
Important Notice 
 

This copy may be used only for 
the purposes of research and 

private study, and any use of the 
copy for a purpose other than 
research or private study may 
require the authorization of the 
copyright owner of the work in 

question.  Responsibility regarding 
questions of copyright that may 
arise in the use of this copy is 

assumed by the recipient. 
 
 



UNIVERSITY OF CALGARY

Time-Lapse Seismic Imaging, Full-waveform Inversion, and Uncertainty Quantification

by

Xin Fu

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS

CALGARY, ALBERTA

SEPTEMBER, 2023

c© Xin Fu 2023



Abstract

Time-lapse seismic, also known as 4D seismic, is a powerful tool for monitoring subsurface

changes over time. By comparing seismic data acquired at different intervals, it enables the

detection and characterization of dynamic reservoir processes, aiding in reservoir manage-

ment, production optimization, and enhanced oil recovery. It has applications in geothermal

energy, CO2 storage monitoring, and environmental impact assessment. However, accurate

analysis of time-lapse seismic data remains a challenging task. It requires well-repeated

time-lapse seismic surveys, including well-repeated acquisition geometry and equipment as

well as well-repeated ambient noise. This thesis is to alleviate the non-repeatability issues

in time-lapse seismic imaging and full-waveform inversion (FWI), and to realize the uncer-

tain quantification for time-lapse seismic waveform inversion. A time-lapse imaging approach

that involves two new frequency-domain matching filters is developed. The first filter requires

source wavelet estimates from both baseline and monitoring data, while the second filter is

source-independent but more sensitive to data noise. By applying these filters, we success-

fully reduce source wavelet non-repeatability, and the new approach improves the accuracy

of time-lapse imaging. Furthermore, a stepsize-sharing time-lapse FWI strategy is designed

to reduce artifacts caused by the variability of convergence in conventional strategies. The

strategy demonstrates good adaptivity in different tested realistic scenarios using synthetic

data. It is stable for scenarios using biased starting models, while the conventional strategies

fail in this regard. Moreover, to realize the uncertain quantification, a Bayesian time-lapse

FWI procedure, based on a Markov chain Monte Carlo (MCMC) algorithm, is formulated.

The formulation employs several existing strategies, including the use of a double-difference

time-lapse FWI, incorporation of time-domain multi-source data, and application of a local-

updating target-oriented inversion. It incorporates these within a stochastic framework,

involving the computation of model covariance with an adaptive Metropolis algorithm, and

a method to estimate data error statistics based on the features of time-lapse difference data

is incorporated. A random walk Metropolis-Hastings MCMC is adopted for optimization.
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Chapter 1

Introduction

1.1 Challenges

At present, seismic monitoring stands out as the most effective technique for long-term

subsurface monitoring in the context of CO2 sequestration. The use of time-lapse (or 4D)

seismic methods for reservoir monitoring and characterization has been developed for sev-

eral decades since the mid to late 1980s (Greaves and Fulp, 1987; Lumley, 2001; Landrø,

2001; Calvert, 2005; Hicks et al., 2016; Jack, 2017; Cho and Jun, 2021). Time-lapse seismic

technology is particularly useful for tracking changes in reservoirs caused by hydrocarbon

production (e.g., enhanced oil recovery) and underground CO2 storage. As the demand for

technologies to control greenhouse gas emissions increases, many researchers have been de-

veloping CO2 storage in the subsurface, and time-lapse seismic methods are used to monitor

these subsurface CO2 storages (Egorov et al., 2017; Cho and Jun, 2021; Ajo-Franklin et al.,

2013; Macquet et al., 2019). However, successful seismic monitoring relies heavily on the

repeatability of baseline and monitor surveys, which can be affected by various factors such

as weather conditions, source and receiver positions, environmental noises, source wavelets,

seawater, and near-surface properties.

To mitigate the impact of the aforementioned factors, it is essential to have good ac-

1



quisition plans and proper data processing methods. These include repeatable acquisition

geometries and matching filter designs. For instance, in the Foinhaven and Valhall fields,

permanent ocean-bottom-cable installations are used to obtain good repeatable data dur-

ing time-lapse seismic surveys (Calvert, 2005; Yang et al., 2016). In the Aneth oil field in

Utah, receivers are cemented in the monitor well to acquire time-lapse VSP (vertical seis-

mic profile) data (Cheng et al., 2010). In the CO2CRC Otway field experiment, Shulakova

et al. (2015) improved the repeatability of land seismic data by burying receivers to reduce

noise caused by poor weather conditions, non-repeatable receiver positions, near-surface

changes, and non-repeatable survey environments. During time-lapse data processing, a

cross-equalization method is often used to enhance the repeatability between baseline and

monitor data (Rickett and Lumley, 2001). Fu et al. (2020) proposed a double-wavelet method

to eliminate source wavelet non-repeatability, but it requires source wavelets information of

baseline and monitor data. To avoid this requirement, a source-independent matching filter

will be designed in Chapter 2 in this thesis. In recent years, time-lapse seismic surveys based

on fiber-optic distributed acoustic sensing (DAS) systems have become increasingly popular.

This is because downhole DAS arrays can be permanently installed, have lower monitoring

costs, and provide finer spatial sampling (Zwartjes et al., 2018; Byerley et al., 2018; Wilson

et al., 2021).

As a powerful tool to monitor subsurface reservoir changes and/or CO2 storages, time-

lapse seismic full-waveform inversion (FWI) (Lailly et al., 1983; Tarantola, 1984; Virieux and

Operto, 2009) can provide high-resolution imaging of the physical properties of subsurface

media, and it can solve the problem of non-repeatable receiver/source positions in time-

lapse seismic surveys (Zhou and Lumley, 2021c; Fu and Innanen, 2022a). In the past decade,

many time-lapse FWI methods have been developed. The most conventional time-lapse FWI

strategy is the parallel strategy (PRS) (Lumley et al., 2003; Plessix et al., 2010). However,

its result is prone to be affected by the convergence difference (Yang et al., 2015a) between

baseline and monitor inversions as well as the non-repeatable receiver/source positions (Zhou
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and Lumley, 2021c; Fu and Innanen, 2022a). Routh et al. (2012) present the sequential

strategy (SQS), using the inverted baseline model as a starting model for monitor inversion,

which can help to save computational cost and has been justified in the case of field VSP data

(Egorov et al., 2017). However, this strategy often generates strong artifacts since it enhances

the convergence difference between baseline and monitor inversions (Yang et al., 2015a;

Zhou and Lumley, 2021c). But a local-updating SQS can efficiently reduce the artifacts

and perform well in both synthetic and field time-lapse data (Raknes and Arntsen, 2014;

Asnaashari et al., 2015). Also, the local-updating method can be incorporated with the

double-difference strategy (DDS), which will be introduced later, to improve the time-lapse

results (Zhang and Huang, 2013; Li et al., 2021), or to alleviate the impact of taking an

acoustic approximation to elastic subsurface rocks (Willemsen et al., 2016). Moreover, the

local-solver-based local-updating method can significantly decrease the computational cost

of time-lapse FWI (Willemsen, 2017; Huang et al., 2018; Kotsi et al., 2020). Even so, the

local-updating method needs prior location information about reservoir change, which may

be challenging to be sure of in some cases of non-repeatable time-lapse surveys.

The DDS, directly minimizing residuals between synthetic difference data (synthetic mon-

itor data minus synthetic baseline data) and observed difference data (observed monitor data

minus observed baseline data), applied in time-lapse FWI first by Zheng et al. (2011), has

been adopted by several researchers (Zhang and Huang, 2013; Raknes and Arntsen, 2014;

Yang et al., 2015a; Willemsen et al., 2016; Fu and Innanen, 2021) including a real data case

in Yang et al. (2016). It can focus on reservoir changes and reduce artifacts outside the

reservoir, and its result is not sensitive to the convergence degree of the inverted baseline

model. Nevertheless, the DDS requires well-repeated time-lapse surveys, for instance, it is

vulnerable to the non-repeatability of receiver/source positions. The common-model strat-

egy (CMS), presented by Hicks et al. (2016), can also decay the artifacts caused by the

divergence difference between baseline and monitor inversions (Fu and Innanen, 2022a). Its

philosophy is to employ the same starting model, which has partially converged, for baseline
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and monitoring inversions to guide them into close local minima. It has been applied in field

cases in Hicks et al. (2016) and Bortoni et al. (2021). Moreover, Maharramov et al. (2016)

present a joint method in which baseline and monitor models are simultaneously inverted;

Zhou and Lumley (2021a) propose a central-difference strategy containing two sequential

strategies, which assumes that the artifacts in the time-lapse changes, inverted from the

two sequential strategies, have opposite polarities. However, of all the methods mentioned

above, none has demonstrated the ability to solve the non-repeatability issue of seawater

or near-surface property changes during baseline and monitor seismic surveys. To date, the

capacity of time-lapse FWI technology to solve this issue has been demonstrated rarely.

Overall, accurate analysis of time-lapse seismic data remains a challenging task. It re-

quires well-repeated time-lapse seismic surveys, including well-repeated acquisition geometry

and equipment as well as well-repeated ambient noise. However, certain acquisition parame-

ters are difficult to replicate, such as ambient noise, source parameters, and properties of the

near-surface or seawater. In fact, it is hardly realistic to artificially control them. Therefore,

it is necessary to improve the repeatability of time-lapse seismic data through appropri-

ate processing. FWI, an advanced tool for time-lapse data analysis, still faces challenges

regarding the convergence difference between baseline and monitor inversions. This discrep-

ancy can significantly impact the effectiveness of time-lapse FWI when the repeatability

of the data is inadequate. Factors contributing to the convergence difference in time-lapse

FWI include nonrepeatable acquisition parameters, nonrepeatable near-surface or seawater

properties, nonrepeatable inversion parameters, and biased starting models, among others.

Additionally, enhancing the signal-to-noise ratio of time-lapse data poses another challenge.

This is because seismic responses to subsurface changes over time are typically weak and

more susceptible to noise interference compared to the baseline and monitor seismic data.

Indeed, the subtle medium variations associated with enhanced oil recovery and/or CO2

storage problems give uncertainty quantification within the inverse approaches height im-

portance. Nevertheless, quantifying the uncertainty specifically for time-lapse FWI presents
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an even greater challenge compared to the aforementioned difficulties.

1.2 Contributions

Solving all problems in time-lapse seismic analysis within a single thesis is not what we

expect, and the contributions of this thesis will lay in the following points:

1 In Chapter 2, a time-lapse imaging approach that involves two frequency-domain

matching filters as well as a new workflow is developed. The first filter requires source

wavelet estimates from both baseline and monitoring data, while the second filter is

source-independent but more sensitive to data noise. By applying these filters, we

successfully reduce source wavelet non-repeatability. Additionally, we use a time-shift

correction technique, utilizing a published fast local cross-correlation algorithm, to fur-

ther minimize non-repeatability. Finally, we employ a reverse time migration algorithm

with a Poynting vector imaging condition to generate depth images and address any

remaining errors caused by the inaccuracy of the source-independent matching filter.

2 In Chapter 4, a stepsize-sharing time-lapse FWI strategy is designed to reduce artifacts

caused by the variability of convergence in conventional strategies. The strategy is

tested in five scenarios, including noise-free data, non-repeated noises, non-repeatable

source positions, biased starting models, and a combination of the latter three. The

comparisons between the new strategy and the conventional strategies show that the

new method can adapt to all tested scenarios well. Especially, only the new strategy

can provide meaningful results in the latter two scenarios when compared with others.

3 In Chapter 5, a Bayesian time-lapse FWI procedure, based on a Markov chain Monte

Carlo (MCMC) algorithm, is formulated. The formulation employs several existing

strategies, including the use of a double-difference time-lapse FWI, incorporation of

time-domain multi-source data, and application of a local-updating target-oriented
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inversion. However, it incorporates these within a stochastic framework, involving the

computation of model covariance with an adaptive Metropolis algorithm, and a method

to estimate data error statistics based on the features of time-lapse difference data is

incorporated. A random walk Metropolis-Hastings MCMC is adopted for optimization.

1.3 Thesis overview

This thesis contains six chapters:

1 Chapter 1 is the introduction, which is to introduce the research status and challenges

in time-lapse data analysis as well as the contributions and outlines of this thesis.

2 Chapter 2 is titled ”Time-lapse seismic imaging using shot gathers with non-repeatable

source wavelets”. In which the research status and challenges in time-lapse prestack

imaging are introduced, and a new time-lapse imaging approach is proposed and veri-

fied by numerical examples.

3 Chapter 3, entitled ”Full-waveform Inversion”, provides a comprehensive review of

the theory behind FWI. The chapter covers key aspects such as ”Objective Function

Optimization”, ”Gradient Calculation”, and ”Line Search Technology”.

4 Chapter 4, titled ”Stepsize Sharing in Time-lapse Full-waveform Inversion”, introduces

the current research status and challenges in time-lapse FWI. The chapter presents a

novel strategy, namely the stepsize-sharing approach, designed to mitigate artifacts

resulting from convergence variability in conventional strategies.

5 Chapter 5, titled ”A time-domain, multi-source Bayesian/Markov Chain Monte Carlo

formulation of time-lapse seismic waveform inversion”, introduces the current research

status and challenges in FWI using stochastic global optimizations. The chapter

presents a novel time-lapse strategy, namely a Bayesian FWI procedure for time-lapse

data, based on a MCMC algorithm.
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6 Chapter 6 includes conclusions for the whole thesis and future work.
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Chapter 2

Time-lapse seismic imaging using shot

gathers with non-repeatable source

wavelets

2.1 Abstract

In time-lapse seismic applications, the signal produced by changes in the properties of sub-

surface rocks is generally obscured by noise associated with imperfect repeatability between

surveys. A particularly important obstacle in the formation of time-lapse difference images is

variation in the effective source wavelet between baseline and monitoring datasets. However,

the partially separable influence of the wavelet within the Green’s function model of seismic

data permits two frequency-domain matching filters to be designed, which act to reduce

source wavelet non-repeatability. One is based on the spectral ratio of the baseline and mon-

itoring wavelets, and can be applied when prior estimates of the wavelets are available; the

other is the average spectral ratio of the baseline and monitoring traces, and can be applied

when prior estimates are unavailable. After balancing the datasets with one or other of these

filters, we further prepare for the imaging step with time-shift corrections, using a published
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fast local cross-correlations algorithm, preparing the difference data for use in an imaging

algorithm. Reverse-time migration (RTM) is engaged for the imaging task, but we observe

that residual repeatability errors tend to be magnified at this stage when source-normalized

cross-correlation imaging conditions are used. Testing indicates that replacing this with a

Poynting vector imaging condition strongly suppresses remaining errors in a robust manner.

This includes stability within simulated data environments to both noise-free data and data

with random noise, up to signal-to-noise ratios of roughly 1. Furthermore, our method il-

lustrates better performance when compared with the conventional least-squares matching

filter and common-depth-point-domain warping. At present, there is no common workflow

for seismic imaging directly using time-lapse shot gathers. Our research contribution lies not

only in the two matching filters, but also in a novel workflow for time-lapse seismic imaging.

2.2 Introduction

Time-lapse or 4D seismic technology is now a regular part of reservoir monitoring (e.g., en-

hanced oil recovery and/or CO2 storage problems) and characterization for decades (Greaves

and Fulp, 1987; Ross and Altan, 1997; Wang et al., 1998; Barkved et al., 2003; Arts et al.,

2003; Barkved et al., 2005; Chadwick et al., 2009; Kazemeini et al., 2010; Pevzner et al.,

2017), and has recently begun to be incorporated into reservoir development plans (Jack,

2017). If its requirements in terms of acquisition and processing can be met, time-lapse

seismic can significantly impact the interpretability of detailed seismic information. In 3D

or single-time seismic data, static geological information and dynamic fluid-flow information

are mixed together, but in a time-lapse setting, which include two or more datasets ob-

tained at different times, time-variant and time-invariant signal can be effectively separated,

allowing fluid-flow changes to be directly sensed (Lumley, 2001). However, repeatability

requirements are difficult to meet, and issues arising from data variations due to changes un-

related to the geological target zone remain subjects of research and acquisition/processing
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workflow development.

Changes in the non-target geology between the times of a baseline and a monitoring seis-

mic survey can be divided into roughly three categories. The first encompasses geological

changes external to the target, for instance, reservoir subsidence, compaction, and porosity,

or/and overburden pressure changes during hydrocarbon production and/or fluid injection

(water, gas, steam, CO2, etc.). Such changes have been reported, for instance, in the North

Sea (Hicks et al., 2016) and in the Valhall Field (Hall et al., 2005). The second is the suite of

differences due to experimental non-repeatability, i.e., variation in acquisition and process-

ing between baseline and monitoring datasets. Acquisition differences can be environmental

in origin (noise conditions, near-surface properties, water table, seawater properties, seal

level, weather, etc.), geometrical (source and receiver positions, etc.), or be due to differ-

ences in acquisition equipment, affecting receiver response, and source wavelet. Processing

non-repeatability can be caused by variation amongst processors, processing parameters,

and workflows. The third involves changes that are due to the target medium property

variations we are interested in, but which appear as data variations outside of our scheme

for analysis. Most time-lapse monitoring estimation schemes are designed to make use of

seismic amplitude changes in the reservoir zone, with some limited use of time shifts (travel

time differences) between monitoring and baseline data (Hatchell and Bourne, 2005). Large

time changes, and variations that, though due to local geological changes, are distributed

globally throughout the data, e.g., via multiple scattering, are rarely accommodated.

