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Abstract

Multiparameter full waveform inversion (FWI) is a promising technique to estimate the elastic

properties of the subsurface, but it is commonly affected by crosstalk between parameters of dif-

ferent nature, which impacts the convergence of the local optimization algorithms and introduces

artifacts and uncertainty to the results. Hence, reducing these effects is essential to increase confi-

dence in the estimates. This thesis is focused on proposing strategies to treat these artifacts in the

model space of the density (ρ), P-wave velocity (VP), and S-wave velocity (VS) while considering

seismic surface experiments. The crosstalk effects are described and corrected by the Hessian op-

erator, which also affects the shape of the iso-surfaces of the objective function. Therefore, two

methodologies were developed based on performing constrained re-parameterizations, aiming to

find an intermediate model space with decorrelated parameter classes, i.e., where the Hessian is the

identity matrix, to reach convergence to an accurate minimum point, and later transform it into the

original model space. The difference between both strategies lies in the type and size of the Hessian

matrix used, i.e., point-wise Hessians and point-probes Hessians, as well as in the numerical ap-

proach employed to compute the transformation matrices necessary to map between model spaces.

In both strategies, the estimates of VS were relatively accurate but the results of VP and ρ were

strongly impacted by crosstalk effects in comparison to those obtained with FWI approaches that

were not re-parameterized; thus, the sought intermediate model space was not properly mapped.

The decorrelation ideas were successful in certain aspects, but the challenges were related to the

limitations brought by the amount of crosstalk information considered through the Hessians, the

selected numerical approaches, and the type of transformation matrix computed, which was able

to do a good job in some locations of the model grid or for some parameter classes, but was not

general enough to produce the expected transformation in a large scale.
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Chapter 1

Introduction

1.1 Background

The seismic method consists in generating artificial seismic waves, transmitting them from the

surface to the interior of the Earth, and recording the information of the waves that return to the

surface. Depending on the type of seismic survey carried out (onshore or offshore), these waves

are produced by dynamite explosions, hydraulic vibrators or air guns. Once in the subsurface, the

seismic waves interact with different geological layers and structures that cause their diffraction.

Hence, part of the energy is reflected or returns to the surface, where the amplitude and arrival

times of these diffracted waves are recorded in receiver stations and represented as seismic traces.

This experiment is used in exploration seismology to deduce information beneath the surface of

the Earth. Generally, the objective of its application is to encounter economic oil, gas, and mineral

deposits and appropriate rocks for CO2 injection and monitoring, as well as for microseismic, en-

gineering, and archeological studies (Berkhout, 1986; Keys, 1986; Talwani and Kessinger, 2003).

Direct measurements of the rock properties of interest are often impossible to obtain with geo-

physical methods; thus, seismic inversion plays an important role to understand the spatial distri-

bution of these physical quantities or model parameters in the subsurface. Inversion problems aim

to estimate model parameters by trying to match the model response or “synthetic data” produced

by a set of idealized parameters with the measurements of the wavefields that were recorded at the

surface, namely “observed data”. To generate successful inversion results, it is essential to incor-
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porate in the algorithms the physics of the phenomenon that produces the observed data (forward

modeling of wave propagation). However, seismic data are insufficient and contain components,

such as noise, that are not always possible to explain through the selected models of the physical

process, meaning that the solution of the inversion is non-unique (Keys, 1986; Lines and Treitel,

1984). In this sense, often the inversion is performed with appropriate regularization terms to make

it better posed (Virieux and Operto, 2009).

Additionally, several inversion techniques consider different parts of the recorded seismic data

when estimating the desired parameters, but the incomplete use of the wavefield as well as the

assumptions necessary to develop the expressions for the wave propagation model can produce

limitations in the results. For instance, the traveltimes of the picked first arrivals are used in tradi-

tional traveltime tomography to estimate long-wavelength velocity structures (Bording et al., 1987;

Bregman et al., 1989); AVO inversion takes advantage of the amplitudes of primary reflections and,

in simultaneous cases, the amplitudes of secondary reflections to estimate parameter contrasts at

different layer boundaries (Aki and Richards, 2002; Fatti et al., 1994; Shuey, 1985; Smith and

Gidlow, 1987); and migration is based on transforming reflection events into a scaled version of

the true geometry of the subsurface, focusing and positioning the events according to a velocity

macromodel and allowing the proper location of events, the collapse of diffractors, reproduction

of wavelet character and other effects (Sheriff, 2002; Virieux and Operto, 2009).

1.2 Full waveform inversion

Full waveform inversion (FWI) is a powerful approach that considers all the recorded infor-

mation (e.g., traveltime, phase, amplitude, time-frequency content), including signals that are typ-

ically neglected during standard processing workflows, such as low frequency effects, post-critical

and multiple events, diving and converted waves, among others. This technique has been use-

ful to generate intermediate-wavelength velocity models which are later used as starting models

in PSDM applications and has also proved to produce high-resolution estimates of elastic and
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anisotropic properties of the rocks (Fichtner et al., 2006; Fichtner, 2010; Operto et al., 2004, 2013;

Pratt, 1990; Sirgue and Pratt, 2004; Virieux and Operto, 2009). Since the full information content

is used, the approach is necessarily nonlinear, i.e., the data are nonlinear functions of the model

parameters (Keys, 1986; Lines and Treitel, 1984; Tarantola, 1984; Virieux and Operto, 2009).

Therefore, the use of direct expressions of least-squares solutions is not adequate to estimate the

subsurface features, and local optimization methods that minimize an objective function involv-

ing the difference between the observed and synthetic data are classically preferred to iteratively

produce the estimations.

Lailly (1983) and Tarantola (1984) were the first authors to address the FWI problem through

local optimization using the generalized nonlinear least-squares approach, considering an acoustic

approximation of the elastic wave equation, but also an elastic scenario in the time domain, re-

spectively. In these publications, the solution is produced by methods related to the reverse-time

migration of unstacked data, i.e., for each iteration of the algorithm and at each point in space,

the gradient is obtained with the cross-correlation between the forward propagation of the actual

sources and the backpropagation in time of the data residuals, generating the updates of the model

parameters. For the first iteration, these model updates or perturbations are added to a provided

initial model, and then the result is used as the starting model for the following iterations using a

descent-based method (Mora, 1987; Pica et al., 1990; Tarantola, 1986). Moreover, different authors

such as Shin (1988), Pratt (1990) and Song and Williamson (1995a,b) applied the FWI technique

in the frequency domain, but Pratt (1990) expressed the forward and inverse problems in matrix

form through the application of finite-differences to the wave equation in a crosshole tomographic

experiment, being a reference for the computational adaptation of FWI algorithms in the frequency

domain.
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1.3 Challenges in the application of full waveform inversion

Full waveform inversion is based on the formulation of a local least-squares optimization. This

type of inversion is characterized by a series of challenges derived from the local optimization

nature to solve the problem and the selected wave propagation model that describes the observed

data, usually hindering the successful application of the method. Some of these issues are (1) the

high computational cost as a result of the large number of variables to be estimated, (2) the lack of

enough estimations to perform uncertainty analysis of the results, (3) the convergence towards local

minimum points rather than the global minimum along with the phenomenon of cycle-skipping,

(4) the slow convergence depending on the applied optimization algorithm, and (5) the coupled

effects or crosstalk between parameters of different classes in multiparameter FWI.

After discretization of the seismic signals, the seismic wavefield as well as the model param-

eters correspond to high dimensional vectors in FWI problems. Moreover, the objective function

is constrained by a wave equation per each seismic source located on the surface; thus, the perfor-

mance of the forward modeling to simulate the data which would be produced by a particular set of

parameters is a resource-intensive process. Hence, for iterative methods, extensive simulations of

the data are required, making the FWI calculations computationally expensive for large 2D and 3D

models. On the other hand, large-scale problems are most generally solved with local optimiza-

tion algorithms, avoiding stochastic approaches such as Monte Carlo methods. The requirement

of extensively solving the forward problem makes the process not feasible to perform in practice,

implying much more computational cost and time. Since there is insufficient information, it is

not possible to map out the likelihood of the desired physical properties, hampering the estimation

of uncertainty (Mora, 1987) and the evaluation of confidence in the results with these approaches.

However, research has been done in the matter of null-space shuttling, evaluating the uncertainty in

specific model directions by determining how much a final estimated model could be altered with-

out affecting the associated data residuals and with that understanding the ambiguity introduced

by the non-uniqueness of the problem, i.e., by other models that also satisfy the objective function
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(Deal and Nolet, 1996; Fichtner and Zunino, 2019; Liu and Peter, 2020). Moreover, the implemen-

tation of null-space shuttle approaches for targeted uncertainty analysis restricts the exploration of

all the possible directions to only focus on a subset of model-space directions that is informative

for the current problem by using designed hypotheses (Keating and Innanen, 2021), proving to be

a beneficial method to distinguish estimated anomalies that contribute to the generation of the data

from fictitious anomalies, such as crosstalk effects.

Typically, the inversion is linearized in local optimization methods by considering a quadratic

objective function, even though no practical FWI problem behaves that way. Consequently, a

parabola is fit in the initial point or starting model, its minimum is found, and this value is used as

a new point to fix another parabola, repeating the process iteratively until converging to a value,

hopefully close to the global minimum. However, convergence towards local minima is a massive

challenge in FWI because the problem is nonlinear and the final estimates depend on how accurate

the starting model is, the level of noise, the low frequencies available in the data, and the simplic-

ity of the wave theory applied. Additionally, one of the most common types of local minimum is

produced by the cycle-skipping artifacts, which occur when the error between the observed data

and the data simulated using the starting model is larger than half the period (Beydoun and Taran-

tola, 1988; Virieux and Operto, 2009). Nevertheless, both types of data could match within half a

wave-cycle when low frequencies are considered. In this sense, Bunks et al. (1995) described the

multigrid method, or multiscale approach, and applied it to a seismic inversion problem using the

Marmousi model, demonstrating that the cycle-skipping artifacts can be mitigated and the perfor-

mance of the iterative inversion can be improved by decomposing the problem by scales, increasing

the frequencies as the iterations progress. Low frequencies recover long-wavelength components

of the model and the number of local minima is reduced, being easier to find a solution that is in

the neighborhood of the global minimum, no matter how close the starting model is. Thus, as the

frequency values increase, the scale becomes shorter and the solution is refined.

On the other hand, large-scale inverse problems are conveniently solved with gradient-based

methods, such as steepest descent, because these algorithms imply less computational cost, but
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at the expense of suffering from slow convergence and in some cases failing to produce an ac-

ceptable solution, which is often attributed to the estimation of an accurate step length to descent.

Conversely, the search direction of these methods, and thus convergence speed, is significantly

improved by pre-conditioning the gradient with the inverse of the second-order information of the

objective function, namely the Hessian operator, i.e., by minimizing the objective function with

the Newton or Gauss-Newton algorithm (Pratt et al., 1998; Santosa and Symes, 1988; Virieux

and Operto, 2009). Although the Hessian contains information that is essential for the proper

reconstruction of the model, it is impractically expensive to explicitly calculate this matrix for

large-scale problems. Therefore, the inverse of the Hessian operator is commonly approximated

through quasi-Newton methods, such as the Limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) algorithm or the minimization is done by applying Hessian-free methods, such as the

Truncated Newton algorithm.

Additionally, in multiparameter FWI, i.e., when not only the P-wave velocity is estimated but

also other elastic parameters, attenuation, and/or anisotropy, new issues appear. For instance, the

ill-posedness of the problem increases because the increment of parameters in the chosen wave

equation comes with an increase of degrees of freedom, and there is also sensitivity or resolv-

ing differences between parameter classes during the inversion process, leading to inter-parameter

coupled effects, also named trade-off or crosstalk (Operto et al., 2013; Virieux and Operto, 2009).

Crosstalk occurs when different physical properties are confused in the inversion because a model

parameter error produces data residuals that are later attributed to a different model parameter,

yielding poorly accurate results and producing convergence slowness (Keating and Innanen, 2019).

The mitigation of crosstalk in multiparameter FWI is essential to increase confidence in the esti-

mation of the model parameters. The analysis of the radiation patterns that result when an incident

wave interacts with a scatter point embedded in a homogenous medium are also named sensitivity

analysis. These are typically performed to identify which patterns overlap for a range of angles,

and thus for which of the involved physical properties the gradient update will be similar, giv-

ing insights about the leakage of information that would occur during the inversion (Keating and
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Innanen, 2019; Métivier et al., 2015).

Tarantola (1986) indicated that a good set of parameters, for the execution of the FWI, would

produce radiation patterns as different as possible, allowing to resolve each property easily and

independently and with high resolution. Although for some acquisition geometries and param-

eterizations this could be achieved, for certain cases, some properties cannot be independently

estimated. For instance, in seismic surface experiments, using sources dominated by P-waves,

the parameterization formed by the density, P-wave impedance, and S-wave impedance is the best

choice, but the impedances are better resolved than the density. Therefore, to mitigate the inter-

parameter coupled effects, FWI workflows are designed to include parameterizations based on a

minor correlation of their scattering patterns and, in some cases, considering which is the domi-

nant model parameter of a particular set to perform a sequential inversion or hierarchical strategy

(Kamei and Pratt, 2013; Sears et al., 2008; Tarantola, 1986).

In the literature, we can find additional methods that have been applied in FWI to reduce

inter-parameter coupled effects considering different procedures. For instance, the subspace opti-

mization method is based on adjusting the update direction, in the optimization process, according

to the contribution of each parameter class (Baumstein, 2014; Kennett et al., 1988). Additionally,

the mode decomposition method is based on pre-conditioning the gradients by decoupling them

or isolating their P and S wave components (Wang and Cheng, 2017; Xu et al., 2017). Moreover,

Pan et al. (2018) developed an inversion strategy using isotropic elastic parameterizations by con-

sidering approximate contamination kernels (products of Hessian off-diagonal blocks with vectors

of model perturbations), which quantify the parameter trade-off characteristics among different

model parameters in a local or wide fashion within the volume.

In general, the selection of an adequate parameterization and the minimization of the objective

function with an optimization approach that includes the Hessian matrix or a good approximation

of it allows to mitigate crosstalk effects (Hu and Innanen, 2019; Innanen, 2014; Keating and Inna-

nen, 2018; Pratt et al., 1998; Wang et al., 2016; Xing and Zhu, 2020; Yang et al., 2016). The inverse

of the Hessian operator acts as a pre-conditioner of the gradient, enhancing the model updates,
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since it not only compensates for the geometrical spreading effects and band-limitations through

their main-diagonal blocks, but it also helps to quantify and correct crosstalk effects through their

off-diagonal blocks (Operto et al., 2013; Pratt et al., 1998). Hence, trade-off suppression could

also be achieved by performing an appropriate manipulation of the Hessian within the optimiza-

tion scheme, since no parameter correlation would exist if the terms in the off-diagonal blocks

were set to zero (Métivier et al., 2015; Operto et al., 2013).

Innanen (2020a,b,c,e) explained that (1) re-parameterizing seismic inversion problems is equiv-

alent to performing coordinate transforms between two systems, and that we can use transforma-

tion matrices that are constructed to satisfy constraints imposed by the Hessian of the new model

space, such as changing the shape of the iso-surfaces of the objective function in that system; (2)

when the iso-surfaces of the objective function are spherically symmetric, i.e., when the Hessian

is the Kronecker delta or an identity matrix, the Gauss-Newton directions are parallel to those of

steepest descent, producing favorable convergence properties in problems solved with the latter

optimization strategy, which is convenient to avoid the computational cost of the Hessian; and (3)

re-parameterizing to a model space characterized by a Hessian with an identity matrix structure

promises the minimization of crosstalk between parameters of different classes, since the values in

the off-diagonal blocks are zero.

On the other hand, additional research has been done where pre-conditioning ideas were ap-

plied in different contexts but maintaining similitudes to the coordinate transform theory between

model spaces and the use of appropriate Hessians to obtain satisfactory solutions. For instance, in

a variety of cases, non-stationary Point Spread Functions (PSF) were used for migration purposes

related to the correction of amplitude effects; these local point spread functions were explained by

Schuster and Hu (2000) while developing the 2D and 3D migration Green’s function formulas in

the far-field approximation. Moreover, Guitton (2004) used a flat-layer model with a complex ve-

locity field and the Marmousi model to estimate migrated images by approximating the inverse of

the Hessian or the inverse of the PSF with a bank of non-stationary matching filters between two

migrated images. Finally, Valenciano (2008) used the least-squares wave-equation inversion to
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reduce illumination problems under salt bodies while considering least-squares Hessian matrices

defined from the modeling/migration operators and that the information about the PSF is provided

by the off-diagonal elements of the Hessian operator, measuring the quality of the imaging system,

aiming to reverse the spreading of the energy with the inversion and recovering the amplitudes.

1.4 Thesis objectives and organization

The main objective of this thesis was to reduce the crosstalk effects that would be produced

in multiparameter full waveform inversion in the ρ , VP, and VS model space while considering a

seismic surface experiment. The strategies to minimize these inter-parameter coupled effects were

developed by applying the decorrelation ideas explained by Operto et al. (2013), Métivier et al.

(2015), and Innanen (2020a,b,c,e). In this sense, the target was to transform the original model

space (ρ , VP, and VS) to a root model space for FWI (ρ , c11, and c44), called s in this thesis, and then

to a new or intermediate model space, called r, where the parameters of different classes or nature

would be already decorrelated, i.e., where the Hessian operator would be an identity matrix or a

multiple of it. This new model space would be convenient to perform an FWI where convergence

could be reached towards a more accurate minimum point with minimization of coupled effects

and (1) since mapping between model spaces is equivalent to a coordinate transform between

two systems and (2) the value of the objective function is a scalar that keeps its magnitude in

both model spaces, finding the best solution in the r model space is equivalent to find it in the

original model space. To achieve this goal, appropriate transformation rules between the Hessian

of both systems were necessary to obtain transformation matrices to later apply transformation

rules or linear relationships to map between model spaces. However, some of the challenges in the

application of these ideas lie in the type of re-parameterization done in the model grid as well as

in the type of Hessian matrix used, since working with the Full Hessian would imply a significant

computational cost. Within this framework, the thesis is organized as follows:

Chapter 2 contains the study of the analytic and empirical radiation patterns produced by
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scatter points or model perturbations in the ρ , VP, and VS model space. The goal was to un-

derstand the type of crosstalk that would be produced in an FWI process while working with this

re-parameterization of the elastic wave equation, and how these coupled effects can change if more

realistic scenarios are considered, such as heterogeneous reference media or backgrounds, which

are typically not contemplated in the development of the analytic expressions of the scattering pat-

terns. In this context, the development and assumptions of the analytic expressions of the radiation

patterns, in this model space, were explained, but also a workflow was introduced to extract the

displacement components of the P-P and P-S wavefields generated under homogeneous and het-

erogeneous reference media by using radius-dependent masks, and angle sweeps were executed

over them to compute the empirical radiation patterns.

