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Abstract

Diagnostic Fracture Injection Tests (DFIT), are commonly used to derive key parameters for

hydraulic fracture design and modeling. Although this process can identify properties needed

for well optimization, it is also time intensive, affected by interpretation bias, and incomplete

data. In this thesis, I address these adversities by applying unsupervised clustering methods:

K-Means, DB-Scan, Hierarchical modeling, and Gaussian mixture models to identify point

density variation that correlates to key parameters on a DFIT pressure decline. Deep Neural

networks (DNN) trained using labeled DFITs are further tested for event prediction. To test

these methods a variety of platforms are tested such as R-Studio Shiny Web App® to create

user-friendly testing platforms and Python® for its computational ability when faced with

supervised learning methods. Collectively unsupervised and supervised learning methods

show significant promise in the DFIT interpretation realm.
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Chapter 1

INTRODUCTION

1.1 Motivation

To ensure successful and economic development of low permeability, hydrocarbon bearing

organic-rich shales, a fracture stimulation design must be implemented. The process of

designing and modelling a fracture program is a computationally intensive and iterative process

that requires the estimation of multiple geologic and mechanical properties. These include

fracture half-length, Instantaneous Shut-In Pressure (ISIP ), minimum horizontal stress

(Shmin), reservoir pressure (Preservoir), fracture extension pressure, reservoir permeability,

and fluid content (Clarkson et al., 2012). Although some of these parameters can be directly

measured from core samples, many studies have identified the challenges of replicating in-situ

conditions to produce accurate results (Clarkson et al., 2012; Venieri et al., 2020). To address

this challenge, innovative technologies such as DFITs have been designed to measure key

parameters such as ISIP , Shmin, and Preservoir in the borehole of a well (Jung et al., 2016).

Although the DFIT method is powerful, it is important to discuss its adversities for constant

improvement. These include unintended human error and time consumption when analytically

interpreting multiple DFIT curves. Further adversities arise due to missing or obscured data

trends. Collectively, these examples provide the opportunity to test and evaluate the ability

1



of Machine Learning (ML) methods to solve these issues. This will be the focus of this thesis.

In the first chapter, I will examine what hydraulic fracturing does for a reservoir and why

DFITs are an important measurement tool for optimizing hydraulic fracture networks. This

will be followed by current methods of DFIT interpretation, and proposed ML methods for

optimizing DFIT interpretation.

1.1.1 Mechanics of hydraulic fracturing

The inherently low average permeability in unconventional reservoirs such as the Duvernay

Formation (nanoDarcies (nD)) requires the implementation of processes such as multistage

hydraulic fracturing to effectively flow hydrocarbons (Venieri et al., 2020). The primary

mechanisms of associated rock failure can fall into the tensile and shear domains depending

on the orientation of the stress regime (Tarrahi et al., 2015). To understand why failure

occurs in the subsurface, stress regimes can be decomposed into principal stresses.

Rocks in the subsurface are affected by three principal stresses, these include the maximum

principle stress (σ1), intermediate principle stress (σ2), and minimum principle stress (σ3)

(Fossen, 2016). For example, in the Duvernay Formation, σ1 coincides with maximum

horizontal stress (Shmax), σ2 coincides with the lithostatic stress (σv), and σ3 coincides with

the minimum horizontal stress (Shmin) (Shen et al., 2018). Equation 1.1 can be applied to

understand the process of hydraulic fracturing. To induce hydraulic fracture, fluid can be

pumped into a formation of interest to increase reservoir pore-pressure (Pp). An increase in

pore-pressure (Pp) decreases the effective stress (σeff ) applied to a medium while σ3 (Shmin)

remains constant (Equation 1.1) (Tarrahi et al., 2015). Once the Pp overcomes Shmin and

surpasses the material specific failure envelope (Mohr-Coulomb, Figure 1.1), the rock fails,

creating permeability to enhance production (Siddhamshetty et al., 2019).

σeff = σ3 − Pp (1.1)

2



Figure 1.1: Diagram showing the Mohr-Coulomb failure mechanism for a medium that is
in stable state within the failure envelope (dashed red line) and the same medium with an
increased Pp that is super-critically stressed (passed the failure envelope). At this point the
medium would fail to reach a stable stress state.

To effectively develop these fractures within a borehole, the ‘plug-and-perforation’ tech-

nique is an example of one method used to create multiple isolated fracture clusters from toe

to heel (Siddhamshetty et al., 2019). This process isolates sections of a wellbore, perforates

the casing to create fluid paths into the formation, and injects high pressure proppant (water,

silica, chemical additives) to propagate and prevent the closure of a fracture network (Sid-

dhamshetty et al., 2019). The propagation of fracture networks is complex and substantially

effected by in-situ stress regimes and natural fracture networks. This creates difficulties when

trying to predict production forecasts based on interpreted stimulated reservoir volumes

(SRV). In efforts to understand SRV, various studies attempt to predict and model stimulated

fracture propagation as well as interaction with natural fractures to optimize economics.

Pre-hydraulic stimulation methods include simulations via finite element modeling (Wang and

3



Chen, 2019) using parameters estimated from DFITs and core. Post hydraulic stimulation

fracture analysis can also be carried out using seismic attribute mapping such as ant-tracking

or image logs (Farghal and Zoback, 2014), as well as microseismic methods using DAS and

geophones (Molenaar et al., 2012; McKean et al., 2019; Liu et al., 2020).

This thesis will focus on pre-stimulation fracture design techniques which are heavily

dependent on the estimation of key parameters such as ISIP , Shmin, and Preservoir in tandem

with having sufficiently long enough recorded pressure decline observations. The following

sections will describe how a DFIT can be used to estimate these parameters as well as the

meaning of each parameter. Following this, current methods of extracting these parameters

from DFITs is discussed as well as the new proposed methods of key parameter extraction

using ML methods.

1.2 What is a DFIT?

Diagnostic Fracture Injection Tests (DFITs) can be used as a cost effective experiment to

derive key parameters for pre-stimulation fracture design and production forecasting. This

method is beneficial because of its relative cost savings and ability to accurately measure

parameters in an in-situ environment (Clarkson et al., 2012). Information retrieved from a

DFIT can also be used to infer fracture complexity and reservoir behaviour by interpreting and

calculating Net Fracture Pressure (NFP) and Net Horizontal Stress (NHS) (Potocki, 2016).

These values are obtained by subtracting Shmin from ISIP and Pp from Shmin, respectively.

A study by Potocki (2016) found that as NFP increases, the tectonic regime becomes more

complex with the introduction of faults and brittle minerals. This results in complex fracture

networks and decreased performance of a hydraulic fracture job. It has also been suggested

that NHS can be used to determine if fracture propagation is controlled by Pp or tectonic

stresses (Potocki, 2016). Sullivan et al. (2019) relates high Post Fracture Pressure Decay

(PFPD) rates to high permeability and Young’s modulus and efficient cluster activity in
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DAS data, demonstrating an effective stimulation result. This correlates to small magnitude

values of NFP and NHS from DFIT methods. These studies demonstrate the vast amount of

reservoir quality data held within pressure decay curves.

To perform a DFIT, a small volume of fluid is pumped into the target formation to

create a hydraulic fracture. By measuring the downhole or surface pressure change over

time (pressure-time series) and observing the pressure decline after the hydraulic fracture is

created key parameters can be derived. These parameters include: ISIP, Shmin, Preservoir,

permeability, and decline rates (Clarkson et al., 2012; Mohamed et al., 2020).

1.3 Events observed in a DFIT

Common events of interest that can be extracted from a DFIT pressure decay include: ISIP,

Shmin, and Preservoir. To understand these events further, Figure 1.2 displays an idealized

example of a DFIT with key events overlain.

In Figure 1.2, pressure is increased in a well as fluids are injected into the well. Eventually,

the pressure will be great enough to induce a fracture at the break down pressure point.

After this point, pressures will decrease as fractures propagate. Upon seeing this event,

operators will stop injection, causing an increase in pressure drop rate, this is what is known

as the ‘literal ISIP’ coinciding with ‘stop-injection’ on Figure 1.2. A second and perhaps

more meaningful definition of ISIP is known as the effective ISIP. This is indicated at the

location labeled ‘ISIP’ in Figure 1.2. Mechanically, these alternate ISIP pressures coincide

with a difference in what are known as near field and far field pressure effects (McClure

et al., 2019). At initial stop injection (literal ISIP), the pressure decline in Figure 1.2 is

rapid, this because of the torturous fracture path geometries that exist between the wellbore

and reservoir creating a pressure difference. Only sometime after the initial shut-in will you

get an accurate pressure for the fracture itself that is opening and propagating. Methods in

differentiating these two ISIP pressures will be discussed in the next section.
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Following the effective ISIP, a slight deviation in pressure decline after this event corre-

sponds to the fracture closure pressure (Shmin). This point can also be associated with a

switch in pressure response from being fracture dominated to reservoir dominated.

Interpretations following Shmin are often heavily reliant on the time length pressure

decline recorded. This late time section of decline curve can be split into pseudo-linear and

pseudo-radial flow. Initial reservoir conditions will be dominated by pseudo-linear flow from

the created fractures. After prolonged time and complete fracture closure flow regime will

switch to pseudo-radial flow giving information about reservoir properties such as Preservoir

and derived permeability.

With these definitions in mind, we can now analyse a DFIT from the Duvernay Formation

(Figure 1.3). Collectively, Figures 1.2 and 1.3 reveal that the interpretation of these key

parameters directly from a pressure decline curve is non-trivial; special analytical techniques

are required for us to extract these key parameters. These techniques involve manual inter-

pretation of derivative curves such as G-function, Bourdet derivatives, first-order derivatives,

and Agarwal time (Zanganeh et al., 2018; Liu and Ehlig-Economides, 2018).

In the following section current analytical methods for interpreting these curves and

associated adversities will be dicussed. This will be followed by the proposal of ML methods

in efforts to address these adversities.

1.4 Interpreting a DFIT

Multiple analytical methods have been developed based on derivative curves, line fitting

methods, and approximations to DFIT induced fracture behaviour to achieve accepted results.

This thesis will discuss some of these methods in reference to ISIP, Shmin, and Preservoir. In

doing so, the associated strengths and weaknesses of each method will be outlined.
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Figure 1.2: An example of a theoretical DFIT adapted from (Cramer and Nguyen, 2013).

1.4.1 Analytical methods

The identification of each key parameter on a pressure decline requires analysis of different

derivative curves that can be noisy depending on the field data acquired. To address this, the

Bourdet-derivative (Bourdet et al., 1989) can produce smooth derivative values of pressure

difference (∆P ) with respect to the defined time function (∆X). This derivative will be

applied later in this thesis to smooth noisy field data for clustering analysis. An example of

this calculation is displayed in Equation 1.2. This equation integrates pressure differentials

(∆P1 and ∆P2) and their respective time step (∆X1 and ∆X2) to create a smoothing average

of the derivative curve (Deri).

Deri =
( ∆P1

∆X1
∆X2 + ∆P2

∆X2
∆X1)

∆X2 + ∆X1

(1.2)

Using the Bourdet-derivative method and defined time functions, interpretation procedures

can be followed to identify events on a DFIT pressure decline. The respective interpretation
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Figure 1.3: ResFrac® history matched pressure falloff data obtained from simulation of a
DFIT performed in the 31-layer Duvernay Formation model. Interpreted events along the
curve are superimposed and color coded. Approximations of the Shmin are made using both
the compliance (McClure et al., 2016) and tangent line method (Barree et al., 2009).

procedures used for DFIT analysis are listed in the following subsections for each event as

follows:

ISIP

The identification of ISIP involves plotting pressure decline and derivative pressure decline

data with respect to unitless G-time (to be defined below). Using the derived G-function

time, fracture fluid leak off after well shut-in is assumed to be linearly proportional to G-time

(Nolte, 1988). This can be helpful for identifying processes that cause deviation from the

straight line, such as fracture closure. The most common derived form of G-time for fracture

leak off is displayed in Equation 1.3 where te is the injection time for the DFIT and ∆t is the

shut-in time (time elapsed since injection ceased). It is important to note that the G-time

function is derived assuming Carter leak-off. This means that pressure in a fracture will

remain constant over time, which is mechanically not true during a true DFIT experiment.

McClure et al. (2019) shows with modelling that these variations have little effect when
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achieving accurate key parameter interpretations.

Gtime(∆t) =
4

3
[(1 +

∆t

te
)1.5 − (

∆t

te
)1.5] (1.3)

Using McClure et al. (2019) principles of DFIT interpretation, ISIP values can be

analytically extracted by plotting pressure and the first order derivative of pressure with

respect to G-time (Figure 1.4). This is achieved by finding the first local minimum of the

first order derivative of pressure with respect to G-time, interpolating it to the pressure

decline line, fitting a tangent line, and extracting the pressure value at G-time equal to zero.

