝑎𝑎        (4-30)  

   𝑊𝑊𝑚𝑚𝑚𝑚(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 1 + 𝐸𝐸𝑖𝑖
𝑇𝑇𝑖𝑖

      (4-31) 

         

Figure 4. 3.  Refraction model and weathering statics correction.  𝒁𝒁𝒔𝒔𝒔𝒔 , 𝒁𝒁𝒓𝒓𝒓𝒓 ,𝒁𝒁𝒔𝒔𝒔𝒔and 𝒁𝒁𝒓𝒓𝒓𝒓 are 

thickness of layer 𝟎𝟎  and 1 at source and receiver location S and R. 𝑽𝑽𝟎𝟎 , 𝑽𝑽𝟏𝟏  and 𝑽𝑽𝟐𝟐 are the velocity 

for layer 0, 1 and 2.  
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Figure 4. 4.  (a) Finite difference synthetic data with velocity variations (marked by blue arrows) 

in the near-surface. (b) (top) near-surface velocity model, (middle) CDP stack without weathering 

statics corrections, (bottom) CDP stack with weathering statics correction. (c) (top) Error (marked 

by the blue arrow) introduced to near-surface velocity, (middle) CDP stack with weathering statics 

correction from the model with error, (bottom) surface consistent residual statics from reflection 

data. (d) (middle) Modified near-surface velocity model using model weights. 

 

 To illustrate the concept of model weights, we create a finite-difference synthetic dataset 

with a velocity model with 6 layers of velocities 1000, 2000, 2500, 3000, 3500 and 4000 m/sec. 

Both receiver spacing and depth step are 5 m.  Two weathering pockets in the model are centred 

at stations 251 and 601.  Distortion to reflection events caused by the weathering pockets can be 

seen in figure 4.4a.  Figure 4.4b compares the CDP stacks before and after weathering statics 

correction.  Figure 4.4c shows the near-surface velocity model with an arbitrary error introduced, 

the CDP stack with reduced coherence caused by weathering statics correction using the erroneous 
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model and the surface consistent residual statics computed from reflection data. Figure 4.4d shows 

the updated velocity model 𝑊𝑊𝑚𝑚𝑚𝑚, and the CDP stack with weathering statics correction from the 

updated velocity model.  This synthetic data test demonstrates that incorrect near-surface velocity 

can reduce the coherence and structural integrity of the reflection stack.  It also demonstrates that 

the surface consistent reflection residual statics process can detect near-surface statics errors and 

that the model weight  𝑊𝑊𝑚𝑚 can be computed from the surface consistent reflection residual statics. 

 

4.4 Application of data weight and model  

Data weight 𝑊𝑊𝑑𝑑 and model weight 𝑊𝑊𝑚𝑚 in the cost function are a commonly used approach in 

geophysics (Claerbout 1992).  Application of data weight and model weight is equivalent to data 

space and model space regularization.  Regularization in the data space helps to reduce the effects 

of outliers in data picks on the solution.  Regularization in the model space stabilizes the solution 

and provides a means of applying a priori information into the inversion (Zhou et al., 2003; Trad 

et al.,2003). We include the model weight 𝑊𝑊𝑚𝑚 and data weight  𝑊𝑊𝑑𝑑in the cost function of the 

inversion problem, 

J = || 𝐖𝐖𝐝𝐝𝐝𝐝 −𝐖𝐖𝐝𝐝𝐋𝐋𝐖𝐖𝐦𝐦𝐦𝐦′ ||², and 𝐦𝐦 = 𝐖𝐖𝐦𝐦𝐦𝐦′    (4-32) 

For layer-based method, 𝐸𝐸𝑖𝑖 can be caused by errors in the slowness and/or thickness. Any 

combination of contributing factors can be used. When updating both slowness and thickness with 

equal distribution, equal factors of 0.5 can be applied to 𝐸𝐸𝑖𝑖 and  𝑊𝑊𝑚𝑚𝑚𝑚 (slowness) and 𝑊𝑊𝑚𝑚𝑚𝑚 

(thickness) are: 

                𝑊𝑊𝑚𝑚𝑚𝑚(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 1 − 0.5 𝐸𝐸𝑖𝑖
𝑍𝑍𝑖𝑖𝑃𝑃𝑖𝑖

 ,   (4-33) 

                𝑊𝑊𝑚𝑚𝑚𝑚(𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 1 + 0.5 𝐸𝐸𝑖𝑖
𝑇𝑇𝑖𝑖 

  , and   (4-34) 
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    𝑊𝑊𝑑𝑑 = { 0 for  𝐸𝐸 ≥   ԑ    and   𝛿𝛿𝑡𝑡  >  𝐾𝐾 × 𝑠𝑠𝑠𝑠𝑠𝑠(δt)
1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (4-35)  

where 𝛿𝛿𝛿𝛿 is the difference between observed and modelled first arrival time, 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿𝛿𝛿) is the 

standard deviation of 𝛿𝛿𝛿𝛿,  ԑ and 𝐾𝐾 are thresholds used for 𝑊𝑊𝑑𝑑. We use equations (33) and (34) to 

compute 𝑊𝑊𝑚𝑚𝑚𝑚  (slowness) and  𝑊𝑊𝑚𝑚𝑚𝑚(thickness) for the GLI algorithm.  𝑊𝑊𝑑𝑑 corrects for data errors 

and is computed from the misfit between 𝑑𝑑 and 𝐿𝐿 𝑊𝑊𝑚𝑚𝑚𝑚 .    

For turning-ray tomography, 𝑊𝑊𝑚𝑚  is typically applied to slowness only. However, if applying 𝑊𝑊𝑚𝑚 

results in unreasonable velocity values, we may have to apply 𝑊𝑊𝑚𝑚 to thickness as well.  This is 

done by stretching the distance between the surface and the intermediate datum and remapping the 

velocity values. Using an equal distribution of model weights for slowness and thickness, equal 

factors of 0.5 can be applied to 𝐸𝐸𝑖𝑖 and  𝑊𝑊𝑚𝑚 (slowness) and 𝑊𝑊𝑚𝑚 (thickness) can be computed as:            

   𝑊𝑊𝑚𝑚 (slowness) = 1 − 0.5𝐸𝐸/𝑇𝑇 ,     (4-36) 

   𝑊𝑊𝑚𝑚 (thickness) = 1 + 0.5𝐸𝐸/𝑇𝑇 , and     (4-37) 

    𝑇𝑇 = � �  1
𝑉𝑉𝑉𝑉
−  𝑃𝑃𝑖𝑖𝑖𝑖� 𝑑𝑑𝑑𝑑

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=1
 ,    (4-38) 

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the number of depth steps to the intermediate datum and 𝑃𝑃𝑖𝑖𝑖𝑖  is slowness at depth 

step  𝑖𝑖𝑖𝑖.  It is important to review the initial model after applying the model weight 𝑊𝑊𝑚𝑚 (slowness) 

and 𝑊𝑊𝑚𝑚 (thickness) to confirm the proper distribution of the model weights is used. 

𝑊𝑊𝑚𝑚 and 𝑊𝑊𝑑𝑑 can be incorporated into equation (4-4) for turning-ray refraction tomography as: 

   𝑊𝑊𝑑𝑑 𝐺𝐺 𝑊𝑊𝑚𝑚 𝛿𝛿𝛿𝛿 = 𝑊𝑊𝑑𝑑  𝛿𝛿𝛿𝛿.      (4-39) 

𝑊𝑊𝑑𝑑 𝐺𝐺 𝑊𝑊𝑚𝑚 represents the new 𝐺𝐺 matrix that is updated on each external iteration. 𝑊𝑊𝑚𝑚 is applied to 

the Fréchet derivatives computation in 𝐺𝐺 matrix, and 𝑊𝑊𝑑𝑑 is used to reject data points that do not 

agree with the new model. The Fréchet derivatives in this G matrix are used in the computation of 

𝜹𝜹𝜹𝜹 during the internal iterations with SIRT. 
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4.5 Inversion procedure 

The conventional refraction statics and reflection residual statics processing flow are outlined in 

Figure 4.5.  In this conventional processing flow, the refraction model m is computed by 

minimizing the square of the misfit between the first arrival picks d and the modelled first arrival 

times Lm.  Refraction statics corrections are then calculated from the computed model m.   

    

Figure 4. 5. Conventional refraction and reflection statics workflow.  𝐶𝐶𝑤𝑤𝑤𝑤 is the weathering 

correction computed by refraction inversion that solves for model parameter 𝑚𝑚  by minimizing the 

cost function 𝐽𝐽 =∥ 𝑑𝑑 − 𝐿𝐿𝐿𝐿 ∥2.    𝜖𝜖𝑑𝑑, 𝜖𝜖𝑚𝑚 and 𝜖𝜖𝑝𝑝 are data error, model error and algorithm limitation 

associated with the refraction inversion. 

 

 

Figure 4. 6.  Nonlinear optimization of the near-surface velocity model.   𝐶𝐶𝑤𝑤𝑤𝑤 is the weathering 

correction computed by refraction inversion that solves for model parameter 𝑚𝑚  by minimizing the 

cost function 𝐽𝐽 =∥ 𝑑𝑑 − 𝐿𝐿𝐿𝐿 ∥2.    𝜖𝜖𝑑𝑑, 𝜖𝜖𝑚𝑚 and 𝜖𝜖𝑝𝑝 are data error, model error and algorithm limitation 
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associated with the refraction inversion. 𝑊𝑊𝑚𝑚 and 𝑊𝑊𝑑𝑑 are the model and data weights for the new 

cost function. 

 

However, if there are errors in the refraction’s solution, these errors will be applied to the reflection 

data. These errors are partially compensated later in the data flow by surface consistent reflection 

residual statics. The proposed nonlinear optimization of near-surface velocity model processing 

flow using model and data weights described above is outlined in Figure 4.6.  In this proposed 

processing flow, the refraction model m is computed by minimizing the original cost function. 

Weathering statics corrections are computed and applied to the reflection data. Surface consistent 

reflection residual statics are then computed using the cross-correlations of the reflection data.  The 

smoothed surface consistent reflection residual statics E is then used to compute 𝑾𝑾𝒎𝒎 and 𝑾𝑾𝒅𝒅 for 

the new cost function.  The weathering statics correction  𝑪𝑪𝒘𝒘𝒘𝒘  computed from the initial updated 

model 𝑾𝑾𝒎𝒎𝒎𝒎 is equivalent to applying smoothed surface consistent residual statics 𝑬𝑬 to the seismic 

data.  Subsequent iterations of minimizing || 𝑊𝑊𝑑𝑑𝑑𝑑 −𝑊𝑊𝑑𝑑𝐿𝐿 𝑊𝑊𝑚𝑚𝑚𝑚′ ||² will produce a near-surface 

velocity model that is in harmony with the refraction and reflection data and can produce better 

imaging results.  This processing flow is also outlined in the following steps: 

 

1.  Minimize  J = || 𝑑𝑑 − 𝐿𝐿 𝑚𝑚 ||² and apply weathering statics correction to seismic data. 

2. Compute surface consistent reflection residual statics.   

3.  Compute smoothed surface consistent residual statics 𝑬𝑬,  𝑾𝑾𝒎𝒎  and 𝑾𝑾𝒅𝒅. 

4.  If required, pick again first arrival times using modelled first arrival times 𝑊𝑊𝑚𝑚𝐿𝐿 𝑚𝑚 as 

constraints. 

5.  Minimize J = || 𝑊𝑊𝑑𝑑𝑑𝑑 −𝑊𝑊𝑑𝑑𝐿𝐿 𝑊𝑊𝑚𝑚𝑚𝑚′ ||². 
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6.  Iterate 2 to 5 until there are no significant improvements in the near-surface velocity model and 

the reflection image. 

 Comparing to the conventional processing flow (Figure 4.5), the additional computation 

cost for this new processing flow is the cost for running another GLI or refraction tomography 

inversion as well as reflection residual statics.  GLI inversion is computationally efficient even for 

large 3D surveys; therefore, computational cost should not be a concern.  For refraction 

tomography, we can reduce the computational cost by using fewer iterations because we are 

starting with a refined model.  For seismic surveys challenged by near-surface problems caused 

by near-surface conditions or acquisition limitations, we often try to enhance the reflection image 

by re-computing the near-surface refraction solution, involving manually revising the inversion 

parameters, editing the starting model and first arrival picks.  Therefore, comparing to the manual 

approach, this new processing flow does not increase the computational cost.  Moreover, it 

improves the manual approach by automatically updating the starting model and rejecting outlying 

picks that do not agree with the reflection coherence.  This new processing flow assumes that 

surface consistent residual statics makes a significant improvement to the coherence and structural 

integrity of the reflection image. Therefore, choosing the optimal parameters for the reflection 

residual statics process to overcome acquisition limitations is very important. For example, it is 

important to use reflection residual parameters that allow large smoothing or macro-binning radius 

at edges or gaps of the seismic survey where the CDP fold is low.  For this new method to make a 

noticeable difference to the near-surface velocity model and the reflection image, there must be a 

significant amount of medium or long-wavelength components in the surface consistent residual 

statics, because these components determine the magnitude of the model weight 𝑾𝑾𝒎𝒎 and data 

weight 𝑾𝑾𝒅𝒅 for the new cost function.  
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4.6 Field data example 

CDP stack sections are created using near-surface velocity models computed from the 

conventional and the new non-linear optimization workflow. The data used in this example are the 

vertical component of the dynamite shot records from a 4.5 Km 2D 3C survey acquired at Hussar, 

Alberta in September 2011.  The seismic survey was acquired for a broadband experiment 

(Margrave et al., 2012). 