Chapter 3 entails the theory and optimization methods behind the application of full waveform

inversion, which are required to understand the workflows proposed in this thesis and employed in

the different numerical experiments. Additionally, this chapter includes the first numerical exper-

iments done to prove the decorrelation ideas between parameters of different classes, by applying

local-wise re-parameterizations of the model grid and using local 3× 3 Hessians or point-wise

Hessians to obtain transformation matrices of the same size that allow the mapping between the

original model space s and the new or intermediate model space r. To obtain the transformation ma-

trices, the numerical procedure reported by Innanen (2020d) was applied. The model parameters

estimated with this strategy were compared with the results obtained with a baseline or reference

FWI, i.e., without applying any transformation rule, and the aspect of the resulting Hessians from

both scenarios was evaluated to understand the outcomes and the modifications that could be done

to the workflow.

Chapter 4 includes the Simulated Annealing theory, as well as the development of the for-

ward problem and inverse problem operators necessary to solve a one-dimensional AVO nonlinear

problem based on the re-parameterization of the Zoeppritz equations and using three different opti-

mization methods, i.e., Gauss-Newton, steepest descent, and Simulated Annealing, while inverting

broadband and band-limited synthetic data. The objective of performing these experiments was
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to demonstrate and understand the general behavior in addition to the advantages and disadvan-

tages of the Simulated Annealing algorithm when estimating physical properties from a simpler

and smaller geophysical seismic problem than the FWI problem treated in this thesis, and by doing

so, acquiring valuable insights to extend its application to other geophysical seismic problems.

Chapter 5 comprises an alternative to the type of Hessian matrix used in Chapter 3, to consider

crosstalk information from multiple locations of the model grid instead of only one. The strategy

proposed in this chapter includes numerical experiments that required the transformation of a point-

probes Hessian into an almost block-wise diagonal matrix to find a transformation matrix of size

3× 3 that still allows the local-wise mapping between the model spaces. To execute this idea,

a different numerical procedure, from the one used in Chapter 3, was necessary to compute the

transformation matrix, choosing the Simulated Annealing technique due to its advantages over

other methods. Therefore, in this chapter, it is explained the advantages and disadvantages of the

Simulated Annealing for the current problem, and the objective function employed for the new

purposes. The model parameters estimated with this new strategy were compared with the results

obtained in Chapter 3. The section finalizes with the analysis of the successes and the possible

factors that could have affected the behavior of the Simulated Annealing technique.

Finally, Chapter 6 consists of the conclusions of the thesis, summarizing the purposes of each

chapter and encompassing the main breakthroughs obtained with each of the numerical experi-

ments, as well as a discussion of successful aspects and areas for enhancement in future investiga-

tions related to this topic.
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Chapter 2

Assessment of crosstalk under scenarios of

homogeneous and heterogeneous

backgrounds

Summary

Analyzing radiation patterns is the method most commonly used to evaluate crosstalk between

parameters of different classes in multiparameter full waveform inversion problems. Typically,

these patterns are constructed from analytic expressions subject to not-so-realistic assumptions,

such as considering homogeneous reference media. This chapter focuses on introducing a work-

flow to extract the empirical radiation patterns from simulated scattered wavefields to understand

the crosstalk effects that exist in the ρ , VP, and VS model space, and on making use of the technique

to assess the scattering patterns generated from wavefields produced under different heterogeneous

backgrounds. To achieve this, radius-dependent masks were used to isolate the horizontal and ver-

tical components of the wavefields of interest as well as angle sweeps. The proposed workflow

is beneficial since it allows to extract accurate empirical patterns and to demonstrate that, under

heterogeneous scenarios, the shape of the radiation patterns slightly changes from what is theo-

retically expected, and thus different crosstalk regions might occur from those indicated by the

analytic expressions, as well as sensitivity variations.
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2.1 Introduction

Multiparameter full waveform inversion (FWI) is a challenging problem because inter-

parameter coupled effects can be introduced to the seismic response in a propagation regime,

depending on the selected parameterization of the physical properties of the rocks. These

effects generate poor estimations of the model parameters and produce slow convergence of the

optimization algorithms chosen to solve the inversion problem.

These coupled or trade-off effects, namely crosstalk, are a phenomenon that occurs when the

error associated with a particular model parameter generates data residuals that are attributed to

another model parameter (Keating, 2020), producing leakage of information, i.e., parameters of

different nature are confused during the inversion process. The most common strategy to mitigate

these effects in an FWI workflow is to analyze the radiation patterns of scattered wavefields asso-

ciated with a diffractor point or model perturbation positioned in the model grid and later choose

a suitable parameterization to describe the subsurface that guarantees their minimal overlap over

most of the scattering angles that are in the scope of the acquisition geometry of the seismic exper-

iment (Keating and Innanen, 2019; Operto et al., 2013).

Typically, before solving the FWI problem, analytic expressions of radiation patterns are cal-

culated to perform crosstalk analysis for a particular parameterization and acquisition geometry.

Generally, these expressions have been derived and published for different sets of known param-

eters and wave equations (e.g., scalar acoustic, elastic, viscoelastic, among other wave equations)

using a point scatterer model of a localized heterogeneity which is embedded in a homogeneous

medium, assuming plane waves, and working on the basis of the Born approximation to find the

solution of the scattered wavefields (Kamath and Tsvankin, 2016; Moradi and Innanen, 2019; Sato,

1984; Sato et al., 2012; Wu and Aki, 1985). In this sense, the parameter perturbations that pro-

duce radiation patterns with a variation of amplitude that is proportional over a range of scattering

angles will be easily confused between each other in the inversion process, as these have similar

effects on the recorded wavefields and it will not be straightforward to distinguish them (Keating,
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2020).

Therefore, the objective of this chapter was to introduce a workflow to extract the empirical

radiation patterns from simulated scattered P-P and P-S wavefields generated from a virtual source

or scatter point of individual model perturbations, regardless of the parameterization selected and if

its analytic expressions are known or not. The workflow was tested by comparing the empirical and

analytic scattering patterns produced by perturbations of ρ , VP, and VS embedded in homogeneous

media, and the independence from analytic expressions was exploited by studying the radiation

patterns produced under scenarios of heterogeneous reference media, to understand how these

patterns change from the theoretical expectations and how crosstalk might vary in this model space

when considering more realistic configurations, which are not addressed in the analytic equations.

2.2 Scattering theory in the ρ , Vp, and Vs model space

The scattering theory explains that the actual medium that represents the subsurface and where

a wave propagates results from the sum of an homogeneous background (reference medium) and

small perturbations in the model properties (Moradi and Innanen, 2015). For an isotropic elastic

scenario, characterized by the density and the Lamé coefficients (λ and µ), the following relation-

ships hold:

λ (x) = λ0 +δλ (x) = λ0 [1+ξ (x)] (2.1)

µ(x) = µ0 +δ µ(x) = µ0 [1+χ(x)] (2.2)

ρ(x) = ρ0 +δρ(x) = ρ0 [1+υ(x)] (2.3)

where λ0, µ0, ρ0 are the properties of the background and λ , µ , ρ are the properties of the actual

medium. Additionally, the fractional fluctuations correspond to a localized heterogeneity (Figure

2.1) and these must meet |ξ |, |χ|, |υ | � 1.

To study a scattered wavefield and extract its analytic radiation patterns, we can analyze a
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Figure 2.1: Representation of a localized inhomogeneity of size L from which the scattered wave-
field is generated. r, ψ , and ζ are spherical coordinates and er, eψ and eζ are the unit base vectors
in that coordinate system (Modified from Sato et al. (2012)).

plane wave that interacts with a localized inhomogeneity or scatter point, using the first-order

perturbation method or Born approximation in the stationary state (Sato et al., 2012). To obtain the

P-P and P-S analytic radiation patterns we must consider that:

u = u0 +u1 (2.4)

where u is the total wavefield, u0 is the incident wavefield and u1 is the scattered wavefield, and

|u1| � |u0|. Overall, the scattered wavefield results after summing the response from all single

scatter points. However, radiation patterns are not generally studied for all the locations of the

model grid, but a representative pattern per perturbed parameter class is investigated. This means

that the radiation pattern analysis does not provide information about crosstalk at different spatial

locations, and thus this procedure does not completely characterize the crosstalk effects produced

in the inversion (Keating and Innanen, 2019).

On the other hand, the isotropic elastic wave equation in the time domain for the full displace-

ment wavefield u(x, t) is:

ρ(x)üi(x, t)−∂ jσi j(λ ,µ;uk) = 0 (2.5)
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with:

σi j(λ ,µ;uk) = λ (x)δi j∂lul(x, t)+µ(x)[∂iu j(x, t)+∂ jui(x, t)] (2.6)

where the two overdots in u mean second time derivative and i = j = k = l =1,2,3. Equation 2.5

is written for the incident wave as:

ρ0ü0
i −∂ jσi j(λ0,µ0;u0

k) = 0 (2.7)

We can find the scattered wave equation by substituting Equation 2.4 in Equation 2.5 and using

Equation 2.7. If we focus only on first order perturbations, the following equation is obtained:

ρ0ü1
i −∂ jσi j(λ0,µ0;u1

k) = δ fi(x, t) (2.8)

The term δ fi(x, t) in Equation 2.8 is a mathematical expression of the interaction between the

incident wave and the scatter point (equivalent body force):

δ fi(x, t) =−δρ ü0
i +∂iδλ∂ ju0

j +∂ jδ µ(∂iu0
j +∂ ju0

i )+δλ∂i∂ ju0
j +δ µ∂ j(∂iu0

j +∂ ju0
i ) (2.9)

To solve Equation 2.8, the equivalent body force needs to be defined according to the type of

incident wave that we desire to simulate. For a P-wave:

u0P = e3ei(k0e3x−ωt) where k0 =
ω

VP0
(2.10)

Equation 2.10 must be used for every u0 or ü0 in Equation 2.9. Later, the Green’s function is

applied to solve for the desired type of scattered waves, in the case of this study, the P-P and P-S

wavefields. The derivation of u1PP
i and u1PS

i was developed in detail in Sato et al. (2012), producing
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the following expressions:

u1PP
i (x, t) =

ei(k0r−ωt)

r
FPP

i (2.11)

u1PS
i (x, t) =

ei(l0r−ωt)

r
FPS

i (2.12)

which result after convolving the far-field component of the Green’s function with the equivalent

body force. In this equation, r corresponds to the observation distance for the Green’s function,

l0 = ω/VS0, and FPP
i and FPS

i are the scattering amplitudes, which can be written in spherical

coordinates as:

FPP =
3

∑
i=1

FPP
i ei = FPP

r er +FPP
ψ eψ +FPP

ζ
eζ (2.13)

FPS =
3

∑
i=1

FPS
i ei = FPS

r er +FPS
ψ eψ +FPS

ζ
eζ (2.14)

FPP
r =

l2
0

4π

[(
− 1

γ2
0
+

cosψ

γ2
0

+
2
γ4

0
sin2

ψ

)
δ ρ̃(k0er− k0e3)

ρ0

−
(

2
γ2

0

)
δṼP(k0er− k0e3)

VP0

+

(
4
γ4

0
sin2

ψ

)
δṼS(k0er− k0e3)

VS0

] (2.15)

with FPP
ψ = FPP

ζ
= 0

FPS
ψ =

l2
0

4π

[(
−sinψ +

2
γ0

cosψ sinψ

)
δ ρ̃(l0er− k0e3)

ρ0

+

(
4
γ0

cosψ sinψ

)
δṼS(l0er− k0e3)

VS0

] (2.16)

with FPS
r = FS

ζ
= 0

In Equation 2.15 and 2.16, γ0 =VP0/VS0 . Additionally, each scattering amplitude contains the

exchanged wavenumber vector, which is the argument in the Fourier transforms of the fractional
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fluctuations δ ρ̃

ρ0
, δṼP

VP0
, and δṼS

VS0
, i.e., the difference between the scattered wavenumber vector and

the incident wavenumber vector for an angular frequency. In both equations, the terms grouped

with parenthesis are the mathematical expressions of the analytic radiation patterns produced by

its associated parameter perturbations.

2.3 Numerical experiments

2.3.1 Extraction of empirical radiation patterns

To examine the empirical radiation patterns produced by perturbations in ρ , VP, and VS, a

homogeneous reference medium with 200 samples in both the x and z directions was considered for

each parameter and with values of VP=3000 m/s, VS=1800 m/s, and ρ=1400 kg/m3. Additionally,

the perturbed media were constructed by positioning a localized perturbation (scatter point) in

the middle of the model grid for one of the three parameters. This perturbation represented an

increment of 10% of the respective background value.

The isotropic elastic wave equation re-parameterized in the ρ , VP, VS model space and in the

frequency domain was selected as the wave propagation model. This wave equation is explained

in Section 3.2.2 of Chapter 3 with more detail. Moreover, an explosive source, represented by

a Ricker wavelet with 25Hz of dominant frequency, was located in the middle of the surface of

the grid and 1C vertically and horizontally-oriented geophones were placed at each grid point,

responding at discrete frequencies and recording the simulated vertical (uz) and horizontal (ux)

displacements of the wavefields. Each displacement component was computed twice: (1) simu-

lating that the incident wave traveled only in the reference media (with no scatter points) and (2)

simulating that it traveled through the medium perturbed in only one parameter class, but with no

perturbations of the other parameter classes. The inverse Fourier Transform was applied to each

displacement component and, after transforming them to the time domain, the subtraction of the

former to the latter displacement was done, corresponding to the scattered wavefield generated by

a change in a particular model property (Figure 2.2), as indicated by Equation 2.4.
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Figure 2.2: Mathematical procedure to compute the scattered wavefield caused by a perturbation of
one parameter class. The blue dot corresponds to the scatter point, while the yellow star represents
the explosive source.

With all the information in the time domain, the scattered wavefield was plotted at an appro-

priate time that allowed the visual differentiation of the P-P and P-S wavefields. For this fixed

time, both types of wavefields were separated using a radius-dependent mask of the size of the

model grid. Favorable radii were input to isolate both wavefields, considering the values out of the

radius when working with the P-P energy and within the radius when working with the P-S energy

(Figure 2.3).

Within the isolated regions of the grid, a sweep of angles was performed by fixing an angle

and selecting a range of 10 discrete upper and lower degrees. The total amplitude per fixed angle

was computed with the square root of the sum of the energies associated with ux and uz within

the current group of angles, i.e., |u1|=
√

ux2 +uz2, and the process was repeated for 360 degrees.

Finally, polar plots were constructed to illustrate the empirical radiation patterns and these were

compared with those obtained from the corresponding analytic expressions of Equations 2.15 and

2.16. It is observed in Figure 2.4 that the shape and values of the analytical and empirical radiation

patterns were almost identical for every perturbed parameter class and for each type of energy

conversion mode, which means that effectively this workflow recovered accurate patterns and can

be used in situations where the analytic expressions are unknown.
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Figure 2.3: Proposed workflow to extract the empirical radiation patterns from simulated wave-
fields.(a) Extraction of patterns from the P-P wavefield. (b) Extraction of patterns from the P-S
wavefield. R corresponds to the radius indicated by the user.

2.3.2 Radiation patterns under heterogeneous reference media

Three heterogeneous background media with varying complexities were studied using the pro-

cedure described in the previous section. The first case consisted in reference media for ρ , VP, and

VS with a linear increment of the values with depth; the second case was similar to the first one but

with an increment of 25% of the slopes of the linear increment; and the third case was a modified

smoothed Marmousi model (the original VP Marmousi model was divided by 2 to obtain VS and by

1.5 to obtain ρ). Figure 2.5 allows to illustrate the perturbed VP medium in each case. For each of

these scenarios, scatter points were placed in the middle of the grid with values of 10% increase

with respect to the reference media.

For each case, the model size was modified to avoid grid dispersion effects. In Figures 2.6

and 2.7 a comparison is shown between the analytic radiation patterns, the patterns obtained from

a homogeneous background, and those obtained after considering the heterogeneous reference
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Figure 2.4: Comparison between the normalized analytic and empirical radiation patterns of P-P
and P-S wavefields. Values were normalized.

Figure 2.5: Different heterogeneous reference media used in this study. (a) Case 1, (b) Case 2, and
(c) Case 3.
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media proposed in this section. For the cases of heterogeneous background, the general shape of

the scattering patterns was kept, but some changes appeared in terms of rotation of the lobes and

the amplitude ratio.

Figure 2.6: Overlapped radiation patterns of analytic, homogeneous, and heterogeneous cases
extracted from the P-P wavefield. Values were normalized.

Figure 2.7: Overlapped radiation patterns of analytic, homogeneous, and heterogeneous cases
extracted from the P-S wavefield. Values were normalized.
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When the values of the reference media increased linearly with depth (Cases 1 and 2), the am-

plitudes were more focused around smaller angles than those described by the analytic responses.

For instance, there was a slight upward rotation of the radiation lobes associated with changes in

ρ for the P-S wavefield and in VS for the P-P and P-S wavefields. Additionally, even though the

VP scattering pattern (P-P wavefield) was close to circular, it did not have the analytic isotropic

behavior anymore, but higher amplitudes were scattered towards small and intermediate angles.

Moreover, the radiation pattern caused by ρ perturbations (P-P wavefield) shrank towards smaller

angles.