This value is known as the Effective ISIP. The Literal ISIP can more simply be extracted at

the time injection is ceased, however, this value has little meaning with respect to reservoir

properties.

Figure 1.4: Example of ISIP analytical interpretation using pressure and derivative pressure
curves with respect to G-time on a Duvernay Formation DFIT synthetic. Contact pressure
using the compliance method is also indicated using the Compliance method (McClure et al.,
2016). The bottom sub-plot shows the section of curve that has been magnified for this
analysis.
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Minimum horizontal stress (Shmin)

Interpretation of Shmin tends to have two approaches in the industry. The first of which is

known as the tangent line method (Barree et al., 2009). In this method, a plot of G*dp/dG

vs G-time will be constructed and a tangent line will be fit to the linear up track trend on

the curve (Figure 1.5). The first point of deviation away from this tangent line indicates

an estimate of Shmin. This method has come under scrutiny from articles such as McClure

et al. (2019), showing the method does not have any mathematical support and often will

underestimate Shmin.

Figure 1.5: Example of Tangent line closure pressure analytical interpretation using pressure
and G*derivative pressure curves with respect to G-time on a Duvernay Formation DFIT
synthetic. This method is outlined in Barree et al. (2009). The bottom sub-plot shows the
section of curve that has been magnified for this analysis.

An alternative method for the determination of Shmin is known as the compliance method

McClure et al. (2016). This method is based on the principle that as fracture asperities come

into contact, the rate of decline on dp/dg vs G-time plots will become more rapid. Based

on this observation, the compliance method selects a pressure at the minimum of the dp/dg
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or G*dp/dg plots. To get a true Shmin value, 10% will be added to the value followed by a

subtraction of 75psi (McClure et al., 2019). The identified contact pressure is displayed in

Figure 1.4. Comparing the tangent line and compliance methods from Figures 1.5 and 1.4,

respectively, pressures of 8433psi and 8200psi are estimated for closure. Applying the McClure

et al. (2019) method of subtracting 75psi from the compliance pressure this gives the accurate

Shmin (8358psi) for this synthetic example showing the shortcomings of the tangent method.

Reservoir Pressure (Preservoir)

The estimation of Preservoir to derive permeability also proves to be an interpretive effort.

In Figure 1.2, it is observed that flow behaviour in post fracture closure can be split into

two domains: pseudo-linear flow PLinear and pseudo-radial flow (Preservoir). An estimation

of Preservoir is the desired result, however, often unattainable due to the recording time of

a DFIT. To address this adversity, the implementation of log time versus log(time*dp/t)

plots are created to examine late time DFIT behaviour (Figure 1.6). McClure et al. (2019)

demonstrates that a -1/2 slope on the log time versus log(time*dp/t) indicates the initiation

of linear flow behaviour. This is represented by the dashed green line in Figure 1.6. If this

value is extrapolated to the pressure decline curve it shows that linear flow starts at 146

hours and 7099psi. The line fitting process on this curve can be difficult.

Using the interpreted trend of linear flow, a plot of pressure vs the inverse of the square

root of time is used to interpolate this trend to zero time. This is demonstrated in Figure 1.7

where the green line interpolates the trend to a pressure of 6982psi.

Other methods of Preservoir interpretation involve plotting the derivative of pressure with

respect to Agarwal time, multiplied by Agarwal time vs pressure. Agarwal (1980) defined

this method based on observing recovery drawdown after pumps are turned off in a DFIT

and can be modelled with Equation 1.4. In this equation, tp represents the injection time
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and ∆t is the shut-in time after injection.

tAgarwal =
tp∆t

tp + ∆t
(1.4)
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Figure 1.6: Plots of log(t*dp/dt) and psi vs log time (hours) used to derive the start of linear
flow.
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Figure 1.7: Plot of pressure (psi) vs the inverse of the square root of time (hours).
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1.4.2 Associated analytical method interpretation bias

As discussed, there are multiple methods for estimating key DFIT parameters. With this

in mind, it is important to note that bias can arise from unintentional human error and

assumptions made to create derivative curves. Human error may arise when fitting the

tangent lines to plots such as those demonstrated in Figures 1.4, 1.5, and 1.6. Moreover,

most analytical interpretation is based on simplified mechanical behaviour assumptions for

fracture closure in the subsurface (Nolte, 1988; McClure et al., 2019). One of the goals of

this thesis is to apply ML methods to avoid these biases and present interpretations that

are solely based on the physics of the input parameters from a DFIT. The next section will

discuss methods that need to be satisfied to effectively apply ML.

1.5 Intersection of analytical methods, data visualiza-

tion, ML, and programmable web apps

For large industry datasets, the field of data science has become an increasingly popular area

of study via an integration of mathematical, computational, and area expertise (Williams,

2018; Prevos, 2019). Conway’s Venn diagram depicted in Prevos (2019) is one way to visualize

this multidisciplinary approach (Figure 1.8). From this perspective, a data scientist exploring

DFIT data would have background knowledge of the physics affecting fracture closure (domain

knowledge), while also the understanding of application of regressive, or filtering methods to

extract information from the DFIT (mathematics) in an efficient matter (computer science).

Multiple computing languages can be applied in the computer science bubble, in this thesis,

R-Studio® and Python® are implemented.

To get a holistic interpretation of the data science problem at hand, it is important

to implement each of the qualities displayed in Figure 1.8. Otherwise, only segments to

the solution may be attainable. For example, an individual with only domain knowledge

and mathematical knowledge may not be able to optimize the problem to commercialize
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the result in a computer science setting; this is research. Individuals with only computer

science and mathematical experience will lack the knowledge to produce results that are

truly meaningful to the area of study; this is machine learning. Lastly, individuals with only

domain and computer science background can create dangerous interpretations of the data

without knowledge of the assumptions in the mathematics, this is the danger zone. It is

perhaps the most dangerous area as it is easy to do. For example, performing an inversion

without knowledge of the type of regularization or prior model weighting in the calculation

can produce vastly biased results. A data scientist must work to balance the forces of each of

these disciplines.

Figure 1.8: Conway’s Venn diagram depicting the attributes that make up a data scientist
(Prevos, 2019).

Each of these categories in Figure 1.8 are very generalized, and can be expanded further

or reorganized. For example, Chollet (2018) focuses on the machine learning aspect, creating

subgroups of ML and Deep learning under the artificial intelligence bubble. For this thesis, I

have integrated ideas from Williams (2018); Prevos (2019) into a new Venn diagram used to

describe the chapters of this thesis (Figure 1.9). This venn diagram contains three categories:

Analytical Interaction, Visualization, and ML. These categories will be deconstructed in the

next subsections.
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Figure 1.9: Venn diagram of ideas used to analyse DFITs in this thesis. Starred locations
indicate techniques brought together for analysis in each chapter.

1.5.1 Analytical Interaction

Analytical interaction is thought of as the process of DFIT interpretation performed in the

prior Analytical methods section. This part of analysis helps to develop a deeper understanding

of the problem and also fits within the domain knowledge bubble in Figure 1.8 from Prevos

(2019). In the case of DFIT analytical interpretation, the interactive process allows the user

to fit different lines to the DFIT curve and evaluate if the result is geologically meaningful.

Furthermore, the analytical DFIT analysis also used the data visualization spectrum to make

aesthetically interpretable figures. This was achieved using the Plotly R graphing library.

Without visualization, an interpreter would simply be looking at the resulting numbers or

script (Figure 1.9).

While this technique is useful for learning why certain interpretations fit the data better,

it is also subject to human bias. As demonstrated in the prior analysis of the DFIT curve, the
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tangent method can be easily fit to many solutions, creating a degree of uncertainty in our

solution. Additionally, depending on the prior background of the interpreter, locations of the

drawn tangent line may vary significantly. This effect of human bias can be evaluated further

in texts by Dror (2020) and Budowle et al. (2009) where a taxonomy of three categories for

human bias is dissected for forensic DNA analysis. Applying this to the geoscience world,

Bond et al. (2007) discusses that when dealing with spatially limited and low resolution

data, geoscientists must rely on prior experience, this leads to ‘conceptual uncertainty’. In

this study, ‘conceptual uncertainty’ lead to only 21% of interpreters identifying the correct

structural features in a seismic dataset. Further examples of bias in geoscience is dissected in

a publication by Baddeley et al. (2004).

Recent studies have applied unsupervised ML methods in attempt to escape this bias

(Ippolito et al., 2021). This reduction of bias using unsupervised methods for DFIT analysis

is one of the goals of this thesis.

1.5.2 Visualization

The process of effective data visualization allows the interpreter to discover the trends and

their inherit meaning. This was already demonstrated in the Analytical methods section

where Plotly R graphing library was used to interactively plot DFIT derivative curves and

color code line trends/ magnify features to identify anomalous features that correlate to key

parameters. In this example the combination interactivity and data visualization allows for

both the Analytical Interaction and Visualization spectrum’s of Figure 1.9 to be covered.

Visualizations can also be applied to the ML domain without interactivity using stationary

plots such as those produced by Matlibplot.

Effectively displaying large datasets is a difficult task. A study by Gorodov and Gubarev

(2013) looks further into effective methods of large dataset representation by comparing

different features of the data side by side to improve interpretability. Other studies by Froner

et al. (2013) show how different data visualizations via color bar manipulation can lead to
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varying bias in reservoir area interpretations. Creating multiple visualizations of the data

is one way of addressing this bias. Geoffrey (2018) further discusses the effect of cognitive

bias affecting user decision making when looking at visualizations and making ‘gut feeling

decisions’. This thesis relies heavily on visualization techniques to interpret results, therefore,

bias must be considered when designing experiments.

1.5.3 Machine Learning (ML)

ML provides a method of determining complex non-linear relationships between variables in

large data sets. Although methods and ideas of ML have been developed many years ago

in seminal works such as: MacQueen (1967), Ester et al. (1996), Ward (1963), Redner and

Walker (1984), only recently, have these ideas gained popularity in the geoscience community.

Examples of this new uprise can be found in publications: Wang and Chen (2019); Shen et al.

(2020); Saikia et al. (2020); Chen et al. (2021); Ippolito et al. (2021) to list a few. ML can

be split up into general categories of supervised and unsupervised, and reinforced learning

methods. In the example of supervised learning, the input and target result is known (Bishop

and Nasrabadi, 2006). In unsupervised methods an input exists, but, there is no specified

target output (Bishop and Nasrabadi, 2006). Reinforced learning will learn preferred weights

from various data sets and their desired outcome (Goodfellow et al., 2017). In this thesis,

both supervised and unsupervised method will be explored. Combination of this domain

with the other domains of Figure 1.9 is discussed in the previous sub-sections.

Unsupervised ML methods can be used in the attempt to escape this bias, however, it can

be more time consuming to get to a solution. Ippolito et al. (2021) gives an example of this

where well log facies identification is performed using unsupervised learning in conjunction

with supervised learning to reduce bias. Supervised learning methods can provide a quick

analysis once the weights in the network have been trained (Yang and Ma, 2019) but also

suffers from bias due to the selected training set. In a study from Hu et al. (2021) it

is demonstrated that CNN trained to predict salt diapir velocity models will incorrectly
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categorize all other geologic models as salt. It is important that a wide spread of geologic

instances is included are in your training set to avoid this bias.

1.5.4 Merging all domains: Interactive web applications

Interactive web applications are used as a method of merging Analytical Interaction, Vi-

sualization, and ML domains in this thesis (Figure 1.9). The R-Studio Shiny Web App®

platform provides user-friendly coding language to design these apps for interactive ML event

identification on DFIT pressure declines.

Little literature exists for the development of R-Studio Shiny Web App’s® in the geoscience

field, Chapter 3 of this thesis will serve to evaluate the benefits of using this method.

1.6 Thesis Objectives

Despite the recent rise in ML applications to large datasets, little literature exists applying

these methods for DFIT curve interpretation. Instead, current studies address interpolating

missing DFIT pseudoradial flow data using Gradient Boosting (GB) and Random Forest

(RF) regression methods (Mohamed et al., 2020) and the integration of real-time well

stimulation datasets (injected proppant volumes, downhole pressures, and microseismic

events) to identify stimulation program trends using CNN, Autoencoders (AE) and Support

Vector Regression (SVR) (Shen et al., 2020; Alatrach et al., 2020; Wang and Chen, 2019;

Pandey et al., 2020). This study aims to fill this gap and develop a workflow to identify

reservoir parameters ISIP, Shmin, and Preservoir from DFITs with the aid of unsupervised

clustering algorithms: K-Means, DB-Scan, Hierarchical modeling, and Gaussian mixture

models, and supervised tree based learning and DNN. The application of these methods

intends to speed up interpretation times for datasets consisting of many DFIT curves and

to eliminate human bias. Implementation and visualization of these clustering methods are

complemented by the development of the CREWES DFIT Clustering App using Shiny Web
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Apps from Rstudio. More computationally heavy DNN based methods are handled with

the use of Google Collab Pro to exploit the GPUs for computational efficiency. Figure 1.10

displays the development of ideas in this thesis color coded to the method of data science

applied.