The category of acquisition non-repeatability issues can be addressed to a degree by

carrying out the acquisitions in the same season, and permanently installing receivers. How-

ever, processing and analysis methods that are specially designed to mitigate residual non-

repeatability are nevertheless required. The most common approach is cross-equalization

(Ross et al., 1996). For instance, Tucker et al. (2000) used a time-domain least-squares

or optimum Wiener matching filter to implement cross-equalization; Al-Ismaili and Warner

(2002) made use of artificial neural networks; Gallop (2011) apply midpoint matched filters.
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Almutlaq and Margrave (2013) evaluated surface-consistent matching filters as a means to

handle time-lapse seismic data with non-repeatable acquisition parameters. Bergmann et al.

(2014) instead introduced a static correction method to reduce differences in reflection travel

times. Hatchell and Tatanova (2019) concluded that a spectral balancing filter had an im-

proved response to noise than a standard time-domain least-squares filter. Warping has been

introduced (Rickett and Lumley, 2001) to colocate reflectors imaged at different positions,

alleviating residual errors after cross-equalization. Hale (2006) and Hale (2013) developed

fast local cross-correlations and dynamic warping for seismic image registration. Three-

component apparent displacement vectors can also be estimated from time-lapse seismic

images, using local phase correlations and a cyclic sequence of searches for correlation peaks

(Hale, 2009). Fomel and Jin (2009) applied the local similarity attribute (Fomel, 2007) for

time-lapse seismic image registration, an approach that has subsequently been built upon

(Liu et al., 2021). Other warping approaches have been set out by Williamson et al. (2007),

Phillips and Fomel (2016), Karimi et al. (2016), and Dramsch et al. (2019). In this paper, we

adopt the fast local cross-correlation warping approach of Hale (2006) to correct the errors

caused by time shifts in the time-lapse image.

Currently, the most common approach to reduce source wavelet non-repeatability is

through cross-equalization. It comprises (Rickett and Lumley, 2001): (1) picking a win-

dow above the region of time-lapse change, (2) calculating a spectral balancing filter, or a

least-squares time-domain filter, using the data in the window for each trace, and (3) ap-

plying each filter to the corresponding trace as a whole. Such processing can be applied to

data in either shot gather or common depth point (CDP) gather form. Our approach has

been designed in part to address issues with this approach, which include: the challenges of

positioning the reservoir within the shot gathers; the fact that the window-picked signals can

also provide information about the time-lapse change, for instance, the property change of

overburden strata; the difficulty of removing residual wavelet non-repeatability after cross-

equalization in the CDP domain, in which the wavelet is variable vertically (temporally) and
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horizontally (spatially), and the problems of de-noising through trace-by-trace filtering.

Building on this suite of methods, we examine two new frequency-domain matching filters

designed to effectively reduce source wavelet non-repeatability in the analysis of time-lapse

shot gathers. The approaches are wave-equation-based, and build on a Green’s function

description of the seismic data. Having in this way reduced problems of source wavelet

non-repeatability, we carry out a time-shift correction of remaining data non-repeatability,

making use of a fast local cross-correlation algorithm (Hale, 2006). Finally, a reverse time

migration (RTM) with a Poynting-vector imaging condition is examined as a means to further

remove errors.

2.3 Theory

The aim of time-lapse seismic data processing is to suppress errors due to non-repeatability

between baseline and monitoring surveys. We examine two processing approaches based on

matched filters, which are specially designed to reduce errors due to source wavelet non-

repeatability. After applying the filters, we correct for local time shifts between two datasets

using a fast local cross-correlation algorithm. Finally, after decreasing the time shifts between

two datasets, an RTM in depth with a Poynting vector imaging condition is applied to image

the difference data.

2.3.1 Filter design for suppression of source wavelet non-repeatability

We consider the 2D constant-density acoustic wave equation:

∂2P (x, z, t)

∂x2
+
∂2P (x, z, t)

∂z2
− 1

c2(x, z)

∂2P (x, z, t)

∂t2
= w(t)δ(x− x0)δ(z − z0), (2.1)

where P (x, z, t) is the wavefield depending on coordinates (x, z) and time t, c(x, z) is the

P-wave velocity field, and w(t) is the time-dependent source wavelet. The corresponding
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Green’s function G(x, z, t) satisfies:

∂2G(x, z, t)

∂x2
+
∂2G(x, z, t)

∂z2
− 1

c2(x, z)

∂2G(x, z, t)

∂t2
= δ(t)δ(x− x0)δ(z − z0), (2.2)

which we estimate through a time-domain finite-difference method in this study. Seismic data

(i.e., evaluation of the wavefield P over a set of receivers) can be expressed as convolutions

of the Green’s function and the source wavelet:

di,j(t) = wi(t) ∗Gi,j(t), (2.3)

where ∗ denotes the convolution operator, subscripts i and j are shot number and receiver

number, respectively, di,j(t) is the observed seismic trace associated with shot i at receiver

j, Gi,j(t) is the corresponding Green’s function, and wi(t) is the source wavelet associated

with shot i, which is assumed to be the same for all traces in the same shot. For a time-

lapse survey, let the additional subscripts 1 and 2 represent baseline and monitoring surveys,

respectively. The baseline seismic trace can then be represented as:

d1i,j(t) = w1i(t) ∗G1i,j(t), (2.4)

and the monitoring seismic trace:

d2i,j(t) = w2i(t) ∗G2i,j(t). (2.5)

If the baseline wavelet w1i(t) is equal to the monitoring wavelet w2i, differences between

baseline and monitoring datasets arise due to differences within the Green’s functions only,

which we assume means that they are caused by changes to the physical properties of the

subsurface. If w1i(t) is different from w2i, data differences will then be mixtures of those

caused by both source wavelet non-repeatibility and those caused by subsurface property
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changes. The double-wavelet method approach described by Fu et al. (2020, 2023), in which

effective baseline and monitoring datasets, so constructed to have a common wavelet, w1i(t)∗

w2i(t), is implemented by convolving the baseline wavelet with the monitoring trace and

vice versa. However, this method requires two wavelet estimates as input. Although such

estimates can usually be constructed, the uncertainty caused by inaccurate estimates is

difficult to quantify.

Here we seek to construct an alternative approach with minimal requirements for a priori

source wavelet knowledge. The new method is formulated in the frequency domain. We

Fourier transform equations 2.4 and 2.5 after which for the baseline seismic trace we have:

d̂1i,j(ω) = ŵ1i(ω)Ĝ1i,j(ω), (2.6)

and for the monitoring seismic trace:

d̂2i,j(ω) = ŵ2i(ω)Ĝ2i,j(ω), (2.7)

where ω is the angular frequency and the ·̂ denotes the Fourier transform. If we had in hand

the filter

fw(ω) = ŵ1i(ω)/ŵ2i(ω), (2.8)

then after application to d̂2i,j(ω), the filtered monitoring trace would be

d̂
′

2i,j(ω) = fw(ω)d̂2i,j(ω) = ŵ1i(ω)Ĝ2i,j(ω), (2.9)

i.e., it would share the same medium information as the original monitoring trace but it

would have the same wavelet as the baseline trace. The construction of a matching filter

that has this effect without requiring the direct use of the two source wavelet spectra is the

goal. We design this source-independent matching filter, fs(ω), from the average spectra of
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the ratios of the baseline and monitoring traces:

fs(ω) =
1

N

ns∑
i=1

nr∑
j=1

d̂1i,j(ω)

d̂2i,j(ω)
, (2.10)

where N = ns × nr is the total trace number of all shots in each dataset (baseline or

monitoring), and ns and nr is the numbers of shots and receivers, respectively. Assuming

that traces from the same shot record have the same source wavelet, we replace the subscript

pair (i, j) with the single index k and suppress the shot subscripts, giving

fs(ω) =
1

N

N∑
k=1

d̂1k(ω)

d̂2k(ω)
=

1

N

N∑
k=1

ŵ1(ω)Ĝ1k(ω)

ŵ2(ω)Ĝ2k(ω)
. (2.11)

We argue that fs(ω) ≈ fw(ω). To make this case, let δĜk = Ĝ1k − Ĝ2k represent time-lapse

changes within the Green’s function (i.e., to parts of the wavefield connected to medium

property changes). Equation 2.11 can be re-written

fs(ω) =
1

N

N∑
k=1

ŵ1(ω)
[
Ĝ2k(ω) + δĜk(ω)

]
ŵ2(ω)Ĝ2k(ω)

. (2.12)

Re-arranging, we obtain

fs(ω) =
ŵ1(ω)

ŵ2(ω)

(
1 +

1

N

N∑
k=1

δĜk(ω)

Ĝ2k(ω)

)
, (2.13)

where δĜk(ω)

Ĝ2k(ω)
is the relative, or fractional change in the Green’s function, and 1

N

∑N
k=1

δĜk(ω)

Ĝ2k(ω)

is the average of all of these changes. At this point it is clear that if the average of the

relative change in the Green’s function is small,

fs(ω) ≈ ŵ1(ω)

ŵ2(ω)
= fw(ω), (2.14)

and our case is made. We examine this quantity numerically. In Figure 2.1, the monitoring
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Figure 2.1: The real parts of the monitoring Green’s function (a), the Green’s function
difference (b), the relative Green’s function difference (c), and the average of relative Green’s
function differences (the black line in d). Correspondingly, the imaginary parts are plotted
in e, f, g, and h. The gray lines in d and h are extracted from c and g, respectively, at the
distance of 2km.

Green’s function Ĝ2k(ω), the change in the Green’s function, the relative change in the

Green’s function, and its average, are plotted. Models and acquisition parameters used

are the same as those in Figure 2.3 and 2.5. We observe in Figure 2.1c and d (or g and

h) that the relative change cannot be ignored within individual traces, as its amplitudes

can exceed 1; however, the average values (Figure 2.1d and h) are all significantly smaller,

and in fact tend very close to zero, as the variations tend to be incoherent. Provided this

incoherency dominates, which we will now assume, the second term in equation 2.13 can be

safely neglected.

An updated monitoring dataset is obtained by multiplying fs(ω) with d̂2k(ω), frequency

by frequency, and trace by trace (the filter is the same for all traces). Here we are treating
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the baseline data as the reference data, but this could equally well have been the monitoring

data; if either dataset has a narrower frequency bandwidth, selecting that as the reference

will tend to avoid errors arising from frequency expansion. During the calculation of the

filter, in practice, a damping factor is generally needed for stability, i.e., to avoid situations

where the denominator in equation 2.10 becomes zero. The adapted monitoring data are

finally transformed back to the time domain to complete the process.

2.3.2 Fast local cross-correlation for time-shift correction

Supposing at this stage that source wavelet non-repeatability has been adequately sup-

pressed, we next add a component to processing designed to eliminate remaining time-shift

errors between baseline and monitoring data. This is based on local cross-correlations, which

extract the time shift for each sample.

Let d1k[i] be a discrete sample of the time domain baseline trace d1k(t) at time t =

(i−1)∆t, with i running from 1 to Nt and ∆t being the sample interval. With the processed

monitoring trace likewise discretized, the cross-correlation of the two traces is

ck[l] =
Nt∑
i=1

d1k[i]d
′

2k[i+ l]. (2.15)

By calculating within Gaussian windows Hale (2006) produced a local cross-correlation for

each sample:

Ck[i, l] =

i+Nw/2∑
j=i−Nw/2

d1k[j]f(j − i)d′

2k[j + l]f(j − i+ l), (2.16)

where f(x) ≡ e−x
2/2σ2

, and Nw denotes the number of non-zero samples in a truncated

Gaussian window. Hale (2006) carried out the calculation with a fast algorithm which

we adopt for its significant reduction of computation time. The algorithm is set out in
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Algorithm 1 (for details, see Hale, 2006).

Algorithm 1: Fast local cross-correlations (Hale, 2006)

1: for k ← 1, 2, . . . , N do

2: for l← −Nl/2, . . . , Nl/2 do /* Nl is the number of lags */

3: for i← 1, 2, . . . , Nt do

4: h[i]← d1k[i]× d
′

2k[i+ l]

5: end

6: for i← 1, 2, . . . , Nt do /* begin shift */

7: h̃[i]← h[i− l/2] /* interpolate for odd l */

8: end /* end shift */

9: for i← 1, 2, . . . , Nt do /* begin Gaussian filter */

10: Ck[i; l]← 0

11: for j ← i−Nv/2, . . . , i+Nv/2 do /* Nv ≈ Nw/
√

2 */

12: Ck[i; l]← Ck[i; l] + h̃[j]× f(j − i− l/2)× f(j − i+ l/2)

13: end /* end Gaussian filter */

14: end

15: end

16: end

After obtaining local cross-correlations for each sample in each trace, we extract the

maximum local cross-correlation in each sample, via:

Cmax[i, k] = max
l∈[−Nl/2 Nl/2]

Ck[i, l], (2.17)

and pick the corresponding lag lmax (Nl is the total number of lags). The adjusted monitoring

trace, after time-shift correction, is then

d
′′

2k[i] = d
′

2k[i+ lmax]. (2.18)
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2.3.3 Reverse time migration with a Poynting vector imaging con-

dition

To create interpretable outputs from the time lapse data, we apply a reverse-time migration

(RTM) algorithm to map the shot gathers into a reflector image in depth. In RTM, imag-

ing conditions based on crosscorrelation, or source-normalized cross-correlation (Claerbout,

1971; Lee et al., 1991; Kaelin and Guitton, 2006), the latter of which produces images with

the same (dimensionless) unit, scaling, and sign as the reflection coefficient (Chattopadhyay

and McMechan, 2008), are most often selected. To within a linear approximation, difference

data can be used as input to RTM in order to produce difference images (Innanen et al.,

2014). However, RTM image artifacts caused by events which are improperly managed with

the imaging condition, for instance refracted arrivals, are magnified in difference data. Al-

though in principle these arrivals are suppressed in differencing when time-lapse repeatability

is improved, because they tend to be of large amplitude, residual amplitudes tend to pro-

duce large artifacts, especially when compared with the small-amplitude reservoir changes

of interest. To mitigate these issues, we employ a Poynting vector imaging condition (Yoon

and Marfurt, 2006):

image(x, z) =

∑
t Pf (x, z, t)Pb(x, z, t)W (cos θ(x, z, t))∑

t Pf (x, z, t)Pf (x, z, t)
, (2.19)

where x and z are horizontal and depth coordinates respectively, Pf (x, z, t) is the forward-

propagated wavefield from the source location, Pb(x, z, t) is the backward-propagated (dif-

ference) wavefield in reverse time from receiver locations, and where

cos θ(x, z, t) =
vfPf (x, z, t) · vbPb(x, z, t)
|vfPf (x, z, t)||vbPb(x, z, t)|

, (2.20)

with

vf = −
(
∂Pf
∂x

,
∂Pf
∂z

)
∂Pf
∂t

, vb = −
(
∂Pb
∂x

,
∂Pb
∂z

)
∂Pb
∂t

, (2.21)
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in which vfPf and vbPb are the Poynting vectors associated with forward- and backward-

propagating wavefields, respectively, θ(x, z, t) is the opening angle, W (cos θ(x, z, t)) is a

weighting factor to suppress image contributions within a specified angle range. In the latter

case, for example, if we want to keep contributions from incident angles below 50◦ (i.e., 100◦

opening angle), the weighting W (cos θ(x, z, t)) can be set to 1 for cos θ(x, z, t) < cos(100◦),

and 0 otherwise. We will compare result of this imaging condition to that of the source-

normalized condition, which is of the form

image(x, z) =

∑
t Pf (x, z, t)Pb(x, z, t)∑
t Pf (x, z, t)Pf (x, z, t)

. (2.22)

In equations 2.20 and 2.21, we use the baseline or monitoring data to obtain the backward-

propagating wavefield, instead of the difference data used in equations 2.19 and 2.22, because

the difference data have much lower SNR (signal-to-noise ratio) than baseline or monitoring

data, which will lower the quality of calculated incident angles.

The theory section has been summarized as a workflow, illustrated in Figure 2.2.

2.4 Numerical examples

In this section, a modified P-wave Marmousi model and a 2D constant-density acoustic wave

equation solved by a finite difference method are used to evaluate the approach numerically.

A perfectly matched layer (PML) is employed on each side of the model, except the top

side on which a free surface is set up. In Figure 2.3, the baseline model, time-lapse model

(monitoring model minus baseline model), smoothing migrated velocity, and geometry are

plotted. The model size is 257-by-502, with a 10m grid spacing, with 25 sources evenly

distributed across the top of the velocity model (at 30m depth), and 502 receivers are located

at the grid points on the surface. A time-lapse velocity change, 4% of the corresponding

reservoir velocity, is placed at the center in the baseline model.