On the other hand, the modified Marmousi model (Case 3) exhibited radiation patterns with

behaviors in between the homogeneous case and Case 1-Case 2, and the shape of the patterns dif-

fered from the analytic shapes for some angles. In this case, rotation of lobes occurred similarly

to the previous heterogeneous cases, but especially for the P-P wavefield and for the VP and ρ pat-

terns, the amplitude values were closer to those described by the analytic expressions. Therefore,

the shrinkage of the ρ radiation pattern was more subtle and the VP radiation pattern had higher

amplitudes scattered from small to large angles, but losing its circular isotropic shape.

Figure 2.8 and 2.9 contain the overlapping of the scattering patterns of each model perturba-

tion, helping with the identification of the extent of crosstalk that would occur by performing an

FWI in this model space. When considering a seismic surface experiment and the P-P wavefield,

the analytic patterns of VP and ρ indicated crosstalk in small angles (0-6°), and for the hetero-

geneous cases, the crosstalk occurred in slightly smaller angles, with a lack of symmetry for the

Marmousi reference media; moreover, according to the analytic expressions, no crosstalk should

appear between the parameters VS and ρ , but in Case 3 a small overlap existed between 80 and

90°; regarding VP and VS, crosstalk in Case 2 was the least similar to what was expected from the

analytic patterns, exhibiting crosstalk in small angles. On the other hand, when considering the

P-S wavefield, the analytic expressions of VS and ρ suggested crosstalk from 0 to almost 30° and

its counterpart; however, Cases 1 and 3 showed overlap of the radiation patterns from 0 to 20° and

for Case 2, from 0 to 15°.
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Therefore, subtle differences existed between the crosstalk effects indicated by the analytic and

the empirical scattering patterns from heterogeneous media, since depending on the scenario, new

small crosstalk regions appeared or the scope of the coupled effects was reduced, i.e., it occurred

for smaller range of angles. Additionally, the overlapping of the radiation patterns, either in the

analytic or empirical cases, gave insights into the strong variations of amplitude values that would

be present in a case by case basis, which is related to the nature or class of the model parameter

selected to be the perturbation or scatter point. This suggests that these sensitivity effects might be

extended to the inversion process.

2.4 Conclusions

The use of simulated scattered wavefields allowed to execute a workflow to isolate the P-P

and P-S wavefields and extract the empirical radiation patterns of the ρ , VP, and VS model space

with high accuracy regarding the patterns that result from the corresponding analytic expressions

encountered in the literature. This workflow was beneficial to perform crosstalk analysis not only

when the considered reference media was homogeneous, but also in situations where the analytic

expressions are not as explicit, such as the cases of heterogeneous reference media studied in this

chapter. However, the workflow could also be used to study the radiation patterns produced by

model perturbations in a re-parameterized model space which require analytic expressions that are

somehow unknown. This method helped to demonstrate that the shape of the radiation patterns

generated from heterogenous reference media was close to the indicated by the analytic expres-

sions, which depend on homogenous reference media, but in some cases, rotation of lobes, de-

crease of amplitude values, loss of symmetry and irregularities occurred. Moreover, it allowed to

understand the extent of crosstalk that could be produced between parameters of different classes

when performing an FWI in the ρ , VP, and VS model space and in particular for a surface seismic

experiment. Overall, for seismic surface experiments, there were crosstalk effects mostly between

VP and ρ as well as between VS and ρ , and the overlap of these heterogeneous scattering patterns
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Figure 2.8: Crosstalk assessment with radiation patterns extracted from P-P wavefield. Values
were not normalized to study the amplitude variations.(a) Analytic expressions, (b) Case 1, (c)
Case 2, and (d) Case 3.

enabled to perform a more accurate crosstalk analysis under more realistic scenarios, since the

coupled effects between parameters of different classes slightly changed with respect to those in-

dicated by the analytic expressions and different sensitivities between radiation patterns were also
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Figure 2.9: Crosstalk assessment with radiation patterns extracted from P-S wavefield. Values
were not normalized to study the amplitude variations. (a) Analytic expressions, (b) Case 1, (c)
Case 2, and (d) Case 3.

present between each pair of model parameters, suggesting that this characteristic would impact

on the inversion of the observed data.
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Chapter 3

Decorrelation of parameter classes and

crosstalk minimization with point-wise

Hessians

Summary

Multiparameter full waveform inversion is commonly affected by crosstalk between parameters

of different classes. The reduction of inter-parameter coupled effects is an important task that must

be performed to increase confidence in the estimations generated with FWI. These effects are

described and corrected by the Hessian, which also impacts the shape of the objective function

iso-surfaces and the convergence of the optimization algorithms. This chapter focuses on finding

an intermediate model space where the parameter classes are decorrelated, i.e., where the Hessian

is an identity matrix, to minimize crosstalk and reach convergence to an accurate minimum point

that could be transformed to the ρ , VP, and VS model space. Transformation rules between model

spaces were applied in an FWI workflow, using transformation matrices (T) based on a single

point in space and which were constructed to satisfy constraints imposed by the Hessian of the

intermediate system. Overall, this FWI method produced relatively accurate VS estimations, but

did not overcome the results of VP and ρ obtained with a reference FWI, since more crosstalk

was introduced. However, improvements in the structure of the Hessians concerning those from

27



the reference inversion were brought for some areas of the model grid, which makes the main

decorrelation ideas promising to minimize these coupled effects. The drawbacks were related to

the localized approach that was applied to compute T, which might need to include, in future work,

crosstalk contributions of multiple locations of the model grid.

3.1 Introduction

In multiparameter FWI, crosstalk between parameters of different classes means that the phys-

ical properties of the rocks are confused during the inversion process, yielding poorly accurate

results and producing convergence slowness (Keating and Innanen, 2019). A common strategy

to mitigate these coupled effects involves the analysis of radiation patterns, allowing to identify

which patterns overlap for a range of angles, and thus for which of the involved physical proper-

ties the gradient update will be similar, giving insights about the leakage that will occur (Keating

and Innanen, 2019; Métivier et al., 2015). In this sense, FWI workflows are designed considering

parameterizations that produce the minimal correlation of their scattering patterns and, in some

cases, the dominant parameter class. On the other hand, most local optimization algorithms re-

quire a Hessian operator that pre-conditions the gradient by correcting a variety of effects, such as

crosstalk through its off-diagonal blocks. Hence, trade-off suppression could be achieved through

the manipulation of the Hessian matrix, since no parameter correlation would exist if the corre-

sponding off-diagonal blocks were zero (Métivier et al., 2015; Operto et al., 2013).

Moreover, Innanen (2020a,b,c,d,e) published a series of reports where it is explained (1) how

re-parameterizing seismic inversion problems is equivalent to performing a coordinate transform

between a cartesian and an oblique system (2) how Gauss-Newton and steepest descent directions

are parallel, if the Hessian is an identity matrix, producing favorable convergence properties, and

(3) how a model space characterized by a Hessian with the identity matrix structure promises the

minimization of crosstalk effects.

In this study, an isotropic elastic full waveform inversion was performed in the frequency do-

28



main, with the main purpose of producing crosstalk corrected values of ρ , VP, and VS (original

model space) by initially inverting for an intermediate set of parameters, that ideally should not

contain any leakage, since its Hessians are expected to approximate the identity matrix, and then

transforming the final estimates back to the original model space. To achieve this goal, the transfor-

mation rules and the numerical procedure proposed by Innanen (2020a,b,c,d,e) were incorporated,

i.e., the intermediate re-parameterization (r1, r2 and r3) was found after solving linear relationships

between the parameters of a root model space or s system (ρ , c11 and c44) and a transformation

matrix. The crosstalk correction would be included within the transformation matrix, since it was

constructed in a way that it would allow converting a local Hessian (extracted from a fixed point

of the model grid in the s system) into an identity matrix in the intermediate system. In this sense,

it was also aimed to understand how the selected point in space controls this re-parameterization

and the scope of accuracy expected in the inversion.

3.2 Theory and Methods

3.2.1 Full waveform inversion

Full waveform inversion is a technique formulated through local optimization strategies by

iteratively trying to match the recorded data or observed data with the synthetic data that would be

produced by a set of idealized model parameters (Bunks et al., 1995; Tarantola, 1984; Virieux and

Operto, 2009). When both types of data are in close agreement, the idealized model is expected to

be a good approximation of the true subsurface characteristics. In this sense, an objective function

(φ ) is employed as a metric to evaluate how close is the synthetic data to the observed data, and

it is subject to a constraint C given by the wave equation selected to represent the recorded data

(Bunks et al., 1995). Thus, the general form of this constrained optimization problem is:

ŝ = min
s

φ(u,s,d) sub ject to C(u,s) = 0 (3.1)
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where ŝ corresponds to the inversion result, i.e., the model estimated with the optimization algo-

rithm, s is the subsurface model used to compute the synthetic data, u is the simulated wavefield,

and d is the measured or observed data. Equation 3.1 indicates that, to perform an FWI exper-

iment, we need to frame it by deciding the type of wave propagation model we want to use to

produce synthetic data and thus how complex would this modeling be. Moreover, other choices

are the appropriate parameterization of the earth, the domain we want to work in, the objective

function that is suitable for our data, and the type of optimization method that will allow us to find

a minimum point closer to the global solution (Eaid, 2021; Keating, 2020). All the decisions that

must be made previous to the implementation of FWI will have an important impact on the quality

of the obtained results.

Although the inversion strategies applied in the chapters of this thesis could be adapted to

different FWI formulations, these investigations were restricted to the isotropic elastic scenario,

since crosstalk effects are produced in seismic surface experiments with these model spaces, as

observed in the results shown in the previous chapter. As a result, certain wave phenomena, such

as dispersion and attenuation cannot be modeled. In other words, a wave propagation model is only

an approximation of the physics governing the seismic waves due to the involved simplifications

and assumptions about their propagation in the subsurface. The remaining decisions to execute

the FWI experiments of this thesis are indicated throughout the different sections of this and the

following chapters.

3.2.2 Objective function and forward modeling

The objective function in Equation 3.1 can penalize the difference between the observed and the

synthetic data that is generated by the current idealized model parameters, but also produce results

that are in agreement with some prior information about the Earth, i.e., the objective function can

be separated in two parts: a wavefield-dependent data fitting (φD) and a model-dependent prior

fitting (φP), taking the form:
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φ(u,s) = φD(u)+φP(s) (3.2)

If no prior information about the subsurface is available, the objective function is only formed

by φD. When cycle-skipping effects have been treated, for instance by selecting a multiscale ap-

proach, the most common wavefield-dependent data fitting expression to minimize in FWI prob-

lems is the L2 norm or least-squares (Tarantola, 1984), producing a fast convergence of the opti-

mization algorithms and taking the following form in the frequency domain:

φ =
N f

∑
n=1

Ns

∑
m=1

1
2
||Runm−dnm| |22 (3.3)

where N f is the number of discrete frequencies, Ns is the number of sources, d is the measured

data, u is the predicted wavefield and R is the receiver sampling matrix.

The objective function of equation 3.3 was implemented in the investigations of this thesis

without adding prior information of the model parameters. In addition, the frequency domain was

chosen to frame the partial derivative equations of the selected model of wave propagation because

this domain offers benefits to the application of the forward modeling algorithms, such as the re-

duction of the forward solutions due to the limited number of frequency components used to invert

the data, which is not possible in the time domain (Pratt, 1990). Additionally, the frequency domain

is suitable to apply multiscale approaches using single or multiple frequencies at a time, starting

with the inversion of the low-frequency components of the seismic data and progressively increas-

ing the frequency values, allowing to mitigate cycle-skipping effects and reducing nonlinearities

during the inversion (Bunks et al., 1995; Pratt, 1990; Virieux and Operto, 2009). Moreover, the

chosen domain has the advantage of being computationally efficient for smaller (two-dimensional)

FWI problems (Pratt et al., 1998), which is the type of problem that is treated in this research.

In the isotropic elastic approximation of the wave propagation, the medium is characterized by

the density ρ(x,z) and the Lamé coefficents λ (x,z) and µ(x,z). In this scenario, the horizontal and
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vertical components of the synthetic data are computed through the wave equation described by

Pratt (1990):

ω
2
ρux +

∂

∂x

[
λ

(
∂ux

∂x
+

∂uz

∂ z

)
+2µ

∂ux

∂x

]
+

∂

∂ z

[
µ

(
∂uz

∂x
+

∂ux

∂ z

)]
+ fx = 0 (3.4)

ω
2
ρuz +

∂

∂ z

[
λ

(
∂ux

∂x
+

∂uz

∂ z

)
+2µ

∂uz

∂ z

]
+

∂

∂x

[
µ

(
∂uz

∂x
+

∂ux

∂ z

)]
+ fz = 0 (3.5)

where ω is the angular frequency, ux and uz are the horizontal and vertical particle displacements,

respectively, and fx and fz are the horizontal and vertical source terms. This process of computing

the expected observations or geophysical data from a model or subsurface picture is called “forward

modeling” or “forward problem” (Sheriff, 2002; Tarantola, 2005). Equations 3.4 and 3.5 can be

solved applying the second order centered finite difference approach for the spatial derivatives, as

detailed by Pratt (1990). The finite difference procedure allows to write the isotropic elastic wave

equation in matrix form as:

ρω
2u+ c11∇(∇ ·u)− c44∇× (∇×u)+∇(c11−2c44)(∇ ·u)+∇c44 (∇u+∇uᵀ)+ f = 0 (3.6)

where c11 and c44 are elements of the stiffness tensor that relate to the Lamé coefficients through

the expressions c11 = λ +2µ and c44 = µ . Hence, Equation 3.6 can be structured as:

A(s)u− f = 0 (3.7)

considering that A is the wavefield operator or Helmholtz matrix. Equation 3.7 is equivalent to

C(u,s)=0 in equation 3.1, imposing that Equation 3.7 must be satisfied when an isotropic elastic

wave propagation model is selected. Additionally, to guarantee the appropriate evaluation of Equa-

tion 3.7 in the edges of the models treated in this thesis, a Perfectly Matched Layer (PML) region
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(Berenger, 1994) was added to the boundaries of the model grids, simulating an infinite spatial

extension and avoiding boundary reflections.

3.2.3 Re-parameterization of the FWI problem

The model space of ρ , c11, and c44 can be considered the root parameterization of the FWI

problem in the elastic scenario when using Equation 3.6. However, this wave equation can adopt

any other 3 elastic parameters that are somehow related to this basic parameterization. For instance,

in the case of the ρ , VP and VS model space, these relationships are:

c11 =VP
2
ρ (3.8)

c44 =VS
2
ρ (3.9)

It is significant to acknowledge that the type of acquisition geometry of the problem and the

considered model space to be inverted affect the quality of inversion outputs, introducing a certain

level of coupled effects between parameters of different nature, which is case dependent (Pan et al.,

2016, 2018, 2019; Tarantola, 1986). Moreover, in this thesis, the parameterization of the model

grid was done by assigning the corresponding three elastic parameters to each grid cell of the mesh,

representing the physical properties at each location. This approach is commonly applied in FWI

problems, and although its use implies the introduction of a vast number of unknowns, it produces

large spatial resolution in the results (Keating, 2020).

On the other hand, Innanen (2020a,b,c,d) explains how re-parameterizing seismic inversion

problems, such as AVO and FWI, is equivalent to applying a transformation between cartesian and

oblique coordinate systems. To change to a different model space it must be considered that the

objective function is a scalar quantity, meaning that it is invariant under the transformation to a

different coordinate system. However, the model update is a vector, expressed in its contravariant

components, while the gradient and the Hessian operator are tensors, expressed in their covariant

components; thus, these quantities do change under transformations. Hence, to map a contravariant
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vector from an initial system or model space s to a new system r (intermediate model space) and

backward, some rules are necessary:

sυ = tυ
µ rµ (3.10)

rυ =
(
t−1)υ

µ
sµ (3.11)

For example, the linear relationships of Equations 3.10 and 3.11 can be expressed in matrix

form considering a set of 2 model parameters, i.e., µ = υ = 2, represented as a vector a:

a1 (s)

a2 (s)

=

∂ s1
∂ r1

∂ s1
∂ r2

∂ s2
∂ r1

∂ s2
∂ r2


a1 (r)

a2 (r)

 (3.12)

a1 (r)

a2 (r)

=

∂ r1
∂ s1

∂ r1
∂ s2

∂ r2
∂ s1

∂ r2
∂ s2


a1 (s)

a2 (s)

 (3.13)

All these transformation rules include a transformation matrix T that could be constructed to

satisfy certain constraints in the problem, such as producing iso-surfaces of the objective function

with a particular shape in the transformed model space. Therefore, since scalar quantities do not

change under the transformation of the coordinate systems, the minimization of φ in the new

system will output r models limited by a range of sµ vectors that produce the same value of the

objective function and, because there is only one set of parameters associated to the minimum cost,

finding the minimizer of φ in the r model space implies that the minimum point is also found in

the s coordinate system.

3.2.4 Optimization algorithms and operators

Solving nonlinear problems with local optimization methods entails the calculation of updates

of the model parameters in an iterative fashion. These updates are added to the previous solution,

until converging, most generally, to a local minimizer, representing the model that produces the
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smallest value of the objective function regarding the neighboring points. Hence, after computing

the model updates, the values of the model parameters are modified per iteration (k) according to:

sk+1 = sk +∆s (3.14)

where sk+1 is the updated model, sk is the current subsurface model, and ∆s is the model update.

Equation 3.14 is performed until a termination criterium is met, which could be that no more

progress is done, the solution already has sufficient accuracy or the number of pre-defined itera-

tions has finished. In addition, ∆s is formed by the search direction, given by the negative of the

gradient and, in some cases, the Hessian operator, and a step length (α) that controls the distance

the algorithm moves towards that direction before updating the model and changing to another

direction. The methods chosen to solve the problem impact the accuracy of the obtained results,

as well as other aspects of the inversion process such as the computational time and cost. In this

section, I describe the gradient and the Hessian computation as well as the optimization strategies

that are necessary to understand the FWI workflows proposed in this thesis.