Figure 1.10: Directory of the development of ideas in this thesis, color coded to the location
it falls on the data science Venn diagram developed in Figure 1.9.
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Chapter 2

DFIT dataset for ML evaluation

2.1 Background

To test the effectiveness of ML methods for DFIT interpretation a combination of synthetic

and field DFIT data is evaluated. The use of synthetic data allows for full calibration of

the ML methods with known key parameters ISIP, Shmin, PLinear and Preservoir and later

implemented on field data where these parameters are unknown. Generation of synthetic

data was achieved using the ResFrac® simulator. ResFrac® is a fully coupled hydraulic

fracturing, reservoir, and well bore simulator that models rigorously the key physical processes

involved in DFITs. The detail of ResFrac® conceptual model and numerical approach is

described in McClure et al. (2021). Ultimately, ResFrac® is capable of generating a synthetic

pump-in/shut-in response needed to train ML methods. In total, 27 synthetic examples are

used to calibrate and test ML methods in this study.

Parameters that can be manipulated within the ResFrac® simulator are listed in Table 2.1.

These parameters feed into the construction of a finite difference model from which pressure

decline vs time can be observed. A complete table of all synthetic cases and corresponding

ResFrac® input parameters is located in appendix (Figure A.1). When compiling a training

dataset, it is important to consider any biases that may be introduced, there must be a
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uniform distribution of training possibilities to prevent non-generality (Kim et al., 2019).

An example of addressing these biases can be found in Geirhos et al. (2018) where data

augmentation is applied as a bias mitigation. In this thesis, each of the parameters in Table 2.1

is varied as a method of addressing this bias and simulating a range of geologic conditions.

Figure 2.1 demonstrates a plot of 24 of the synthetics created in this study with varying

geologic conditions. The additional curves generated are designed to simulate conditions of

the Duvernay Formation, Alberta, Canada.

Geologically, the Duvernay Formation was deposited during a transgressive period of

relatively high global sea level, allowing for the creation of restricted low energy off-shore

anoxic environments containing black shales that are up to 250m thick (Knapp et al., 2017;

Switzer et al., 1994). The low permeability of this formation (nanoDarcies) makes it an

optimal target for hydraulic fracture induced production optimization (Dunn et al., 2012).

To simulate the performance of tested ML methods on field data, an additional DFIT from

the Duvernay Formation is included in the dataset bringing the total number of curves to 28.

Each training and testing dataset is formatted as a .csv file with two columns: Time

(hours) and borehole pressure (PSI). Borehole pressure is defined as the pressures measured

at the depth of investigation in the well bore. Depending on the desired event classification

for the dataset, additional boolean columns of ‘True’ or ‘False’ can be added to indicate the

location of events on the pressure decline curve. Figure 2.2 demonstrates a plot of all DFIT

datasets used in this study. Notably, the highest pressure Duvernay DFIT example appears

to be time delayed and contains additional early time information when compared to the

other DFITs. This happens to be the field DFIT test, containing information about the

pressure ramp up of the formation. This information in the curve does not contain geologic

information, instead it is fully dependent on the pumping rate as show in Figure 1.2. For

this reason, this data can be eliminated as it can create ML bias and computational burden

(Figure 2.3). Collectively, these formatted datasets are used for further augmentation and

event classification in this Thesis.
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Table 2.1: ResFrac parameters

Resfrac Variable Definition

WBS Wellbore storage factor

NWT Near-wellbore tortuosity

S90 Closure process duration

E0max Start of closure process

YM Young’s modulus for aperture of fracture

Geometry Fracture flow style

Resfluid Reservoir fluid

Shmin Minimum principle stress

Pres Reservoir Pressure

Layers Number of geologic layers
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Figure 2.1: Summary plot of all synthetics generated using ResFrac®.
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Figure 2.2: Summary plot of all synthetics generated using ResFrac® with Duvernay generated
synthetics and field cases included (red).
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Figure 2.3: Summary plot of all synthetics generated using ResFrac®. With augmented
Duvernay generated synthetics and field cases included (red).
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Chapter 3

Shiny web applications for

unsupervised DFIT event detection

3.1 Introduction

The first method of DFIT interpretation optimization falls in the center of Figure 1.9. This

is achieved by creating the the CREWES DFIT Clustering App to test the feasibility of

unsupervised ML methods in R-Studio Shiny Web App coding platform. In doing so, all

domains of the data scientist Venn diagram are merged to create a holistic interpretation.

Examples of web apps being applied to data analytics vary from risk assessments (McGuinness

and Higgins, 2021) to Covid-19 tracking platforms (Valls et al., 2020). Here I will apply web

apps in a new method for DFIT interpretation.

With the use of R-Studio Shiny Web Apps, this study evaluates the ability of unsupervised

clustering methods: K-Means (MacQueen, 1967), DB-Scan (Ester et al., 1996), Hierarchical

modeling (Ward, 1963), and Gaussian mixture models (Redner and Walker, 1984) to identify

key parameters: ISIP, Shmin, and Preservoir in multivariate data. K-Means was selected as

the baseline method for defining hyper-parameters; DB-scan is tested for handling noisy

data; Hierarchical modeling offers cluster visualizations for hyper-parameter selection, and
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Gaussian mixture models offers the ability to fit model shape distributions in the form of

probabilities.

The choice of applying unsupervised learning methods was influenced by its ability to

eliminate bias that might otherwise exist in training datasets for supervised learning methods.

Mathematically, it is hypothesized that the clustering algorithms will be segmenting the

pressure decline curves based on the density of point distributions along original and derivative

of pressure decline curves. The observations of these clusters will later allow for mathematical

inferences to be made about why the clusters appear where they do. This approach follows a

similar approach to the study by Ippolito et al. (2021) where well log facies identification is

performed using unsupervised learning in conjunction with supervised learning to reduce bias.

Although supervised learning will not be applied in this study, the developed method could

be used to create training datasets for supervised learning applications. The application of

unsupervised clustering methods also recreates a real life scenario where catalogs of events

may be incomplete, or inaccurate making supervised learning unfeasible. Other studies by

Li et al. (2021) use clustering more generally to identify anomalies in multivariate datasets.

This idea closely parallels this study’s method of identifying key-parameters (‘anomalies’) in

a multivariate set of DFIT and pressure derivative curves.

3.2 Methods

To evaluate the DFIT clustering method, three DFIT curves were clustered and compared to

results from manual interpretation. These curves include history matched pressure decline

models generated from a ‘simple’ 3-layer Duvernay system, and a ‘complex’ 31-layer Duvernay

system. ResFrac® simulator was used to generate synthetic pump-in/shut-in response. The

detail of ResFrac® conceptual model and numerical approach is described in McClure et al.

(2021). The use of modeled curves allows for key parameters (ISIP, Shmin, and Preservoir)

to be known as simulation inputs eliminating any interpretation bias. Field data from a
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DFIT acquired in the Duvernay near Fox Creek, Alberta, Canada is lastly tested using

the optimized hyperparameters from the model cases. In this example, key parameters are

manually interpreted from the field DFIT in time (t), G-time, Agarwal time domains as

well as their corresponding derivatives. Downsampling of this data was required to speed up

computation times in the clustering app.

Using these three pressure decline curves, the compliance method (McClure et al., 2016)

and tangent methods (Barree et al., 2009) are both used for the estimation of Shmin outputting

pressures of Pcompliance and Ptangent, respectively for the field DFIT. The manual interpretation

workflows for interpreting these values is also discussed in Chapter 1.

Full evaluation of the clustering app is achieved by comparing estimated values to

interpreted ISIP, Pcompliance, Ptangent, and PLinear in the Analytical value comparison section

(3.4.4), and the corresponding Shmin, and Preservoir in the True value comparison section

(3.4.5). In this study, the cluster boundaries are defined as the event locations along the

curve.

It should be noted that to extract the full value of clustering methods, multiple input

parameters must first be calibrated. These include: (1) input variables, (2) hyperparameters.

and (3) preferred clustering methods. The following sub-sub sections will discuss these in

more depth.

(1) Input variables

The input parameter encompasses the selection of multiple derivative curves that are input

into the clustering algorithm. Variables used for interpretation and multivariate analysis in

the clustering application are displayed in a correlation matrix in Figure 3.1. In this figure,

there are fourteen time-dependent variables that can be interpreted to derive key parameters.

To decrease noise effects, the Bourdet derivative (Duong, 1989) was applied to curves as a way

of smoothing the data, this is indicated by a ‘B’ in Figure 3.1. To account for the different

scales of measurement (Figure 3.1) scaling was applied before input into clustering algorithms

30



Figure 3.1: Correlation matrix of all variables that can be derived from a pressure vs time
DFIT measurement. The main diagonal corresponds to a variable correlated to itself, therefore,
correlation is 1 (positive correlation large blue circle). Outside of the diagonal, correlations
are displayed between different variables. Red circles indicate negative correlation. The
bottom left corner of the matrix has been eliminated due to its symmetry.

to avoid any data bias. To evaluate optimal variables for clustering, various combinations are

iterated and culminated spread sheets are visualized on Principle Component Analysis (PCA)

correlation circles (section 3.3.1). PCA is a way of identifying and visualizing dimensions

with most variation in high dimensional data (Pearson, 1901).

(2) Hyperparameters

Hyperparameters control the structure of the clustering method calculations (Yu and Zhu,

2020). This may include number of clusters formed, search radius, and minimum points

required to form a cluster. A full description of the hyperparameters for each clustering
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method can be found in the appendix (Table B.1). To evaluate optimal hyperparameters

in this study, various combinations are iterated and summarized spread sheets to find the

optimal variable inputs.

(3) Clustering method

Four clustering methods listed in section 3.1 are tested in this experiment, each with their

own mathematical searching criteria (Appendix Table B.2). To evaluate these methods the

three metrics of performance are compared. These include:

(A) Average number of events identified (varied hyperparameters).

(B) Average number of unclassified points along curve (varied hyperparameters).

(C) Average repeatability of classified points for varied hyperparameters (varied hyperpa-

rameters).

Following the calibration and evaluation of the clustering app’s performance, PCA is then

used in the app to explore why cluster boundaries appear where they do (Figure 3.2). The

following subsection 3.2.1 will discuss the construction of the CREWES DFIT clustering App.

3.2.1 CREWES DFIT Clustering App

The developed CREWES DFIT Clustering App addresses the challenge of visualizing fourteen-

dimensional data (Figure 3.1) with the application of unsupervised clustering and PCA. To

develop the CREWES DFIT Clustering App R-Studio® programming software was used.

R-Studio® offers the ability to design and create interactive web apps (Shiny web app) for

data manipulation and visualization. The benefits of creating and using the Shiny web app

include:

(1) Time saved: Eliminate the need for a user to run multiple sections of code to generate

several plots for various clustering analyses types.

32



(2) Reactive variables: User can quickly manipulate hyperparameters for data fit.

(3) Intuitive display: Back-end code runs without the user requiring extensive knowl-

edge of programming.

Figure 3.2 displays a screen capture of this developed app. Additional features such

as elbow plots and tree diagrams are also included as visualizations within the app to aid

in hyperparameter definition (Figure 3.2). The app allows for the user to magnify curves,

observe different clustering methods, and visualize where clusters fall on DFIT pressure

declines.

For a more detailed workflow of the DFIT clustering app, a dataflow diagram is presented

in Figure 3.3. This figure demonstrates the difference between user interactive (green outline)

and hidden features (red outline) of the App. In this workflow, a user will upload their

pressure versus time DFIT curve and default parameters will cluster the data. The user

can then visualize how the clusters fall on the multiple curves created in the web app

process (Figure 3.2). This information can be used to update hyperparameters, and re-

perform clustering calculations. If the user is satisfied with the end interpretation, parameter

adjustment is no longer required. Figure 3.3 is also color coded based on the data science

domain applied to the data from Figure 1.8. Notably, the app allows for the integration of

all three data science domains.