20



Figure 2.2: Time-lapse seismic imaging workflow for shot gathers with non-repeatable source
wavelets. Note that in the workflow, F denotes Fourier transform, and F−1 denotes inverse
Fourier transform.
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Figure 2.3: (a) Baseline model (P-wave velocity); (b) time-lapse model, monitor model
minus baseline model; (c) smoothing migrated velocity model. The dash lines and asterisks
in (a) are locations of receivers and sources, respectively.
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Figure 2.4: Two time-domain wavelets (a) and their frequency spectra (b). (c) Normalized
frequency spectra of a certain baseline and monitoring traces. (d) Calculated frequency-
domain filters, fw(ω) and fs(ω).

2.4.1 Single-shot gather example

A single shot gather associated with a source at the center-top of the model is used first Figure

2.3a. Two different minimum-phase wavelets are introduced to simulate non-repeatability

(see Figures 2.4a-b). Wavelet 1 has a 15Hz peak frequency; wavelet 2 has a 13Hz peak

frequency, and, relative to wavelet 1, has double the amplitude and a -90◦ phase rotation.

The two wavelets are therefore different in peak frequency, maximum amplitude, and phase.

For benchmarking, we will generate images derived using identical baseline and monitoring

wavelets. For these, we use wavelet 1 for both baseline and monitoring surveys, with wavelet

2 introduced subsequently to test our approach.

Normalized frequency spectra from selected baseline and monitoring traces are plotted in

Figure 2.4c. We observe that the discrepancies between these spectra are strongly controlled

by the repeatability of the source wavelets. The filters fw(ω) and fs(ω) calculated from

equation 2.10 are plotted in Figure 2.4d. They are similar, except for frequencies below

about 3Hz, where our neglect of the average term in equation 2.13 is not justified. This

can also be observed in Figure 2.1d-h. This low-frequency error has minimal impact, as
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Figure 2.5: The difference data before (a,b,c,d) and after (e, f, g, h) the time-shift correction.
(a) Baseline and monitoring wavelets (wavelet 1) are identical. (b) Baseline and monitoring
wavelets are different (wavelet 1 for baseline data, wavelet 2 for monitoring data), and there
is no processing to both datasets. (c) Baseline and monitoring wavelets are different, but the
monitoring data are filtered by fw(ω). (d) Baseline and monitoring wavelets are different,
but the monitoring data are filtered by fs(ω). (e)-(h) are the same as (a)-(d) but having
implemented time-shift corrections to monitoring data. All panels are clipped identically.

frequencies below 3Hz are typically weak in seismic data.

In Figure 2.5, the difference data are plotted. In Figure 2.6 and 2.7, traces at a lateral

position of 3km, extracted from each panel of Figure 2.5, are plotted. From the data plotted

in Figures 2.5-2.7, we observe that fw(ω) and fs(ω) both effectively eliminate differences

caused by non-repeatable wavelets, and time-shift corrections based on the fast local cross-

correlations can effectively attenuate errors resulting from the time shifts between baseline

and monitoring data, but no particular difference is detected when the wavelets are non-

repeatable. Similar conclusions are arrived at by analysis of Figures 2.8 and 2.9, in which the
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Figure 2.6: Traces extracted from Figure 2.5a-d at the distance of 3km. All black lines
are identical, which are extracted from Figure 2.5a. The gray lines in the first to the third
panels are, respectively, extracted from Figure 2.5b, c, and d.
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Figure 2.7: Traces extracted from Figure 2.5a-h at the distance of 3km. The black lines in
the first to the fourth panels are, respectively, abstracted from Figure 2.5a-d. The gray lines
in the first to the fourth panels are, respectively, abstracted from Figure 2.5e-h.

25



difference data in Figures 2.5a and h are imaged with the source-normalized RTM algorithm.

In Figures 2.8 and 2.9, we furthermore observe that the application of fw(ω) leads to

images that are almost the same as those derived from perfectly repeatable wavelets. The

application of fs(ω), however, leads to images with noticeable errors, mainly above the

region of time-lapse change (see Figure 2.5d and the third panel of Figure 2.6). However,

images generated using the Poynting vector imaging condition (Figure 2.8e) is effective at

suppressing these types of error. RTM images after time-shift corrections are plotted in

Figure 2.9. Here we observe that time-shift corrections can reduce artifacts, especially those

appearing immediately beneath the region of time-lapse change. The three interface images

in Figure 2.8 drop to two in Figure 2.9, and these exhibit the expected opposing polarities

and similar amplitudes of the time lapse reflection coefficients.

Remaining errors are still visible outside of the region of time-lapse change in 2.9c and

e, due to (1) remaining time shifts, (2) linearization errors associated with the imaging of

difference data (e.g., Innanen et al., 2014), (3) inaccuracies in the velocity model used for

RTM imaging, and (4) inaccuracies in fs(ω), in the case of the result in Figure 2.9e.

2.4.2 Multiple shot gather example

In this section we generate similarly-designed examples using all shots, including 25 baseline

shots and 25 monitoring shots, and include both noisy and noise-free data.

Noise-free data tests

In Figure 2.10, the source-independent matching filters fs(ω), calculated twice, once from

the single central shot record and once from the full suite of noise-free shot records, are

plotted in comparison with fw(ω). We observe that the two fs(ω) are very similar, both

close to fw(ω) but with a bias when the frequency drops below 3Hz.

In Figure 2.11 and 2.12, images formed from the difference data before (Figure 2.11) and

after (Figure 2.12) time-shift corrections, using all shots, both with the source-normalized
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Figure 2.8: RTM images produced using the difference data in Figure 2.5a-d, prior to time-
shift correction. (a)-(d) Images formed from the data in Figures 2.5a-d, respectively, using
the source-normalized imaging condition (equation 2.22); (e) image formed from the data
in Figure 2.5d, using the Poynting vector imaging condition (equation 2.19), with incident
angles limited to within 50◦. The correct image should contain two reflection events with
opposite polarities and similar reflection coefficients.
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Figure 2.9: RTM images produced using the difference data in Figure 2.5e-h, after time-
shift correction. (a)-(d) Images formed from the data in Figures 2.5e-h, respectively, using
the source-normalized imaging condition (equation 2.22); (e) image formed from the data
in Figure 2.5h, using the Poynting vector imaging condition (equation 2.19), with incident
angles limited to within 50◦. Except (b), all images contain two reflection events with
opposite polarities and similar reflection coefficients, which are close to the real situation.
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Figure 2.10: The solid and dash lines are the same as that in Figure 2.4d, the former is
calculated from the wavelets spectra and the latter is calculated from the single-shot gathers.
The dot line is fs(ω) calculated from all shots.

imaging condition and with the Poynting vector imaging condition, are plotted. Similarly

our observations regarding Figures 2.8 and 2.9, comparable improvements are produced

by application of fw(ω) and fs(ω). We further observe that time-shift corrections again

produce images with the expected two polarity-reversed interfaces in the region of time-lapse

change. The Poynting vector imaging condition suppresses artifacts above the time-lapse

area, especially up shallow.

Noisy data tests

We next examine the response of the time lapse imaging test with Gaussian random noise

selected such that the signal-to-noise ratio (SNR) is 2, and then again with SNR=1. Different

noise traces are added to the noise-free baseline and monitoring data. The resulting baseline

shot records (for the central shot point) and corresponding difference data are plotted in

Figure 2.13.

In Figure 2.14, average frequency spectra from the central shot record are plotted for the
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Figure 2.11: RTM images produced using difference data of all 25 shots, prior to time-shift
correction. (a)-(d) Images formed from the difference data by using the source-normalized
imaging condition (equation 2.22); (e) image formed from the data in Figure 2.5h, using the
Poynting vector imaging condition (equation 2.19), with incident angles limited to within 50◦.
(a) Baseline and monitoring wavelets are identical. (b) Baseline and monitoring wavelets
are different, and monitor data are not processed. (c) Baseline and monitoring wavelets are
different, and monitor data are filtered by fw. (d) and (e) Baseline and monitoring wavelets
are different, and monitor data are filtered by fs. The correct image should contain two
reflection events with opposite polarities and similar reflection coefficients.
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Figure 2.12: RTM images produced using difference data of all 25 shots, after time-shift
correction. (a)-(d) Images formed from the difference data by using the source-normalized
imaging condition (equation 2.22); (e) image formed from the data in Figure 2.5h, using the
Poynting vector imaging condition (equation 2.19), with incident angles limited to within 50◦.
(a) Baseline and monitoring wavelets are identical. (b) Baseline and monitoring wavelets
are different, and monitor data are not processed. (c) Baseline and monitoring wavelets
are different, and monitor data are filtered by fw. (d) and (e) Baseline and monitoring
wavelets are different, and monitor data are filtered by fs. Except (b), all images contain
two reflection events with opposite polarities and similar reflection coefficients, which are
close to the real situation.
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Figure 2.13: The central shots of baseline data with SNR=2 (a) and SNR=1 (b). The
difference data of the central shots with SNR=2 (c) and SNR=1 (d).

noise-free and noisy baseline cases respectively, as well as the corresponding matching filters

(fw(ω) and fs(ω)). As the noise level increases, the accuracy of the source-independent

matching filter (fs(ω)) degrades. It is most accurate near the peak frequency (10-20Hz),

where the signal amplitude most strongly outweighs that of the noise.

RTM images formed from the noisy difference data, including all 25 shots after time-shift

correction, using first the source-normalized imaging condition (equation 2.22) and second

the Poynting vector imaging condition (equation 2.19) are plotted in Figures 2.15 and 2.16.

For the dataset with SNR=2, we still clearly recognize the time-lapse region from the images

constructed using fs(ω). This is no longer true for the data with SNR=1. In comparison,

fw(ω) remains stable for across both noise levels. In fact, fw(ω) functions as a band-pass

filter, to some degree reducing the noise in the final image. The Poynting vector imaging

condition suppresses coherent errors in the up-shallow regions within the images formed with

noisy data.
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Figure 2.14: (a) Average frequency spectra of the central shot of noise-free and noisy baseline
data.(b) Calculated matching filters for noise-free and noisy data.
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Figure 2.15: RTM images produced using difference data of all 25 shots (SNR=2), after
time-shift correction. (a)-(d) Images formed from the difference data by using the source-
normalized imaging condition (equation 2.22); (e) image formed from the data in Figure
2.5h, using the Poynting vector imaging condition (equation 2.19), with incident angles
limited to within 50◦. (a) Baseline and monitoring wavelets are identical. (b) Baseline
and monitoring wavelets are different, and monitor data are not processed. (c) Baseline
and monitoring wavelets are different, and monitor data are filtered by fw. (d) and (e)
Baseline and monitoring wavelets are different, and monitor data are filtered by fs. Except
(b), all images contain two reflection events with opposite polarities and similar reflection
coefficients, which are close to the real situation.
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Figure 2.16: RTM images produced using difference data of all 25 shots (SNR=1), after
time-shift correction. (a)-(d) Images formed from the difference data by using the source-
normalized imaging condition (equation 2.22); (e) image formed from the data in Figure
2.5h, using the Poynting vector imaging condition (equation 2.19), with incident angles
limited to within 50◦. (a) Baseline and monitoring wavelets are identical. (b) Baseline and
monitoring wavelets are different, and monitor data are not processed. (c) Baseline and
monitoring wavelets are different, and monitor data are filtered by fw. (d) and (e) Baseline
and monitoring wavelets are different, and monitor data are filtered by fs.
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2.4.3 Comparisons with the least-squares matching filter

A conventional matching filter, fLSQ, obtained from a least-squares method, can be expressed

in frequency domain as (Ayeni and Nasser, 2009):

fLSQ(ω, k) =
conj(d̂

′′
2k(ω))d̂

′′
1k(ω)

conj(d̂
′′
2k(ω))d̂

′′
2k(ω) + ε2

, (2.23)

where conj(·) denotes the conjugate operator; d̂
′′
1k and d̂

′′
2k are the frequency spectra of

number k baseline and monitor traces, respectively, in a chosen time window; and ε2 is a

damp factor to avoid the case of a zero-value denominator. fLSQ is a filter to match monitor

trace to baseline trace, which needs to be calculated for each trace.

To compare fLSQ with fs, both do not need wavelet information, we employ two numerical

examples in this section. One is a layer model plotted in Figure 2.17, another is the same

as that in Figure 2.3 which has higher geological complexity. Two models are identical in

acquisition geometry and grid spacing. The extra model used in Figure 2.17 is also to further

prove the feasibility of fs.

Traces, at the distance of 2.5km, of shot gathers with sources located at the centers of the

models, are plotted in Figures 2.18-2.21. The difference traces, obtained by using the filtered

monitor traces minus the baseline traces, are plotted in Figures 2.19 and 2.21. They show

fLSQ can perform well on the layer model, but for the geologically complex model (Figure

2.3), fLSQ can not effectively eliminate the impact of wavelet non-repeatability, and fs are

able to reduce the wavelet non-repeatability for both models and are obviously better than

fLSQ.

2.4.4 Comparisons with the CDP-domain warping

In this study, a 1D (one-dimentional) warping algorithm, i.e., the algorithm of fast local

cross-correlations in algorithm 1, is employed in shot gathers to decay the kinematical dif-

ference between baseline and monitor data. In contrast, a conventional time-lapse imaging
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Figure 2.17: Layer models and acquisition geometries. (a) Baseline model; (b) monitor
model. The time-lapse model (monitor model minus baseline model) is the same as that
in Figure 2.3b. The dash lines and asterisks are the locations of receivers and sources,
respectively, which are the same for the baseline model and the monitor model.
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Figure 2.18: Traces of shot gathers, for the models in Figure 2.17, at the distance of 2.5km.
d1(w1) is the baseline trace obtained with wavelet 1 (Figure 2.4a). d2(w1) is the monitor trace
obtained with wavelet 1 (Figure 2.4a). d2(w2) is the monitor trace obtained with wavelet
2 (Figure 2.4a). d2(w1) − d1(w1) is the difference trace in the case of baseline and monitor
wavelets (wavelet 1) are the same, which is the response of the true time-lapse model and is
used as a reference trace in Figure 2.19. d2(w2) − d1(w1) is the difference trace in the case
of baseline and monitor wavelets are different, in which the response of the true time-lapse
model is fully submerged by the wavelet non-repeatability.
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Figure 2.19: The black line in each panel is the reference trace in Figure 2.18. The gray line
in the left panel is the difference trace obtained by using the conventional matching filter
fLSQ to trace d2(w2) in Figure 2.18. The gray line in the right panel is the difference trace
obtained by using fs to trace d2(w2) in Figure 2.18. Time window chosen to calculate fLSQ
is from 0 to 1.2s.

37



-2 0 2

0

0.5

1

1.5

2

2.5

T
im

e
 (

s
)

d
1
(w

1
)

-2 0 2

0

0.5

1

1.5

2

2.5

d
2
(w

1
)

-2 0 2

0

0.5

1

1.5

2

2.5

d
2
(w

2
)

-2 0 2

0

0.5

1

1.5

2

2.5

d
2
(w

1
)-d

1
(w

1
)

-2 0 2

10
-3

0

0.5

1

1.5

2

2.5

d
2
(w

2
)-d

1
(w

1
)

Amplitude

Figure 2.20: Traces of shot gathers, for the models in Figure 2.3, at the distance of 2.5km.
d1(w1) is the baseline trace obtained with wavelet 1 (Figure 2.4a). d2(w1) is the monitor trace
obtained with wavelet 1 (Figure 2.4a). d2(w2) is the monitor trace obtained with wavelet
2 (Figure 2.4a). d2(w1) − d1(w1) is the difference trace in the case of baseline and monitor
wavelets (wavelet 1) are the same, which is the response of the true time-lapse model and is
used as a reference trace in Figure 2.21. d2(w2) − d1(w1) is the difference trace in the case
of baseline and monitor wavelets are different, in which the response of the true time-lapse
model is fully submerged by the wavelet non-repeatability.
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Figure 2.21: The black line in each panel is the reference trace in Figure 2.20. The gray line
in the left panel is the difference trace obtained by using the conventional matching filter
fLSQ to trace d2(w2) in Figure 2.20. The gray line in the right panel is the difference trace
obtained by using fs to trace d2(w2) in Figure 2.20. Time window chosen to calculate fLSQ
is from 0 to 0.9s.
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workflow usually implements the warping algorithm on common-depth-point (CDP) gathers

to eliminate this difference. To have comparisons between the shot-gather-domain warping

used in this study and the conventional CDP-domain warping, we have shown the time-lapse

images of them in Figure 2.22. And all data used are the same as that used in Figure 2.8, in

which the wavelets for baseline and monitor shot gathers are identical to avoid the wavelet

non-repeatability interference.