 

Figure 4. 7. Hussar 2D broadband experiment (a) location map, (b) seismic line layout. 
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Figures 4.7a and 4.7b show the location and the layout of the seismic line. The seismic line runs 

NE-SW with a topographic relief of about 80 m.  The receiver interval is 10 m and the shot point 

interval is 20 m. The 448-channel split-spread geometry gives a nominal maximum offset of 2240 

m for standard spread and a maximum offset of 4480 for off-end shots. The nominal CDP fold for 

offsets 0 to 1500 m is 80.  First arrivals were picked for all traces and offsets; however, only first 

arrivals with an offset less than 3000 m were used in the refraction solution.  Figure 4.8 shows the 

time-distance plot of the first arrival picks with a distinct difference between layer velocities V1 

and V2. This is a good indication that layer-based refraction inversion methods such as GLI can 

produce a stable solution. We created the common-receiver stack (Figure 4.9) and the CDP stack 

(Figure 4.10) with datum statics corrections only.  Effects of near-surface time delays are obvious 

on the common receiver stack. The incoherency of seismic events on the CDP stack is likely the 

result of the same near-surface time delays. To test the proposed nonlinear optimization workflow 

for the near-surface velocity model, we follow the steps outlined in figure 4.6.   We create the first 

near-surface velocity model by minimizing || 𝑑𝑑 − 𝐿𝐿𝐿𝐿 ||² for both GLI and turning-ray refraction 

tomography.  We then use the weathering statics corrected gathers from both methods to compute 

surface consistent reflection residual statics.  We smooth the surface consistent residual statics and 

use them to compute the model weight 𝑊𝑊𝑚𝑚. The smoothing length determines the smoothness of 

the model weight.  A small smoothing length can introduce rapid changes to the near-surface 

velocity model and result in unreasonable near-surface velocity model and erroneous data weights.  

A large smoothing length can reduce the effectiveness of the model and data weights.   We chose 

a smoothing length of 31 receiver stations because the smoothed residual statics represents a 

reasonable medium and long wavelength residual statics and should provide reasonable model 

weights to start the next refraction iteration.   A threshold parameter of 2 times the standard 
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deviation of traveltime residuals is used for 𝑊𝑊𝑑𝑑. The near-surface velocity model is then updated 

iteratively by minimizing the cost function ∥ 𝑊𝑊𝑑𝑑𝑑𝑑 −𝑊𝑊𝑑𝑑𝐿𝐿𝑊𝑊𝑚𝑚𝑚𝑚′ ∥2.   

The GLI solutions, residual error analysis and error distributions from the two processing flows 

are plotted in Figure 4.11, 4.12 and 4.13 respectively.  CDP stacks with weathering statics 

correction from the two GLI solutions (Figure 4.11a and 4.11c) are plotted in Figure 4.14. Figure 

4.12 shows the misfits between the first arrival picks and the modelled first arrival time for the two 

processing flows at iteration 0, 10 and 20. The vertical and horizontal alignment of misfits in Figure 

4.12a represents receiver anomalies and shot anomalies in the near-surface velocity model prior to 

the GLI inversion. The misfits are reduced as the GLI solutions converge with iterations. The 

misfits after 10 iterations of minimizing the new cost function (Figure 4.12e) is smaller than the 

misfit after 20 iterations of minimizing the original cost function (Figure 4.12c).  Figure 4.13a and 

4.13b show the error distribution for the first and second layers after 10 iterations of the original 

GLI inversion; while figures 4.13c and 4.13d show the error distribution of the first and second 

layers after 10 iterations of the new GLI inversion. Errors are reduced after the new GLI inversion. 

 

Figure 4. 8. First arrival picks for Hussar 2D survey 
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Figure 4. 9. Common receiver stack showing near-surface time delays 

 

Figure 4. 10. CDP stack with datum statics correction only 

  The smoothed surface-consistent reflection residual statics (Figure 4.11b) from gathers 

corrected with the GLI solution from the original cost function are in the range of -2.7 to 3.3 msec. 

They are small; however, a small long-wavelength trend dipping from SW to NE can be observed 

at the NE end of the seismic line. The difference between the GLI solutions (Figure 4.11a and 

4.11c) is small and occurs mostly at the two ends of the profile.  CDP stacks with weathering 

statics correction from the two GLI methods (Figures 4.14a and 4.14b) show significant 

improvement in coherence and structural integrity when compared to the CDP stack with datum 
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statics correction only. However, there is no significant difference in coherence between the two 

CDP stacks with different GLI corrections.  This test confirms that small smoothed residual statics 

will not result in significant improvement in the near-surface velocity model or reflection image. 

For seismic surveys that are affected by acquisition limitations, such as 3D surveys with large shot 

line and receiver line spacing, and in areas where near-surface velocity is better represented by a 

velocity gradient, or in areas where first arrival picking is prone to cycle skipping errors we would 

expect more difference from the two processing workflows.   

 

Figure 4. 11. (a) GLI near-surface velocity model computed from minimizing the original cost 

function. (b) Surface-consistent residual statics from reflection correlation, smoothed residual 

statics and first-order long-wavelength trend. (c) Near-surface velocity model computed from the 

new cost function with model and data weights derived from smoothed surface consistent 

reflection residual statics. 
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Figure 4.12. Top: misfits between first arrival picks and modelled first arrival times (a) prior to 

GLI inversion, (b) after 10 iterations, (c) after 20 iterations. Bottom: misfits between first arrival 

picks and modelled first arrival times (d) after applying 𝑾𝑾𝒎𝒎 𝐚𝐚𝐧𝐧𝐝𝐝 𝑾𝑾𝒅𝒅, (e) after 10 iterations of the 

new GLI iterations.   

 

Figure 4.13.  Error distribution after minimizing the original cost function for the first layer (a) 

and the second layer (b).  Error distribution after minimizing the new cost function for the first 

layer (c) and the second layer (d). 
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Figure 4.14. CDP stack section with weathering statics correction using GLI velocity model 

computed from minimizing (a) the original cost function, (b) the new cost function with model 

weight and data weight derived from surface constant reflection residual statics. 

To confirm the effectiveness of the new approach for the GLI method in areas where first 

arrival picking is prone to cycle skipping errors, we imposed a 30 msec picking error to two-third 

of the first arrival picks greater than 300 msec and between receiver 250 and 300.  The imposed 

picking errors and GLI solutions are plotted in Figure 4.15.  The original first arrival picks and the 

first arrival picks with imposed errors over the receiver range of 117 to 327 are displayed in Figures 

4.15a and 4.15c.  The comparisons of the GLI solutions from input with and without imposed first 

arrival picking error are displayed in Figures 4.15b and 4.15d.  The blue rectangle in Figure 4.15d 
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marks the receiver ranges where imposed picking errors are added.  Within this receiver range, we 

can see a thickening of the second layer in the GLI model (Figure 4.15d). We compute weathering 

statics corrections from the two solutions and their CDP stacks (Figure 4.16).   

 

Figure 4.15.  (a) Original first arrival pick over the receiver range of 117 to 327 (b) GLI solution 

from the original first arrival picks, (c) first arrival picks with 30ms errors added to 2/3 of the shots 

over the receiver range of 250 to 300, (d) GLI solution with imposed first arrival pick errors. The 

blue rectangle marks the receiver range where first arrival pick errors are added. 
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Figure 4.16.  (a) CDP stack section with weathering statics correction using GLI solution without 

imposed first arrival pick errors (b) CDP stack section with weathering statics correction using 

GLI solution with imposed first arrival pick errors. 

Deterioration of coherence can be seen in the CDP stack (Figure 4.16b) from the GLI solution with 

imposed pick errors. We use the weathering statics corrected gathers from the GLI solution with 

first arrival pick errors (Figure 4.15d) to compute surface consistent reflection residual statics.  We 

use the same smoothing length of 31 receiver stations as in the previous test to compute the 

smoothed surface consistent reflection residual statics.  The threshold parameter of 2 times the 

standard deviation of traveltime residuals is used for 𝑊𝑊𝑑𝑑. The near-surface velocity model is then 

updated iteratively by minimizing || 𝑊𝑊𝑑𝑑𝑑𝑑 −𝑊𝑊𝑑𝑑𝐿𝐿 𝑊𝑊𝑚𝑚𝑚𝑚′ ||².   The original GLI solution with first 

arrival pick errors, surface-consistent reflection residual statics, the new GLI solutions and the new 

surface-consistent residual statics after applying the new GLI solution are plotted in Figure 4.17. 

The smoothed reflection residual statics (Figure 4.17b) are in the range of -4 to 8 msec and 

correlate with the thickening of the original GLI solution caused by picking errors. The GLI 

solution from the new approach (Figure 17c) is closer to the solution without imposed first break 

picking errors shown in Figure 4.15b. Figure 4.17d shows the surface consistent residual statics 

from the correlation of reflection data after applying the new GLI solution. The new GLI solution 
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does not completely remove the medium wavelength components of surface-consistent reflection 

residual statics. The smoothed reflection residual statics after applying the new GLI solution are 

in the range of -3 to 3 msec. This can be the limit of the sensitivity and resolution of the refraction 

inversion and agrees with the observations we found in the first GLI test. 

 

Figure 4. 17.   (a) GLI near-surface velocity model computed from minimizing the original cost 

function. The blue rectangle marks the receiver range where first arrival pick errors are added.  (b) 

Surface-consistent residual statics from reflection correlation, smoothed residual statics and first-

order long-wavelength trend. Large positive smoothed residual correlates with the area with the 

first arrival pick errors. (c) Near-surface velocity model computed from the new cost function with 

model and data weights derived from smoothed surface consistent reflection residual statics. The 

excess thicknesses caused by first arrival pick errors are corrected. (d) Surface-consistent residual 

statics from reflection correlation after applying the new GLI solution. 
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Figure 4. 18. CDP stack section with weathering statics correction using GLI velocity model 

computed from minimizing (a) the original cost function, (b) the new cost function with model 

weight and data weight derived from surface constant reflection residual statics. 

 

CDP stacks are created using the two GLI solutions. The windows of data near the marked area, 

where picking errors were introduced, are plotted in Figure 4.18.  Noticeable improvement in the 

reflection coherence is observed in the new CDP stack (Figure 4.18b). This test confirms that for 

a GLI solution that is negatively impacted by systematic picking errors due to poor first arrival 

pick quality, correlation of reflection data can be used to construct the model and data weights to 

guide and constrain the GLI solution in this new approach. However, large smoothed surface 

consistent reflection residual statics are required for improvements to be significant. In the above 

test, this was achieved with smoothed residual statics of 8 msec.  The residual error analysis and 

error distribution from the two processing flows are plotted in Figures 4.19 and 4.20.  The misfits 

between first arrival picks and modelled first arrivals time before and after GLI inversion for input 

with imposed first arrival picking error are plotted in Figures 4.19a and 4.19b respectively. The 

picking errors appear as receiver consistent anomalies marked by blue arrows in figure 4.19a.   
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Figure 4. 19. (a) misfits between first arrival picks and modelled first arrival times prior to GLI 

inversion showing the effects of imposed errors, (b) misfits after GLI inversion showing most 

imposed errors are removed by the final GLI solution.  Bottom: (c) misfits between first arrival 

picks and modelled first arrival times after applying 𝑊𝑊𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊𝑑𝑑 ,(d) after 10 iterations of 

minimizing the new cost function. 
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Figure 4. 20. Error distributions for GLI test with imposed pick errors. Top: After minimizing the 

original cost function for the first layer (a) and the second layer (b).  Bottom: after minimizing the 

new cost function for the first layer (c) and the second layer (d). 

 

Figure 4.19b shows the picking errors were corrected for by the final GLI solution. This results in 

the overestimation in layer thickness shown in figure 4.17a.  Smoothed surface-consistent residual 

statics (Figure 4.17b) are used to compute the model and data weights for the new cost function || 

𝑊𝑊𝑑𝑑𝑑𝑑 −𝑊𝑊𝑑𝑑𝐿𝐿 𝑊𝑊𝑚𝑚𝑚𝑚′ ||².  The misfits after applying the model weight and data weights are displayed 

in Figure 4.19c. The misfits after 10 iterations of the new GLI inversion are displayed in Figure 

4.19d.  First arrival picks rejected by the data weights are shown as missing picks and are shown 

in white. The RMS of the misfits after 10 iterations is 4.92 msec and is comparable to the RMS of 

4.43 msec from the original GLI solution without the imposed first arrival pick errors.  The error 

distributions from minimizing the cost functions || 𝑑𝑑 − 𝐿𝐿𝐿𝐿 ||² and || 𝑊𝑊𝑑𝑑𝑑𝑑 −𝑊𝑊𝑑𝑑𝐿𝐿 𝑊𝑊𝑚𝑚𝑚𝑚′ ||² are 

plotted in Figure 4.20. Similar to the first GLI test errors are reduced after minimizing the cost 

function || 𝑊𝑊𝑑𝑑𝑑𝑑 −𝑊𝑊𝑑𝑑𝐿𝐿 𝑊𝑊𝑚𝑚𝑚𝑚′ ||².  However, with larger smoothed surface-consistent residual 

statics of 8 msec, improvement to the near-surface velocity and the coherence of the reflection 

image is noticeable. 
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We also compare the turning-ray refraction solutions from the two approaches. The results 

of the turning-ray refraction tomography test are summarized in Figures 4.21a to 4.21e.  As shown 

in the ray density plot (Figure 4.21b), not all cells are covered by ray paths.  The minimum non-

zero ray density of 600 and maximum ray density of 38000 seem high.  However, for a 448-channel 

recording with 269 shots and 488 receivers, ray coverage immediate below a shot point can be 448 

channels plus 448 receivers.  If a velocity cell is covered by every ray path, the maximum possible 

ray density is 269 shots × 448 channels. Therefore, the ray density range of 600 to 38000 is 

reasonable.  Velocity values at cells with no ray coverage cannot be updated and velocity values 

at cells with insufficient ray coverage can be unreliable.  The smoothed surface-consistent 

reflection residual statics (Figure 4.21c) from gathers corrected with a tomographic solution from 

the original cost function are in the range of -4.9 to 2.5 msec. We do not see a similar long-

wavelength trend at the NE end of the seismic line as observed in the GLI solutions; however, a 

long-wavelength trend can be observed at a location between 1.0 Km to 2.0 Km from the start of 

the seismic line. Applying the model weight to the velocity values results in very slow velocity in 

some velocity cells.  To maintain the same time term corrections from the smoothed surface-

consistent residual statics, we choose to update the model thickness by stretching the velocity 

model between the surface and the intermediate datum. The updated velocity model 𝑊𝑊𝑚𝑚𝑚𝑚 and the 

final velocity model after 7 iterations of the new kernel are plotted in Figures 4.21d and 4.21e.  