3.3 Results

3.3.1 Variable optimization

Using the ‘simple’ and ‘complex’ Duvernay models, optimal hyperparameters and variable

combinations were tested to fit DFIT events representing key pressure data. The iterative
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Figure 3.2: Screen capture of the interactive CREWES DFIT Clustering App with its various
analytical features highlighted.

process also allowed for inferences to be made about the relative importance of variables

and their overall contribution to clustered events. This is displayed as a PCA circle in

Figure 3.4 for K-means clustering. In this figure, the DFIT pressure vs log-time curve for

the ‘complex’ model is clustered using variables groups identified by the PCA correlation

circle. Plot A shows an example where only G-time derivatives are used as inputs of the

clustering algorithm: the outputs of the clustering algorithm are displayed on a pressure

(PSI) vs log time plot with key events identified and their corresponding error relative to

the model inputs. Plot B shows the a similar plot using Time, G-time, and Agarwal time
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derivatives. Plot C illustrates an example where only the time derivate is clustered. Plot D

shows the result of using all variables in the clustering algorithm.

3.3.2 Hyperparameter and clustering method optimization

Following variable analysis, elbow plots and visual inspection are used to determine optimal

hyperparameters for each clustering method. A summary of all iterations for each clustering

method applied to each of the three DFITs is also displayed in histograms in Figures: 3.5, 3.6,

3.7. Applying the three measures of performance allows for this optimization to be quantified.

Optimization results for each clustering method are displayed in Table 3.1. Using these

clustering parameters, the three measures of performance can be further used to determine

the best clustering method out of the four methods tested (Figure 3.8). These measures of

performance are compared for the three DFIT model datasets in this study (Figure 3.8).

3.3.3 Final cluster interpretation (analytical values)

The combination of the optimized variables, hyperparameters, and clustering method that

produced cluster boundaries correlated to key parameter events displayed in Figure 3.9 for

the ‘simple,’ ‘complex,’ and raw field Duvernay DFIT curves, respectively. On these plots,

the percent difference from the true/interpreted value is also displayed. It is noted that the

metrics of evaluation generally give results that do not include PLinear for this reason, Figure

3.10 was created to show clustering for this key parameter. Summary plots in Figures: 3.5,

3.6, 3.7, are also used to make inferences about the relationship of clustering boundaries to

analytical values.

3.3.4 Final cluster interpretation (true values)

The same plots described in section 3.3.3 are used to investigate the effectiveness of clustering

boundaries to identify Shmin and Preservoir. Percent difference for the respective values is also
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displayed in Figure 3.9.

3.3.5 Mathematical analysis of clustered features

Following the identification of optimal clustering variables, hyperparameters, and clustering

methods, the mathematics of why clusters appear where they do is explored by examining

PCA plots of fourteen-dimensions reduced to three (Figure 3.11).

Table 3.1: Optimized Clustering Hyperparameters.

# Clustering method Parameters

K-means 6-clusters

DB-scan Minimum points = 10, Search radius = 0.1

Hierarchical Clustering Ward-D, 6-clusters

Gaussian mixture model VEE (Ellipsoidal, equal shape and orientation) 6-clusters

3.4 Discussion

3.4.1 Variable optimization

This new workflow using Rstudio Shiny Web Apps® has helped us understand and evaluate

the feasibility of using unsupervised clustering methods to interpret events on a DFIT pressure

decay curve that can be used to derive key parameters. To achieve this, variable contributions

from derivative curves were first explored using a PCA correlation circle. In Figure 3.4, it

appears that reducing the original and derivative data into two dimensions (Dim 1 and Dim

2) has created natural clusters of correlation. To further explore these clusters of correlation,

the clustering algorithm, K-means, was run using only the variables within each cluster.

Plot A shows that clustering of only G-time derivatives has resulted in events ISIP (highest

relative error), Ptangent, and Pcompliance event identification. Plot B illustrates that an accurate

ISIP, and lowered accuracy Ptangent and PLinear estimates, can be obtained when clustering is
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performed using Time, G-time, and Agarwal time derivatives. Using time derivatives results

in PLinear being the only event identified in plot C. Collectively, these clusters of correlation

appear to extract pressure information from different segments of the curve. The G-time

events appear to give accurate Ptangent and Pcompliance approximations (early time variables).

This differs from the Time, G-time, and Agarwal time cluster which results in accurate values

for ISIP and PLinear. These clusters of variables will be referred to as the late/early time

variables based on this distribution. Lastly, the time derivative cluster appears to correlate

with only the late-time variable PLinear (late-time variables).

Collectively, each variable cluster in the PCA plot appears to tell us different information

for early and late time segments along a DFIT pressure decline. Most notably, the early

time variables (G-time derivatives) exist on the opposite side of the PCA correlation circle

from the late time variables (Time derivatives) suggesting that these clusters are negatively

correlated. This interpretation is supported by no event overlap existing in plots A and C.

Plot B contains information from both the early and late time stages of the DFIT. Therefore,

its cluster of variables has some correlation to the pure late and early time variables displayed

in the correlation circle of Figure 3.4 lying orthogonal to these clusters. This may imply

that depending on the events required from the clustering algorithm, different selections of

variables can optimize output results for early/late time DFIT events. For the purpose of

this study, a generalized approach was taken whereby all clusters of variables are merged to

produce a holistic interpretation of the DFIT curve. This is displayed in plot D of Figure

3.4. In this plot, it appears that an averaging of the components of each variable cluster has

created a holistic interpretation. This plot identifies ISIP with improved accuracy compared

to plots A and C, improved Ptangent, compared to plots B and C, and a PLinear that was

non-existent in plot A.
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3.4.2 Hyperparameter optimization

The collective 14-variable approach then allows for cluster hyperparameters to be optimized.

Manually testing parameters leads to the optimizations displayed in Table 3.1. Generally,

6-clusters for K-means, Hierarchical, and Gaussian clustering methods appear to fit the data

best.

A histogram summary of cluster boundary value vs iterations of hyperparameters for each

clustering method and DFIT is also displayed in Figures: 3.5, 3.6, 3.7. Figure 3.5 shows

the results of varying hyperparameters for the ‘simple’ Duvernay model. In this Figure,

the summary plot of all clustering method iterations summed appears to have convergence

around the actual values of ISIP, Ptangent, Pcompliance, Shmin, and PLinear. Notably, Preservoir

does not have any occurrence on this plot, this is because Preservoir (7000psi) occurs at a

pressure that is lower than the last measurement of the DFIT pressure decline (7027psi).

This observation of missing Preservoir applies to the other two curves in this study as well.

Further decomposition of the histogram into clustering methods reveals DB scan to have the

best convergence followed by Gaussian mixture models, Hierarchical clustering, and K-means.

The summary histogram in Figure 3.6 also displays general convergence to key parameters

ISIP, Ptangent, Pcompliance, Shmin, and PLinear. In this case the frequency of values between

Ptangent and Pcompliance appears to be skewed towards Ptangent. Perhaps this is due to Shmin

having a close overlap to Ptangent and the clustering algorithms detecting this. Further

decomposition of the histogram into clustering methods reveals DB scan to have the best

convergence followed by Gaussian mixture models, Hierarchical clustering, and K-means.

The summary histogram from the Field Duvernay DFIT in Figure 3.7 displays weaker

convergence to key parameters ISIP, Ptangent, Pcompliance, and Shmin. PLinear cannot be

identified due to missing data on this DFIT. The weaker convergence of the summary plot is

likely due to the poor performance of individual clustering methods K-means and Hierarchical

clustering. Closer inspection of the DB scan histogram yields higher correlation to actual

values and the Gaussian Mixture histogram appears to have the closest correlation to the
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actual key parameters. Comparing back to Figure 3.6, Shmin appears to have poor correlation

to histogram frequency in Figure 3.7. Perhaps this is because Shmin does not overlap with

Ptangent or Pcompliance values and roughly bisects them. As a result, cluster values bimodally

distribute to areas of physical change on the curve, such as Ptangent and Pcompliance. This may

be the result of biases in fracture flow behaviour when generating these curves (see Carter

flow discussed in Chapter 1).

3.4.3 Clustering method optimization

Following the optimization of variable inputs and hyperparameters, clustering methods are

quantitatively compared using the three parameters of evaluation in the form of a cluster

performance matrix (Figure 3.8). Using the ‘simple’ model, DB scan appears to have

identified the highest percentage of events, while having the lowest average percentage of

noise points and highest repeatability with hyperparameter variation. Observation of the DB

scan histogram (Figure 3.5) also appears to show the strongest convergence to the key events

while having limited outlier points.

This trend appears to shift as the model becomes more complex. For the complex

Duvernay model, DB scan appears to retain high event identification and repeatability,

however, the quality of value uniqueness is significantly reduced by the number of unidentified

points that appear in the result (12). Compared to other methods, Hierarchical clustering

has improved metrics for all three measures of performance, and the Gaussian-based method

appears to have optimal performance with the highest average percentage of events identified

and repeatability. Inspection of Figure 3.6 also reveals DB scan and Gaussian mixture models

as the top performers, with DB scan having slightly better convergence.

Analysis of the field data revealed the Gaussian mixture model method as the top

performer. In the field case, the quality of the DB scan method appears to have degraded in

quality while the K-means method has improved. Further inspection of histograms in Figure

3.7 also reveals stronger convergence in the Gaussian mixture model compared to DB scan
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with more outlier results. Perhaps the noise in the field case has degraded the performance

on DB scan, creating more outlier clusters that give trivial interpretation.

It is important to note that Figure 3.8 shows the averages of multiple iterations of

the clustering algorithms with varied hyperparameters to quantify the algorithm’s ability

to handle deviations from optimal hyperparameters (repeatability). Individual tests with

optimized variable input, hyperparameters, and clustering method were found to output 75

-100% identification. The differentiator between these percentages is merely dependent on if

the length of recorded data is long enough to extract Preservoir. This applies to the field test

case. In the following subsection we will explore how optimized clustering methods perform

when interpreting DFIT data.

3.4.4 Analytical value comparison

When comparing interpreted analytical values to clustered results, DB scan methods appear to

produce optimal results when the DFIT is ‘simple’ and degrade as complexities are introduced.

This is illustrated in Figure 3.9 where the application of DB scan to the complex model

(plot B) has resulted in more noise clusters being identified, degrading the uniqueness of key

parameter event detection on the curve. DB-scan applied to the simple model appears to have

identified accurate ISIP and Pcompliance events in Figure 3.9A, with little noise, while other

events appear to be missed. This is explained by the lower apparent sampling of the simple

model data creating sparse point density displayed in Figure 3.9A. Perhaps the sampling

interval has affected the accuracy of the clustering methods and this may be a subject of

future study.

For the field test, (Figure 3.9C) the Gaussian mixture method appears to have identified

ISIP, Pcompliance, and Ptangent pressures with only one unidentified cluster boundary that

exists between Pcompliance and Ptangent. In this case, the field data were not collected for a

long enough time to accurately identify a PLinear, therefore, no interpretation exists in these

plots. Overall, the Gaussian mixture method appears to handle noisy data better than DB

40



scan. This may be explained by the ability to fit probability distributions to the data that

better handle noise. Future experiments may consist of filtering the DFIT data to see if this

will improve clustering results.

Further analysis of Figure 3.9 reveals that none of these optimized parameter plots

has picked up on the PLinear event. Moreover, Figures 3.5 and 3.6 show a relatively high

convergence to PLinear values on their summary plots, this brings the question: why are

the optimized results not capturing this event? The answer to this question demonstrates

the adversity of using an average ranking method to determine optimal hyperparamters

for all events. The reality is different combinations of hyperparameters will yield different

optimizations of events. This is similar to observations made about variables in section 3.4.1.

An example of a differently optimized hyperparameter Gaussian mixture model is displayed

with PLinear accurately picked in Figure 3.10. This demonstrates that although we have

optimized our input variables to pick all boundaries, hyperparameters can still be optimized.

An example of this was demonstrated in section1.4 where the late vs early fracture physics

boundary requires slightly different optimizations of parameters.

3.4.5 True value comparison

The identification of a relatively accurate Shmin appears to have occurred on plots B and C

of Figure 3.9. Further inspection of histograms such as Gaussian mixture model in Figure 3.7

also reveal contrasting results where Shmin has poor frequency of occurrence. This may be

interpreted as the inherent biases introduced by fracture physics assumptions made in the

derivation of input clustering curves in section 1.4.

DFIT recording times cut short lead to inconclusive results being formed about the iden-

tification of Preservoir using clustering methods. However, a recorded dataset that encompass

a true Preservoir most often is not economical for an operator, therefore, this simulates real

life results.
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3.4.6 Cluster mathematics

There still remains the question as to why these clusters appear where they do. Inspection

of Figure 3.9 does note conclusively show why these clusters occur. This question can be

addressed when observing three-dimensional PCA plots for the complex model with K-means

applied (Figure 3.11). In this figure, events appear to correlate with inflections in data trend

(see ISIP and Ptangent in original and first magnification of PCA) and frequency variation in

data (see the largest magnification). This implies that a combination of dimensionality and

frequency changes in the data affect point density and cluster distribution. It is hypothesized

that the input of these manual interpretation derivative curves into the clustering algorithms

has allowed for these changes to be identified that line up with DFIT parameter events.