Figure 2.22a (same as Figure 2.8a) is the time-lapse image before warping, in which the

affect of kinematical differences, i.e., the time shifts, are comtained, enhence, the correct

relative amplitudes of events cannot be reflected in this image. In Figure 2.22b and 2.22c,

we plot the time-lapse image after 1D (vertical) and 2D (both vertical and horizontal) CDP-

domain warping, respectively. The warping algorithm applyed is the dynamic time warping

(DTW) algorithm, which is more advanced than algorithm 1, but requires more compu-

tational cost. To obtain Figure 2.22b and 2.22c, first, we implemet RTM to baseline and

monitor shot gathers, individually, then, apply 1D or 2D DTW to warp the CDP-domain

baseline and monitor RTM images, and the final time-lapse images are the differences be-

tween the warped baseline and monitor images. And Figure 2.22d (same as Figure 2.9a)

is time-lapse image produced using shot gathers after 1D warping or time-shift correction

by our method. We observe the conventional CDP-domain warping can reduce the artifacts

outside the reservoir area, however, it over-warps and destroys events corresponding to the

time-lapse change, especially, in Figure 2.22c, obtained by 2D DTW, the events are nearly

unrecognizable. And in the image produced by shot-gather-domain warping (Figure 2.22d)

the reflections linking with the time-lapse change can be clearly distinguished.

2.5 Discussion

We have focus on the source wavelet non-repeatability issue. To build on the current ap-

proach, additional non-repeatability issues should also be considered. For example, before
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Figure 2.22: (a) Time-lapse image before warping (same as Figure 2.8a). (b) Time-lapse
image after 1D (vertical) CDP-domain warping. (c) Time-lapse image after 2D (both vertical
and horizontal) CDP-domain warping. (d) Time-lapse image produced using shot gathers
after 1D warping or time-shift correction (same as Figure 2.9a). The correct image should
contain two reflection events with opposite polarities and similar reflection coefficients.

applying the matching filters we have made use of, baseline and monitoring shot gathers

could be interpolated and resampled into the same grids, and denoising and low-pass fil-

tering should also be carried out, without changing the relationship in equation 2.3. The

methods we present are also in principle applicable for elastic waves, and, since raw shot

gathers are used, for 3D acquisitions, to enable full 4D imaging.

The workflow in this study is using a Poynting vector imaging condition to reduce the

remaining errors arising from the inaccuracy of the source-independent matching filter. The

errors are mainly from the remaining direct and refraction waves, considering the high com-

putational cost of calculating Poynting vectors, an alternative of the Poynting vector imaging

condition can be manually muting signals near the first arrivals, i.e., direct and refraction

waves, in shot gathers first, and then applying the source-normalized condition to image.

We have proposed a solution for the non-repeatability issue on the source wavelet, but

in which the derivation of fs is based on the assumption that source locations for baseline

and monitor surveys are identical, and the time-shift correction is also based on the same
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assumption. Hence, there may still be at least two non-repeatability issues waiting for solu-

tions before imaging for time-lapse raw field shot gathers, which are issues of non-repeatable

source locations and seasonal variations (e.g., seawater velocity changes for marine data and

near-surface property changes for land data) between baseline and monitor surveys. Even for

the more advanced time-lapse full-waveform inversion that costs much more computational

time than RTM, the seasonal variations can often vitally destroy the time-lapse imaging.

Some additional efforts to address these will likely be required in practice.

2.6 Conclusions

We have developed a time-lapse imaging approach involving the design of two frequency-

domain matching filters, to reduce source wavelet non-repeatability; the first requires source

wavelet estimates from both of baseline and monitoring data; the second is source-independent

but more sensitive to data noise. After suppressing source wavelet non-repeatability, we

employ a time-shift correction, using a published fast local cross-correlations algorithm to

further reduce the non-repeatability. Finally, depth images using an RTM algorithm with

a Poynting vector imaging condition reduces remaining errors arising from the inaccuracy

of the source-independent matching filter. The feasibility of our methods is demonstrated

with synthetic noise-free and noisy data tests. Spectral ratios of the baseline and monitoring

wavelets appear to be a robust and accurate means of suppressing source wavelet nonre-

peatability, but high-quality (low noise) data are nevertheless important to the success of

the filter design, and consequently the source-independence of the approach. Furthermore,

our method has been demonstrated to have better performance when compared with the

conventional least-squares matching filter and CDP-domain warping. At present, there is

no common workflow for seismic imaging directly using time-lapse shot gathers. Our re-

search contribution lies not only in the two matching filters, but also in a novel workflow for

time-lapse seismic imaging.
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Chapter 3

Full-waveform inversion

Full-waveform inversion (FWI) is a data-driven computational technique used in seismic

exploration and imaging. It aims to estimate subsurface properties by iteratively minimizing

the misfit between observed and modeled seismic waveforms.

FWI utilizes the complete waveform information recorded by seismic sensors to extract

detailed information about the subsurface. It involves solving the wave equation iteratively

to generate synthetic waveforms that closely match the observed data. By comparing these

synthetic waveforms with the recorded data, FWI seeks to update the subsurface model

parameters, such as velocity or density, to minimize the misfit.

FWI is known for its ability to provide high-resolution subsurface images and accurately

estimate subsurface properties. However, it is a computationally intensive process that

requires accurate modeling of wave propagation and careful handling of various challenges,

such as nonlinearity, frequency content, and noise.

Despite its challenges, FWI has become a powerful tool in seismic imaging and is widely

used in the oil and gas industry, as well as in geotechnical and environmental studies, for

mapping subsurface structures and characterizing reservoirs or geological formations.

In this chapter, we will introduce the theory of FWI based on the adjoint method proposed

by Tarantola (1984), and the derivation in Yang et al. (2015b) is also referred to.
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3.1 Objective function optimization

Standard FWI starts from a given model m0 and seeks through local gradient information a

model m that matches simulated data with observed data dobs. This is most often achieved

by minimizing the L2 norm of the data residual (dobs − F(m))

E(m) =
1

2
(dobs − F(m))T (dobs − F(m)). (3.1)

Setting m = m0 + ∆m where ∆m is the model perturbation, and taking Taylor expansion

to E(m), then we have

E(m) = E(m0) +
∂E(m)

∂m
∆m. (3.2)

Taking the first derivative with respect to m on both left and right sides, and it gives

∂E(m)

∂m
=
∂E(m0)

∂m
+
∂E(m)

∂2m2
∆m. (3.3)

At the minimum of the objective function, the gradient should be zero. Hence, by forcing

∂E(m)
∂m

= 0, we have

∆m = −H−1g, (3.4)

where

H =
∂E(m)

∂2m2
,g =

∂E(m)

∂m
, (3.5)

in which, H and g are the Hessian matrix and the gradient, respectively. To avoid the expen-

sive calculation cost of the Hessian matrix, it can be replaced by the diagonal approximation

Ha = gTg. (3.6)

This compromises the capacity of the Hessian matrix to accurately reflect the relationship

between different parameters. However, it still serves the purpose of compensating for the

44



sphere-spreading effect (Shin et al., 2001).

Putting equation 3.7 into equation 3.4, then we have the model perturbation

∆m = −H−1a g = −(gTg)−1g, (3.7)

then the model is iteratively updated by

m = m + µ∆m, (3.8)

where µ is the stepsize and will be further introduced later.

3.2 Gradient calculation

We consider the 2D constant-density acoustic wave equation:

1

v2(x)

∂2P (x, t; xs)

∂t2
− O2P (x, t; xs) = fs(xs, t), (3.9)

where x is location vector, and xs the source location.

The corresponding Green’s function G(x, t; xs, t
′) can be expressed as

1

v2(x)

∂2G(x, t; xs, t
′)

∂t2
− O2G(x, t; xs, t

′) = δ(x− xs)δ(t− t′), (3.10)

and, the integral representation of the solution can be given by

P (x, t; xs) =

∫
dx

∫
dt′G(x, t; xs, t

′)fs(xs, t
′). (3.11)

Since v(x) is independent of time, Green’s function is invariant with respect to time trans-

lation, i.e.

G(x, t; xs, t
′) = G(x, t− t′; xs, 0) = G(x, 0; xs, t

′ − t). (3.12)
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Putting equation 3.12 into equation 3.11 and using the reciprocity theorem for the Green’s

function, we have

P (x, t; xs) =

∫
dx

∫
dt′G(x, t; xs, t

′)fs(xs, t
′)

=

∫
dx

∫
dt′G(x, t− t′; xs, 0)fs(xs, t

′)

=

∫
dxG(x, t; xs, 0) ∗ fs(xs, t)

(3.13)

Then, for the forward modeling F (m) = P (xr, t; xs) where P (xr, t; xs) is the forward mod-

eling wavefields at receiver locations xr, we have

P (xr, t; xs) =

∫
dxG(xr, t; xs, 0) ∗ fs(xs, t). (3.14)

For velocity v(x) added a small perturbation δv(x), the corresponding wave equation is

given by

1

(v(x) + δv(x))2
∂2(P (x, t; xs) + δP (x, t; xs))

∂t2
− O2(P (x, t; xs) + δP (x, t; xs)) = fs(xs, t),

(3.15)

where

1

(v(x) + δv(x))2
=

1

v2(x)
− 2δv(x)

v3(x)
+O((δv)2). (3.16)

Keeping the first two terms of equation 3.16 and putting them into equation 3.15, then after

comparing with equation 3.9, we have

1

v2(x)

∂2δP (x, t; xs)

∂t2
− O2δP (x, t; xs) =

∂2P (x, t; xs)

∂t2
2δv(x)

v3(x)
, (3.17)

According to equation 3.14, we obtain the integral representation of equation 3.17

δP (xr, t; xs) =

∫
dxG(xr, t; x, 0) ∗ ∂

2P (x, t; xs)

∂t2
2δv(x)

v3(x)
, (3.18)

46



and then the gradient of the forward modeling function with respect to the velocity model

is given by

∂P (xr, t; xs)

∂v(x)
≈ δP (xr, t; xs)

δv
=

∫
dxG(xr, t; x, 0) ∗ ∂

2P (x, t; xs)

∂t2
2

v3(x)
. (3.19)

We re-write the objective function equation 3.1 as following format

E(m) =
1

2

nr∑
r=1

ns∑
s=1

∫
dt (dobs − P (xr, t; xs))

2 , (3.20)

then the gradient of the objective function with respect to the velocity model v(x) is given

by

∂E(m)

∂v(x)
= −

nr∑
r=1

ns∑
s=1

∫
dt
∂P (xr, t; xs)

∂v(x)
δP (xr, t; xs) (δP (xr, t; xs) = dobs − P (xr, t; xs))

= − 2

v3(x)

nr∑
r=1

ns∑
s=1

∫
dt

∫
dxG(xr, t; x, 0) ∗ ∂

2P (x, t; xs)

∂t2
δP (xr, t; xs).

(3.21)

According to the convolution rule below

∫
dt [g(t) ∗ f(t)]h(t) =

∫
dtf(t)[g(−t) ∗ h(t)], (3.22)

we re-write the gradient equation 3.21 as

∂E(m)

∂v(x)
= − 2

v3(x)

nr∑
r=1

ns∑
s=1

∫
dt
∂2P (x, t; xs)

∂t2

∫
dxG(xr,−t; x, 0) ∗ δP (xr, t; xs)

= − 2

v3(x)

nr∑
r=1

ns∑
s=1

∫
dt
∂2P (x, t; xs)

∂t2

∫
dxG(xr, 0; x, t) ∗ δP (xr, t; xs).

(3.23)

Furthermore, using the reciprocity theorem for the Green’s function we have

∂E(m)

∂v(x)
= − 2

v3(x)

nr∑
r=1

ns∑
s=1

∫
dt
∂2P (x, t; xs)

∂t2

∫
dxG(x, 0; xr, t) ∗ δP (xr, t; xs). (3.24)
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Set

Pb(x, 0; xr, t) =

∫
dxG(x, 0; xr, t) ∗ δP (xr, t; xs) (3.25)

which is called the back propagation wave field of the data residual, and according to equation

3.25, it can be calculated by solving

1

v2(x)

∂2Pb(x, 0; xr, t)

∂t2
− O2Pb(x, 0; xr, t) = δP (xr, t; xs). (3.26)

Finally, the element, in gradient g in equation 3.7, corresponding to the location x, is

summarized as

∂E(m)

∂v(x)
= − 2

v3(x)

nr∑
r=1

ns∑
s=1

∫
dt
∂2P (x, t; xs)

∂t2
Pb(x, 0; xr, t). (3.27)

3.3 Line search technology

Stepsize calculation is a key factor in ensuring inversion efficiency and accuracy. In this

study, a parabolic line search method (Vigh and Starr, 2008) is adopted. For each iteration

during the inversion, after the model perturbation δm (equation (3.7)) is calculated, two

different stepsizes µ1 and µ2 are properly chosen, then two corresponding data misfits E1

and E2 are calculated. If we assume the curve of data misfit versus the stepsize is parabolic,

then, including the data misfit E0 for the starting model of each iteration, we have three

points (0, E0), (µ1, E1), and (µ2, E2) on the curve to figure out the exact parameters about

the parabolic curve, see Figure 3.1. Finally, we can work out the best stepsize giving the

minimum data misfit by

µbest =
(E1 − E0)µ

2
2 − (E2 − E0)µ

2
1

2(E1 − E0)µ2
2 − (E2 − E0)µ2

1

. (3.28)
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Figure 3.1: Stepsize calculation using the parabolic line search method by three points.
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Chapter 4

Stepsize sharing in time-lapse

full-waveform inversion

4.1 Abstract

Full waveform inversion (FWI) methods can produce high-resolution images of the physical

properties of the subsurface. FWI has become a powerful tool for time-lapse or 4D seismic

inversion, with applications in the monitoring of reservoir changes with injection and produc-

tion, and potentially long term storage of carbon. Current time-lapse FWI strategies include

the parallel strategy (PRS), the sequential strategy (SQS), the double-difference strategy

(DDS), the common-model strategy (CMS), and the central-difference strategy (CDS). PRS

time-lapse inversion is affected by convergence differences between the baseline and moni-

toring inversions, as well as non-repeatable noise and non-repeatable acquisition geometries

between surveys. The other strategies are largely efforts to fix the sensitivities of PRS, but

robust solutions are still sought. We hypothesize that several problems in time-lapse FWI

arise from the independence of step lengths during updating. This is supported by synthetic

data tests, which indicate that stepsize-sharing reduces artifacts caused by the variability in

PRS convergence. Two strategies, which we refer to as stepsize-sharing PRS (SSPRS) and
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stepsize-sharing CMS (SSCMS), are then designed to address these remaining issues. In this

paper, we have tested our methods in five scenarios, including noise-free data, non-repeated

noises, non-repeatable source positions, biased starting models, and a combination of the lat-

ter three. The comparisons between the SSPRS and other strategies show that the SSPRS

can adapt to all tested scenarios well. Especially, except for the DDS which is extremely

sensitive to the non-repeatable source positions, only the SSPRS can provide meaningful re-

sults in the latter two scenarios when compared with others. Furthermore given that SSPRS

through its sharing incurs half of the time cost of seeking stepsizes compared with the PRS

and DDS, and the total computational cost of SSPRS is less than half of that of the CMS

and CDS.

4.2 Introduction

Time-lapse or 4D seismic analysis is a crucial technology for reservoir monitoring problems

such as enhanced oil recovery and CO2 storage (Greaves and Fulp, 1987; Ross and Altan,

1997; Wang et al., 1998; Lumley, 2001; Barkved et al., 2003; Arts et al., 2003; Barkved

et al., 2005; Chadwick et al., 2009; Kazemeini et al., 2010; Pevzner et al., 2017). It has

begun to be incorporated as a matter of course into reservoir development plans (Jack,

2017). Full waveform inversion (FWI) (Lailly et al., 1983; Tarantola, 1984; Virieux and

Operto, 2009), a technology with the capacity to create high-resolution images of physical

properties of subsurface media, has become a powerful tool for time-lapse inversion. Real

field data applications have been reported with increased frequency (Raknes and Arntsen,

2014; Hicks et al., 2016; Yang et al., 2016; Kamei et al., 2017; Bortoni et al., 2021), but, as

we will review next, challenges remain.