The CDP stacks created with the two different solutions are plotted in Figure 4..22. The CDP stack 

with the new turning-ray refraction tomography solution (Figure 4.22b) shows significant 

improvement in coherence at a location between 1.0 Km to 2.0 Km from the start of the seismic 

line. Amplitudes of seismic events at around 1.0 second are slightly weaker on the CDP stack with 

the new solution.  This suggests NMO velocity may have to be revised after the new statics 
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solution.  On the CDP stack with the original turning-ray refraction tomography solution (Figure 

4.21a), there is a long-wavelength trend dipping from NE to SW. This trend is reduced on the CDP 

stack with the new solution. In the GLI tests, we found smoothed surface consistent residual statics 

of 3.3 msec was not sufficient to show noticeable improvement in the near-surface velocity model 

and reflection image; while smoothed surface consistent residual statics of 8 msec was sufficient 

to show noticeable improvements. Therefore, with the smoothed surface consistent residual statics 

of -4.9 to 2.5 msec, we do not believe additional iterations of the new processing flow will result 

in meaningful changes. 

4.7 Discussion 

Surface-consistent reflection residual statics derived from correlation of reflection data 

optimize the stacking response of the reflection data.  Using these statics corrections as undetected 

errors in the near-surface refraction analysis and back projecting these errors to the near-surface 

velocity model can produce weathering statics corrections that give the same stacking response as 

applying the surface-consistent reflection residual statics.  Using only the smoothed surface-

consistent reflection residual statics helps to alter the medium to long-wavelength variations in the 

near-surface velocity model.  Applying the model weight to the velocity can sometimes place the 

velocity into an unreasonable range. It may be necessary to review the initial updated velocity 

model to determine the proper combination of model weight for velocity and thickness. We only 

apply a constant correction to all depth steps below the same surface location; however, this 

correction serves only as a priori information to guide the refraction inversion toward time delays 

that agree with the reflection data. With proper selection of the data weight threshold, an optimal 

solution can be achieved by rejecting outlying picks.  Data weight threshold of 1 standard deviation 
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keeps 68% of the data; while data weight threshold of 2 standard deviations keeps 95% of the data. 

We suggest a data weight threshold between 1.5 and 2.  We found the smoothing length of 31 to 

51 receiver stations or 300 m to 500m results in a reasonable medium wavelength reflection 

residual statics for the proposed algorithm.  However, these parameters should be tested. The 

number of non-linear iterations required depends on the quality of the first solution.  The first GLI 

test results in a stable near-surface velocity model and only minor medium wavelength surface-

consistent residual statics are derived from the reflection corrections. The GLI solution from the 

proposed non-linear optimization workflow only shows small differences in the near-surface 

velocity model and reflection coherence; therefore, more iterations will not result in meaningful 

improvement.  However, for a more challenging seismic survey, improvement in the near-surface 

velocity model can lead to improved coherence and structural integrity of the reflection image. 

Therefore, subsequent iterations can potentially further enhance the near-surface velocity model. 

The second GLI test with imposed picking errors results in cycle skipping in first arrival picks. 

These errors generate medium wavelength residual statics in the range of -4 to 8 msec. The 

proposed nonlinear optimization workflow corrects for the errors caused by the imposed first 

arrival picking errors and results in a noticeable improvement to the near-surface velocity model 

and the coherence of the reflection image.  However, the medium wavelength components derived 

from the new GLI solution are in the range of -3 to 3 msec. As observed in the first GLI test, a 

medium wavelength residual of 3 msec will not result in meaningful improvement from additional 

iteration.  
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Figure 4. 21. Turning-ray refraction tomography: (a) final model by solving  𝐺𝐺 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿, (b) ray 

density plot shows low coverage at edges of the model, (c) smoothed surface-consistent reflection 

residual statics, (d) updated model 𝑊𝑊𝑚𝑚 𝑚𝑚 , (e) final model by solving 𝑊𝑊𝑑𝑑𝐺𝐺𝑊𝑊𝑚𝑚𝛿𝛿𝛿𝛿 = 𝑊𝑊𝑑𝑑  𝛿𝛿𝛿𝛿. 
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Figure 4. 22. CDP stack section with weathering statics correction using turning-ray refraction 

tomography velocity model computed from solving (a) the original cost function, (b) 

 𝑊𝑊𝑑𝑑𝐺𝐺 𝑊𝑊𝑚𝑚𝛿𝛿𝛿𝛿 = 𝑊𝑊𝑑𝑑𝛿𝛿𝛿𝛿 with model weight and data weight derived from surface constant reflection 

residual statics. 

 

4.9 Conclusion 

Conventional refraction inversion using first arrival times alone suffers from data errors, 

numerical errors, and algorithm errors inherent in refraction data and refraction methods.  Surface-

consistent residual statics using correlation of reflection data can compensate for some of these 
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deficiencies in the near-surface velocity model by maximizing the stack response of the reflection 

data; however, the near-surface velocity model is left compromised by these errors. These 

deficiencies in the new surface velocity model tend to accumulate in the deeper reflectors during 

subsequent reflection velocity model building processes.  In contrast to the conventional refraction 

inversion that uses first arrival times alone, the new nonlinear optimization scheme also uses the 

surface-consistent reflection residual statics that maximizes the stacking response as a priori 

information in the refraction inversion.  This is implemented by modifying the cost function of 

refraction inversion to include model weight and data weight.  We applied this scheme to GLI and 

turning-ray refraction tomography methods.  Test results from the Hussar 2D dataset confirm that 

the proposed nonlinear optimization refraction solution workflow is robust and converges to a 

near-surface velocity model that is harmonized with the surface consistency of the reflection data. 

However, the significance of the improvement depends on the magnitude of the smoothed surface-

consistent residual statics. We found that for the GLI method smoothed surface-consistent residual 

statics of 8 msec. can produce noticeable improvements in the near-surface velocity model and the 

coherence of the reflection image. We also found that for the refraction tomography test, smoothed 

surface consistent residual statics in the range -4.9 to 2.5 msec. can produce noticeable 

improvements. 
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Chapter 5 

Near-surface velocity model building and statics correction for 

blended land data 

This chapter addresses the problems of blended land data in new-surface and statics correction. 

It evaluates the problems of blended seismic data acquisition imposed on refraction and reflection 

arrival times. It proposes a robust refraction arrival separation method that uses amplitude burst 

suppression and the sparse Radon transform to enhance the first break quality of the blended data. 

It also demonstrates that after refraction statics correction, we can perform normal moveout 

velocity analysis and surface consistent residual statics prior to deblending because of the passive 

separation property of the blended data. I include the following published paper in the chapter 

(reproduced here with permission from Canadian Society of Exploration Geophysics). 

  

Bernard Law1, and Daniel Trad1 

1University of Calgary, Department of Geoscience, Calgary, Canada 

Abstract: An accurate near-surface velocity model allows proper correction of near-surface 

variation on land seismic data. This process often uses first arrival time picks of refraction energy. 

Simultaneous source data acquisition, also called seismic blending, increases the spatial sampling 

and/or reduces the acquisition cost. However, interfering shots also contaminate the refraction 

arrivals and the quality of first arrival time picks for land seismic data. We use synthetic and 

Near-surface velocity model building and statics correction for blended land data 
Bernard Law and Daniel Trad, 2021 

Published in Canadian Journal of Exploration Geophysics Volume 45, no. 1, spring 
2021 
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numerically blended land data to assess the interfering noises from seismic blending. We propose 

a robust refraction arrival separation method that uses amplitude burst suppression and the sparse 

Radon transform algorithm to enhance the first break quality of blended data. We also demonstrate 

that after refraction statics correction, we can perform normal moveout velocity analysis and 

surface consistent residual statics prior to deblending because of the passive separation property 

of blended data. Furthermore, we show that the suppression and removal of blending noise can be 

done using the computational efficient parabolic Radon transform after statics and moveout 

correction. 

5.1 Introduction 

Conventional seismic data acquisition deploys sources with a large time delay to minimize 

interference between sources.  With advances in computing capacity and imaging algorithms, 

seismic data with longer offset, wider azimuth, denser source and receiver spacing have resulted 

in better seismic images. However, these improvements demand higher data density and increase 

the acquisition cost. Over the past two decades, acquisition and processing techniques have been 

developed to increase acquisition efficiency (Beasley et al., 1998; Berkhout, 2008). Beasley et al. 

(1998) propose a simultaneous source firing operation involving two or more sources firing at the 

same time. They demonstrate that, with sufficient blended source separation, processes that require 

correct geometry information, for example, NMO and stack, can suppress blending interference 

noises directly without direct separation of the blended shots. This happens because interference 

noises have incorrect geometry information. Another group of deblending methods is denoising-

based deblending. Hampson et al. (2008) introduce small random firing-time delays between 

sources and show that after removing the firing-time delay (a process called “pseudo-deblending”), 

blending interference noise is coherent in the common shot domain and incoherent in other 
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domains. Processes such as migration and CDP stack can effectively suppress blending 

interference. Mahdad et al. (2011) separate blended data by iteratively removing blending noise in 

pseudo-deblended receiver gathers via F-K filtering. Trad et al. (2012) use Apex Shifted Radon 

transform to separate blended shots in the shot gather domain. Another approach is to treat 

blending interference as a signal and simultaneously separate the blended shots by inversion ( 

Moore et al. 2008, Wapenaar et al. 2012, Ibrahim and Sacchi 2013, 2015, Abma et al. 2015). 

Ibrahim and Trad (2020) show that an inversion-based approach results in better deblending than 

the denoising-based approach. However, inversion-based methods inverse all the shots at the same 

time, while the denoising-based approach works on one gather at a time. For large 3D, memory 

and computational requirements can be a challenge for the inversion-based approach because of 

the need for changing sort order on each iteration. 

Blended land seismic data are generally noisier than marine data and surface-related statics has to 

be addressed at the beginning of the processing steps (Moore et al. 2008, Manning and Ahmad 

2013). Manning and Ahmad (2013) show source separation by sparse inversion enhances first 

break quality. In this study, we use synthetic data and numerically blended land data to assess the 

effects of seismic blending on first arrival picking and statics computation. We also use sparse 

Radon transform to remove blending interference in pseudo-deblended receiver gathers.  

5.1.1 Deblending vs passive separation 

The typical processing flow of blended data is to separate the blended shots by using a denoising-

based or inversion-based method and to follow that with the conventional processing flow  (Figure 

5.1a).  An alternate processing flow is to process the blended data without separation by refining 

processing algorithms to make use of the characteristic of the blended data (Figure 5.1b).  

Algorithms such as velocity analysis, NMO and migration enhance the signal from primary shot 
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points with proper survey geometry, while suppressing the signal from interfering shots through 

stacking or summing.  For example, NMO aligns reflection energy according to the source to 

receiver offset and moveout velocity. Stacking of moveout corrected data will enhance the signal 

from the primary shots that have the correct source to receiver offset and will suppress signal from 

interfering shots. Migration sums the reflection energy according to the forward modelled ray 

paths. Similar to NMO stacking, migration will enhance the reflection signal from primary shots 

and suppress the reflection signal from the interfering shots.  

  

Figure 5. 1.  Processing flow of blended data: (a) Deblending followed by conventional processing, 

(b) Modified processing algorithms using the characteristics of the blended data without direct 

deblending of blended data (image courtesy of Eric Verschuur). 

5.1.2 Statics correction 

Denoising-based deblending, inversion-based deblending and passive separation processing 

methods all require weathering statics and surface consistent residual statics corrections at the front 

end of the processing flow (Figure 5.2) for land seismic surveys. Weathering statics correction 

involves refraction signal and surface consistent residual statics involves reflection signal. Both 

refraction and reflection signals are contaminated by interfering shots in seismic blending. In this 

study, we use the denoising-based method with pseudo-deblended data to separate the refraction 
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and reflection signal for weathering statics and surface consistent residual statics correction 

computation. 

 

 

Figure 5. 23.   Statics corrections for blended data processing flow. 