3.5 Conclusions

Successful development of unconventional hydrocarbon reservoirs is dependent on designing

and modeling an effective stimulation program. This typically requires estimation of critical

parameters ISIP, Shmin, and Preservoir via manual interpretation methods using DFIT pressure

falloff data. Although this process may produce values for stimulation modeling, it is time-

consuming and can be affected by human interpretational bias. To address this adversity, a

new method of applying unsupervised clustering methods in the CREWES DFIT Clustering

App was developed. This app allowed for quick visualization and manipulation of clustering

variables and hyperparameters to find the best fit interpretation for three sets of DFIT

pressure falloff data. Clustering calibration results found that different variable inputs into

the clustering algorithm result in different events being identified on a DFIT pressure decline.

These were classified and early and late time variables. For a generalized interpretation of

the DFIT curve, the variable clusters are merged to identify late and early events that occur

on the pressure decline.

Optimized results suggested that the DB scan method can accurately define event
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boundaries on the ‘simple’ DFIT model, however, the introduction of geologic complexity

and noise degrades the result as more unclassified clusters appear in the interpretation. This

is where the Gaussian mixture method appears to handle noise variations with improved

accuracy for the ‘complex’ and field DFIT tests. It is hypothesized that the ability to

change the shape of the probability distribution fitting the data in this method has addressed

any noise contamination and effects of geologic complexity. Future studies may focus on

eliminating this noise with filters.

While analytically interpreted values: ISIP, Ptangent, Pcomplaince, and PLinear appear to

have strong correlation to cluster boundaries, true Shmin appears to be less consistent. This

is interpreted to be an effect of biases introduced in the derivative curve generation from

fracture mechanics assumptions. Preservoir was not evaluated due to missing data in all DFIT

curves.

Understanding why clusters occur where they do is achieved by using PCA to reduce

the fourteen-dimensional data down to three dimensions. This process revealed that cluster

boundaries occur at inflection points (changes in dimensionality) and frequency variation in

the data correlates to a variation in point density.

The CREWES DFIT Clustering App offers the ability to quickly interpret and reduce

bias in DFIT-derived parameter estimates. Future chapters will evaluate the effectiveness of

applying supervised learning methods as an alternate means for DFIT interpretation.
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Figure 3.3: Dataflow diagram for the CREWES DFIT Clustering App. Green outlines
indicate user interface while red outlines indicate features hidden from the user. Operations
are also color coded based on their relationship to the data scientist domains in Figure 1.9.
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Figure 3.4: Results of testing different variable clustering for K-means using the 31-layer DFIT
Duvernay model. Subsets for variable testing were determined using the PCA correlation
circle (center) where clusters of variables correspond to high correlation. The axes on this
plot are labeled Dim 1 and Dim 2 representing dimensions that capture 41% and 28% of
the variation in the data respectively. Variables outside of clusters indicate an increasing
negative correlation.
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Figure 3.5: Summary plots of hyperparameter variation for each clustering method in the
simple Duvernay DFIT model. The top sub plot is the sum of the bottom four sub plots.
Dashed lines indicate the location of the true values ISIP, Shmin, Ptangent, Pcompliance, Preservoir,
and PLinear 46



Figure 3.6: Summary plots of hyperparameter variation for each clustering method in the
complex 31 layer Duvernay DFIT model. The top sub plot is the sum of the bottom four sub
plots. Dashed lines indicate the location of the true values ISIP, Shmin, Ptangent, Pcompliance,
Preservoir, and PLinear. 47



Figure 3.7: Summary plots of hyperparameter variation for each clustering method for the
Field Duvernay DFIT. The top sub plot is the sum of the bottom four sub plots. Dashed
lines indicate the location of the true values ISIP, Shmin, Ptangent, Pcompliance, Preservoir, and
PLinear. 48



Figure 3.8: The cluster performance matrix compares the three designed metrics of evaluation
to selected clustering type. Bar plots for each dataset tested are colour coded, blue = ‘simple’
model DFIT, orange = ‘complex’ model DFIT, green = Field DFIT.
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Figure 3.9: Results of applying optimal variable combination, hyperparamters, and clustering
method to each of the three datasets in this study. Percent error is indicated on each plot to
quantify difference from true/interpreted values.
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Figure 3.10: Results of applying PLinear optimization of hyperparamters for the 31 layer Duver-
nay DFIT. Percent error is indicated on each plot to quantify difference from true/interpreted
values.
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Figure 3.11: Three-dimensional principle component plot used to understand distribution
of clusters created from DFIT data. This case shows the ‘complex’ DFIT model with its
associated identified events using the K-means algorithm. This figure includes different
perspectives of the data to understand variation.
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Chapter 4

Supervised methods for DFIT event

detection

4.1 Introduction

In efforts of scrutinizing the CREWES DFIT Clustering app, this chapter develops a method

of supervised DFIT event detection. Referring back to the DFIT ML domains Venn diagram

defined in Figure 1.9, this method for event detection falls in the location of the green star

where only ML and Visualization domains overlap. This is because the end user will no

longer have the ability to interactively adjust the method. Instead, a constant pre-trained

model will be used. One of the key reasons for abandoning this interactivity is the inherent

benefit of saving the end user time with an adequately trained model. For example, in the

study by Yang and Ma (2019), after training a salt diapir velocity prediction model over 18

hours it only takes 2 seconds to predict the resulting velocity models for test data inputs.

This aspect of time saving is enticing compared to the iterative process required at times

with the CREWES DFIT Clustering app. In this chapter I will evaluate this method.

Supervised time series classification is a thoroughly studied problem applied in areas

such as microseismic event detection (Othman et al., 2021), meat quality classification
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(Ismail Fawaz et al., 2019), and cardiac arrhythmia (Savalia and Emamian, 2018). Within

the supervised learning category multiple methods of data classification exist. In this chapter,

three supervised algorithms are tested: Decision trees (Myles et al., 2004), Random decision

forests (RF) (Ho, 1995), and Deep Neural Networks (DNN) (Cios, 2018). These techniques

attempt to provide desired outputs (Y) for a given set of inputs (X). This is achieved by

splitting a dataset into training and testing sets. The training set will allow the learning

method to develop a model for classification and the testing set will act as a quality control

measure to ensure the model has predictability for other datasets. Comparatively, by providing

the answers to the learning process, this juxtaposes the unsupervised method tested in the

previous chapter where the solutions were not provided.

The goal of designing these methods is to save the end user’s time by eliminating the

interactivity portion of the DFIT data science Venn diagram (Figure 1.9). Furthermore, this

learning method aims to eliminate the human bias discussed in Chapter 1. Human bias will

be eliminated through the development of complex no-linear relationships between the desired

output and input as opposed to interpretive analytical methods introduced in Chapter 1.

Fracture behaviour physics assumptions will also be eliminated as this method looks at only

the pressure vs time data and not derivative plots. Collectively, this will allow for quick

and accurate interpretation of Shmin and therefore, efficient optimization of the hydraulic

stimulation process to improve economics of de-risk play types.

4.2 Methods

As displayed in Chapter 1, identifying the location of events such as Shmin is non-trivial when

looking at a simple pressure vs time DFIT decline curve alone. Analytical methods addressed

this adversity by looking at trends in the derivative curves, creating a more interpretable

plot for the human eye. One of strengths of supervised methods is its ability to identify

this hidden relationship without the need for the human interpreter to visualize multiple
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Figure 4.1: Example of a single input file for training supervised learning methods. The
learning method will find a relationship between input x variables (X1 and X2) and the
desired output classification (Y).

derivative plots.

To evaluate the supervised DFIT event detection method, the full DFIT catalogue of 28

curves described in Chapter 2 are implemented. Figure 4.1 displays a illustration of a single

DFIT belonging to the 28 curve dataset. In this Figure, ‘X’ consists of the time series of

pressure and time samples from the pressure decline (Figure 4.1). The ‘Y’ is then a boolean

output of True or False indicating the desired event label at the point in the time series,

this is Shmin in Figure 4.1. The goal of the applied supervised learning technique will be

to derive the non-linear relationship between the input ‘X’ and desired output ‘Y’ (Müller

and Guido, 2016). For the purpose of this study and to simplify the predicting problem to a

single dimension, the predicted output will remain as the single key parameter Shmin.

To avoid overfitting and therefore, generalize the learning model for this system, 24 curves

of similar format to Figure 4.1 are applied to the training of the classification models. As
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described in Chapter 2, each of the 24 curves input into the training process contains varying

geologic parameters and reservoir conditions. An example of the adversities of overfitting can

be found in the publication from Hu et al. (2021) where a convolutional neural network (CNN)

is trained using only seismic data from regions of extensive salt diapirism. This resulted in

the model classifying areas of varying geologic characteristics, such as structure, incorrectly

as salt diapirs. The split of data into 24 labelled training curves and four testing curves

closely follows the supervised rule of data splitting 80% to 20% (Géron, 2019). The four

testing curves belong to the Duvernay Formation subset. For consistency in file naming of

the larger dataset, .csv file names are displayed on the titles of resulting classification plots.

Based on these file names 01 ResFrac Demo format simple Duvernay.csv coincides with the

‘simple’ 3-layer geologic simulation, 02 Duvernay format 31 layers.csv is the ‘complex’ 31

geologic layer simulation, 03 Duvernay DFIT Formatted LS Oct2021 Field.csv is a field DFIT

dataset and 04 Synthetic 4 Jan 2022.csv is an additional ‘simple’ 3-layer geologic simulation

with higher Shmin conditions. This will be referred to as the second ‘simple’ model. A full

description of the parameters used to generate testing and training datasets is described in

Appendix Figure A.1.

The following sub sections will describe the two methods of data formatting for (1)

applying Decision trees (Myles et al., 2004) and RF classification (Ho, 1995) and (2) DNN

(Cios, 2018). Implementation of these methods was achieved using Python® on Google Colab

and Jupyter Notebooks. The Keras® machine learning library was applied for supervised

methods. Application of platforms such as Google Colab gave access to high powered Graphics

processing units (GPU).

4.2.1 (1) Decision trees and Random decision forest trees (RF)

Decision trees and RF both fall into the classification regime of ML. The historical method

of using Decision trees can be thought of as an algorithm that finds optimal splits in the

categorical data to minimize the systems entropy (Myles et al., 2004; Géron, 2019). This will
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create a single tree of conditions that categorize the elements of the system. This method

was selected as a baseline classification method for the DFIT classification problem.

RF can be thought of as an updated version of the Decision tree, where multiple decision

trees are merged and used to classify ‘N’ data points from the system of interest. The average

of classification given by this process is the overall solution (Ho, 1995; Géron, 2019). One of

the benefits of using this method over Decision trees is it ability to generalize the solution

and avoid overfitting to one solution. This is achieved by averaging the multiple solutions

produced by the Decision trees also known as ensemble learning (Ho, 1995; Géron, 2019;

Chollet, 2018). This method was selected as a comparison to the basic Decision tree algorithm

to assess potential improvements. In this study, the n estimators hyperparameter (number of

trees) was adjusted accordingly to optimize results.

The benefit of using Decision and RF tree classification is that the input data length

for any curve can be of varying size. This allows for the ‘time’ (X1) and ‘pressure’ (X2)

columns from the 24 training sets to be simply stacked into a list size of (13495, 2) with their

corresponding Shmin labels being stacked into a list of size (13495, 1). The result of plotting

this data is displayed in Figure 4.2. Using this formatted data a classifier model is created.

Performance of the classification model is then evaluated by comparing the solution to the

predicted output.

4.2.2 (2) Deep Neural Networks (DNN)

The application of DNN to this classification problem is hypothesized to create a more flexible

and computationally quick Shmin prediction model. Derived from Artificial Neural Networks

(ANN), DNN offers the ability to solve non-linear problems (Géron, 2019; Chollet, 2018).

DNNs are composed of multiple layers of neurons allowing for classification of these problems

(Figure 4.3). The neurons within each layer of (Figure 4.3) can also be referred to as threshold

logic units (TLU). These TLUs essentially take in a weighted sum of the inputs and pass

information forward if the activation function is satisfied (Géron, 2019). The final layer of
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Figure 4.2: Plot of the collective labelled training sets to be input into the Decision tree and
RF classifiers.
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the DNN will contain the output of nodes equal to the number of classifications required in

the system. The final classification will then be compared to the ‘ground truth’ label of the

training set, weights will be updated based on the classification error in a process known as

back propagation (Géron, 2019). Different activation functions can be selected to optimize

a problem. Some examples include the sigmoid function and rectified linear unit function

(ReLU) (Chollet, 2018). In this study, the ReLU activation was applied due to its faster

computation time (Géron, 2019).