The time-lapse FWI approach we will refer to as “conventional” is known as the parallel

strategy (PRS) (Lumley, 2001). In PRS, baseline and monitor inversions are carried out

independently but using the same starting model. Its challenges derive from detailed differ-
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ences within the the two independent inversions within it. They commonly exhibit different

convergence properties, and these induce artifacts in the time-lapse inversion. To avoid some

of these issues, Routh et al. (2012) introduced sequential strategy (SQS), which uses the in-

verted baseline as the starting model for the monitor inversion. However, examples presented

by Yang et al. (2015a) and Zhou and Lumley (2021a) indicate that it can cause strong arti-

facts in the time-lapse inversion by amplifying convergence differences between the baseline

and monitor inversions. Target-oriented SQS (Raknes and Arntsen, 2014; Asnaashari et al.,

2015) has been shown to effectively constrain artifacts in the target zone, this mitigation

strategy requires significant prior information, especially about the location of time-lapse

change. Probably the most widely-adopted strategy at the moment is the double-difference

strategy (DDS), proposed by Zheng et al. (2011), which has been used and adapted by many

researchers (Zhang and Huang, 2013; Raknes et al., 2013; Fu and Innanen, 2021, 2022b), and

has been vetted with real data case in Yang et al. (2016). It has several points of weakness,

some of which are addressable. For instance, Fu et al. (2020) introduced a double-wavelet

DDS to mitigate the impact of non-repeatability of baseline and monitor source wavelets to

the inversion. However, DDS remains very sensitive to non-repeatability of source/receiver

locations (Yang et al., 2015a; Zhou and Lumley, 2021b). A different approach was taken by

Hicks et al. (2016), who introduced the common-model strategy (CMS) and applied it to a

North Sea field case study; it was adopted by Bortoni et al. (2021) in real data of a post-salt

field in the Campos Basin. A different variant, introduced by (Zhou and Lumley, 2021a)

and called the central-difference strategy (CDS), has recently been shown to be robust to

non-repeatable noise in time-lapse FWI (Zhou and Lumley, 2021b). As they are amongst

the most recent and robust time-lapse methods in the literature, we will examine CMS and

CDS under different conditions in this paper.

The main results of this paper are two new candidate time-lapse FWI strategies, which

aim to grow and extend the robustnesses sought in the above references, and simultaneously

address computational burden. The main concept we will leverage is the sharing of waveform
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inversion stepsizes across baseline and monitoring inversions. Conclusions are based on

benchmark synthetic data and comparative inversions with the new and recent methods.

4.3 Time-lapse FWI methods

In standard FWI (Lailly et al., 1983; Tarantola, 1984; Virieux and Operto, 2009) we minimize

the L2 norm misfit function:

E(m) =
1

2
||dobs − F(m)||2, (4.1)

where dobs is the observed data or recorded wavefields, F(·) is a forward modeling operator

based on the wave equation, and m is the updating model (e.g., P-wave velocity). Via some

appropriate optimization approaches, based on steepest descents, conjugate gradients, etc.,

the model is updated iteratively as:

mk = mk−1 + δmk, (4.2)

where k is the iteration number, and

δmk = µkg(mk−1,dk−1res ), (4.3)

where

dk−1res = dobs − F(mk−1), (4.4)

in which g(mk−1,dk−1res ) is the updating direction of model in iteration k, which depends

on the updated model mk−1 and data residual dk−1res in iteration k − 1, and µk, obtained

from a line search in this study, is the stepsize for iteration k. In the steepest descent

method, adopted in this paper, g represents the gradient of the misfit function (equation

4.1) with respect to m, which is the zero-lag cross-correlation between forward wavefields

53



and backward wavefields of data residuals. For the first iteration, a starting model m0 have

to be prepared, which can be obtained by velocity analysis or tomography. Furthermore,

combining equation 4.3 and 4.4, we have

δmk = µkg(mk−1,dobs), (4.5)

where the updating direction g depends on observed data and the updated model mk−1 in

iteration k−1. In this study, we use a time-domain constant-density acoustic finite-difference

method as the forward modeling operator, the steepest descent method as the optimization,

and we precondition the gradient with the diagonal approximation of the Hessian matrix (or

source illumination) (Shin et al., 2001).

4.3.1 Common time-lapse inversion strategies

Parallel strategy

The parallel strategy (PRS) follows the workflow in Figure 5.1a. It includes two independent

FWI processes: baseline model inversion, with baseline data and a starting model as inputs,

and monitor model inversion, with monitor data and the same (baseline) starting model

as inputs. The estimated time-lapse model is the difference between the inverted monitor

model and the inverted baseline model. Since FWI is highly non-linear, with local minima

as common traps, the two FWI processes mentioned above often have different convergence

properties, with each difference tending to produce artifacts upon subtraction.

Sequential strategy

The sequential strategy (SQS) is summarized in the workflow in Figure 5.1b. It involves

having the same baseline inversion as PRS, and takes baseline data and a starting model as

inputs. The monitor inversion is different. In it, the inverted baseline model is used as the

starting model for the monitor inversion, and the difference of the two final inversions is the
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time-lapse model. Inversions with different starting models also tend to produce different

convergence histories, however, and again strong artifacts are the result (Yang et al., 2015a;

Fu et al., 2020; Zhou and Lumley, 2021a). We do not pursue SQS further in this study.

Double-difference strategy

The double-difference strategy (DDS), with workflow illustrated in Figure 4.1c, also contains

two FWI steps. The first is again the baseline model inversion. In the second, the starting

model is the inverted baseline model, as with SQS, but the input monitor data are not the

observed monitor data. Instead, a composited data set is introduced:

dDD = F(mbas) + (dmon − dbas), (4.6)

where F(mbas) are synthetic data predicted from the inverted baseline model mbas, (dmon−

dbas) are difference data (observed monitor data dmon minus the observed baseline data dbas).

Accordingly, the misfit function for the monitor inversion becomes:

EDD(mmon) =
1

2
||dDD − F(mmon)||2, (4.7)

where F(mmon) are the synthetic data predicted from the inverted monitor model mmon.

Rewriting equation 4.7 as:

EDD(mmon) =
1

2
||(dmon − F(mmon))− (dbas − F(mbas))||2, (4.8)

we observe that minimizing the misfit function tends to equalize the baseline data residual

and the monitor data residual. DDS can reduce convergence differences between baseline and

monitor inversions, tending to suppress artifacts outside of the time-lapse change zone. It is,

in other words, a kind of target-oriented strategy. Its disadvantages arise largely in difference

data in equation 4.6, which are often weak and are easy influenced by non-repeatability in
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time-lapse surveys. Those influences can leak strongly into the final inverted time-lapse

model, and cause heavy artifacts.

Common-model strategy

The common-model strategy (CMS), with workflow illustrated in Figure 4.1d, can be seen

as an upgraded version of the PRS. Essentially, it contains two instances of PRS. First, the

baseline and monitor inversions are performed independently with the same starting model.

Then a new starting model is taken from the average of the baseline and monitor models;

with this, the baseline and monitor inversions are performed independently again, still with

the original data sets. The final time-lapse model is obtained from a difference of the baseline

and monitor models derived during the second PRS. Although essentially an upgraded PRS,

the CMS strategy has proved in both synthetic and field case studies to outperform the PRS

on account of the changes in the effective baseline model (Hicks et al., 2016).

Central-difference strategy

The central-difference strategy (CDS), with workflow illustrated in Figure 4.1e comprises

two instances of SQS, called the forward bootstrap FWI and the reverse bootstrap FWI.

The forward bootstrap FWI uses the baseline data and a starting model to invert for a

baseline model; then it uses the inverted baseline model as the starting model for monitor

inversion. The first time-lapse model is obtained by subtracting the baseline model from

the monitor model, and the second (i.e., the reverse bootstrap FWI) uses the monitor data

and the same starting model as in the first FWI to invert for the monitor model. Then

the inverted monitor model is used as the starting model for baseline model inversion. The

second time-lapse model is obtained by subtracting the baseline model from the monitor

model. The final time-lapse model is the average of these two time-lapse models. Zhou and

Lumley (2021a) find that artifacts in the first and second time-lapse models have opposite

phases, whereas the correct time-lapse estimations in the two models have identical phases,
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hence the artifacts are attenuated after averaging the two models.
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a) b)

c) d)

e)

Figure 4.1: Flowcharts of present time-lapse FWI strategies. (a) Parallel strategy (PRS).
(b) Sequential strategy (SQS). (c) Double-difference strategy (DDS). (d) Common-model
strategy (CMS). (e) Central-difference strategy (CDS).
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a) b)

Figure 4.2: Flowcharts of stepsizes-sharing time-lapse FWI strategies. (a) Stepsizes-sharing
parallel strategy (SSPRS). (b) Stepsizes-sharing common-model strategy (SSCMS).

4.4 Stepsize sharing time-lapse inversion strategies

In this section, we propose two new strategies for time-lapse FWI that add to these mitigating

efforts the idea of sharing of stepsizes. Returning to the sequence in equations 4.2 to 4.5, if

we substitute equation 4.5 into 4.2, we produce an expression for an updated baseline model

at iteration k:

mk
bas = mk−1

bas + µkbasg(mk−1
bas ,dbas,obs), (4.9)

and an updated monitor model at iteration k expressed as:

mk
mon = mk−1

mon + µkmong(mk−1
mon,dmon,obs), (4.10)

where the subscript bas or mon denotes the parameter is in the baseline or monitor inver-

sion. At the end of two FWI procedures, the inverted baseline and monitor models are,

respectively:

mbas = m0
bas +

m∑
k=1

µkbasg(mk−1
bas ,dbas,obs), (4.11)

and

mmon = m0
mon +

n∑
k=1

µkmong(mk−1
mon,dmon,obs), (4.12)
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where m0
bas and m0

mon are, respectively, the starting models for baseline and monitor inver-

sions, and m and n are the maximum baseline and monitor iteration numbers, respectively.

Let

ddif = dmon,obs − dbas,obs, (4.13)

be the difference data, and

mk−1
mon = mk−1

mon,bas + mk−1
tl , (4.14)

in which mk−1
mon,bas is the baseline model implied by the monitor model mk−1

mon and mk−1
tl is the

time-lapse model in iteration k − 1. With these in place in equation 4.12, we have

mmon = m0
mon +

n∑
k=1

µkmong(mk−1
mon,bas + mk−1

tl ,dbas,obs + ddif ). (4.15)

According to the adjoint state method, the gradient g is calculated by applying a zero-lag

cross-correlation between the forward modeling wavefields and backpropagated data residuals

(Lailly et al., 1983; Tarantola, 1984), hence, g is linear with respect to the observed data,

equation 4.15 can be rewritten as:

mmon = m0
mon +

n∑
k=1

µkmong(mk−1
mon,bas + mk−1

tl ,dbas,obs) +
n∑
k=1

µkmong(mk−1
mon,bas + mk−1

tl ,ddif ).

(4.16)

And the quantity g is nonlinear with respect to the model, so we approximate the updating

direction by Taylor expansion as:

g(mk−1
mon,bas + mk−1

tl ,dbas,obs) ≈ g(mk−1
mon,bas,dbas,obs) + g

′
(mk−1

mon,bas,dbas,obs)m
k−1
tl , (4.17)
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where g
′
is the derivative of the updating direction g with respect to model mk−1

mon,bas. Putting

equation 4.17 into equation 4.16, we have

mmon = m0
mon +

n∑
k=1

µkmong(mk−1
mon,bas,dbas,obs) +

n∑
k=1

µkmong
′
(mk−1

mon,bas,dbas,obs)m
k−1
tl

+
n∑
k=1

µkmong(mk−1
mon,ddif ).

(4.18)

or

mmon = mmon,bas + mtl, (4.19)

where

mmon,bas = m0
mon +

n∑
k=1

µkmong(mk−1
mon,bas,dbas,obs), (4.20)

mtl =
n∑
k=1

µkmong
′
(mk−1

mon,bas,dbas,obs)m
k−1
tl +

n∑
k=1

µkmong(mk−1
mon,ddif ). (4.21)

Comparing equation 4.11 with equation 4.20, we observe that the implicit baseline model

can be eliminated from the inverted monitor model under the conditions:

(1) We employ the same starting model, i.e. m0
bas = m0

mon;

(2) The iteration number is the same, i.e. m = n;

(3) The stepsizes are the same, i.e. µkmon = µkbas;

(4) The updated baseline models are the same, i.e. mk−1
mon,bas = mk−1

bas .

Conditions (1) and (3) in fact enforce condition (4), since equations 4.11 and 4.20 are recur-

sive. Hence, we only need to meet the first three conditions to eliminate the implicit baseline

model.

In PRS, two FWI procedures are enacted, starting from the same model, m0
bas = m0

mon,

and having the same iteration number, m = n (the case of different iteration numbers

normally deteriorates artifacts on the final time-lapse model). The implicit baseline model
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mmon,bas cannot be eliminated completely in the PRS, since the condition (3) is not met.

The remaining baseline model can be considered the source of the coherent artifacts in the

final time-lapse model.

PRS can be adapted to produce the stepsize-sharing parallel strategy (SSPRS), to meet

the condition (3), wherein µkmon = µkbas, such that the implicit baseline model is eliminated.

The workflow is illustrated in Figure 4.2a, in which we perform the monitor inversion first

with the inputs of a starting model and observed monitor data, and the outputs are not only

the monitor model but also the stepsizes for each iteration. Then, in the second FWI, the

baseline inversion, the inputs are not only the observed baseline data and the same starting

model, but also the stepsizes from the first monitor inversion. The final time-lapse model

is obtained by subtracting the baseline model from the monitor model. In addition to the

elimination of what is largely a source of artifacts, an advantage of this SSPRS approach is

that it saves on the cost of seeking the stepsizes during the second FWI. This is the first of

the two proposed methods.

The CMS approach can also be upgraded to incorporate this idea, leading to the stepsize-

sharing common-model strategy (SSCMS), the second of the two proposed methods. The

workflow is illustrated in Figure 4.2b. It involves four FWI steps. The first two are the same

as in SSPRS. In the second two, we repeat SSPRS but with a starting model comprising the

average of the inverted baseline and monitor model in the first two. The final time-lapse

model is the difference between the inverted monitor and baseline models in the second two

FWI outputs.

The baseline updating directions (g(mk−1
bas ,dbas,obs)) and the monitor updating directions

(g(mk−1
mon,dmon,obs)) may not be produced at same scale, depending on the character of data

noise and differences in baseline and monitor source/receiver locations. So, in both SSPRS

and SSCMS, we recommend that the baseline and monitor update directions be calibrated

to a common root-mean-square before multiplying the shared stepsizes from monitor FWI.

Actually, the gradients involving time-lapse change are normally very small when compared
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with the background (or baseline) gradients, and the calibration has little impact on the

gradients when baseline and monitoring wavelets are identical. The gradient calibration is

to avoid the case that baseline and monitoring wavelets are different and the effect of the

wavelet is not canceled in the gradient (i.g., a gradient without the source illumination).

4.5 Numerical examples

In this section, we use a land model to test our methods and have comparisons with present

methods. The true baseline model is displayed in Figure 4.3a, two reservoirs are located at

the left below corner and near the center, respectively. To mimic the fluid change, 4% or

49m/s velocity changes, displayed in Figure 4.3b, are added at the two reservoirs to obtain

the monitor model. A smooth starting model is displayed in Figure 4.3c, which is employed

in the first FWI of all time-lapse strategies mentioned above. The model size is 101-by-208

with 10m spacing. On the top of the model, seven sources are evenly spread at the depth of

10m and each surface cell grid is located a receiver. The source wavelet used for baseline and

monitor data sets is identical, which is a minimum phase wavelet with a dominant frequency

of 10Hz. The time sampling interval is 2 milliseconds and the maximum recording time

is 1.2 seconds. To show the capacity of the FWI program, a time-domain constant-density

acoustic FWI, used in this study, we display the inverted baseline model in Figure 4.4a, two

traces crossing the two reservoirs at distances of 970m and 1700m are abstracted and plotted

in Figure 4.4b, and the curve of misfits versus iteration numbers is plotted in Figure 4.4c.

The results show a good performance of the used FWI program. These are to avoid the

interferences, caused by the use of an incompetent FWI program, to our following tests. In

the next subsections, we will implement the PRS, SSPRS, DDS, CMS, CDS, and SSCMS

with noise-free data sets, noisy data sets, data sets with non-repeatable source locations, and

biased starting models, and have comparisons between different strategies. All data sets are

acoustic and synthetic, and all inversions have the same iteration number.
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Figure 4.3: (a) True baseline model and acquisition geometry, the dashed line denotes po-
sitions of receivers, and the red asterisks denote positions of sources. (b) True time-lapse
model, all non-zero values are identical, 49m/s, and clipped in [−60, 60]. (c) Starting model.
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Figure 4.4: (a) Inverted baseline model. (b) The solid black lines are the true model, the dash
black lines are starting models, and the red lines are inverted baseline models at distance
970m (left) and 1700m (right). (c) Misfits versus iteration numbers for baseline inversion.

4.5.1 Noise-free data tests

In this subsection, noise-free data sets with perfectly repeatable acquisition geometries are

employed. The stepsizes for baseline and monitor inversions in the PRS are plotted in Figure

4.5, which are different in twice inversions. The results of different strategies are displayed

in Figure 4.6. We observe, compared with the PRS, the SSPRS, DDS, and SSCMS can

significantly eliminate artifacts caused by the convergence difference, and the CMS and CDS

can also reduce the artifacts to some extent. The best result is produced by the SSPRS

(Figure 4.6b). It contains fewer coherent artifacts as compared with others including the

DDS (Figure 4.6c), which is target-oriented.
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Figure 4.5: Stepsizes for baseline and monitor inversions in the parallel strategy (PRS).
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Figure 4.6: Inverted time-lapse results using noise-free data for different strategies: (a)
parallel strategy (PRS), (b) stepsize-sharing parallel strategy (SSPRS), (c) double-difference
strategy (DDS), (d) common-model strategy (CMS), (e) central-difference strategy (CDS),
(f) stepsize-sharing common-model strategy (SSCMS).
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Figure 4.7: Inverted time-lapse results using data with SNR=20dB for different strategies.
All figures are clipped in the same color bar.