3.2.4.1 The gradient

Local optimization algorithms require gradients to minimize the objective function and find

descent directions towards the minimum point that produces the best match with the recorded data.

The gradient is a vector obtained by computing the first derivative of the objective function with

respect to the model parameters, sµ=si, j, i.e., its components indicate the rate of change of the

objective function with respect to each parameter class ( j) independently, per location i of the

mesh. Hence, the gradient of the objective function in Equation 3.3 constrained to Equation 3.7

takes the following matrix form:

g =
∂φ

∂ s
= Ruᵀ

(
∂A
∂ s

)ᵀ

A−1 (Ru∗−d∗) (3.15)

or, similarly:
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g =
∂φ

∂ s
=−R

(
∂u
∂ s

)ᵀ

∆d∗ (3.16)

where ∂A
∂ s corresponds to the derivative of the wave equation operator with respect to the model

parameters. Moreover, the gradient and the model updates (∆s) are affected by the selected pa-

rameterization of the wave equation; thus, performing the FWI using the root parameterization

(c11, c44, and ρ) is beneficial to compute the term ∂A
∂ s in Equation 3.15, using the chain rule (Eaid,

2021). For instance, if we are interested in the model space of ρ , VP, and VS, the derivative of A

with respect to VP is:

∂A
∂VP

=
∂A

∂c11

∂c11

∂VP
+

∂A
∂c44

∂c44

∂VP
+

∂A
∂ρ

∂ρ

∂VP
= 2VPρ

∂A
∂c11

(3.17)

On the other hand, Equation 3.16 consists in the zero-lag cross-correlation of the data residuals

with the partial derivatives of the modeled wavefield, i.e., the signals scattered by a localized pa-

rameter perturbation, while keeping the rest of the parameters fixed. This cross-correlation picks in

∆d∗ the information that is transformed into a model update for a particular position of the model

grid. Moreover, the derivative of the objective function of Equation 3.3 with respect to one param-

eter class is a weighted sum of the model perturbations related to each parameter class. Hence, as

explained in Chapter 2, when the radiation patterns of two parameters of different classes overlap

over a range of scattering angles, they have the same gradient update, meaning that they impact

similarly on the data and it is challenging to properly separate them. This trade-off phenomenon

is called crosstalk and is present in multiparameter FWI problems (Métivier et al., 2015; Operto

et al., 2013). In other words, crosstalk effects occur because errors in an estimated model param-

eter class produce data residuals that are ascribed to a different parameter class, resulting in the

update of a model parameter in response to a residual that corresponds to another model parameter

(Innanen, 2014; Keating, 2020).
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3.2.4.2 The Hessian

The gradient itself does not provide the correct model update towards the minimum point

because it is affected by a series of factors that are inherent to the seismic experiment (Operto

et al., 2013). Different optimization strategies require second-order information which is included

through a Hessian operator, allowing the convergence of the algorithms to a more accurate min-

imum point due to the effects that this matrix corrects in the gradient. The linear form of the

Gauss-Newton approximation of the Hessian is:

H(i, j),(k,l)(s) = RI,i

(
∂ui

∂ si, j

)(
∂uk

∂ sk,l

)∗
RK,k (3.18)

where j and l refer to the parameter class and i and k to the position. Equation 3.18 expresses the

correlation between the scattered wavefield that is caused by a diffractor point on the parameter si, j

and the scattered wavefield caused by a diffractor point on sk,l (Operto et al., 2013). Nevertheless,

there are various optimization methods that do not explicitly construct this operator, such as the

Truncated Newton and the quasi-Newton L-BFGS. Most generally, a Hessian-vector product is

used, since storing and inverting the Hessian is computationally expensive. The Hessian-vector

product can be written as ∇gi(s)
ᵀ
∆s, representing the rate of change of the gradient gi(s) produced

by the rate of change of s, i.e., a model perturbation.

Operto et al. (2013) and Métivier et al. (2015) illustrate how this full Hessian is organized in

3×3 blocks, each of size (nz × nx)×(nz × nx), with nz being the number of samples in the vertical

direction and nx the number of samples in the horizontal direction of the model grid. The elements

related to parameter classes and locations of the model grid that are not the same, i.e., when j = l

and i = k, correct from the gradient the wave-amplitude effects, such as geometrical spreading.

In addition, the elements where the parameter classes are of the same nature but the locations

of the model grid are not the same, i.e., j = l and i 6= k, correct from the gradient the limited

bandwidth effects generated by the directivity of the virtual sources, the source-receiver geometry
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and the band-limitations of the sources, which reduce the resolution of the outcomes. Moreover,

the elements where the parameter classes are not the same ( j 6= l), i.e., in the off-diagonal blocks

of the full Hessian, describe and correct the existing trade-off between parameters of different

nature. Therefore, using second-order information of the objective function is essential to reduce

the crosstalk effects in the minimization process and no coupled effects between parameters of

different classes would exist if the values within these blocks were zero (Métivier et al., 2015;

Operto et al., 2013; Pratt et al., 1998), meaning also that there would be a minimal correlation of

the involved scattering patterns.

Figure 3.1 allows to demonstrate that if the values of the full Hessian are extracted at a fixed

position of the mesh, a local 3×3 matrix can be constructed, corresponding to a point-wise Hessian

and characterizing the crosstalk between parameters of different classes only at that location of the

model grid. Moreover, in Figure 3.2 it is illustrated that if a perturbation of the parameter classes

is made at one fixed position (∆s) and we want to study the resulting change of the gradient in all

locations and for all parameter classes (gi(s)), vertical profiles across the perturbed location can

be extracted and, after reshaping them per block of the full Hessian, a point-probes Hessian can

be constructed. This type of Hessian is also organized in 3× 3 blocks and, although it is larger

than the local 3× 3 Hessian, it is still computable. These figures also allow to demonstrate that

the point-wise Hessian can be extracted from the point-probes Hessian. Given that in this thesis

three parameter classes are considered, the construction of the point-probes Hessian was done by

calculating three Hessian-vector products, using a spike as the model perturbation (∆s) and placing

it at a particular location of the model grid.

3.2.4.3 The adjoint-state method for the gradient and the Hessian

The need for the partial derivative wavefield with respect to the model parameters in the inner

operations of the gradient and the Hessian using Equations 3.16 and 3.18, respectively, implies

a high computational cost in the FWI process. Keating (2020), Eaid (2021), and Amundaray

(2023) explain thoroughly the development, assumptions, and considerations that must be made
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Figure 3.1: Illustration of a full Hessian, modified from (Métivier et al., 2015), and how a point-
wise Hessian can be constructed from it.

Figure 3.2: Illustration of a full Hessian, modified from (Métivier et al., 2015), and how a point-
probes Hessian can be constructed from it.

to produce expressions for the gradient and the Hessian-vector product, which do not require the

direct computation of ∂u
∂ s , by following the adjoint-state method (Métivier et al., 2013). In this
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section of the chapter, I summarize the main mathematical expression for both tensors, as well as

all the inner equations that are necessary for its proper implementation.

To obtain the gradient, the optimization in Equation 3.3 constrained by Equation 3.7, produces

a Lagrangian of the form:

L =
1
2
||Ru(s)−d||22+< A(s)u− f,κ > (3.19)

where κ is an unconstrained Lagrange multiplier and < ., . > is an inner product, such that <

a,b >= ∑
Ns
k=1 a†

kbk. In this sense, after finding the stationary points of the Lagrangian with respect

to s, u, and κ , the expression of the gradient reduces to:

∂L
∂ s

=<
∂A
∂ s

ū, κ̄ > (3.20)

here, ū= u, satisfaying A(s)ū−f= 0 to find ∂L
∂κ

= 0, and where κ̄ is chosen to cancel the derivative

of the objective function with respect to the wavefield. Hence, κ is obtained from:

∂L
∂ ū

= Rᵀ(Rū(s)−d)+A†
κ̄ = 0 (3.21)

Equation 3.21 is equivalent to the adjoint wave equation. It is composed by the sum of two

terms; κ , in the second term, corresponds to the adjoint wavefield and the first term corresponds to

the source term; the calculation of the Hermitian adjoint operator of A, i.e., A† indicates that the

data residuals are back-propagated from the receiver locations.

For the Hessian-vector product, certain procedures are followed similarly to those used to gen-

erate the expression of the gradient, but the Lagrangian to be considered is different, taking the

form:

L =< u(s),w >+< A(s)u− f,ξ > (3.22)

where w is an arbitrary vector. In this sense, after finding the stationary points of the Lagrangian
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with respect to s, u, and ξ , the expression of the Gauss-Newton Hessian-vector reduces to:

∂L
∂ s

=<
∂A
∂ s

ū, ξ̄ > (3.23)

here, ū=u, satisfaying A(s)ū−f= 0 to find ∂L
∂ξ

= 0, and where ξ̄ is chosen to remove the derivative

of the wavefield with respect to the model parameters and find a stationary point. Hence, ξ is

obtained from:

A†
ξ̄ =−w (3.24)

Equation 3.24 requires knowing the arbitrary vector w, which is stated as:

w = RTRJv (3.25)

In Equation 3.25, J is the Jacobian matrix and v another arbitrary vector. Both J and v are

not calculated separately because it is not practical. Thus, the product of both tensors is obtained

using the derivative of the forward problem (Equation 3.7) with respect to the model parameters

(sµ ) multiplied by the elements of the vector v, that is:

A(Jv) =−u∑

(
∂A
∂ sµ

)
vµ (3.26)

3.2.4.4 Steepest descent optimization method

The steepest descent algorithm is the simplest approach to minimizing Equation 3.1. This

method produces model updates that are only influenced by a step length and the gradient, allowing

movements along directions that are orthogonal to the iso-surfaces of the objective function and

which produce the most rapid decrease. In this sense, the model updates take the form:

∆s =−αg (3.27)
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These methods always guarantee a descent direction, linear convergence rate with zigzag move-

ments, and robustness. However, although they are computationally inexpensive, their convergence

is slow especially on difficult problems (Eriksson, 1996; Nocedal and Wright, 2006; Zou, 2020).

Moreover, these algorithms are susceptible to inter-parameter crosstalk effects since the second-

derivative information of the objective function is missing, being inappropriate for multiparameter

FWI.

3.2.4.5 Gauss-Newton optimization method

The Gauss-Newton algorithm produces model updates that depend on a step length, the gra-

dient, and the inverse of the Hessian. The inverse of the second-derivative information of the

objective function pre-conditions or corrects the direction indicated by the gradient, resulting in

a more accurate search direction. In this sense, crosstalk effects are mitigated since the inversion

anticipates with more accuracy how changing one variable causes changes in another (Innanen,

2014). Hence, the model updates can be computed with the expression:

∆s =−αH−1g (3.28)

The convergence rate of this technique is fast and typically quadratic, but it is less robust in the

presence of noisy or ill-conditioned data as well as the Hessian could be indefinite far away from

the solution. In addition, the explicit calculation of the inverse of the Hessian can be error-prone

and involves high computational storage and cost (Eriksson, 1996; Nocedal and Wright, 2006;

Zou, 2020). This explains why the inverse of the Hessian operator is commonly approximated

through quasi-Newton methods, such as the Limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) algorithm or by applying Hessian-free methods, e.g., the Truncated Newton algorithm.

Since these methods approximate the Newton step, by using them, part of the Hessian information

is missing and the crosstalk is only partially mitigated.
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3.2.4.6 The line search

The optimization algorithm searches iteratively a new model that produces a lower value of

the objective function along the direction indicated by the gradient (optionally corrected by the

Hessian) and the distance the algorithm moves, namely step length (α), which can be found after

solving:

min
α>0

φ(sk +αpk) (3.29)

where pk is the search direction of the current kth iteration. Equation 3.29 represents an exact

minimization that would output the maximum benefit for the current search direction. However,

this is an expensive process, and a one-dimensional inexact minimization is typically carried out,

sacrificing accuracy, but conserving computational time (Luenberger and Ye, 2008). To achieve

this, several candidate step lengths are generated until finding one that approximates the minimum

of Equation 3.29, while enforcing certain conditions. For the experiments of this thesis, the suf-

ficient decrease and curvature conditions, i.e., the two Wolf conditions, were satisfied to find the

best approximation of α per iteration.

Nocedal and Wright (2006) explain thoroughly how both conditions are formulated. The suf-

ficient decrease or Armijo condition ensures sufficient reduction of the objective function during

each iteration and prevents overly large steps that could overshoot the minimum. It is measured by

the following expression:

φ(sk +αpk)≤ φ(sk)+C1α∇φ
ᵀ
k pk (3.30)

where C1 ∈ (0,1). In this thesis, the value 1× 10−4 was chosen for C1. Hence, this condition

states that the value of the objective function at the new point must be smaller than or equal to

the objective function at the current point plus a reduction factor times the dot product of the

gradient and the search direction. On the other hand, the curvature condition ensures reaching the

minimum point while avoiding excessively small step lengths and improving the convergence rate.
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This condition is described by the following inequality:

∇φ(sk +αpk)
ᵀpk ≥C2∇φ

ᵀ
k pk (3.31)

where C2 ∈ (C1,1). Typically, C2 = 0.9, and this was the value used throughout this thesis. Hence,

this condition requires that the gradient of the objective function at the new point is not too large

in relation to the gradient of the objective function before taking a step in the new search direction.

3.2.4.7 Impact of the Hessian in the convergence of the algorithms

When the steepest descent approach is selected to solve an optimization problem described

by an objective function that exhibits ellipsoidal iso-surfaces with pronounced eccentricities and

misalignments, the parameter information is mixed due to problems encountered by the algorithm

to reach the global minimum. For instance, for a scalar quadratic objective function with form:

φ = sᵀHs+ sᵀq+ ς , considering a 2-variable model, the term H is equivalent to the Hessian; if

this Hessian is different from the identity matrix, the iso-surfaces of φ are not symmetric and the

steepest descent method fails in converging to an accurate result, contrary to the Gauss-Newton

method, as observed in Figure 3.3a. Conversely, Innanen (2020c) mathematically proved that, for

this quadratic objective function, the steepest descent and the Gauss-Newton updates or directions

are parallel, if the Hessian is an identity matrix or a multiple of it, as observed in Figure 3.3b,

meaning that a more accurate local minimum is reached, producing reduction of crosstalk and

improving the convergence of the algorithms (Innanen, 2020a).

Hence, to map between model spaces, we can design transformation matrices that could be fa-

vorable to produce spherically symmetric iso-surfaces of the objective function in the transformed

or intermediate model space, by solving the following system of equations, which is the transfor-

mation rule for the Hessian between the s and the r system (Innanen, 2020c):

tλ
µ Hλσ (s) tσ

υ = Hµυ (r) = δµυ (3.32)
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Figure 3.3: Two-variable model of descent-based optimization. a) the Hessian in the quadratic
objective function is not the identity matrix; b) the Hessian in the quadratic objective function is
the identity matrix. SD means ”steepest descent”.

with:

T =


t1
1 t1

2 t1
3

t2∗
1 t2

2 t2
3

t3∗
1 t3∗

2 t3
3

 (3.33)

after considering a three-dimensional problem, such as the one treated in this thesis.

3.2.5 Numerical procedure to compute the transformation matrix

Innanen (2020d) explains the development of the numerical procedure used to solve Equation

3.32 in this chapter, knowing the Hessians in the s and the r model space. Equation 3.32 can be

written in matrix form as:

TH(s)Tᵀ = H(r) = I (3.34)
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where I is the identity matrix. Considering an M-dimensional problem for all the involved matrices,

T has M(M− 1)/2 degrees of freedom, meaning that the problem is non-unique and there are

infinite combinations of the lower triangular elements of T that allow the transformation of the

Hessian into an identity matrix. Hence, for the dimensionality of T treated in this thesis, the 3

elements lying below the diagonal in Equation 3.33 (marked with *) have to be pre-selected and

fixed. These numerical procedures were adapted to be performed with the Hessian matrix, but

these are most generally referred to as whitening transform algorithms in the literature, based on

the eigen-decomposition of the Hessian.

The procedure consists in solving for the unknown elements of T in a column-by-column fash-

ion and from left to right. For the first column, there is only one unknown, i.e., the first diagonal

element. This element is obtained with a quadratic equation using coefficients that depend on the

values of H in the s system, that is:

ηt2
1,1 +β t1,1 +ζ = 0 (3.35)

where t1,1 is the element of the first row and first column in T and:

η = nᵀHn ; β = 2nᵀHk ; ζ = kᵀHk−1 (3.36)

with:

n = [1,0,0, . . . ,0]ᵀ (3.37)

k = [0, t∗2,1, t
∗
3,1, . . . , t

∗
N,1]

ᵀ (3.38)

In the following list, I summarize a series of steps that are followed for the calculation of the

next j column of T:

1. A matrix X is computed as T′ᵀH, with T′ being a matrix that collects all the known element
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of T.

2. A vector Y is computed as XT̃, with T̃ being a vector formed by the fixed elements below

the diagonal at the current column.

3. An altered version of X is created. This is formed with the first j columns of X and appending

the vector Y to its right-hand side.

4. The altered version of X goes through a partial elimination/backsubstitution process, stop-

ping when each row has 3 non-zero elements.

5. A matrix Z of size ( j−1)×3 is formed with the non-zero elements of the matrix resulting

from step 4.

6. The following two N×1 vectors are constructed:

n =



f1

f2

...

f j−1

1

0

0
...

0



k =



g1

g2

...

g j−1

0

t∗j+1, j

t∗j+2, j
...

t∗N, j



(3.39)

where:

fk =−Zk,2/Zk,1 gk =−Zk,3/Zk,1 (3.40)

7. The diagonal element of T in the current column can be found with Equation 3.35, with the
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coefficients given by the expressions in Equation 3.36 and using the vectors n and k from

step 6.