Figure 4.3 demonstrated how the DNN will be applied to the training set of 24 DFIT

curves with varying parameters. In this figure, the input layer will accept the time (X1) and

associated pressure values (X2) in the input layer for each curve as separate ‘mini batches’.

This is achieved by formatting the dataset into a 3D dataframe of columns X1, X2 and the

associated Shmin labels (Y). In this formatting, the third dimension is defined as the different

DFIT curves generated for this experiment. Notably, this data formatting is more complex

compared to the tree classification methods where only 2-dimensions are required and DFIT

curve separation is not.

An additional complexity of this method when compared to tree classification is that the

input size of each of the curves must be the same length. As displayed in Figure 4.4 the

number of data points contained in each training set varies. This also applies for the testing

dataset in Figure 4.7. Based on this observation, all datasets need to be truncated to the

shortest dataset, containing 466 points. Notably, the field dataset could not be cut to the

first 466 points, instead a windowed area had to be selected. This is a result of a varied

sampling interval on the field dataset to save memory space.

The resulting training dataframe will contain 24 curves, 466 points per variable, with

the two variables being time and pressure. This results in a dataframe of size 24,466,2. A

matching dataframe of Shmin labels is also created of size (24,466,1). The resulting plot of

labelled training datasets is displayed in Figure 4.6. Two of these 24 training curves were

used as a validation set to test for generality during the learning process. The testing dataset
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Figure 4.3: Diagram of the DNN structure applied for DFIT classification.

will be of size (4,466,2) with a matching labels data frame of (4,466,1). A resulting plot of

labelled testing datasets from this process is found in Figure 4.7. It can be observed that

the field case (03 Duvernay DFIT) and 31 layer Duvernay model (02 Duvernay) appear to

have the least spatial variation in data trend after limiting the number of samples to 466.

This will be used as a test to determine the influence of missing curve segments on the train

supervised model classifier. Both the testing and training data frames were scaled before

input into the learning methods to account for different scales of measure.

When constructing the DNN model in Figure 4.3, multiple parameters must be optimized.

Starting with the input and output, 466 points must be presented in both cases (Figure 4.3).

These consist of pressure and time variables for input and output probability of a Shmin
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Figure 4.4: Number of points per training dataset, red dashed line shows the cut off applied
to data to make input numbers uniform for the DNN.
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Figure 4.5: Number of points per testing dataset, red dashed line shows the cut off applied
to data to make input numbers uniform for the DNN.
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Figure 4.6: Subset of the 24 training curves formatted to 466 points with Shmin labels (red).
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Figure 4.7: Four testing curves formatted to 466 points with Shmin labels (red).
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classification. These input and output neurons must remain a constant size.

Within the ‘black box’ hidden layer framework of the DNN, multiple hyperparameters

also need to be optimized (Figure 4.3). These include: hidden layer activation functions,

output layer activation functions, number of hidden layers, number of hidden neurons per

hidden layer, loss functions, optimizer for back propagation, number of epochs. As discussed

earlier, the ReLU activation function is applied in this experiment for computational ease. A

sigmoid function was used for the output layer for ease of interpretability, placing probability

values between 0 and 1.

To understand the effects of varying hidden layers, each classification experiment is

repeated using one hidden layer, followed by five, and ten. Deeper neural networks (more

hidden layers) are hypothesized to handle complex problems with fewer neurons per layer

(Géron, 2019). This will be tested by decreasing the neuron count per layer for each increase

in the number of hidden layers. More neurons per hidden layer can aid in the classification

of complex problems, however, a trade off in the system must be made to avoid overfitting.

Two rules of thumb are applied for determining the number of neurons in each of these cases:

(1) The number of neurons are 2/3 of the input layer or 2/3 of the number of input and

output neurons added (Boger and Guterman, 1997).

(2) The number of hidden layer neurons should be less than twice the number of neurons

in the input layer (Berry and Linoff, 2004).

Using these guidelines, the three DNN learning models are created in Figures 4.8, 4.9,

4.10. An additional model is created explicitly not following these guidelines to test their

grounds in Figure 4.11. In these figures, the shape of each layer is described (Output shape)

and the number of trainable parameters for each layer is also included (# Param). The

summed trainable parameters is included at the bottom of each plot. These models use
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Figure 4.8: DFIT classification DNN with 1 hidden layer.

categorical cross entropy (Good, 1992) for calculating loss and stochastic gradient descent for

back propagation (SGD) (Kiefer and Wolfowitz, 1952).

Learning curves are used for the determination of the optimal number of epochs to train

the system. These curves display the loss for the validation and training datasets. An

accuracy score is also included for each model validation/training epochs. Collectively these

metrics aided in the interpretations of the varied learning models.

To conclude this methods section, Figure 4.12 shows a summary dataflow diagram for

method (1) and (2). In Figure 4.12 the end user would not have access to the ‘supervised

method calibration’ portion of the pseudo algorithm, instead the user would only be using

the output model for event prediction in the ‘supervised user interface’ pseudo algorithm.

This shifts the paradigm away from analytical interaction and instead, emphasis is put on

proper data formatting for input into the predictor model. Arguably, this is a ‘black box’

solution and may have its adversities when the model is not generalized. At the same time,

the aspect of abandoning ‘Analytical interaction’ in the DFIT Venn diagram (Figure 1.9) has

the hypothesized advantage of saving the end users time. These adversities and benefits will

be discussed in the following sections.
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Figure 4.9: DFIT classification DNN with 5 hidden layers.

Figure 4.10: DFIT classification DNN with 10 hidden layers.
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Figure 4.11: DFIT classification DNN with 5 hidden layers and more neurons than input and
output combined. This model also has the most trainable parameters.

4.3 Results

4.3.1 (1) Decision Tree and RF Classification

Decision tree and RF classification methods were the first supervised methods applied to

the DFIT Shmin classification problem. The training set of 24 synthetic DFIT curves where

merged into a flattened vector of 13496 points per variable (PSI and hours) and input into

the respective learning method.

The Decision tree learning method was selected as the historical baseline learning method

to be first applied to this classification task. Figure 4.13 displays a magnification of the

training dataset with the classification model overlain. In this figure, the green shaded areas

demarcate where Shmin would be classified as a point on future input DFIT curves. Green

points represent locations of known Shmin used to train the model. This figure also includes

a demagnified subplot of the total data classification on the upper right corner. The result of

applying this prediction model to the four testing curves is displayed in Figure 4.15, classified

Shmin points are demarcated by red circles. Only one classification was made on the field

dataset with a value of 9112psi, this value will be compared with the expected values of
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Figure 4.12: Dataflow diagram for both supervised methods (1) and (2) applied to the DFIT
event identification problem. Green outlines indicate user interface while red outlines indicates
features hidden from the user. Operations are also color coded based on their relationship to
the data scientist domains in Figure 1.9.
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Shmin for the testing dataset displayed in Figure C.1 of the appendix.

The modified method of Decision tree classification; RF classification is the second

supervised learning method tested in this experiment. Resulting model classification area is

displayed in Figure 4.14. Classifications of the testing dataset are displayed in Figure 4.16.

There are no classifications made on the testing datasets by this method.
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Figure 4.13: DFIT training data with the Decision tree classification model area for Shmin

overlain. Green points represent areas of known Shmin occurrences and red points where this
is False. The green shaded area represents the final classification model area where future
predicted curves would attain Shmin classification.
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Figure 4.14: DFIT training data with the RF classification model area for Shmin overlain.
Green points represent areas of known Shmin occurrences and red points where this is False.
The green shaded area represents the final classification model area where future predicted
curves would attain Shmin classification.
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Figure 4.15: Resulting classifications (red) of Shmin by the Decision tree model on the four
testing datasets.
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Figure 4.16: Resulting classifications (red) of Shmin by the RF tree model on the four testing
datasets.
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4.3.2 (2) DNN Classification

The application of DNN to the Shmin classification problem is the second supervised learning

method applied. The training set of 24 synthetic DFIT curves were formatted into a three-

dimensional data frame (24,466,2) for training and validating DNN model architectures.

These included the single layer model (Model 1), five layer model (Model 2), ten layer model

(Model 3) and the five layer model with additional neurons (Model 4). Models were generated

using the Intel Core i7-10750H CPU. The summary of the number of training parameters

and total time taken to train the model is displayed in Table 4.1. Complimentary to this, the

learning curves for each model are also displayed in Figures 4.17, 4.18, 4.19, and 4.20. In these

figures the loss and accuracy score for the training and validation sets is displayed converging

to 0 and 1, respectively. Each model was run with 1000 epochs to ensure convergence.

Resulting classifications made on the four testing Duvernay curves is displayed in Fig-

ures 4.21, 4.22, 4.23, 4.24, and 4.25. These figures display a continuous attribute of probability

of Shmin occurring as a given point on the DFIT pressure decline from the applied DNN

model. Figure 4.21 displays and example of model 1 results where all probabilities are

included. To improve interpretability, all following plots were filtered back to only show

classifications that had an above 80% (0.8) probability. These plots are also labeled with the

highest probability classification output by the model (green box) and its respective error to

the actual value. In cases where the highest probability value had high error (above 1%), the

second highest probability classification was also included (yellow box). Lastly, Figure 4.26

displays the number of potential Shmin classifications produced by each model on each curve

after the percent cut off was applied.
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Figure 4.17: Loss vs epochs and accuracy score vs epochs for model 1. Blue and orange lines
represent the training loss and validation loss, respectively.

Table 4.1: Model training times

# Model Number of parameters Time (seconds)

Single layer 435,555 18.9sec

Five layer 555,610 19.2sec

Ten layer 473,716 19.7sec

Five layer additional neurons 607,406 20sec
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Figure 4.18: Loss vs epochs and accuracy score vs epochs for model 2. Blue and orange lines
represent the training loss and validation loss, respectively.

Figure 4.19: Loss vs epochs and accuracy score vs epochs for model 3. Blue and orange lines
represent the training loss and validation loss, respectively.
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Figure 4.20: Loss vs epochs and accuracy score vs epochs for model 4. Blue and orange lines
represent the training loss and validation loss, respectively.
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Figure 4.21: Resulting Shmin classification probabilities from DNN model 1 as a continuous
attribute superimposed on the Duvernay testing curve dataset.
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Figure 4.22: Resulting Shmin classification probabilities from DNN model 1 as a continuous
attribute superimposed on the Duvernay testing curve dataset. Probabilities in this case
have been filtered to only show above 0.8 (80%).
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Figure 4.23: Resulting Shmin classification probabilities from DNN model 2 as a continuous
attribute superimposed on the Duvernay testing curve dataset. Probabilities in this case
have been filtered to only show above 0.8 (80%).
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Figure 4.24: Resulting Shmin classification probabilities from DNN model 3 as a continuous
attribute superimposed on the Duvernay testing curve dataset. Probabilities in this case
have been filtered to only show above 0.8 (80%).
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Figure 4.25: Resulting Shmin classification probabilities from DNN model 4 as a continuous
attribute superimposed on the Duvernay testing curve dataset. Probabilities in this case
have been filtered to only show above 0.8 (80%).
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Figure 4.26: Number of potential Shmin classifications vs Duvernay testing curve for each
DNN model color coded.
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4.4 Discussion

4.4.1 (1) Decision Tree and RF Classification

Inspection of Figures 4.15 and 4.16 portrays suboptimal results for the ability of Decision

and RF tree based learning methods to identify Shmin. As displayed in Figure 4.15, the

Decision tree classification method identified one point as Shmin on the Duvernay field case,

however, the remainder of the testing DFIT curves remained unclassified. The point identified

on the Duvernay field curve (9112psi) appears to be within reasonable error of the actual

value (9079psi) with a 0.36% difference. Comparison with the RF method shows reduced

classification effectiveness, with no classifications being successfully made (Figure 4.16).

To understand the poor performance of these methods, the generated classification models

are interpreted in Figures 4.13 and 4.14. In both cases, the green classification area generally

captures all Shmin labels (green dots). The boundaries are however, rectangular and over

extrapolated in some dimensions. For example, in the Decision tree model classification plot

(Figure 4.13), the classification area of Shmin appears to be interpolated far past the data

points in an area where there is no data (150-1000hrs). This over extrapolation appears to

correlate with the single classification made (9112psi) on the Duvernay field curve from the

Decision tree learning model (Figure 4.15). For the case of the RF model in Figure 4.16, the

classification boundary appears to have addressed this issue of over interpolation, however,

this has the adverse effect of eliminating any classification potential for the testing data

(Figure 4.16). This is an example of overfitting. To understand this overfitting phenomena,

analysis focused on the training and testing datasets in Figure 2.2.