4.5.2 Non-repeatable random noise

In this subsection, noisy data sets with a perfectly repeatable acquisition geometries are

considered. We incorporate into the simulated data Gaussian random noise, with different

realizations of the same noise level for both baseline and monitor data. In Figure 4.7-4.9,

we display the results of different strategies using data sets with SNR (signal-to-noise ratio)

20dB, 10dB, and 5dB. We observe all six strategies have a similar anti-noise response. For the

cases of SNR 20dB and 10dB, the time-lapse velocity changes can still be clearly recognized,

nevertheless, in the case of SNR 5dB, the artifacts almost submerge the time-lapse changes.

In practice, the real field data often have a lower SNR which would further hurt the quality

of inverted time-lapse changes.

4.5.3 Non-repeatable source positions

In this subsection, we analyze noise-free data sets generated with acquisition geometries that

are perturbed between baseline and monitor surveys. We assume sparse source positions and

dense receiver positions, and model non-repeatability through the positions of the sources.

Receivers are located in each surface cell grid of the model, and the seven monitor source
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Figure 4.8: Inverted time-lapse results using data with SNR=10dB for different strategies.
All figures are clipped in the same color bar.
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Figure 4.9: Inverted time-lapse results using data with SNR=5dB for different strategies.
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Figure 4.10: Inverted time-lapse results of different strategies in the case that monitor source
locations as a whole have been moved to the right of baseline source locations by 10m. All
figures are clipped in the same color bar.

positions will move the same distance to the right from the baseline source position.

In Figure through 4.10 to 4.12, we plot the time-lapse results of different strategies, and

the source position differences between twice surveys are, respectively, 10m, 20m, and 40m,

that is, monitor source locations as a whole have been moved to the right by 10m, 20m,

and 40m, respectively, from the original positions which are the same as that of baseline

sources. We observe that the DDS is sensitive to the source position non-repeatability. And

the others can still effectively reflect the velocity changes, although the inversion quality has

a certain decrease with the source position difference increasing. In the near-surface area,

we observe obvious acquisition footprints, and the footprints in the CMS, CDS, and SSCMS

are slighter than that in the PRS, SSPRS, and DDS.
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Figure 4.11: Inverted time-lapse results of different strategies in the case that monitor source
locations as a whole have been moved to the right of baseline source locations by 20m.
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Figure 4.12: Inverted time-lapse results of different strategies in the case that monitor source
locations as a whole have been moved to the right of baseline source locations by 40m.
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4.5.4 Biased starting models

In the previous tests, the starting model (Figure 4.3c) is unbiased, being a smoothed version

of the true baseline model (Figure 4.3a). In this subsection, we employ two biased starting

models (Figure 4.13a and 4.14a) to test the resilience of the different strategies to bias, using

baseline and monitor data sets that are noise-free and are of identical acquisition geometries.

The first biased starting model, plotted in Figure 4.13a, is equal to the unbiased model

(Figure 4.3c) plus 100m/s. The inverted model is plotted in Figures 4.13b and c. The

second biased starting model, plotted in Figure 4.14a, is equal to the unbiased model minus

100m/s. The corresponding inverted baseline model is plotted in Figures 4.14b and c. In

Figures 4.15a-c, the observed and predicted baseline data are plotted. We observe that the

biased starting models tend to produce serious deviations in the inversion results, but the

main geological structures are still visible; all of the results tend to produce a good data fit,

suggesting that a local minimum has been identified.

In Figures 4.16 and 4.17, the inverted time-lapse models derived using the different strate-

gies are plotted. We observe the CMS, CDS, and SSCMS, which involve 4 of FWI calcula-

tions, fail to give meaningful results. However, the reservoir changes are still recognizable

in the results of the PRS, SSPRS, and DDS, with the SSPRS and DDS producing fewer

artifacts than the PRS. Since the regions above the two reservoirs in Figure 4.14 are more

accurately estimated than in Figure 4.13, the results in Figure 4.17 have in general fewer

artifacts than those in Figure 4.16. Here the true reservoir change is visible. However, errors

in the reservoir position and the strong erroneous negative velocity change near the reservoirs

would likely mislead a reservoir interpretation.
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Figure 4.13: (a) The biased starting model which equals the unbiased model (Figure 4.3b)
plus 100m/s. (b) The corresponding inverted baseline model. (c) Traces abstracted at
distances 970m (left) and 1700m (right), the solid black lines are the true model, the dash
black lines are the biased starting models, the dot black lines are the unbiased starting
models, and the red lines are inverted baseline models.
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Figure 4.14: (a) The biased starting model which equals the unbiased model (Figure 4.3b)
minus 100m/s. (b) The corresponding inverted baseline model. (c) The traces abstracted
at the distances 970m (left) and 1700m (right), and legends are the same as that in Figure
4.13.
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Figure 4.15: Black curves are observed baseline data, and red curves are synthetic data of
the inverted baseline models using (a) the unbiased starting model in Figure 4.3b, (b) the
biased starting model in Figure 4.13a, and (c) the biased starting model in Figure 4.14a. All
synthetic data can fit the observed data well.
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Figure 4.16: Inverted time-lapse results of different strategies in the case of starting model
(Figure 4.13a) is 100m/s larger than the unbiased one.
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Figure 4.17: Inverted time-lapse results of different strategies in the case of starting model
(Figure 4.14a) is 100m/s smaller than the unbiased one.
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Figure 4.18: Inverted time-lapse results of different strategies in the case of SNRs for both
baseline and monitor data sets are 20dB, the distances of monitor source locations are 10m
larger than that of baseline source locations, and starting model (Figure 4.3c) is the unbiased
one. All figures are clipped in the same color bar.

4.5.5 Combined random noise, non-repeatable source locations,

and biased starting models

In Figures 4.18, 4.19, and 4.20, we test the response of different strategies to combinations

of all of the perturbing conditions tested previously. A SNR=20dB is selected for both

baseline and monitor data sets; the monitor source locations are 10m larger than baseline

source locations, and all unbiased and biased starting models are employed (Figure 4.3c for

Figure 4.18, Figure 4.13a for Figure 4.19, and Figure 4.14a for Figure 4.20). In Figure 4.18,

we observe, except for the DDS, all strategies produce interpretable results, with artifacts

caused by CMS relatively stronger than those of others. Comparing the results in Figure 4.19

and 4.20 with those in Figure 4.18, we find the impact on time-lapse inversion caused by the

biased starting model is much heavier than those caused by the other factors. In Figure 4.19,

we can only recognize the time-lapse changes in the results of SSPRS and SSCMS. Only the

SSPRS gives a meaningful result in Figure 4.20; this result appears to be noticeably different

from the others tested.
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Figure 4.19: Inverted time-lapse results of different strategies in the case of SNRs for both
baseline and monitor data sets are 20dB, the distances of monitor source locations are 10m
larger than that of baseline source locations, and starting model (Figure 4.13a) is 100m/s
larger than the unbiased one.
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Figure 4.20: Inverted time-lapse results of different strategies in the case of SNRs for both
baseline and monitor data sets are 20dB, the distances of monitor source locations are 10m
larger than that of baseline source locations, and starting model (Figure 4.14a) is 100m/s
smaller than the unbiased one.
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4.6 Discussion

The stepsize-sharing methods are developed based on the steepest descent optimization,

their adaption to other optimizations should be further proved, since a key assumption in

them is the updating direction is linear with respect to the observed data, which could not

be satisfied in other optimizations. Furthermore, the stepsize-sharing methods do not take

the source wavelet non-repeatability into account, hence, eliminating source wavelet non-

repeatability between baseline and monitor shot gathers is recommended before performing

them. An available means of doing it has been proposed by (Fu and Innanen, 2023).

Our results are confined to the acoustic approximation, and single land synthetic model.

Practical time-lapse issues such as seasonal change in the near surface, and overburden

variations have not been included. Extensions to elastic, whether full elastic FWI or acoustic

FWI with elastic data (Zhou and Lumley, 2021a), and both land and marine models, and

systematic study of geological variations not related to the target, are important next steps.

However, the numerical responses we observe in our study, and the differential sensitivities,

appear to be quite general, and both (1) suggest the value of stepsize sharing to time-lapse

inversions in general, and (2) reflect fundamental differences in the sensitivities of the various

strategies.

During the derivation of the stepsize-sharing methods, we assume that the gradient (e.g.

in equation 4.15) is only in terms of parameter model and observed data, and receiver/source

positions and wavelets for baseline and monitor survey are perfectly repeatable. In fact, the

gradient also depends on receiver/source positions and wavelet, and their non-repeatability

can affect the performance of stepsize-sharing methods. According to the tests in our study,

we observe that a certain difference between receiver/source positions is acceptable. As

for the difference in wavelets, we believe the impact is also limited since the gradient is

preconditioned by the diagonal approximation of the Hessian matrix, in which the wavelet

effect can be eliminated.

In this study, we do not incorporate any constraint to enhance the inversion results.
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We believe efforts of other researchers can be incorporated in present strategies, such as

model-difference regularizations (Willemsen and Malcolm, 2015; Maharramov et al., 2016),

target-oriented schemes (Raknes and Arntsen, 2014; Asnaashari et al., 2015; Willemsen,

2017; Huang et al., 2018). Moreover, a regularized FWI algorithm could be incorporated

into our work to improve the anti-noise property of our method.

4.7 Conclusions

There are no significant differences in the responses of the different strategies to random noise.

And there is a general sensitivity of all methods to an increase in the strength of random

noise. Source positioning non-repeatability produces artifacts in time-lapse FWI inversion

results, but its differential influence on the various time-lapse inversion strategies we tested is

limited, except for the double-difference strategy (DDS). DDS is very sensitive to acquisition

non-repeatability. The impact on time-lapse inversion of bias in the starting model is much

stronger than that of the other factors. The parallel strategy (PRS) exhibits strong artifacts

caused by differences in the convergence properties of the two inversion procedures, and is

sensitive to biased starting models. The double-difference strategy (DDS) is robust to bias

in the starting models, and is able to eliminate artifacts caused by variation in convergence

properties of the two basic inversion steps, but it is strongly sensitive to source position non-

repeatability. The common-model strategy (CMS) and central-difference strategy (CDS)

both exhibit a capacity to avoid artifacts resulting from differing convergence properties,

and are stable with respect to unrepeatable source locations, but are strongly sensitive to

bias in the starting model. Stepsize-sharing as a strategy produces results that are robust

to convergence differences; the SSPRS in addition is insensitive to non-repeatable source

locations and biased starting models. Furthermore given that SSPRS through its sharing

incurs half of the time cost of seeking stepsizes compared with the PRS and DDS, and the

total computational cost of SSPRS is less than half of that of the CMS and CDS. Although
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the stepsize-sharing common-model strategy (SSCMS) also exhibits fewer artifacts caused by

the convergence differences, and is robust to non-repeatable source locations, it is sensitive

to bias in starting models.
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Chapter 5

A time-domain, multi-source

Bayesian/Markov Chain Monte Carlo

formulation of time-lapse seismic

waveform inversion

5.1 Abstract

Seismic waveform inversion has been shown to be well-suited for identification and char-

acterization of time-lapse changes in a reservoir. However, the subtle medium variations

associated with enhanced oil recovery and/or CO2 storage problems give uncertainty quan-

tification within such inverse approaches a heightened importance. To analyze both of these

features of the time-lapse inverse problem, we formulate a Bayesian full waveform inver-

sion (FWI) procedure, based on a Markov chain Monte Carlo (MCMC) algorithm. The

formulation employs several existing strategies, including use of a double-difference time-

lapse FWI (DDFWI), incorporation of time-domain multi-source data, and application of a

local-updating target-oriented inversion. However, it incorporates these within a stochastic
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framework, involving computation of model covariance with an adaptive Metropolis algo-

rithm, and a method to estimate data error statistics based on the features of time-lapse

difference data is incorporated. A random walk Metropolis-Hastings MCMC is adopted for

optimization. In conventional, i.e., deterministic, DDFWI, inversions are carried out for the

baseline and monitoring models; in the MCMC approach, a deterministic FWI procedure is

carried out for the baseline model, and the MCMC algorithm is applied in the monitoring

inversion stage; the final time-lapse model is the difference between these. A feasibility study

is carried out using synthetic 2D acoustic models and data, including both time-lapse model

estimation and uncertainty quantification. We compare the MCMC approach with conven-

tional deterministic optimization DDFWI, and remark on benefits derived, which appear to

justify the expanded complexity and cost of a global approach. In addition to the availability

of posterior distributions, which are critical for assessment of the estimations, we observe

that the MCMC approach tends to produce monitoring images with clearer edges and fewer

coherent errors.

5.2 Introduction

Full-wave inversion, or FWI (Lailly et al., 1983; Tarantola, 1984; Virieux and Operto, 2009),

has been employed extensively in geophysics. Time-lapse FWI, designed to detect or charac-

terize production, injection, or storage-related property changes within a subsurface volume,

in turn has become an important mode of FWI application. Time-lapse FWI normally in-

volves two or more inversions, one baseline inversion and one for each monitoring stage; a

time-lapse model is then produced by subtracting the baseline model from the monitoring

model. Within this structure, time-lapse FWI can be classified into three basic categories:

parallel difference FWI (in which baseline and monitoring data are incorporated indepen-

dently, both using the same starting model), sequential difference FWI (in which baseline

data and monitoring data are inverted independently, but the latter using the inverted base-
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line model) (Oldenborger et al., 2007; Routh and Anno, 2008), and the double-difference

FWI (DDFWI) (Watanabe et al., 2004; Onishi et al., 2009; Denli and Huang, 2009; Zheng

et al., 2011; Asnaashari et al., 2011; Routh et al., 2012; Raknes et al., 2013; Maharramov

and Biondi, 2014; Raknes and Arntsen, 2014; Yang et al., 2016) adopted in this work.

In the DDFWI procedure, the baseline inversion is the same as those of the other two

strategies. The input elements are the baseline data and a reasonable starting model, using

which a standard FWI inversion is carried out. In the monitoring inversion, DDFWI makes

use of composited data, built from the difference data (the difference between the monitoring

data and the baseline data) and synthetic data computed with the inverted baseline model.

The approach is motivated by the exposure of both parallel difference FWI and sequential

difference FWI to coherent errors, caused by two different convergence histories (Asnaashari

et al., 2014; Yang et al., 2015a), which are reduced in the DDFWI approach. DDFWI requires

high repeatability between the baseline and monitoring surveys (Yang et al., 2015a), but

aspects of this sensitivity can be addressed. For instance, Fu et al. (2020) developed a double-

wavelet DDFWI method to manage wavelet differences between baseline and monitoring

data.

Inversion based on deterministic optimization (DO) methods, in particular FWI, is an

increasingly common tool for determination of the physical properties of the subsurface

media, and a growing number of successful examples have been reported. However, their

success depends strongly on the starting model (Virieux and Operto, 2009), especially when

low-frequency data are unavailable. Stochastic global optimization methods have the ca-

pacity to avoid local minima, and provide uncertainty quantification, but at the cost of a

very significant increase in numbers of simulations. Consequently, systematic analyses and

applications of global optimization methods to seismic problems are largely restricted to 1D

models (Hong and Sen, 2009; Afanasiev et al., 2014; Aleardi and Mazzotti, 2016; Ray et al.,

2016). To make these more tractable, and to accommodate multidimensional, and otherwise

more complex and realistic models, combinations of fully global approaches with additional
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strategies are generally required. Datta and Sen (2016) reduce the number of unknown

parameters by sparsely parameterizing the velocity as several interfaces, and then estimate

these parameters with a global very fast simulated annealing algorithm. Sajeva et al. (2016)

apply a two-grid technique, involving a coarse grid for the subsurface model but a finer grid

for the forward modeling, and invoke a genetic algorithm to lower the model dimension (an

approach also applied by Mazzotti et al., 2016). Biswas and Sen (2017) parameterize the

velocity model with Voronoi cells, represent the parameters with certain nuclei points, and

then utilize a custom-developed Reversible Jump Hamiltonian Monte Carlo algorithm for

optimization. Ely et al. (2018) employ a fast field expansion method to accelerate wavefield

simulations; da Silva et al. (2019) solve for a sparse macro Q-model via a quantum particle-

swarm optimization approach; and, Visser et al. (2019) parameterize models in terms of

local velocity, thickness, and lower interface dip angles within a Bayesian transdimensional

approach, sampled via a Markov chain Monte Carlo (MCMC) approach, then stitch the local

models together into a final 2D model.