5.2 Theory 

5.21 Seismic blending and de-blending 

Seismic source blending can be represented by the source matrix S, blending matrix 𝚪𝚪,  and the 

blended source matrix 𝐒𝐒𝒃𝒃𝒃𝒃 : 

𝐒𝐒𝒃𝒃𝒃𝒃 =  𝐒𝐒𝐒𝐒.            (5-1) 

For a 9 shot points seismic survey with a blending fold of 3 and regular shot increment, these 

matrices are: 

𝐒𝐒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑆𝑆1 0 0 0 0 0 0 0 0
0 𝑆𝑆2 0 0 0 0 0 0 0
0 0 𝑆𝑆3 0 0 0 0 0 0
0 0 0 𝑆𝑆4 0 0 0 0 0
0 0 0 0 𝑆𝑆5 0 0 0 0
0 0 0 0 0 𝑆𝑆6 0 0 0
0 0 0 0 0 0 𝑆𝑆7 0 0
0 0 0 0 0 0 0 𝑆𝑆8 0
0 0 0 0 0 0 0 0 𝑆𝑆9⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,     (5-2) 
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𝚪𝚪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡e
−jωdt1 0 0

0 e−jωdt2 0
0 0 e−jωdt3

e−jωdt4 0 0
0 e−jωdt5 0
0 0 e−jωdt6

e−jωdt7 0 0
0 e−jωdt8 0
0 0 e−jωdt9⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,       (5-3) 

 

𝐒𝐒𝐛𝐛𝐛𝐛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡S1e−jωdt1 0 0

0 S2e−jωdt2 0
0 0 𝑆𝑆3e−jωdt3

S4e−jωdt4 0 0
0 𝑆𝑆5e−jωdt5 0
0 0 𝑆𝑆6e−jωdt6

𝑆𝑆7e−jωdt7 0 0
0 S7e−jωdt8 0
0 0 S9e−jωdt9⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,      (5-4) 

where dti  is the randomized firing-time delay for 𝑖𝑖𝑡𝑡ℎ shot point. Each column of  𝚪𝚪  contains the 

blending parameters for a blended source, and each column of 𝐒𝐒𝐛𝐛𝐛𝐛 is a blended source. Randomized 

firing-time delays result in temporal inconsistency.  By interchanging rows in the blending matrix 

𝚪𝚪 , additional spatial inconsistency can be added to the seismic blending. 

For blended seismic data 𝐏𝐏𝒃𝒃𝒃𝒃 , it can be represented by the blending matrix 𝚪𝚪  and the unblended 

data 𝐏𝐏 as:  

𝐏𝐏𝒃𝒃𝒃𝒃 =  𝐏𝐏𝐏𝐏.            (5-5) 

Because 𝚪𝚪  is not a square matrix, it is not invertible. Equation (5-5) cannot be directly inverted to 

get 𝐏𝐏. 𝐏𝐏 is instead computed by minimizing the following objective function :  

  𝐽𝐽 =∥ 𝐏𝐏𝒃𝒃𝒃𝒃  − 𝐏𝐏𝐏𝐏 ∥2+ λ ∥ 𝐏𝐏 ∥2 ,     (5-6) 
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where 𝜆𝜆 is a tradeoff constant, 𝚪𝚪H is the conjugate transpose of 𝚪𝚪 , and the least-squares solution 

to (6) is: 

   𝐏𝐏 = 𝐏𝐏𝒃𝒃𝒃𝒃 𝚪𝚪 H(𝚪𝚪𝚪𝚪H + λI )−1.      (5-7) 

The term 𝐏𝐏𝒃𝒃𝒃𝒃 𝚪𝚪 H, 
 also referred to as pseudo-deblending (Mahdad et al., 2011), expands the 

blended data 𝐏𝐏𝒃𝒃𝒃𝒃  into the number of sources that would be obtained without blending and corrects 

for the fire-time delay for each shot record within a blended shot. After pseudo-deblending, the 

signal appears coherent, while blending noises appear incoherent in receiver and CDP domains 

(Figure 5.4). This property leads to the removal of blending noises in the pseudo-deblended 

receiver and CDP gathers. Algorithms that use this property include FK transform (Madhad et al., 

2011, Abma et al., 2015) and sparse Radon transform (Moore et al.,2008; Ibrahim and Sacchi., 

2013).      

5.2.2 Sparse Radon transform 

The Radon transform (RT) maps data 𝑢𝑢(𝑡𝑡,ℎ), in time 𝑡𝑡, distance ℎ space to Radon space 𝑈𝑈(𝜏𝜏,𝑝𝑝), 

in zero offset time 𝜏𝜏  and slowness 𝑝𝑝, according to the basis function 𝑇𝑇(𝜏𝜏,𝑝𝑝,ℎ): 

𝑈𝑈(𝜏𝜏, 𝑝𝑝) = ∬𝑑𝑑(𝑡𝑡,ℎ)𝛿𝛿�𝑡𝑡 − 𝑇𝑇(𝜏𝜏, 𝑝𝑝, ℎ)�𝑑𝑑𝑑𝑑𝑑𝑑ℎ.       (5-8) 

Linear, hyperbolic and parabolic basis functions are often used in seismic data processing for 

coherent and non-coherent noise attenuation : 

 Linear:  𝑇𝑇(𝜏𝜏, 𝑝𝑝, ℎ) = 𝜏𝜏 + 𝑝𝑝ℎ.      (5-9) 

 Hyperbolic: 𝑇𝑇(𝜏𝜏, 𝑝𝑝, ℎ) = 𝜏𝜏 + �𝜏𝜏2 + 𝑝𝑝2ℎ2.     (5-10) 

 Parabolic: 𝑇𝑇(𝜏𝜏, 𝑞𝑞, ℎ) = 𝜏𝜏 + 𝑞𝑞 ℎ2,      (5-11)  

where 𝑞𝑞 is not the slowness, but simply a coefficient in the transform (Hampson 1986). 𝑞𝑞 is also 

referred to as curvature. 
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Apex shifted (AS)  RT (Trad et al., 2012) incorporates apex ℎ0 of each source of blended  shot 

record: 

AS Hyperbolic:  𝑇𝑇(𝜏𝜏, 𝑝𝑝, ℎ) = 𝜏𝜏 + �𝜏𝜏2 + 𝑝𝑝2(ℎ − ℎ0)2.     (5-12) 

Equation (5-8) is used directly in velocity stacks for moveout velocity analysis. However, 

slope/curvature/velocity filtering requires an inversion process. Thorson and Claerbout (1985) use 

stochastic inversion in time domain hyperbolic RT. Hampson (1986) proposes fast frequency 

domain parabolic RT, that minimize the cost function: 

  𝐉𝐉 =∥ 𝐋𝐋 𝐮𝐮 − 𝐝𝐝 ∥𝟐𝟐 ,       (5-13) 

with the solution: 

  𝐮𝐮 = (𝐋𝐋𝐓𝐓 𝐋𝐋)−𝟏𝟏  𝐋𝐋𝐓𝐓 𝐝𝐝 ,       (5-14) 

where L is the forward radon modelling operator for  frequency 𝝎𝝎, offset ℎ𝑖𝑖 and 𝑞𝑞𝑘𝑘:  

  𝐿𝐿𝑖𝑖,𝑘𝑘 = 𝑒𝑒−𝜔𝜔𝑞𝑞𝑘𝑘ℎ𝑖𝑖
2        (5-15) 

Ng and Perz (2004) outline a time-domain Gauss-Seidel iteration algorithm with sparseness 

constraints in 𝑝𝑝 and 𝑡𝑡𝑡𝑡𝑡𝑡 direction using thresholding as well as prioritizing the computation 

sequence of the 𝑞𝑞  traces according to their energy from the previous iteration.   

5.3 Synthetic Example 

The first arrival picking on blended data has not been widely addressed in the literature. To assess 

the impact of blending noise on the first arrival and reflection energy we generate a finite-

difference synthetic dataset using a layered wedge model and acquisition geometry with a receiver 

and shot spacing of 24 m.  We use a 5 shots pattern acquired simultaneously with randomized 

firing-time delays (Figure 5.3).  The first shot in each pattern has zero firing delay, while the other 

4 shots have randomized firing delays between 50 and 200 ms. Figure 5.4 shows the pseudo-

deblended shot, receiver and CDP gather. Blending noise appears coherent in the shot gather; while 
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it appears incoherent in receiver and CDP gather.  The amplitudes of the first arrival energy from 

interfering shots are stronger than the reflection signal. We use sparse linear Radon transform (Ng 

and Perz, 2004) to model the first arrival energy on windowed pseudo-deblended receiver gathers 

(Figure 5.5a). The windowed pseudo-deblended received gather is transformed to 𝑝𝑝 and 

𝑡𝑡𝑡𝑡𝑡𝑡 domain. Sparseness is introduced by computing the  𝑝𝑝 traces in the descending order of its 

energy level from the previous iteration and by rejecting 𝑝𝑝 traces with low semblance value. 

Hence, the strongest event will be modelled first, and weak events will be omitted. The modelled 

first arrival energy is then constructed by the forward transform of the sparse 𝑝𝑝 traces to the 

distance-time domain. The  𝑝𝑝 range is 0.5 ms/m to 1 ms/m, and the semblance threshold is 0.0001 

for this test. Figures 5.5b and 5.5c display the receiver and CDP gather with modelled first arrival 

energy removed. Strong residual first arrival energy can be seen near the sources; however, there 

are significant improvements in the reflection arrival between 1 and 1.5 seconds. Figures 5.6 and 

5.7 compare the normal moveout (NMO) velocity analysis using CDP gather with and without the 

removal of modelled first arrival energy. Although the reflection event at 1100 ms is contaminated 

by strong first arrival from interfering shots (Figure 5.6a), the velocity semblance scan (Figure 

5.6b) can focus at the right velocity because of the passive separation property of the NMO and 

stacking process that suppresses the blending interference with an incorrect source to receiver 

offset. After NMO correction, seismic reflections are better aligned, and some blending 

interference appears as large-amplitude bursts (Figure 5.7c). We use a 200 ms time-varying median 

filter to lower the amplitude level of the amplitude bursts in NMO corrected pseudo-deblended 

CDP gathers(Figure 5.8a) that is greater than 2 times the median amplitude level. However, the 

interferences are still significant and appear coherent on shot gathers (Figure 5.8c).  Using the 

coherence of the moveout corrected seismic reflection, we perform sparse parabolic RT on the 
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moveout corrected and amplitude burst suppressed CDP gather (Figure 5.9a). Figure 5.9b and 5.9c 

show the moveout restored CDP and shot gathers after sparse parabolic RT. 

 

   

Figure 5. 3.  Velocity model and 5 shots blending design pattern. The firing-time delay for this 

example is zero for the first source of each blended shot. 

 

 

 

Figure 5. 4. (a) Pseudo-deblended shot gather showing coherent blending interference, (b) pseudo-

deblended receiver gather and (c) pseudo-deblended CDP gather showing incoherent blending 

interference. 
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Figure 5. 5. (a) Refraction arrival modelled with sparse linear Radon transform of pseudo-

deblended receiver gather 39, (b) pseudo-deblended receiver gather and (c) pseudo-deblended 

CDP gather after removal of all modelled refraction arrival. 

 

 

 

 

Figure 5. 6.   Pseudo-deblended CDP gather 201, (b) NMO velocity analysis, (c) moveout 

corrected CDP gather. 
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Figure 5. 7. (a) Pseudo-deblended CDP gather 201 after removal of modelled refraction arrival, 

(b) NMO velocity analysis, (c) moveout corrected CDP gather. 

 

 

 

Figure 5. 8. (a) Pseudo-deblended CDP after moveout correction and amplitude burst suppression, 

(b) moveout restored, (c) shot gather after amplitude burst suppression in CDP gathers. 
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Figure 5. 9. (a) Pseudo-deblended CDP after moveout correction, amplitude burst suppression and 

sparse parabolic Radon transform (b) moveout restored, (c) shot gather after amplitude burst 

suppression and sparse parabolic Radon transform in CDP gathers. 

 

These test results demonstrate that the denoising-based method using sparse linear Radon 

transform can effectively model and separate first arrival energy on blended data. This is 

computationally more efficient than the inversion-based approach. Separating first arrival energy 

on blended land data is important for near-surface velocity modelling using the first arrival time 

picks or waveform. These tests also show that moveout velocity analysis can be performed on 

pseudo-deblended CDP gather before separation because of the passive separation property of the 

NMO and stacking process. Furthermore, sparse parabolic Radon transform on moveout corrected 

data can be an effective denoising-based deblending method. 

 

5.4 Numerically blended 2d land data example 

We use numerically blended 2D land data to test the effectiveness of the first arrival separation 

and its significance on near-surface velocity model building and statics correction. The 3-shots 
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blending pattern has zero firing delay time for the first shot and a randomized firing delay time 

that ranges from 1000 to 1500 ms. The data used in this example are the vertical component of the 

dynamite shot records from a 4.5 Km 2D 3C survey acquired at Hussar, Alberta in September 2011 

(Margrave et al., 2012).  The 2D line runs NE-SW with a topographic relief of about 80 m (Figure 

5.10). Examination of blended shot records (Figure 5.11) shows surface elevation effects and 

blending interference from the ground roll and coherent energy of interfering shot points. We 

address the surface elevation effects by applying a static time shift that corrects the surface 

elevation to a smooth surface. We also low-cut filter the blended record to suppress the ground 

roll interference on the first arrival energy (Figure 5.12).  In the pseudo-deblended receiver gather, 

refraction and reflection arrivals appear as a coherent signal; while blending interference appears 

as large amplitude burst and incoherent noise (Figure 5.13).  

  

We apply low-cut and median filters to suppress the ground roll and large amplitude burst, and 

linear sparse Radon transform to suppress the incoherent blending noise in the pseudo-deblended 

receiver gathers over a time window that includes the first arrival energy (Figure 5.14).  The 

processed receiver gathers are sorted to shot domain for first arrival picking (Figure 5.15).  The 

process does not completely remove the blending noise; however, it improves the first arrival 

energy for the first break picking. Figures 5.15b and 5.15c display the processed first arrival energy 

and the original non-blended seismic shot record with the first arrival time picks from the 

processed pseudo-deblended data displayed in blue.  