A comparison of the training and testing data in Figure 2.2 shows the adversities an overfit,

non-generalized model can have on classification tasks. In this figure, the black training

curves are clustered in a different region of the pressure vs time space when compared to the

red testing set. Referring back to the classification model areas in Figures 4.15 and 4.16 one

can note that the model boundaries would be concentrated around the black training curves,
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particularly for the RF model. In other words, the training dataset used to build the model

would not have enough information to extend this boundary further to the red testing curves.

This is the issue of generality, a key problem that faces most ML methods where the model

cannot classify what it has not seen before.

Interestingly, it appears that the Decision tree method handles the adversity of overfitting

in this scenario better than the RF method. This observation contradicts the claim by multiple

sources (Ho, 1995; Géron, 2019; Chollet, 2018) that RF methods tackle overfitting. Perhaps

it is the simplicity of the Decision tree algorithm that allows it to to create ‘rectangular over

interpolation’ (Figure 4.15) and therefore, a more generalized solution. At the same time,

it can be observed that this method is still largely unsuccessful, classifying only 25% of the

testing dataset.

Collectively, it is noted that the Decision and RF tree learning methods do not provide a

universally generalisable approach for DFIT classification. For these methods to be effective,

the user would require access to a large variety of permutated datasets with vastly differing

Shmin classifications. It is hypothesized that training the data using all training datasets

at once, as two dimensional dataframe, does not allow the learning method to understand

relationships between points belonging to the pressure decline. This leads to a grouped average

classification which may not be generalized to other datasets. To address this adversity, the

experimental idea was formulated that each curve in the training dataset needs to be learned

independently, with emphasis on the complex non-linear relationships that exist between

the points and their corresponding labels. The application of the DNN in the next section

explores this method.

4.4.2 (2) DNN Classification

As discussed in the methods section, the application of the DNN learning model is hypothesized

to create a more flexible (generalizable) and quick Shmin predictive method. This is achieved

by passing each DFIT pressure decline in the training dataset through the learning network
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independently, allowing for non-linear relationships between the points and their labels to be

identified. Training the tested DNN models in Table 4.1 was relativity quick, with the largest

model taking 20 seconds. In this table, there is a correlation with the number of parameters

trained and time taken to train the model. For example, the single layer model takes the

shortest time (18.9seconds) with 435,555 parameters to train and the five layer model with

additional neurons take the longest time (20seconds) with 607,406 parameters to train. The

relatively short training time allowed for hyperparameter adjustments to be made with ease.

A reduced dimensionality associated with time series data is attributed to these time savings.

Other studies by Ismail Fawaz et al. (2019) also discuss better and faster convergence of time

series data when compared to higher dimensionality photos.

Figures 4.17, 4.18, 4.19, and 4.20 display the learning metrics associated with each of these

models. Generally, all models converge after 400 epochs with the training and validation loss

converging to zero. Of the four models, Model 1 appears to have the smoothest convergence

to zero for the loss metric and the quickest convergence to an accuracy score of one. This

appears to correlate to high accuracy classifications on the testing data in Figure 4.22. A

further dissection of these classification results reveals the field and second ‘simple’ model to

highest probability solutions that match the true interpretations of Shmin, this is followed by

the ‘complex’ 31-layer Duvernay model and the ‘simple’ Duvernay model. Overall, highest

probability classifications appear to represent true Shmin values with low error for the first

DNN model. Model 1 also displays strong generality characteristics when geologic and curve

segment attributes are varied. This is supported in Figure 4.22 where 100% of the testing

datasets have an accurate Shmin classification.

Increasing the number of hidden layers to five in Model 2 appears to yield an oscillating

convergence to a loss of 1 in Figure 4.18 and a higher variation in accuracy before 400 epochs.

Perhaps the addition of more layers in a more complex model has resulted in convergence

instability when compared to Model 1. This results in similar Shmin classifications to Model

1, however, with higher error. In this scenario, the field and ‘complex’ 31-layer DFIT curves
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appear to have the closest classifications (Figure 4.23). In contrast, the two ‘simple’ DFIT

curves appear to have poor classification results, with both the first and second highest

probability classifications having high error (Figure 4.23). The generality of this model

appears to be moderate, with only 50% of the training data being accurately classified.

Adding more complexity to the DNN model with 10 layers (Model 3) appears to yield

rapid convergence to a loss of 1 at 200 epochs, followed by oscillation in Figure 4.19. Both

the validation and training dataset accuracy appear to be low at 0.5 and 0.33, respectively.

Past 400 epochs the model appears to lose stability with poor accuracy. Similar to Model 2,

it appears that fitting a complex model to seemingly simple system has resulted in degraded

classification results. In this scenario, classification results in Figure 4.24 closely mirror the

observations made from Model 2 results. The generality of this model appears to be moderate,

with only 50% of the training data being accurately classified.

Model 4 is the final model tested with 5 layers and additional neurons above the thresholds

defined by Boger and Guterman (1997) and Berry and Linoff (2004). Model convergence and

accuracy in Figure 4.20 appear to mimic the same observations made from Model 2. Again,

this hints to the same observation that a complex model may not be adequate for modelling

a simplistic data space. Classification results from Model 4 (Figure 4.25) appear to closely

match those generated by Model 2 (Figure 4.23). This suggests the criteria outlined by

Boger and Guterman (1997) and Berry and Linoff (2004) does not have substantial effects on

this classification problem. On the topic of generality, this model appears to be moderately

generalizable, with only 50% of the training data being accurately classified.

Collectively, the experiments performed for DFIT DNN classification optimization problem

can be interpreted to make interesting conclusions. The first of these conclusions is that

training DNN models using this dataset appears to be relatively quick, therefore, model

optimizations with varying hidden layer combinations appear to be less necessary. As

depicted, efforts to optimize the model with more layers appears to have lead to poorer

and less generalizable classification results. This may be the result of working with lower
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dimensionality time series data where the addition of hidden layers and ‘complexity’ appears

to have degraded model convergence and accuracy. For this reason the single layer model

(Model 1) has created optimal results. This observation is further portrayed in Figure 4.26

where the total number of potential high probability classifications for the single layer model

is on average half the size of the other model combinations.

Finally, the criteria set by Boger and Guterman (1997) and Berry and Linoff (2004)

appears to not be not essential to for accurate DFIT classification. This is supported by the

classification produced by Models 2 and 4 having significant similarities. It is noted that

DNN optimization for the DFIT classification problem should instead focus on the number

of hidden layers in the model, this appears to have the most significant impact.

4.4.3 Comparison of the Two Supervised Methods

In this study, I have designed and tested (1) Decision and RF classifiers and (2) DNN

supervised methods as an effort to save time and eliminate bias in the DFIT classification

problem. Overall, the Decision and RF tree based classification showed the greatest flexibility

for data input and model generation. The DNN model contrasted from this where care

was required to match the size of the datasets, as well as ensuring selected curve segments

contained an Shmin value. Model training for both methods was relativity rapid with 20

seconds being the longest training time. For this reason, data formatting appears to be the

key contributor in time taken to reach a solution from each model that would be contained

in the supervised user interface of Figure 4.12.

In this experiment, data formatting for the tree based methods took in the order of

minutes. This contrasts from the DNN method, where data formatting was in the order of

hours. From this point of view the Decision and RF methods excel in time savings for the

user.

Although time savings is an important aspect of ML method performance, so is the ability

to identity the event of interest. This is were the Decision and RF methods show poor
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performance and poor generality. The simplest of the DNN models contrast from this and

produce high accuracy Shmin classifications. Furthermore, the DNN model was generalizable

to varying curve segment information and geologic conditions. This improved accuracy is

believed to be attributed to the DNN method learning the point relationships in each curve

independently opposed to the grouped learning approach for Decision and RF based learning.

Human bias reduction for both of these methods is achieved by allowing ML methods

to derive modeled relationships for key parameters. Comparatively, analytical methods in

Chapter 1 relied on line fitting procedures, subject to human variation. Additional bias

reduction is achieved in these methods by eliminating fracture physics assumptions made

when creating derivative curves for the analytical process. This is achieve by only using the

pressure versus time data. It can be noted that bias can still be introduced in the training

population selection for supervised methods. In the case of this study care was taken to vary

parameters in the training set. That being said, it was observed the tree based methods

still demonstrated biased classification results. In contrast, the DNN was able to produced

generalizable solutions, suggesting an unbiased model.

After analysis of the two tested supervised methods, it appears the DNN learning method

is the optimal supervised learning method for Shmin classification. Arguably, to save time and

improve Shmin interpretations using the DNN method, this would still require a developed

data formatting technique to input data into the trained model. A potential solution would

be to develop a secondary program to perform this formatting.

4.5 Conclusions

In efforts of developing new methods to challenge the clustering method proposed by the

CREWES DFIT Clustering app this chapter designed and tested two groups of supervised ML

methods for Shmin classification. These consisted of tree based and DNN learning methods.

The goal of designing these methods was to save the end product user time by eliminating
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the interactivity portion of the DFIT data science Venn diagram (Figure 1.9) and further

eliminate human bias when interpreting these curves. This will allow for quick and accurate

interpretation of Shmin and therefore, efficient optimization of the hydraulic stimulation

process to improve economics.

Based on the goals of this experiment, one of the key performance factors was time

savings. It was found that the tree based methods: Decision and RF excel in simplistic data

formatting with little data preconditioning required. The DNN method however required

a more complex data structure as well as data clipping for input into the training model.

The model training time was reasonably quick, taking a maximum of 20 seconds. For these

methods, data formatting appears to be the longest time consumer. A possible solution for

this is developing general formatting codes for input into the trained classifier model.

The goal of saving time must also be balanced with classification accuracy and generaliz-

ability of the trained model. From this perspective the DNN methods outperform the tree

based methods with 100% classification of Shmin for the top performing DNN model and only

25% for the top performing tree based method. This contrast in accuracy is hypothesized to

be the result of the data formatting and input into the respective learning models. The DNN

method looks at each DFIT curve independently and learns non-linear relationships between

each point, tree based methods look at all training curves collectively and try to build an

average classifier. For this reason DNN models produce relatively unbiased classifications.

Collectively, the DNN method appears to produce the best classifier model for this problem.

Within the DNN architecture, it appears that less layers produce improved model convergence

and accuracy. This is related to the reduced dimensionality of this data requiring simplified

models. Future studies may look at the application of other neural network structures

such as Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) as

alternatives.
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Chapter 5

ML method comparison

Following the development of unsupervised and supervised methods, this chapter will look

at contrasting strengths and weaknesses. This is achieved by looking at the aspects of (1)

Ease of data input/training/prediction, (2) Interactivity and generalization, (3) Classification

power, accuracy, and bias reduction, and (4) Overall method ranking. Using the findings

from this process, recommendations will be made for future projects in the realm of DFIT

event detection.

5.0.1 Ease of data input/training/prediction

Collectively, the four methods in this study have varying degrees of complexity at different

stages of the learning and prediction process for DFIT key parameters. To contrast these

complexities, Figure 5.1 displays the amount of time taken during the data formatting

(input), model training/calibration, and prediction process for the analytical (Chapter 1),

unsupervised clustering app (Chapter 3), supervised tree (Chapter 4), and supervised DNN

methods (Chapter 4). The analytical method appears to take the largest amount of time to

produce a DFIT interpretation and the supervised tree based method the shortest. The time

difference of 27 hours between these two end member methods can be dissected by analysing

the process times (Figure 5.1).
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Process times within Figure 5.1 reveal a key paradigm shift in the decrease of data

formatting time when comparing supervised processes to unsupervised and analytical processes.

This is mostly the result of supervised algorithms requiring a predefined and generalized

training dataset. Furthermore, Chapter 4 displayed that supervised DNN methods also

require data formatting and windowing of datasets. This is in contrast to the analytical and

unsupervised clustering app methods where the user is simply required to input pressure vs

time data for the DFIT under investigation with more emphasis on the manual interpretation.

It is important to note that data formatting algorithms can be developed to reduce the data

formatting time to seconds for these supervised methods, however, not all field data is created

equal. Therefore, it would be a difficult task to create a formatting algorithm that captures

all data variations. Furthermore, the supervised methods tested only required the labelling

of Shmin, arguably, data labelling for a holistic result, containing ISIP and Preservoir would

also be more time consuming.

The relative time saving from data formatting created by analytical and unsupervised

clustering methods appear to be overshadowed by training/calibration and prediction times.

It appears as though the aspect of having user interaction for the analytical and unsuper-

vised clustering methods adds significantly more time to these processes when compared

to supervised methods (Figure 5.1). For example, in Figure 5.1 the training time jumps

from 0.2 seconds to 24+ hours for the analytical method. It is important to note that this

training time for the analytical method would be dedicated to the human interpreter getting

acquainted to the manual methods for DFIT interpretation and is also based on experience.