8. The remaining upper elements in the column are linearly solved with this equation:



t1, j

t2, j
...

t j−1, j


=



f1 g1

f2 g2

...
...

f j−1 g j−1


t j, j

1

 (3.41)

9. Steps 1 to 8 are repeated for the remaining columns in T.

3.3 Workflow and its adaptation for computational feasibility

A model space where the Hessian is the identity matrix was searched through the construction

of T with Equation 3.32, and the application of the transformation rule of Equation 3.11. Once

every location was converted to the intermediate system (r model space), an optimization strategy

was performed to find the minimum point and the obtained solution was transformed to the original

system (s model space) using Equation 3.10 and later to ρ , VP, and VS. The numerical experiments

of this chapter were performed using the steepest descent method because it does not require the

calculations and storage of the inverse of the Hessian operator, or its approximations; moreover,

because it is the best approach to show the effectiveness of the decorrelation ideas when treating

crosstalk effects, since if the model space that produces spherically-symmetric objective functions

is found, this algorithm should be able to generate results with levels of accuracy similar to those

produced by Hessian-based approaches.

Figure 3.4 contains the FWI workflow that was applied in this chapter. A multiscale approach

was executed with 8 frequency bands, each with 4 frequencies; each band started at 1Hz and

had equally spaced values, with a maximum frequency of 2Hz for the first frequency band and

increasing to 20Hz until the last one. In addition, the initial models were set as the homogeneous
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backgrounds around the modeled true heterogeneities, and 20 iterations of the steepest descent

algorithm were performed per frequency band.

Figure 3.4: Re-parameterization workflow followed in this study.

The main assumption in the numerical experiments of this chapter was to work with a point-

wise Hessian of the s model space and find the matrix T that transforms this 3×3 Hessian to the

identity matrix in the r model space. This was a first attempt to make the process computationally

feasible, since working with the full Hessian would imply a large computational cost. Hence, since

parameterizations would be devised based on a single point, the inversion results could be affected

by the location selected to compute the transformation matrix. On the other hand, to remove

degrees of freedom, the lower triangular elements in T were set to zero.

Moreover, a comparison was done between the true models, the estimates from the re-

parameterized FWI using the proposed workflow, and from a reference or baseline FWI, i.e.,
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without applying transformation rules. Additionally, the point-wise and point-probes Hessians

computed with the final estimates were analyzed to determine how close they were to the sought

identity matrix. For this purpose, visual inspection of the point-probes Hessians and an appropriate

evaluation metric were used. The evaluation metric was a 3×3 matrix that results after calculating

the norm of each block of the correponding point-probes Hessian. Its purpose was to capture and

summarize the existent crosstalk between parameters of different classes in all the grid cells and

not only at the location selected to compute T. This metric indicates that the closer to zero the

off-diagonal elements, the less crosstalk between parameters of different nature is in all locations

of the model grid. Additionally, since some blocks of the point-probes Hessian exhibit sensitivities

with varying orders of magnitude, because of the parameter class perturbed to produce the

corresponding block, the crosstalk metric and the local 3×3 Hessians were normalized, applying

the following expression:

hi, js =
hi, j√

hi,i
√

h j, j
with i = j = 1,2,3 (3.42)

where hi, j corresponds to the elements of the Hessian (H) to be normalized; here, i and j are the

row and column of the matrix, respectively.

3.4 Numerical experiments

Twenty-five sources were placed at the top of the model grid, and 98 receivers were placed

at the top and bottom, to enhance the illumination of the heterogeneities. Figure 3.5 shows the

selected acquisition geometry as well as the dimension of the model grid and true values of ρ ,

VP, and VS. The reference FWI was performed with the same frequency bands, initial models,

optimization strategy, and the number of iterations proposed for the re-parameterized approach.

Figure 3.6 contains the results obtained without applying transformation rules. Crosstalk effects

are observed around the ρ heterogeneity and subtle trade-off effects are seen mostly below the VP

anomalies.
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Figure 3.5: True ρ , VP and VS models.

Figure 3.6: Models estimated with a baseline FWI, i.e., without re-parameterization.

Figure 3.7 contains the point-probes Hessian calculated with the estimates from the reference

inversion. The point-wise Hessians computed at different locations of the model grid are shown

in Figure 3.8, while Figure 3.9 represents the normalized crosstalk metric after perturbing the

parameter classes at different locations. Overall, at each tested location, the local Hessians and the

crosstalk metrics had an arrangement of values different from the identity matrix. Moreover, the

crosstalk metrics indicated strong crosstalk between ρ and VP and between ρ and VS, but much less

between VP and VS, in all locations of the mesh.

The models estimated with the re-parameterized FWI, choosing the location x=50 z=20 to

compute T, are shown in Figure 3.10. This time, much more crosstalk was produced around the

ρ heterogeneity, as well as at the top and bottom of the VP anomalies, in comparison to the results

from the baseline FWI. Figure 3.11 contains the results of the normalized crosstalk metric. Large
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Figure 3.7: Point-probes Hessian computed with baseline estimates, after perturbing parameters
at location x=50 and z=20. The 3× 3 matrix is the local Hessian at the same location of the
perturbation.

Figure 3.8: Point-wise Hessians computed at different locations of the baseline estimates.

crosstalk was produced between r2 and r1 as well as between r3 and r1. However, there were

fewer trade-off effects between r2 and r3, in all locations of the model grid. These results might

suggest that the VS estimations had much more contribution from the parameter class r2, while ρ

and VP were more influenced by the parameter classes r1 and r3, bringing their coupled effects

after transforming from the r model space to the s model space.
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Figure 3.9: Normalized crosstalk metrics computed with baseline estimates after perturbing at
different locations to compute the associated point-probes Hessians.

Figure 3.10: Models estimated with a re-parameterized FWI after selecting location x=50 and z=20
to compute T.

A point-probes Hessian associated with the final estimates, in the r model space, and with

Figure 3.11 is shown in Figure 3.12. The structure of the identity matrix was observed only at and

close to the grid cell chosen to compute T, but not in the entire model grid, as would be ideally

preferred to minimize crosstalk in a large scale. Outside this small area, different correlation
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Figure 3.11: Normalized crosstalk metric computed with estimates obtained after selecting the
location x=50 and z=20 to compute T (r model space). Parameter classes were perturbed at location
x=50 and z=20 to compute the associated point-probes Hessians.

patterns appeared in the blocks of the point-probes Hessian. Hence, this explains why the crosstalk

metric summarized a noticeable trade-off between some model parameters in all the locations.

Figure 3.12: Point-probes Hessian computed with estimates obtained from a re-parameterized FWI
after selecting the location x=50 and z=20 to calculate T (r model space). The 3×3 matrix is the
local Hessian at the same location of the perturbation.

Additionally, the re-parameterized FWI was performed by selecting different grid cells to com-
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pute the transformation matrix. Figure 3.13 contains the estimated model parameters for three

of the tested locations. Moreover, it is demonstrated in Figure 3.14 that regardless the grid cell

selected to compute T, the optimization algorithm always reached convergence towards the same

local minimum, producing results that most generally did not overcome the baseline inversion.

Only the estimation of the VS heterogeneity was more accurately done with the re-parameterized

FWI than with the reference inversion, but for VP and ρ the estimated values of the anomalies were

close to those produced by the reference FWI and much more crosstalk was introduced rather than

minimized.

Figure 3.13: Models estimated with a re-parameterized FWI using different grid locations to com-
pute T: (a) x=20 and z=20, (b) x=50 and z=50, (c) x=80 and z=80.
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Figure 3.14: Horizontal and vertical profiles extracted from the estimates obtained with a re-
parameterized FWI using different locations to compute T.

Figure 3.15 allows to demonstrate that when selecting grid cells to compute T close or far

away from the sources, the identity matrix was only generated around the perturbed location, and

although for some locations the matrix was close to identity, most of the time it was not; thus,

it was not enough to make the iso-surfaces of the objective function spherically symmetric and

crosstalk effects were instroduced to the results.
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Figure 3.15: Point-wise Hessian matrices at different locations of the estimates in the r system
after inverting with different locations to compute T.

3.5 Conclusions

The use of the transformation rules and numerical procedures published by Innanen

(2020a,b,c,d,e) into an FWI workflow allowed to find a model space where the Hessian was the

identity matrix, but only in locations close to the grid cell chosen to compute the transformation

matrices (T), generally losing this identity matrix structure at points distant from the selected

location, producing different correlation patterns outside this small area, and thus introducing

coupled effects between parameters of different classes. Moreover, the steepest descent algorithm

reached convergence towards the same local minimum when selecting different locations to
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compute T; hence, all models were resolved similarly, generating more accurate VS estimates,

but not better VP and ρ results than those from the reference inversion, since more crosstalk was

introduced. In this sense, the crosstalk metric showed that the trade-off effects between VP and ρ

were mostly influenced by existent coupled effects between the intermediate parameter classes r1

and r3. Finally, although working with a transformation matrix based on a single point did not

overcome the results of a baseline inversion, the estimates indicated that the decorrelation ideas are

promising and that a different numerical procedure to compute T should be investigated, aiming

to produce a more constant identity matrix structure at all locations of the mesh by considering the

contribution of crosstalk in multiple locations and not only at a fixed point.
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Chapter 4

Using Simulated Annealing to optimize an

AVO nonlinear problem: Gaining valuable

insights

Summary

Linearized AVO inversion approaches are based on approximations of the Zoeppritz equations

subject to several assumptions, including the limitation of the incidence angles to 35-40°. Thus,

in long-offset acquisitions, these approaches fail. In this chapter, an AVO nonlinear inversion is

developed so it could be appropriate under these circumstances; this inversion is based on re-

parameterizing Zoeppritz equations in terms of the fractional density and compressional and shear

impedances. The purpose of this study was to solve a simpler and smaller geophysical problem

than the FWI experiments treated in this thesis, with the Simulated Annealing technique and com-

pare the obtained estimations with the outcomes from the Gauss-Newton and steepest descent

methods. These experiments would give insights into the performance of the Simulated Annealing

algorithm while inverting synthetic seismic data and would allow to understand the feasibility of

its application in the FWI problems of this thesis. To achieve this, synthetic noise-free P-P and P-S

datasets were computed from a two-layer model. Overall, the Simulated Annealing demonstrated

to be an efficient method to estimate the model parameters, mostly outperforming the quality of
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the results produced by the local optimization methods, but at the cost of requiring ten times more

iterations, computational time, trial and error tests, and a well understanding of the values that the

solutions can admit. The learnings gained from this exercise were implemented in Chapter 4 in

efforts of finding more appropriate transformation matrices and addressing the challenges stated in

Chapter 3.

4.1 Introduction

The variation of reflection and transmission coefficients with the incidence angles, and thus

offset, is known as Amplitude Variation with Offset (AVO) (Grossman, 2003). This interpretation

tool has become important for reservoir description, providing complementary information to the

conventional stacked seismic (Downton et al., 2000). In most cases, single-fold data are not pure

enough to provide reliable amplitude measurements and the results are doubtful. In such cases, the

AVO of the converted mode can be advantageous (Xu and Bancroft, 1997), since including the S-

wave velocity and P-S reflectivity allows to augment conventional AVO analysis (Stewart, 1994).

Supplementary P-S seismic data increases interpretation confidence, provides additional imaging

constraints, and is useful to compute rock property estimates (Larsen, 1999). Large incidence

angles for P-S converted waves are typically achieved at shorter offsets than for P-P reflections,

meaning that for a given aperture, more complete AVO information is available for P-S data than

for P-P data, allowing a more reliable parameter estimation (Ursenbach, 2003).

One method to invert AVO data is to seek linearized approximations of the Zoeppritz equa-

tions, and analytically solve these linear equations for the earth parameters (Grossman, 2003). For

instance, one successfully applied method is the weighted stacking technique, first proposed by

Smith and Gidlow (1987) and expanded by Stewart (1990) and Larsen (1999). This method is

based on the minimization of the misfit between the observed data and its theoretical description

(synthetic or predicted data) using the Aki-Richards approximations, and although it produces ac-

curate estimates, several underlying assumptions must be met for its proper implementation, such
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as considering weak contrasts of elastic parameters, incidence angles smaller than the critical one,

incidence angles smaller than 35°, thus very small values of ∆ρ/ρ are assumed, and values of the

VP/VS ratio between 1.5 and 2 (Smith and Gidlow, 1987; Larsen, 1999).

Moreover, the traditional procedure for angles larger than the critical one is to limit them,

but this compromises the reliability of the estimates since they depend on the range of angles

considered (Downton and Ursenbach, 2005). Additionally, there is a growing interest in seismic

acquisitions with long-offset ranges for different industrial purposes, such as studying reservoirs

with interfaces of strong contrast or using streamer recordings to analyze the missing converted

S-waves energy, occurring at wider angles of incidence (Skopintseva et al., 2011; Williams et al.,

2001). Then, given that linearized inversions would not produce accurate estimations if the avail-

able angles are higher than 35-40°, a more appropriate inversion strategy is necessary to account

for scenarios with long offsets/large incidence angles. Since the Zoeppritz equations are not math-

ematically conditioned to any particular range of angles, a different wave propagation model was

developed based on the re-parameterization of the Zoeppritz equations in terms of the fractional

impedances and density. However, in reality, a plane wave approximation would be made, since

seismic data is not produced by plane but spherical waves.

The objective of developing this AVO inversion was to solve a nonlinear geophysical inverse

problem, which would be simpler and with less dimensionality than the FWI problem treated in

this thesis by using the Simulated Annealing (SA) technique. These experiments would give in-

sights into the advantages, disadvantages, and general performance of the Simulated Annealing

when inverting synthetic seismic data and would allow to understand how it could be applied for

other types of geophysical seismic problems. With this purpose, synthetic noise-free broadband

and band-limited P-P and P-S reflectivities were generated from a two-layer model which does not

produce a critical angle, i.e., only the effects of increasing the incidence angles were considered.

Moreover, due to the characteristics of the forward modeling and the Simulated Annealing algo-

rithm, this global optimization strategy was applied considering 3 different cases and comparing

the obtained estimations with the ones equivalently produced by local optimization methods.
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4.2 Forward Modeling

For the forward problem, the plane wave Zoeppritz equations are considered:

P



RPP

RPS

TPP

TPS


= b (4.1)

where:

P =



−X −
√

1−B2X2 CX
√

1−D2X2

√
1−X2 −BX

√
1−C2X2 −DX

2B2X
√

1−X2 B(1−2B2X2) 2AD2X
√

1−C2X2 AD(1−2D2X2)

−(1−2B2X2) 2B2X
√

1−B2X2 AC(1−2D2X2) −2AD2X
√

1−D2X2


and:

b =



X
√

1−X2

2B2X
√

1−X2

1−2B2X2


and where:

A =
ρ2

ρ1
, B =

VS1

VP1
, C =

VP2

VP1
, D = B

VS2

VS1
, X = sin(θ j)

here, a two-layer model is considered; subscript 1 refers to the physical property of the first layer

and subscript 2 refers to the physical property of the second layer around the reflector of inter-
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est. Equation 4.1 is re-parameterized in terms of the upper medium properties and jumps in the

impedances and density, which is familiar from AVO analysis. To accomplish this goal, the terms

A, C, and D are modified according to equation 4.2, which is commonly used when linearizing

problems.

Y2

Y1
=

(
1+

1
2

∆Y
Y

)/(
1− 1

2
∆Y
Y

)
(4.2)

Since C and D depend on VP and VS, respectively, these expressions are altered in terms of the

impedances I=VPρ and J=VSρ , obtaining the following expressions:

C =
I2

I1

ρ1

ρ2
; D = B

J2

J1

ρ1

ρ2
(4.3)

Applying equation 4.2 to term A and to terms C and D of equation 4.3 produces:

A =

(
1+

1
2

∆ρ

ρ

)/(
1− 1

2
∆ρ

ρ

)
(4.4)

C = A−1
(

1+
1
2

∆I
I

)/(
1− 1

2
∆I
I

)
(4.5)

D = BA−1
(

1+
1
2

∆J
J

)/(
1− 1

2
∆J
J

)
(4.6)

In this sense, each element of P is a nonlinear function of ∆I/I, ∆J/J, and ∆ρ/ρ . By inverting

P and multiplying it on both sides of equation 4.1, the solution of the four coefficients is obtained

for a chosen P-wave incidence angle θ j, with j varying from 1 to the total number of incidence

angles (N). As part of the raytracing methodology applied in this study, to work with P-P and

P-S data simultaneously, different incident angles for the P-P and P-S mode energy conversions

were computed, in order each pair of plane waves could reach the same receiver (offset) (Figure

4.1). Hence, the forward problem was performed twice, once using the set of P-P incidence angles

and another time using the set of P-S incidence angles. Subsequently, an appropriate vector of
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coefficients u was formed by considering that the first coefficient from the P-P forward problem

corresponds to RPP, while the second one from the P-S forward problem corresponds to RPS.

Figure 4.1: Representation of the P-P and P-S incidence angles implemented in this study (modi-
fied from Stewart et al. (1999). “MP” stands for midpoint and “CP” stands for conversion point.