 

We use the first arrival time picks to compute a new surface velocity model using refraction 

tomography (Figure 5.16).  The refraction tomography starts with a layered-based GLI refraction 
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inversion with the top layer velocity fixed at 1000 m/s. Refraction tomography will then update 

the velocity model according to ray path geometry. There is also a lower velocity limit of 1000 

m/s used in the refraction tomography solution. Figures 5.17 and 5.18 compare the CDP stack with 

datum elevation correction only with the CDP stack with weathering statics correction.  The latter 

shows an overall significant improvement in both coherence and structural integrity. However, 

there are strong blending noises on the CDP stack. Moveout velocity functions for the CDP stacks 

are determined from weathering statics corrected CDP gathers (Figure 5.19). We also computed 

the surface consistent residual statics using the weathering statics and moveout corrected CDP 

gathers. CDP gathers after surface consistent residual statics (Figure 5.20b) shows significant 

improvement in the alignment of reflection energy. We use the smoothed surface consistent 

residual statics to update the refraction tomography model (Law and Trad, 2018). Figure 5.21 

displays the updated refraction tomography model and the CDP stack with the updated weathering 

statics. Significant improvement in the lateral coherence can be seen when compared to the CDP 

stack with weathering statics computed from the original refraction tomography solution (Figure 

5.18).  Figure 5.22 summarizes the workflow for refraction tomography and surface-consistent 

residual statics for blended land data. 

 

The CDP stack after weathering and surface-consistent residual statics still shows blending 

interference. We use a median filter and parabolic sparse Radon transform on statics and moveout 

corrected receiver gathers (Figure 5.23a) to remove the remaining coherent blending noises. Figure 

5.23b displays the processed receiver gather. Figure 5.24a displays the CDP stack after the removal 

of blending noises in receiver gathers. It shows the strong blending noises have been removed. 

Figure 5.24b displays the CDP stack of the original nonblended data with statics correction and it 
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shows a good correlation with the CDP stack from the denoising-based deblending workflow. 

However, some blending noises still noticeable, especially at the edges of the CDP stack. Figure 

5.25a and 5.25b compare the statics corrected shot gather 373 before and after the removal of 

blending noises.  Figure 5.25c shows the differences between the blended shot gather and the 

deblended shot gather. The refraction arrivals at the top of the gather are lost during the NMO and 

UNMO processes; therefore, they dominate the difference display. Figure 5.25d shows the original 

non-blended shot gather, it compares well with the deblended shot gather in figure 5.25b. 

However, it also shows leakage from the refraction arrivals from the blended shots. This study 

demonstrates parabolic sparse Radon transform with statics and moveout corrected pseudo-

deblended receiver gather as an effective denoising-based deblending method. 

 

 

Figure 5. 10. Hussar 2D broadband experiment location map and seismic line layout (Margrave 

et al, 2012). 
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Figure 5. 11.   Numerically blended shot record showing (1) surface elevation effect, (2) ground 

roll interference and (3) coherent first arrival interference.  

 

Figure 5. 12.  Numerically blended shot record after smooth elevation time adjustments and low-

cut filter.    
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Figure 5. 13.    Pseudo-deblended receiver gather.  

 

Figure 5. 14.  Pseudo-deblended and surface elevation corrected receiver gather, b) after the low-

cut filter, amplitude burst suppression and sparse linear Radon transform.   
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Figure 5. 15.  Numerically blended shot gather, b) windowed, low-cut filter, amplitude burst 

suppression and sparse linear Radon transform in pseudo-deblended receiver domain, c) original 

non-blended shot gather. (First arrival time picks from processed pseudo-deblended data are 

displayed in blue) 

 

 

Figure 5. 16. First arrival time picks from deblended data and refraction tomography solution. 
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Figure 5. 17.   CDP stack with datum elevation correction only. 

 

 

Figure 5. 18.  CDP stack with datum elevation and weathering statics correction. 



 

103 

 

Figure 5. 19.  Pseudo-deblended CDP gather with weathering statics correction and NMO velocity 

semblance. 

 

Figure 5. 20.  a) Pseudo-deblended CDP gather with NMO correction, (b) pseudo-deblended CDP 

gather with NMO correction and surface consistent residual statics correction. 
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Figure 5. 21.   CDP stack with weathering statics computed from model updated with reflection 

residual statics. 

 

Figure 5. 22.  a) Refraction tomography workflow for blended land data,  b) Surface-consistent 

residual statics workflow for blended land data.  



 

105 

 

Figure 5. 23.   a) Pseudo-deblended receiver gather with weathering statics computed from model 

updated with reflection residual statics, b) after the median filter and sparse parabolic radon 

transform. 

a) 

 

b) 

 

Figure 5. 24.   a) CDP stack after statics, median filtering and sparse parabolic Radon transform 

in receiver gathers, b) CDP stack of original non-blended data with statics corrections.   
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Figure 5. 25.  a) Pseudo-deblended shot gather with statics correction, b) shot gather after sparse 

parabolic Radon transform on statics and moveout corrected pseudo-deblended receiver gathers. 

c) (a)-(b), d) original non-blended shot gather with statics correction. 
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5.5 Conclusion  

Seismic blended interference degrades the quality of refraction arrival that is critical for near-

surface velocity building and statics correction for blended land data. We have shown that linear 

sparse Radon transform can effectively model refraction arrival energy on blended data. For 

blended land data, it is also necessary to suppress ground roll and large amplitude bursts using 

low-cut and median filters. We also showed that normal moveout velocity analysis can be 

performed on weathering statics corrected blended data prior to separation. Subsequent surface 

consistent residual statics can then be computed on weathering statics and moveout corrected data. 

We also used the smoothed surface constant residual statics computed from the correlation of 

reflection energy of the blended data to update the near-surface velocity model. Furthermore, we 

have demonstrated that a parabolic sparse Radon transform on statics and moveout corrected 

pseudo-deblended receiver gather is an effective deblending method. 
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Chapter 6 

Application of stereo-tomography reflection tomographic methods 

to the Hussar 2D survey 

Reflection tomography uses reflection arrival times to estimate the subsurface velocity. Using 

deeper reflection arrival times, reflection tomography can provide velocity information of deeper 

depth than the previously discussed refraction tomography. Stereotomography is one of the 

reflection tomography methods. Unlike classical reflection tomography, stereo-tomography does 

not require picking of continuous refection events and it uses additional information of the 

apparent slopes of local coherent events in the common shot and receiver gathers. 

6.1 Introduction 

Stereotomography belongs to the family of slope tomography methods (Sword, 1987).  Slope 

tomography characterizes each reflection ray path with its two-way traveltimes and apparent 

slopes or ray parameters of the reflection event on the corresponding shot and receiver gathers 

(Figure 6.1). In a shot gather the apparent slope of a reflection event recorded at a geophone 

represents the ray parameter 𝑃𝑃𝑔𝑔 of the wavefield at that location, and it determines the ray path 

between the reflection point and the geophone. Similarly, in a geophone gather the apparent slope 

of the same reflection event represents the ray parameters 𝑃𝑃𝑠𝑠 of the shot, and it determines the ray 

path between the reflection point and the shot. Therefore, it is necessary to evaluate both the shot 

gather and receiver gather of a reflection event in slope tomography to establish the unique shot 

and geophone ray pairs. Hence, the name stereo-tomography was used by Billette and Lambar𝑒́𝑒 
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(1998) to emphasize the shot and receiver ray segment pair for each localized reflection event. 

Figure 6.1a shows traces around the shot location 𝑺𝑺 and geophone location 𝑅𝑅 at the two-way 

traveltime 𝑇𝑇𝑠𝑠𝑠𝑠. If the velocity of media is known, the shot and receiver ray segments can be 

reconstructed with 𝑃𝑃𝑠𝑠 ,𝑃𝑃𝑔𝑔 and 𝑇𝑇𝑠𝑠𝑠𝑠 (Figure 6.1b).  The ray parameters 𝑃𝑃𝑠𝑠 and 𝑃𝑃𝑔𝑔 can be picked by 

tracking the reflection events or by automatic picking using the semblance of the localized shot 

and receiver slant stacks.  

The advantages of slope tomography over classical reflection tomography (Bishop et al., 

1985; Chiu and Stewart, 1987) include the additional data measurements of shot and receiver ray 

parameters and the elimination of the requirement to pick continuous reflection events on pre-stack 

data; hence, making automated picking easier.  Sword (1987) developed the first slope tomography 

method, also called CDR (Rieber 1936; Riabinkin 1957) tomography. This method reconstructs 

the shot and receiver ray segments by shooting rays from shot and receiver at the surface using the 

picked 𝑃𝑃𝑠𝑠 ,  𝑃𝑃𝑔𝑔 and ending the ray tracing when the sum of the traveltime of the shot ray segment 

and receiver ray segment equals the two-way traveltime, 𝑇𝑇𝑠𝑠𝑠𝑠. The velocity of the media 𝑉𝑉 is 

estimated by minimizing the position errors 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒 of the endpoints of the ray segments (Figure 

6.2a). However, this method is sensitive to the picking errors and can be unstable because the 

accuracy of the forward modelling depends greatly on the picked 𝑃𝑃𝑠𝑠 and 𝑃𝑃𝑔𝑔. Stereotomography 

(Billette et. al, 1998, 2003) remedied this instability using the generalized formulation of the slope 

tomography method. The forward modelling of stereo-tomography involves ray tracing from a 

scatter point 𝑋𝑋  toward the 𝑆𝑆 and 𝑅𝑅 at the surface and is independent of 𝑃𝑃𝑠𝑠  ,  𝑃𝑃𝑔𝑔 and 𝑇𝑇𝑠𝑠𝑠𝑠. Therefore, 

it is independent of picked data and remedies the instability of the original slope tomography 

method.  However, besides the media velocity, this approach also requires the estimations of the 

scatter position and the ray path geometry parameters for each local reflection event. This results 
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in a more complex multi-parameter inversion problem (Figure 6-2b). The model space of stereo-

tomography includes 𝑉𝑉, 𝑋𝑋, the shooting angle 𝜃𝜃𝑠𝑠 and traveltime 𝑇𝑇𝑠𝑠 for the shot ray segment, and 

the shooting angle 𝜃𝜃𝑔𝑔  and traveltime 𝑇𝑇𝑟𝑟 for the receiver ray segment. The data space includes 

𝑆𝑆,𝑅𝑅, 𝑃𝑃𝑠𝑠, 𝑃𝑃𝑔𝑔 and 𝑇𝑇𝑠𝑠𝑠𝑠  .  Picking of reflection arrival times and slopes are flexible in stereo-

tomography and can be based on the semblance of the shot and geophone slant stacks. However, 

for noisy data and in areas of complex structure, picking can still be a challenge. We will validate 

the accuracy of the stereo-tomography method using synthetic data created with a wedge model 

and the Marmousi model (Brougouis at all, 1990). We will also apply the stereo-tomography 

method to a 2D land data set acquired in the Hussar area of Alberta to demonstrate the data 

preparation, the picking procedure and the quality of the Stereotomography solution. 

 

Figure 6. 1 (a) Relationship between 𝑇𝑇𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠,𝑃𝑃𝑔𝑔 of a localized coherent event. (b) The event is 

characterized by the traveltime 𝑇𝑇𝑠𝑠𝑠𝑠 and the ray parameters 𝑝𝑝𝑠𝑠 and 𝑝𝑝𝑔𝑔 and is associated with a ray 

segment pair in the velocity model. Reflector dip 𝜙𝜙 and ray segment parameters including the 

scatter point location X, ray shooting angles 𝜃𝜃𝑠𝑠   and 𝜃𝜃𝑔𝑔 can be estimated from the half-offset h, the 

ray parameters, and two-way traveltime 𝑇𝑇𝑠𝑠𝑠𝑠. 
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Figure 6. 2 (a) Controlled Direction Reception (CDR) tomography shoots a ray from the surface 

using picked ray parameters 𝑃𝑃𝑠𝑠,𝑃𝑃𝑔𝑔 and estimates the velocity by minimizing the position error Xerr 

of the ray segment endpoints. (b) Stereo-tomography shoots rays from an estimated scatter point 

X to the shot and receiver, and estimates the velocity V and ray segment parameter X, 𝜃𝜃𝑠𝑠  , 𝜃𝜃𝑔𝑔 , 

𝑇𝑇𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑟𝑟  by minimizing the misfits of the data space parameters. 

6.2 Theory 

6.21 Forward and inverse problem 

      In classical reflection tomography, the forward modelling of the traveltime tomography can 

be represented by: 

 

 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ = ∫ 𝑠𝑠(𝑥𝑥, 𝑧𝑧)𝑑𝑑𝑑𝑑,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ       (6-1) 

where the measured traveltime 𝑡𝑡  is the integral of slowness 𝑠𝑠(𝑥𝑥, 𝑧𝑧) along the ray path. 

If the line integral equation (6-1) defines a linear system, it can be represented in matrix form as: 

 

𝐝𝐝 = 𝐋𝐋 𝐦𝐦 ,       (6-2) 

 

where d is the travel time of a raypath, m is the slowness model, L is a matrix that contains the 

physical relationship between the measurements 𝐭𝐭 and the model parameter, typically slowness 
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(𝐬𝐬).  L is the Kernel, often equivalent to the Jacobian, Fréchet derivative or sensitivity matrix. For 

the line integral equation 1, L is of the dimension of the number of data points by the number of 

velocity cells. Each row of L contains the ray path segment length for each cell that a ray path has 

traversed to create a traveltime measurement.   