Globally-optimized full waveform applications have to date largely been aimed at con-

structing starting models, via a sparse parameterization, which are then subsequently used

in a more standard DO FWI. However, there are examples in which global optimization

methods have been invoked to invert for the 2D models directly. For example, Stuart et al.

(2019) combine a two-stage MCMC with a coarse-grid filter to enhance the acceptance rate

of MCMC, solving for layered models. Also, Gebraad et al. (2020) formulated a Bayesian

elastic FWI, based on Hamiltonian Monte Carlo for converted wave data. Zhang and Curtis

(2021) apply variational inference to solve acoustic FWI problems including uncertainties.

In this paper, we discuss the formulation of a stochastic, global solution to the full wave-

form seismic time-lapse problem. Our aim is to solve for relatively general 2D velocity

models, without applying a sparse parameterization. We set up a Bayesian MCMC problem,

and employing a Metropolis-Hastings algorithm, similar to that of Kotsi et al. (2020). How-

ever, rather than a single-shot, single-frequency data set, we consider local updating with
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time domain multi-source shot gathers as input. Furthermore, we introduce a new estima-

tion method for data error statistics based on the natural features of time-lapse data. The

method is exemplified with simulated data, and we compare results of its application with

otherwise comparable DO FWI-based time lapse inversion of the same data. This study is

an expansion of Fu and Innanen (2021).

5.3 Theory and background

5.3.1 Standard full-waveform inversion with deterministic opti-

mization

Standard FWI, which is an example of inversion based on deterministic optimization (DO),

starts from a given model m0 and seeks through local gradient information a model m that

matches simulated data dsyn(m) to observed data dobs. This is most often achieved by

minimizing the L2 norm of the data residual δd = dsyn(m)− dobs:

E(m) =
1

2
δdT δd, (5.1)

where T denotes the transpose operation. For constant-density acoustic FWI, the model m

in equation 5.1 is a vector of pressure wave velocity values v(x) in which x is position vector,

and dsyn is a vector of values of the simulated pressure field P (x, t), evaluated at receiver

positions. In this paper, the simulated field P (x, t) is obtained by solving the time-domain

constant-density acoustic wave equation

1

v2(x)

∂2P (x, t)

∂t2
−52P (x, t) = s(t)δ(x− xs), (5.2)

where 52 is the Laplacian operator, s(t) is the source wavelet, δ is the Dirac delta function,

and xs is the source position vector. A finite-difference method (eighth order in space and

82



second order in time), coupled with a perfectly matched layer (PML) boundary condition

are used to solve this wave equation throughout this paper.

A wide range of optimization methods can be applied within FWI. These include Newton-

type optimizations (e.g., full Newton and Gauss-Newton methods), gradient-based optimiza-

tions (e.g., steepest-descent, or SD, and non-linear conjugate-gradient, or NCG, methods),

Quasi-Newton optimizations (e.g., BFGS and l-BFGS methods), truncated-Newton opti-

mations, etc. In the instances in this paper in which we carry out a DO FWI, we restrict

ourselves to SD optimizations with a simple illumination-compensating preconditioning step.

Following the adjoint-state method (Tarantola, 1984; Bunks et al., 1995; Plessix, 2006), and

preconditioning the gradient with the approximate inverse Hessian of Shin et al. (2001),

avoiding explicit Hessian calculations, a DO FWI model update is computed via

∆v(x) = −µ
ng∑
r=1

ns∑
i=1

2

v(x)3

∫ tmax

0
dt[P̈f (x, t; xs)Pb(x, t; xr)]∫ tmax

0
dt[P̈f (x, t; xs)P̈f (x, t; xs) + λImax]

, (5.3)

where µ is the step length obtained by the line search technique; ng, ns are the numbers of

receivers and shots, respectively; tmax is the maximum forward/backward propagating time

t of wavefields; xr is the receiver position vector; Pf (x, t; xs) is the forward wavefield due to

the source at xs and P̈f (x, t; xs) is its the second derivative with respect to t; Pb(x, t; xr) is

the backward/time-reversal wavefield due to the data residual δu at position xr; Imax =

max
x,t

[
P̈f (x, t; xs)P̈f (x, t; xs)

]
is the square of maximum absolute value in the derivative of

forward propagation wavefield; λ is the damp factor.

5.3.2 Time-lapse full waveform inversion

In double-difference FWI, or DDFWI, the first inversion is for the baseline model; the input

elements are the baseline data and a starting model. The second is for the monitoring model;

the inverted baseline model is used as the starting model, but a composited data set is used
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as an alternative to the monitoring data. The vector of composited data set is:

d′obs2 = dsyn(m′1) + (dobs2 − dobs1), (5.4)

where dsyn(m′1) is the vector of synthetic data predicted with the inverted baseline model

m′1, and dobs2 and dobs1 are the observed monitoring and baseline data respectively. The

combination dobs2 − dobs1 is the vector of difference data. During the monitoring inversion

stage, the mistfit function

EDDFWI(δm
′) =

1

2
||dsyn(m′1 + δm′)− d′obs2||22, (5.5)

where || ||22 denots L2 norm, and δm′ is a perturbation of the background model m′1, is

employed. Substituting the relationship dsyn(m′1 + δm′) = δdsyn(δm′) + dsyn(m′1), where

δdsyn(δm′) is the synthetic difference data vector, into equation 5.5, we obtain

EDDFWI(δm
′) =

1

2
||δdsyn(δm′)− δd||22, (5.6)

where δd = dobs2 − dobs1 is the observed difference data vector. By minimizing equation

5.5, we are in essence minimizing the residual of two difference data vectors. The inverted

time-lapse model is δm′.

This inverted time-lapse model δm′ is distinct from the “true” time-lapse model δm.

The perturbation δm′ is that by which the difference data δdsyn(δm′) is linearly developed

from dsyn(m′1). In contrast, δm relates the difference data δd and the background data

dobs1, assuming the baseline and monitoring surveys are identical. When dsyn(m′1) is close

to dobs1, or equivalently when m′ is close to the true baseline model, δm′ will be close to

δm, and vice versa. Therefore, a relatively accurate inverted baseline model is important

for DDFWI (Asnaashari et al., 2011). How the initial monitoring model impacts the final

inverted time-lapse model is part of the analysis in this study.

84



In a conventional DO DDFWI, both the baseline inversion and monitoring inversion are

based on the DO FWI, i.e., input a starting model m0 and the observed data dobs1 into the

DO FWI to obtain the inverted baseline model m′1, and then input the inverted m′1 and

the new observed data d′obs2 into the DO FWI to obtain the inverted monitoring model. In

our method, called MCMC DDFWI, we still use the DO FWI with inputs m0 and dobs1 to

obtain m′1, but we obtain the monitoring model by inputting m′1 and d′obs2 into the Bayes’

frame solved by the MCMC algorithm. The reasons for using DO FWI in baseline inversion

are that employing a stochastic global optimization method to invert the whole 2D model is

still too computationally expensive and whether the stochastic global optimization method

is capable of that mission is still uncertain because of the large parameter number and high

complexity of the inverse problem.

5.3.3 Bayesian inference and MCMC

In this section, we formulate an inverse procedure based on the above concepts, but in a

Bayesian setting (Tarantola, 2005). This involves combining data with model prior infor-

mation to infer optimal models; its output, which is in the form of posterior probability

distributions, also allows uncertainty estimation. The prior probability density function, or

PDF p(m2), is called the model prior, and reflects our state of information about the mon-

itoring model m2 independent of the data. The conditional PDF p(d
′

obs2|m2), or likelihood

function, is the probability of observing a particular set of observed data d
′

obs2 over a range of

models, and is how simulation and synthetic data are incorporated. These two quantities are

combined to determine the numerator of the posterior PDF p(m2|d
′

obs2) via Bayes’ theorem:

p(m2|d
′

obs2) =
p(d

′

obs2|m2)p(m2)

p(d
′
obs2)

∝ p(d
′

obs2|m2)p(m2), (5.7)

where p(d
′

obs2) =
∫
p(d

′

obs2|m2)p(m2)dm2 is the marginal likelihood or model evidence. Be-

cause it is independent of the model and thus acts as a scalar normalization factor, it is
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neglected here. We will proceed assuming that the prior PDF p(m2) and likelihood function

p(d
′

obs2|m2) are the Gaussian or normal distributions

p(m2) ∝ exp

{
−1

2
(m2 − m̄)TC−1m (m2 − m̄)

}
, (5.8)

p(d
′

obs2|m2) ∝ exp

{
−1

2
(dsyn(m2)− d

′

obs2)
TC−1d (dsyn(m2)− d

′

obs2)

}
, (5.9)

where Cm and Cd are, respectively, prior model covariance and data error covariance, and

m̄ is the mean model. With equations 5.8 and 5.9, equation 5.7 becomes

p(m2|d
′

obs2) ∝ exp{−χ(m2)}, (5.10)

where

χ(m2) =
1

2
(m2 − m̄)TC−1m (m2 − m̄) +

1

2
(dsyn(m2)− d

′

obs2)
TC−1d (dsyn(m2)− d

′

obs2). (5.11)

The inverse problem is to determine p(m2|d
′

obs2), or its parameters, given d
′

obs2, so that its

form over a range of possible models m2 can be interpreted.

The inverse problem is therefore a sampling problem, where each sample involves a poten-

tially intensive simulation. Monte-Carlo algorithms (e.g., Mosegaard and Tarantola, 1995)

are a natural choice for this, however the number of samples such algorithms require to pro-

duce robust estimates of p(m2|d
′

obs2) make them impractical without adaptation. Markov

Chain Monte Carlo (MCMC) methods reduce the number of samples required by selecting

the current sample based on statistics produced from the previous accepted sample. The

details of the acceptance/rejection varies across a range of algorithms. In our approach we

employ the Metropolis algorithm (Metropolis et al., 1953), a special case of the Metropolis-

Hastings (MH) MCMC algorithm (Hastings, 1970). The sampling procedure is as follows.

We move about model space, from one model m2 to another m∗, according to predefined
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transitional probabilities in the proposal distribution T (m∗2|m2). Each new model m∗2 is

a proposal, to be accepted or rejected as a sample contributing to the posterior. In the

Metropolis-Hastings algorithm, a criterion for acceptance or rejection of proposed models of

the form

a(m∗2,m2) = min

[
1,
T (m2|m∗2)p(m∗2|d

′

obs2)

T (m∗2|m2)p(m2|d
′
obs2)

]
, (5.12)

is adopted. However, if symmetric distributions (e.g., Gaussian distribution) T (m2|m∗2) =

T (m∗2|m2) are used, this simplifies to the Metropolos algorithm

a(m∗2,m2) = min

[
1,
p(m∗2|d

′

obs2)

p(m2|d
′
obs2)

]
. (5.13)

After selecting a starting model, an iterative procedure begins:

1. A random number u is drawn from a uniform distribution between 0 and 1.

2. The acceptance a is computed, requiring a simulation at the proposed model point m∗2.

If a > u, the proposed model m∗2 is accepted as the current model m2, and stored. If

a <= u, m∗2 is rejected and m2 is retained as the current model.

Steps 1-2 are repeated until a fixed maximum number of iterations is reached, at which point

the accepted models are used to determine features of the expected distribution p(m2|d
′

obs2).

5.4 Methodology

The theoretical approaches reviewed in the previous section are combined in our approach,

along with several practical considerations. In this section we review the key simplification

strategies to be employed, and end with a description of our algorithm.
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5.4.1 Local-updating target-oriented time-lapse inversion

DDFWI generally requires high repeatability between baseline and monitoring surveys.

Common differences between the two, e.g., source wavelet differences, acquisition geome-

try changes, noise level, lead to error, and the appearance of difference model energy outside

the target area. This is further exacerbated by inaccuracies in the inverted baseline model.

An additional helpful constraint is to set the target area; this is possible in practice by, for

instance, combining depth migration of the observed difference data with prior information

of the reservoir. Raknes and Arntsen (2014) described the use of a simple edge detector on a

depth-migrated section to automatically detect the target area, and bounded the model up-

dating to these regions. Asnaashari et al. (2014) applied a Gaussian weighting constraining

updates to a target area, after manually and approximately detecting the center of the target

area. We follow this philosophy, and permit updating only in a predetermined target region.

Target-oriented inversion is, then, an important feature in any time-lapse FWI methodol-

ogy, but for MCMC DDFWI, it is vital, because of its reduction in the number of unknowns.

In Metropolis-Hastings MCMC, the cost of producing independent samples grows as O(n2)

for a growth in the number of unknowns of n (Creutz, 1988). The target-oriented strategy

therefore reduces the computational expense by an order of magnitude. The failure rate of

these stochastic algorithms also increases for high-dimension problems (Chib and Greenberg,

1995), meaning that any plausible reduction in the number of unknowns should generally be

adopted when possible.

5.4.2 Multisource waveform inversion

Multisource waveform inversion reduces the cost of FWI by merging sources to reduce the

number of simulations needed to form the update. In standard (DO) FWI, special treatment

(e.g., the encoded multisource method of (Krebs et al., 2009)) of each source is required

to suppress crosstalk artifacts in the final inverted model. In MCMC-based FWI, these

treatments are not necessary, because the intermediate stage of gradient calculation, wherein
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the shot crosstalk affects the model, does not take place. MCMC-based FWI decreases

data misfit by directly accepting the stochastic samples, allowing us to more freely employ

multisource seismic data.

5.4.3 Random walk sampling and sequential inversion

In random walk sampling (Metropolis et al., 1953) the proposal model m∗2 in equation 5.12

is given by

m∗2 = m2 + u, (5.14)

where m2 is the present model, u is a random model drawn from the proposal distribution

which, for instance, is a zero-mean Gaussian distribution with a standard deviation of 3 in our

numerical tests. Normally, m2 is randomly initialized. However, for FWI, which is strongly

nonlinear and high-dimensional, a random initial model will tend to lead to significant extra

computation and increased chance of failure. We adopt the inverted baseline model, which

in our approach is determined from DO FWI, as the initial model for monitoring inversion

within MCMC DDFWI. In addition, we use a sequential scheme, updating only one unknown

grid cell at a time, rather than all at a time, to update the monitoring model, in response to

the high dimensionality of the model space. Even with target-oriented methods in place, this

space can easily be many hundreds or thousands of dimensions. Generating a perturbation

u suitable for all parameters is rarely possible under such conditions.

5.4.4 Model prior

In the Bayesian inference framework of equations 5.10 and 5.11, data error covariance Cd

and model covariance Cm are both required as input. In our work, Cm is taken to be a

diagonal matrix corresponding to independently distributed model parameters. Cm can be

obtained via an adaptive Metropolis (AM) algorithm, as developed by Haario et al. (2001),

in which the model means and covariances are calculated from previous models. In our work,
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we utilize the all-samples-calculated model covariance, and the present model is taken as the

mean value. This is similar to the adaptive proposal algorithm (Haario et al., 1999), in which

the proposal distribution is centered on the present model, but the covariance is calculated

from a fixed finite number of previous models. In the AM algorithm, the covariance for

iteration k + 1 proposal model is given by

Ck+1 =
k − 1

k
Ck +

sm
k

(km̄2k−1m̄
T
2k−1 − (k + 1)m̄2km̄

T
2k + m2km

T
2k + εIm), (5.15)

where m̄2k = (1/(k + 1)
∑k

i=0 m2i) is the mean model, sm is a small constant that depends

only on model dimensionm, Im is am-dimension identity matrix, ε is a positive constant. The

constant ε is selected to keep Ck+1 from being singular, and sm is typically set to sd = 2.42/m

(Gelman et al., 1996). Equation 5.15 is a recursion formula requiring little computation. At

early iterations, we use Ck+1 = σm0Im as an alternative to equation 5.15, in which σm0 is a

reasonable constant from some prior information or by trial-and-error method; after enough

models are obtained, we switch to equation 5.15. All models are constrained in given bounds,

for example, we will constrain the time-lapse change in [−80m/s, 80m/s] in our numerical

tests (the true time-lapse change is 40m/s).

5.4.5 Data prior

The character of the time-lapse problem allows us to incorporate data prior information (i.e.,

the data error covariance Cd in equation 5.11) in a manner not described elsewhere in the

literature. For independent and identically distributed data, the error covariance can be

expressed as Cd = σdId where all standard deviations σd are equal, and Id is the identity

matrix. Normally, σd must be determined by trial-and-error, or by treating it as an unknown

to be updated during the inversion (e.g., Malinverno and Briggs, 2004; Bodin et al., 2012).

In DDFWI, all noise in the composited data come from the difference data, in which it is

often possible to infer regions of signal from regions of noise. We assume that “pure noise”
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regions of the data can be identified, and within these regions data error follows zero-mean

Gaussian statistics. The success of this method requires that the baseline and monitoring

surveys have good repeatability (which permits pure noise regions to be identified), and

the availability of sufficient samples within these regions that the estimated distribution is

representative. The first of these requirements is also a premise of DDFWI, so the only new

assumption being introduced is the second. Finally, we set out the monitoring inversion of

MCMC DDFWI in Algorithm 2.