4.3 Iterative nonlinear AVO simultaneous inversion

The vector of coefficients u contains four elements per incidence angle, but a sampling operator

S is used to extract the P-P and P-S reflectivities:

dpred = Su =

1 0 0 0

0 1 0 0




RPP

RPS

TPP

TPS


=

RPP

RPS

 (4.7)

The counterpart to the predicted data dpred is the observed data d, which are elements of the

same space that can be compared through subtraction. When performing an unconstrained opti-

64



mization, an objective function (without restrictions on the values that the variables can take) is

minimized (Nocedal and Wright, 2006). This objective function is constructed by measuring the

difference between predicted and observed data vectors, i.e., using the L2 norm:

φ(m) =
1
2

N

∑
j=1

(
Su(m,θ j)−d(θ j)

)ᵀ(
Su(m,θ j)−d(θ j)

)
(4.8)

where m corresponds to the vector of model parameters:

m =

[
∆I
I

∆J
J

∆ρ

ρ

]ᵀ
(4.9)

The iterative approach requires derivatives of the objective function with respect to all the

model parameters. The gradient is a vector in model space pointing in the direction of the most

rapid ascent in the objective function; for the current AVO problem, it takes the form:

g =

[
∂φ(m)

∂m1

∂φ(m)
∂m2

∂φ(m)
∂m3

]ᵀ
(4.10)

and:

g =
N

∑
j=1

Jᵀj

(
Su(m,θ j)−d(θ j)

)
(4.11)

where J is a 2× 3 Jacobian matrix, which is formed by the derivatives of the predicted data with

respect to each model parameter. The elements of the Jacobian matrix, per incidence angle, are

expressed as:

Ji
µ = Si

K
∂uK

∂mµ
; i = 1,2; µ = 1,2,3; K = 1,2,3,4 (4.12)

After differentiating both sides of equation 4.1 with respect to each model parameter and in-

verting the matrix P, the following expression is obtained:

∂uK

∂mµ
=−(P−1)K

L
∂PL

M
∂mµ

uM; M = L = 1,2,3,4 (4.13)
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When computing J, the main new task is to determine all the 48 elements of ∂PL
M/∂mµ in

equation 4.13, which is a straightforward, yet laborious process. Thus, the Jacobian takes the

following matrix form:

J =

Jm1
PP Jm2

PP Jm3
PP

Jm1
PS Jm2

PS Jm3
PS

 (4.14)

However, these are some considerations to account for the selected raytracing approach in Equation

4.13: (1) ∂uK/∂mµ is a 4× 3 matrix. Its rows are formed by the derivative of a coefficient with

respect to each model parameter. (2) To construct this matrix, u is computed twice, one per each

type of incidence angle, to use uPP and PPP to calculate the first and third rows of ∂uK/∂mµ and

uPS and PPS for the second and fourth rows. (3) The construction of ∂uK/∂mµ is repeated per each

pair of incidence angles, forming N Jacobian matrices.

On the other hand, the Hessian of the objective function in Equation 4.8 can be computed with

the following expression:

H =
N

∑
j=1

Jj
ᵀJj (4.15)

4.4 Simulated Annealing

Simulated Annealing (SA) is a heuristic method to solve optimization problems and corre-

sponds to an approximation of a global optimization algorithm. This technique was introduced by

Kirkpatrick et al. (1983) and requires the implementation of the Metropolis Algorithm. Simulated

Annealing is based on the analogy of statistical mechanics of carefully annealing solids, where

a material is initially melted at high temperatures and then it is slowly cooled until it freezes

and crystalizes, i.e., the material is taken from a high energy (poor and unordered solution) to

a low energy or ground state (highly ordered material), reaching thermal equilibrium at each

temperature. A system formed by a total of Ra atomic positions, i.e., r = [ri, i = 1, . . . ,Ra], namely
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configurations, is in thermal equilibrium with a probability dictated by the Boltzmann or Gibbs

distribution, i.e.:

P =
1
Z

exp
[
−E(r)

kBT

]
(4.16)

where E is the energy of the system, kB is the Boltzmann’s constant, T is the temperature and

Z is a normalizing constant. As T decreases, the Boltzmann distribution collapses into the low

energy state. Moreover, the form in which the system is cooled influences the type of crystal that is

generated; if the system is cooled too fast, the crystal will reach a metastable state and will present

many defects with no crystalline order; if the system is cooled slowly enough, the ground state will

be reached and a highly ordered and defect-free crystal will be produced.

Simulated Annealing uses operations to mimic this physical process in non-physical optimiza-

tion problems, by iteratively searching for a finite set of model parameters (equivalent to the atomic

positions) that minimizes a real-valued objective function (equivalent to the energy of the system).

This method has been used to solve combinatorial optimization problems, encompassing the search

of large and discrete values, but also in problems where the model parameters can take continuous

magnitudes. The strategy has been applied in a variety of areas, such as image processing, com-

puter design, molecular physics, and chemistry (Faming et al., 2014). The physical experiment

requires a temperature; in optimization problems, T is a parameter with the same units as the ob-

jective function and it plays an important role in controlling the iterative process (Kirkpatrick et al.,

1983; Rutenbar, 1989). As the temperature decreases, the Metropolis Algorithm produces mainly

iterative improvements of the objective function by taking downhill steps, but also sometimes in-

corporates uphill steps in a controlled manner according to what is dictated by the Boltzmann’s

distribution, reaching a momentarily worse state to jump out of local minima and potentially be

able to find a more accurate solution.

Figure 4.2 is a scheme of the Metropolis Algorithm. Per each temperature of the annealing
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process, several random perturbations, drawn from a selected probability distribution, are proposed

for each model parameter. These perturbations allow the creation of new configurations of model

parameters. Later, the change of the objective function due to this new configuration is evaluated;

if this value is negative, the objective function was effectively reduced and, the new configuration

of model parameters is accepted and used as the starting point for the next iteration; if ∆E is

positive, the objective function was increased, and this new configuration may be accepted with a

probability indicated by P(∆E)=exp[-∆E/kBT ], i.e, the Boltzmann’s distribution. This probability

is simulated by comparing P(∆E) with a number (ε) randomly drawn from a uniform distribution

in the interval [0,1]. If ε < P(∆E), the new configuration is accepted; if ε > P(∆E) the new set

of model parameters is rejected and the original configuration is used as the starting point for the

next iteration.

In non-physical optimization problems, kB is absorbed into T . At high temperatures (melting

stage), SA makes a wide search in the model space, accepting almost every proposal, and the

probability of accepting uphill steps is high. As T decreases, the probability of accepting uphill

steps is smaller. Repeating this algorithm many times, as the temperature decreases, simulates the

material achieving thermal equilibrium, and thus, the annealing process.

Typical SA algorithms start with a set of random realizations of the model parameters and

new states are proposed based on perturbing one parameter at a time, drawing its value from a

selected probability distribution (in all the experiments of this thesis, a Gaussian distribution was

used), accepting or rejecting the current proposal according to the Boltzmann’s distribution, and

repeating the process by perturbing the rest of the parameters sequentially. This sequential SA

usually converges to accurate minimum points, but generally implies a large computational time

that is not always convenient. As a strategy to balance between execution time and the quality of

the solution, the sequential procedure was replaced in this thesis by proposing new states based on

perturbing all the model parameters at the same time and evaluating the changes that the objective

function experiences under each proposed configuration.

An important step in the application of the Simulated Annealing is the definition of an appro-
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Figure 4.2: Pseudo-code of the Metropolis Algorithm applied in this study.

priate annealing schedule so the system can reach equilibrium at each temperature. The annealing

schedule typically consists of a starting hot temperature, rules to lower the temperature indicating

how much it should be decreased (cooling factor) and the termination criteria, and the number and

type of perturbations for the implementation of the Metropolis Algorithm. Generally, the initial

temperature is determined empirically, selecting a value by which almost all the proposed config-

urations are accepted. This is understood through the construction of plots showing the percentage

of new configurations accepted versus temperature steps. Hence, temperatures that produce 80%

or higher acceptance are considered good values to start the annealing process.

Additionally, the crudest possible manner to reduce the temperature is with the logarithmic

expression:

Tk+1 = e ·Tk (4.17)

being k the current iteration and e the cooling factor with a value less than 1; e usually ranges
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from 0.9 for “easy” problems to 0.995 for “difficult” problems, and it is also determined through

experimentation. This logarithmic function is workable but seldom fast, thus many other non-

increasing expressions have been proposed in the literature, balancing between computational time

and quality of the solution (Aarts and Korst, 1989; Faming et al., 2014; Kirkpatrick et al., 1983;

Locatelli, 2000). For all the experiments done in this thesis with SA, the temperature was reduced

using Equation 4.17. On the other hand, efficient SA algorithms are applied with Gaussian or

Cauchy probability distributions for the random generation of model perturbations, and the new

configurations must be within user-defined bounds that are acceptable for the solutions of the

problem.

4.5 Numerical experiments

A two-layer model of solid units in welded contact was designed with elastic properties that do

not produce a critical angle (Figure 4.3). A range of offsets was assumed from 0m to 4000m with

intervals of 80m and 51 incidence angles were determined through raytracing for the P-P and P-S

reflectivities. In general, these incidence angles ranged from 0° to approximately 53° for the P-P

dataset and from 0° to approximately 65° for the P-S dataset, as shown in the AVO curves of Figure

4.4, corresponding to values larger than the typical 35-40° allowed in the linearized approaches.

The selected elastic true model meets most of the assumptions underlying the accurate performance

of a linearized inversion, i.e., small contrasts across the interface and a value of VP/VS ratio of 1.9.

However, in this model, the effects of transmission losses, geometric spreading, and attenuation

were not included.

Two different types of one-dimensional experiments were performed, the first one consisted in

inverting noise-free broadband data and the second one in using noise-free band-limited data, both

being synthetically generated from the interaction of an incident P-wave with the reflector. For

each type of experiment, the reflectivities were inverted with the Gauss-Newton, steepest descent,

and Simulated Annealing optimization methods.
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Figure 4.3: True (continuous lines) and initial model (dashed lines) used for the nonlinear AVO
inversion.

Figure 4.4: P-P and P-S reflection coefficients of the studied two-layer model.

For the local optimization algorithms, the definition of a step length per iteration was required.

In the case of the Gauss-Newton optimization, a fixed step length α=1 was considered. Moreover,
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for the steepest descent, an inexact line search, using the Wolf conditions, was applied to compute

the appropriate step length per iteration, starting with the value α=1, and using the following

constants C1 = 1× 10−4 and C2 = 0.3. Additionally, an initial model was constructed with weak

perturbations from the true values of ρ , VP, and VS, simulating well-log measurements, as shown in

Figure 4.3. Conversely, since the fractional impedances result from multiplying values of velocities

and densities, the initial perturbations of the model parameters were not that small; these initial

values can be studied at the first point of the plots showing the evolution of the estimated model

parameters per iteration.

On the other hand, for both types of experiments, i.e., considering broadband or band-limited

data, three different Simulated Annealing methods were implemented varying the type of initial

model used. In this context, for this AVO nonlinear problem, after re-parameterizing Equation 4.1

by using the Equations 4.4, 4.5, and 4.6, still the matrices P and b depend on the term B, which

only involves the values of VP and VS of the first layer and not the jumps of the elastic properties,

thus three cases were derived from this; case 1 consisted in using the initial model of Figure 4.3

and fixing the corresponding value of B in all the iterations and inverting for ∆I/I, ∆J/J, and

∆ρ/ρ (the same procedure was used with the local optimization approaches); case 2 consisted in

generating a set of random values to form the starting model and fixing the value of B of case 1 in

all the iterations, while inverting for ∆I/I, ∆J/J, and ∆ρ/ρ; finally, case 3 consisted in generating

random values of all the model parameters to form the starting model, not fixing B, and inverting

for ∆I/I, ∆J/J, ∆ρ/ρ , VP1, and VS1. Moreover, since the band-limited data is the closest scenario to

the type of data used in the FWI experiments of this thesis, a more extended study was done, in this

scenario, by increasing the user-defined bounds for each of the model parameters, i.e., introducing

more difficulty to the problem because there would be more values to explore for the algorithm,

and assessing the performance of the Simulated Annealing under these circumstances.

For the Simulated Annealing technique, defining a step length was not required, but several

tests were performed to find the best set of tunning parameters or annealing schedules that would

allow the convergence of the algorithm towards the most acceptable solution. Tables 4.1, 4.2, and
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4.3 contain the best annealing schedules found for each case of SA.

Case Initial
temperature

e Number of
temperature

steps

Number of
perturbations

1 0.6 0.95 400 400
2 0.4 0.956 300 350
3 1 0.945 400 300

Table 4.1: Annealing schedules applied to the SA algorithm when inverting broadband data.

Case Initial
temperature

e Number of
temperature

steps

Number of
perturbations

1 1 0.96 400 500
2 1 0.96 400 500
3 2 0.945 400 300

Table 4.2: Annealing schedules applied to the SA algorithm when inverting band-limited data.

Case Initial
temperature

e Number of
temperature

steps

Number of
perturbations

1 15 0.95 400 300
2 10 0.96 400 500
3 15 0.965 500 400

Table 4.3: Annealing schedules applied to the SA algorithm using larger bounds, when inverting
band-limited data.

The performance of the optimization algorithms was evaluated through plots of the evolution

of the estimated models and the objective function values per iteration. In addition, in the case of

the Simulated Annealing technique, the percentage of new configurations accepted per temperature

was analyzed to understand how good was the selected initial temperature. Furthermore, all the

estimations were evaluated with accuracy tests, applying the following mathematical expression:
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% error =

∆(I,J, or ρ)
(I,J, or ρ)

∣∣∣
CALCULATED

− ∆(I,J or ρ)
(I,J or ρ)

∣∣∣
TRUE

∆(I,J or ρ)
(I,J or ρ)

∣∣∣
TRUE

×100 (4.18)

4.5.1 Broadband reflectivities

When inverting the noise-free broadband RPP and RPS sets, the three optimization methods

reached convergence at different iteration numbers, as can be seen in Figure 4.5 and Figure 4.6 with

the evolution of the model parameter values and objective function as the iterations progressed. In

all these experiments, the estimated models were close to the true values and these also produced

data similar to the observed one, since the values of the objective function were close to zero in

the last iteration number. However, in case 3 of the SA experiments, the estimated values of VP

and VS for the first layer were not as close to the true values, in comparison to the remaining model

parameters, as observed in Figure 4.7.

The Gauss-Newton method had the fastest convergence of all the applied techniques, finding

invariable values at the second iteration and taking 0.09 seconds to complete all the iterations. The

steepest descent method reached convergence at the iteration 17, taking 0.2 seconds to complete

all the iterations. Moreover, depending on the case, the Simulated Annealing required hundreds of

iterations or, in this case, temperature steps, to converge into an acceptable value, exhibiting the

slowest performance of the three optimization methods; for instance, in case 1, almost 79 seconds

were required to complete all the temperature steps. On the other hand, Figure 4.8 contains the

plots of the percentage of configurations accepted per temperature step, for all the cases tested

with Simulated Annealing. It can be seen that at the melting stage de percentage of acceptance

was above 80%, which means that the chosen initial temperature was adequate.

The estimates of ∆I/I, ∆J/J, and ∆ρ/ρ were numerically compared with the true values from

the two-layer model through the accuracy tests of Equation 4.18. Figure 4.9 contains the com-

parison of the resulting percent errors. It is observed that the results from both local optimization

algorithms got trapped into the same local minimum, producing fractional impedances that were
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Figure 4.5: Evolution of the estimated model parameters obtained from broadband data with dif-
ferent optimization methods. Continuous lines represent the estimates and dashed lines the true
models.

more accurate than the fractional density. Furthermore, the Simulated Annealing, with the selected

annealing schedules, outperformed the local methods since the estimations of the model parameters

were similar or more accurate than those from the Gauss-Newton and steepest descent techniques,

especially in the case of ∆J/J and ∆ρ/ρ .
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Figure 4.6: Evolution of the objective function produced from inverting broadband data with dif-
ferent optimization methods.

4.5.2 Band-limited reflectivities

To continue evaluating the effectiveness of the Simulated Annealing technique in these types of

nonlinear problems, both synthetic noise-free P-P and P-S datasets were filtered using an Ormsby

76



Figure 4.7: Evolution of the estimated VP and VS values for the first layer obtained from broadband
data with case 3 of SA. Continuous lines represent the estimates and dashed lines the true models.

wavelet and applying a different range of frequencies depending on the type of data. For the

P-P reflectivities, the set of frequencies used was 5-10-60-75 Hz, and for the P-S dataset, the fre-

quencies used were 5-10-40-55 Hz. The considered wavelets are shown in Figure 4.10 and the

NMO-corrected synthetic CMP and CCP gathers are shown in Figure 4.11. The missing frequen-

cies in the measured data happen as a result of (1) the earth attenuating the high frequencies of the

wavelets, (2) some seismic sources not being capable of producing low frequencies, and (3) only

some special geophones reliably recording the energy at the surface. Additionally, band-pass filters

are usually applied, in the processing stage, to eliminate the low-frequency ground-roll or some

coherent high-frequency noise, and with this, some desired data can be removed (Mahmoudian

and Margrave, 2003). The missing low frequencies (0-5 Hz) in the data are essential for creating

the character or scale of the impedance log and the higher frequencies contribute to the detail of

the impedance log (Lloyd and Margrave, 2011).

When the reflection coefficients are convolved with the wavelet, the inversion of such band-

limited data would result in band-limited impedances (Mahmoudian and Margrave, 2003). There-
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Figure 4.8: Percentage of new configurations accepted per temperature while inverting broadband
data for the three cases of SA.

fore, the accuracy of the results was evaluated with Equation 4.18, comparing the estimates against

the band-limited true fractional values, since there is a limit on how good is the data, and thus it is

necessary to evaluate the results against a fair benchmark.

Figure 4.12 and 4.13 contain the evolution of the estimated model parameters and objective

function per iteration with each algorithm, and for the Simulated Annealing, the plots of the per-

centage of acceptance per temperature step are shown in Figure 4.14. Moreover, in Figure 4.15

the accuracy tests are illustrated. All these plots helped to demonstrate that, once more, both local

optimization algorithms got trapped into the same local minimum, and the Simulated Annealing

technique produced, for the three cases, similar values of ∆I/I and ∆J/J with respect to those

produced with the Gauss-Newton and the steepest descent method, but significantly more accurate
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Figure 4.9: Accuracy tests performed with the final estimates obtained from broadband data using
different optimization methods.

results of ∆ρ/ρ . Moreover, in Figure 4.16 it is showed that in case 3 of the SA experiments, the

estimated value of VP for the first layer was almost identical to the true value, but the value of VS

was not as close.

4.5.2.1 Increasing the bounds in SA

To understand the influence of the user-specified upper and lower bounds for the proposal of

new configurations in the SA algorithm, the main experiment of this section was repeated, but

increasing the width of the bounds by 30% for all the model parameters. This would help to

understand how well the method convergence to an accurate solution if the bounds to draw new

configurations are not so narrow and close to the right answer. Figure 4.17 and 4.18 contain the

evolution of the model estimates and the minimization of the objective function as the iterations

progress, while Figure 4.19 corresponds to the plots of the percentage of new configurations ac-

cepted per temperature steps for all the Simulated Annealing cases.