 

The cost function or misfit function for equation (6-2) is: 

 

                       𝐽𝐽(𝑚𝑚) = ∥ d − 𝐋𝐋 m ∥2                                                   (6-3) 

The linear least-squares solution of equation (6-3) is 

                      𝐦𝐦 = (𝐋𝐋𝐓𝐓𝐋𝐋 )−1𝐋𝐋𝑇𝑇𝐝𝐝 .                                                       (6-4) 

Since the ray path is a function of the slowness and line integral equation represent a non-linear 

system, equation 2 becomes: 

  𝐝𝐝 = 𝐋𝐋(𝐦𝐦),                    (6-5) 

and the cost function for equation (6-4) is: 

  𝐽𝐽(𝑚𝑚) = ∥ 𝐝𝐝 − 𝐋𝐋 (𝐦𝐦) ∥2.                 (6-6) 

 

Because of the non-linearity of Equations (6-5) and (6-6), the slowness model cannot be obtained 

directly using Equation 4.  However, the traveltime 𝐝𝐝  is picked from the data; it is invariant or 

model independent. We can exactly calculate the cost function in equation (6-6); Therefore, the 

non-linear problem of classical reflection tomography can be linearized by iteratively solving:  
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  𝚫𝚫𝚫𝚫 = 𝐋𝐋 𝚫𝚫𝚫𝚫,        (6-7) 

where Δm is the model update vector between iterations, L is the Frechét derivative matrix 

𝜕𝜕𝜕𝜕(𝑚𝑚)/𝜕𝜕𝜕𝜕, the partial derivatives of the modelled response with respect to the model parameters 

and Δd is the differences between the modelled and the observed traveltimes.   

6.22 Stereo-tomography  

Unlike classical traveltime tomography that has only traveltimes in the data space and 

slowness in the model space, stereo-tomography is a multiparameter problem (Figure 6-2b). To 

account for data uncertainties, we include the data covariance 𝐂𝐂𝐝𝐝  in the cost function: 

 

𝐽𝐽(𝑚𝑚) =  �𝐝𝐝 − 𝐋𝐋(𝐦𝐦)�
𝐓𝐓
𝐂𝐂𝐝𝐝−𝟏𝟏�𝐝𝐝 − 𝐋𝐋(𝐦𝐦)�   .    (6-8) 

 

When the data covariance is uncorrelated,  𝐂𝐂𝐝𝐝  is a diagonal matrix with the diagonal elements 

being the square of the standard derivation 𝛔𝛔 
  of the data, and 𝐂𝐂𝐝𝐝−𝟏𝟏 is also a diagonal matrix with 

the diagonal element being 1/𝛔𝛔𝟐𝟐.  Therefore 𝐂𝐂𝐝𝐝  can be chosen according to the standard deviation 

of the data measurements. It is important to choose the appropriate unit for the data covariance so 

that the data misfit of different data types is scaled accordingly. The data space of stereo-

tomography includes 𝑆𝑆,𝑅𝑅, 𝑇𝑇𝑠𝑠𝑠𝑠, 𝑃𝑃𝑠𝑠  and 𝑃𝑃𝑔𝑔 (see Figure 6.2b). Data misfit  Δ𝑑𝑑𝑖𝑖 for each data point in 

equation 6.7 is: 

 

  Δ𝑑𝑑𝑖𝑖 = ((𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐)𝐶𝐶𝑑𝑑𝑆𝑆   , (𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐)𝐶𝐶𝑑𝑑𝑅𝑅 , �𝑇𝑇𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐�𝐶𝐶𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇 ,  

�𝑃𝑃𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 𝐶𝐶𝑑𝑑𝑃𝑃𝑠𝑠  , �𝑃𝑃𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 𝐶𝐶𝑑𝑑𝑃𝑃𝑔𝑔  ).    (6-9) 
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The model space includes 𝑉𝑉,𝑋𝑋𝑐𝑐  , 𝜃𝜃𝑠𝑠 , 𝑇𝑇𝑠𝑠 , 𝜃𝜃𝑔𝑔  
and 𝑇𝑇𝑔𝑔  

(Figure 6.2b).  For each data point, the Fréchet 

derivative 𝐿𝐿𝑖𝑖 in equation 6.7 is the combination of the derivatives of data space element with 

respect to the model space element: 

 

 𝐿𝐿𝑖𝑖 = 𝛛𝛛(𝐒𝐒,𝐑𝐑,𝐓𝐓𝐬𝐬𝐬𝐬,𝑷𝑷𝒔𝒔,𝑷𝑷𝒈𝒈)
𝛛𝛛(𝐗𝐗𝐜𝐜,𝛉𝛉𝐬𝐬,𝜽𝜽𝒈𝒈,𝑻𝑻𝒔𝒔,𝑻𝑻𝒈𝒈,𝑽𝑽)

 .       (6-10) 

 

Each element of the Fréchet derivative 𝐿𝐿𝑖𝑖 can be computed during paraxial raytracing (Cervený et 

al, 1977).  With the data misfit Δ𝑑𝑑𝑖𝑖 and the Fréchet derivative 𝐿𝐿𝑖𝑖 for each data point established, 

model update 𝚫𝚫𝚫𝚫 can be computed iteratively by solving equation (6-7) using a conjugate gradient 

method (Hestenes, and Stiefel, 1952, Nocedal and Wright, 2006).  

6.3 Synthetic data example 

To validate the accuracy of the stereo-tomography method, we create synthetic data sets using 

a wedge model and the Marmousi model. The wedge model (Figure 6.3a) consists of four constant 

velocity layers with the second layer thins out with increasing surface location. 200 shot gathers 

(Figure 6.3b) were created using acoustic finite-difference modelling with 4th order in space and 

second order in time, and a Ricker wavelet of 25Hz dominant frequency. We picked a rough 

moveout velocity function (Figure 6.3c) at the middle of the model and created a near-trace stack 

(Figure 6.3d) using traces with an offset less than 1000 m. Reflection boundaries were picked on 

the near offset stacks and were used to track the reflection arrival times automatically on the 

moveout corrected CDP gathers (Figure 6.3e). Moveout correction was then removed from the 

picked reflection arrival times. Figure 6.3f shows a shot gather with picked reflection arrivals 

displayed in blue. We use the reflection arrival times to compute the shot and geophone ray 
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parameters for stereo-tomography inversion. Figure 6.4a shows a shot gather with the two-way 

times and geophone slope picks. Figure 6.4b shows the quality control panels for each analysis 

location. Figure 6.4c shows the initial estimates of the scatter positions for all the stereo-

tomography picks using straight ray and homogeneous media assumptions. The green lines in 

Figure 6.4c mark the dip bars computed from the 3 stereo-tomography picks.  

 

Figure 6. 3. (a) Wedge model. (b) Finite difference shot gather. (c) Moveout velocity scans. (d) 

Near trace stack. (e) A moveout corrected CDP gather with refraction arrival times picked by 

correlation with the near-trace stack. (f) Shot gather with reflection arrival times.  
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Figure 6. 4. (a) A shot gather with two-way traveltime and geophone ray parameter picks. Green 

lines mark the picks for the active analysis location. (b) Quality control panels for an analysis 

location, (c) Initial estimates of the scatter positions. Green lines represent dip bars computed from 

stereo-tomography picks at the active analysis location.  

We use the stereo-tomography picks to estimate the velocity 𝑉𝑉  and ray segment parameters  𝑋𝑋 , 

𝜃𝜃𝑠𝑠 , 𝑇𝑇𝑠𝑠 , 𝜃𝜃𝑔𝑔  
and 𝑇𝑇𝑔𝑔  

.  Figure 6.5a shows the final velocity solution with the velocity values at 6 

locations displayed in white. Velocity values of the true model are displayed in black. Figure 6.5b 

shows the estimated scatter positions. Velocity solution from stereo-tomography does not capture 

the blocky characteristics of the wedge model, but it resembles velocity gradients centred around 

the true velocity values. The scatter positions match the velocity boundaries of the wedge model; 

hence, it is possible to develop a hybrid method that uses the scatter positions to establish the layer 

boundaries and modify the stereo-tomography algorithm to estimate a layered based velocity 

model. We estimate the velocity boundaries by linear fitting the computed scatter positions. The 

average velocity is computed by averaging stereo-tomography solution between layer boundaries 
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(Figure 6.5c).  Figure 6.5d displays the true velocity model with linear fitted scatters for 

comparison. 

 

Figure 6. 5. (a) Stereotomography solution of the wedge model synthetic dataset. Velocity values 

at 6 locations are displayed in white for the stereo-tomography solution and in black for the true 

model. (b) Scatter positions are displayed as black dots. (c) Velocity layer boundaries are 

computed by linear fitting the computed scatter positions and displayed as black dots. 

Stereotomography solution is averaged between computed layer boundaries. (d) Linear fitted 

scatters positions displayed as black dots on the true velocity model. 

We also use the Marmousi model (Figure 6.6a) to create 261 synthetic shot records with 96 

traces per shot (Figure 6.6b). Both the shot spacing and geophone spacing are 25m. Because of the 

complex structures of the model and reflection signal, it is necessary to pick the reflection arrival 

times, shot and geophone ray parameters using semblance of the shot and geophone slant stacks. 

Figure 6.7a shows the picked reflection events on shot 248. Figure 6.7b shows the picked events 

and semblance at shot location 248 and geophone location 170. Figure 6.7c shows the initial 
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estimates of the scatter positions for all the stereo-tomography picks using straight ray and 

homogeneous media assumptions.   We use a constant velocity gradient as the starting model for 

stereo-tomography inversion. Figure 6.8a shows the final velocity solution, and figure 6.8b 

overlays the final scatter positions on the velocity solution. Comparing the stereo-tomography 

solution to the true model in figure 6.6a, the velocity solution captures the long-wavelength trend 

of the true model up to about 2Km, and the scatter positions match the velocity boundaries in the 

true model. Figure 6.8c displays the velocity values from the stereo-tomography solution in white, 

and the true model in black at 6 locations. This further confirms that the stereo-tomography 

solution does capture the long-wavelength trend of the true model. 

To evaluate the effectiveness of the stereo-tomography solution as a starting model for high-

resolution inversion methods such as FWI, we perform FWI on the Marmousi data set using 

starting model from a constant vertical velocity gradient (Figure 6.9a) and from the stereo-

tomography solution (Figure 6.9c).  Figures 6.9b and 6.9d compare the FWI solution from the two 

starting models. FWI solution using the constant vertical velocity gradient as the starting model 

only captures some of the high-frequency velocity changes in the true model. FWI solution using 

the stereo-tomography solution as the starting model recovers most of the velocity features up to 

about 2Km. Details below 2Km are missing in the FWI solution.  Potential improvement can be 

using higher-order finite-difference propagation in FWI and using the higher resolution multi-grid 

FWI approach proposed by Trad 2020, in which the high-frequency field data will be shaped to 

the lower frequency predicted data between iterations. 
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Figure 6. 6.  (a) Marmousi model. (b) Synthetic shot records.  

 

Figure 6. 7. (a)  A shot gather with two-way traveltime and geophone ray parameter picks 

determined by  the maximum semblance of the shot and geophone slant stacks. Green lines mark 

the picks for the active analysis location. (b) Quality control panels for an analysis location, (c) 

Initial estimates of the scatter positions. Green lines represent scatter positions and dips computed 

from stereotomography picks at the active analysis location.  
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Figure 6. 8. (a) Stereotomography solution of the Marmousi synthetic data set. (b) Scatter positions 

are displayed as black dots. (c)  Velocity values at 6 locations are displayed in white for the stereo-

tomography solution and in black for the true model.  

 

Figure 6. 9. (a) Constant vertical velocity gradient model. (b) FWI solution using (a) as the starting model. 

(c) Stereotomography solution. (d) FWI solution using (c) as the starting model. 
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6.4 Field data example 

We apply similar approaches of the wedge model and the Marmousi model in stereo-

tomography to a 2D land dataset. The data used in the example are the vertical component of the 

dynamite shot records from a 4.5 Km long 2D 3C survey acquired at Hussar, Alberta in September 

2011. The seismic survey was acquired for a broadband experiment (Margrave et al., 2012).  Figure 

6.10a shows the location and the layout of the seismic line and some nearby wells. Figure 6.10b 

shows a spherical divergence corrected shot gather, and figure 6.10c shows the deconvolution and 

weathering statics correction of the same shot records.  To remove the ground roll interference and 

to improve the lateral coherence, we use Radon transform filter on moveout corrected CDP gathers. 

Figures 6-10d shows the same shot records after the Radon transform filter in the CDP domain. 

We use the same approach that we took in the wedge model to automatically pick the refraction 

arrival time by correlating a CDP stack (Figure 6.10e) with the moveout corrected and noise 

attenuated CDP gathers. The moveout correction times are then backed out from the picked 

reflection arrival times. Figure 6.10f shows the same shot records with picked reflection arrival 

times. In order to identify the tie between the well logs and the seismic events, we compare the 

CDP stack in time with the 8-12-45-55 Hz. synthetic seismograms (Figure 6.11). In specific, we 

tie the CDP stack with the Belly River, Basal Belly River, Base Fish scales and the Mannville 

formations. The Belly River reflection is quite noisy, we choose to add it for better control on the 

shallow. We also attempt to do some picking at 200 ms and below 1000 ms. 

 The reflection arrival times are then used to compute the geophone and shot ray parameters. 

To remove errors in the reflection arrival times, the geophone and shot ray parameters are picked 

again using the maximum semblance of the shot and geophone slant stacks (Figure 6.12a). The 

final reflection arrival times and ray parameters are then used for stereo-tomography inversion. 