Algorithm 2: Monitoring inversion based on Baysian/MCMC

Input: m
′
, dsyn(m

′
), dobs1, dobs2

Output: All samples of m2

1 Initialization: m2 = m
′
, d

′

obs2 = dsyn(m
′
) + (dobs2 − dobs1), Cm = σm0Im,

Cd = σdId;

2 for k=1,2, . . . , N do /* N is the maximum sampling number */

3 Generate proposal model m∗2 by equation 5.14 /* only sequentially update

one grid cell per time */;

4 Calculate the acceptance α by equation 5.13;

5 Draw a random number u from a uniform distribution between 0 and 1;

6 if α > u then

7 m2 = m∗2

8 else

9 m2 = m2

10 end

11 Store m2 as a sample;

12 Update Cm by equation 5.15;

13 end
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5.5 Numerical examples

In this section we establish the feasibility this time-lapse approach with a synthetic 2D

constant-density acoustic time-lapse model. The models, geometry, and corresponding noise-

free multisource shot gather seismic data used are displayed in Figure5.1a-f. The model size

is 50-by-50, with a 10m grid spacing. A 40m/s time-lapse velocity change is placed at the

center in the time-lapse model (in Figure 5.1c, the monitoring model minus the baseline

model is plotted). Ten sources are distributed on the surface, and receivers are placed

both on the surface and within two vertical boreholes which define the lateral extent of

the volume. The sources are excited simultaneously, each using an identical Ricker wavelet

with a 40Hz central frequency. A time-domain finite differencing method, eighth-order in

space and second-order in time, is used for simulation. The target area, of size 19-by-22

and containing 418 parameters, is highlighted in Figure 5.1c. Updating is constrained to

occur in this region during the monitoring inversion stage, during which we run eight chains

simultaneously with the same starting model (i.e., the model inverted during the baseline

stage), to obtain samples quickly, and each chain is sampled 83600 times. The burn-in period

comprises the first 21900 models; these are not utilized.

5.5.1 DO DDFWI vs MCMC DDFWI

To exemplify the approach, and simultaneously examine the relationship between the recov-

ered model and the starting model, we produce four inversions, each with different starting

models (Models 1, 2, 3, and 4). These models, which correspond with true baseline model

(Model 1), the inverted baseline model from a standard FWI (Model 2, using noise-free

baseline data and a smooth starting Model 3), and two smooth models (Model 3 and 4), are

plotted in Figure 5.2a-d. We use noise-free monitoring data, and invert using both conven-

tional DO DDFWI and MCMC DDFWI. The recovered models (all MCMC DDFWI results

correspond to the posterior means) are plotted in Figure 5.3. In Figure 5.4a-p, the corre-
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Figure 5.1: In (a), (b), and (c) are the baseline model, monitoring model, and time-lapse
model respectively. In (d), (e), and (f) are the multisource baseline data, multisource moni-
toring data, and difference data, respectively. The acquisition geometries in (a) and (b) are
identical. The black dashed lines indicate receivers, and the red stars sources. The black
box in (c) is the target area, i.e., the region in which model updating permitted during the
monitoring inversion.

sponding absolute model errors of Figure 5.3a-p, are plotted. Compared with conventional

DDFWI, the results of MCMC DDFWI exhibit more random variations, which become more

significant as the starting model becomes less accurate, but fewer coherent errors. To en-
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hance this feature, in Figure 5.3a-p, to reduce the random noise, we use a median filter to

the results of MCMC DDFWI and also use the same filter to the results of conventional

DDFWI. We observe within the MCMC DDFWI results generally clearer edges of nonzero

time-lapse model and less coherent model errors. In Figure 5.5, we plot the curves of the

L2 norm of the monitoring data residuals of MCMC DDFWI versus sampling number for

different starting models, which shows that all chains converge well, but those associated

with the more accurate starting model converge a lower data misfit. The inverted time-lapse

models of MCMC DDFWI, using Model 1 as the starting model for monitoring inversion, at

different iteration numbers in a certain chain are plotted in Figure 5.6 to show the evolution

process of MCMC time-lapse inversion.
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Figure 5.2: Different starting models (Model 1, 2, 3, 4) for monitoring inversion. (a) is the
true baseline model. (b) is the inverted baseline model of the DO FWI using (d) as the
starting model. (c) and (d) are smooth models from the true baseline model after using a
two-dimensional Gaussian filter. The models become worse from left to right.

5.5.2 Noise tests

In Figures 5.7a-c, difference data with different noise levels are plotted. The standard devi-

ation of the noise-free difference data simulations (Figure 5.1f) is 1.2× 10−3; we draw noise

from zero-mean Gaussian distributions with standard deviations of 2.5×10−4, 2.5×10−3, and

5 × 10−3, i.e., with signal-to-noise ratios (SNR) of approximately about 23, 0.23, and 0.06,

respectively. The SNR calculation does not take the synthetic baseline data into account;

they increase significantly after adding the synthetic data to the difference data. Model 2

(Figure 5.2b) is input as the starting model for all monitoring inversions in this subsection.
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Figure 5.3: Inverted time-lapse models of DO DDFWI and MCMC DDFWI from different
starting models in Figure 5.2. (a)-(p) are results for model 1 (a-d), 2 (e-h), 3 (i-l), and 4
(m-p). The results in (a), (e), (i), and (m) are inverted from DO DDFWI, and that in (b),
(f), (j), and (n) are obtained by using a median filter to results of (a), (e), (i), and (m),
respectively. The results in (c), (g), (k), and (o) are inverted from MCMC DDFWI, and
that in (d), (h), (l), and (p) are obtained by using a median filter to results of (c), (g), (k),
and (o), respectively. The black dot line box is the edge of the true non-zero model change.

Pure noise regions (above the horizontal lines in Figures 5.7a-c) are used to estimate the

data error standard deviation σd, and using these values the MCMC DDFWI procedures are

carried out for each case. In Figure 5.8a-d, the L2 norm versus sampling number curves are

plotted, each containing eight chains. We observe that all chains in each monitoring inversion

converge to similar misfit levels, with higher noise levels corresponding to higher misfit levels

after convergence, and stronger misfit fluctuations. In Figure 5.9a-i, the inverted time-lapse

models including the posterior mean models and the maximum posterior probability (MAP)
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Figure 5.4: (a)-(p) are, respectively, absolute values of model errors of results in Figure
5.3a-p.

models, and the corresponding posterior model standard deviations, are plotted. The poste-

rior mean models are observed to match well with the true time-lapse model. MAP models

are worse than the mean models since they may not be at the global minimum, and the mean

models can interpret the target better. The standard deviations of the posterior model evi-

dently reflect the noise level of the data. A higher noise level leads to larger posterior model

standard deviations. The standard deviations also vary from parameter to parameter and

relate to the true value of the time-lapse model. The marginal distributions at the distance

of 2.5km are plotted in Figure 5.10a-c, and the corresponding true time-lapse changes and

mean time-lapse changes are also plotted on them to have comparisons. From both Figure

5.9 and 5.10, we can see better inversions often correspond to lower standard deviations and
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Figure 5.5: Curves of the monitoring data misfit of MCMC DDFWI versus sampling number
for different starting models. Each color contains eight curves corresponding to eight Markov
chains. The corresponding time-lapse models at iteration numbers marked by black stars
are plotted in Figure 5.6.
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Figure 5.6: The inverted time-lapse models of MCMC DDFWI, using Model 1 as the starting
model for monitoring inversion, at the iteration numbers of 3600 (a), 10800 (b), 21600 (c),
and 57600 (d) in a certain chain, which are marked by black stars in Figure 5.5.

higher marginal probability. In Figure 5.11a-c, the marginal distributions of six parameters

located at the black dots in Figure 5.9a, including three parameters with nonzero true time-

lapse change and three parameters with zero true time-lapse change, are plotted. In Figure

5.11a, since the model error standard deviation is too small and the rejection rate is too high,

we do not obtain enough effective models to characterize a reasonable distribution for some

parameters. But in Figure 5.11b and c, the samples are observed to match the Gaussian

distributions closely. In Figure 5.12a-f and 5.13a-f, the predicted noise-free difference data

and the noises, are plotted. We observe the predicted values are close to the true values.
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Figure 5.7: The difference data with different noise levels. Noises confirm to zero-mean
Gaussian distributions with different standard deviations that are, respectively, 2.5 × 10−4

for (a), 2.5× 10−3 for (b), and 5× 10−3 for (c). The data above the black line in each panel
is the pure noise region used to estimate the data errors standard deviation.

5.6 Discussion

Global stochastic optimization methods involving wave equation simulations of seismic data

avoid several well-known issues experienced by local descent based inversions, and naturally

provide uncertainty estimates, but are generally prohibitively expensive. Realistic applica-
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Figure 5.8: Curves of the monitoring data misfit of MCMC DDFWI versus sample number
for different level noisy data. The red, blue, and black curves, respectively, correspond to
the data in Figure 5.7a, b, and c. All curves are displayed together in (a) and separately
displayed in (b)-(d). Each color contains eight curves corresponding to eight Markov chains.

tions of these approaches require effective strategies for fast simulation and dimensionality

reduction. In the second category, we have implemented a range of these which are appli-

cable to the time-lapse problem, including target oriented methods, reducing the number

of unknown grid cells to update, multi-source methods, reducing the number of simulations

required to predict shot records. This, when coupled with small scale 2D models, produces

problem which can be run in several hours on a standard desktop computer, and allow us

to draw some important feasibility conclusions. As model sizes grow, examples of the kind

we present will naturally require more significant high-performance computing solutions. At

this stage, invoking additional stochastic algorithms, e.g., Hamiltonian Monte Carlo, will be

warranted. In the first category, extending our method to include local solvers (Robertsson
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Figure 5.9: Inverted mean time-lapse models and posterior model standard deviations of
MCMC DDFWI using Model 2 as the starting model and data with different noise levels.
(a), (b), and (c) are mean models using data in Figure 5.7a, b and c, respectively. (d), (e),
and (f) are MAP models using data in Figure 5.7a, b and c, respectively. (g), (h), and (i)
are posterior model standard deviations using data in Figure 5.7a, b and c, respectively.
The six labeled black circles in (a) are the positions where we will appraise the marginal
distributions in Figure 5.11.

and Chapman, 2000; Yang et al., 2012; Huang et al., 2018) is a natural next step for solving

target-oriented problems of this kind. In our current toolset, the Green’s functions necessary

for these are not yet in place for the multi-source solver; this inclusion is an important part

of ongoing research.

For challenges in real time-lapse data, first, the DDFWI strategy used in this paper

requires well-repeated time-lapse surveys, this may make our method unsuitable for some

cases, and proper processing to raw shot gathers is necessary to improve the repeatability of
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Figure 5.10: The marginal distributions at the distance of 2.5 km for results of MCMC
DDFWI using Model 2 as the starting model and data with different noise levels. (a), (b),
and (c) are marginal distributions using data in Figure 5.7a, b and c, respectively. Black
lines are true time-lapse changes, and green lines are mean time-lapse changes.

time-lapse data. The second is our research is built on an acoustic setting which is different

from the elastic property of the earth, hence, seismic signals beyond the acoustic setting

will interfere with the inversion to some degree. The third is the realistic noise level may be

higher than that in our tests, which could further destroy the small time-lapse signal.

5.7 Conclusions

In this study, have assembled and numerically tested a time-lapse FWI methodology, based

on an MH MCMC algorithm, and a method of estimating the data error standard deviation

for time-lapse data which makes use of the features of difference data. We have employed

DDFWI, multisource data, and local-updating target-oriented inversion in the approach,

calculating model covariance with an AM algorithm. Synthetic data tests using a 2D acoustic

model establish the feasibility of both model inversion and uncertainty quantification of

our method for small synthetic examples, and allow several distinguishing characteristics of

the methodology in the presence of noise and relative to standard deterministic FWI. In

particular, although both methods tend to introduce errors as the starting model becomes

less and less resolved, in the MCMC approach those errors are less spatially correlated, and

the anomaly edges are more clearly recovered.
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Figure 5.11: The marginal distributions of 6 parameters located at the labeled black circles
in Figure 5.9a, including three with nonzero true time-lapse change and three with zero true
time-lapse change. (a), (b), and (c), respectively, correspond to the noisy data in Figure 5.7a,
b, and c. The histograms denote all samples abstracted from the eight chains excepting the
burn-in ones. Blue solid curves are standard Gaussian probability density functions (PDFs)
best fitting the histograms. Black dash straight lines and blue solid straight lines denote the
true values and inverted mean values, respectively. The labels on the up left corner of each
panel correspond to the parameter locations labeled in Figure 5.9a
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Figure 5.12: The predicted noise-free difference data (a, c, e) and noises (b, d, f) using the
inverted mean models in Figure 5.9a, b, and c, respectively. The predicted data in (a) and
the predicted noise in (b) correspond to the noisy data in Figure 5.7a. (c) and (d) correspond
to the noisy data in Figure 5.7b. And (e) and (f) correspond to the noisy data in Figure
5.7c.
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Figure 5.13: Red curves in (a)-(f) are central traces of Figure 5.12a-f,respectively. Black
dash curves are the corresponding true values. (a), (c), and (e) display the noise-free data,
and (b), (d), and (f) display the corresponding noises.
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Chapter 6

Conclusions and future work

6.1 Conclusions

Time-lapse seismic, also known as 4D seismic, is a powerful tool for monitoring subsurface

changes over time. By comparing seismic data acquired at different intervals, it enables the

detection and characterization of dynamic reservoir processes, aiding in reservoir manage-

ment, production optimization, and enhanced oil recovery. It has applications in geothermal

energy, CO2 storage monitoring, and environmental impact assessment. Despite challenges

in data registration, noise mitigation, and inversion uncertainties, time-lapse seismic contin-

ues to evolve as an indispensable asset, providing valuable insights into subsurface dynamics

and contributing to advancements in geophysics.

In this thesis, novel techniques are developed for time-lapse imaging and inversion. Chap-

ter 2 presents a workflow incorporating frequency-domain matching filters and time-shift

correction to reduce source wavelet non-repeatability in imaging. In Chapter 4, a stepsize-

sharing strategy is introduced to mitigate artifacts caused by convergence variability in

conventional methods. Finally, Chapter 5 formulates a Bayesian time-lapse FWI procedure

using a Markov chain Monte Carlo algorithm, incorporating multiple strategies within a

stochastic framework. These advancements enhance the accuracy and reliability of time-
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lapse imaging and inversion, addressing challenges such as non-repeatability, convergence

variability, and uncertainty estimation.

However, there are still challenges in time-lapse seismic analysis that need to be ad-

dressed. The time-lapse imaging workflow presented in Chapter 2 focuses solely on the non-

repeatability of source waveforms and does not account for non-repeatability in source/receiver

positions. While the time-lapse FWI discussed in Chapter 4 demonstrates the ability to

handle non-repeatability in source/receiver positions, it does not specifically address non-

repeatability in source wavelets. Moreover, the impact of near-surface or seawater property

changes during time-lapse surveys on the inversions is not investigated. More effective ap-

proaches for overcoming this nonrepeatability should be proposed. Furthermore, the un-

certainty quantification approach proposed in Chapter 5 is hindered by the computational

cost associated with stochastic optimization methods in waveform inversion. To overcome

this limitation, it is necessary to introduce or develop a more efficient optimization approach

capable of handling the high-dimensional nature of waveform inversion problems.

6.2 Future work

In order to further advance time-lapse inversion techniques, several avenues for future re-

search can be explored. Firstly, addressing the challenge of non-repeatability in both source

wavelets and source/receiver positions as well as the near-surface or seawater nonrepeat-

able remains a crucial aspect. Developing robust methodologies that can effectively handle

these sources of non-repeatability and their combined effects would significantly enhance the

accuracy and reliability of time-lapse inversion.

Additionally, the computational efficiency of stochastic optimization approaches for un-

certainty quantification needs to be improved. Exploring novel algorithms or optimizing ex-

isting ones to reduce the computational burden associated with high-dimensional waveform

inversion problems would enable the practical implementation of stochastic optimization
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methods in real-world applications.

Furthermore, integrating advanced machine learning and data assimilation techniques

into time-lapse inversion workflows holds great promise. Leveraging the power of artificial

intelligence and assimilating various types of data, such as production data or well logs, can

provide valuable constraints and improve the accuracy of inversion results.

Moreover, considering the challenges posed by complex geological scenarios, such as het-

erogeneous reservoirs or multiphase flow as well as the elastic, anelastic, or anisotropic media,

developing specialized inversion methodologies tailored to these specific situations would be

beneficial. These approaches should take into account the inherent complexities and incor-

porate appropriate physics-based models to ensure accurate and reliable inversion results.

Overall, future work in time-lapse inversion should focus on addressing the challenges

of non-repeatability, enhancing computational efficiency, incorporating advanced techniques

like machine learning and data assimilation, accommodating complex geological scenarios,

and exploring new application domains. By pursuing these avenues, we can continue to

advance the state-of-the-art in time-lapse inversion and unlock its full potential for subsurface

characterization and monitoring.
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