When increasing the bounds, the accuracy of the results obtained with Simulated Annealing

79



Figure 4.10: Ormsby wavelet used to filter the P-P dataset a) in time and b) in frequency. Ormsby
wavelet used to filter the P-S dataset c) in time and d) in frequency.

Figure 4.11: Syntethic seismograms for the a) P-P dataset and b) P-S dataset.
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Figure 4.12: Evolution of the estimated model parameters obtained from band-limited data with
different optimization methods. Continuous lines represent the estimates and dashed lines the true
models.

was slightly different from the results obtained with bounds closer to the true values, as indicated in

Figure 4.20. The values of ∆I/I were similar between the 3 cases of SA and the local optimization

methods, but for ∆J/J and ∆ρ/ρ the accuracy varied depending on the case. For instance, in case

1, SA produced a value of ∆J/J that underperformed the local optimization algorithms, and for
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Figure 4.13: Evolution of the objective function produced from inverting band-limited data with
different optimization methods.

case 3, the percent error of ∆ρ/ρ was higher than the one produced by the Gauss-Newton and the

steepest descent technique; for the remaining cases, SA had a better performance than the other

optimization methods. On the other hand, in Figure 4.21 it is shown that for the case 3 of the SA,
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Figure 4.14: Percentage of new configurations accepted per temperature while inverting band-
limited data for the three cases of SA.

the estimated value of VS for the first layer was almost identical to the true value, but the value of

VP was not as close. Therefore, by increasing the width of the bounds, there was slightly more

difficulty to reach a unified convergence to a point close to the global minimum for all the model

parameters, but overall the results were still equivalent or better than the ones produced by local

optimization methods.

4.5.3 Insights into integrating SA to other geophysical seismic problems

The Simulated Annealing technique has been implemented to solve different types of optimiza-

tion problems and it could also be suitable in geophysical seismic inverse problems, such as finding

the transformation matrices (T) that could produce the desired re-parameterizations of this thesis.
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Figure 4.15: Accuracy tests performed with the final estimates obtained from band-limited data
using different optimization methods.

Figure 4.16: Evolution of the estimated VP and VS values for the first layer obtained from band-
limited data with case 3 of SA. Continuous lines represent the estimates and dashed lines the true
model values.
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Figure 4.17: Evolution of the estimated model parameters obtained from band-limited data with
different optimization methods. In these experiments, the bounds of the SA were larger. Continu-
ous lines represent the estimates and dashed lines the true models.

The experiments of this chapter demonstrated several key takeaways of the method. Firstly, to

obtain satisfactory estimations it is essential to define an objective function that properly addresses

the problem. Moreover, it is necessary to have a level of knowledge about the values that the model

parameters can admit to define the upper and lower bounds in the Metropolis Algorithm; as the
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Figure 4.18: Evolution of the objective function produced from inverting band-limited data with
different optimization methods. In these experiments, the bounds of the SA were larger.

knowledge about these values gets closer to the true values, it becomes easier for the algorithm

to find a more accurate solution. In well-defined inverse problems, another important step for the

implementation of SA is the selection of an appropriate annealing schedule or tunning parameters
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Figure 4.19: Percentage of new configurations accepted per temperature while inverting band-
limited data for the three cases of SA and using larger bounds.

to properly minimize the objective function and achieve convergence towards an acceptable min-

imum point. However, even if the objective function is well-minimized, the model values could

be not accurate enough, then it is relevant to define adequate methods to assess the quality of the

estimates.

To find the best annealing schedule, several tests or runs of the inversion must be performed

until finding a combination of initial temperature, cooling factor, number of perturbations, and

number of temperature steps that allow the convergence of the algorithm to an accurate solution.

Depending on how difficult the problem is, the execution of these trial and error tests could take

a considerable time and the results could be highly affected by small variations of these tunning

parameters. Moreover, this technique can produce estimates with a similar or better level of ac-
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Figure 4.20: Accuracy tests performed with the final estimates obtained from band-limited data
with the applied optimization methods. In these experiments, the bounds of the SA were larger.

Figure 4.21: Evolution of the estimated VP and VS values for the first layer obtained from band-
limited data with case 3 of SA and using larger bounds. Continuous lines represent the estimates
and dashed lines the true models.
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curacy than the local optimization methods, such as Gauss-Newton and steepest descent, but at

the cost of more iterations or temperature steps and more computational time. However, intrinsic

issues of applying local optimization methods for geophysical seismic inverse problems, such as

not producing an accurate estimation of the density, could be overcome.

On the other hand, the experiments of inverting band-limited data demonstrated the suitabil-

ity of the technique in producing accurate estimations of the model parameters when there are

missing frequencies, and the tests that were done using random values as starting points (case 3)

corresponded to the best practice in setting up this optimization algorithm, since, contrary to the

local optimization methods, it was demonstrated that it is not adequate or necessary to introduce

any known starting point to find accurate solutions.

4.6 Conclusions

The development and testing of an AVO nonlinear inverse problem, with synthetic broadband

and band-limited seismic data, served as a starting point to demonstrate the advantages, disadvan-

tages, and the expected performance of the Simulated Annealing strategy, with respect to local

optimization methods, when solving a small geophysical nonlinear problem. Overall, although

the Simulated Annealing algorithm was slower and took hundreds of iterations to reach conver-

gence, in comparison to the faster performance of the local optimization methods, the estimated

model parameters were equivalent or more accurate than those obtained with Gauss-Newton and

steepest descent, after finding a good annealing schedule. In this sense, it was illustrated that SA

significantly outperformed the results generated by the local optimization algorithms when esti-

mating commonly difficult model parameters, such as ∆ρ/ρ; then, the technique is promising for

achieving accurate estimations, since it is capable of overcoming some of the convergence chal-

lenges of the local methods. Moreover, it was demonstrated that accurate results could be achieved

with SA after starting the iterative process from a random point in the model space, contrary to

Gauss-Newton and steepest descent. On the other hand, distinct characteristics were recognized
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about the implementation of this optimization technique, such as the requirement of the definition

of an appropriate objective function, the execution of several trial and error tests to find the best

annealing schedule, the understanding of the values that the solutions can admit, and the selection

of appropriate evaluation metrics, to estimate model parameters with high accuracy and avoid in-

stabilities, such as those observed when increasing the bounds to propose new configurations in

the Metropolis Algorithm. These learnings were implemented in Chapter 5, by defining a new

problem to compute, with the SA strategy, the transformation matrices that would allow the sought

mapping between model spaces, while attempting to address the issues of Chapter 3.
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Chapter 5

Decorrelation of parameter classes and

crosstalk minimization with point-probes

Hessians

Summary

Inter-parameter coupled effects could be reduced if the values within the off-diagonal blocks of

the Hessian operator were zero, i.e., if the Hessian is an identity matrix or a multiple of it, meaning

that there would be no correlation between parameters of different classes. After considering

point-wise Hessians in Chapter 3, transformation matrices (T) were searched to re-parameterize

the original coordinate system into a new one where the associated Hessian was the identity matrix.

However, this matrix structure was only observed at the location selected to compute T and thus

trade-off effects were introduced to the estimates. These results were the motivation to calculate

transformation matrices that could consider parameter crosstalk from more locations and not only

at a fixed point in space, aiming to extend the identity matrix structure to more positions. In

this sense, point-probes Hessians were used to find the transformation matrices of interest with

size 3× 3, which would allow the implementation of local-wise re-parameterizations. Given that

calculating T with the transformation rules of the Hessian is not adequate anymore, the Simulated

Annealing technique was implemented as the optimization method to find the elements of T that
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could convert the point-probes Hessian into a block-wise diagonal matrix in the intermediate model

space. Overall, in terms of crosstalk, the estimations did not overcome those shown in Chapter 3

and although some improvements were produced for the density, these results were not better than

those from a baseline FWI. Moreover, reduction of crosstalk was achieved in some off-diagonal

blocks of the point-probes Hessian, but almost always one pair of blocks was still strongly affected.

These drawbacks were related to the challenges experienced by SA to find a unique matrix T that

properly accounts for the variability of the values within the point-probes Hessian and diagonalizes

this matrix, under the considered assumptions and the description of the problem.

5.1 Introduction

In Chapter 3, local-wise re-parameterizations were done using transformation matrices of size

3×3 that resulted from considering Equation 3.34 with local 3×3 Hessians or namely point-wise

Hessians that only characterize the crosstalk information between parameters of different classes

at a fixed position in the model grid. With this strategy, an intermediate model space was found

where the Hessian was the identity matrix only at the location selected to compute T, adding mis-

alignments and eccentricities to the objective function in the farthest locations of the model grid,

and thus introducing strong crosstalk effects to the final estimates of ρ , VP, and VS. The objective

of this chapter was to change the approach and compute transformation matrices of size 3×3 re-

lated to Hessian operators that could contain crosstalk information from much more locations in

the mesh and not only at a fixed position in space, aiming to extend the structure of the identity ma-

trix for the Hessian to more grid cells, and as a result attempt to reduce the crosstalk effects in the

final estimates of the original model space. Point-probes Hessians were considered as these are the

next computationally feasible operators that could be used, but the numerical approach proposed

by Innanen (2020d) was changed for the Simulated Annealing technique since the original method

was not suitable anymore to continue mapping between model spaces in a local-wise fashion, and

because SA presented interesting advantages regarding other optimization methods. In this sense,
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the computation of the elements of the matrix T was treated as an optimization problem and, for

the implementation of the Simulated Annealing, an appropriate objective function was designed

and the learnings gained in Chapter 4 were adopted to frame the problem.

5.2 Design of an objective function to be minimized with SA

After considering point-wise Hessians in Chapter 3, the next computationally feasible Hessian

operator to use is the point-probes Hessian. By solving Equation 3.34, using a point-probes Hes-

sian, and applying the numerical procedure reported by Innanen (2020d), the resulting matrix T

would be of the same size as the selected Hessian matrix. In this study, a point-probes Hessian

is a 300×300 matrix, thus T would be of the same size. Under this scenario, applying the trans-

formation rule between the s and the r model space would not be a local-wise operation anymore

and the transformation process would be ambiguous, since an s vector of 300 elements should be

considered, corresponding to a vertical or horizontal profile across the location selected to compute

T.

To continue performing transformations between model spaces in a local-wise fashion, as in

Chapter 3, a different approach to compute T was proposed and developed. The objective of the

approach was to transform a point-probes Hessian of the s system into a matrix of the same size, in

the r system, with zeros in the off-diagonal blocks, i.e., producing a block-wise diagonal matrix,

by using a 3× 3 matrix T. Figure 5.1a is a representation of the point-probes Hessian in the r

system and it contains the nomenclature chosen to identify each block. Using the definition of the

Hessian-vector product, for each block, the subscript letter (in red) represents the parameter class

that was perturbed (∆r), and the base letter (in black) corresponds to the parameter class selected to

evaluate the change in the gradient (∆gi(r)) due to the associated perturbation. The 9 elements of

T would be found by minimizing an objective function that describes the values within the blocks

of the point-probes Hessian. Hence, an objective function was designed with 6 penalty terms,

encompassing the normalized off-diagonal blocks of the point-probes Hessian in the r system. The
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considered objective function was:

φ =
nx×nz

∑
n
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 (5.1)

where n is the total number of locations in the model. With the minimization of this objective

function, it is expected that, for each location of the mesh, all the point-wise Hessians would be

diagonal matrices in the r system, as illustrated in Figure 5.1b.

Figure 5.1: a) Representation of the point-probes Hessian, in the r model space, and the nomen-
clature used for each block in the objective function. b) Structure of the point-wise Hessians that
is expected to be produced.

The construction of the point-probes Hessian, of the s system, was done through the com-

putation of the Hessian-vector products, as indicated in Chapter 3, hence depending on which

parameter class was perturbed, the sensitivities of the change in the gradient due to that pertur-

bation would be different from the sensitivities of the change in the gradient if another parameter

class was perturbed, i.e., the order of magnitude could change notoriously between blocks of the

point-probes Hessian. Thus, the scale selected to normalize the blocks in the objective function
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of Equation 5.1 guarantees the symmetry of the Hessian in the r model space, as well as allows a

controlled minimization of the objective function and thus crosstalk by lowering the values of the

off-diagonal blocks concerning those of the main diagonal blocks and removing the variations of

sensitivities between blocks.

5.2.1 Workflow and evaluation of the objective function

The workflow followed in this chapter was similar to the one in Chapter 3 (Figure 3.4). How-

ever, some alterations were made in the methodology to obtain the transformation matrix, as can

be seen in Figure 5.2, i.e., per frequency band of the FWI, the same grid cell was chosen to com-

pute a point-probes Hessian in the s system and this operator was used inside the SA algorithm to

calculate the associated 3×3 matrix T that transforms it into a block-wise diagonal matrix in the

r model space. Hence, per frequency band, the objective function of Equation 5.1 was iteratively

evaluated using the blocks of point-probes Hessians, in the r model space, which were obtained

with proposals of 3×3 matrices T and the point-probes Hessian of the s model space.

Figure 5.2: Re-parameterization workflow followed in this study.
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Within the Simulated Annealing algorithm, for a particular temperature and perturbation, the

evaluation of the objective function in the Metropolis Algorithm of Figure 4.2 was implemented

as follows: (1) the point-probes Hessian matrix, of the s model space, with size 300× 300 was

organized into 10.000 local 3×3 Hessian matrices or point-wise Hessians, (2) the forward problem

of Equation 3.32 was computed using each of the local Hessians from the previous step and a

unique configuration proposed for the matrix T, (3) the new local 3× 3 Hessians in the r model

space were re-organized to form the corresponding point-probes Hessian of size 300× 300, and

finally (4) Equation 5.1 was assessed to verify if the proposal for T should be accepted or rejected

and continue with the next iteration of the SA process.

On the other hand, a sequential SA could converge to more accurate solutions, but it implies an

extensive computational time that is not convenient when working with FWI problems. In this case,

given that the computation of the forward problem is local-wise, applying a sequential SA would

require 10.000 calculations per model parameter individually proposed and thus 90.000 operations

per perturbation, since the matrix T is formed by 9 elements, and this series of computations

would be repeated per each temperature of the annealing process. Instead, as explained in Chapter

4, to achieve a trade-off between the computational time and the quality of the solution, the model

configurations were proposed based on perturbing all the model parameters at the same time.

5.3 Pros and cons of SA for the current problem

Different optimization algorithms could minimize the objective function described in Equation

5.1; however, the most straightforward methods are the grid search strategy, local optimization

methods, and the Simulated Annealing technique, solving the nonlinear problems with different

approaches. The grid search method can find the minimizer of an objective function by exhaus-

tively examining a large set of user-specified trial solutions for each model parameter. In this sense,

due to the dimensionality of the problem and the imprecise understanding of the potential range of

values within which the solutions may exist, this may not be the most optimal strategy. Further-

96



more, using local optimization algorithms require (1) providing a good enough starting model, (2)

solving derivatives of the objective function with respect to the model parameters to compute the

gradient, the step size, and, depending on the method, the Hessian to reach an accurate solution,

and (3) working with more complicated and error-prone algorithms.

Conversely, Simulated Annealing presents a set of advantageous characteristics that make it

an appealing choice for computing the matrix T. This technique is distinguished by its efficacy

in tackling highly nonlinear problems, as demonstrated in the previous chapter with an AVO ex-

ercise, and given that it corresponds to an approximation of a global optimization approach, it is

independent of the choice of the starting values for the model parameters; similarly, if the initial

model influences the solution, then the tuning parameters of the algorithm must be changed to

produce a more appropriate search (Smith and Wong, 2017). Hence, this method should be capa-

ble of producing acceptable solutions for the 9 elements of T without providing a good enough

initial model, if an appropriate objective function and annealing schedule are designed as well as

adequate bounds are chosen for the proposed model configurations. In addition, the Simulated An-

nealing algorithm is more compact and easier to implement than the local optimization methods,

not requiring the calculations of derivatives to define a search direction for the minimum point, but

only the assessment of the objective function per iteration or temperature step.

Nevertheless, the SA method could present certain limitations. The transformation matrix

is a mathematical tool, not a physical quantity, such as the velocities or densities of the rocks,

consequently, the knowledge regarding the possible values that its elements can adopt is limited,

affecting the selection of appropriate and narrow bounds. For instance, computing the matrix

T associated with different and spatially separated local 3× 3 Hessians by using the numerical

procedure of Chapter 3, can offer insights into the plausible values of T; however, the uncertainty

would persist, as a significant number of locations beyond the ones studied in the model grid would

remain unexplored. However, considering the empirical basis of the Simulated Annealing strategy,

it is still feasible to determine the optimal values for these bounds; the plots of the evolution of the

model parameters and the objective function as the temperature cools down provide hints on how
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well the algorithm is performing under the chosen bounds and the selected annealing schedule, as

well as what changes need to be done to achieve better convergence.

Nonetheless, the main drawback of the method is related to the prolonged execution times.

While using SA, improvements of the solution are done iteratively and the algorithm requires

several temperatures, as well as multiple proposed perturbations at each temperature in order good

results could be achieved; moreover, several trial and error tests need to be done to find the best

annealing schedule, requiring additional time. Hence, implementing the SA technique to solve

the matrix T per frequency band, would considerably lengthen the computational time required

by the FWI, taking more time that the inversions performed in Chapter 3. Further downsides of

the method are the large number of parameters that must be tuned in the annealing schedule to

find an acceptable solution; throughout the trial and error tests, diligent adjustment of the tuning

parameters is necessary to understand the source of the changes in the convergence process and

recognize that the precision of the chosen values affects the quality of the solution. Additionally,

this method is probabilistic and generates different solutions per run of the algorithm, thus it is

necessary to use “seeds” to initialize the generator of random values and produce the same answers,

allowing a more cautious study of the tunning parameters that could be affecting the convergence.