 

122 

The final stereo-tomography solution is displayed with P-P velocity from well 01-34-025-21W4 

and 14-34-025-21W4 (Figure 6.12b). The velocity values from the stereo-tomography solution at 

the well locations agree with the long-wavelength trend of the P-P velocity from well logs. Figure 

6.6-12c shows the scatter position solution. The scatter positions align with Belly River, Basal 

Belly River, Base Fish Scales and Mannville. However, the picks do not cluster as tightly as the 

two synthetic models. This is an indication of some picking error.  

   To validate the accuracy of the stereo-tomography solution, we depth migrate the Hussar 2d data 

set using the stereo-tomography solution as the velocity model.  Figure 6.13a shows the depth 

image gathers and figure 6.13b shows the depth migration result with P-P velocity logs in depth.  

This result confirms that the stereo-tomography velocity solution accurately migrates the Hussar 

2D data in depth. A further enhancement is possible through residual curvature analysis using the 

depth image gathers.  
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Figure 6. 10. (a) Hussar seismic line and the location of nearby wells. (b) Shot 335 with spherical 

divergence correction. (c) Shot 335 deconvolved with weathering statics correction. (d) Noise 

suppression with Radon transform on moveout corrected data. (e) CDP stack with 8 picked 

horizons. (f) Reflection arrival times picked by correlating (d) and (e).  
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Figure 6. 11. CDP time stack with well ties and synthetic 8-12-45-55 Hz. Seismograms to identify 

reflection events with well tops.  
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Figure 6. 12. (a) Geophone and shot ray parameters refined by the semblance of shot and geophone 

slant stacks, and scatter point positions computed from all the stereo-tomography picks using 

straight-ray and homogeneous velocity assumption. (b) Final stereo-tomography velocity solution 
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and well ties. Smooth white lines are stereo-tomography velocity values at well locations.  (c) 

Scatter position solution. 

 

Figure 6. 13. (a) Images gathers at the well locations and one image gather in between the well 

locations. (b) Depth migration using velocity from stereo-tomography displayed with P-P velocity 

logs at well locations 01-34-025-21W4 and 14-34-025-21W4.  
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6.5 Conclusion 

We have reviewed the stereo-tomography method and verified its accuracy and characteristic 

with a wedge model and the more complex Marmousi model. We showed that the velocity solution 

from stereo-tomography does not capture the blocky characteristics of the wedge model, but it 

resembles velocity gradients centred around the true velocity values. The scatter positions match 

the velocity boundaries of the wedge model; hence, it is possible to develop a hybrid method that 

uses the scatter positions to establish the layer boundaries and modify the stereo-tomography 

algorithm to estimate a layered based velocity model. The Marmousi model test showed that the 

solution of stereo-tomography captured the long-wavelength velocity model that helped FWI to 

converge to a high-resolution model. We noticed that the FWI solution below 2Km was not able 

to capture the details of the Marmousi model.  A higher-order finite-difference propagation in the 

FWI and adaptive multi-grid FWI approach can potentially improve the resolution of the FWI 

solution below 2Km in the Marmousi model. We apply the stereo-tomography approaches used in 

the blocky wedge model and the complex Marmousi model to the Hussar 2D dataset. We first 

track the reflection arrival times on moveout corrected and noise attenuated CDP gathers, and then 

remove the moveout corrections from the reflection arrival time picks. To correct for the picking 

errors, shot and geophone ray parameters are picked again automatically using the semblance of 

the shot and geophone slant stacks. The stereo-tomography solution was found to be accurately 

migrating the Hussar 2D data set to a depth section that agrees with the well logs. A further 

enhancement is possible through residual curvature analysis using the depth image gathers. 
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Chapter 7 

Traveltime Tomography: First break picking and machine learning 

One of the most laborious and problematic tasks in refraction tomography is the first arrival 

traveltime or first break (FB) picking. Many automated FB picking methods determine the arrival 

time by the difference in amplitude, phase, or frequency characteristics between the data before 

and after the FB and are often done on a trace-by-trace basis. Spatial correlation between adjacent 

traces is only used for subsequent editing of mis-picks. The final step in FB picking is to confirm 

or manually modify the FB picks by trained technicians. With experiences from a large number of 

datasets with different topography and near-surface geological setting, experienced technicians 

can recognize the relationship between the FB and the complex waveform of the first arrival energy 

and various interfering noises. With increasing data density, this has become a very time-

consuming and expensive process.  

Machine learning is a fast-developing science that teaches computers to learn from data 

and human experiences.  There are two potential applications of machine learning in automatic FB 

picking. One application of machine learning is automated editing of outlying picks by clustering. 

Another more important application is deep learning by training the networks with manually edited 

FB and classifying the first arrival energy waveforms as pre-FB and post-FB. With a catalogue of 

images of trained models, the deep neural works will be able to classify the first arrival energy 

waveforms of a new datasets as pre-FB and post-FB as accurately as the trained technicians. In 

this chapter, I will review some of the automatic FB picking methods, clustering applications and 

one deep-learning application. 
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7.1 Automated first arrival picking 

During a seismic experiment, ground motions are recorded after a seismic source is activated. A 

seismic record contains the refraction and reflection seismic signals caused by the seismic source, 

as well as surface-related seismic noises (Figure 7.1) caused by ambient noise, human and animal 

activities.  First arrival energy is characterized by the relatively weak surface noises, followed by 

the stronger refraction seismic signal. I will review and compare two automatic first arrival picking 

methods that use these amplitude characteristics. The signal to noise ratio (SNR) method defines 

the sum of peaks, 𝑃𝑃(1: 𝑘𝑘 − 1), of a potential first arrival time pick 𝑘𝑘, as noise, and the peak at 𝑘𝑘, 

as the signal, and 𝑆𝑆2𝑁𝑁 at 𝑘𝑘 as: 

  𝑆𝑆2𝑁𝑁(𝑘𝑘) = 𝑃𝑃(𝑘𝑘)
𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃(1:𝑘𝑘−1))          7-1 

Another method that uses the characteristics of the amplitude levels before and after the first arrival 

is the Akaike’s information criterion (AIC) (Akaike, 1973).  AIC is defined as: 

 𝐴𝐴𝐴𝐴𝐴𝐴(𝑘𝑘) = 𝑘𝑘 ∗ log (𝑣𝑣𝑣𝑣𝑣𝑣�𝑦𝑦(1: 𝑘𝑘)� + (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑘𝑘 − 1) ∗ (log (𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦(𝑘𝑘 + 1:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)), 7-2 

where 𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦(𝑖𝑖: 𝑗𝑗)) is the variance for the time series 𝑦𝑦 from sample 𝑖𝑖 to 𝑘𝑘.  

𝑣𝑣𝑣𝑣𝑣𝑣�𝑦𝑦(𝑖𝑖: 𝑗𝑗)� =
𝑠𝑠𝑠𝑠𝑠𝑠� 𝑣𝑣�𝑦𝑦(𝑖𝑖:𝑗𝑗)− 𝑦𝑦(𝚤𝚤:𝚥𝚥)��������  �

2
�

𝑗𝑗−𝑖𝑖 𝑖𝑖𝑖𝑖=(𝑖𝑖:𝑗𝑗
      7-3 

 

When 𝑘𝑘 is less than the first arrival time, 𝑣𝑣𝑣𝑣𝑣𝑣�𝑦𝑦(1: 𝑘𝑘)� is small, and (𝑣𝑣𝑣𝑣𝑣𝑣�𝑦𝑦(𝑘𝑘 + 1:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)� is 

large. Similarly, when k is greater than the first arrival time, (𝑣𝑣𝑣𝑣𝑣𝑣�𝑦𝑦(1: 𝑘𝑘)� becomes larger, and  

𝑣𝑣𝑣𝑣𝑣𝑣(𝑘𝑘 + 1:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) becomes smaller. When 𝑘𝑘  is at the first arrival time, 𝐴𝐴𝐴𝐴𝐴𝐴(𝑘𝑘) is at its 

minimum. 

 



 

130 

 

Figure 7. 1.  Seismic record with varying surface noise conditions. Receivers 359, 444 and 544 are 

identified with an increased noise level.  

 

 

 

Figure 7. 2.  Results of S2N and AIC methods with increasing noise level (a to c). Top panel: first 

arrival energy. Middle panel: S2N analysis. Bottom panel: AIC analysis. 
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 Figure 7.2a shows the first arrival energy with weak surface noise, followed by S2N and AIC 

analysis. Using positive FB polarity. The first arrival pick is chosen at a peak with the maximum 

𝑺𝑺𝑺𝑺𝑺𝑺(𝒌𝒌). The polarity of the S2N analysis method is peak; therefore, it picks a peak that meets the 

S2N criteria and arrives later than the zero-crossing picked by the AIC method. With a moderate 

increase in noise level (Figure 7.2b)  both S2N and AIC methods are able to detect the consistent 

FB picks. However, with significantly stronger surface noises that overwhelm the first arrival 

energy, both S2N and AIC methods fail. 

 

Figure 7. 3.  Seismic shot 295 high-resolution linear Radon transform in windowed first arrival 

energy in receiver gather domain. 

 

 I sort the seismic records into common receiver gather domain and apply high-resolution 

Sparse Linear-Radon transform to remove the surface noise from windowed first arrival energy. 

Figure 7.3 shows the shot record 295 after being sorted back to the shot domain. This shows that 

high-resolution Sparse Linear-Radon transform in common receiver gather domain is an effective 
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algorithm to remove surface noises that appear coherent within the shot gathers. Figure 7.4 shows 

both S2N and AIC methods can effectively determine the FB picks after the removal of the strong 

surface noise. However, this approach also creates some pre-first arrival artifacts that can 

negatively affect the FB picking accuracy.  In general, AIC is superior to the S2N method; 

however, additional preconditioning processes may still be required to remove strong surface 

noises. Moreover, carefully editing of automatically picked FBs is often required by trained 

technicians with experience in identifying FB through complex first arrival waveforms and surface 

noises. 

 

 

 

Figure 7. 4.  Results of S2N and AIC methods at shot 295 and receiver 544 after high-resolution 

linear Radon transform in windowed first arrival energy in common receiver gather domain. 

 

7.2 Application of machine learning in automatic first arrival picking 

Unlike the two trace-by-trace automated first arrival picking algorithms, machine learning 

algorithms explore the spatial relationship between data points. When technicians perform quality 

control of the computer-picked FBs, they reject FB picks that vary rapidly with respect to the 
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neighbouring picks. Clustering is a machine learning technique that groups the data points 

according to their attributes. It has the potential of automating the human efforts in rejecting and 

modifying the FB picks that vary too rapidly. Three commonly used clustering algorithms are K-

Means, Gaussian Mixture Models (GMM) and Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) (see Géron, 2019).    

7.2.1 K-Means 

K-Means (Lloyd, 1982) assumes the data points distribution to be Euclidean or circular. The 

Euclidean distance square is defined as: 

 Δ2 = (𝑥𝑥 − 𝜇𝜇)𝑇𝑇(𝑥𝑥 − 𝜇𝜇),        7-4 

where 𝑥𝑥 is the dimensional matrix, 𝜇𝜇 is the mean matrix. 

 

The following steps outline the K-Means algorithm: 

1. Starts with randomly placing the centroids of chosen 𝑁𝑁 clusters (an initial guess). 

2. For each data point, calculates the Euclidean distance between the data point and each 

of the centroids. 

3. To find the clusters, assign the data point to the nearest centroid. 

4. Recompute the coordinates of the centroids using the mean coordinates of the clusters. 

5. Repeat steps 2, 3, and 4 until convergence. 

7.2.2 Gaussian-Mixture-Models 

GMM assumes the data points distribution to be Gaussian and is less restrictive than K-means.  

The Gaussian distribution function is defined as: 

 𝑓𝑓(𝑥𝑥) = 1

2𝜋𝜋 |∑ |
1
2 

exp[ −1
2

(𝑥𝑥 − 𝜇𝜇)𝑇𝑇 ∑ (𝑥𝑥 − 𝜇𝜇)] −1      7-5 
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where 𝑥𝑥 is the dimensional matrix, 𝜇𝜇 is the mean matrix and  ∑ is the covariance matrix. For a two 

dimensions case and 𝜇𝜇 equals 0: 

 𝑥𝑥 = [
𝑥𝑥1
𝑥𝑥2  ],          7-6 

 𝜇𝜇 = [ 00 ],          7-7 

 ∑ = [ 𝜎𝜎1
2 𝜎𝜎12

𝜎𝜎12 𝜎𝜎22
  ],         7-8 

 ∑ = 1
𝜎𝜎12𝜎𝜎22− 𝜎𝜎122

 � 𝜎𝜎2
2 −𝜎𝜎12

−𝜎𝜎12 𝜎𝜎12
 � = � 𝑎𝑎 −𝑏𝑏

−𝑏𝑏 𝑐𝑐  � −1 .     7-9 

The Mahalanobis or statistical distance is different from the Euclidean distance by the inclusion of 

the inverse covariance matrix: 

 Δ =  (𝑥𝑥 − 𝜇𝜇)𝑇𝑇 ∑ (𝑥𝑥 − 𝜇𝜇)] −1  

     = [ 𝑥𝑥1 𝑥𝑥2 ] � 𝑎𝑎 −𝑏𝑏
−𝑏𝑏 𝑐𝑐  �  �

𝑥𝑥1
𝑥𝑥2  � 

     = 𝑎𝑎𝑥𝑥12 − 2𝑏𝑏𝑥𝑥1𝑥𝑥2 + 𝑐𝑐𝑥𝑥22        7-10 

For the special case of 𝑎𝑎 = 𝑐𝑐, and 𝑏𝑏 = 0, this is the same as Euclidean distance.  For the case of 

𝑎𝑎 > 𝑐𝑐, and 𝑏𝑏 = 0, this is a horizontal ellipse. For the case of 𝑎𝑎 < 𝑐𝑐, and 𝑏𝑏 = 0, this is a vertical 

ellipse. For the case of 𝑎𝑎 ≠ 𝑐𝑐, and 𝑏𝑏 ≠ 0,  this is a rotated ellipse. Hence, Mahalanobis distance 

is more flexible and can handle elongated clusters better than Euclidean distance. 