In the case of this study, it took me roughly 24 hours to read literature, and build confidence

to make manual interpretations. Following building the fundamentals to perform analytical

methods, the prediction process is also performed solely by the trained human interpreter.

This may be thought of as training the ‘human’ DFIT interpretation model, as opposed to

the other three computer aided vision models. It appears that integrated computer vision

in human models significantly reduced training and prediction times for the unsupervised
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clustering app. In this scenario, unsupervised clustering is identifying the boundaries to the

human subject to adjust and optimize appropriately. Looking back to Chapter 3, it was

noted that unsupervised clustering methods merge the three domains of DFIT data science

(Figure 1.9). In doing so, the addition of computer vision is the reason why we can reduce

training and prediction time with respect to the pure analytical methods.

Using the idea of human analytical methods being slower for interpretation, one can un-

derstand why the supervised DNN and tree based learning is still faster than the unsupervised

learning method. This is because these supervised methods are fully dependent on computer

vision an no human input is required. The pseudo algorithm for supervised methods (Figure

4.12) further exemplifies this, where the user simply applies the computer trained model to

produce a solution. This differs from the unsupervised algorithm where the user is required

to update the model parameters if necessary (Figure 3.3).

The supervised tree method is the most time efficient followed by the supervised DNN,

unsupervised clustering app, and analytical methods when evaluated in an end user product

context. This is assuming data formatting is simple and repeatable for both supervised

methods. With this in mind, one may imply from this that supervised methods are superior,

however, it is also important to weigh the resulting costs this time saving has on interactivity,

generalization, and the classification accuracy. This will be investigated in the next two

sections.

5.0.2 Interactivity and generalization

As displayed in the dataflow diagram for supervised methods, (Figure 4.12) there is no user

interactivity and only a final model from which classifications can be made from. This may

be referred to as a non-fluid model as it cannot be easily changed after training. In contrast,

the unsupervised and analytical algorithms allow for user model adjustment after the data

has been inputted (Figure 3.3). This is further demonstrated in the DFIT data scientist venn

diagram (Figure 1.9) where the interactive analytical domain is not present for supervised
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Figure 5.1: Total time required to learn each method in this thesis and make a prediction.
Categories of time are split up into data formatting, training time, and prediction time.

methods. With this in mind, Chapters 3 and 4 display that the addition of interactivity

appears to have two benefits: process understanding and fluid model adjustment for event

identification optimization (generalization).

Efforts to understand classification trends created by ML methods is easiest when inte-

grating interactivity into the learning method. For the case of the unsupervised clustering

app, this interaction allowed for the user to test multiple variable combinations, use PCA

plots, and quality control displays to understand the varying degree to which each parameter

affects the classification. In contrast, users of supervised methods simply rely on the stagnant

‘black box’ model for classifications. This is an adversity that faces the supervised methods.

The lack of interactivity diminishes the users understanding of the problem as no work is

required.

Interactivity contributes to the optimization of key parameter identification for the unsu-

pervised method and analytical methods. As displayed in Figure 3.10, alternate optimizations

of the clustering algorithm allowed for alternate event identifications to be made. On the
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other hand, the tree based methods were unsuccessful at making classifications of Shmin on

most instances of the training data in chapter 4 (Figures 4.15 and 4.16). In contrast, the

supervised DNN with no interactivity showed promise for generalized solution potential by

classifying all four instances of training data Shmin occurrences in Figure 4.21.

The interactivity aspect appears to have improved the analytical and unsupervised

clustering methods’ ability to understand the classification process and generalize solutions

to differing geologic instances. As for methods with no interactivity, the supervised DNN

appears to show generalized model solutions as well for Shmin classifications. Future studies

may seek to expand this supervised DFIT classification method to classify multiple events at

once for a closer comparison to the analytical and unsupervised clustering methods which

already do so. The next subsection will shift focus to the classification accuracy and overall

bias contained in each method.

5.0.3 Classification power, accuracy, and bias reduction

Another category of consideration when ranking the four clustering methods in this study is

the ability to classify events accurately and reduce human bias. To investigate the aspect

of classification accuracy, Figure 5.2 is generated as a summary of the probability of key

parameters being identified by the optimized method and the associated error range for

identified attributes (black bar). The supervised tree based methods have the least success at

identifying events for varying DFIT curve conditions. This is also associated with the highest

error produced classification.

For the remaining three tested methods, differences between probability of event identi-

fication and accuracy become more subtle. In Figure 5.2 it appears that the unsupervised

clustering app has the lowest relative probability of identifying all events. This decreased

event identification probability is the result of missing curve data making the clustering app

unable to identify the Preservoir. In contrast, the supervised method is not affected by this as

it was only trained to identify Shmin. With this in mind, a strength of the analytical method
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is its ability to estimate reservoir pressure when the data is missing from the DFIT pressure

decline. Future studies may investigate techniques of interpolating this missing data.

To create a more accurate comparison of these three methods, Figure 5.2 is adjusted to

show events that the data allowed trained models to identify (Figure 5.3). This does not

change the events (ISIP, Shmin, and Pres) for the analytical method, however, will reduce the

clustering app to ISIP and Shmin and supervised method to Shmin. Evaluation of this plot

reveals all methods have equal probability of creating an event interpretation when the data

is fully complete. This still leaves the accuracy of the event identified in question. To explore

these differences the maximum value error bars can be analysed in Figure 5.3. Ranking the

associated event error of these methods, the supervised DNN appears to have the lowest

at 0.6%, followed by the unsupervised clustering at 1% and analytical method at 4%. This

shows the strength of the unsupervised and supervised methods over the original analytical

method. It further suggests the power of the supervised DNN. Future studies will expand its

classifying power to all key parameters on the DFIT pressure decline.

After producing accurate event interpretations, one of the main goals of this experiment

was to also reduce human user bias. Unsupervised and supervised methods achieve this

by relying on mathematical inferences opposed to line fitting procedures from analytical

methods. This is demonstrated in Figure 3.11 of chapter 3 where PCA analysis reveals the

hidden mathematics of the clustering method. A potential bias remaining in the unsupervised

method is the use of curves created by the Carter leak-off assumption. The supervised method

eliminates this potential bias by only relying on the pressure vs time data. For the supervised

methods, bias may exist in the training data used, it is the model builder’s responsibility to

create a generalized training set of varying geologic conditions.

5.0.4 Overall method ranking

The overarching goal of this thesis is to explore ML methods’ capability of improving DFIT

interpretation in terms of time saving and human bias reduction. To fully compare and contrast
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Figure 5.2: Probability of event identification vs method in this study. The maximum error
bar range for the identified value is overlaid. Methods with a single star indicate averages
when only one event of interest was targeted (Shmin). Methods with two stars are subject to
vary base on the interpreters experience.

Figure 5.3: Probability of event identification vs method in this study. The maximum error
bar range for the identified value is overlaid. Methods with a single star indicate averages
when only one event of interest was targeted (Shmin). Methods with two stars are subject to
vary base on the interpreters experience.
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the benefits and weaknesses of each method attributes such as: time savings, interactivity,

generalization, accuracy, and human bias reduction were discussed in the prior sections.

Table 5.1 displays a summary the strengths for each method. This table demonstrates that

although supervised methods can all demonstrate time saving properties it does not mean the

output result is satisfactory. This is particularity the case for the supervised tree methods.

Of the methods tested, the unsupervised clustering app appears to meet all the desirable

requirements in Table 5.1. This method allows for time saving and bias reduction while

including aspects of interactivity observed in the analytical method. It should be noted

that the supervised DNN method allows for a significantly reduced interpretation time when

compared to analytical and unsupervised clustering methods. This also comes at the cost of

losing interactivity and the users understanding of how the solution was formed.

With the observations summarized in Table 5.1 and overall method ranking can be derived

for the DFIT data tested in this thesis. In order from optimal to suboptimal methods

this would be (1) unsupervised clustering app, (2) supervised DNN, (3) analytical, and

(4) supervised tree based methods. It is important to note that the top three methods

portrayed in this ranking may vary in order based on data type and are all equally viable

methods. Method selection should primarily be based on the users time and risk tolerance to

human bias. Collectively, the ML methods tested in this thesis show great promise for DFIT

interpretation optimization.

5.0.5 Recommended future work

Methods and adversities identified in this thesis leave significant room and promise for future

work. For the supervised methods, studies testing other models and app building may

improve interactivity. The DNN supervised method shows strengths in its ability to reduce

interpretation time. This method should be further expanded to classify additional events

including ISIP and Preservoir. To achieve a prediction of Preservoir a method will also have

to be developed for estimating missing segments of the DFIT curve. Lastly, research may
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also focus on stress testing these methods with more varying geologic conditions. This will

build further confidence in how generalizable these methods are.
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Chapter 6

Conclusion

6.0.1 Future projects

The following avenues for future research have been identified from this project as follows:

� Further stress testing of the unsupervised app and supervised method

– Sub-studies using alternative synthetic modeling software for curve generation and

additional field tests

– testing on non-ideal pressure declines

� Attribute investigation for ML method optimization

– Frequency domain transforms and additional filtering to create additional attributes

for classification

– Hybrid supervised ML approach constrained by models such as Carter leak-off

flow

� Development of unsupervised and supervised user interface

– Inclusion of additional parameters such as probability filtering in the Gaussian

Mixture model method for unsupervised clustering
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– Development of app interface for supervised method to invoke more interaction

– Testing of new supervised methods such as CNN

� Additional event classification

– Do unclassified cluster boundaries created by supervised methods have physical

meaning in the fracture closure process?

– Multi-event classification (ISIP, Shmin, Preservoir) for supervised methods

– Event classification on pressure ramp-up cycle leading up to formation breakdown

– Trail of methods on new data sets such as cyclic fracture stimulation data

� Interpolation of missing pressure decline data

6.0.2 Conclusion

Diagnostic Fracture Injection Tests (DFIT) are an important in-situ measurement method for

deriving key subsurface parameters such as Shmin and Preservoir. This information can then

be used to optimize fracture stimulation design. To achieve these optimization aspects, an

effective and accurate method must be developed to obtain key parameters from an apparently

smooth pressure vs time DFIT. Current analytical methods have developed a solution to

this adversity by modeling flow behavior and translating this to interpretable derivative

curves. This is time consuming, requiring a different method for each key parameter, and can

be subjected to unintended human bias in line-fitting processes. This thesis tests Machine

Learning methods (ML) as a mean of addressing timely and potentially biased processes.

To address adversities faced by analytical methods, a combination of unsupervised and

supervised ML methods were applied to a dataset of synthetic and Duvernay Formation field

tests. Results found that supervised methods where most effective at reducing interpretation

time, however, required significant data formatting and eliminated the interactive aspect of

interpretation. Unsupervised methods applied in an R-Studio Shiny Web App® environment
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appeared to address this issue of interactivity, however, made the process on average more

time consuming as the user can now iterate through possible solutions. Another benefit of

using unsupervised methods is that exploration as to why classifications appear where they do

can be done with ease in the interactive process. This exploration revealed a combination of

dimensionality and point frequency to contribute to classification boundaries. This arguably

creates a more mathematical solution opposed to the line fitting process that is encompassed in

analytical methods. Lastly, by varying the geologic conditions and segments expressed on the

DFIT curves for ML testing, it was found that both supervised DNN and clustering methods

where generalizable, and could also be optimized to identify groups of key parameters.

Overall the ML approach to DFIT interpretation shows significant promise for time and

bias reduction. This will allow the end-user to save time and make unbiased optimizations to

stimulation design or risk analysis. Future projects will look at stress testing these methods

with further varying DFITs, attribute optimization, interface development, additional event

classification, and interpolation of missing data.
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Appendix A

DFIT Synthetic Parameters
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Appendix B

Clustering Methods

Table B.1: Hyperparamters for clustering methods

# Clustering method Parameters

K-means Number of clusters

DB-scan Minimum points, Search radius

Hierarchical Clustering Measure of distance between clusters, Number of clusters

Gaussian mixture model Shape of probability distribution, number of clusters

Table B.2: Clustering methods

# Clustering method Definition

K-means Assigns clusters to centroids until stabilization

DB-scan Groups points in densely packed, leaves outliers in low density areas

Hierarchical Clustering splits clusters of similarity

Gaussian mixture model Bayesian probability to assign clusters
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Appendix C

Labeled Curves
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Figure C.1: Reference plot of each Duvernay testing curve with the actual Shmin values
labeled.
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Appendix D

Library of the codes

The codes written for this thesis can be found at:

https://github.com/lukas-sadownyk/DFIT ML Library.git.
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