An additional disadvantage pertains to the uncertainty surrounding whether any annealing

schedule could yield an optimal solution for the optimization problem, as well as the ease of

annealing or even accepting annealing solutions. For problems where the configuration space is

not characterized by smooth and gradual variations between multidimensional hills and valleys,

but narrow and deep hollows (gopher holes) are present, jumping out of the local minimum points

and thus finding the global solution is a challenging task. In some of these scenarios, it is possi-

ble to converge to an optimal point, but the design of the objective function demands significant

insight and judgment, or suitable constraints need to be applied to the energy function or the gener-

ation of neighboring states. Nevertheless, in some instances, the problem cannot be annealed due

to an excessively irregular configuration landscape or impractical time requirements to achieve a

satisfactory solution (Rutenbar, 1989).
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5.4 Numerical experiments

To maintain consistency and facilitate fair comparisons between the current and previous

experiments, the same sources and receivers of Chapter 3 were used in this study. For the FWI, the

same multiscale approach, initial models, optimization method, and iterations were applied. Table

5.1 displays the annealing schedules implemented at each frequency band of the FWI. Overall,

the starting temperatures were much higher than those used for the AVO problem of Chapter 4,

because these values are directly related to the order of magnitude of the objective function after

being evaluated with the current model parameters. Additionally, for each frequency band, the

objective function was difficult to minimize, since large values of the cooling factor “e” (Equation

4.17) were necessary to generate the solutions, contrary to the values that were found for the

experiments of Chapter 4. This means that the SA algorithm required a remarkably slow cooling

schedule and hence a vast number of temperature steps. Moreover, several perturbations were

proposed per temperature in the annealing process, varying depending on the frequency band,

which along with the number of temperature steps were translated into larger execution times that

were introduced to the FWI process.

Frequency
band

Initial
temperature

e Number of
temperature

steps

Number of
perturbations

1 4x106 0.99 1300 200
2 6x106 0.993 2000 350
3 4x106 0.993 1900 350
4 4x106 0.993 2000 350
5 4x106 0.992 1600 200
6 3x106 0.989 1300 700
7 3x106 0.989 1300 700
8 2.5x106 0.988 1200 600

Table 5.1: Annealing schedules applied to the SA algorithm at each frequency band of the FWI.

Figure 5.3d contains the estimates obtained from the FWI workflow proposed in this study.
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Stronger coupled effects are observed around all the heterogeneities, and especially around VP, in

comparison to the baseline results (Figure 5.3b) and the estimates obtained when re-parameterizing

with the point-wise Hessian (Figure 5.3c). Moreover, there was a slight reduction of crosstalk

effects in the results of ρ in comparison to the estimates in Figure 5.3c, but these results did

not surpass those obtained with the baseline FWI. Conversely, in Figure 5.4 it was shown the

overlapped vertical and horizontal profiles extracted from the estimates of ρ , VP, and VS. It is

observed that re-parameterizing the FWI problem with the point-wise Hessian or with the point-

probes Hessian produced estimations of the anomaly values that were slightly more accurate than

the estimates produced by the baseline FWI, especially in the case of ρ and VS.

On the other hand, the performance of the Simulated Annealing was examined with Figure 5.5,

for some of the frequency bands of the FWI. Overall, the curves of the evolution of the objective

function and model values as the temperature decreases indicated an adequate behavior of the algo-

rithm. Nevertheless, the curves of the percentage of new configurations acceptance had a different

shape from those observed in Figures 4.8, 4.14, and 4.19 of Chapter 4, showing a more inconsis-

tent pattern of acceptance and rejection of new proposals, especially at intermediate temperatures,

i.e., the curves tended to spread for these temperatures, meaning that for a particular temperature,

a large number of configurations were rejected, but for the next ones much more configurations

were accepted, instead of showing a smoother pattern of rejection of new proposals as indicated in

the literature.

Furthermore, although the objective function was effectively minimized at each frequency band

and thus the convergence of the Simulated Annealing was achieved, and despite several efforts

were made to find a suitable annealing schedule, the estimated elements of T did not produce the

expected diagonal point-probes Hessian in the r model space, as illustrated in Figure 5.6. The

3× 3 matrices shown in this figure are the summarized versions of the point-probes Hessians in

the s and in the r model space. These summaries were obtained after calculating the sum of the

absolute values of the elements in all locations within each block of the point-probes Hessian;

subsequently, the resulting 3× 3 matrix was normalized or scaled, dividing each element by its
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Figure 5.3: a) True ρ , VP, and VS models. b) Models estimated with a baseline FWI, i.e., without re-
parameterization. c) Models estimated with a re-parameterized FWI, using the point-wise Hessian,
after selecting location x=50 and z=20 to compute T. d) Models estimated with a re-parameterized
FWI, using the point-probes Hessian, after selecting location x=50 and z=20 to compute T.

maximum value. The normalization applied to these summaries was different from the one used in

the crosstalk metric of Chapter 3 since the symmetry in the Hessian was already imposed with the

normalization of the objective function of Equation 5.1. In this sense, a 3×3 matrix with zeros in
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Figure 5.4: Vertical and horizontal profiles extracted from the true and estimated models in Figure
5.3. The grey lines on the true models correspond to the selected profiles.

its off-diagonal elements should be obtained, if the crosstalk effects were minimized. Overall, there

were noticeable coupled effects in at least one pair of off-diagonal blocks, whereas the remaining

pairs exhibited relatively lower levels of crosstalk; however, these lower values were not negligible

enough to be considered close to zero, which explains the introduction of notorious coupled effects

to the final estimates. Additionally, for some of the frequency bands, among the main diagonal

blocks, at least one exhibited a significantly low value, which could potentially introduce additional

complications during the inversion because the gradient related to the involved model parameters
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Figure 5.5: Curves to evaluate the performance of SA at some frequency bands of the FWI. a)
Frequency band 2, b) frequency band 4, c) frequency band 6, and d) frequency band 8.

would not be properly corrected from geometric spreading and band-limited effects.

Additionally, although the diagonalization of the Hessian operator in the r model space was

not achieved, one favorable aspect of using the Simulated Annealing was that the structure in the

summary of the Hessians was closely reproduced for different point-wise Hessians in the model
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grid, as shown in Figure 5.7. The local 3×3 Hessians of this figure were normalized by computing

the absolute value of the 9 elements of the matrix and dividing them by the maximum value of the

matrix. These results suggest that if more accurate transformation matrices are found to produce

a diagonal matrix structure for the Hessian in the r model space, a heightened level of consistency

could be attained across all locations of the considered point-probes Hessian.

5.4.1 Analysis

Several factors could explain the inability of the SA technique to generate the expected local-

wise diagonal Hessians in the r model space:

1. Given that the true values of the matrix T are unknown, the approach used to evaluate the

quality of the estimates of T relied on the performance of the forward problem. The mini-

mization of the objective function does not necessarily guarantee the attainment of an accu-

rate solution; consequently, further trial and error testing must be conducted to discover if a

more suitable annealing schedule could lead to a more satisfactory result. Hence, there is a

possibility that the obtained estimates may still lack the necessary accuracy to generate the

diagonal matrix, and more improvements might need to be done to the annealing schedule.

2. The Simulated Annealing strategy is highly dependent on the objective function designed to

describe the problem. In the experiments of this chapter, its minimization was produced as

the temperature decreased, but the expected solution was not obtained. Therefore, it is possi-

ble that the objective function of Equation 5.1 may demand adjustment in a more resourceful

way to overcome the obstacles found and achieve convergence towards an optimum solution.

3. The assumptions made regarding the matrix T could have resulted in the generation of a

highly irregular landscape for the model configuration. In this case, a unique transformation

matrix of size 3× 3 was used to convert each point-wise Hessian of the s model space into

a diagonal matrix. However, not all local Hessians, in the s system, have similar values,

sensitivities, and organization, as illustrated in Figure 5.8. Hence, there is a strong likelihood
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that using only one matrix T would not allow to correctly solve the problem, since not

enough independent equations are provided to adapt to the spatial variability of the local

Hessians of the s model space and thus to map them into a diagonal matrix in the r model

space. To bring more independent equations and capture all the value fluctuations of the

point-probes Hessian, a larger matrix T may be required, changing the current type of re-

parameterization, i.e., local-wise, or the computation of more than one 3×3 transformation

matrix need to be introduced in the workflow. On the other hand, the minimization of the

objective function and, simultaneously, the generation of imprecise solutions could also arise

if the reason behind the incapacity of producing the diagonalization is related to the use of a

unique matrix T, reinforcing this possible explanation.

5.5 Conclusions

Using the Simulated Annealing optimization method to find a transformation matrix that (1)

could consider crosstalk information from more than one location of the model grid and (2) have

the adequate size to allow local-wise FWI re-parameterizations, demonstrated that it was challeng-

ing to encounter a unique matrix T of size 3×3 that transforms a point-probes Hessian from the s

system into a block-wise diagonal matrix in the r model space. The attempts done to diagonalize

the studied point-probes Hessians were unsuccessful, possibly due to several reasons, such as the

difficulties that are intrinsic to this technique, the requirements of more independent equations to

characterize the variability in all the local Hessians that form the point-probes Hessian in the s

model space, and the selection of an objective function that, although was successfully minimized,

did not produce the expected solution. As a result, the most successful outcome produced by im-

plementing the SA technique was the reduction of crosstalk effects in some off-diagonal blocks,

but the algorithm consistently introduced strong effects on at least one pair of blocks, generating

estimates with more noticeable inter-parameter coupled effects than those exhibited by the results

from the baseline FWI and from the re-parameterizations performed with point-wise Hessians. The
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results of this chapter suggested that, for future work, deeper insight and judgment are required in

the design of the objective function, the evaluation method for the final estimates, and the selection

of the number of matrices T and/or the size of the considered matrix T to bring more independent

equations and capture the variability of the local Hessians in space, in order the obstacles presented

in this chapter could be overcome and the diagonalization could be achieved.
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Figure 5.6: Summarized versions of the point-probes Hessians in the s and the r model spaces
at different frequency bands of the FWI process. a) Frequency band 2, b) frequency band 4, c)
frequency band 6, and d) frequency band 8.
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Figure 5.7: Summary of the point-probes Hessian obtained in the r model space and at the fre-
quency band 8, as well as different extracted point-wise Hessians.
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Figure 5.8: Representation of the transformation of different point-wise Hessians into the r model
space using a unique 3×3 matrix T for the frequency band 8. The values of the local Hessians are
not normalized.

109



Chapter 6

Conclusions

6.1 Summary

Full waveform inversion has been successful in estimating the physical properties of the sub-

surface, but it is commonly affected by difficulties that are partly related to the nature of the local

optimization algorithms, which are applied to estimate the model parameters in the selected wave

propagation model. In multiparameter FWI, one of these challenges is the introduction of inter-

parameter coupled effects or crosstalk to the final estimates, affecting the inversion by slowing the

convergence of the algorithms and producing poorly accurate results that add more uncertainty.

Increasing confidence in the results is essential; thus, research has been done in the past to mitigate

these effects by analyzing the radiation patterns of different model spaces, selecting appropriate

parameterizations and optimization approaches, or employing other different methodologies. This

thesis was focused on developing and testing strategies that could contribute to the treatment of

these artifacts. In particular, two methodologies were proposed to reduce the crosstalk effects

from FWI experiments with seismic surface acquisitions and in the ρ , VP, and VS model space,

by working with constrained re-parameterizations, which rely on the decorrelation of parameter

classes linked to a convenient structure of the associated Hessian operators. This section contains

a summary of the experimental breakthroughs in the chapters of this thesis.

Before beginning with the development of the re-parameterization strategies to mitigate

crosstalk, the studies initiated in Chapter 2 with the examination of the coupled effects that would
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arise in the ρ , VP, and VS model space, considering idealized (homogeneous) and more realistic

(heterogeneous) backgrounds. Empirical radiation patterns under heterogeneous reference media

were extracted and it was understood that their shape was close to the indicated by the analytic

expressions, which have been developed under homogeneous backgrounds, but in some cases,

the lobes rotated, the amplitudes decreased, the symmetry was lost, and irregularities occurred.

Moreover, in seismic surface experiments, the potential introduction of crosstalk was demonstrated

most generally between VP and ρ as well as VS and ρ , and with much less proportion between VP

and VS. However, in heterogeneous backgrounds, these coupled effects slightly changed regarding

what was indicated by the analytic expressions, exhibiting increase, reduction, or introduction of

new regions of overlapping.

In Chapter 3, efforts were done to mitigate these effects from the FWI results, since at each fre-

quency band, the original system was attempted to be re-parameterized into an intermediate model

space constrained by Hessian operators with the identity matrix structure, which would indicate

that the iso-surfaces of the objective function are spherically symmetric and no correlation between

parameters of different classes exist. These experiments were done with a local Hessian of size

3×3, namely point-wise Hessian, to compute a transformation matrix of the same size that allowed

the performance of local-wise re-parameterizations. The point-wise Hessian is a small matrix ex-

tracted from a bigger matrix named point-probes Hessian, which is constructed by implementing

the Hessian-vector product definition. It was shown through the numerical experiments that the

proposed workflow was successful in finding an intermediate model space where the associated

Hessian was the identity matrix, but only at the location selected to construct the transformation

matrix, losing this sought matrix structure towards the farthest locations. As a result, although a

relatively accurate estimation was done for the VS parameter class, the estimations of VP and ρ

exhibited stronger crosstalk effects than the results from a baseline FWI.

These outcomes suggested that the decorrelation ideas were promising, but Hessians contain-

ing crosstalk information from multiple locations, rather than solely at a fixed position on the mesh,

would be necessary to compute a transformation matrix that could produce a more consistent iden-
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tity matrix structure of the Hessian in space. In this sense, subsequent experiments were conducted

using point-probes Hessians, but further exploration of an alternative numerical approach was re-

quired, since the one used in Chapter 3 would lead to a non 3×3 transformation matrix, limiting the

application of local-wise re-parameterizations. As a result, a different optimization problem was

designed to find a transformation matrix of size 3×3 that could transform a point-probes Hessian

into a block-wise diagonal matrix, aimed to be solved with the Simulated Annealing technique.

In this sense, in Chapter 4, the Simulated Annealing strategy was tested to solve an AVO non-

linear problem, which was smaller and simpler than the problem proposed to solve the challenges

of Chapter 3, to gain valuable insights about the proper implementation of the method, as well

as its advantages and disadvantages. The experiments demonstrated the importance of defining

a good enough objective function and finding the most appropriate annealing schedule or tuning

parameters to reach convergence towards a minimum point close to the global solution. It was also

evidenced that although the method had a slow performance, it was capable of producing accurate

results and overcoming some of the challenges in the estimation of model parameters typically

experienced by local optimization methods.

Finally, these learnings were implemented in Chapter 5 when solving, per each frequency band

of the FWI, the optimization problem of calculating the transformation matrix that would map the

original system to an intermediate one constrained by a point-probes Hessian with a block-wise

diagonal matrix structure. The estimates of VP and ρ obtained in the numerical experiments ex-

hibited substantially higher crosstalk effects than the results from the previous types of inversion.

Moreover, it was observed through the Hessian matrices of the intermediate model space that al-

though all the locations of the model grid exhibited the same 3×3 matrix structure, the expected

diagonal matrix was not correctly produced, bringing uncertainty to the results instead of minimiz-

ing it. Hence, three reasons were found to possibly explain the lack of success of the Simulated

Annealing method in generating the expected transformation matrix; these were related to the need

of finding a better annealing schedule that would lead to more accurate solutions, the definition of

more appropriate objective functions, and the requirement of a larger transformation matrix or
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more transformation matrices to would capture the variability of the local Hessian operators and

produce a proper transformation of the point-probes Hessian.

6.2 Future work

In this thesis, the crosstalk that would be produced in seismic surface experiments with the ρ ,

VP, and VS model space was investigated and two strategies were proposed to mitigate these inter-

parameter coupled effects. These strategies were based on re-parameterizing the original model

space to an intermediate one constrained by Hessian matrices exhibiting no correlation between

model parameters. Although certain positive aspects of the decorrelation ideas were found, the

re-parameterization to the expected model space was not properly achieved on a large scale for any

of the two strategies. This section contains potential questions and next steps that are valuable to

explore this topic in future studies.

With respect to the work discussed in Chapter 3, it was demonstrated that generalization was

not achieved by implementing a unique transformation matrix to convert all the grid cells of the

original system to the expected model space. Thus, it is worth contemplating if using several

transformation matrices is a more appropriate approach to capture the spatial fluctuations in the

values of the local Hessians, to properly transform them into the identity matrix, and produce a

more consistent Hessian structure in the mesh. In this sense, efforts should be made in researching

methods to compute many 3×3 transformation matrices, but a enough quantity to not compromise

the computational time and resources, as well as ideate techniques to extrapolate the information of

the known transformation matrices to unexplored locations and still map each point to the sought

model space.

On the other hand, considering the findings and analyses presented in Chapter 5, there are out-

standing questions that could serve as the foundation for future research. Firstly, given that the

Simulated Annealing technique did not produce the diagonalization of the point-probes Hessians

using a unique transformation matrix, it would be interesting to investigate if using more transfor-
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mation matrices could produce the expected point-probes Hessian in the intermediate model space,

as proposed for the strategy of Chapter 3; in this case, a different objective function for the Simu-

lated Annealing problem should be designed to include Hessian information produced by multiple

transformation matrices. Additionally, another option entails using a unique transformation matrix

of larger size, which would imply changing the type of re-parameterization conducted in this thesis

(local-wise), i.e., mapping to the intermediate model space in patches of grid cells; in this sense,

efforts should be made in understanding the selection of the appropriate matrix size and the optimal

arrangement of grid cells. Nevertheless, in case the diagonalization of the point-probes Hessian

is achieved by any of these methods, it is still important to assess if the computed transformation

matrices produce a good enough generalization to properly transform other point-probes Hessians

of the model grid, in order the crosstalk effects could be reduced.

Finally, should any of the proposals outlined for Chapter 3 or Chapter 5 prove successful,

it would be worthwhile to perform experiments involving the modification of the optimization

algorithm employed when solving the FWI. Specifically, transitioning from steepest descent to

Gauss-Newton would be ideal to verify if effectively both types of estimated results are in close

agreement, as indicated in the theoretical background, as well as to recognize if there are differ-

ences in computational time.
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