The following steps outline the algorithm that uses the Mahalanobis distance: 

1. Starts with randomly placing the centroids of 𝑁𝑁 clusters. 

2. Compute the mean matrix 𝜇𝜇  and the covariance matrix ∑  of the clusters. 

3. Compute the Mahalanobis distance between the data point and each of the centroids. 

3. To find the clusters, assign the data point to the nearest centroid. 

4. Repeat steps 2, 3, and 4 until convergence. 
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GMM available in Scikit-learn achieves the same result but is implemented differently. 

The following steps outline the GMM algorithm: 

1. Starts with randomly initializing the Gaussian distribution parameters 𝜇𝜇  and ∑ for each 

cluster. 

2. GMM iterates until convergence using the Expectation-Maximization (EM) algorithm. 

 

7.2.3 Density-Based Spatial Clustering of Application with Noise 

DBSCAN is a density-based clustering algorithm that forms clusters of dense regions of data 

points and ignores the low-density areas by considering them as noise. Hence, DBSCAN has an 

advantage in handling clusters with irregular shapes and data points with noisy outliers. 

DBSCAN uses two parameters 𝑒𝑒𝑒𝑒𝑒𝑒, and min_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.  𝑒𝑒𝑒𝑒𝑒𝑒 defines the maximum distance 

between two points for them to belong to the same cluster. min_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 defines the minimum 

number of data points a cluster must-have.  The following outlines the DBSCAN algorithm: 

1. For each data point calculate its distance from all other points. If the distance is within 𝑒𝑒𝑒𝑒𝑒𝑒, it is 

a neighbour of the corresponding data point. If the data point has a number of neighbours greater 

than or equal to min_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, it is considered a core point. 

2. For each core point that has not been assigned to a cluster create a new cluster. For this core 

point, find all its neighbouring points and assign them to the same cluster. 

3. Continue step 2 until all the non-core points are covered. 

 

I will demonstrate the effectiveness of the three clustering algorithms in recognizing trends and 

rejecting outliers using FB from shot records from the Hussar 2D (Margrave et.al 2012). The shot 

record is linear moveout (LMO) corrected with time correction of 0 ms at 0 m offset and 1600 ms 
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at 4500 m offset, and bulk shifted by 500 ms (Figure 7.5).  Automatic FB picking is done using 

the AIC algorithm. Three groups of mis-picks are introduced at around sequential receiver 

locations 120, 220 and 320. The FB picks are input to the K-Means algorithms, GMM algorithms 

and DBSCAN algorithms. The parameter for the K-Means and GMM algorithms is 20 clusters. 

The parameters for the DBSCAN algorithm are 𝑒𝑒𝑒𝑒𝑒𝑒 = 0.08 and min_samples=3.  Figures 7.6a to 

7.6c compare the results from the 3 algorithms.  All three algorithms capture the trend of the FB 

picks; however, only DBSCAN can reject the mis-picks at around sequential receiver 120, 200 

and 320. Figure 7.6c displays the input FB as black dots and the interpolated DBSCAN picks as a 

blue line. Figure 7.7a displays the input FB picks and interpolated DBSCAN in the same scale as 

the LMO shot gather 203. Figure 7.7b overlays the interpolated DBSCAN picks on LMO shot 

gather 203. This shows DBSCAN is a good algorithm for rejecting outlying picks in FB picks. 

 

Figure 7. 5.  Linear Moveout (LMO) and bulk shifted shot records with first break picks displayed 

as black dots. 
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Figure 7. 6.   (a) K-Means cluster boundaries and centroid, b) GMM cluster boundaries and 

centroids, c) DBSCAN cluster boundaries and centroids, d) Interpolated DBSCAN centroids 

displayed as a blue line and input FB picks displayed as black dots.  

 

 

Figure 7. 7.  a) Interpolated DBSCAN centroids displayed as a blue line and input FB picks 

displayed as black dots in the same scale as the LMO shot gather, b) LMO shot gather 203 

overlays with interpolated DBSCAN picks.  
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7.2.4 Deep learning with UNET 

Another more important machine learning application is supervised deep learning by training the 

networks with images of the first arrival energy waveform and pre-FB and post-FB masks created 

by automatically picked, and manually edited FB (Figure 7.8). With a catalogue of images of 

trained models from the regions of similar near-surface geology, the deep neural networks will be 

able to classify the first arrival energy waveforms of a new dataset as pre-FB and post-FB as 

accurately as the trained technicians.  The ultimate goal of the network is to classify each pixel of 

an input image according to the class to which it belongs.  

 

Figure 7. 8.   Linear-moveout corrected shot records, b) Corresponding pre-first break and post-

first break masks.  
 

 

This can be solved as an image segmentation problem using UNET (Ronneberger et al., 

2015). One-half of the UNET increases the depth of the feature maps and downsizes the resolution 
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of the image using convolutional filters during the encoding process, while the other side of UNET 

increases the resolution of the output using transpose convolution filters during the decoding 

process (Figure 7.9).  The input image size of an LMO corrected shot record is 258 traces and 501 

samples. This is resized to 256 traces by 256 samples for the UNET.  The first break mask is either 

pre-FB or post-FB; therefore, has a depth of 1. Figure 7.10 describes the simple UNET used in the 

problem. The Conv2D filter has a 3x3 filter width and height and 2 feature maps. A 2x2 

Maxpooling reduces the image size to  128x128. Another Conv2D filter with a kernel size of 3x3 

increases the number of feature maps to 4. The other half of the UNET uses a transpose Conv2D 

filter to increase the image size back to 256 by 256. The subsequent Conv2D filter reduces the 

depth of the output segmentation map back to 1. 

 

 

 

Figure 7. 9. First, break picking as an image segmentation problem. 
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Figure 7. 10. Simple UNET for the first break image segmentation problem.  

 

7.2.5 Field data example 

The vertical component of the Hussar 2D multicomponent seismic survey is used for the UNET 

test. The first arrival energy is linear moveout corrected to reduce the data size, and the first arrival 

picking is done automatically using the AIC method, followed by manual editing. The edited FB 

times are used to create pre-FB and post-FB masks. Convolutional neural networks require input 

images to be of the same dimensions; therefore, we extract data from 0 to 2230 meters offset from 

each shot. The result is 258 positive and negative 2D spreads of 224 traces and 501 samples each.  

The input images are then resized to 256 traces by 256 samples. The 258 images are separated into 

206 training images and 52 validation images. The number of training images is also expanded to 

824 images by augmentation. A simple UNET is a setup as described in figure 7.10.  A validation 

test using 60 epochs is run. Figures 7.11a and 7.11b show the convergence history for the 

validation test. The network converges after 15 epochs with 96.8% accuracy. Figure 7.12a shows 
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the superimposed classification predictions on the first arrival energy. Figure 7.12b shows the 

classification predictions. The prediction results are good but not perfect because a small 

percentage of the traces have predicted the earlier FB than what is expected according to the first 

arrival images. This may be the result of the lack of training images for the UNET.  If more training 

images are available, the prediction results are expected to improve. 

 

 

Figure 7. 11. (a) Training and validation loss displayed in blue and green respectively, b) training 

and validation accuracy displayed in blue and green respectively. 
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Figure 7. 12.  a) Validation prediction results and first arrival energy displayed together, b) 

Validation prediction results. 

 

7.3 Conclusion 

When the first arrival energy is contaminated with noise, experienced technicians are 

required to confirm, or modified FB picks based on their experience in the regional near-surface 

geology and in recognizing FB trends through the complex first arrival waveform mixed with 

noises. With increasing data density, this has become a very time-consuming and expensive 

process. I used the vertical component of the multi-components Hussar 2D survey to demonstrate 

the application of machine learning in the most important part of near-surface velocity model 

building: FB picking. The first application is to reject outlying FB picks using three clustering 

algorithms, K-Means, GMM and DBSCAN. Only DBSCAN can reject outlying FB picks 

introduced in the test. The more important application of machine learning in FB picking is 

supervised deep learning.  I define 2 classifications for the first arrival energy: pre-FB and post-

FB. FB are picked automatically using the AIC method and edited interactively to create the 
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training masks. With the Hussar dataset, I created 258 training images and masks of equal size.  I 

use a simple UNET to model the first arrival events. The network converges after 15 epochs with 

96.8% accuracy. We only used 258 training images in this test, while in a production processing 

environment one will have more than thousands of training images. Therefore, a better match 

between the FB mask and first arrival energy can be achieved in a production processing 

environment with more training images.  
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Chapter 8 

Discussion and Conclusions 

The algorithms and workflows for using additional information from reflection waveform for 

traveltime tomography in this thesis have been demonstrated to provide improved seismic images 

using synthetic and real field data. 

 Using traveltimes alone in refraction tomography limits the accuracy and resolution of the 

near-surface velocity model and statics corrections by the errors in the data, the model and the 

algorithms. It can be observed that the degradation to the near-surface velocity model and statics 

corrections deteriorate the coherence and the structural integrity of the deeper reflection data. The 

common procedure in conventional seismic data processing is to compute the residual statics 

corrections that can maximize the CDP stack power and apply the corrections to the reflection 

data. I presented a new workflow and a new refraction tomography kernel that use the long-

wavelength component of the reflection residual statics to compute the data weight and model 

weight for the new refraction tomography algorithm. I verified the accuracy of this new method 

with both synthetic and real 2D field data. 

 With an increasing demand for higher data density, wider aperture and deeper depth, 

seismic blending has become a common practice in seismic acquisition. There have been many 

works done in direction deblending by inversion. However, the weathering corrections are required 

for land data for these inversion methods. I analyzed and effects of the seismic blending on 

refraction data, as well as, the effects of the refraction energy from blended shots on reflection 

data. I presented a robust workflow to model and remove refraction and reflection blending noises 

from blended shots. This workflow uses high-resolution sparse linear radon transform in the 

common receiver domain to model the refraction arrival and remove blending noises. It also uses 
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high-resolution sparse parabolic Radon transform in the common CDP domain to remove blending 

noises on reflection data. I verified the accuracy of this workflow with synthetic and numerically 

blended 2D field data. 

 For reflection traveltime tomography, I investigated and verified the accuracy of the slope 

tomography. Unlike the classical reflection traveltime tomography that requires picking of 

continuous reflection events, slope tomography uses picks of reflection traveltimes and apparent 

slopes from the common shot and receiver gathers of any locally coherent events. This uses 

additional information from the shot and receiver ray parameters, and it also has the operational 

efficiency of not having to pick continuous reflection events. To verify the accuracy and efficiency 

of slope tomography, I used the Marmousi model to create synthetic data and automatically picked 

the traveltimes, shot and geophone ray parameters for all locally coherent events based on 

semblance. The picks were used to invert for a grid-based starting model for FWI. The result of 

FWI is satisfactory up to the depth of 1.6Km. The reason for the problem at greater depth is 

potentially caused by the quality of the picks at greater depth and the accuracy of the FWI 

algorithm.  For non-structural data, I took a different approach. I automatically tracked the 

reflection arrival times for selected horizons using near-offset CDP stack and moveout corrected 

CDP gathers. The shot and geophone ray parameters were then computed using the arrival time 

picks. This approach was first tested on a synthetic dataset created using a simple model that 

consists of four constant velocity layers and with one of the layers has a non-zero dip. The velocity 

of the slope tomography inversion matched the true model, and the scatter points also matched the 

reflection boundaries. I used a similar approach with the vertical component of the Hussar 2D 

survey. Two nearby well logs were used in this test. Well tops were correlated with CDP stacks to 

identify the important reflectors. The velocity from the slope tomography inversion matched the 
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long-wavelength trend of the well logs. Depth migrated section of the field data using the velocity 

model from slope tomography also tied the well logs.  

 Finally, I use machine learning to address the biggest challenge for refraction tomography: 

first break picking. Machine learning methods can be divided into unsupervised and supervised 

learning methods. I used unsupervised learning to learn the trend of the first break picks within a 

shot record. Three methods, K-Mean, GMM and DBSCAN were used to reject some outlying 

picks, only DBSCAN was able to reject the outliers. The most important application of machine 

learning for first break picking is to program the unsupervised deep learning network to learn from 

training models and masks and to automatically pick new datasets. I used the AIC method to 

automatically pick the first breaks for the Hussar 2D dataset, and then manually edited all the 

picks. The first break masks are created for each shot with two classifications, pre-first break and 

post-first break. This resulted in 258 training images and masks. 80% of this was used as training 

images and 20% of this was used as validation images. A simple UNET was set up to run the 

validation test with 60 epochs. The network converged after 15 epochs with 96.8% accuracy. Other 

metrics may be required to asses the quality of the results, but in general, higher accuracy is 

expected when more training images are available. 

8.1 Future Work 

Three potential future lines of work remain on traveltime tomography using feedbacks from 

reflection waveform and machine learning. 

Most of my works have been evolved around 2D p-wave refraction tomography with the 

exception of slope tomography. Therefore, the first line of work is to extend the methods I 

presented to 3D converted wave. The second line of work is to investigate further slope 
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tomography, including new and more efficient methods. The third line of work is to use more 

training images in the UNET validation test. 
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